
Invited paper: 17th Conference on Foundations of Software Technology and Theoretical

Computer Science, Kharagpur, India, 1997.

Algorithmic issues in coding theory

Madhu Sudan

October 9, 1997

Abstract

The goal of this article is to provide a gentle introduction to the basic def-

initions, goals and constructions in coding theory. In particular we focus on

the algorithmic tasks tackled by the theory. We describe some of the classical
algebraic constructions of error-correcting codes including the Hamming code,

the Hadamard code and the Reed Solomon code. We describe simple proofs

of their error-correction properties. We also describe simple and e�cient algo-
rithms for decoding these codes. It is our aim that a computer scientist with

just a basic knowledge of linear algebra and modern algebra should be able to

understand every proof given here. We also describe some recent developments
and some salient open problems.

1 Introduction

Error-correcting codes are combinatorial structures that allow for the transmis-

sion of information over a noisy channel and the recovery of the information

without any loss at the receiving end. Error-correcting codes come in two basic

formats. (1) The \block error-correcting code": Here the information is broken

up into small pieces. Each piece contains a �xed �nite amount of information.

The encoding method is applied to each piece individually (independently). The

resulting encoded pieces (or blocks) are sent over the noisy channel. (2) The

\convolutional codes": Here the information is viewed as a potentially in�nite

stream of bits and the encoding method is structured so as to handle an in�nite

stream. This survey will be restricted to the coverage of some standard block

error-correcting codes.

Formally a block error-correcting code may be speci�ed by an encoding func-

tion C. The input to C is a message m, which is a k-letter string over some al-

phabet � (typically � = f0; 1g but we will cover more general codes as well). E

1

mapsm into a longer n-letter string over the same alphabet1. The mapped string

is referred to as a codeword. The basic idea is that in order to send the message

m over to the receiver, we transmit instead the codeword C(m). By the time this

message reaches the destination it will be corrupted, i.e., a few letters in C(m)

would have changed. Say the received word is R. Hopefully R will still be able to

convey the original messagem even if it is not identically equal toC(m). The only

way to preserve this form of redundancy is by ensuring that no two codewords are

too \close" to each other. This brings us to the important notion of \close"ness

used, namely the Hammingdistance. The Hamming distance between two strings

x; y 2 �n, denoted �(x; y), is the number of letters where x and y di�er. No-

tice that � forms a metric, i.e., �(x; y) = 0) x = y, �(x; y) = �(y; x) and

�(x; y) + �(x; z) � �(x; z). A basic parameter associated with a code is its

distance i.e., the maximumvalue d such that any two codewords are a Hamming

distance of at least d apart. Given a code of distance d and a received word R that

di�ers from C(m) in at most e � d�1 places, the error in the transmission can be

detected. Speci�cally, we can tell that some letter(s) has been corrupted in the

transmission, even though we may not know which letters are corrupted. In order

to to actually correct errors we have to be able to recover m uniquely based on R

and a bound t on the number of errors that may have occurred. To get the latter

property t has to be somewhat smaller than d�1. Speci�cally if t � b(d�1)=2c,
then we notice that indeed there can be at most one message m such that

�(C(m); R) � t. (If m1 and m2 both satisfy �(C(m1); R);�(C(m2); R) � t,

then �(C(m1); C(m2)) � �(m1; R) +�(R;m2) � 2t � d� 1, contradicting the

distance of C.) Thus in an information theoretic sense R maintains the informa-

tion contained in m. Recovering the informationm e�ciently from C is another

matter and we will come back to this topic presently.

To summarize the discussion above we adopt the following terse notation that

is standard in coding theory. A code C is an [n; k; d]q code ifC : �k ! �n, where

j�j = q with minx;y2�kf�(C(x); C(y))g = d. With some abuse of notation we

will use C to denote the image of the map C (i.e., C may denote the collection of

codewords rather than the map).C is called a e-error-detecting code for e = d�1
and a t-error correcting code for t = b(d� 1)=2c.

In the remaining sections of this article we will describe some common con-

structions of [n; k; d]q for various choices of the parameters n; k; d and q. We

will also describe the algorithmic issues motivated by these combinatorial ob-

jects and try to provide some solutions (and summarize the open problems).

(We assume some familiarity with algebra of �nite �elds [10, 19].) Before going

on to these issues, we once again stress the importance of the theory of error-

correcting codes and its relevance to computer science. The obvious applications

of error-correcting codes are to areas where dealing with error becomes important

such as storage of information on disks, CDs, and communication over modems

1 The assumption that the message is a k-letter string over � is just made for no-

tational convenience. As it will become obvious, the representation of the message

space is irrelevant to the communication channel. The representation of the encoded

string is however very relevant!

etc. Additionally, and this is where they become important to the theoretical

computer scientist, error-correcting codes come into play in several ways in com-

plexity theory | for example, in fault-tolerant computing, in cryptography, in

the derandomization of randomized algorithms and in the construction of prob-

abilistically checkable proofs. In several of these cases it is not so much the �nal

results as the notions, methods and ingredients from coding theory that help. All

of this makes it important that a theoretical computer scientist be comfortable

with the methods of this �eld | and this is the goal of this article. A reader

interested in further details may try one of the more classical texts [2, 11, 17].

