
Formal Veri�cation of Safety-Critical

Hybrid Systems

by

Carolos Livadas

S.M. in Aeronautics and Astronautics, MIT (1996)

S.B. in Computer Science and Engineering, MIT (1993)

S.B. in Aeronautics and Astronautics, MIT (1993)

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Ful�llment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

September 1997

c 1997 Carolos Livadas. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Department of Electrical Engineering and Computer Science

September 5, 1997

Certi�ed by

Professor Nancy A. Lynch

Department of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by

Professor Arthur C. Smith

Department of Electrical Engineering and Computer Science

Chairman, Department Committee on Graduate Theses

Formal Veri�cation of Safety-Critical

Hybrid Systems

by

Carolos Livadas

Submitted to the Department of Electrical Engineering and Computer Science

on September 5, 1997, in Partial Ful�llment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis investigates how the formal modeling and veri�cation techniques of computer

science can be used for the analysis of hybrid systems [7,14,22,37]| systems involving both

discrete and continuous behavior. The motivation behind such research lies in the inherent

similarity of the hierarchical and decentralized control strategies of hybrid systems and the

communication and operation protocols used for distributed systems in computer science.

As a case study, the thesis focuses on the development of techniques that use hybrid I/O

automata [29, 30] to model and analyze automated vehicle transportation systems and, in

particular, their various protection subsystems | control systems that are used to ensure

that the physical plant at hand does not violate its various safety requirements.

The thesis is split into two major parts. In the �rst part, we develop an abstract model of a

physical plant and its various protection subsystems | also referred to as protectors. The

specialization of this abstract model results in the speci�cation of a particular automated

transportation system. Moreover, the proof of correctness of the abstract model leads to

simple correctness proofs of the protector implementations for particular specializations

of the abstract model. In this framework, the composition of independent protectors is

straightforward | their composition guarantees the conjunction of the safety properties

guaranteed by the individual protectors. In fact, it is shown that under certain conditions

composition holds for dependent protectors also.

In the second part, we specialize the aforementioned abstract model to simpli�ed versions

of the personal rapid transit system (PRT 2000TM) under development at Raytheon Cor-

poration. We examine overspeed and collision protection for a set of vehicles traveling on

straight tracks, on binary merges, and on a directed graph of tracks involving binary merges

and diverges. In each case, the protectors sample the state of the physical plant and take

protective actions to guarantee that the physical plant does not reach hazardous states. The

proofs of correctness of such protectors involve specializing the abstract protector to the

physical plant at hand and proving that the suggested protector implementations are cor-

rect. This is done by de�ning simulations among the states of the protector implementations

and their abstract counterparts.

Thesis Supervisor: Nancy A. Lynch, Ph.D.

Title: NEC Professor of Software Science and Engineering

Acknowledgments

The completion of the research leading to this thesis involved the continuous guidance and

support of certain people. I would like to thank my advisor Prof. Nancy A. Lynch. Her

knowledge and insight have been an invaluable asset to my research. Moreover, her thorough

reviews and her wise suggestions have molded my research work into a clear and complete

thesis. I would also like to thank Roberto Segala and Frits Vaandrager for bearing with my

numerous questions on the HIOA model. Furthermore, I would like to thank John Lygeros

for the insight and motivation he provided through numerous discussions on the modeling

and veri�cation of hybrid systems. I am also grateful to H. B. Weinberg for his initial

work on modeling the PRT 2000TM and on his help on jump starting my involvement in the

research leading to this thesis. Finally, I would like to thank my family for its continuous

love and support and all my friends at MIT for making my student life interesting and

enjoyable.

This research was performed at the Theory of Distributed Systems Group of the Mas-

sachusetts Institute of Technology. The research was supported by NSF Grant 9225124-

CCR, U.S. Department of Transportation Contract DTRS95G-0001-YR.8, AFOSR-ONR

Contracts F49620-94-1-0199 and F49620-97-1-0337, and ARPA Contracts N00014-92-J-4033

and F19628-95-C-0118.

Contents

Contents : i

List of Figures : v

List of Tables : vii

Nomenclature : ix

1 Introduction 1

1.1 Hybrid Systems : 2

1.1.1 Formal Framework : 2

1.1.2 Related Work : 3

1.2 Automated Transportation Systems : 4

1.2.1 The PRT 2000TM : 5

1.2.2 Formal Modeling of the PRT 2000TM : : : : : : : : : : : : : : : : : : 6

1.3 Thesis Overview : 8

2 Hybrid I/O Automata 11

2.1 Preliminary Mathematical Notation : 11

2.2 The Hybrid I/O Automaton Model : 14

2.3 Hybrid Executions : 16

2.4 Hybrid Traces : 18

2.5 Auxiliary HIOA De�nitions : 18

2.6 Simulation Relations : 19

2.7 Composition : 19

2.8 HIOA Speci�cation Conventions : 20

2.8.1 State Speci�cation : 21

2.8.2 Discrete Transition Speci�cation : 21

2.8.3 Trajectory Speci�cation : 23

2.8.4 State Restriction : 23

i

3 Abstract Physical Plant and Protector Models 25

3.1 Protected Plant Systems : 25

3.1.1 Physical Plant Automata : 26

3.1.2 Protector Automata : 26

3.1.3 Protected Plant Systems : 27

3.1.4 Substitutive and Compositional Correctness : : : : : : : : : : : : : : 27

3.2 An Abstract Protector : 34

3.2.1 Terminology and Assumptions : 35

3.2.2 Sensor Automata : 41

3.2.3 Discrete Controller Automata : 43

3.2.4 Correctness of the Abstract Protector : : : : : : : : : : : : : : : : : 45

4 Modeling a System of n Vehicles 49

4.1 Physical Plant: vehicles : 50

4.2 Sets of Guarantee and Reliance for the vehicles Automaton : : : : : : : : 55

4.3 Auxiliary Derived Variables and Auxiliary Sets for the vehicles Automaton 57

4.4 Useful Lemmas for the vehicles Automaton : : : : : : : : : : : : : : : : : 59

5 Example 1: Overspeed Protection System 63

5.1 Protection System os-prot-soloi : 63

5.2 Correctness of os-prot-soloi : 64

5.3 Protection System os-prot : 73

6 Example 2: Collision Avoidance on a Single Track 75

6.1 Protection System cl-prot-soloi : 75

6.2 Correctness of cl-prot-soloi : 77

6.3 Protection System cl-prot : 90

7 Example 3: Collision Avoidance on Merging Tracks 93

7.1 Augmented Physical Plant: merge-vehicles : : : : : : : : : : : : : : : : : 93

7.2 Auxiliary Sets for the merge-vehicles Automaton : : : : : : : : : : : : : 97

7.3 Protection System merge-prot-pairfi;i0g : : : : : : : : : : : : : : : : : : : 100

7.4 Correctness of merge-prot-pairfi;i0g : 103

7.5 Protection System merge-prot : 117

8 Example 4: Collision Avoidance on a General Graph of Tracks 121

ii

8.1 Augmented Physical Plant: graph-vehicles : : : : : : : : : : : : : : : : : 121

8.2 Auxiliary Derived Variables and Auxiliary Sets for the graph-vehicles Au-

tomaton : 126

8.3 Protection System graph-prot-pairfi;i0g : : : : : : : : : : : : : : : : : : : 130

8.4 Correctness of graph-prot-pairfi;i0g : 132

8.5 Protection System graph-prot : 148

9 Composing the Overspeed and Collision Avoidance Protection Systems 151

9.1 Overspeed and Collision Avoidance for the vehicles Automaton : : : : : : 151

9.2 Overspeed and Collision Avoidance for the merge-vehicles Automaton : 154

9.3 Overspeed and Collision Avoidance for the graph-vehicles Automaton : : 155

10 Conclusions and Future Work 157

10.1 Summary : 157

10.2 Evaluation : 159

10.3 Future Work : 160

References 163

iii

iv

List of Figures

1.1 Separation of system functionality into operation and protection. : : : : : : 5

1.2 Modular decomposition of the AVPS of the PRT 2000TM. : : : : : : : : : : 7

3.1 Compositional structure of a physical plant and an abstract protector. : : : 35

3.2 Sensorj automaton de�nition. : 42

3.3 DCj automaton de�nition. : 44

4.1 The vehicles automaton. : 51

5.1 Discrete controller automaton for the protector os-prot-soloi. : : : : : : : 65

6.1 Discrete controller automaton for the protector cl-prot-soloi. : : : : : : : 77

7.1 The merge-vehicles automaton. : 95

7.2 Discrete controller automaton for the protector merge-prot-pairfi;i0g. : : 102

8.1 The graph-vehicles automaton. : 124

8.2 Discrete controller automaton for the protector graph-prot-pairfi;i0g. : : 132

v

vi

List of Tables

4.1 Derived variables and sets used in the de�nition of the vehicles automaton. 52

4.2 Sets of guarantee and reliance for the vehicles automaton. : : : : : : : : : 56

4.3 Auxiliary derived variables for the vehicles automaton. : : : : : : : : : : : 57

4.4 Auxiliary sets for the vehicles automaton. : : : : : : : : : : : : : : : : : : 59

5.1 Sets used in the correctness proof of os-prot-soloi. : : : : : : : : : : : : : 66

5.2 Formal de�nitions of os-prot, Gos-prot, Sos-prot, and Ros-prot. : : : : : : : 73

6.1 Sets used in the correctness proof of cl-prot-soloi. : : : : : : : : : : : : : 78

6.2 Formal de�nitions of cl-prot, Gcl-prot, Scl-prot, and Rcl-prot. : : : : : : : 91

7.1 Auxiliary sets for the merge-vehicles automaton. : : : : : : : : : : : : : : 99

7.2 Sets used in the correctness proof of merge-prot-pairfi;i0g. : : : : : : : : : 104

7.3 Formal de�nitions of merge-prot, Gmerge-prot, Smerge-prot, and Rmerge-prot.117

8.1 Auxiliary derived variables for the graph-vehicles automaton. : : : : : : 127

8.2 Auxiliary sets for the graph-vehicles automaton. : : : : : : : : : : : : : : 128

8.3 Sets used in the correctness proof of graph-prot-pairfi;i0g. : : : : : : : : : 133

8.4 Formal de�nitions of graph-prot, Ggraph-prot, Sgraph-prot, and Rgraph-prot. 149

vii

viii

Nomenclature

Acronyms

ATO Automatic Train Operation

ATP Automatic Train Protection

AVO Automated Vehicle Operation

AVOS Automated Vehicle Operation System

AVP Automated Vehicle Protection

AVPS Automated Vehicle Protection System

HIOA Hybrid I/O Automaton, or Hybrid I/O Automata

PRT Personal Rapid Transit

Hybrid I/O Automata Notation

(i; t) A superdense time in an execution fragment � = w0a1w1a2w2 � � � .

(i; t; s) An occurrence of a state s in an execution fragment � = w0a1w1a2w2 � � � .

� A hybrid execution of a HIOA.

�:fstate The �rst state of a hybrid execution � = w0a1w1a2w2 � � � .

�:lstate The last state of a �nite hybrid execution � = w0a1w1 � � �anwn.

�:ltime The limit time of a hybrid execution � = w0a1w1a2w2 � � � .

� The set of all actions of a HIOA.

�int The set of internal actions of a HIOA.

�in The set of input actions of a HIOA.

�loc The set of locally controlled actions of a HIOA.

�out The set of output actions of a HIOA.

� The set of initial states of a HIOA.

A A hybrid I/O automaton.

ix

E The set of external variables of a HIOA.

L The set of local variables of a HIOA.

U The set of input variables of a HIOA.

V The set of all variables of a HIOA.

X The set of internal variables of a HIOA.

Y The set of output variables of a HIOA.

D The set of discrete transitions of a HIOA.

W The set of trajectories of a HIOA.

h-traces(A) The set of hybrid traces of the HIOA A.

h-trace(�) The hybrid trace of the hybrid execution �.

states(A) The set of all states of the HIOA A.

Latin Abbreviations

cf. confer ; Latin for \compare".

e.g. exempli gratia; Latin for \for example".

et al. et alii ; Latin for \and others".

etc. et cetera; Latin for \and so forth".

i.e. id est ; Latin for \that is".

ib. or ibid. ibidem; Latin for \in the same work/place".

n.b. nota bene; Latin for \take special note of".

op. cit. opere citato; Latin for \in the work/text cited".

v.g. verbi gratia; Latin for \for example".

v.i. vide infra; Latin for \see below".

v.s. vide supra; Latin for \see above".

viz. videlicet ; Latin for \that is to say" or \namely".

vs. versus ; Latin for \against".

Mathematical Notation

Z The set of valuations of the set of variables Z.

V The universal set of variables.

jX j The cardinality of the set X .

x

X The complement of the set X .

f # X The projection of the function f to the set X .

f # y The projection of the function f to the element y.

fdX The restriction of the function f to the set X .

f; g; h Functions.

T The time axis, i.e., a compact subgroup of (R;+).

TI An interval in the time axis, i.e., a non-empty convex subset of T .

w:fstate The �rst state of a trajectory w, i.e., w(0).

w:lstate The last state of a closed trajectory w, i.e., w(w:ltime).

w:ltime The limit time of a trajectory w, i.e., sup(dom(w)).

X � Y The complement of the set Y in the set X , i.e., X \ Y .

X :2 SX Assignment of an arbitrary element of the set of valuations SX , where SX �

X , to the set of variables X .

x :2 X Assignment of an arbitrary element of the set of values X , where X �

type(x), to the variable x.

X \ Y The intersection of the sets X and Y .

X [Y The union of the sets X and Y .

X n Y The complement of the set Y in the set X , i.e., X \ Y .

P(X) The power set of the set X .

dom(f) The domain of the function f .

range(f) The range of the function f .

trajs(Z) The collection of all trajectories over the set of variables Z.

type(v) The domain over which the variable v ranges.

; The empty (or null) set.

N+ The set of positive natural numbers, i.e., the set f1; 2; 3; : : :g.

N The set of natural numbers, i.e., the set f0; 1; 2; 3; : : :g.

R;R�0;R+ The set of all, non-negative, and positive real numbers.

Z;Z�0;Z+ The set of all, non-negative, and positive integers.

Physical Plant and Protector Notation

�xmax The maximum distance a vehicle can travel if braked after dmax time units.

xi

_cmax The maximum allowable velocity of any vehicle.

�cbrake The braking deceleration of a vehicle that has not collided.

�cmax The maximum acceleration of a vehicle that has not collided.

�cmin The minimum acceleration of a vehicle that has not collided.

Ci(t) The section of track claimed by the vehicle i in time t.

clen The minimum allowable separation between vehicles.

dmax The maximum protector sampling period.

Ei The section of track occupied by the vehicle i, i.e., the extent of the vehicle i.

Oi The section of track owned by the vehicle i.

xii

Chapter 1

Introduction

This thesis investigates how the formal modeling and veri�cation techniques of computer

science can be used for the analysis of hybrid systems [7,14,22,37]| systems involving both

discrete and continuous behavior. The motivation behind such research lies in the inherent

similarity of the hierarchical and decentralized control strategies of hybrid systems and the

communication and operation protocols used for distributed systems in computer science.

As a case study, the thesis focuses on the development of techniques that use hybrid I/O

automata [29, 30] to model and analyze automated vehicle transportation systems and, in

particular, their various protection subsystems | control systems that are used to ensure

that the physical plant at hand does not violate its various safety requirements.

The thesis is split into two major parts. In the �rst part, we develop an abstract model of a

physical plant and its various protection subsystems | also referred to as protectors. The

specialization of this abstract model results in the speci�cation of a particular automated

transportation system. Moreover, the proof of correctness of the abstract model leads to

simple correctness proofs of the protector implementations for particular specializations

of the abstract model. In this framework, the composition of independent protectors is

straightforward | their composition guarantees the conjunction of the safety properties

guaranteed by the individual protectors. In fact, it is shown that under certain conditions

composition holds for dependent protectors also.

In the second part, we specialize the aforementioned abstract model to simpli�ed versions

of the personal rapid transit system (PRT 2000TM) under development at Raytheon Cor-

poration. We examine overspeed and collision protection for a set of vehicles traveling on

straight tracks, on binary merges, and on a directed graph of tracks involving binary merges

and diverges. In each case, the protectors sample the state of the physical plant and take

protective actions to guarantee that the physical plant does not reach hazardous states. The

proofs of correctness of such protectors involve specializing the abstract protector to the

physical plant at hand and proving that the suggested protector implementations are cor-

1

rect. This is done by de�ning simulations among the states of the protector implementations

and their abstract counterparts.

1.1 Hybrid Systems

The trend of system integration and automation has resulted in large and complex systems

involving hierarchical and/or decentralized control structures. The higher levels of control

are based on discrete algorithms and are often modeled using �nite automata techniques

from computer science. The lower levels of control address continuous behavior and are

based on well established control theoretic techniques. The inherent complexity of the mix

of continuous and discrete control and the need of a precise and e�cient model for hybrid

systems has encouraged research in this �eld.

The similarity of the hierarchical and/or decentralized control structure of hybrid systems

with the distributed system setting in computer science has nurtured a distributed systems

approach of analyzing hybrid systems. This approach is based on various formal modeling

techniques developed for the veri�cation and the proof of correctness of distributed sys-

tems in computer science. Such techniques use the principles of abstraction and modular

decomposition to provide simple and concise models of complex systems. Once a particular

system is decomposed into succinct parts, various composition theorems are used to prove

that the system is functioning according to its speci�cations, i.e., the system is correct.

1.1.1 Formal Framework

The formal modeling techniques that are used in this thesis are based on the hybrid I/O

automaton model [29,30]. This model is an extension of the timed I/O automaton model [11,

34] and allows the explicit treatment of continuous behavior. The hybrid I/O automaton

model is inspired by the phase transition models [2, 4, 35,36].

The hybrid I/O automaton model is a (possibly) in�nite state model of a system involving

both discrete and continuous behavior. The states of a hybrid I/O automaton (HIOA) are

the valuations of a set of variables. The discrete behavior of a HIOA is modeled by discrete

jumps in state which are described by labeled transitions. The labels of such transitions

are the actions that carry out the transition from the initial to the �nal state of the jump.

The continuous behavior of a HIOA is modeled by continuous changes in state which are

described by sets of trajectories. The external interface of a HIOA is dictated by the

partition of its variables and its actions into three categories: input, internal, and output.

The behavior of the system being modeled over time is described by hybrid executions |

�nite or in�nite alternating sequences of trajectories and actions. The externally visible part

2

of a hybrid execution is denoted as the hybrid trace of the hybrid execution and involves

the evolution of the input and output variables of the HIOA.

A HIOA A1 implements another HIOA A2 if every external behavior of A1 is allowed by

A2. In this setting A1 and A2 are referred to as the implementation and the speci�cation,

respectively. The notion of an implementation relation is given by inclusion of the sets

of hybrid traces; that is, the set of hybrid traces of A1 is a subset of the set of hybrid

traces of A2. The composition of two HIOA is de�ned as their synchronization on shared

input/output variables and input/output actions. Under straightforward and simple con-

ditions, the composition of two HIOA results in a HIOA. Moreover, composition respects

the implementation relation, i.e., supposing B is a HIOA, if the HIOA A1 implements the

HIOA A2, then the composition of A1 with B implements the composition of A2 with B.

Most of the proofs in the HIOA framework use invariant assertions and simulations. In the

case of invariant assertions, the proofs are by induction on the length of a hybrid execution

of the HIOA at hand. Such proofs show that a particular predicate on the state of the

HIOA is satis�ed in every state of the execution. A simulation is a mapping between the

states of the two HIOA and is used to prove that one HIOA implements another. The

fact that the mapping is indeed a simulation is again done by induction on the length of a

hybrid execution of the implementation. This induction matches up individual steps in the

implementation with either single steps, or sequences of steps, in the speci�cation.

1.1.2 Related Work

The recent interest in the area of hybrid systems has resulted in a number of techniques to

model and analyze their behavior. In particular, models that are analogous to the timed I/O

automaton model [11,34] are the models of Alur and Dill [6], Lamport [20], and Henzinger,

Manna, and Pnueli [18]. As is the case with the timed I/O automaton model, these models

have also been extended to the hybrid setting; for instance, the timed transition model [18]

has been extended to the phase transition model [35, 36]. Phase transition systems are

analogous to hybrid I/O automata | the transitions and the activities of phase transition

systems correspond to the discrete transitions and the trajectories of hybrid I/O automata.

The hybrid system model [2,4] is similar to the phase transition model with the distinction

that, as in the hybrid I/O automaton model, discrete transitions are labeled, thus allowing

the appropriate synchronization of composed automata. The distinction between the hybrid

system model [2, 4] and the hybrid I/O automaton model lies in the latter's classi�cation

of the discrete transitions and variables into input, internal, and output.

