
Polygonal Approximation of Voronoi Diagrams of

a Set of Triangles in Three Dimensions

Marek Teichmann� Seth Teller

MIT Computer Graphics Group

Abstract

We describe a robust adaptive marching tetrahedra type algorithm for constructing a polygonal
approximation of the Voronoi Diagram of an arbitrary set of triangles in three dimensions.

Space is adaptively subdivided into a set of tetrahedral cells, and the set of Voronoi regions which
intersect each cell is determined exactly using a simple primitive we introduce. We obtain a small number
of di�erent types of cells in which we then construct the polygonal approximation.

This has applications in the visualization of geometric structures, and in Solid Modeling, for example
mesh generation and o�set surface computation. Our algorithm can also be used to compute the exact
Distance Transform of a three dimensional image, of interest in Visualization, and as a preprocessing
step for answering nearest triangle queries.

We also present an exact method for computing the Voronoi Diagram (Medial Axis) of a convex
polytope in three dimensions with worst case running time of O(n2) based on a reduction to convex
hull in four dimensions. The practical advantage of this method over previous algorithms is that several
robust implementations exist for computing the convex hull.

Keywords: Voronoi diagram, Medial axis, Polygonal approximation, Distance function.

1 Introduction

Computing the Voronoi Diagram of a set of polygons or of a polyhedron, of which the Medial Axis is a subset,
is an important problem in Solid Modeling. It can be used for example for hexahedral mesh generation for
�nite element applications [GP92, STG+97] and o�set surface generation [CHL91]. Voronoi diagrams of
triangles are also an fundamental structure in Computational Geometry, and it is interesting to be able to
visualize such structures.

Our approximation algorithm in e�ect polygonizes the non manifold surfaces that occur in the Voronoi
diagram, inside each cell of a hierarchical adaptive tiling of three dimensional space. In this respect, it
generalizes the algorithm of Bloomenthal [BF95] to be adaptive. This adaptive nature simpli�es the cases
that occur when examining a given tetrahedron, and improves handling of surface intersections, at the cost
of increasing the number of triangles produced. In addition, because we are dealing with Voronoi diagrams
and not arbitrary non-manifold surfaces, we can deal with certain cases correctly that their algorithm would
not. Our algorithm is based on a new primitive for determining exactly which Voronoi regions intersect a
given cell.

We present two related algorithms, and a third exact algorithm for convex polytopes:
Adaptive subdivision and cell labeling algorithm. The �rst algorithm constructs a tetrahedral sub-
division of a region of interest based on octrees, then performs a wavefront propagation step. The wavefront
propagation determines, for each tetrahedral subdivision cell, the exact set of Voronoi regions intersecting
that cell, using a new primitive. This generalizes the algorithm of Vleugels and Overmars [VO95], which
detects only the Voronoi regions intersecting cell corners.

The �rst step is analogous to inserting the input triangles into a standard octree and is bounded by
O(nd) where n is the number of input triangles, and d is the subdivision depth. The propagation step takes
time O(c log c) where c is the number of cells occupied by input triangles, if there are no degeneracies.
Polygonization of Voronoi surfaces. In the second algorithm, we start with the cells produced by
the algorithm given above, further subdivide these cells in certain complex cases, and create a polygonal

�Supported by an NSERC postdoctoral fellowship.

1



approximation of the Voronoi diagram. The error in the approximation is bounded due to the cell size and
bounds on the curvature of the surfaces involved [VO95]. Barring severe denegeracy, Voronoi vertices are
located exactly (up to numerical precision.) The advantage of tetrahedral cells is that the number of di�erent
labelings of their vertices is much smaller than for a cube, the same reason for which cubes are divided into
tetrahedra in isosurface polygonizing algorithms [Blo94].
Medial Axis of a polytope. For the important special case of a convex polytope, we also present a simple,
easily implementable, exact algorithm to compute the Voronoi Diagram (Medial Axis) of a convex polytope.
It is based on a reduction of this problem to the Convex Hull problem that is di�erent from the classical
reduction for the point Voronoi Diagram. The worst-case running time is O(n2), for n input bounding
planes. While slower than the O(n log n) algorithm of [Hel94], this algorithm relies on the computation of a
convex hull in 4 dimensions, for which several implementations, both in exact and oating point arithmetic
are available [GO97, chapter 52].