Also, the article of Vardy [18] is highly recommended for a more detailed account

of progress in coding theory. The article is also rich with pointers to topics of

current interest.

2 Linear Codes

While all questions relating to coding theory can be stated in general, we will

focus in our article on a subset of codes called linear codes. These codes are ob-
tained by restricting the underlying alphabet � to be a �nite �eld of cardinality

q with binary operations \+" and \�". Thus a string in �n can be thought of as

a vector in n-dimensional space, with induced operations \+" (vector addition),

and \�" (scalar multiplication). Thus a code C � �n is now a subset of the

vectors. If this subset of vectors forms a \subspace" then the code is linear, as

made formal below:

De�nition1. C � �n is a linear code if 8a 2 �; x; y 2 C, x+ y; a � x 2 C.

Many of the parameters of error-correcting codes become very clean in the

case of linear codes. For instance, how does one specify a code C 2 �n? For

general codes, succinct representations may not exist! However, for every linear

code a succinct representation, of size polynomial in n does exist! In particular,

we have the following two representations:

1. For every [n; k; d]q linear code C there exists an n � k \generator" matrix

G = G
C
with entries from � such that C = fGxjx 2 �kg.

2. For every [n; k; d]q code C there exists an (n � k) � n parity check matrix

H = H
C
over � such that C = fy 2 �n s.t. Hy = 0g.

Conversely, the following hold: Every n � k matrix G over � de�nes an

[n; k0; d]q code, for some d � 1 and k0 � k, CG having as codewords fGxjx 2 �kg.
Similarly every (n�k)�n matrixH de�nes an [n; k0; d] code C0

H
, for some d � 1

and k0 � k, having as codewords fy 2 �njHy = 0g.
Exercise:

1. Prove properties (1) and (2) above.

2. Given the generator matrixG
C
of a code C, give a polynomial time algorithm

to compute a parity check matrix H
C
for C.

3. Show that if G is of full column rank (H is of full row rank) then the code

CG (CH) is an [n; k; d]q code.

3 Some common constructions of codes

In this section we describe some common construction of codes. But �rst let us

establish the goal for this section. In general we would like to �nd families of

[n; k; d]q codes for in�nitely many triples (n; k; d) for some �xed q. The property

we would really like is that k=n and d=n are bounded away from zero as n !
1. Such a code is termed asymptotically good and the two properties k=n >

0 and d=n > 0 are termed constant message-rate and constant distance-rate
respectively. Unfortunately we will not be able to get to this goal in this article.

But we will settle for what we term weakly good codes. These are codes with

polynomial message-rate, i.e., k =
(n�) for some � > 0 and constant distance-
rate.

3.1 Hamming code

Hamming codes are de�ned for every positive n such that there exists an integer

l such that n = 2l�1. Then the Hamming code of block size n over the alphabet

f0; 1g is given by an l � n parity check matrix HHmg whose columns are all the

distinct l-dimensional non-zero vectors. Notice that there are exactly 2l � 1 of

these.

Lemma2. For every positive integer n such that n = 2l � 1 for some integer l,
the Hamming code of block size n is an [n; n� l; 3]2 code.

Proof Sketch. Notice that the rank ofHHmg is l. In particular the column vectors

containing exactly one 1 are linearly independent and there are l of them. Thus

we �nd that the Hamming code is an [n; k; d]2 code for k = n� l.

We now move to showing that the distance of the Hamming code is 3. Notice

that the code has no elements of weights since this would imply that two vectors

in the parity check matrix are identical. This implies the distance is at least

3. Now consider any two column vectors v1 and v2 in HHmg. Notice that the

vector v1 + v2 is also a column vector of HHmg and is distinct from v1 and

v2. Now consider the n dimensional vector which is zero everywhere except in

the coordinates corresponding to the vectors v1; v2 and v1 + v2. This vector has

weight 3 and is easily seen to be an element of the Hamming code. Thus the

distance of the Hamming code is exactly 3.

The Hamming code is a simple code with a very good rate. Unfortunately

it can only correct 1 error, de�nitely far from our goal of constant error-rate.

Next we move on to a code with good error-correcting properties, but with very

low-rate.

3.2 Hadamard code

A Hadamard matrix is an n � n matrix M with entries from �1 such that

MMT = n � In where In is the n � n identity matrix. A Hadamard matrix

immediately leads to an error correcting code where the rows of M are the

codewords. This leads to a codeword over the alphabet � = f+1;�1g. We prove

the distance property of the code �rst.

Lemma3. If M is a Hadamard matrix then any two rows agree is exactly n=2
places.