In the realm of applications, the formal modeling techniques presented above have been used

for the analysis of various problems. The railroad crossing problem [15] and the steam boiler

problem [1,21] comprise two commonly used benchmark problems. The former benchmark

3

problem considers the control of a railroad gate that prevents cars and pedestrians from

crossing the railroad tracks while the train is in the vicinity of the crossing. This gate must

be lowered prior to the arrival of the train and lifted once the train has passed by. The

latter benchmark problem involves the control of the level of water in a steam boiler.

The success in the modeling, analysis, and controller design for the above benchmark prob-

lems has encouraged the formal modeling of more complex hybrid systems; for example, au-

tomated transportation systems [41,42], industrial and chemical processes [9,40], rail-vehicle

control [39], and complex automotive suspension systems [38]. The motivation behind such

research lies mostly in the safety-critical nature of the systems at hand. In the case of

automated transportation systems, the safety of the passengers has greatly encouraged the

use of formal techniques.

The recent interest in addressing safety concerns related to automated highway systems

and, in particular, the California PATH project [41], has resulted in a surge of hybrid sys-

tem problems. The goal of PATH is to increase vehicle throughput by organizing tra�c

into platoons of closely spaced vehicles. Godbole, Lygeros, and Sastry [12,13,23,25,27] at

U.C. Berkeley have studied various problems that arise in the control of the vehicle pla-

toons. Such problems address the control of the leader of a platoon in view of following

the preceding platoon at a safe distance, tracking an optimal cruising velocity, and per-

forming various platoon maneuvers. The platoon maneuvers that have been addressed are

the platoon join, in which two or more adjacent platoons join to form a single platoon, the

platoon split, in which a platoon splits in two, and the platoon lane change. Lygeros [22] and

Lygeros et al. [26, 27] used a game theoretic approach to prove that all platoon maneuvers

are safe. Recently, Dolginova and Lynch [8] have used hybrid I/O automata to model and

verify the safety of the platoon join maneuver.

On a similar note, Weinberg [43] has analyzed a deceleration maneuver in which a discrete

controller slows a train down to a target velocity range within a given distance. In further

research, Weinberg et al. [42] have modeled the personal rapid transit system (PRT 2000TM)

under development at Raytheon Corporation and veri�ed the correct operation of the emer-

gency control components used to guarantee that the vehicles neither exceed a prespeci�ed

speed limit, nor collide among themselves.

1.2 Automated Transportation Systems

Among the hybrid systems that are being analyzed using formal methods, systems in trans-

portation are particularly common. This is due to the fact that such systems are safety-

critical and, therefore, their correct analysis and veri�cation is of uttermost importance.

An important feature of the design of the various autonomous transportation systems is

4

Figure 1.1 Separation of system functionality into operation and protection.

Operation Subsystem Protection Subsystem

Physical Plant

w

o

/

7

their absolute safety requirements. These requirements translate to stringent design crite-

ria and have led to the complete separation of the system functionality into the parallel

components of operation and protection as shown in Figure 1.1. The operation component

is responsible for the \normal" control of the system and can be composed of complex soft-

ware and hardware. The protection component is responsible for the \emergency" control

of the system and is designed to be simple and reliable. In ordinary operation, the protec-

tion component is not supposed to take any action | it merely monitors the system. In

a potentially hazardous situation, however, the protection component must react strongly

enough to guarantee that, regardless of the behavior of the operation component, the safety

requirements are met. In the interest of making the protection component reliable, design-

ers keep it simple; instead of having complex control abilities, the protection component

depends only on the correct execution of a few decisive emergency commands.

The separation of operation and protection functions is a generally recognized engineering

paradigm for the design of safety-critical systems. In the realm of transportation systems,

this structure was initially used in the design of railroad systems. Automatic safety systems

were added to human-controlled railroad systems to protect against human error and me-

chanical malfunctions. As railroad and mass transit systems have evolved to become more

automated, this division of labor has been retained in the form of Automatic Train Op-

eration (ATO) and Automatic Train Protection (ATP) systems. This paradigm occurs in

most existing automated train systems, including the Washington Metro, the Miami People

Mover, the O'Hare People Mover, the Detroit People Mover, and systems in Toronto, Van-

couver, and Jacksonville. The use of this split migrated to automated vehicle transportation

systems with the pioneering Morgantown PRT system in the late sixties; this system has

been in continuous active use for over 20 years with no serious accidents.

1.2.1 The PRT 2000TM

Raytheon engineers are currently working on the design and development of a new personal

rapid transit (PRT) system called PRT 2000TM. This system uses 4-passenger vehicles that

5

travel on an elevated guideway with Y-shaped merges and diverges. Passengers on this

system board at stations and travel directly to their desired destination stations without

intermediate stops. Compared to conventional transportation systems, the PRT 2000TM

can provide shorter average trip times and shorter average waiting times with equivalent

passenger throughput. These performance improvements are achieved because the vehicles

are separated on the guideway by only a few seconds, instead of the minutes typical of

a conventional transit system. The vehicles are controlled by a distributed network of

computers, which receive data from sensors on the vehicles and in the tracks.

Once again, the control of the PRT 2000TM is split into the Automated Vehicle Operation

System (AVOS) and the Automated Vehicle Protection System (AVPS). The AVOS is in

charge of the normal operation of the system and the AVPS is used to protect the system

against hazards.

1.2.2 Formal Modeling of the PRT 2000TM

The safety-critical nature of the PRT 2000TM has lead to an interest in modeling its pro-

tection system using formal modeling techniques from computer science. The advantage of

using such modeling methods is twofold. First, they formalize the safety concerns addressed

by the protection system and, second, they are used to prove the correctness of the protec-

tion system at hand. The safety properties that are addressed are those of overspeed and

collision avoidance, i.e., either the property that the vehicles comprising the system do not

exceed the speed limit, or the property that they do not collide among themselves. These

are by no means the only safety requirements enforced by the AVPS of the PRT 2000TM,

but they are among the most important and complex.

The approach to modeling this automated transportation system is based on abstraction

and modular decomposition. Abstraction is used to mask all inessential implementation

details from the model of the system. Modular decomposition is used either to model

each of the safety properties in isolation, or to model a particular safety property as the

conjunction of several less complex safety properties. As shown in Figure 1.2, the protection

system is de�ned as the composition of a set of simpler modules referred to as protectors.

The composition of all these protectors results in a protection system that enforces the

conjunction of the safety properties enforced by the individual protectors being composed.

For instance, in the case of a protection system that prevents the vehicles from exceeding

the speed limit, each of the protectors would correspond to protection subsystems that

prevent individual vehicles from exceeding the speed limit. However, their composition

would constitute an overspeed protection system for all the vehicles.

This thesis extends the work by Weinberg, Lynch, and Delisle [42] on modeling the AVPS

of the personal rapid transit system (PRT 2000TM) under development at Raytheon Corpo-

6

Figure 1.2 Modular decomposition of the AVPS of the PRT 2000TM.

w

o

/

7

-
�

�
-

w

o

/

7

Protector1 Protector2

Protector3

Protector4Protector5

Physical Plant

ration. Weinberg et al. [42] model the PRT 2000TM as a transportation system where:

� vehicles are traveling on a single track,

� vehicle velocities are non-negative,

� vehicles can stop instantaneously, as if they could hit a brick wall,

� collisions among vehicles are pairwise,

� brakes are binary, i.e., the braking of a particular vehicle results in a vehicle deceler-

ation equal to a prespeci�ed value,

� the acceleration is constrained to a particular range of values, and

� the vehicle brakes comprise monotonic system constraints, i.e., the instruction of a

vehicle to brake can never be revoked.

In addition to the above assumptions, the communication among the various subsystems of

the PRT 2000TM is assumed to be reliable, periodic, and timely.

Weinberg et al. [42] verify the correctness of the overspeed and the collision protection

subsystems. First, it is shown that the overspeed protector guarantees that none of the

vehicles exceed the speed limit and that the collision protector prohibits vehicle collisions

provided that none of the vehicles exceed the speed limit. Then using a one-way depen-

dence protector composition theorem it is shown that the composition of the overspeed and

collision protectors guarantees that the vehicles neither exceed the speed limit, nor collide

among themselves. It should be noted that the model of the physical plant is simpli�ed to

the point that abrupt changes of the vehicle velocities, due to collisions for example, are

not modeled. The advantage of this simpli�cation is that the overspeed protector does not

depend on the collision protector and, therefore, the one-way dependence protector com-

7

position theorem su�ces. The disadvantage is that the simpli�ed model might not be a

truthful representation of the real physical plant.

In this thesis, we extend the protector composition results of Weinberg et al. [42] and relax

their modeling assumptions about the PRT 2000TM. Regarding the composition of protec-

tion systems, we present theorems that dictate the conditions under which the composition

of independent, one-way dependent, and even two-way dependent protectors guarantees the

conjunction of the safety properties guaranteed by the individual protectors being com-

posed. Regarding the transportation system model, two of the aforementioned assumptions

are relaxed. First, the constraint on the track topology is gradually relaxed from that

of a single track to that of a general track topology involving a directed graph of tracks

comprised of Y-shaped merges and diverges. Second, the monotonicity constraint on the

instruction of the vehicles to brake is relaxed such that the instruction of a vehicle to brake

may be revoked, provided the vehicle in question is out of risk. Moreover, in an e�ort to

truthfully model the transportation system, we extend the model of the physical plant to

allow vehicle collisions that can adversely a�ect the velocity and the acceleration of the

vehicles involved in a collision. Thus, since collisions may cause instantaneous jumps in

vehicle velocities, the overspeed protector must require that no collisions ever occur in the

physical plant; that is, the overspeed and the collision protectors are two-way dependent.

Subsequently, it is shown that the two-way dependence composition conditions are met by

the proposed overspeed and collision protectors and that their composition results in a pro-

tection system that guarantees that the vehicles neither exceed the speed limit, nor collide

among themselves.

1.3 Thesis Overview

In order for this thesis to be self contained, Chapter 2 gives a short and terse treatment of

the hybrid I/O automaton model [30] and describes the conventions used in the speci�cation

of HIOA in this thesis. In order to facilitate the modeling of complex system properties, we

introduce notation to allow the explicit restriction of the states of a hybrid I/O automaton

to sets of states that are comprised of all states satisfying complex state properties of

the HIOA. In Chapter 3, we present an abstract model of a physical plant interacting with

various protection systems. Both the physical plant and the protection systems are modeled

as hybrid I/O automata. Provided that protectors are independent, they can be composed

and their composition guarantees the conjunction of the safety properties guaranteed by

the individual protectors being composed. Under certain conditions, the same applies for

the composition of protectors that rely on the correct operation of each other. The abstract

protector is de�ned as the composition of a sensor automaton and a discrete controller

automaton. The sensor samples the state of the physical plant at regular intervals of time

8

and the discrete controller issues protective actions so as to guarantee that the physical

plant exhibits a particular safety property.

In subsequent chapters, we present a simple model of the PRT 2000TM and introduce over-

speed and collision protectors. This is done for increasingly complicated track topologies.

First we consider a single track, then a Y-shaped merge, and, �nally, a general track topol-

ogy comprised of Y-shaped merges and diverges. Chapter 4 de�nes a system of n vehicles

traveling on a single track and Chapters 5 and 6 de�ne its overspeed and collision protectors.

Chapter 7 extends the model of the physical plant to involve a Y-shaped merge and de�nes

a collision protector for the new model. Chapter 8 augments the model of the physical

plant to involve a general track topology comprised of Y-shaped merges and diverges and

de�nes a collision protector for the new model. In Chapter 9, we prove that the overspeed

and collision protectors of the various track topologies can be composed so as to guarantee

that the vehicles neither exceed the speed limit, nor collide among themselves. Finally, in

Chapter 10 we give a summary of the thesis, an evaluation of the research presented, and

directions in which such research could be extended or continued.

9

10

Chapter 2

Hybrid I/O Automata

The hybrid I/O automaton (HIOA) model [29,30] is based on the timed I/O automaton

model [10,11,33,34], but includes explicit treatment of continuous behavior. To make this

thesis self contained, this chapter gives a complete but terse treatment of the HIOA model

with an emphasis on those aspects used in subsequent chapters. The presentation follows

precisely that of Lynch, Segala, Vaandrager, and Weinberg [30].

The chapter is organized as follows. We begin by de�ning auxiliary concepts and notation

pertaining to functions, time, variables, valuations, and trajectories. We proceed to de�ne

hybrid I/O automata, hybrid executions, and hybrid traces. Next, we de�ne a simulation re-

lation between a pair of HIOA and the notion of HIOA composition. Finally, we describe the

conventions used in the speci�cation of HIOA in this thesis. In particular, we describe how

states, discrete transitions, and trajectories of a HIOA are speci�ed and how to explicitly

restrict the states of a HIOA in view of enforcing complex state properties.

2.1 Preliminary Mathematical Notation

This section de�nes various auxiliary concepts and notation that are used in the de�nition

of the hybrid I/O automaton model.

Functions

With dom(f) and range(f) we denote the domain and the range, respectively, of the function

f . If f is a function and X a set, then we write fdX for the restriction of f to X , i.e.,

the function g with dom(g) = dom(f) \ X satisfying g(x) = f(x), for all x 2 dom(g). We

say that two functions f and g are compatible if fddom(g) = gddom(f). If f and g are

compatible functions, then we write f[g for the function h with dom(h) = dom(f)[dom(g)

such that h(x) = f(x), if x 2 dom(f), and h(x) = g(x), otherwise, for all x 2 dom(h). More

11

generally, if F is a set of pairwise compatible functions then we write
S
f 2 F f for the

unique function g with dom(g) =
S
f 2 F dom(f) such that g(x) = f(x), for all f 2 F and

x 2 dom(f). If f is a function whose range consists of a set of functions and X is a set,

then the projection f # X is the restriction of the functions in range(f) to the set X , i.e.,

the function g with dom(g) = dom(f) de�ned by g(x)
�

= f(x)dX , for all x 2 dom(g). The

projection operator # extends to sets of functions by pointwise extension. Also, if f is a

function whose range consists of a set of functions that all have an element y in their domain,

then the projection f # y is the function with domain dom(f) de�ned by f # y(x)
�

= f(x)(y),

for all x 2 dom(f).

Time

Throughout this thesis, we �x the time axis T to be a compact subgroup of (R;+), i.e.,

the real numbers with addition. Henceforth, we exclusively use the set of real numbers R

as the time axis. An interval TI is a non-empty convex subset of T . As usual, intervals

are denoted by [t1; t2] = ft 2 T j t1 � t � t2g, etc. An interval TI is right-open (left-

open), if it does not have a maximum (minimum) element, and right-closed (left-closed),

otherwise. We write max(TI) and min(TI) for the maximum and the minimum elements,

respectively, of the interval TI (if they exist), and sup(TI) and inf(TI) for the supremum

and in�mum, respectively, of the interval TI in T [f�1;1g. For T 0 � T and t 2 T , we

de�ne T 0 + t
�
= ft0 + t j t0 2 T 0g. Thus, for a function f with domain T 0, we de�ne f + t to

be the function with domain T 0 + t satisfying f + t(t0) = f(t0 � t), for all t0 2 T 0 + t.

Variables and Valuations

We assume a universal set V of variables. Variables in V are typed, where the type of a

variable, such as reals, integers, etc. is given by type(v); that is, type(v) is the domain over

which the variable v ranges. Letting V � V , a valuation of V is a function that associates

to each variable v of V a value in type(v). We adopt the convention that the set of all

valuations of a set of variables V is denoted by V . Often, valuations of a set of variables V

are referred to as states.

Letting v 2 V and Sv � type(v), we use the notation v :2 Sv to denote the assignment of an

arbitrary element of the set Sv to the variable v. Similarly, letting V � V and SV � V , we

use the notation V :2 SV to denote the assignment of an element of the set type(v) to the

variable v, for each v in V , such that the resulting valuation of V is an arbitrary element

of the set SV .

Let Z be a set of variables, z be a state of Z, and Z0 be a subset of Z, i.e., Z � V , z 2 Z,

and Z0 � Z. The restriction of the state z to the set of variables Z0, denoted by zdZ0, is

de�ned to be the valuation z0 of the variables of Z0 in z. Letting X � Z, we say that X

12

is Z0-determinable if for all x 2 X and z 2 Z, such that xdZ0 = zdZ0, it is the case that

z 2 X. Intuitively, if X is Z0-determinable then, for any state z in Z, the information

provided by the restriction of the state z to the set of variables Z0 is su�cient to determine

whether the state z is a member of the set X. In other words, the information provided by

the restriction of the state z to the set of variables Z�Z0 is irrelevant in the determination

of whether the state z is a member of the set X . Moreover, if X is Z0-determinable and

z0 2 Z0, we use the notation z0 2 X to denote that there exists a state x 2 X such that

xdZ0 = z0. In fact, since X is Z0-determinable, the existence of a state x 2 X such that

xdZ0 = z0 implies that for all states z 2 Z such that zdZ0 = z0 it is the case that z 2 X .

Trajectories

A trajectory over a set of variables Z is a function w : TI ! Z, where TI is a left-closed

interval of T with left endpoint equal to 0. A trajectory represents the evolution of the

valuations of the variables in Z within a TI interval. With dom(w) we denote the domain

of w and with trajs(Z) the collection of all trajectories over Z. A trajectory w with domain

TI is often referred to as a TI-trajectory.

A trajectory w is closed, if its domain is a (�nite) right-closed interval, and full, if its

domain equals T�0. ForW a set of trajectories, Closed(W) and Full(W) denote the subsets

of closed and full trajectories in W , respectively. If w is a trajectory, then the limit time of

w, denoted by w:ltime, is de�ned to be the supremum of dom(w). A trajectory w is �nite

if w:ltime 6= 1. We de�ne the �rst state of a trajectory w, denoted by w:fstate, to be the

state w(0). Moreover, if the domain of a trajectory w is right-closed, then we de�ne the last

state of w, denoted by w:lstate, to be the state w(w:ltime). A trajectory with domain [0; 0]

is called a point trajectory. If s is a state, then we de�ne }(s) to be the point trajectory

that maps 0 to s.

For a trajectory w and t 2 T�0, we de�ne w E t
�
= w d [0; t] and w C t

�
= w d [0; t). It is

important to note that w C 0 is not a trajectory. By convention, w E 1
�

= w C 1
�

= w.

Similarly, if w is a trajectory and TI is a left-closed interval with min(TI) 2 dom(w), then we

de�ne the curtailment of w to TI , denoted by w yTI , to be the trajectory (wdTI)�min(TI),

or equivalently the trajectory w0 with domain (TI \ dom(w))�min(TI) de�ned by w0(t0) =

w(t0 +min(TI)), for all t
0 2 dom(w0).

If w is a trajectory over Z and Z0 � Z, then the projection w # Z0 is the trajectory over Z0

with domain dom(w) de�ned by w # Z0 (t)(z0)
�

= w(t)(z0), for all z0 2 Z0. The projection

operation is extended to sets of trajectories by pointwise extension. Also, if w is a trajectory

over Z and z 2 Z, then the projection w # z is the function from dom(w) to the domain of

z de�ned by w # z (t)
�

= w(t)(z).

If w is a �nite trajectory with domain TI , w
0 is a trajectory with domain T 0

I , and w:lstate =

13

w0:fstate if w is closed, then we de�ne the concatenation of w and w0 to be the trajectory

w_ w0 �= w[(w0+w:ltime). We extend the concatenation operator to an in�nite sequence

of �nite trajectories w0w1w2 � � � . If wi:lstate = wi+1:fstate, for each trajectory pair wi

and wi+1, for i 2 N, in which the trajectory wi is closed, then we de�ne the in�nite

concatenation of the in�nite sequence of �nite trajectories w0w1w2 � � � to be the trajectory

w0
_ w1

_ w2 : : :
�

=
S
i;j 2N(wi +

P
j<i wj :ltime).

A trajectory w is a pre�x of a trajectory w0, denoted by w � w0, if w = w0ddom(w); that

is, either w = w0, or w0 = w _ w00, for some trajectory w00. With Pref (W) we denote the

pre�x-closure of W : Pref (W)
�

= fw j 9 w0 2 W : w � w0g. A set W is pre�x closed if

W = Pref (W). A trajectory in W is maximal if it is not a pre�x of any other trajectory in

W . We write Max(W) for the subset of maximal trajectories in W .

2.2 The Hybrid I/O Automaton Model

A hybrid I/O automaton A = (U;X; Y;�in;�int;�out;�;D;W) consists of the following

components:

� Three disjoint sets U , X , and Y of variables, called input, internal, and output vari-

ables, respectively.