2 Related Work

There are several ways of approximating Voronoi diagrams. The �rst was introduced in a paper by Vleugels
and Overmars [VO95]. The paper describes the algorithm for any dimension and objects more general than
triangles, but we shall specialize to 3 dimensions, and a set of possibly vertex or edge-adjacent, but otherwise
disjoint triangles T .

In [VO95], space is divided into axial cells of �xed size, and the Voronoi diagram is approximated by
the set of cells intersected by the diagram (with a caveat, see below.) This approximation labels each cube
corner with the triangle of T closest to that corner and marks those cells with more than one label as
containing part of the diagram. This is an approximation, as a surface may enter a cell undetected, and
Voronoi vertices and edges are not identi�ed. This approximation, while convenient for motion planning, is
not ideal for visualizing the diagram.

Another method is to approximate Voronoi region boundaries with polygons. For example we could start
with the approximation mentioned above, and apply an algorithm for polygonizing non-manifold implicit
surfaces, which is a generalization of an isosurface extraction algorithm such as Marching Cubes [LC87]
or a tetrahedral version of it such as [Blo94]. The most recent published available algorithm is due to
Bloomenthal [BF95], but does not deal with more than one vertex of the surface in a given (tetrahedral)
cell, or on a given cell face.

Furthermore, each of the above algorithms require repeated evaluation of the query: given a point p, to
which Voronoi region does it belong? It seems that one would need a fully constructed Voronoi diagram or
some other data structure to answer it. For example, no practical method for doing this is given in [VO95].
In our algorithm, such computations are ordered in such a way as to take advantage of coherence in the
Voronoi diagram, that is the queries can be answered de�nitely \during construction".

There is also an extensive literature in the Solid modeling �eld on computing or approximating the
Medial Axis. A recent survey can be found in the paper by Sherbrooke and Patrikalakis [SP95]. They also
give an algorithm for computing the Medial Axis of a Polyhedron exactly (up to numerical precision) by
following Voronoi edges and detecting vertices numerically. Finally, a survey of Voronoi diagrams and related
algorithms can be found in [Aur91].

3 Preliminaries

For two points p; q 2 R
3 , denote their Euclidean distance by d(p; q), and for two sets P;Q, let d(P;Q) =

inffd(p; q) : p 2 P; q 2 Qg.
We are given a set of triangles, possibly sharing edges or vertices, but otherwise disjoint. We will de�ne

the set of Voronoi sites T to be the set of relatively open triangular faces, along with their open edges, and
vertices.

Following [VO95], we de�ne the bisector of two Voronoi sites S; T as

bis(S; T ) = fp 2 R3 : d(p; S) = d(p; T )g:

2



The bisector is a portion of either a plane, a paraboloid, a parabolic cylinder or cone or a hyperboloid. We
call S and T generators of the bisector bis(S; T ). The bisector divides space into two regions: the dominance

region of S over T is
dom(S; T ) = fp 2 R3 : d(p; S) < d(p; T )g:

Now de�ne the Voronoi region of site S 2 T as

VR(S) =
\

T2T ;T 6=S

dom(S; T ):

Its boundary is composed of bisectors with other sites, or Voronoi facets of dimension 2. Two or more
Voronoi faces meet at Voronoi edges of dimension 1, and three or more at a Voronoi vertex, a point. If more
than two faces meet at an edge or more than three at a vertex, we call this situation a degeneracy. Finally,
let the Voronoi diagram of T ,VD(T ), be the set of Voronoi facets generated by T .

Note that, by including triangle vertices and edges as sites, we guarantee that for every point p 2 R3 in
the interior of a Voronoi region, there is exactly one site closest to p. See for example [Hel91] for a similar
approach in the plane. Furthermore every bisector has two generator sites associated with it and hence each
bisector has one algebraic formula.

4 The wavefront

We consider a wavefront propagating at constant speed from T . A prairie �re analogy has also been
used [Hel91]. The wavefront is the set of points at a given distance to T , also called an o�set surface [Hel94],
(Figure 2). For t � 0, let the wavefront Ft be the (set of) surface(s) de�ned by Ft = fp 2 R3 : d(p; T ) = tg:
We note that Ft is composed of planar, cylindrical and spherical sections. These sections intersect at Voronoi
bisectors, and we label each section by the site to which it is closest.