Proof. Say the rows of interest are the ith and jth rows. Then consider the

element (MMT)ij. This element is the sum of n terms, with the kth term being

mikmjk. Notice that this term evaluates to +1 if mik = mjk and �1 otherwise.

Thus if the ith and jth rows disagree in t places, then (MMT)ij = (n� t) + t.

Since (MMT)ij = 0, we have that n� 2t = 0 and hence the two rows (dis)agree

in exactly n=2 places.

Thus the task of constructing a Hadamard code reduces to the task of con-

structing Hadamard matrices. Constructions of Hadamard matrices have been

a subject of much interest in combinatorics. It is clear (from Lemma 3) that for

an n�n Hadamard matrix to exists n must be even. The converse is not known

to be true and is still an open question. What is known is that an n� n matrix

exists for every n of the form p�1 where p is a prime. It is also known that if an

n1 � n1 Hadamard matrix exists and an n2 � n2 Hadamard matrix exists, then

an n1n2�n1n2 matrix exists. Many other such constructions are also known but

not all possibilities are covered yet. Here we give the basic construction which

applies when n is a power of 2. These constructions are described recursively as

follows:

MHdm

1 =

2
4+1 +1
+1 �1

3
5 MHdm

l
=

2
4+MHdm

l�1
+MHdm

l�1

+MHdm

l�1
�MHdm

l�1

3
5 :

Lemma4. For every l, the rows of MHdm

l
form a [2l; l; 2l�1]2 code.

Proof. Left as an exercise to the reader.

The Hadamard codes maintaina constant distance-rate. However their message-

rate approaches zero very quickly. Next we describe a code with constant message-

rate and distance-rate. The catch is that the code uses an alphabet of growing

size.

3.3 Reed Solomon code

The Reed Solomon codes are a family of codes de�ned over an alphabet of

growing size, with n � q. The more commonde�nition of this code is not (we feel)

as intuitive or as useful as the \folklore" de�nition. We present both de�nitions

here, starting with the more useful one and then show the equivalence of the

two.

De�nition5 (Reed Solomon codes). Let � be a �eld of size q, n � q and let

x0; : : : ; xn�1 be some �xed enumeration of n of the elements of �. (It is standard

to pick n = q � 1 and xi = �i for some primitive element �2. Then for every

k � n, the Reed Solomon code C1
RS;n;k;q

is de�ned as follows: A message m =

m0 : : :mk�1 corresponds to the degree k � 1 polynomial M (x) =
P

k�1

i=0
mix

i.

The encoding of m, is C1RS;n;k;q(m) = c0 : : : cn�1 where cj =M (xj).

The distance properties of the Reed Solomon codes follow immediately from

the fact that a degree k� 1 polynomial may only have k� 1 zeroes unless all of

its coe�cients are zero.

Lemma6. For every n � q and k � n, the Reed Solomon code C1
RS;n;k

forms
an [n; k; n� k]q linear code.

Proof. The fact that the code is linear follows from the fact that if M0(x) and

M1(x) are polynomials of degree at most k � 1 then so is M0(x) +M1(x). The

distance follows from the fact that if M0(xj) = M1(xj) for k values of j then

M0 � M1 (or equivalently if M0(xj) �M1(xj) is zero for k values of j, then

M0 �M1 is the zero polynomial).

Finally for the sake of completeness we present a second de�nition of Reed

Solomon codes. This de�nition is more commonly seen in the texts, but we feel

this part may be safely skipped at �rst reading.

De�nition7 (Reed Solomon codes). Let � be a �eld of size q with primitive

element �, and let n = q� 1, k � n. Let Pk;q(x) be the polynomial (x� �)(x�
�2) � � � (x � �n�k). The Reed Solomon code C2

RS;n;k;q
is de�ned as follows: A

message m = m0 : : :mk�1 corresponds to the degree k � 1 polynomialM (x) =P
k�1

i=0
mix

i. The encoding of m, is C1
RS;n;k;q

(m) = c0 : : : cn�1 where cj is the

coe�cient of xj in the polynomial Pk;q(x)M (x).

Viewed this way it is hard to see the correspondence between the two de�ni-

tions (or the distance property). We prove an equivalence next.

Lemma8. The de�nitions of Reed Solomon codes given in De�nitions 5 and 7
coincide for n = q � 1 and the standard enumeration of the elements of GF(q).

Proof. Notice that it su�ces to prove that every codeword according to the �rst

de�nition is a codeword according to the second de�nition. The fact that the

sets are of the same size implies that they are identical.