Variables in E
�

= U[Y are called external, and variables in L
�

= X[Y are called local.

We write V
�

= U [L and let s, u, and w range over V , U , and trajs(V), respectively.

� Three disjoint sets �in, �int, and �out of actions, called input, internal, and output

actions, respectively.

We assume that �in contains a special element e, the environment action, which rep-

resents the occurrence of a discrete transition outside the system that is unobservable,

except (possibly) through its e�ect on the input variables. Actions in �ext �

= �in[�out

are called external, and actions in �loc �

= �int [�out are called locally controlled. We

write �
�

= �in [�loc and let a range over �.

� A non-empty set � � V of initial states satisfying:

Init (initial states closed under change of input variables)

s 2 � =) 9 s0 2 � : (s0dU = u) ^ (s0dY = sdY)

� A set D � V � �� V of discrete transitions satisfying:

D1 (input action enabling)

a 2 �in =) 9 s0 2 V : s a�!
A
s0

14

D2 (environment actions that do not change inputs do not a�ect the state)

(s e�!
A
s0) ^ (sdU = s0dU) =) (s = s0)

D3 (discrete transitions do not depend on input variable changes)

(s a�!
A
s0) =) 9 s00 2 V : (s a�!

A
s00) ^ (s00dU = u) ^ (s00dY = s0dY)

For any discrete transition (s; a; s0) of the automaton A, i.e., (s; a; s0) 2 D, the states s

and s0 are referred to as the pre-state and post-state, respectively, of the discrete

transition (s; a; s0). Moreover, as in the above treatment, we often use the notation

s a�!
A
s0 to denote that (s; a; s0) is a discrete transition of the automaton A, i.e.,

(s; a; s0) 2 D.

� A set W of trajectories over V satisfying:

T1 (existence of point trajectories)

}(s) 2 W

T2 (closure under subintervals)

w 2 W ^ (TI left-closed subinterval of dom(w)) =) w y TI 2 W

T3 (completeness)

(8 t 2 T�0 : w y [0; t] 2 W) =) w 2 W

The intuition captured by Axioms Init and D1{D3 is that a HIOA is responsible for per-

forming locally controlled actions and for modifying the values of its local variables, whereas

the environment of a HIOA is responsible for performing input actions and modifying the

values of the input variables.

Axiom Init says that a system may not constrain the initial values of its input variables.

Thus, if we change the input variables of an initial state, then there is a way to change

the internal variables as well (while leaving the output variables unchanged) so that the

resulting state is an initial state also.

Axiom D1, which is simply the hybrid extension of the input enabling axiom from the

(untimed) I/O automaton model [11, 32, 34], says that a HIOA should accept all input

actions in all states. Axiom D2 postulates that an environment action that does not a�ect

the input variables can not be \detected" by the automaton and, therefore, leaves the state

unchanged. Axiom D3 states that there is no functional dependence between the input

and the output variables of a HIOA during a transition; that is, a HIOA can not react

instantaneously to an input variable change. If there is an a-step from a state s to a state

s0, then, for any valuation u of the input variables, there also exists an a-step from s to a

state s00 with an input part u and an output part equal to that of s0. The internal variables of

s0 and s00 need not have the same values, since otherwise it would not be possible for a HIOA

to record all the discrete changes in its input variables. The technical use of Axiom D3 is

to avoid cyclic constraints during the interaction of two systems. In this way, we can show

15

that the composition of two HIOA is still input enabled and that the environment can never

block the output actions of a system.

Axioms D2 and D3 imply that the environment action e can never a�ect the output vari-

ables of a HIOA. Consider any transition (s; e; s0) 2 D and suppose that s0dY 6= sdY .

Letting u = sdU , Axiom D3 implies that there exists s00 2 V such that (s; e; s00) 2 D,

s00dU = sdU , and s00dY = s0dY . Since s00dU = sdU and s00dY 6= sdY , Axiom D2 is violated.

Therefore, it follows that there does not exist (s; e; s0) 2 D such that s0dY 6= sdY .

Axioms T1{T3 state some natural conditions on the set of trajectories needed to set up

our theory: existence of point trajectories, closure under subintervals, and the fact that a

full trajectory is in W if and only if all its pre�xes are in W .

The Axiom Init and the Axioms D1{D3 that are presented here are slightly di�erent from

the respective axioms introduced in the preliminary version of the HIOA model [29]. The

new axioms allow a HIOA to change the values of its internal variables if the environment

modi�es the input variables of the HIOA.

Notation Let A be a HIOA as described above. If s 2 V and l 2 L, then we write

s a�!
A
l if and only if there exists an s0 2 V such that s a�!

A
s0 and s0dL = l. Henceforth,

the components of a HIOA A will be denoted by VA, UA, �A, �A, etc. Moreover, the

components of a HIOA Ai will also be denoted by Vi, Ui, �i, �i, etc.

2.3 Hybrid Executions

A hybrid execution fragment � of a HIOA A is a �nite or in�nite alternating sequence

� = w0a1w1a2w2 � � � , where:

1. Each wi is a trajectory in WA and each ai is an action in �A.

2. If � is a �nite sequence then it ends with a trajectory.

3. If wi is not the last trajectory in � then its domain is a right-closed interval and it is

the case that wi:lstate
ai+1
��!

A
wi+1:fstate.

An execution fragment records all the discrete changes that occur in the evolution of a

system, plus the \continuous" state changes that take place in between. The third item

says that the discrete actions in � span between successive trajectories. We write h-frags(A)

for the set of all hybrid execution fragments of A.

If � = w0a1w1a2w2 � � � is a hybrid execution fragment, then we de�ne the limit time of �,

denoted by �:ltime, to be
P

i 2Nwi:ltime. Further, we de�ne the �rst state of �, denoted

by �:fstate, to be w0:fstate.

16

We distinguish several sorts of hybrid execution fragments. A hybrid execution fragment �

is de�ned to be

� an execution if the �rst state of � is an initial state, i.e., �:fstate 2 �A,

� �nite if � is a �nite sequence and the domain of its �nal trajectory is a right-closed

interval,

� admissible if �:ltime =1,

� Zeno if � is neither �nite nor admissible, and

� a sentence if � is a �nite execution that ends with a point trajectory.

If � = w0a1w1 � � �anwn is a �nite hybrid execution fragment then we de�ne the last state

of �, denoted by �:lstate, to be wn:lstate. A state of A is de�ned to be reachable if it is the

last state of some �nite hybrid execution of A.

A �nite hybrid execution fragment � = w0a1w1a2w2 � � �anwn and a hybrid execution frag-

ment �0 = w0
0
a0
1
w0
1
a0
2
w0
2
� � � of A can be concatenated if wn

_w0
0
is de�ned and is a trajectory

of A. In this case, the concatenation �_ �0 is the hybrid execution fragment de�ned by

�_ �0
�

= w0a1w1a2w2 � � �an(wn
_ w0

0)a
0
1w

0
1a

0
2w

0
2 � � �

Let � and �0 be hybrid execution fragments of a HIOA A. We say that �0 is a pre�x of �0,

denoted by �0 � �, if either �0 = �, or there exists some execution fragment �00 of A such

that �0 _ �00 = �.

A variable v of a HIOA A is called continuous if v is not modi�ed by any discrete steps of

A and for all trajectories w of A, w # v is a continuous function. Let � = w0a1w1a2w2 � � �

be a hybrid execution fragment of A. Then we de�ne � # v as follows:

� # v = (w0 # v)
_ (w1 # v)

_ (w2 # v) : : :

Theorem 2.3.1 If v is a continuous variable of a HIOA A and � is an execution fragment

of A, then � # v is a continuous function.

If � = w0a1w1a2w2 : : : is a hybrid execution fragment of a HIOA A and Z � V then � # Z

is de�ned to be the sequence (w0 # Z)a1(w1 # Z)a2(w2 # Z) : : : .

A superdense time in an execution fragment � = w0a1w1a2w2 : : : of a HIOA A is a pair

(i; t), where t � wi:ltime. We totally order superdense times in the execution fragment �

lexicographically.

17

An occurrence of a state s in an execution fragment � = w0a1w1a2w2 : : : of a HIOA A

is a triple (i; t; s) such that (i; t) is a superdense time in � and s = wi(t). We order state

occurrences in � according to the order of their superdense times.

If S is a set of states and � is an execution fragment, then past(S; �) is the set of state

occurrences (i; t; s) in � such that either s 2 S or there is a previous state occurrence

(i0; t0; s0) in � with s0 2 S.

2.4 Hybrid Traces

Suppose � = w0a1w1a2w2 � � � is a hybrid execution fragment of A. In order to de�ne the

hybrid trace of �, let

 = (w0 # EA)vis(a1)(w1 # EA)vis(a2)(w2 # EA) � � � ;

where, for any action a of A, vis(a) is de�ned equal to � if a is an internal action or an

environment action e, and equal to a otherwise. Here � is a special symbol which, as in the

theory of process algebra, plays the role of the \generic" invisible action. An occurrence of

� in is called inert if the �nal state of the trajectory that precedes the � equals the �rst

state of the trajectory that follows it (after hiding of the internal variables). The hybrid

trace of �, denoted by h-trace(�), is de�ned to be the sequence obtained from by removing

all inert � 's and concatenating the surrounding trajectories.

The hybrid traces of A are the hybrid traces that arise from all the �nite and admissible

hybrid executions of A. We write h-traces(A) for the set of hybrid traces of A.

The HIOA A1 and A2 are comparable if they have the same external interface, i.e., U1 = U2,

Y1 = Y2, �
in
1

= �in
2
, and �out

1
= �out

2
. If A1 and A2 are comparable, then A1 � A2 is

de�ned to mean that the hybrid traces of A1 are included in those of A2; that is, A1 �

A2

�

= h-traces(A1) � h-traces(A2). If A1 � A2, then we say that A1 implements A2.

2.5 Auxiliary HIOA De�nitions

Given a HIOA A, we use the notation states(A) to denote the state space of the automaton

A, i.e., states(A) = VA. If R is a subset of the set of states states(A) of the automaton A

and s; s0 2 R, then we say that s0 is R-reachable from s, denoted by s R s0, provided that

there is a hybrid execution fragment of A that starts in s, ends in s0, and all of whose states

are in the set R. We say that s0 is reachable from s, denoted by s s0, provided that s0 is

R-reachable from s, where R is the set of all states of the automaton A, i.e., R = states(A).

When analyzing a HIOA A, it is often useful to de�ne derived variables forA. Such variables

18

are functionally dependent on the variables of the automaton A and, although useful in the

analysis of A, are not essential in its de�nition.

If s is a state of a HIOA A and z is a variable of A, i.e., s 2 states(A) and z 2 VA, then

s:z denotes the value of the variable z in the state s. In terms of valuations, s:z is the

restriction of the valuation s to the element z, i.e., s:z = sdz.

If f is a function to states of a HIOA A and Z is a subset of the variables of A, i.e.,

range(f) = states(A) and Z � VA, then f # Z is the projection of f onto the variables in

Z, i.e., the function g with domain dom(f) and range equal to the set of valuations of Z,

de�ned by: g(s)(z) = f(s)(z), for all s 2 dom(f) and z 2 Z. In the special case where Z is

a singleton set fzg, i.e., Z = fzg, we write f # z as shorthand for f # Z.

2.6 Simulation Relations

Let A and B be comparable HIOA. A simulation from A to B is a relation R � VA � VB

satisfying the following conditions, for all states r and s of A and B, respectively:

1. If r 2 �A, then there exists s 2 �B such that r R s.

2. If r a�!
A
r0 and r R s, then B has a �nite execution fragment � with s = �:fstate,

h-trace(}(r) a }(r0)) = h-trace(�), and r0 R �:lstate.

3. If r R s and w is a closed trajectory of A with r = w:fstate, then B has a �nite exe-

cution fragment � with s = �:fstate, h-trace(w) = h-trace(�), and w:lstate R �:lstate.

Theorem 2.6.1 If A and B are comparable HIOA and there is a simulation from A to B,

then A � B.

2.7 Composition

We say that the HIOA A1 and A2 are compatible if, for i; j 2 f1; 2g; i 6= j,

Xi \ Vj = Yi \ Yj = �int
i \ �j = �out

i \ �out
j = ;:

If A1 and A2 are compatible then their composition A1 � A2 is de�ned to be the tuple

A = (U;X; Y;�in;�int;�out;�;D;W) given by

� U = (U1 [U2)� (Y1 [Y2), X = X1 [X2, Y = Y1 [Y2

� �in = (�in
1
[�in

2
)� (�out

1
[�out

2
), �int = �int

1
[�int

2
, �out = �out

1
[�out

2

19

� � = fs 2 V j sdV1 2 �1 ^ sdV2 2 �2g

� De�ne, for i 2 f1; 2g, projection function �Ai : � ! �i by �Ai(a)
�
= a, if a 2 �i, and

�Ai(a)
�

= e, otherwise. Then D is the subset of V � �� V given by

(s; a; s0) 2 D () sdV1
�A1 (a)����!

A1
s0dV1 ^ sdV2

�A2 (a)����!
A2

s0dV2

� W is the set of trajectories over V given by

w 2 W () w # V1 2 W1 ^ w # V2 2 W2

Notation We extend the projection notation �Ai , for i 2 f1; 2g, to states, trajectories,

discrete actions, hybrid executions, and hybrid traces in the obvious way. If s, w, and a

are a state, a trajectory, and a discrete action of the automaton A = A1 � A2, then the

respective projections �Ai , for i 2 f1; 2g, are de�ned as �Ai(s) = sdVA, �Ai(w) = w # VA,

and �Ai(a) = a if a 2 �A and �Ai(a) = e otherwise. Also, if � = w0a1w1a2 � � � is a hybrid

execution of the automaton A = A1�A2, then the projection �Ai , for i 2 f1; 2g, is de�ned

as �Ai(�) = �Ai(w0)�Ai(a1)�Ai(w1)�Ai(a2) � � � . Moreover, if is the hybrid trace of �, then

�Ai() is the sequence obtained from (w0 # EAi)visAi(a1)(w1 # EAi)visAi(a2)(w2 # EAi) � � �

by removing all inert � 's and concatenating the surrounding trajectories.

Proposition 2.7.1 If A1 and A2 are compatible HIOA, then their composition A1 �A2 is

a HIOA.

Lemma 2.7.2 Let A = A1 �A2, and let � be a hybrid execution of A. Then it is the case

that �Ai(h-trace(�)) = h-trace(�Ai(�)), for i 2 f1; 2g.

Lemma 2.7.3 Let A = A1 � A2. Then it is the case that h-traces(A) = f j �Ai() 2

h-traces(Ai); for i 2 f1; 2gg.

Theorem 2.7.4 Suppose A1, A2, and B are HIOA with A1 � A2, and each of A1 and A2

is compatible with B. Then A1 � B � A2 � B.

2.8 HIOA Speci�cation Conventions

In this section we describe the conventions used in the speci�cation of a HIOA A in this

thesis. In particular, we describe how the states, the discrete transitions, and the trajectories

ofA are speci�ed and introduce notational shorthand used to specify concisely complex state

properties of A.

20

2.8.1 State Speci�cation

Since the states of A are the set of valuations of its variable set VA, the states of A are

speci�ed by simply de�ning the domain over which each variable in VA ranges. Thus, the

states of A are speci�ed by a list of all input, internal, and output variables together with

the domain over which each respective variable ranges. Similarly, the set of start states of

A is speci�ed by stating the set of values that each variable in VA can initially assume. It is

important to note that, by Axiom Init of the HIOA model, each input variable u of A may

initially assume any value in type(u); that is, the set of values that each input variable u of

A can initially assume is the set type(u).

2.8.2 Discrete Transition Speci�cation

The set of discrete transitions of A is speci�ed by collectively describing all discrete transi-

tions involving each action a in �A in precondition-e�ect format. This format is comprised

of a label, a precondition, and an e�ect clause. The label corresponds to the label of the

action a. The precondition is a predicate over the variables of A and speci�es the conditions

under which the action a is enabled; that is, the precondition de�nes the set of states in

which the action a may be scheduled. It is important to note that an action a in �A is not

necessarily scheduled whenever it is enabled. The e�ect clause speci�es the pseudo-code

that must be applied to the pre-state of a discrete transition involving the action a so as

to yield the post-state of the discrete transition. It follows that, in order for (s; a; s0) to

be a discrete transition of A, the precondition in the speci�cation of the action a must be

satis�ed by the pre-state s. Moreover, the application of the pseudo-code in the e�ect clause

of the speci�cation of the action a to the pre-state s must yield the post-state s0.

The convention used in this thesis is that for any particular discrete transition (s; a; s0) of

A, the statements in the pseudo-code of the e�ect clause of the speci�cation of a are applied

sequentially to the state of A starting from the pre-state s. However, the e�ect clause in

the speci�cation of any action a of A is assumed to be executed indivisibly. Therefore, the

execution of the action a in the state s represents a single transition from the pre-state s

to the post-state s0. In order to be able to write e�ect clause pseudo-code involving the

valuation of the variables of A in the pre-state, we adopt the convention that the value of a

particular variable v of A in the pre-state s may be referred to as vpre. Similarly, the value

of the variable v in the post-state s0 may be referred to as vpost.

Throughout this thesis, we adopt the convention that if the e�ect clause in the speci�cation

of an action a of A does not a�ect a local variable v, for any v 2 LA, the value of v in the

post-state of any discrete transition involving the action a is equal to its value in the pre-

state, i.e., vpost = vpre. Moreover, in order to conform to Axiom D3 of the HIOA model, we

adopt the convention that the e�ect clause in the speci�cation of each action a of A must

21

assign to each input variable u of A an arbitrary value in type(u); that is, the e�ect clause

in the speci�cation of the action a must include the assignment statement u :2 type(u). In

fact, we adopt the convention that such assignments precede any other statements in the

e�ect clause of the speci�cation of the action a. Obviously, if the automaton A has no input

variables, i.e., UA = ;, no such assignments are speci�ed.

Axiom D1 of the HIOA model de�nes HIOA to be input-enabled ; that is, a HIOA is not

capable of blocking the scheduling of its input actions. It follows that, each input action a of

A is enabled in each state s ofA. A consequence of this characteristic is that the precondition

in the speci�cation of each input action a of A is the trivial predicate True. Throughout

this thesis, we adopt the convention that the precondition clause in the speci�cation of any

input action a of A is omitted; that is, the speci�cation of each input action a of A is only

comprised of the label and the e�ect clause of the action a.

The environment action e, which is considered an input action, allows the occurrence of a

discrete transition in the external environment that is unobservable by A except (possibly)

through its e�ect on the input variables of A. Environment actions are considered input

actions because HIOA have no control over their external environment and, therefore, envi-

ronment actions are enabled in all states. Thus, following the convention for input actions,

the precondition clause in the speci�cation of the environment action e is omitted. More-

over, according to Axioms D2 and D3 of the HIOA model, a discrete transition involving

the environment action e can only a�ect the input and the internal variables of A. In fact,

according to Axioms D2 of the HIOA model, a discrete transition involving the environ-

ment action e can a�ect the internal variables of A only if the input variables are also

a�ected. Therefore, the e�ect clause in the speci�cation of the environment action e must

be such that the internal variables are a�ected only if the valuation of the input variables

in the post-state di�ers from their valuation in the pre-state; that is, for all (s; e; s0) 2 D,

it is the case that if sdXA 6= s0dXA then sdUA 6= s0dUA. If the automaton A has no input

variables, then the environment action e cannot a�ect its state; that is, if UA = ; then for

all (s; e; s0) 2 D it is the case that s = s0. In such cases, the environment action e is referred

to as stuttering and the e�ect clause in its speci�cation is comprised of the single statement

\None". Often, when the environment action e does not a�ect the internal variables of a

HIOA, or when the environment action e is stuttering, its speci�cation is omitted. Thus,

if the environment action e is omitted from the speci�cation of a HIOA A, then it follows

that the environment action e assigns arbitrary values to the input variables of A and does

not a�ect the internal variables of A. Obviously, when the HIOA A has no input variables,

the environment action e omitted in the speci�cation of A is stuttering.

22

2.8.3 Trajectory Speci�cation

The set of trajectories of A is speci�ed by pseudo-code which describes the properties that

any trajectory w involving the variables in the variable set of A must satisfy in order to be

a trajectory of A. Thus, the trajectory pseudo-code consists of a collection of predicates all

of which must be satis�ed throughout any trajectory w of A. Since HIOA have no control

over their input variables, the trajectory speci�cation of A must not constrain its input

variables. Thus, we adopt the convention that the trajectory speci�cation of A includes a

clause for each input variable u of A stating that the input variable u assumes arbitrary

values in type(u) throughout each trajectory w of A. Obviously, if the automaton A has no

input variables, i.e., UA = ;, no such clauses are speci�ed. In contrast to the convention

used in the speci�cation of actions, if a particular local variable v of A is not constrained

in the trajectory speci�cation of A, then its value may assume arbitrary values in type(v).