We will use this wavefront as a conceptual aid, without actually maintaining it, or even exactly maintain-
ing the set of cells intersecting it. For clarity, in the next section, we �rst describe a conceptual algorithm
based on maintaining the front. This establishes the structure of a wavefront propagation, and gives the
di�erent types of events that can occur.

An implementation of this algorithm would be costly so we then show how to maintain the front only
approximately, signi�cantly simplifying the algorithm and its implementation, at a cost of considering an
additional constant number of cells at each propagation step.

4.1 Conceptual framework for wavefront propagation

We are given the set of sites T , and a subdivision of our region of interest into pairwise disjoint cells. We
wish to determine the set of Voronoi regions that intersect each cell.

Let � be the diameter of a cell. We start with the wavefront at t = 0, and advance the front by increasing
t, stopping whenever a section of the wavefront enters a cell. We will refer to t as the time.

For each cell, we maintain a current set of labels at time t, which is the set of Voronoi regions associated
with the section of the wavefront that entered the cell at or before time t. The label of the section of the
wavefront at the point of entry indicates which Voronoi region \enters" the cell at that time; we say that it
propagates to the cell. (We can also have multiple fronts entering at a given time; we treat them as entering
at slightly di�erent times.) Thus for any t there are three types of cells:

� unvisited cells: those that are at distance greater than t from T and have no labels at time t,

� incomplete cells: those that intersect the wavefront, and have some labels, and

� complete cells: those that the wavefront has passed (thus every point in the cell has a distance less
than t from T ) and will receive no new labels.

An incomplete cell can be updated several times as the front advances and labels are propagated. When it
becomes complete, it is labeled with exactly the generators of those Voronoi regions it intersects.

An important observation is that when t goes from t0 to t1 (with t1 > t0) a given label never propagates
further than distance t1� t0 (Figure 2). This implies that an incomplete cell never obtains a label from a cell

3



c C

T

Figure 1: Testing if V R(T )C. The Voronoi diagram of the three short open segments is shown as dotted
lines.

that is further than distance t1 � t0 from it. This will be used below to show correctness of the propagation
algorithm. We also note that all cell entries and exits are within a time interval of size �, after which the
cell will not receive any more labels.

We have so far assumed that the cells initially intersecting T have �nal labels. This is easy to accomplish
by an initial propagation step, in which each cell obtains labels from its neighbors (which are at distance at
most �).

5 The Propagation algorithm

Consider a subdivision of our region of interest (for example, an enlarged axial bounding box) into axial
cubic cells of �xed size. In our implementation each cube is subdivided into 6 tetrahedra (also called Kuhn
simplices), which are similar, up to their mirror image, as in [Blo94] and others. This subdivision has the
advantage of being compatible with a similar subdivision with half the cell size. We will refer to cell vertices
of cells as corners.

We are now ready to describe the actual algorithm we use, which computes the set of Voronoi regions
intersecting each cell. We begin with a primitive fundamental to our algorithm.

5.1 Testing if a Voronoi region intersects a cell

For a cell C, let L(C) be the set of all Voronoi regions intersecting C, i.e. the set of labels of C when C is
complete. We are given a site T , and a cell C with labels L � L(C), and would like to determine if VR(T )
intersects C. We describe a new primitive to do this, which we call TestLabel. See Figure 1.

Lemma 5.1 Let S be a set of sites, and let T be a site in S. Let C be a cell in R3 and c be the closest point

to T on C. Then in the Voronoi diagram of S, VR(T ) \ C 6= ; i� d(c; T ) � d(c; S) for all S 2 S n T .

Proof. Clearly if d(c; T ) � d(c; S) for all S 2 S n T then c 2 VR(T ) \ C, by de�nition of Voronoi regions.
Conversely, if x 2 VR(T ) \ C for some x, d(T; x) � d(S; x) for all S 2 S by de�nition of VR(T ), and since
d(T; c) � d(T; x), we have d(T; c) � d(S; x) and c 2 VR(T ).

Let c be the point closest to T on C. Then determining if VR(T ) intersects \C is equivalent to verifying
that d(c; T ) � d(c; S) for all S 2 L by the above lemma. Note that this test also works if C contains a
Voronoi region completely. Implementation is done by intersecting the query site S against the precomputed
Voronoi regions of a generic tetrahedron, and �nding distances of the resulting pieces to the appropriate cell
vertex, edge or face, which is a simple operation.