Consider the encoding of m = m0 : : :mk�1. This encoding is C1
RS;n;k;q

=

c0 : : : cn�1 with ci =
P

k�1

j=0
mj(�

i)j. To show that this is a codeword according

to the second de�nition we need to verify that the polynomialC(x) =
P

n�1

i=0
cix

i

2 � is a primitive element of the �eld GF(q) if �j 6= 1 for any j < q � 1.

has (x � �l) as a factor for every l 2 f1; : : : ; n � kg. Equivalently it su�ces to

verify that C(�l) = 0, which we do next:

C(�l) =

n�1X
i=0

ci(�
l)i

=

n�1X
i=0

k�1X
j=0

mj(�
i)j(�l)i

=

k�1X
j=0

mj

n�1X
i=0

(�j�l)i

=

k�1X
j=0

mj

q�2X
i=0

i
j;l

where j;l = �j+l. Notice that for every j; l s.t. j + l 6= q � 1, j;l 6= 1.

Notice further that for every such j;l the summation
P

q�2

i=0
i
j;l

= 03. Since

j 2 f0; : : : ; k� 1g, we �nd that j;l 6= 1 for every l 2 f1; : : : ; q� 1� kg. Thus for
every l 2 f1; : : : ; n� kg, we �nd that C(�l) = 0. This concludes the proof.

3.4 Multivariate polynomial codes

The next family of codes we describe are not very commonly used in coding

theory, but have turned out to be fairly useful in complexity theory and in

particular in the results on probabilistically checkable proofs. Surprisingly these

codes turn out to be a common generalization of Hadamard codes and Reed

Solomon codes!

De�nition9 (Multivariate polynomial code). For integer parameters m; l

and q with l < q, the multivariate polynomial code Cpoly;m;l;q has as mes-

sage a string of coe�cients m = fmi1;i2;:::;im
g with ij � 0 and

P
j
ij � l.

This sequence is interpreted as the m-variate polynomial M (x1; : : : ; xm) =P
i1;:::;ij

mi1;:::;ij
xi11 � � �x

im
m
. The encoding ofm is the string of letters fM (x1; : : : ; xm)g

with one letter for every (x1; : : : ; xm) 2 �m.

Obviously the multivariate polynomial codes form a generalization of the

Reed Solomon codes (again using the �rst de�nition given here of Reed Solomon

codes). The distance property of the multivariate polynomial codes follow also

from the distance property of multivariate polynomials (cf. [5, 13, 21]).

Lemma10. For integers m; l and q with l < q, the code Cpoly;m;l;q is an [n; k; d]q

code with n = qm, k =
�
m+l

m

�
and d = (q � l)qm�1.

3 This identity is obtained as follows: Recall that Fermat's little theorem asserts that

q�1 � 1 = 0 for every non-zero in GF(q). Factoring the left hand side, we �nd

that either � 1 = 0 or
Pq�2

i=0
i = 0. Since 6= 1, the latter must be the case.

Proof. The bound on n is immediate. The fact that the number of coe�cients

i1; : : : ; im s.t.
P

j
ij � l is at

�
m+l

l

�
is a well-known exercise in counting. Finally

the bound on the distance follows from the fact a degree l polynomial can only

be zero for l=q fraction of its inputs. (This is an easy inductive argument based

on the number of variables. The base case is well known and inductively one

picks a random assignment to the variables x1; : : : ; xm�1 and argues that the

resulting polynomial in xm is non-zero with high probability. Finally one uses

the base case again to conclude that the �nal polynomial in xm is left non-zero

by a random assignment to xm.)

It is easy to see that the code C1
RS;q;k;q

is the same as the code Cpoly;1;k�1;q.

Also notice that the code Cpoly;m;1;2 forms an [2m;m; 2m�1]2 code, same as

parameters of the Hadamard code given by the rows of MHdm
m

. It turns out that

these two codes are in fact identical. The proof is left as an exercise to the reader.

3.5 Concatenated codes

Each code in the collection of codes we have accumulated above has some aw

or the other. The Hamming codes don't correct too many errors, the Hadamard

codes are too low-rate, and the Reed Solomon codes depend on a very large

alphabet. Yet it turns out it is possible to put some of these codes together

and obtain a code with reasonably good behavior (\polynomially good"). This

is made possible by a simple idea called \concatenation", de�ned next.

De�nition11 (Concatenation of codes). Let C1 be an [n1; k1; d1]q1 code over
the alphabet �1 and let C2 be an [n2; k2; d2]q2 code over the alphabet �2. If

q1 = qk22 then the code C1 � C2 is de�ned as follows: Associate every letter in

�1 with a codeword of C2. Encode every message �rst using the code C1 and

then encode every letter in the encoded string using the code C2. More for-

mally, given a message m 2 �k1

1 = �k1k2

2 , let C1(m) = c1 : : : cn1 2 �n1

1 . The

encoding C1 � C2(m) is given by c11 : : : c1n2c21 : : : cn1n2 2 �n1n2

2 , where for every

i 2 f1; : : : ; n1g, ci1 : : : cin2 = C2(ci).

Almost immediately we get the following property of concatenation.

Lemma12. If C1 is an [n1; k1; d1]q1 code and if C2 is an [n2; k2; d2]q2 code with

q1 = qk2
2
, then C1 � C2 is an [n1n2; k1k2; d

0]q2 code, for some d0 � d1d2.