Therefore, in order to specify that the value of the local variable v of A remains constant

throughout each trajectory w of A, an explicit statement stating so must be used.

2.8.4 State Restriction

In the speci�cation of a HIOA, it is often unwieldy to explicitly enforce complex state prop-

erties. In view of this speci�cation ine�cacy, we allow the enforcement of state properties

through the restriction of the states of a HIOA to property sets. A property set P of A is

a set of states of A that is comprised of all the states of A that satisfy a particular state

property. The state property described by the property set P may be enforced through the

use of \subject to P" clauses in the speci�cation of either the initial states, the actions, or

the trajectories of A. In the speci�cation of the initial states of A, a \subject to P" clause

signi�es that all of the initial states of A are in the set P . In the speci�cation of the actions

of A, a \subject to P" clause in the e�ect clause of an action a signi�es that the post-state

of each discrete transition involving the action a is in the set P . Finally, in the speci�cation

of the trajectories of A, a \subject to P" clause signi�es that all the states involved in each

trajectory of A are in the set P . In the case of trajectories, such a clause may be interpreted

as choosing the local variables of A that are unconstrained by the trajectory speci�cation

so that the states involved in the trajectory are in the set P .

Often, we collectively specify all complex state properties of a HIOA A using a single

property set. This property set is distinct for each HIOA and is referred to as the set VALID

for the particular HIOA at hand.

23

24

Chapter 3

Abstract Physical Plant and

Protector Models

This chapter is split into two parts. In the �rst part, we de�ne an abstract model of a physical

system that is comprised of a physical plant and a protection system. The protection system

is modeled as a set of protectors that are communicating with the physical plant through

distinct communication channels, or ports. These channels are used to sample and to control

the state of the physical plant. Both the physical plant and the protectors are modeled as

HIOA. It is shown that under certain conditions protectors can be composed such that

their composition ensures the safety properties guaranteed by the individual protectors

being composed. In the second part, we give an abstract model of a protector. The model

is parameterized by the physical plant and various sets of states of the physical plant which

describe the properties assumed and guaranteed by the abstract protector. The protector is

de�ned as the composition of a sensor automaton and a discrete controller automaton. The

sensor automaton samples the output state of the physical plant at a given sampling rate.

The discrete controller automaton determines which protective action must be scheduled in

order to ensure the safety of the physical plant up to the next sampling point. To conclude,

the proposed abstract protector is shown to be correct.

3.1 Protected Plant Systems

In this section, we present an abstract model of a system consisting of a physical plant and

a set of protectors. The model is abstract in that it does not specify any of the details

of the physical plant | for instance, it does not specify that the plant includes vehicles

and tracks. We also de�ne what it means for a protector responsible for guaranteeing a

particular property, i.e., a protector used to avoid a particular mishap, to be correct.

25

3.1.1 Physical Plant Automata

Let J be a set of ports. A physical plant automaton PP for J is de�ned to be a hybrid I/O

automaton (HIOA) in which:

1. The input action set �in
PP is partitioned into subsets �in

PPj
, one for each port j.

2. The output action set �out
PP is partitioned into subsets �out

PPj
, one for each port j.

3. The input variable set UPP is partitioned into subsets UPPj , one for each port j.

We use the letter p to denote a state of PP and P to denote a set of states of PP.

3.1.2 Protector Automata

Let PP be a physical plant automaton with port set J , and let K � J . A protector

automaton A for the physical plant PP and the port set K is a HIOA that is compatible

with PP, and that satis�es the following conditions:

1. Its output actions are exactly the input actions of PP on ports in K.

2. Its output variables are exactly the input variables of PP on ports in K.

3. All its input actions and input variables are outputs of PP.

Lemma 3.1.1 Suppose that A1 and A2 are protectors for PP, with respective port sets K1

and K2, where K1 \K2 = ;. If A1 and A2 are compatible then their composition A1 � A2

is a protector for PP with port set K1 [K2.

Proof: Since A1 and A2 are compatible, Proposition 2.7.1 implies that A1�A2 is a HIOA.

Moreover, since A1 and A2 are compatible with PP it follows that A1 � A2 is compatible

with PP also. Therefore, it remains to be shown that the HIOA A1 �A2 satis�es the three

protector conditions presented above.

To begin, since the protectors A1 and A2 communicate with the plant PP through the port

sets K1 and K2, respectively, their composition A1 � A2 communicates with the plant PP

through the port set K1 [K2. Therefore, there are three conditions to check:

1. The output actions of A1�A2 are exactly the input actions of PP on ports in K1[K2.

Since, the HIOA A1 and A2 are protectors, it is the case that their output actions are

exactly the input actions of PP on the port sets K1 and K2, respectively. However,

from the composition of the protectors A1 and A2, it is the case that �out
A1�A2

=

�out
A1

[�out
A2

. Therefore, it trivially follows that the output actions of A1 � A2 are

exactly the input actions of PP on ports in K1 [K2.

26

2. The output variables of A1 � A2 are exactly the input variables of PP on ports in

K1 [K2.

Since, the HIOA A1 and A2 are protectors, it is the case that their output variables are

exactly the input variables of PP on the port sets K1 and K2, respectively. However,

from the composition of the protectors A1 and A2, it is the case that Y out
A1�A2

=

Y out
A1

[Y out
A2

. Therefore, it trivially follows that the output variables of A1 � A2 are

exactly the input variables of PP on ports in K1 [K2.

3. All the input actions and input variables of A1 �A2 are outputs of PP.

From the composition of the protectors A1 and A2, it is the case that �in
A1�A2

=

(�in
A1
[�in

A2
)� (�out

A1
[�out

A2
) and UA1�A2 = (UA1 [UA2)� (YA1 [YA2). However, since

the HIOA A1 and A2 are protectors, their output actions and output variables are

inputs to the PP automaton. Therefore, it is the case that �in
A1�A2

= �in
A1
[�in

A2
and

UA1�A2 = UA1 [UA2 . It trivially follows that the input actions and input variables of

A1 �A2 are outputs of PP.

3.1.3 Protected Plant Systems

A protected plant system is the composition of a physical plant automaton PP and a set

of protector automata. If s is a state of a protected plant system and P is a subset of the

states of PP, we often write s 2 P as shorthand for sdPP 2 P . That is, we extend the

de�nition of the set P to include states of the protected plant system that project to give

PP states in P .

3.1.4 Substitutive and Compositional Correctness

Let S, R, and G be particular sets of states of PP. We say that a protector automaton A for

PP and ports K guarantees G in PP from S given R provided that every �nite execution

of the composition PP� A starting in a state in S that only involves states in R ends in a

state in G. It is important to note that the �rst state of every such �nite execution is in

the set �PP�A \ S. In the special case where R is the set of all states of PP, we sometimes

omit explicit mention of R. Moreover, we often omit mention of PP when the physical plant

automaton is clear from context.

It is important to note that the de�nition of \guarantees" includes consideration of �nite

executions in which arbitrary inputs can arrive at PP on ports other than those in K. The

protector de�nition infers that regardless of what inputs occur on those ports, the protector

A still guarantees G in PP starting from S given R.

27

The following substitutivity theorem states that an implementation of a correct protector is

itself a correct protector.

Theorem 3.1.2 Let A1 and A2 be two protector automata for the same port set K, and

suppose that A1 � A2. If A2 guarantees G in PP from S given R, then A1 guarantees G in

PP from S given R.

Proof: Let �PP�A1
be any �nite execution of the automaton PP�A1 that starts in a state in

the set S and is restricted to states in the setR. We must show that �PP(�PP�A1
:lstate) 2 G.

Let �PP be the projection of �PP�A1
to the PP automaton and �A2 be a �nite execution of

A2 such that h-trace(�A2) = h-trace(�A1(�PP�A1
)). Adding environment actions appropri-

ately to �PP and �A2 , we obtain two new �nite executions �0PP = wPP
0
aPP
1
wPP
1
aPP
2
wPP
2
� � �

and �0A2 = wA2
0
aA2
1
wA2
1
aA2
2
wA2
2
� � � of PP and A2, respectively, such that wPP

i :ltime =

wA2
i :ltime, for all i 2 N, and either aPPi = aA2i , or aPPi = e or aA2i = e, for all i 2 N+.

The addition of environment actions to �PP and �A2 is intended to generate two new �nite

executions �0PP and �0A2 of PP and A2, respectively, in which the limit times of the trajec-

tories in �0PP and �0A2 are equal, the actions in �PP and �A2 shared by PP and A2 appear

in both hybrid executions �0PP and �0A2 , the internal actions of PP and the input actions

of PP on ports other than port j appear as environment actions in �0A2 , and the internal

actions of A2 appear as environment actions in �0PP. Also, it is important to note that all

the environment actions added to �PP and �A2 to obtain �
0
PP and �0A2 , respectively, corre-

spond to inert � 's and do not appear in the hybrid traces h-trace(�0PP) and h-trace(�0A2),

i.e., h-trace(�0PP) = h-trace(�PP(�PP�A1
)) and h-trace(�0A2) = h-trace(�A1(�PP�A1

)).

Let �i = w0a1w1a2w2 � � �aiwi, for some i 2 N, be a �nite hybrid execution comprised of

a collection w0; w1; w2; : : : ; wi of trajectories of PP � A2 and a collection a1; a2; : : : ; ai of

actions of PP�A2, such that:

1. �i = w0a1w1a2w2 � � �aiwi is a hybrid execution of PP� A2,

2. �PP(�i) = wPP
0
aPP
1
wPP
1
aPP
2
wPP
2
� � �aPPi wPP

i , and

3. �A2(�i) = wA2
0
aA2
1
wA2
1
aA2
2
wA2
2
� � �aA2i wA2

i .

By induction on the length i of the �nite execution �i, we show the existence of �i, for all

i 2 N, and, moreover, the existence of a �nite execution � = w0a1w1a2w2 � � � of PP � A2

comprised of a collection w0; w1; w2; : : : of trajectories of PP�A2 and a collection a1; a2; : : :

of actions of PP�A2, such that �PP(�) = �0PP and �A2(�) = �0A2 .

For the base case, consider the �nite execution �0 = w0 of length 0. Since h-trace(�0PP) =

h-trace(�PP(�PP�A1
)), h-trace(�0A2) = h-trace(�A1(�PP�A1

)), and wPP
0
:ltime = wA2

0
:ltime,

it follows that wPP
0

(t)(z) = wA2
0
(t)(z), for all z 2 EPP \ EA2 and t 2 [0; wPP

0
:ltime]. Thus,

28

the valuations of wPP
0

and wA2
0

are compatible, for all t 2 [0; wPP
0
:ltime], and the trajectory

w0 with domain [0; wPP
0
:ltime] can be de�ned as w0 = wPP

0
[wA2

0
. By the de�nition of w0,

it follows that �PP(w0) = wPP
0

and �A1(w0) = wA2
0
. Moreover, these two conditions imply

that w0 is a hybrid execution of PP� A2.

For the inductive step, assuming that the �nite execution �k satis�es the Properties 1, 2,

and 3, for i = k, we must show that there exists a �nite execution �k+1 that satis�es the

Properties 1, 2, and 3, for i = k + 1. Let ak+1 = aPPk+1, if a
PP
k+1 6= e, and ak+1 = aA2

k+1
, oth-

erwise. Since h-trace(�0PP) = h-trace(�PP(�PP�A1
)), h-trace(�0A2) = h-trace(�A1(�PP�A1

)),

and wPP
i0 :ltime = wA2

i0
:ltime, for all i0 2 N, it follows that (wPP

0
aPP
1
wPP
1
� � �aPPk wPP

k aPPk+1

}(wPP
k+1:fstate)):ltime = (wA2

0
aA2
1
wA2
1
� � �aA2

k
wA2
k
aA2
k+1

}(wA2
k+1

:fstate)):ltime and wPP
k+1(t)(z)=

wA2
k+1

(t)(z), for z 2 EPP \ EA2 and t 2 [0; wPP
k+1:ltime]. Thus, the valuations of wPP

k+1

and wA2
k+1 are compatible, for all t 2 [0; wPP

k+1:ltime], and the trajectory wk+1 with domain

[0; wPP
k+1:ltime] can be de�ned as wk+1 = wPP

k+1 [wA2
k+1

. By the de�nition of ak+1 and wk+1

it follows that �PP(}(wk:lstate)ak+1wk+1) = }(wPP
k :lstate)aPPk+1w

PP
k+1 and �A2(}(wk:lstate)

ak+1wk+1) = }(wA2
k :lstate)aA2k+1w

A2
k+1. Thus, from the induction hypothesis it follows that

the �nite hybrid execution �k+1 = w0a1w1a2w2 � � �ak(wk
_}(wk:lstate))ak+1wk+1 = w0a1w1

a2w2 � � �ak+1wk+1 satis�es the conditions �PP(�k+1) = wPP
0
aPP
1
wPP
1
� � �aPPk+1w

PP
k+1 and

�A2(�k+1) = wA2
0
aA2
1
wA2
1
� � �aA2k+1w

A2
k+1. Moreover, these two conditions imply that the hy-

brid execution �k+1 is a hybrid execution of PP� A2, as needed.

From the above induction, it follows that there exists a hybrid execution � of PP � A2

such that �PP(�) = �0PP and �A2(�) = �0A2 . However, recall that the execution �0PP

of PP is derived from the execution �PP(�PP�A1
) by adding environment actions which

correspond to inert � 's and do not appear in the hybrid trace of �0PP. Therefore, the

execution �0PP of PP starts in a state in S and is restricted to states is R and, moreover,

�0PP:lstate = �PP(�PP�A1
:lstate). Finally, since A2 guarantees G in PP from S given R it

follows that �0PP:lstate 2 G. Moreover, since �0PP:lstate = �PP(�PP�A1
:lstate), it is the case

that �PP(�PP�A1
:lstate) 2 G, as needed.

We end this section with several compositional theorems for protectors. The �rst two the-

orems consider the composition of two or more independent protectors. The third theorem

considers the composition of two protectors, one of which depends on the other; that is,

a one-way protector dependency. The fourth and �fth theorems consider the composition

of two or more protectors that depend on each other; that is, two-way and multiple-way

protector dependencies.

Theorem 3.1.3 Suppose that A1 and A2 are protector automata for PP, with respective

port sets K1 and K2, where K1 \ K2 = ;. Suppose that A1 guarantees G1 from S1 given

R1 and A2 guarantees G2 from S2 given R2. If the protectors A1 and A2 are compatible,

then their composition A1 � A2 is a protector that guarantees G1 \ G2 from S1 \ S2 given

29

R1 \ R2.

Proof: Let � be any �nite execution of the HIOA PP � A1 � A2 that starts in a state

in S1 \ S2 and whose states are restricted to the set R1 \ R2. Moreover, let �A1 be the

projection of � to the HIOA PP�A1, i.e., �A1 = �PP�A1(�). Since the execution � starts

in a state in S1 \ S2 and is restricted to the states in R1 \ R2, the same applies to the

projected execution �A1 . However, since A1 guarantees G1 from S1 given R1, S1\S2 � S1,

and R1 \R2 � R1, it follows that all reachable states of PP in �A1 are in G1. Since �A1 is

the projection of � to the automaton PP�A1, it follows that all reachable states of PP in

� are in G1 also.

Taking a similar projection of the execution � to the automaton PP�A2, the desired result

follows.

Theorem 3.1.4 Suppose that A1; A2; : : : ; Ak are protector automata for PP, with respec-

tive port sets K1; K2; : : : ; Kk, where Ki \Ki0 = ;, for all i; i0 2 f1; : : : ; kg; i 6= i0. Suppose

that each of the protectors Ai, for all i 2 f1; : : : ; kg, guarantees Gi from Si given Ri. If

the protectors A1; A2; : : : ; Ak are compatible, then their composition
Q

i 2 f1;::: ;kg Ai is a

protector that guarantees
T

i 2 f1;::: ;kg Gi from
T

i 2 f1;::: ;kg Si given
T

i 2 f1;::: ;kg Ri.

Proof: Let � be any �nite execution of the HIOA PP �
Q

i2 f1;::: ;kg Ai that starts in a

state in
T

i 2 f1;::: ;kg Si and whose states are restricted to the set
T

i 2 f1;::: ;kg Ri. Moreover,

let �Ai0
be the projection of � to the HIOA PP � Ai0 , for some i0 2 f1; : : : ; kg, i.e.,

�Ai0
= �PP�Ai0 (�). Since the execution � starts in a state in

T
i 2 f1;::: ;kg Si and is restricted

to the states in
T

i 2 f1;::: ;kg Ri, the same applies to the projected execution �Ai0
. However,

since Ai0 guarantees Gi0 from Si0 given Ri0 ,
T

i2 f1;::: ;kg Si � Si0 , and
T

i2 f1;::: ;kg Ri � Ri0,

it follows that all reachable states of PP in �Ai0
are in Gi0 . Since �Ai0

is the projection of

� to the automaton PP�Ai0 , it follows that all reachable states of PP in � are in Gi0 also.

Taking similar projections of the execution � to each of the automata PP � Ai00 , for all

i00 2 f1; : : : ; kg, the desired result follows.

Theorem 3.1.5 Suppose that A1 and A2 are protector automata for PP, with respective

port sets K1 and K2, where K1\K2 = ;. Suppose that A1 guarantees G1 from S1 given R1

and A2 guarantees G2 from S2 given R2 \G1. If the protectors A1 and A2 are compatible,

then their composition A1 � A2 is a protector that guarantees G1 \ G2 from S1 \ S2 given

R1 \ R2.

Proof: Let � be any �nite execution of the HIOA PP � A1 � A2 that starts in a state

in S1 \ S2 and whose states are restricted to the set R1 \ R2. Moreover, let �A1 be the

30

projection of � to the HIOA PP�A1, i.e., �A1 = �PP�A1(�). Since the execution � starts

in a state in S1 \ S2 and is restricted to the states in R1 \ R2, the same applies to the

projected execution �A1 . However, since A1 guarantees G1 from S1 given R1, S1\S2 � S1,

and R1 \R2 � R1, it follows that all reachable states of PP in �A1 are in G1. Since �A1 is

the projection of � to the automaton PP�A1, it follows that all reachable states of PP in

� are in G1 also.

Now, let �A2 be the projection of the execution � to the automaton PP � A2. Since the

execution � starts in a state in S1 \ S2 and is restricted to the states in R1 \ R2, the

same applies to the projected execution �A2 . From above however, all reachable states in

� are in G1 and, therefore, it follows that the execution �A2 is restricted to the states in

R1 \R2 \ G1. However, since A2 guarantees G2 from S2 given R2 \G1, S1 \ S2 � S2, and

R1\R2\G1 � R2\G1, it follows that all reachable states of PP in �A2 are in G2. Finally,

since �A2 is the projection of � to the automaton PP � A2, it follows that all reachable

states of PP in � are in G2 also.

The fourth and �fth composition theorems require a preliminary lemma.

Lemma 3.1.6 Suppose that A is a protector automaton for PP, with port set K. Suppose

that A guarantees G from S given R \G0.

Let � be any �nite execution of PP � A starting in S and all of whose states are in R.

Letting (i; t; s) be any state occurrence in �, if s 62 G then (i; t; s) 2 past(G0; �).

Proof: Suppose for the sake of contradiction that s 62 G and (i; t; s) 62 past(G0; �). Let �1

be the pre�x of � ending with (i; t; s). Then, all states of �1 are in G0. Since A guarantees

G from S given R \ G0, it follows that all states of �1 are in G. But this contradicts the

assumption that s 62 G.

Now we can prove the fourth composition theorem | the one involving a two-way protector

dependency.

Theorem 3.1.7 Suppose that A1 and A2 are protector automata for PP, with respective

port sets K1 and K2, where K1\K2 = ;. Suppose that the protector A1 guarantees G1 from

S1 given R1 \G2 and the protector A2 guarantees G2 from S2 given R2 \G1.

Assume that � is any �nite execution of the system PP�A1 �A2, starting from a state in

S1 \ S2 and all of whose states are in R1 \ R2.

Then, one of the following holds:

1. Every state in � is in G1 \ G2.

2. The �nite execution � can be written as �1
_ �2, where

31

(a) all state occurrences in �1 except possibly the last are in G1 \ G2,

(b) the last state occurrence in �1 is in G1 if and only if it is in G2, and

(c) all state occurrences in �2 except possibly the �rst are in past(G1; �)\past(G2; �).

Proof: Fix � as in the hypothesis. If every state in � is in G1 \ G2 then we are done, so

assume that some state in � is in G1 [G2. Let B1 and B2 denote G1 and G2, respectively.