If there are ` labels, this test can be determined in O(`) time. Testing all labels against each other takes
O(`2) time. In practice this can be somewhat accelerated by ordering the distances and testing them in
decreasing order to take advantage of the coherence between points in the cell. Moreover most cells will have
only a small number of labels. As a corollary, if S is a superset of the set of Voronoi regions intersecting C,
we can remove the labels of the regions that do not intersect C in O(jSj2). Finally note that TestLabel
can also be used to check if a Voronoi region intersects a triangle or an edge of a cell.

4



��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

CE et (C)

Figure 2: Wavefront during propagation in the plane, from light grey to dark grey. Left: the Voronoi diagram
of two edges is shown in dotted lines. Right: cell E is incomplete; C is being processed at time te(C).

5.2 The propagation

In this section we describe the propagation algorithm which simulates the advance of the wavefront, but
does so only approximately, i.e. processes events in batches at each step.

There will be two types of cells: processed and unprocessed. Processed cells correspond to those cells C
that the algorithm has seen and labeled, and hence contain the set of labels L(C), and unprocessed ones are
the remaining cells that the algorithm hasn't considered yet. We call a label �nal when it labels a complete
cell.

During initialization, all input triangles are inserted into the cells they intersect. Then the initializing
propagation described above is performed, and from the cell labels, we label each cell corner by the distance
from the corner to T . Next all corners are placed into a priority queue Q, with the top of the queue at the
closest distance to T .

After initialization, we iterate the following steps until Q is empty. Let c be a corner on the top of Q,
and C an unprocessed cell with corner c. If C was the only such cell, c is removed from Q. If C lies in the
region of interest, C is processed as follows. All labels of cells at a distance of at most 2� are collected. Then
TestLabel is used repeatedly to eliminate labels that are not �nal. The cell C is labeled by the set L(C)
of �nal labels, and additionally, the corners of C are labeled by the site closest to them. If the number of
labels of C is greater than one, each corner is inserted into the queue, if not already present (this ensures
that we do not propagate any further from cells with only one label).

Correctness. Consider a cell C and let [ta(C); tb(C)] be the time interval for which C is incomplete, (hence
ta(C) = d(C; T )), and te(C) be the time C is actually encountered by the propagation algorithm. First
note that the algorithm guarantees that ta(C) � te(C) � tb(C) � ta(C) + �: This follows from the triangle
inequality. Hence the time interval between steps is at most �.

Lemma 5.2 At time te(C), the set of labels collected from cells at a distance of at most 2� from C is a

superset of L(C).

Proof. Say that we are about to process an unprocessed cell C, and assume for all processed cells Ci, the
set of labels is �nal when they are encountered by the propagation algorithm (at time te(Ci) < te(C)), but
before te(C), they do not necessarily contain any of the labels that would arrive earlier for t between ta(Ci)
and te(Ci).

Collecting cell labels from cells that are at a distance of at most � is su�cient by the observations in
Section 4.1. Hence, collecting labels from the processed cells Ci at a distance of at most � is su�cient to obtain
the �nal labels from the processed cells. There can however be unprocessed cells Ei (with te(Ei) > te(C))
within distance � from C that have ta(Ei) < te(C) i.e. they are incomplete at time te(C), and may contain
some labels according to the framework. An example can be seen on the right in Figure 2, where cell E
is already entered by the left wavefront, but has not been processed hence contains no label according to
the algorithm above. Unprocessed, cell E has no labels at time te(C) according to our algorithm, but those
labels are late by at most �. Thus it is su�cient to collect labels from cells that are at a distance of at most
2� from C. In e�ect, we do a propagation for some unprocessed cells.

5



We conclude that if we process cells in order of their closest vertex to T by collecting labels as above, which
is from a constant number of cells, we obtain a superset of the �nal cell labels. Note that it is not necessary
to consider cells with only one label since all the information is contained in cells with multiple labels.

Complexity. If ` is a bound on the number of labels per cell, the total time spent in a propagation step
is O(`2). The number of propagation steps is the same as c, the number of cells processed. Hence the total
running time is O(n + `2c log c), where n is the number of input triangles. Assuming a constant number of
labels per cell, which can be ensured as described later unless degeneracies occur or a cell contains a large
number of input sites, the propagation step takes constant time, and the total time is O(n+ c log c).