Proof. The block size and message size bounds follow from the de�nition. To

see the distance property, consider two messages m1;m2 2 �k1

1 . For l 2 f1; 2g,
let cl1 : : : c

l

n1
be the encoding of ml using C1 and let cl11 : : : c

l

n1n2
be its encoding

using C1�C2. Notice that there must exist at least d1 values of i such that c1
i
6= c2

i

(by the distance of C1). For every such i, there must exist at least d2 values of j

such that c1
ij
6= c2

ij
(by the distance of C2). Thus we �nd that C1 � C2(m1) and

C1 � C2(m2) di�er in at least d1d2 places.

To best see the power of concatenation, consider the following simple ap-

plication: Let C1 be a Reed Solomon code with q = 2m, n = q and k = :4n.

I.e., C1 is an [n; :4n; :6n]2m code with n = 2m. Let C2 be the Hadamard code

[2m;m; 2m�1]2. The concatenation C1�C2 is an [n2; :4n logn; :3n2]2 code. I.e., the
resulting code has constant distance-rate, polynomial rate and is over the binary

alphabet! Thus this satis�es our weaker goal of obtaining a weakly-good code.

Even the goal of obtaining an asymptotically good code is close now. In particu-

lar, the code of Justesen is obtained by an idea similar to that of concatenation.

Unfortunately we shall not be able to cover this material in this article.

4 Algorithmic tasks

We now move on to the algorithmic tasks of interests: The obvious �rst candidate

is encoding.

Problem13 (Encoding).
Input: n� k matrix G and message m 2 �k.

Output: C(m), where C = CG is the code with G as the generator matrix.

It is clear that the problem as speci�ed above is easily solved in time O(nk)

and hence in time polynomial in n. For speci�c linear codes such as the Reed

Solomon codes it is possible to encode the codes faster, in time O(n logc n) for

some constant c. However till recently no asymptotically good code was known

to be encodable in linear time. In a recent breakthrough. Spielman [15] presented

the �rst known code that is encodable in linear time. We will discuss this more

in a little bit.

The next obvious candidate problem is the decoding problem. Once again

it is clear that if the received word has no errors, then this problem is only as

hard as solving a linear system and thus can be easily solved in polynomial time.

So our attention moves to the case where the received word has errors. We �rst

de�ne the error detection problem.

Problem14 (Error detection).
Input: n�k generator matrixG for a code C = CG; and a received word R 2 �n.

Output: Is R a codeword?

The error detection problem is also easy to solve in polynomial time. We �nd

the parity check matrix H for the code C and then check if HR =0. We now

move to the problem of decoding in the presence of errors. This problem comes

in several variants. We start with the simple de�nition �rst:

Problem15 (Maximum likelihood decoding).
Input: n�k generator matrixG for a code C = CG; and a received word R 2 �n.

Output: Find a codeword x 2 C, that is nearest to R in Hamming distance.

(Ties may be broken arbitrarily.)

There are two obvious strategies for solving the maximumlikelihood decoding

problem:

Brute Force 1: Enumerate all the codewords and �nd the one that is closest

to R.

Brute Force 2: For t = 0; 1; : : : ;, do: Enumerate all possible words within a

Hamming distance of t from R and check if the word is a codeword. Output the

�rst match.

Despite the naivete of the search strategies above, there are some simple cases

where these strategies work in polynomial time. For instance, the �rst strategy

above does work in polynomial time for Hadamard codes. The second strategy

above works in polynomial time for Hamming codes (why?). However, both

strategies start taking exponential time once the number of codewords becomes

large, while distance also remains large. In particular, for \asymptotically good"

or even \weakly good" codes, both strategies above run in exponential time.

One may wonder if this exponential time behavior is inherent to the decoding

problem. In perhaps the �rst \complexity" result in coding theory, Berlekamp,

McEliece and van Tilborg [4] present the answer to this question.

Theorem16 [4]. The Maximum likelihood decoding problem for general linear
codes is NP-hard.

There are two potential ways to attempt to circumvent this result. One

method is to de�ne and solve the maximum likelihood decoding problem for

speci�c linear codes. We will come to this question momentarily. The other hope

is that we attempt to correct only a limited number of errors. In order to do so,

we further parameterize the maximum likelihood decoding problem as follows:

Problem17 (Bounded distance decoding).
Input: n � k generator matrix G for a code C = CG; a received word R 2 �n

and a positive integer t.

Output: Find any/all codewords in C within a Hamming distance of t from R.

The hardness result of [4] actually applies to the Bounded distance decoding

problem as well. However one could hope for a result of the form: \There exists an

� > 0, such that for every [n; k; d]q linear code C, the bounded distance decoding

problem for C with t = �d is solvable in polynomial time". One bottleneck to

such a general result is that we don't know how to compute d for a generic linear

code. This motivates the following problem:

Problem18 (Minimum distance).
Input: n�k generator matrix G for a code C = CG and an integer parameter d.