Let wi be the �rst trajectory in � containing an occurrence of a state in B1 [B2, and

suppose that wi is a TI -trajectory. Let T
0
I be the subset of TI consisting of all t such that

(i; t; wi(t)) 2 past(B1 [B2; �). Then, T
0
I is a non-empty subinterval of TI that is \upward-

closed", i.e., if t 2 T 0
I , t

0 2 TI , and t < t0 then t0 2 T 0
I . Since T

0
I is an interval of reals, it has

a left endpoint t, which might or might not itself be in T 0
I . Let s = wi(t).

Then, we claim that splitting � exactly at (i; t; s) yields the needed decomposition into �1

and �2. There are three conditions to check:

1. All state occurrences in �1 except possibly the last are in G1 \G2.

This is true by the de�nitions of past and T 0
I .

2. s 2 G1 if and only if s 2 G2.

Suppose that s 2 B1. Then, Lemma 3.1.6 implies that (i; t; s) 2 past(B2; �). How-

ever, the de�nition of T 0
I implies that no state occurrence preceding (i; t; s) is in B2.

Therefore, it follows that s 2 B2.

Similarly, if s 2 B2 then s 2 B1.

3. All state occurrences in �2 except possibly the �rst are in past(B1; �)\ past(B2; �).

Consider any state occurrence (i0; t0; s0) in �2 other than the �rst. By de�nition of

�2 and past, it must be that (i0; t0; s0) 2 past(B1 [B2; �). Suppose, without loss of

generality, that (i0; t0; s0) 2 past(B1; �). This means that either (i
0; t0; s0) 2 B1, or there

is a state occurrence (i00; t00; s00) preceding (i0; t0; s0) in � such that (i00; t00; s00) 2 B1.

In the former case, Lemma 3.1.6 implies that (i0; t0; s0) 2 past(B2; �). In the latter

case, Lemma 3.1.6 implies that (i00; t00; s00) 2 past(B2; �). This in turn implies that

(i0; t0; s0) 2 past(B2; �). This su�ces.

In the following theorem, we extend the composition theorem of the two-way protector

dependency case to the multiple-way protector dependency case; that is, the case in which

the operation of each of the protectors within a prespeci�ed set of protectors relies on the

operation of all the other protectors in the set.

32

Theorem 3.1.8 Suppose that A1; A2; : : : ; Ak are protector automata for PP, with respec-

tive port sets K1; K2; : : : ; Kk, where Ki \ Ki0 = ;, for all i; i0 2 f1; : : : ; kg; i 6= i0. Sup-

pose that each of the protectors Ai, for all i 2 f1; : : : ; kg, guarantees Gi from Si given

Ri

T�T
i0 2 f1;::: ;kg;i0 6=i Gi0

�
.

Assume that � is any �nite execution of the system PP �
Q

i 2 f1;::: ;kg Ai, starting from a

state in
T

i 2 f1;::: ;kg Si and all of whose states are in
T

i 2 f1;::: ;kg Ri.

Then, one of the following holds:

1. Every state in � is in
T

i2 f1;::: ;kg Gi.

2. The �nite execution � can be written as �1
_ �2, where

(a) all state occurrences in �1 except possibly the last are in
T

i2 f1;::: ;kg Gi,

(b) if the last state occurrence in �1 is in Gi, for some i 2 f1; : : : ; kg, then there

exists i0 2 f1; : : : ; kg; i0 6= i, such that the last state occurrence in �1 is in Gi0,

and

(c) all state occurrences in �2 except possibly the �rst are in
T

i 2 I past(Gi; �), for

some I � f1; : : : ; kg, where jI j � 2.

Proof: Fix � as in the hypothesis. If every state in � is in
T

i 2 f1;::: ;kg Gi then we are done,

so assume that some state in � is in
S

i2 f1;::: ;kg Gi. For all i 2 f1; : : : ; kg, let Bi denote

Gi.

Let wj be the �rst trajectory in � containing an occurrence of a state in
S

i 2 f1;::: ;kg Bi,

and suppose that wj is a TI-trajectory. Let T
0
I be the subset of TI consisting of all t such

that (j; t; wj(t)) 2 past(
S

i2 f1;::: ;kg Bi; �). Then, T
0
I is a non-empty subinterval of TI that

is \upward-closed", i.e., if t 2 T 0
I , t

0 2 TI , and t < t0 then t0 2 T 0
I . Since T

0
I is an interval of

reals, it has a left endpoint t, which might or might not itself be in T 0
I . Let s = wj(t).

Then, we claim that splitting � exactly at (j; t; s) yields the needed decomposition into �1

and �2. There are three conditions to check:

1. All state occurrences in �1 except possibly the last are in
T

i 2 f1;::: ;kg Gi.

This is true by the de�nitions of past and T 0
I .

2. If the last state occurrence in �1 is in Gi, for some i 2 f1; : : : ; kg, then there exists

i0 2 f1; : : : ; kg; i0 6= i, such that the last occurrence in �1 is in Gi0 .

Suppose that s 2 Bi, for some i 2 f1; : : : ; kg. Then, Lemma 3.1.6 implies that

(j; t; s) 2 past(
T

i0 2 f1;::: ;kg;i0 6=i Gi0 ; �), i.e., (j; t; s) 2 past(
S

i0 2 f1;::: ;kg;i0 6=i Bi0 ; �).

The de�nition of T 0
I implies that no state occurrence preceding (j; t; s) is in the setS

i0 2 f1;::: ;kg;i0 6=i Bi0 . Therefore, it follows that s 2
S

i0 2 f1;::: ;kg;i0 6=i Bi0 . This su�ces.

33

3. All state occurrences in �2 except possibly the �rst are in
T

i 2 I past(Gi; �), for some

I � f1; : : : ; kg, where jI j � 2.

Consider any state occurrence (j0; t0; s0) in �2 other than the �rst. By de�nition of �2

and past, it must be that (j0; t0; s0) 2 past(
S

i 2 f1;::: ;kg Bi; �). Suppose, without loss

of generality, that (j0; t0; s0) 2 past(Bi; �), for some i 2 f1; : : : ; kg. This means that

either (j0; t0; s0) 2 Bi, or there is a state occurrence (j00; t00; s00) preceding (j0; t0; s0) in

� such that (j00; t00; s00) 2 Bi.

In the former case, Lemma 3.1.6 implies that the state occurrence (j0; t0; s0) satis�es the

condition (j0; t0; s0) 2 past(
T

i0 2 f1;::: ;kg;i0 6=i Gi0 ; �), which is equivalent to (j0; t0; s0) 2

past(
S

i0 2 f1;::: ;kg;i0 6=i Bi0 ; �). In the latter case, Lemma 3.1.6 implies that the state

occurrence (j00; t00; s00) satis�es the condition (j00; t00; s00) 2 past(
T

i0 2 f1;::: ;kg;i0 6=i Gi0 ; �),

which is equivalent to (j00; t00; s00) 2 past(
S

i0 2 f1;::: ;kg;i0 6=i Bi0 ; �). This in turn implies

that (j0; t0; s0) 2 past(
S

i0 2 f1;::: ;kg;i0 6=i Bi0 ; �). This su�ces.

3.2 An Abstract Protector

In this section, we de�ne an abstract protector that is parameterized in terms of:

� PP, a particular physical plant automaton,

� R, G, and S, sets of states of PP,

� j, a particular port of PP, and

� d, a positive real-valued sampling period.

The PP automaton represents the physical plant being modeled. The set R is the set of

states to which we restrict the states of the PP automaton while considering a particular

protector. This set is usually comprised of states satisfying a particular property of the

physical plant that is required by the protector under consideration. The set G is the set of

\good" states; that is, the set of states to which the protector is designed to constrain the

PP automaton. The set S is a set of states from which the protector under consideration

is said to guarantee G given R; that is, given that the states of the PP automaton are

restricted to the set R, the protector guarantees that every �nite execution starting from an

initial state in S ends in a state in G. The protector communicates with the PP automaton

through the port j and has a positive real-valued sampling period d.

The protector is composed of a sensor automaton and a discrete controller automaton as

shown in Figure 3.1. Both the sensor and the discrete controller are described abstractly

in terms of PP, etc. At intervals of d time units, the sensor automaton samples the output

34

Figure 3.1 Compositional structure of a physical plant and an abstract protector.

Physical Plant Automaton

Satisfying Property R

?

State

Sampling

Sensor

Automaton
-

6

Protective

Action

Discrete

Controller

Automaton

Abstract Protector Automaton

variables of the PP automaton. The discrete controller automaton is rather nondetermin-

istic. Based on the output state information of the PP automaton sampled by the sensor,

the discrete controller issues protective actions so as to guarantee that the PP automaton

stays within the set G starting from S given R.

A particular instantiation of the abstract parameterized protector Abs(PP; S; R;G; j; d) can

be de�ned by simply specifying the parameters PP, S, R, G, j, and d. Often, after explicitly

de�ning the parameters PP, S, R, G, j, and d, we refer to the particular abstract protector

using only its port index, i.e., Absj . The same applies for the parameterized sensor and

discrete controller automata Sensor(PP; S; R;G; j; d) and DC(PP; S; R;G; j; d), respectively.

In several of the following chapters, we give explicit de�nitions of protectors for speci�c

choices of PP, etc. The abstract protector of this section is used to aid in proving correctness

of the later protectors.

3.2.1 Terminology and Assumptions

In this section, we de�ne several functions and sets, which are useful in the de�nition and

in the proof of correctness of the abstract protector, and present the assumptions made

about the physical plant and the abstract protector automata. It is important to note

that the assumptions presented in this section must be satis�ed by any physical plant and

abstract protector automata de�ned and analyzed using the framework developed in this

thesis. Throughout this section, we also state several lemmas which are used in subsequent

sections and chapters.

We begin by stating two simple assumptions about the physical plant automaton. First,

35

we assume that the PP automaton has no input variables on port j, for all j 2 J ; that

is, the protectors control the state of the physical plant only through input actions. A

consequence of this assumption is that the environment action of the PP automaton is

stuttering. Second, we assume that the PP automaton has no output actions on port j, for

all j 2 J . The physical plant is modeled as a passive system in the sense that the protectors

observe the state of the plant only through output variables. These two assumptions are

formally stated by the following two axioms.

Axiom 3.2.1 The PP automaton has no input variables on any of its ports, i.e., UPPj = ;,

for all j 2 J.

Axiom 3.2.2 The PP automaton has no output actions on any of its ports, i.e., �out
PPj

= ;,

for all j 2 J.

Next, we de�ne a function, futurePP;R;j , that yields the set of states of PP that are R-

reachable from the given subset of R within an amount of time in the given subset of R�0,

under the constraint that no input actions arrive on port j of the PP automaton.

futurePP;R;j : P(R)� P(R�0)! P(R); de�ned by:

p 2 futurePP;R;j(P; T), where P � R and T � R�0, if and only if p is R-reachable

from some p0 2 P via a �nite execution fragment � of PP with no input actions on

port j and with �:ltime 2 T .

When either argument of the function futurePP;R;j is a singleton set, we omit the set

brackets, e.g., for any p 2 R and t 2 R�0, we write futurePP;R;j(p; t) as shorthand for

futurePP;R;j(fpg; ftg). Moreover, it is important to note that the function futurePP;R;j de-

pends on the automaton PP, the set R, and the port j. Henceforth however, when the

automaton PP, the set R, and the port j are clear from context, they are omitted; that is,

we use the notation future instead of futurePP;R;j.

Lemma 3.2.1 For all P; P 0 � R, T; T 0 � R�0, and t; t0 2 R�0, the following are true:

1. If P � P 0 and T � T 0 then futurePP;R;j(P; T) � futurePP;R;j(P
0; T 0).

2. futurePP;R;j(P; t+ t0) = futurePP;R;j(futurePP;R;j(P; t); t
0).

3. P � futurePP;R;j(P; 0).

4. futurePP;R;j(futurePP;R;j(P; T); T
0) = futurePP;R;j(P; T

00), where T 00 = f� + � 0 j � 2

T and � 0 2 T 0g.

Proof: Follow directly from the de�nition of the function future.

36

Lemma 3.2.2 Suppose that � is any discrete action of PP other than an input action on

port j and that p; p0 2 R such that p ��!
PP

p0. Then, for any T � R�0, futurePP;R;j(p
0; T) �

futurePP;R;j(p; T).

Proof: Lemma 3.2.1, part 1, and the fact that p0 2 future(p; 0) imply that future(p0; T) �

future(future(p; 0); T). Moreover, Lemma 3.2.1, part 4, implies that future(future(p; 0); T) =

future(p; T). Therefore, it follows that future(p0; T) � future(p; T), as needed.

We de�ne a function, no-opPP;R;j, which yields, for a given state in R, the set of input

actions on port j of the PP automaton that do not a�ect the state of the PP automaton,

provided they are executed prior to either time-passage, or other input actions on port j.

no-opPP;R;j : R! P(�in
PPj

); de�ned by:

� 2 no-opPP;R;j(p) if and only if � is an input action on port j of PP such that

for all p0; p00 2 R satisfying p0 2 futurePP;R;j(p; 0) and p0 ��!
PP

p00, it is the case that

p00 = p0.

Henceforth, for any state p in R, the input actions in the set no-opPP;R;j(p) are referred to

as no-op input actions on port j of PP for the state p.

It is important to note that the above de�nition of the function no-opPP;R;j conforms to

Axiom D3 of the HIOA model of Section 2.2 since, by Axiom 3.2.1, the PP automaton

has no input variables on any of its ports. Moreover, the function no-opPP;R;j depends on

the automaton PP, the set R, and the port j. Henceforth however, when the automaton

PP, the set R, and the port j are clear from context, they are omitted; that is, we use the

notation no-op instead of no-opPP;R;j .

We proceed by stating another assumption about the physical plant automaton PP. We

assume that there exist no-op input actions on port j for every state of the PP automaton

in the set R. This assumption is formally stated by the following axiom.

Axiom 3.2.3 For every p 2 R, it is the case that no-opPP;R;j(p) 6= ;.

Axiom 3.2.3 states that no-op input actions on port j exist for every state p of PP in R. It is

important to realize, however, that Axiom 3.2.3 does not claim that for p 2 R it is possible

to determine from the valuation y = pdYPP of the output variables of the PP automaton

which input actions are no-op input actions on port j for the state p. In fact, it is plausible

that the information provided by the output variables YPP of the PP automaton is not

su�cient to determine which of the input actions �in
PPj

are no-op input actions on port j

for each state p of the PP automaton in the set R.

Since the PP automaton is assumed to have no input actions on any of its ports (Ax-

iom 3.2.1), input actions of the physical plant are often \idempotent", in the sense that in

37

any execution of the PP automaton if any particular input action � on port j is performed

consecutively multiple times with no other intervening input actions on port j, then all such

input actions � except the �rst, do not change the state of the PP automaton. For any

physical plant automaton PP in which all input actions are idempotent and any state p of

the PP automaton in the set R, the most recently performed input action on port j is a

no-op input action on port j for the state p.

We de�ne a set, very-safePP;R;G;j , which is comprised of the states of PP that satisfy R and

from which all R-reachable states of PP with no input actions on port j are in G. The set

very-safePP;R;G;j may be interpreted as the set consisting of the states from which the PP

automaton is bound to remain within the set G provided that it remains within the set R

and the protector on port j does not retract or issue additional protective actions.

very-safePP;R;G;j � R; de�ned by:

p 2 very-safePP;R;G;j if and only if futurePP;R;j(p;R
�0) � G.

It is important to note that the set very-safePP;R;G;j depends on the automaton PP, the

sets R and G, and the port j. Henceforth however, when the automaton PP, the sets R

and G, and the port j are clear from context, they are omitted; that is, we use the notation

very-safe instead of very-safePP;R;G;j .

Lemma 3.2.3

1. very-safePP;R;G;j � G.

2. If p 2 very-safePP;R;G;j then futurePP;R;j(p;R
�0) � very-safePP;R;G;j.

Proof: Follow directly from the de�nition of very-safe.

We de�ne a set, safePP;R;G;j , which is comprised of the states of PP that satisfy R and from

which the protector on port j has a \winning protective strategy". Namely, there exists an

input action on port j of the PP automaton whose immediate execution | its execution

prior to any time-passage with the possibility that its execution follows an arbitrary number

of discrete actions other than input actions on port j | guarantees that all subsequent R-

reachable states of PP with no input actions on port j are in G; that is, the state following

the execution of the particular input action of PP on port j is in the set very-safePP;R;G;j .

safePP;R;G;j � R; de�ned by:

p 2 safePP;R;G;j if and only if both of the following hold:

1. futurePP;R;j(p; 0) � G.

2. There exists an input action � on port j, such that for every p0; p00 2 R satisfying

p0 2 futurePP;R;j(p; 0) and p
0 ��!

PP
p00, it is the case that p00 2 very-safePP;R;G;j .

38

It is important to note that the set safePP;R;G;j depends on the automaton PP, the sets R

and G, and the port j. Henceforth however, when the automaton PP, the sets R and G,

and the port j are clear from context, they are omitted; that is, we use the notation safe

instead of safePP;R;G;j .

We overload the notation safePP;R;G;j by de�ning a function, safePP;R;G;j , which yields the

states of PP that satisfy R and for which the immediate execution of the given input action

on port j | its execution prior to any time-passage with the possibility that its execution

follows an arbitrary number of discrete actions other than input actions on port j | guar-

antees that all subsequent R-reachable states of PP with no input actions on port j are in

G; that is, the state following the execution of the given input action on port j is in the set

very-safePP;R;G;j .

safePP;R;G;j : �
in
PPj

! P(R); de�ned by:

p 2 safePP;R;G;j(�) if and only if both of the following hold:

1. futurePP;R;j(p; 0) � G.

2. For every p0; p00 2 R such that p0 2 futurePP;R;j(p; 0) and p0 ��!
PP

p00, it is the

case that p00 2 very-safePP;R;G;j .

It is important to note that the function safePP;R;G;j depends on the automaton PP, the

sets R and G, and the port j. Henceforth however, when the automaton PP, the sets R

and G, and the port j are clear from context, they are omitted; that is, we use the notation

safe(�) instead of safePP;R;G;j(�), for any input action � of PP on port j.

Lemma 3.2.4

1. safePP;R;G;j � G.

2. For any p 2 R, p 2 safePP;R;G;j if and only if futurePP;R;j(p; 0)� safePP;R;G;j.

3. very-safePP;R;G;j � safePP;R;G;j.

Proof:

1. Let p be any state in safe. From the de�nition of safe it follows that future(p; 0) � G.

Therefore, Lemma 3.2.1, part 3, implies that p 2 G. It follows that safe � G.

2. In the forward direction, let p 2 safe and p0 2 future(p; 0). We must show that

p0 2 safe; that is, we must show that (i) future(p0; 0) � G, and (ii) there exists an

input action � on port j such that for all p00; p000 2 R satisfying p00 2 future(p0; 0)

and p00 ��!
PP

p000, it is the case that p000 2 very-safe. Lemma 3.2.2 implies that

future(p0; 0) � future(p; 0) and, therefore, the conditions to be shown follow from

the fact that p 2 safe.

39

For the converse, let p 2 R and future(p; 0) � safe. We must show that p 2 safe.

From Lemma 3.2.1, part 3, it is the case that p 2 future(p; 0). Therefore, it follows

that p 2 safe.

3. Letting p 2 very-safe, we must show that p 2 safe; that is, we must show that

(i) future(p; 0) � G, and (ii) there exists an input action � on port j such that for all

p0; p00 2 R satisfying p0 2 future(p; 0) and p0 ��!
PP

p00, it is the case that p00 2 very-safe.

For the �rst condition, Lemma 3.2.1, part 1, implies that future(p; 0)� future(p;R�0).

However, since p 2 very-safe it is the case that future(p;R�0) � G. Therefore, it

follows that future(p; 0) � G, as needed.

For the second condition, since no-op(p) 6= ; by Axiom 3.2.3, let � 2 no-op(p).

Moreover, let p0; p00 2 R such that p0 2 future(p; 0) and p0 ��!
PP

p00. Since p 2 very-safe,

Lemma 3.2.3, part 2, implies that p0 2 very-safe. Moreover, since � is de�ned to be a

no-op input action on port j for the state p, it follows that p00 = p0. Therefore, it is

the case that p00 2 very-safe, as needed.

We proceed by stating two more assumptions about the PP automaton. We assume that

membership of a state of the PP automaton in the set safe is determinable from the output

variables of the PP automaton, i.e., the set safe is YPP-determinable (as de�ned in Sec-

tion 2.1). Moreover, we assume that for any state in the set safe, an appropriate action to

guarantee safety can be determined from the output variables of the PP automaton, i.e., the

variables in YPP. These two assumptions are formally stated by the following two axioms.