5.3 Adaptive algorithm with propagation

Next, we present an algorithm which will be used as a preprocessing step in the polygonizing algorithm of
Section 6. It adaptively subdivides the region of interest into tetrahedral cells, with vertices on a hierarchical
grid, such that each cell has a number of labels su�ciently small to allow for e�cient propagation. This
number must be determined experimentally.

We insert input triangles into a standard octree [Sam90]. Octree nodes are subdivided until we achieve
the same size for nodes that contain input triangles (to simplify the propagation), and no node has more
than the required number of triangles. In addition, we require that each cell contains at most one input
vertex.

The resulting non-empty nodes are tetrahedralized and used as a basis for the propagation algorithm. At
this point propagation is e�cient due to the small number of labels in each cell, with the tradeo� that more
cells must be processed. A conservative worst case bound on the running time is O(nd + `2c log c), where c
is the number of cells containing input triangles, each with at most ` labels, and d is the octree subdivision
depth.

5.4 Purely adaptive labeling

Once the above cells have been computed, the polygonizing algorithm below requires that certain cells with
large numbers of labels be further subdivided. In this section, we �rst describe an adaptive algorithm for
doing this which will be used as a subroutine in the polygonizing algorithm, after the initial subdivision is
done as in Section 5.3. We describe the details of subdividing a cell later. This algorithm is based on a
generalized version of octrees in which cell geometry and number of children of a node representing a cell
varies, but the latter is bounded by 9.

Initially, each node contains a set of labels obtained using the algorithm in the previous section. (This
algorithm can also be used independently, in which case, initially, all sites are inserted into the root node,
which is labeled with them.) Nodes are subdivided until a predetermined small number of labels remain or
(as required by the polygonizing algorithm), the required maximum cell size is reached (the precision of the
approximation), or a maximum subdivision level is reached. After subdivision of a node, for each child node,
labels of the parent are tested and possibly eliminated using TestLabel.

A bound on the worst case running time would be O(n2 log d) where d is the subdivision depth, but this
does not take into account the fact that often TestLabel degenerates to a constant time intersection test
instead of a linear number of distance tests. This algorithm will be used in the next section after the initial
subdivision of section 5.3.

6 Adaptive Polygonizing Algorithm

We now wish to compute a polygonal approximation of the Voronoi diagram of T , based on the computation
of the previous section. We assume that the cell size obtained from the calculation of Section 5.3 de�nes the
resolution at which we would like the polygonal approximation to be for simple bisectors.

Further subdivision will take place only for complex cells, such as cells containing Voronoi vertices.
Our algorithm is an adaptive version of the algorithm of Bloomenthal [BF95], that is specialized for

Voronoi surfaces. It is complete in the sense that using subdivision, we are not limited to a single Voronoi
vertex and edge in each initial cell, and correctly identify them, up to a requested resolution. Our goal is to

6



a

a a

b

c c c

b

c

b

a

a a

Figure 3: Simple approximation (in grey) of the actual Voronoi diagram (thin lines).

produce a simple algorithm that would satisfactorily treat these cases, yet, for each tetrahedron considered,
needs to polygonize only a small number of surfaces.

6.1 A simple non-adaptive approximation

Consider a given cell C. Recall that L(C) is the set of labels associated with the entire cell C. Let V (C) be
the set of labels associated with the corners of C (refer to Figure 3). The simplest possible set of cases is as
follows. We call a case canonical if jL(C)j = jV (C)j. These cases are easy to polygonize. If jL(C)j is

1, the cell contains no Voronoi surface,

2, the cell contains one bisector,

3, the cell contains an edge which passes through three faces, i.e. two of the cell faces contain an intersection
with the edge. The faces involved are two with three labels, see Figure 4a),

4, the cell contains one Voronoi vertex as in Figure 4a).

Of course, there are other cell types: a simple example can be seen on the left in Figure 3 where two Voronoi
edges (thin lines) cross a cell without intersecting. However, if we consider only labels at cell corners as in
[VO95], it is possible to produce a �rst approximation, which is consistent in the sense that the boundary
of each region produced contains no holes, also shown with grey lines on the left in Figure 3.