Output: Is the distance of C at least d?

This problem was conjectured to be coNP-hard in [4]. The problem remained

open for nearly two decades. Recently, in a major breakthrough, this problem

was shown to be coNP-complete by Vardy [18]. While this does not directly rule

out the possibility that a good bounded distance decoding algorithm may exist,

the result should be ruled as one more reason that general positive results may

be unlikely.

Thus we move from general results, i.e., where the code is speci�ed as part

of the input, to speci�c results, i.e., for well-known families of codes. The �rst

question that may be asked is: \Is there a family of asymptotically-good [n; k; d]q
linear code and � > 0, for which a polynomial time bounded distance decoding

algorithm exists for t � �d?" For this question the answer is \yes". A large num-

ber of algebraic codes do have such polynomial time bounded distance decoding

algorithms. In particular the Reed Solomon codes are known to have such a

decoding algorithm for t � b(d � 1)=2c (cf. [2, 11, 17]). This classical result is
very surprising given the non-trivial nature of this task. This result is also very

crucial for many of the known asymptotically good codes, since many of these

codes are constructed by concatenating Reed Solomon codes with some other

codes. In the next section we shall cover the decoding of Reed Solomon codes in

more detail.

Lastly there is another class of codes, constructed by combinatorial means,

for which bounded distance decoding for some t � �d can be performed in

polynomial time. These are the expander codes, due to Sipser and Spielman [14]

and Spielman [15]. The results culminate in a code with very strong | linear

time (!!!) | encoding and bounded distance decoding algorithms. In addition

to being provably fast, the algorithms for the encoding and decoding of these

codes are surprisingly simple and clean. However, the description of the codes

and analysis of the algorithm is somewhat out of the scope of this paper. We

refer the reader to the original articles [14, 15] for details.

5 Decoding of Reed Solomon code

As mentioned earlier a polynomial time algorithm for bounded distance decoding

is known and this algorithm corrects up to t � b(d � 1)=2c errors. Notice that
this coincides exactly with the error-correction bound of the code (i.e., a Reed

Solomon code of distance d is a t-error-correcting code for t = b(d�1)=2c). This
bound on the correction capability is inherent, if one wishes to determine the

codeword uniquely. However in the bounded distance decoding problem we do

allow for multiple solutions. Given this latitude it is reasonable to hope for a

polynomial-time decoding algorithm that corrects more errors - say up to t <

(1��)d where � is some �xed constant. However no such algorithm is known for all

possible values of (n; k; d = n� k). Recently, in [16], we presented an algorithm

which does correct up to (1 � �)d errors, provided k=n ! 0. This algorithm

was inspired by an algorithm of Welch and Berlekamp [20, 3] for decoding Reed

Solomon codes. This algorithm is especially clean and elegant. Our solution uses

similar ideas to correct even more errors and we present this next.

Notice �rst that the decoding problem for Reed Solomon codes can be solved

by solving the following cleanly stated problem:

Problem19 (Reed Solomon decoding).
Input: n pairs of points f(xi; yi)g, xi; yi 2 GF(q); and integers t; k.

Output: All polynomials p of degree at most k � 1 such that yi 6= p(xi) for at

most t values of i.

The basic solution idea in Welch-Berlekamp and our algorithm is to �nd

an algebraic description of all the given points, and to then use the algebraic

description to extract p. The algebraic description we settle for is an \algebraic

curve in the plane", i.e., a polynomial Q(x; y) in two variables x and y such

that Q(xi; yi) = 0 for every value of x and y. Given this basic strategy, the

performance of the algorithm depends on the choice of the degree of Q which

allows for such a curve to exist, and still be useful! (For example if we allow Q to

be 0, or if we pick the degree of Q be n in x and 0 in y, the such polynomials do

exist, but are of no use. On the other hand a non-zero polynomial Q of degree

n=10 in x and 0 in y may be useful, but will probably not exist for the given

data points.)

To determine what kind of polynomialQwe should search for, we pick two pa-

rameters l and m and impose the following conditions on Q(x; y) =
P

i;j
qijx

iyj :

1. Q should not be the zero polynomial. (I.e., some qij should be non-zero.)

2. qij is non-zero implies j � m and i + (k � 1)j � l. (The reason for this

restriction will become clear shortly.)

3. Q(xi; yi) = 0 for every given pair (xi; yi).

Now consider the task of searching for such a Q. This amounts to �nding

values for the unknown coe�cients qij. On the other hand the conditions in

(3) above amount to homogeneous linear equations in qij. By elementary linear

algebra a solution to such a system exists and can be found in polynomial time

provided the number of equations (n) strictly exceeds the number of unknowns

(i.e., the number of (i; j) pairs such that 0 � i; j, j � m and i+(k�1)j � m). It

is easy to count the number of such coe�cients. The existence of such coe�cients

will determine our choice of m; l. Having determined such a polynomial we will

apply the following useful lemma to show that p can be extracted from Q.