Axiom 3.2.4 safePP;R;G;j is YPP-determinable.

For any valuation y of the output variables YPP of the PP automaton, we use the notation

y 2 safe to denote the existence of a state p 2 safe such that pdYPP = y. In fact, by

Axiom 3.2.4, for any valuation y of the output variables YPP of the PP automaton, the

existence of a state p 2 safe such that pdYPP = y implies that all states p0 2 R such that

p0dYPP = y are in the set safe.

Axiom 3.2.5 There exists a function, decision, from valuations of YPP to �in
PPj

such that

for any y 2 YPP and p 2 R satisfying pdYPP = y, it is the case that if y 2 safePP;R;G;j then

p 2 safePP;R;G;j(decision(y)).

We de�ne a function, delay-safePP;R;G;j , which yields the set of states of PP that satisfy R

and for which all states R-reachable within the given amount of time and with no input

actions on port j are in G, and all states R-reachable in exactly the given amount of time

and with no input actions on port j are in safePP;R;G;j .

40

delay-safePP;R;G;j : R
�0! P(R); de�ned by:

p 2 delay-safePP;R;G;j(t) if and only if both of the following hold:

1. futurePP;R;j(p; [0; t])� G.

2. futurePP;R;j(p; t) � safePP;R;G;j .

It is important to note that the function delay-safePP;R;G;j depends on the automaton PP,

the sets R and G, and the port j. Henceforth however, when the automaton PP, the sets R

and G, and the port j are clear from context, they are omitted; that is, we use the notation

delay-safe(t) instead of delay-safePP;R;G;j(t), for any t 2 R
�0.

Lemma 3.2.5 For any t; t0 2 R�0, such that t � t0, the following hold:

1. very-safePP;R;G;j � delay-safePP;R;G;j(t).

2. safePP;R;G;j = delay-safePP;R;G;j(0).

3. delay-safePP;R;G;j(t
0) � delay-safePP;R;G;j(t).

Proof: Follow directly from the de�nitions of very-safe, safe, and delay-safe(t), for any

t 2 R�0, and the Lemmas 3.2.3 and 3.2.4.

We conclude by stating three assumptions made about the abstract protector automaton.

In particular, we assume that the state information provided by the output variables of the

PP automaton is su�cient to determine membership of any state of the PP automaton in

the sets R and G, i.e., the sets R and G are YPP-determinable (as de�ned in Section 2.1).

Moreover, we assume that the set of start states S is a subset of the set safe. These

assumptions are formally stated by the following three axioms.

Axiom 3.2.6 R is YPP-determinable.

Axiom 3.2.7 G is YPP-determinable.

Axiom 3.2.8 S � safePP;R;G;j.

As noted above, all assumptions described by Axioms 3.2.1{3.2.8 must be satis�ed by the

physical plant and abstract protector automata de�ned and analyzed using the framework

developed in this thesis.

3.2.2 Sensor Automata

The sensor automaton Sensorj , de�ned in Figure 3.2, behaves as follows: at time 0 and every

d time units thereafter, it outputs the valuation y of the output variables YPP of the PP

41

Figure 3.2 Sensorj automaton de�nition.

Actions: Input: e, the environment action

Output: snapshot(y)j, for each valuation y of YPP, i.e., for all y 2 YPP

Variables: Input: u 2 type(u), for all u 2 YPP, initially u 2 type(u), for each u 2 YPP
Internal: nowj 2 R

�0, initially 0

next-snapj 2 R
�0, initially 0

Discrete Transitions:

e

E�: YPP :2 YPP

snapshot(y)j

Pre: next-snapj = nowj

y is current valuation of YPP

E�: YPP :2 YPP

next-snapj := nowj + d

Trajectories:

for all u 2 YPP
u assumes arbitrary values in type(u) throughout w

next-snapj is constant throughout w

for all t 2 TI
w(t):nowj = w(0):nowj + t

w(t):nowj � w(t):next-snapj

automaton using a snapshot(y)j output action. The Sensorj automaton keeps track of the

appropriate times for scheduling each snapshot(y)j action, for y 2 YPP , using the internal

variables nowj and next-snapj . The variable nowj stores the time that has elapsed from the

beginning of the particular execution of the Sensorj automaton. The variable next-snapj

stores the next point in time in which the output variables YPP of the PP automaton must

be sampled.

The discrete actions of the Sensorj automaton are the input action e and the output actions

snapshot(y)j, for all y 2 YPP . The environment action e allows for arbitrary changes to the

input variables YPP as a consequence of discrete transitions outside the Sensorj automaton

but does not a�ect the local variables of the Sensorj automaton. Each snapshot(y)j action,

for y 2 YPP , outputs the valuation y of the output variables YPP of the PP automaton. In

order to conform to Axiom D3 of the HIOA model of Section 2.2, each input variable u of

the Sensorj automaton, for u 2 YPP, is assigned an arbitrary value in the set type(u). It

can easily be seen that the Sensorj automaton satis�es the Axioms D1{D3 of the HIOA

model of Section 2.2.

42

The trajectory speci�cation for the Sensorj automaton gives restrictions on a trajectory

w with domain TI . Since the Sensorj automaton has no control over its input variables,

the input variables of the Sensorj automaton are allowed to change arbitrarily throughout

a trajectory w. It is important to note that the Sensorj automaton does not allow time-

passage unless the condition nowj � next-snapj is satis�ed. As a result, in order for time

to proceed when nowj = next-snapj , a snapshot(y)j output action, for some y 2 YPP ,

is eventually scheduled. It can easily be seen that the Sensorj automaton satis�es the

Axioms T1{T3 of the HIOA model of Section 2.2.

Finally, since each input variable u of the Sensorj automaton, for u 2 YPP, can initially

assume an arbitrary value in the set type(u), the Sensorj automaton satis�es Axiom Init

of the HIOA model of Section 2.2. Since the Sensorj automaton satis�es the Axioms Init,

D1{D3, and T1{T3 of the HIOA model of Section 2.2, it follows that it is a HIOA.

3.2.3 Discrete Controller Automata

The discrete controller automaton DCj , de�ned in Figure 3.3, uses the valuation of the

output variables of the PP automaton, which is sampled by the Sensorj automaton, to

determine which protective action must be scheduled so as to guarantee that (i) the PP

automaton remains within the set G up to the next sampling point, and (ii) the state of

the PP automaton at the next sampling point is in the set safe.

The discrete actions of the DCj automaton are the input action e, the input actions

snapshot(y)j, for all y 2 YPP , and the output actions �, for all � 2 �in
PPj

. The envi-

ronment action e allows the scheduling of discrete transitions outside the DCj automaton.

Since the DCj automaton has no input variables, the environment action e is stuttering;

that is, the execution of the environment action e does not a�ect the state of the DCj au-

tomaton. Each snapshot(y)j action, for y 2 YPP , determines which output action � in the

set �in
PPj

should be scheduled and stores it in the internal variable sendj . In a subsequent

step, prior to any time-passage but with the possibility of intervening discrete actions, the

DCj automaton schedules the output action � that is stored in the internal variable sendj .

It is important to note that time-passage is not enabled while any of the actions � in �in
PPj

is

enabled. As a result, in order for time to proceed, the action � that is stored in the internal

variable sendj is eventually scheduled. It can easily be seen that the Sensorj automaton

satis�es the Axioms D1{D3 of the HIOA model of Section 2.2.

The trajectory speci�cation of the DCj automaton is trivial. It simply states that the

internal variable sendj , which comprises the state of the DCj automaton, remains unchanged

and equal to null throughout any trajectory of the DCj automaton. It can easily be seen

that the DCj automaton satis�es the Axioms T1{T3 of the HIOA model of Section 2.2.

Finally, since the DCj automaton has no input variables, Axiom Init of the HIOA model

43

Figure 3.3 DCj automaton de�nition.

Actions: Input: e, the environment action (stuttering)

snapshot(y)j, for each valuation y of YPP, i.e., for all y 2 YPP
Output: �, for all � 2 �in

PPj
, i.e., all the input actions on port j of PP

Variables: Internal: sendj 2 �in
PPj

[fnullg, initially null

Discrete Transitions:

e

E�: None

snapshot(y)j

E�: if y 2 safePP;R;G;j then

sendj :2 f� 2 �in
PPj

j 8 p; p0; p00 2 R such that

pdYPP = y, p0 2 futurePP;R;j(p; 0), and p0
�
�!

PP
p00,

it is the case that p00 2 delay-safePP;R;G;j(d)g

else

sendj :2 �in
PPj

�

Pre: sendj = �

E�: sendj := null

Trajectories:

w:sendj � null

of Section 2.2 it trivially satis�ed. Since the DCj automaton satis�es the Axioms Init,

D1{D3, and T1{T3 of the HIOA model of Section 2.2, it follows that it is a HIOA.

The DCj automaton's decision as to which output action to enable and subsequently sched-

ule is made nondeterministically. Let y be any valuation of the output variables YPP of the

PP automaton, i.e., y 2 YPP .

On one hand, if y 2 safe, then an output action � in �in
PPj

is allowed only if for all p; p0; p00 2 R

such that pdYPP = y, p0 2 future(p; 0), and p0
�
�!

PP
p00, it is the case that p00 2 delay-safe(d).

Let � be the set of all output actions � in �in
PPj

allowed by the DCj automaton in this case.

In order for an implementation of a particular instantiation of the DCj automaton to exist,

it is imperative that the set of output actions � be non-empty and that at least one of

the actions in � can be determined from the valuation y of YPP. In fact, since y 2 safe,

44

an output action � in �in
PPj

that is allowed by the DCj automaton is guaranteed to exist,

i.e., � 6= ;. Axiom 3.2.4 implies that for all p 2 R such that pdYPP = y it is the case

that p 2 safe, i.e., for all p 2 R such that pdYPP = y, there exists an action � in �in
PPj

such that for all p0; p00 2 R satisfying p0 2 future(p; 0) and p0
��!

PP
p00, it is the case that

p00 2 very-safe. Therefore, from Lemma 3.2.5, part 1, it follows that p00 2 delay-safe(d), as

needed. Moreover, by Axiom 3.2.5, an output action � in �in
PPj

that is allowed by the DCj

automaton can be determined from the valuation y of YPP; that is, there exists a function,

decision, from valuations of YPP to �in
PPj

, such that for any y 2 YPP and p 2 R satisfying

pdYPP = y, it is the case that p 2 safe(decision(y)).

On the other hand, if y 62 safe, then any output action � of the DCj automaton is allowed by

default. However, as shown in the following section, this default case never occurs in states

that are R-reachable by a �nite execution of the composed system PP � Sensorj � DCj

starting in an initial state in the set S.

The nondeterminism in the description of the DCj automaton allows the freedom to choose

any response that satis�es the given conditions | however, in any discrete controller au-

tomaton implementation, a response that least restricts the future states of the physical

plant automaton PP would be preferred because it would represent a weaker protective

action.

Henceforth, let the \abstract protector" automaton Absj be the composition of the Sensorj

and DCj automata, i.e., Absj = Sensorj � DCj . Proposition 2.7.1, implies that the au-

tomaton Absj is a HIOA.

3.2.4 Correctness of the Abstract Protector

In this section, we prove that the abstract protector Absj guarantees G in the physical

plant PP from S given R.

Lemma 3.2.6 For any reachable state s of Abs(PP; S; R;G; j; d), if s:next-snapj = s:nowj,

then s:sendj = null.

Proof: Follows directly from the de�nition of the Sensorj and the DCj automata.

The following lemma considers the composition PP � Absj of the physical plant automa-

ton PP and the abstract protector automaton Absj . Let s be any state of the composed

system and let s:ppstate be the restriction of s onto the state space of the PP automaton,

i.e., s:ppstate = sdVPP.

Lemma 3.2.7 The following are true in any state s of PP � Abs(PP; S; R;G; j; d), that

is reachable from an initial state in safePP;R;G;j, via an execution that only involves states

in R.

45

1. If s:sendj = null, then s:ppstate 2 delay-safePP;R;G;j(s:next-snapj � s:nowj).

2. If s:sendj = �, for some � 2 �in
PPj

, then

(a) futurePP;R;j(s:ppstate; 0) � G, and

(b) For every p0; p00 2 R such that p0 2 futurePP;R;j(s:ppstate; 0) and p0
�
�!

PP
p00, it

is the case that p00 2 delay-safePP;R;G;j(d).

Proof: In an initial state of PP�Absj it is the case that s:sendj = null. Therefore, since the

�rst clause of the invariant applies, we must show that s:ppstate 2 delay-safe(s:next-snapj�

s:nowj). However, in an initial state PP�Absj it is the case that s:next-snapj = s:nowj = 0.

Therefore, we must show that s:ppstate 2 delay-safe(0), which by Lemma 3.2.5, part 2, is

equivalent to s:ppstate 2 safe. But this is true by our assumption about the start states of

the executions considered in this lemma.

We now show that the invariant is preserved by every discrete transition s ��! s0 of PP�Absj ,

for s; s0 2 states(PP� Absj) such that s:ppstate; s0:ppstate 2 R and � 2 �PP�Absj . We

consider cases:

1. � = snapshot(y)j.

From the e�ects of the snapshot(y)j action, it follows that s
0:sendj 2 �in

PPj
. Therefore,

we must show the second clause of the invariant for the state s0; that is, we must

show that (a) future(s0:ppstate; 0) � G, and (b) for every p0; p00 2 R such that p0 2

future(s0:ppstate; 0) and p0
s0:sendj
�����!

PP
p00, it is the case that p00 2 delay-safe(d).

Lemma 3.2.6 and the precondition of the snapshot(y)j action imply that s:sendj =

null. Therefore, the invariant for s implies that s:ppstate 2 delay-safe(s:next-snapj �

s:nowj). Since the precondition of the snapshot(y)j action implies that s:next-snapj =

s:nowj , it follows that s:ppstate 2 delay-safe(0). Therefore, Lemma 3.2.5, part 2, im-

plies that s:ppstate 2 safe.

For condition (a), since s:ppstate 2 safe, it is the case that future(s:ppstate; 0) � G.

Since the snapshot(y)j action a�ects only the sendj of the DCj automaton and the

PP automaton has no input variables on any of its ports, it is the case that s0:ppstate =

s:ppstate. Therefore, it follows that future(s0:ppstate; 0) � G, as needed.

For condition (b), since s:ppstate 2 safe, the \then clause" of the determination of

s0:sendj is used. Therefore, the discrete step s
��! s0 sets the variable s0:sendj to some

� in �in
PPj

with the property that for every p0; p00 2 R such that p0 2 future(s0:ppstate; 0)

and p0
�
�!

PP
p00, it is the case that p00 2 delay-safe(d), as needed.

2. � 2 �in
PPj

.

The precondition implies that s:sendj = � 6= null. Therefore, the invariant for the

state s implies that future(s:ppstate; 0) � G and that for every p0; p00 2 R such that

46

p0 2 future(s:ppstate; 0) and p0
��!

PP
p00, it is the case that p00 2 delay-safe(d). As a

result of the step, it is the case that s0:sendj = null and s0:next-snapj � s0:nowj = d.

Moreover, the invariant for the state s implies that s0:ppstate 2 delay-safe(d). Since

s0:next-snapj � s0:nowj = d and s0:ppstate 2 delay-safe(d), it follows that s0:ppstate 2

delay-safe(s0:next-snapj � s0:nowj), as needed.

3. � 2 �PP � �in
PPj

(� is a discrete action of PP other than an input action on port j).

For any discrete action � of the PP automaton other than an input action on port j, it

is the case that s:sendj = s0:sendj , s:nowj = s0:nowj , and s:next-snapj = s0:next-snapj .

If s:sendj = null, then the invariant for s implies that s:ppstate 2 delay-safe(t), where

t = s:next-snapj�s:nowj ; that is, future(s:ppstate; [0; t])� G and future(s:ppstate; t) �

safe. However, Lemma 3.2.2 implies that future(s0:ppstate; t) � future(s:ppstate; t),

for all t 2 R�0. Since s:next-snapj � s:nowj = s0:next-snapj � s0:nowj , it follows that

future(s0:ppstate; [0; t])� G and future(s0:ppstate; t) � safe, where t = s0:next-snapj �

s0:nowj . These two conditions imply that s0:ppstate 2 delay-safe(s0:next-snapj �

s0:nowj). This yields the invariant.

A similar argument holds if s:sendj = �, for some � 2 �in
PPj

. In this case, the invariant

for s implies that future(s:ppstate; 0) � G and that for every p0; p00 2 R such that p0 2

future(s:ppstate; 0) and p0
�
�!

PP
p00, it is the case that p00 2 delay-safe(d). However,

Lemma 3.2.2 implies that future(s0:ppstate; 0) � future(s:ppstate; 0). Therefore, it

follows that future(s0:ppstate; 0) � G and that for every p0; p00 2 R such that p0 2

future(s0:ppstate; 0) and p0
�
�!

PP
p00, it is the case that p00 2 delay-safe(d). This yields

the invariant.

4. � = e (� is the environment action).

Since the input variables of the Sensorj automaton are the output variables of the PP

automaton, the DCj automaton has no input variables, and the PP automaton has

no input variables on any of its ports, it follows that the composition PP�Absj has

no input variables. Therefore, the action � is the stuttering environment action, i.e.,

s0 = s, and the invariant for the state s implies the invariant for the state s0.

Finally, we show that the invariant is preserved by any non-trivial closed trajectory w in

WPP�Absj . Suppose that the states s and s0, for some s; s0 2 states(PP�Absj) such that

s:ppstate; s0:ppstate 2 R, are the �rst and last states of the trajectory w, respectively. Since

time-passage is enabled, it is the case that sendj = null throughout the trajectory w. There-

fore, the invariant for the state s implies that s:ppstate 2 delay-safe(s:next-snapj � s:nowj);

that is, future(s:ppstate; [0; s:next-snapj � s:nowj]) � G and future(s:ppstate; s:next-snapj �

s:nowj) � safe. We must show that s0:ppstate 2 delay-safe(s0:next-snapj � s0:nowj); that

is, future(s0:ppstate; [0; s0:next-snapj � s0:nowj]) � G and future(s0:ppstate; s0:next-snapj �

s0:nowj) � safe. It su�ces to show that future(s0:ppstate; [0; s0:next-snapj � s0:nowj]) �

47

future(s:ppstate; [0; s:next-snapj � s:nowj]) and future(s0:ppstate; s0:next-snapj � s0:nowj) �

future(s:ppstate; s:next-snapj � s:nowj).

From the fact that s0:ppstate 2 future(s:ppstate; w:ltime) and Lemma 3.2.1, part 1, it fol-

lows that future(s0:ppstate; [0; s0:next-snapj�s
0:nowj]) � future(future(s:ppstate; w:ltime); [0;

s0:next-snapj � s0:nowj]). But Lemma 3.2.1, part 4, implies that future(future(s:ppstate;

w:ltime); [0; s0:next-snapj � s0:nowj]) = future(s:ppstate; [w:ltime; s0:next-snapj � s0:nowj +

w:ltime]). Moreover, from Lemma 3.2.1, part 1, it follows that future(s:ppstate; [w:ltime;

s0:next-snapj � s0:nowj +w:ltime]) � future(s:ppstate; [0; s0:next-snapj � s0:nowj +w:ltime]).

Finally, since s0:next-snapj � s0:nowj + w:ltime = s:next-snapj � s:nowj it follows that

future(s0:ppstate; [0; s0:next-snapj � s0:nowj]) � future(s:ppstate; [0; s:next-snapj � s:nowj]),

as needed.

Using similar arguments, it can be shown that future(s0:ppstate; s0:next-snapj � s0:nowj) �

future(s:ppstate; s:next-snapj � s:nowj).

Lemma 3.2.8 For any state s of PP � Abs(PP; S; R;G; j; d) that is reachable from an

initial state in safePP;R;G;j via an execution that only involves states in R, it is the case that

s:ppstate 2 G.

Proof: If s:sendj = null then Lemma 3.2.7 implies that the state s:ppstate is in the set

delay-safe(s:next-snapj�s:nowj), which implies that future(s:ppstate; 0) � G. On the other

hand, if s:sendj 6= null, then Lemma 3.2.7 implies that future(s:ppstate; 0) � G. Thus, in

either case it is the case that future(s:ppstate; 0) � G. Finally, Lemma 3.2.1, part 3, implies

that s:ppstate 2 G.

Theorem 3.2.9 Abs(PP; S; R;G; j; d) guarantees G in PP from safePP;R;G;j given R.

Proof: Let s be any state of the composed system PP � Absj that is reachable from an

initial state in safe via an execution that only involves states in R. Then, Lemma 3.2.8

implies that s:ppstate 2 G, as needed.