In the case jV (C) = 2j, we take the intersection of the cell edges with the bisector whose generators
are the cell corner labels. Then we construct the 2 or 3 triangles with vertices at these intersections that
approximate the surface, as in [Blo94].

In the case jV (C) = 3j, one can �nd the intersection of the Voronoi edge with the cell, (see Section 6.3)
or appropriate points on two faces (with three labels) if none are found. In the case jV (C) = 4j, we use the
actual vertex if in the cell, or the centroid of the tetrahedron. The construction of approximating triangles
is illustrated in Figure 4, and described below. This approximation gives reasonable results for small cell
sizes, see Figure 6 for an example. A disadvantage is that estimated vertices can be arbitrarily far from the
their exact counterparts.

6.2 A better approximation

We can produce a better approximation by subdividing complex cells, i.e. cells with more than four labels,
or cells with four corner labels and no Voronoi vertex, or cells with three corner labels and no Voronoi edge,
etc. Subdivision is done until either we reach one of the simple cases described in the previous section, or a
maximum subdivision level is reached. Once subdivision is terminated, we revert to the simple approximation

7



technique using corner labels mentioned above. Our algorithm also tests for degeneracies, and subdivides
accordingly. We summarize our algorithm here:

Phase 1. The subdivision of Section 5.3 is performed.

Phase 2. The resulting tetrahedral cells are processed to �nd cells that are easy to polygonize, possibly
subdividing them further, as described in Section 5.4. We enforce subdivision smoothness , to simplify case
analysis during subdivision: whenever a tetrahedron is subdivided, we make sure that its neighbors are at
most one level of subdivision away from it, and if necessary trigger cascaded subdivision. Neighbors at a
lower subdivision level are triangulated. The tetrahedral cells are subdivided with planes parallel to the cell
sides and through edge midpoints as in [Moo92], see Figure 5a), unless degeneracies occur (Section 6.4).

Phase 3. In the last phase, triangles approximating the surface are created, as described in Section 6.4.

6.3 Primitives

We �rst describe the additional primitive operations that we will need and their implementation. Let
S1; : : : ; S4 be sites of T .

CompareSites(p; S1; S2) determines which of the two sites, S1 or S2 is closer to a point p.

FindBisector(e; S1; S2) �nds where the bisector of sites S1 and S2 intersects the cell edge e, or returns
failure if none exists.

FindVEdgeOnFace(f; S1; S2; S3) �nds the intersection of a Voronoi edge on triangular cell face f that is
equidistant to Si, or returns failure if none found.

FindVVertexInCell(C; S1; S2; S3; S4) �nds a Voronoi vertex in tetrahedral cell C that is equidistant to
Si, or returns failure if none found.

The primitive CompareSites is easy to implement. FindBisector insersects a segment with either a
planar or quadratic surface by solving a one-parameter equation. We do binary search along the edge using
CompareSites, which takes O(log b) time, where b is the desired precision.

FindVEdgeOnFace is implemented by a double binary search. An alternative would be to use the
algorithm below in a lower dimensional setting. For FindVVertexInCell, we take three of the bisectors
of each pair of sites among the 4 sites. Next, we numerically �nd their common intersection(s) and test if
the result is actually equidistant to the sites. The precision of the answer a�ects only the precision of the
resulting approximating polygonal surface. See also [Mil93] for an alternative.

6.4 Processing one tetrahedron

In phase 2 of the algorithm, to polygonize the content of a cell C, we distinguish cases according to the
number of labels in L(C), and subcases according to jV (C)j. We create approximating triangles only for
cells with jV (C)j = jL(C)j > 1 unless there is a degeneracy. Other cases are subdivided.

One label. If jL(C) = 1j, we do nothing.
Two labels. If jL(C)j = 2, then a Voronoi surface must intersect the cell. If in addition jV (C)j = 2, we
use FindBisector on the cell edges having 2 labels to determine where the surface intersects each cell edge
and create two or three triangles, approximating the surface as in [Blo94]. In the case where the surface
exits through another face, subdivision occurs. This is easily tested using TestLabel on the face. Some of
this information is already available since TestLabel has been used to �nd L(C), and is cached.