Lemma20 [1]. Let Q(x; y) =
P

i;j
qijx

iyj be such that qij = 0 for every i; j

with i + (k � 1)j > l. Then if p(x) is polynomial of degree k � 1 such that for
strictly more than l values of i, yi = p(xi) and Q(xi; yi) = 0, then y � p(x)

divides the polynomial Q(x; y).

Proof. Consider �rst the polynomial g(x) obtained from Q by substituting y =

p(x). Notice that the term qijx
iyj becomes a polynomial in x of degree i+(k�1)j

which by property (2) above becomes a polynomial of degree at most l in x. Thus

g(x) = Q(x; p(x)) becomes a polynomial in x of degree at most l. Now, for every

i such that yi = p(xi) and Q(xi; yi) = 0, we have that g(xi) = Q(xi; p(xi)) = 0.

But there are more than l such values of i. Thus g is identically zero. This

immediately implies that Q(x; y) is divisible by y � p(x). (The division theorem

for polynomials says that if a polynomial h(y) evaluates to 0 at y = � then

y � � divides h(y). Applying this fact to the polynomial Qx(y) = Q(x; y) and

y = p(x), we obtain the desired result. Notice in doing so, we are switching our

perspective. We are thinking of Q as a polynomial in y with coe�cients from

the ring of polynomials in x.)

Going back to the choice of m and l, we have several possible choices. In one

extreme we can settle for m = 1 and then if l � (n+ k)=2, then we �nd that the

number of coe�cients is more than n. In this case the polynomial Q(x; y) found

by the algorithm is of the form A(x)y +B(x). Lemma 20 above guarantees that

if t � b(n�k)=2c then y�p(x) divides Q. Thus p(x) = �B(x)=A(x) and can be

computed easily by a simple polynomial division. Thus in this case we can decode

from b(n � k)=2c errors thus recovering the results of [20]. In fact, in this case

the algorithm essentially mimics the [20] algorithm, though the correspondence

may not be immediately obvious.

At a di�erent extreme one may pick m �
p
n=k and l �

p
nk and in this case

Lemma 20 works for t � n�2
p
nk. In this case to recover p(x) from Q, one �rst

factors the bivariate polynomialQ. This gives a list of all polynomial pj(x) such

that y�pj(x) dividesQ. From this list we pull out all the polynomials pj such that

pj(xi) 6= yi for at most t values of xi. Thus in this case also we have a polynomial

time algorithm provided Q can be factored in polynomial time. Fortunately, such

algorithms are known, due to Kaltofen [8] and Grigoriev [7] (see Kaltofen [9] for

a survey of polynomial factorization algorithms). For k=n ! 0, the number of

errors corrected by this algorithm approaches (1 � o(1))n.

A more detailed analysis of this algorithm and the number of errors corrected

by it appear in [16]. The result shows that this given an [n; �n; (1� �)n]q Reed

Solomon code, the number of errors corrected by this algorithm approaches

n

�
1�

1

1 + ��
�
��

2
�

�
where �� =

$r
2

�
+

1

4
�

1

2

%
:

A plot of this curve against � appears in Figure 1. Also shown in the �gure

are the distance of the code ((1 � �)n) and the classical-error correction bound

((1� �)=2n).

6 Open questions

Given that the fundamental maximum likelihood decoding problem is NP-hard

for a general linear code, the next direction to look to is a bounded distance

decoding algorithm for every [n; k; d]q linear code. The bottleneck to such an

approach is that in general we can't compute d in polynomial time, due to the

recent result of Vardy [18]. Thus the next step in this direction seems to suggest

an application of approximation algorithms:

Open Problem 1 Given an n� k matrix G, approximate the distance d of the
code CG to within a factor of �(n).

[t]

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
rate (k/n)

error (e/n)

New Correction Bound
Diameter Bound (1 - x)

Classical Correction Bound (1 - x)/2

Fig. 1. Fraction of errors corrected by the algorithm from [16] plotted against the rate

of the code. Also plotted are the distance of the code and the classical error-correction

bound.

The goal here is to �nd the smallest factor �(n) for which a polynomial time

approximation algorithm exists. Currently no non-trivial (i.e., with �(n) = o(n))

approximation algorithm is known. A non-trivial �(n) approximation algorithm

would then suggest the following candidate for bounded distance decoding:

Open Problem 2 Given an n � k matrix G, a word R 2 �n and an integer
t, �nd all codewords within a Hamming distance of t from R, or show that the
minimum distance of the code is less than t�1(n).

A similar problem is posed by Vardy [18] for �1 = 2. Here the hope would

be to �nd the smallest value of �1 for which a polynomial time algorithm exists.

While there is no immediate formal reasoning to believe so it seems reasonable

to believe that �1 will be larger than �.