Corollary 3.2.10 Abs(PP; S; R;G; j; d) guarantees G in PP from S given R.

Proof: Follows directly from Theorem 3.2.9 and Axiom 3.2.8.

48

Chapter 4

Modeling a System of n Vehicles

In this chapter, we present a model for a simpli�ed version of the PRT 2000TM system

under development at Raytheon Corporation. The physical plant model involves n vehicles

traveling on a single track. Since this thesis is only concerned with safety, the details of the

operation of the physical plant and the aspects of the system geared towards performance

are omitted.

The model, called vehicles, is a HIOA and conforms to the restrictions on the PP au-

tomaton of Section 3.1 and the assumptions about the PP automaton of Section 3.2. We

describe in detail the aspects of the physical plant model that were only abstract in Sec-

tions 3.1 and 3.2. These include: the state variables, the initial states, the discrete actions,

and the trajectories of the PP automaton. Moreover, we de�ne several auxiliary derived

variables and sets that are used extensively by the protector automata presented in the

following chapters.

The state variables of the vehicles automaton include the position, the velocity, and the

acceleration of each vehicle and several other variables that record whether the vehicles of

each of the vehicle pairs have collided into each other, whether each vehicle is braking, and

whether each protector is requesting each vehicle to brake. The set of initial states is the

set of states of the vehicles automaton that satisfy the physical properties of the system.

The input actions are used by the protectors to instruct the vehicles to apply or release

their \emergency" brakes, and the internal actions model the possibility that vehicles stop

suddenly or collide among themselves. The trajectories model the motion of the vehicles

with time, within their physical constraints.

49

4.1 Physical Plant: vehicles

In this section we describe the automaton vehicles, which models a set of n vehicles

traveling on a single track. For simplicity, all the vehicles are assumed to have identical di-

mensions and acceleration/deceleration capabilities. The formal de�nition of the automaton

vehicles and the formal de�nition of the derived variables and sets used in its de�nition

are given in Figure 4.1 and Table 4.1, respectively. Their informal de�nitions follow.

The set I is the set of vehicles being modeled in the vehicles automaton. Each vehicle is

identi�ed by an element of this set. As described in Section 3.1, the set J is the set of ports

that are used by the vehicles automaton to interact with the various protectors. In this

setting, each of the protectors uses a single port to interact with the vehicles automaton.

Therefore, the port index is often used to specify the protector itself.

The output variables of the vehicles automaton are the variables xi, for i 2 I , the vari-

ables _xi, for i 2 I , and the variables collided(i; i0), for i; i0 2 I; i0 6= i. Each of the variables xi,

for i 2 I , is the position of the vehicle i. The position of each vehicle i, for i 2 I , is repre-

sented by a single point on the real line, i.e., xi 2 R, for i 2 I , and speci�es the position of

the rear of the vehicle i on the track. The section of the track occupied by each vehicle i,

for i 2 I , often referred to as the extent of the vehicle i, is de�ned to be the section of track

ranging from the position of the rear of the vehicle i to the point on the track that is a

distance of clen downstream of the rear of the vehicle i. The distance clen is the minimum

allowable separation between vehicles; that is, the length of the vehicle plus any desired ex-

tra margin speci�ed by the system designer. The extent of each vehicle i, for i 2 I , is given

by the derived variable Ei; that is, Ei = [xi; xi + clen], for i 2 I . Each of the variables _xi,

for i 2 I , is the velocity of the vehicle i. The vehicles are only allowed to move forward on

the track and, therefore, their velocities are restricted to be non-negative, i.e., _xi 2 R
�0, for

all i 2 I . Once a vehicle in the vehicles automaton has collided, its velocity is assumed

to be arbitrary.

Each output variable collided(i; i0), for i0 2 I; i0 6= i, denotes whether the vehicle i has

ever collided into the vehicle i0. For shorthand, each of the derived variables collided(i; �),

for i 2 I , denotes whether the vehicle i has ever collided into any of the other vehicles,

i.e., collided(i; �) =
W
i0 2 I;i0 6=i collided(i; i

0), and each of the derived variables collided(�; i),

for i 2 I , denotes whether any of the other vehicles have ever collided into the vehi-

cle i, i.e., collided(�; i) =
W
i0 2 I;i0 6=i collided(i

0; i). Moreover, each of the derived vari-

ables collided(�; i; �), for i 2 I , denotes whether the vehicle i has ever been involved in

a collision; that is, either whether the vehicle i has ever collided into any other vehi-

cle, or whether any other vehicle has ever collided into the vehicle i. In logical terms,

collided(�; i; �) = collided(�; i) _ collided(i; �). Finally, the derived variable collided de-

notes whether any of the vehicles have ever collided among themselves, i.e., collided =

50

Figure 4.1 The vehicles automaton.

Actions: Variables

Input: Internal:
e, the environment action (stuttering)

brake(i)j , for all i 2 I; j 2 J

unbrake(i)j, for all i 2 I; j 2 J

�xi 2R, for all i 2 I, initially �xi 2 R

brake(i) 2 Bool, for all i 2 I,

initially False

brake-req(i; j) 2 Bool, for all i 2 I; j 2 J ,

initially False
Internal: Output:

colliding-pair(i; i0), for all i; i0 2 I; i0 6= i

collision-effects(i), for all i 2 I

brick-wall(i), for all i 2 I

xi 2R, for all i 2 I, initially xi 2 R

_xi 2R, for all i 2 I, initially _xi 2 R
collided(i; i0) 2 Bool, for all i; i0 2 I; i0 6= i,

initially False

subject to VALID

Discrete Transitions:

brake(i)j
E�: brake-req(i; j) := True

if :brake(i) then
brake(i) := True

if _xi = 0 then �xi := 0

else �xi := �cbrake

colliding-pair(i; i0)

Pre: :collided(i; i0)

^(Ei \ Ei0 6= ;)
^(xi < min(Ei \ Ei0))

E�: collided(i; i0) := True

unbrake(i)j
E�: brake-req(i; j) := False

if brake(i) ^ (: _k 2 J brake-req(i; k)) then

brake(i) := False

�xi :2 [�cmin; �cmax]

collision-effects(i)

Pre: collided(�; i; �)

E�: _xi :2R
�0

�xi :2R

brick-wall(i)

Pre: True
E�: _xi := 0

if brake(i) then �xi := 0

else �xi :2 [0; �cmax]

Trajectories:

for all i; i0 2 I; i 6= i0, collided(i; i0) is constant throughout w

for all i 2 I and j 2 J , brake(i) and brake-req(i; j) are constant throughout w

for all i; i0 2 I; i 6= i0

the function w:�xi is integrable
for all t 2 TI

w(t): _xi = w(0): _xi +
R t

0
w(s):�xi ds

w(t):xi = w(0):xi +
R t

0
w(s): _xi ds

if :w:collided(i; i0)
^(w(t):Ei \w(t):Ei0 6= ;)

^(w(t):xi < min(w(t):Ei \w(t):Ei0))

then

t = w:ltime

subject to VALID

W
i 2 I collided(i; �) =

W
i;i0 2 I;i6=i0 collided(i; i

0).

The internal variables of the vehicles automaton are the variables �xi, for i 2 I , the

51

Table 4.1 Derived variables and sets used in the de�nition of the vehicles automaton.

Ei 2 P(R), de�ned by

Ei = [xi; xi + clen]

collided(i; �) 2 Bool; for i 2 I, de�ned by

collided(i; �) =
_

i0 2 I;i0 6=i

collided(i; i0)

collided(�; i) 2 Bool; for i 2 I, de�ned by

collided(�; i) =
_

i0 2 I;i0 6=i

collided(i0; i)

collided(�; i; �) 2 Bool; for i 2 I, de�ned by

collided(�; i; �) = collided(�; i) _ collided(i; �)

VALID � states(vehicles), de�ned by

VALID =fp 2 states(vehicles) j
1. @ i; i0 2 I; i 6= i0 such that the set p:Ei \ p:Ei0 is a positive length closed

interval of R.

2. p: _xi � 0, for all i 2 I.

3. If :p:collided(�; i; �) then p:�xi 2 [�cmin; �cmax], for all i 2 I.

4. If :p:collided(�; i; �) ^ p:brake(i) then if p: _xi = 0 then p:�xi = 0 else p:�xi =
�cbrake, for all i 2 I. g

variables brake(i), for i 2 I , and the variables brake-req(i; j), for i 2 I and j 2 J . Each of

the variables �xi, for i 2 I , is the acceleration of the vehicle i. If no vehicle collisions involving

a particular vehicle i have occurred, then (i) the acceleration of the vehicle i is bounded

above and below as follows: �xi 2 [�cmin; �cmax], where �cmin; �cmax 2 R and �cmin < 0 < �cmax,

and (ii) if the vehicle i is braking, its acceleration is given by �xi = �cbrake, where �cbrake 2 R

and �cmin < �cbrake < 0. The di�erence between the minimum acceleration and the braking

acceleration reects a conservative estimate of the e�ect of a vehicle's braking system.

Once a vehicle in the vehicles automaton has collided, its acceleration is assumed to be

arbitrary and its braking system is assumed to be malfunctioning. Each of the boolean

variables brake(i), for i 2 I , denotes whether the vehicle i is braking. Each of the boolean

variables brake-req(i; j), for i 2 I and j 2 J , denotes whether the protector j is requesting

the vehicle i to brake. It is assumed that each vehicle applies its \emergency" brake while

any of the protectors is requesting it, i.e., brake(i) =
W
j 2 J brake-req(i; j), for all i 2 I .

52

The input actions of the vehicles automaton are the environment action e and the actions

brake(i)j and unbrake(i)j , for i 2 I and j 2 J . Since the vehicles automaton has no

input variables, the environment action e is stuttering and its speci�cation is omitted from

the de�nition of the vehicles automaton. Each of the actions brake(i)j and unbrake(i)j,

for i 2 I and j 2 J , correspond to actions performed by the protector j instructing the

vehicle i to apply or release its \emergency" brake, respectively. It is important to note that

the acceleration of the vehicle i is not set by the actions brake(i)j and unbrake(i)j unless

the variable brake(i) gets toggled by the action being performed. Therefore, the brake(i)j

and unbrake(i)j actions do not a�ect the acceleration of the vehicle i when brake(i) = True

and :brake(i)
W�W

j02J;j0 6=j brake-req(i; j
0)
�
= True, respectively.

For simplicity, the set of input actions of the vehicles automaton includes the actions

brake(i)j and unbrake(i)j , for i 2 I and j 2 J ; that is, the vehicles automaton allows

each protector j, for j 2 J , to brake each vehicle i, for i 2 I . However, it is often the

case that a protector j, for some j 2 J , need not schedule but a subset of the actions

brake(i)j and unbrake(i)j , for i 2 I . In such cases, the protector j is speci�ed as having

only the output actions that it is capable of scheduling and the remaining input actions of

the vehicles automaton on port j are ignored.

The discrete actions brick-wall(i), for i 2 I , colliding-pair(i; i0), for i; i0 2 I; i 6= i0, and

collision-effects(i), for i 2 I , are the internal actions of the vehicles automaton. Each

brick-wall(i) action, for i 2 I , models the instantaneous stopping of the vehicle i | as if

it hit a brick wall. Thereafter however, the vehicle i is allowed to reinitiate forward motion.

The e�ects of the brick-wall(i) action are to set the velocity of the vehicle i to zero and

the acceleration of the vehicle i to an arbitrary non-negative value within the prespeci�ed

acceleration bounds. It is important to note that if the vehicle i was braking prior to the

execution of the brick-wall(i) action, the brick-wall(i) action sets the acceleration of

the vehicle i to zero. Each colliding-pair(i; i0) action, for i; i0 2 I; i 6= i0, records the fact

that the vehicle i has collided into the vehicle i0. The colliding-pair(i; i0) action sets the

boolean variable collided(i; i0) to True. A collision between two vehicles is assumed to take

place when the vehicles have overlapping extents. However, since the trailing vehicle is the

only vehicle that can prevent the collision through braking, the collision is recorded only by

the trailing vehicle as if the trailing vehicle were the only vehicle liable for the particular

collision. Following a collision, the velocity and the acceleration of the vehicles involved

in the collision are unconstrained and each vehicle's braking system is assumed to be mal-

functioning. Each collision-effects(i) action, for i 2 I , models the adverse e�ects of a

collision involving the vehicle i and may be executed, even repeatedly, at any instant of time

following the �rst collision involving the vehicle i. The collision-effects(i) action sets

the velocity and the acceleration of the vehicle i to arbitrary values. The system is modeled

such that a collision allows but does not dictate immediate e�ects on the velocity and the

acceleration of the vehicles involved in the collision; that is, collision-effects(i) and

53

collision-effects(i0) actions do not necessarily follow a colliding-pair(i; i0) action.

All discrete actions of the vehicles automaton, except the collision-effects actions,

model the behavior of the vehicle as if no collisions had ever occurred. Once a vehicle has

been involved in a collision, it is unknown whether the vehicle has incurred any damage

and, therefore, its operation is uncertain. If the vehicle has not been damaged then its

operation is modeled as if the vehicle had not collided. On the other hand, if the vehicle

has been damaged, the malfunctioning vehicle apparatus is modeled by succeeding each of

the discrete actions with a collision-effects action for the malfunctioning vehicle.

The de�nition of the vehicles automaton restricts the initial states and the trajectory

states to the set VALID. The formal de�nition of the set VALID is given below and is

included for reference in Table 4.1.

VALID � states(vehicles); de�ned as the set of states of the vehicles automaton that

satisfy the following conditions:

1. @ i; i0 2 I; i 6= i0; such that the set Ei \ Ei0 is a positive length closed interval

of R.

2. _xi � 0, for all i 2 I .

3. If :collided(�; i; �) then �xi 2 [�cmin; �cmax], for all i 2 I .

4. If :collided(�; i; �)^ brake(i) then if _xi = 0 then �xi = 0 else �xi = �cbrake , for all

i 2 I .

The restriction of the states of the vehicles automaton to the set VALID enforces some of

the physical properties of the system. The �rst two conditions restrict the vehicle extents to

be non-overlapping and the vehicle velocities to be non-negative. The vehicles are, however,

allowed to \touch", i.e., their extents are allowed to intersect at a single point. The �nal

two properties only apply for vehicles that have not been involved in a collision. The

third condition speci�es the range of allowable vehicle acceleration and the fourth condition

speci�es the correct acceleration for a vehicle that is braking. Recall that once a vehicle has

collided, its velocity and acceleration are assumed to be arbitrary and its braking system is

assumed to be malfunctioning.

The trajectories of the vehicles automaton only a�ect the position, the velocity, and the

acceleration of the vehicles of the vehicles automaton | the remaining variables of the

vehicles automaton remain constant throughout the trajectories. The position and the

velocity are assumed to be the integrals of the velocity and the acceleration, respectively.

The acceleration is assumed to be changing arbitrarily throughout a trajectory with the

restriction that all states of the trajectory remain within the set VALID. Finally, if a

vehicle i collides into a vehicle i0 for the �rst time, the trajectory is stopped so that the

collision can be recorded by a colliding-pair(i; i0) action.

The vehicles automaton complies with the assumptions made about the PP automaton

54

in Section 3.2.1. The vehicles automaton has neither input variables, nor output actions,

on any of its ports (Axioms 3.2.1 and 3.2.2, respectively). Moreover, the actions brake(i)j

and unbrake(i)j, for each vehicle i 2 I satisfying the conditions brake-req(i; j) = True and

brake-req(i; j) = False, respectively, are no-op input actions on port j for any R � VALID.

Therefore, the set of no-op input actions on each port j 2 J and any R � VALID is

non-empty (Axiom 3.2.3).

4.2 Sets of Guarantee and Reliance for the vehicles

Automaton

The protectors presented in the following chapters are designed to guarantee that the vehi-

cles automaton remains within sets of states that are considered \good". In other words,

the protectors are designed to keep the vehicles automaton from reaching states that are

considered \bad" or hazardous. Bad or hazardous states involve vehicles that are either

above the speed limit, or that have collided with each other. Sets of states that are con-

sidered \good" are informally referred to as sets of guarantee. Moreover, it is often the

case that protectors rely on the restriction of the states of the vehicles automaton to sets

comprised of states that exhibit particular properties of the vehicles automaton. Such

sets of states are informally referred to as sets of reliance.

In the case of exceeding the speed limit, the set Poverspeed(i) is the subset of VALID comprised

of the states in which the vehicle i is above the speed limit. Let the maximum allowable

velocity be given by _cmax.

Poverspeed(i) � VALID; for i 2 I , de�ned by

Poverspeed(i) = fp 2 VALID j p: _xi > _cmaxg.

Then the set Poverspeed =
S
i 2 I Poverspeed(i) is the subset of VALID comprised of the states

in which at least one of the vehicles is above the speed limit, and the set Pnot-overspeed =

VALID � Poverspeed is the subset of VALID comprised of the states in which none of the

vehicles are above the speed limit.

In the case of vehicle collisions, the set Pcollided(i;i0) is the subset of VALID comprised of the

states in which the vehicle i has collided into the vehicle i0.

Pcollided(i;i0) � VALID; for i; i0 2 I , i 6= i0, de�ned by

Pcollided(i;i0) = fp 2 VALID j p:collided(i; i0) = Trueg.

Then the set Pcollided(i) =
S
i0 2 I;i0 6=i Pcollided(i;i0) is the subset of VALID comprised of the

states in which the vehicle i has collided into at least one of the other vehicles. Moreover, the

set Pcollided =
S
i 2 I Pcollided(i) =

S
i;i0 2 I;i6=i0 Pcollided(i;i0) is the subset of VALID comprised

of the states in which at least two distinct vehicles have collided into each other. Finally,

55

Table 4.2 Sets of guarantee and reliance for the vehicles automaton.

Poverspeed(i) � VALID; for i 2 I, de�ned by

Poverspeed(i) = fp 2 VALID j p: _xi > _cmaxg

Poverspeed � VALID; de�ned by

Poverspeed =

[
i 2 I

Poverspeed(i)

Pnot-overspeed � VALID; de�ned by

Pnot-overspeed = VALID� Poverspeed

Pcollided(i;i0) � VALID; for i; i0 2 I, i 6= i0, de�ned by

Pcollided(i;i0) = fp 2 VALID j p:collided(i; i0) = Trueg

Pcollided(i) � VALID; de�ned by

Pcollided(i) =

[
i0 2 I;i0 6=i

Pcollided(i;i0)

Pcollided � VALID; de�ned by

Pcollided =

[
i 2 I

Pcollided(i) =

[
i;i0 2 I;i6=i0

Pcollided(i;i0)

Pnot-collided � VALID; de�ned by

Pnot-collided = VALID� Pcollided

the set Pnot-collided = VALID � Pcollided is the subset of VALID comprised of the states in

which none of the vehicles have collided among themselves.

The sets of guarantee and reliance de�ned in this section comply with the assumptions

made in Section 3.2.1; that is, the sets of guarantee and reliance de�ned in this section are

Yvehicles-determinable (Axioms 3.2.6 and 3.2.7).

For reference, the formal de�nitions of the sets of guarantee and reliance de�ned above

appear in Table 4.2. These sets are extensively used in the de�nitions of the overspeed and

collision protectors presented in the following chapters.

56

Table 4.3 Auxiliary derived variables for the vehicles automaton.

stop-disti 2 R
�0; for all i 2 I, de�ned by

stop-disti = �
_x2i

2�cbrake

max-rangei(t) 2 R
�0; for all i 2 I and t 2 R�0

, de�ned by

max-rangei(t) =

8>>>><
>>>>:

_xi�t+ 1
2
�cmax�t2 + _cmax(t��t);

where �t = min

�
t; _cmax� _xi

�cmax

�
if _xi � _cmax, and

_xi�t+ 1
2
�cbrake�t2 + _cmax(t��t);

where �t = min

�
t; _cmax� _xi

�cbrake

�
otherwise.

max-veli(t) 2 R
�0; for all i 2 I and t 2 R�0

, de�ned by

max-veli(t) =

(
min(_cmax; _xi + t�cmax) if _xi � _cmax, and

max(_cmax; _xi + t�cbrake) otherwise.

Oi � R; for all i 2 I, de�ned by

Oi = [xi; xi + stop-disti + clen]

Ci(t) � R; for all i 2 I and t 2 R�0
, de�ned by

Ci(t) =
�
xi; xi +max-rangei(t)�max-veli(t)

2=(2�cbrake) + clen
�

4.3 Auxiliary Derived Variables and Auxiliary Sets for the

vehicles Automaton

This section presents several auxiliary derived variables and sets for the vehicles automa-

ton. These variables and sets are used extensively in the following chapters.