Finally, if jV (C)j = 1, a portion of the surface enters the face without crossing three edges. In this case,
we subdivide the cell, as in Figure 5a). Note that since bisector curvature is bounded subdivision will stop
eventually [VO95]. Our implementation limits subdivision to a predetermined level.
Three labels. Refer to �rst row of Figure 4. If jL(C)j = 3, and two faces have 3 di�erent vertex la-
bels (3 label canonical case), we attempt to �nd the intersections of a Voronoi edge with them using
FindVEdgeOnFace on each cell face. If successful, and if the edge does not stray out of the cell (as
veri�ed by FindVEdgeOnFace), approximating triangles are created according to case a) in the Figure.
Subdivision occurs otherwise.

8



cd

3 labels: c)b)

c

a
4 labels: a) b) a

d

a a a

a
c)

b

bbb

c

c

d

c
bb

c

Figure 4: Polygonal approximations are shown for typical cases. Only a) cases get polygonized.

b)a) c)

Figure 5: Tetrahedron subdivision cases. Case a) is the Kuhn simplex.

Four labels. Here jL(C)j = 4. The corresponding canonical case occurs if FindVVertexInCell locates
a vertex, and if jV (C)j = 4, we create triangles as in [BF95], see the second row of Figure 4a). If jV (C)j 6= 4,
we do a subdivision with the vertex as apex of 4 sub-tetrahedra, as in Figure 5c). Otherwise, we test for a
degenerate Voronoi edge using three of the labels and FindVEdgeOnFace, and if it exists, and if the fourth
site is also equidistant to the both points returned by FindVEdgeOnFace, we assume degenerate Voronoi
edge. To reduce to the canonical cases, we then subdivide the cell along the edge by doing a (precomputed)
constrained triangulation of the cell, and, the cell is subdivided. See Figure 5b). If the above tests fail,
standard cell subdivision takes place.
More than four labels. In this case, we test for a vertex degeneracy, and subdivide if necessary. By
selecting four labels, we test for a Voronoi vertex using four of the labels, as above. If a vertex is found, we
check that one other label is also equidistant to the vertex. If so, we assume a degenerate Voronoi vertex,
and subdivide the cell by creating four new sub-cells each with one apex at the vertex (Figure 5c)). This
method is also used when several input triangles share a vertex in a cell, with each apex at the input vertex.
Otherwise, the cell is subdivided in the standard way. A similar method is used for testing for a degenerate
Voronoi edge.

If we reach a maximum preset level of subdivision without reaching one of the cases above, we fall back
on the simple method of polygonizing using only cell vertex labels, ignoring the others. As is done in most
polygonizing algorithms, we cache intersections on edges, faces, but also in cells. The last one is used when
subdividing in some of the degenerate cases.

9



7 Results

We have currently implemented a non-adaptive version of the propagation algorithm, and give some running
times. For an input of 2032 triangles, 189546 tetrahedral cells were traversed producing 333801 approxi-
mating triangles, and our implementation took 1.9 minutes on an SGI Indy with 133 Mhz R4600 Processor.
Tetrahedral cell corners were on a 50� 50� 50 grid dividing the bounding box of the input, with an extra
5 on each side. The priority queue had at most 4703 elements during propagation. The sample image in
Figure 6 took 9.1 seconds to produce and contains 7633 triangles in 20334 tetrahedral cells with corners on
a 20� 20� 20 grid. Finally, Figure 7 shows the surface equidistant to two triangulated tori. This was done
by omitting Voronoi surface between triangles of the same torus.

Figure 6: Voronoi diagram of three triangles (bisectors involving vertices or edges are not shown). The input
triangles, loosely forming a cone, are shown in the inset.

Figure 7: Surface equidistant to two tori.

10



8 An exact algorithm for convex polyhedra

In this section, we present a linear time reduction from the problem of computing the Voronoi Diagram for
convex polyhedra in dimension three, which is identical to its Medial Axis, to the problem of computing the
convex hull in dimension four. This reduction can also be easily generalized to higher dimensions.