Next we move to the questions in the area of design of e�cient codes, moti-

vated by the work of Spielman [15].

Open Problem 3 For every � > 0, design a family of [n; �n; �n]2 codes Cn so
that the bounded distance problem on Cn with parameter t � n can be solved in

linear time.

The goal above is to make as large as possible for every �xed �. Spielman's

result allows for the construction codes which match the best known values of �

for any [n; �n; �n]2 linear code. However the value of is still far from � in these

results.

We now move towards questions directed towards decoding Reed-Solomon

codes. We direct the reader's attention to Figure 1. Clearly every point above

the solid curve and below the distance bound of the code, represents an open

problem. In particular we feel that the following version maybe solvable in poly-

nomial time:

Open Problem 4 Find a bounded distance decoding algorithm for an [n; �n; (1�
�)n]q Reed Solomon code that decodes up to t � (1�

p
�)n errors.

The motivation for this particular version is that in order to solve the bounded

distance decoding problem, one needs to ensure that the number of outputs (i.e.,

the number codewords within the given bound t) is polynomial in n. Such a

bound does exist for the value of t as given above [6, 12], thus raising the hope

that this problem may be solvable in polynomial time also.

Similar questions may also be raised about decoding multivariate polyno-

mials. In particular, we don't have polynomial time algorithms matching the

bounded distance decoding algorithm from [16], even for the case of bivariate

polynomials. This we feel may be the most tractable problem here.

Open Problem 5 Find a bounded distance decoding algorithm for the bivariate
polynomial code Cpoly;2;�n;n that decodes up to t � (1�

p
2�)n2 errors.

References

1. S. Ar, R. Lipton, R. Rubinfeld and M. Sudan. Reconstructing algebraic

functions from mixed data. SIAM Journal on Computing, to appear. Preliminary
version in Proceedings of the 33rd Annual IEEE Symposium on Foundations of

Computer Science, pp. 503{512, 1992.

2. E. R. Berlekamp. Algebraic Coding Theory. McGraw Hill, New York, 1968.

3. E. R. Berlekamp. Bounded Distance +1 Soft-Decision Reed-Solomon Decoding.

In IEEE Transactions on Information Theory, pages 704-720, vol. 42, no. 3, May
1996.

4. E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg. On the inher-

ent intractability of certain coding problems. IEEE Transactions on Information

Theory, 24:384{386, 1978.

5. R. DeMillo and R. Lipton. A probabilistic remark on algebraic program test-

ing. Information Processing Letters, 7(4):193{195, June 1978.

6. O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with

queries: The highly noisy case. Proceedings of the 36th Annual IEEE Symposium

on Foundations of Computer Science, pp. 294{303, 1995.

7. D. Grigoriev. Factorization of Polynomials over a Finite Field and the Solution
of Systems of Algebraic Equations. Translated from Zapiski Nauchnykh Seminarov

Lenningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN

SSSR, Vol. 137, pp. 20-79, 1984.
8. E. Kaltofen. A Polynomial-Time Reduction from Bivariate to Univariate In-

tegral Polynomial Factorization. In 23rd Annual Symposium on Foundations of

Computer Science, pages 57-64, 1982.
9. E. Kaltofen. Polynomial factorization 1987{1991. LATIN '92, I. Simon (Ed.)

Springer LNCS, v. 583:294{313, 1992.

10. R. Lidl and H. Niederreiter. Introduction to Finite Fields and their Applica-

tions. Cambridge University Press, 1986

11. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting

Codes. North-Holland, Amsterdam, 1981.
12. J. Radhakrishnan. Personal communication, January, 1996.

13. J. T. Schwartz. Fast probabilistic algorithms for veri�cation of polynomial iden-

tities. Journal of the ACM, 27(4):701{717, 1980.
14. M. Sipser and D. A. Spielman. Expander codes. IEEE Transactions on Infor-

mation Theory, 42(6):1710{1722, 1996.

15. D. A. Spielman. Linear-time encodable and decodable error-correcting codes.
IEEE Transactions on Information Theory, 42(6):1723{1731, 1996.

16. M. Sudan. Decoding of Reed Solomon codes beyond the error-correction

bound. Journal of Complexity, 13(1):180-193, March 1997. See also
http://theory.lcs.mit.edu/~ madhu/papers.html for a more recent version.

17. J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, New York, 1982.

18. A. Vardy. Algorithmic complexity in coding theory and the minimum distance
problem. Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of

Computing, pp. 92{109, 1997.

19. B. L. van der Waerden. Algebra, Volume 1. Frederick Ungar Publishing Co.,
Inc., page 82.

20. L. Welch and E. R. Berlekamp. Error correction of algebraic block codes. US

Patent Number 4,633,470, issued December 1986.
21. R. E. Zippel. Probabilistic algorithms for sparse polynomials. EUROSAM '79,

Lecture Notes in Computer Science, 72:216{226, 1979.

This article was processed using the LATEX macro package with LLNCS style