Let h1; : : : ; hn be the set of planes bounding the input convex polyhedron P , and let the equation of hi
be aix = bi, with unit outward pointing normal ai. Now, the plane gi at distance t from hi towards the
interior of P is aix + t = bi since ai is unit. Let g

+

i be the halfspace f(x; t) 2 R
4 : aix + t > big. Let � be

the projection from R
3 � R to R3 de�ned by �(x; t) = x. Then the Medial Axis of P is the projection by

� of the k-faces (k < 4) of
T

i g
+

i . This can be seen as follows. Take a point (y; s) 2 R
3 � R that is on the

boundary of
T

i g
+

i . This point lies on a set, say I, (possibly of size 1) of the gi's. This implies that y is at a
distance s from hi, i 2 I , and s > bi � aiy for all i 62 I , i.e. y is further from all other hi's. Hence y is on a
(min(4; 4� jI j))-face of the Medial Axis of P (barring a degeneracy).

The computation of the intersection can be done by taking the polar dual of the planes gi and computing
the convex hull of the resulting points [Ede87]. This gives an algorithm of time complexity O(n2) [Ede87]
for computing the Medial Axis of an n-sided polytope.

9 Concluding remarks

We have presented a simple algorithm at the intersection of Computational Geometry and Visualization for
approximating the Voronoi diagram of a set of triangles or polyhedra. The current non-adaptive implemen-
tation already produces usable results for Visualization, and we are currently implementing the adaptive
version.

The algorithm can easily be extended to construct the diagram of polygons or polyhedral objects instead
of triangles: we simply do not create the approximation of the bisectors between triangles belonging to the
same polygon or object.

Future work includes a generalization of this method to arbitrary non-manifold surfaces. In this case,
TestLabel will either be substantially more complex, or only an approximation.
Acknowledgements. We would like to thank Bud Mishra and Chee Yap for reading an earlier version of
this paper. The �rst author also wishes to thank Hans K�hling Pedersen for providing an initial impetus for
thinking about this project, for interesting discussions, and for some useful code.

References

[Aur91] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput.
Surv., 23:345{405, 1991.

[BF95] Jules Bloomenthal and Keith Ferguson. Polygonization of Non-Manifold implicit surfaces. In Robert
Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual Conference Series, pages 309{316. ACM
SIGGRAPH, Addison Wesley, August 1995. held in Los Angeles, California, 06-11 August 1995.

[Blo94] Jules Bloomenthal. An implicit surface polygonizer. In Paul Heckbert, editor, Graphics Gems IV, pages
324{349. Academic Press, Boston, 1994.

[CHL91] C.S. Chiang, C. M. Ho�man, and R. E. Lynch. How to compute o�sets without self-intersection. In Curves
and Surfaces in Computer Vision and Graphics II, volume 1610, pages 76{87. SPIE, 1991.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.

[GO97] J. E. Goodman and J. O'Rourke, editors. Handbook of Discrete and Computational Geometry. CRC Press
LLC, 1997.

[GP92] H. N. G�ursoy and N. M. Patrikalakis. An automatic coarse and �ne surface mesh generation scheme based
on medial axis transform: Part I algorithm. Engineering with Computers, 8:121{137, 1992.

[Hel91] M. Held. On the Computational Geometry of Pocket Machining, volume 500 of Lecture Notes Comput.
Sci. Springer-Verlag, June 1991.

[Hel94] M. Held. On computing Voronoi diagrams of convex polyhedra by means of wavefront propagation. In
Proc. 6th Canad. Conf. Comput. Geom., pages 128{133, 1994.

11



[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction
algorithm. In Maureen C. Stone, editor, Computer Graphics (SIGGRAPH '87 Proceedings), volume 21,
pages 163{169, July 1987.

[Mil93] V. Milenkovic. Robust construction of the Voronoi diagram of a polyhedron. In Proc. 5th Canad. Conf.
Comput. Geom., pages 473{478, 1993.

[Moo92] Douglas Moore. Subdividing simplices. In David Kirk, editor, Graphics Gems III. Academic Press, New
York, 1992.

[Sam90] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[SP95] E. C. Sherbrooke and N. M. Patrikalakis. Computation of medial axis transforms of 3d polyhedra. In
J. R. Rossignac and C. M. Ho�mann, editors, Proc. Third ACM Solid Modeling Conference, 1995.

[STG+97] D.W. Storti, G. M. Turkiyyah, M. A. Ganter, C. T. Lim, and D. M. Stal. Skeleton-based modeling
operations on solids. In Proc. Third ACM Solid Modeling Conference, 1997.

[VO95] J. Vleugels and M. Overmars. Approximating generalized Voronoi diagrams in any dimension. Report
UU-CS-95-14, Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, 1995.

12