For any state p in VALID, the auxiliary derived variables for any vehicle i 2 I and time

t 2 R�0 are de�ned in Table 4.3. If the vehicle i is abiding by the global speed limit _cmax,

then the derived variables of Table 4.3 can be interpreted as follows:

stop-disti; for i 2 I , is the distance required to stop the vehicle i, assuming a braking

deceleration equal to �cbrake.

max-rangei(t); for i 2 I and t 2 R�0, is the maximum distance the vehicle i can travel in t

time units, assuming a maximum acceleration equal to �cmax.

57

max-veli(t); for i 2 I and t 2 R�0, is the maximum velocity achievable by the vehicle i in t

time units, assuming a maximum acceleration equal to �cmax.

Oi; for i 2 I , is the section of the track that the vehicle i \owns"; that is, the range

extending from the current position of the vehicle i to the point on the track that the

vehicle can reach even if it is braked immediately.

Ci(t); for i 2 I and t 2 R�0, is the section of the track that the vehicle i \claims" within t

time units; that is, the range extending from the current position of the vehicle i to

the point on the track that the vehicle i can reach if it is braked after t time units

and assuming worst-case vehicle behavior up to the point in time when it is braked.

We now de�ne sets of states of the vehicles automaton that are used extensively in the

following example protector chapters. While their formal de�nitions appear in Table 4.4,

their informal interpretations are presented below. It is important to note that the in-

terpretations of the sets disjoint-owned-tracks(i; i0) and disjoint-claimed-tracks(i; i0; t), for

i; i0 2 I; i 6= i0, and t 2 R�0, are valid provided that all the vehicles of the vehicles

automaton are abiding by the global speed limit _cmax.

disjoint-extents(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID comprised of the states in

which the extents of the vehicles i and i0 are disjoint. We use PE to denote the set of

states in which the extents of all the vehicles are disjoint.

disjoint-owned-tracks(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID comprised of the

states in which the sections of the track owned by the vehicles i and i0 are disjoint.

We use PO to denote the set of states in which all vehicles own disjoint sections of the

track. If a state of the vehicles automaton is not in PO, then it cannot be guaranteed

that the vehicles will not collide in the future; that is, irrespective of any protection

action taken, it is possible for some vehicles to collide.

disjoint-claimed-tracks(i; i0; t); for i; i0 2 I; i 6= i0, and t 2 R�0, is the subset of VALID

comprised of the states in which the sections of the track claimed within t time units

by the vehicles i and i0 are disjoint. We use PC(t) to denote the set of states in which

the sections of the track claimed within t time units by all the vehicles are disjoint. If

a state of the vehicles automaton is not in PC(t) and no protective action is taken

for t time units, then it cannot be guaranteed that the vehicles will subsequently not

collide; that is, irrespective of any protection action taken after t time units, it is

possible for some of the vehicles to collide.

Furthermore, let PBij
be the subset of VALID comprised of the states in which the protector

communicating with the vehicles automaton through the port j is requesting the vehicle i

to brake, i.e., PBij
= fp 2 VALID j p:brake-req(i; j) = Trueg.

58

Table 4.4 Auxiliary sets for the vehicles automaton.

disjoint-extents(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

disjoint-extents(i; i0) = fp 2 VALID j p:Ei \ p:Ei0 = ;g

PE � VALID; de�ned by

PE =

\
i;i0 2 I;i6=i0

disjoint-extents(i; i0)

disjoint-owned-tracks(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

disjoint-owned-tracks(i; i0) = fp 2 VALID j p:Oi \ p:Oi0 = ;g

PO � VALID; de�ned by

PO =

\
i;i0 2 I;i6=i0

disjoint-owned-tracks(i; i0)

disjoint-claimed-tracks(i; i0; t) � VALID; for i; i0 2 I; i 6= i0, and t 2 R�0
, de�ned by

disjoint-claimed-tracks(i; i0; t) = fp 2 VALID j p:Ci(t) \ p:Ci0(t) = ;g

PC(t) � VALID; for t 2 R�0
, de�ned by

PC(t) =

\
i;i0 2 I;i6=i0

disjoint-claimed-tracks(i; i0; t)

PBij
� VALID; de�ned by

PBij
= fp 2 VALID j p:brake-req(i; j) = Trueg

4.4 Useful Lemmas for the vehicles Automaton

In this section we prove several useful lemmas that describe particular properties of the

vehicles automaton and its derived variables.

Lemma 4.4.1 For all p 2 VALID, i 2 I, and t 2 R�0, the following hold:

1. p:stop-disti � 0.

2. p:max-rangei(t) � 0.

3. p:max-veli(t) � 0.

59

4. If p: _xi = 0 then p:stop-disti = 0.

5. p:max-rangei(0) = 0.

6. p:max-veli(0) = p: _xi.

Proof: Follow directly from the de�nitions of the auxiliary derived variables stop-disti,

max-rangei(�), and max-veli(�), for � 2 R
�0.

Lemma 4.4.2 For all p 2 VALID, i 2 I, and t; t0 2 R�0, t � t0, the following hold:

1. p:Ei � p:Oi � p:Ci(t).

2. p:xi = min(p:Ei) = min(p:Oi) = min(p:Ci(t)).

3. p:Oi = p:Ci(0).

4. p:C(t) � p:C(t0).

Proof: Follow directly from the de�nitions of the derived variables Ei, Oi, and Ci(�), for

� 2 R�0.

Lemma 4.4.3 If p; p0 2 VALID, where p0 follows from p in a single discrete action, then

the following hold:

1. p0:Oi � p:Oi if and only if p0: _xi � p: _xi.

2. p0:Ci(t) � p:Ci(t), for any t 2 R
�0, if and only if p0: _xi � p: _xi.

Proof: We prove each of the above statements separately.

1. Recall that Oi = [xi; xi+ stop-disti + clen]. Since none of the actions of the vehicles

automaton a�ect the position of a vehicle, it follows that p0:xi = p:xi. Therefore, the

intervals p:Oi and p0:Oi have the same left endpoint, i.e., min(p:Oi) = min(p0:Oi).

Moreover, since the variable stop-disti is positively correlated with the velocity of the

vehicle i, it follows that p0:stop-disti � p:stop-disti if and only if p0: _xi � p: _xi; that is,

max(p0:Oi) � max(p:Oi) if and only if p0: _xi � p: _xi.

Since min(p:Oi) = min(p0:Oi) and max(p0:Oi) � max(p:Oi) if and only if p0: _xi � p: _xi,

it follows that p0:Oi � p:Oi if and only if p0: _xi � p: _xi.

2. Recall that Ci(t) =
�
xi; xi +max-rangei(t)�max-veli(t)

2=(2�cbrake) + clen
�
, for any

t 2 R�0. As shown above, it is the case that p0:xi = p:xi and, therefore, the intervals

p:Ci(t) and p0:Ci(t) have the same left endpoint, i.e., min(p:Ci(t)) = min(p0:Ci(t)).

Now, consider the right endpoints of p:Ci(t) and p0:Ci(t). The variables max-rangei

60

and max-veli are positively correlated with the velocity of the vehicle i and, therefore,

it follows that max(p0:Ci(t)) � max(p:Ci(t)) if and only if p0: _xi � p: _xi.

Since min(p:Ci(t)) = min(p0:Ci(t)) and max(p0:Ci(t)) � max(p:Ci(t)) if and only if

p0: _xi � p: _xi, for any t 2 R
�0, it follows that p0:Ci(t) � p:Ci(t), for any t 2 R

�0, if and

only if p0: _xi � p: _xi.

Lemma 4.4.4 If p; p0 2 VALID, where p0 follows from p in a single trajectory, then the

following hold:

1. If p 2 PBij
then p0:Oi � p:Oi.

2. If t 2 R�0 and �t 2 [0; t] is the limit time of the trajectory leading from p to p0, then

p0:Ci(t ��t) � p:Ci(t).

Proof: We prove each of the above statements separately.

1. Let p 2 PBij
and consider the left and right endpoints of the intervals p:Oi and p

0:Oi.

The left endpoints of p:Oi and p
0:Oi are p:xi and p

0:xi, respectively. Therefore, due to

the non-negative constraint on the vehicle velocities, it is the case that p:xi � p0:xi;

that is, min(p:Oi) � min(p0:Oi).

Since p 2 PBij
and because the brake-req(i; j) variable remains constant throughout

any trajectory of the vehicles automaton, the vehicle i keeps braking throughout

the trajectory from p to p0. From the de�nition of the variable stop-disti it follows

that p:xi+p:stop-disti = p0:xi+p0:stop-disti and, therefore, the right endpoints of p:Oi

and p0:Oi are equal; that is, max(p
0:Oi) = max(p:Oi).

Since min(p:Oi) � min(p0:Oi) and max(p0:Oi) = max(p:Oi), we can easily conclude

from the de�nition of Oi that p
0:Oi � p:Oi.

2. Let t 2 R�0 and �t 2 [0; t] be the limit time of the trajectory leading from p to p0

and consider the left and right endpoints of the intervals p:Ci(t) and p0:Ci(t��t).

The left endpoints of p:Ci(t) and p
0:Ci(t��t) are p:xi and p

0:xi, respectively. There-

fore, due to the non-negative constraint on the vehicle velocities, it is the case that

p:xi � p0:xi; that is, min(p:Ci(t)) � min(p0:Ci(t ��t)).

Since the variables max-rangei and max-veli represent the worst case behavior of the

system it is the case that p0:xi � p:xi + p:max-rangei(�t) and p0: _xi � p:max-veli(�t).

Since the variables max-rangei and max-veli are positively correlated with the velocity

of the vehicle i and p0: _xi � p:max-veli(�t), it follows that p
0:xi + p0:max-rangei(t �

�t) � p:xi + p:max-rangei(t) and p0:max-veli(t ��t) � p:max-veli(t). Therefore, the

61

right endpoint of p:Ci(t) is at least as downstream as the right endpoint of p0:Ci(t��t);

that is, max(p0:Ci(t ��t)) � max(p:Ci(t)).

Since min(p:Ci(t)) � min(p0:Ci(t ��t)) and max(p0:Ci(t � �t)) � max(p:Ci(t)), we

can easily conclude from the de�nition of Ci(�), for � 2 R
�0, that p0:Ci(t � �t) �

p:Ci(t).

Lemma 4.4.5 For all t; t0 2 R�0, t � t0, the following hold:

1. PC(t) � PO � PE.

2. PC(t0) � PC(t).

Proof: Follow from Lemma 4.4.2 and the de�nitions of PE , PO, and PC(�), for � 2 R
�0.

62

Chapter 5

Example 1:

Overspeed Protection System

In this chapter, we present a protector that prevents the vehicles of the vehicles automaton

from exceeding a prespeci�ed speed limit. In an actual system, speed limits may vary from

one region of the track to another; in this thesis, we assume a single global speed limit _cmax.

We de�ne a protector, called os-prot, that enforces the speed limit on all vehicles, provided

that they do not collide among themselves. This protector is de�ned as the composition

of n separate copies of another protector called os-prot-soloi, one copy for each vehicle

i 2 I . Each of the os-prot-soloi protectors, for i 2 I , is an implementation of a particular

instantiation of the abstract protector automaton of Section 3.2 and guarantees that the

vehicle i does not exceed the speed limit.

5.1 Protection System os-prot-soloi

The os-prot-soloi automata, for i 2 I , are vehicle-wise overspeed protectors, each of

which individually guarantees that the vehicle i, for which it is responsible, does not exceed

the speed limit _cmax, provided that no collisions among the vehicles occur. Each of the

os-prot-soloi protectors, for i 2 I , is an implementation of the abstract protector of

Section 3.2 specialized to particular de�nitions of the parameters PP, S, R, G, j, and d.

The physical plant automaton, PP, is de�ned to be the vehicles automaton of Figure 4.1.

The port j and the sampling period d are de�ned to be the port and sampling period with

which the protector os-prot-soloi communicates with the vehicles automaton. They

are assumed arbitrary and are �xed for the rest of the chapter. The set R is de�ned to be

the set Pnot-collided de�ned in Section 4.2. This de�nition restricts the reachable states of the

vehicles automaton to states in which no collisions among the vehicles have occurred. The

set of \good" states G is de�ned to be the set of states in which the vehicle i is at or below

63

the speed limit, i.e., G = VALID� Poverspeed(i). The set of states S is de�ned to be the set

safePP;R;G;j de�ned in Section 3.2.1; that is, the set of states of the PP automaton for which

a single input action of PP on port j can guarantee that, provided no new input actions

on port j are allowed, all subsequently R-reachable states will be in G. In Section 3.2.1,

the de�nition of safe depended on the automaton PP, the sets R and G, and the port j

which, at the time, were arbitrary. Here, they are de�ned to be the automaton vehicles,

the sets Pnot-collided and VALID� Poverspeed(i), and the port j, respectively; that is, we have

specialized the de�nition of safe for these particular de�nitions of the automaton PP, the

sets R and G, and the port j. In this chapter, we will use the notation Ri, Gi, and Si to

refer to the above de�nitions of the sets R, G, and S.

The os-prot-soloi protector automaton is an implementation of the abstract protector

automaton Abs(vehicles; Si; Ri; Gi; j; d). As is the case for the abstract protector automa-

ton Absj , we de�ne the os-prot-soloi automaton to be the composition of a sensor and a

discrete controller automaton. These automata are implementations of their abstract equiv-

alents of Figures 3.2 and 3.3, specialized however, to the above de�nitions of the parameters

PP, S, R, G, j, and d. The sensor automaton is precisely the specialization of the sensor

automaton of Figure 3.2 to the above de�nitions of the parameters PP, etc. The discrete

controller automaton is de�ned in Figure 5.1.

It is important to note that the abstract protector automatonAbs(vehicles; Si; Ri; Gi; j; d)

complies with the assumptions made about the abstract protector in Section 3.2.1. In partic-

ular, since the vehicle velocity variables are output variables of the vehicles automaton, the

set safe is Yvehicles-determinable and actions that guarantee safety can be determined from

the output variables Yvehicles of the vehicles automaton (Axioms 3.2.4 and 3.2.5, respec-

tively). Moreover, the sets Ri and Gi are Yvehicles-determinable (Axioms 3.2.6 and 3.2.7,

respectively) and the set of start states Si is a subset of the set safe (Axiom 3.2.8), since Si

is de�ned to be the set safe.

In Section 3.1 it was shown that the abstract protector Absj guarantees that the physical

plant PP remains within G starting from S given R. Similarly, the os-prot-soloi automa-

ton guarantees that vehicles remains within Gi starting from Si given Ri. This is shown

in the following section.

5.2 Correctness of os-prot-soloi

The main result to be shown is that os-prot-soloi � Abs(vehicles; Si; Ri; Gi; j; d). How-

ever, since both os-prot-soloi and Abs(vehicles; Si; Ri; Gi; j; d) involve the composition

of the same sensor automaton with distinct discrete controller automata, Theorem 2.7.4 ap-

plies. Therefore, it su�ces to show that the discrete controller automaton of os-prot-soloi

of Figure 5.1 implements the discrete controller automaton DC(vehicles; Si; Ri; Gi; j; d) of

64

Figure 5.1 Discrete controller automaton for the protector os-prot-soloi.

Actions: Input: e, the environment action (stuttering)

snapshot(y)j, for each valuation y of Yvehicles
Output: brake(i)j

unbrake(i)j
Variables: Internal: sendj 2 fbrake; unbrake; nullg, initially null

Discrete Transitions:

snapshot(y)j

E�: if (y: _xi � _cmax � d�cmax) then

sendj := unbrake

else

sendj := brake

brake(i)j

Pre: sendj = brake

E�: sendj := null

unbrake(i)j

Pre: sendj = unbrake

E�: sendj := null

Trajectories:

w:sendj � null

Figure 3.3. According to Theorem 2.6.1, this follows by showing that there exists a simula-

tion relation between the states of the discrete controller automaton of os-prot-soloi and

DC(vehicles; Si; Ri; Gi; j; d). We �rst give some useful set de�nitions, then prove some

lemmas, and �nally show the existence of such a simulation relation.

In this section, we use the notation futurei, safei, very-safei, and delay-safei to denote the

specialization of the function future, the sets safe and very-safe, and the function delay-safe,

which are de�ned in Section 3.2.1, to the automaton vehicles, the sets Ri and Gi, and

the port j of the os-prot-soloi protector. Moreover, since the environment action of

the vehicles automaton is stuttering, its consideration is omitted in all inductive proofs

involving the PP automaton.

We proceed by de�ning several sets that are used in the correctness proof of the protector

os-prot-soloi. For reference, their formal de�nitions appear in Table 5.1.

Let Wi be the set of states of the vehicles automaton in which none of the vehicles have

collided and the vehicle i is at or below the speed limit; that is, Wi = Ri \ Gi. Let

Vi be the set of states of the vehicles automaton in which none of the vehicles have

collided, the vehicle i is at or below the speed limit, and the protector j is requesting the

65

Table 5.1 Sets used in the correctness proof of os-prot-soloi.

Wi � VALID; for i 2 I, de�ned by

Wi = Ri \Gi

Vi � VALID; for i 2 I, de�ned by

Vi = Ri \Gi \ PBij

Ti � VALID; for i 2 I, de�ned by

Ti = fp 2 Ri \Gi j p: _xi � _cmax � d�cmaxg

vehicle i to brake; that is, Vi = Ri \ Gi \ PBij
. Furthermore, let Ti be the set of states

of the vehicles automaton in which none of the vehicles have collided, the vehicle i is

at or below the speed limit, and the condition _xi � _cmax � d�cmax is satis�ed; that is,

Ti = fp 2 Ri \ Gi j p: _xi � _cmax � d�cmaxg.

In the following lemma, we show that if we restrict the states of the vehicles automaton

to the set Ri and consider a state in which the vehicle i is at or below the speed limit and is

being requested to brake by the protector j, then, provided that no new protective actions

are issued by the protector j, the vehicle i remains at or below the speed limit thereafter.

Lemma 5.2.1 futurei(Vi;R
�0) � Gi.

Proof: Let � be an execution fragment of the vehicles automaton of n steps and trajec-

tories, where n 2 N, that: starts in a state in Vi, is only comprised of states in Ri, and

involves no input actions on port j. Letting pinit and p�nal be the initial and �nal states of

�, respectively, we must show that p�nal 2 Gi. The proof is by induction on the length n of

the execution fragment �.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of a single point trajectory and, therefore, p�nal = pinit.

Since pinit 2 Vi and Vi � Gi, it follows that p�nal 2 Gi.

The inductive step involves showing that if � is an execution fragment of length n = k+ 1,

for some k 2 N, then p�nal 2 Gi. Let �
0 be the part of the execution fragment � comprised

of the �rst k steps and trajectories. The induction hypothesis involves the assertion that if

p0final is the �nal state of �
0, then it is the case that p0�nal 2 Gi. Since the �nal state of � is

reached from the �nal state of �0 by a single step or trajectory, the inductive step involves

the consideration of all possible steps and trajectories leading from p0�nal to p�nal.

66

In the case of a step, we consider all possible discrete actions by cases:

1. the actions brake(i)j and unbrake(i)j are not enabled because � involves no input

actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero. Therefore, it

trivially follows that p�nal 2 Gi.

3. the actions colliding-pair(i0; i00), for i0; i00 2 I; i0 6= i00, and collision-effects(i000),

for i000 2 I , are not enabled because � is only comprised of states in Ri; recall that

Ri = Pnot-collided .

4. the actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j, and brick-wall(i00),

for i00 2 I; i00 6= i, do not a�ect the velocity of the vehicle i; that is, p�nal: _xi = p0�nal: _xi.

From the induction hypothesis we have that p0�nal 2 Gi and, therefore, it follows that

p�nal 2 Gi.

In the case of a trajectory, since the execution fragment � starts in a state in Vi � PBij
and

the only action that can set the brake-req(i; j) variable to False is not enabled throughout

�, all states in � are in PBij
; that is, the vehicle i keeps braking throughout the execution

fragment �. Therefore, since the vehicle i in state p0�nal is in Gi, i.e., at or below the speed

limit, and the vehicle i is braking throughout the trajectory from p0�nal to p�nal, it trivially

follows that the velocity of the vehicle i in p�nal will be at or below the speed limit; that is,

p�nal 2 Gi.

In the following two lemmas, we use Lemma 5.2.1 to show that Vi � very-safei and Vi �

delay-safei(t), for any t 2 R
�0, respectively.

Lemma 5.2.2 Vi � very-safei.

Proof: From the de�nition of very-safe in Section 3.2.1, we must show that the condition

futurei(Vi;R
�0) � Gi is satis�ed. This follows directly from Lemma 5.2.1.

Lemma 5.2.3 For any t 2 R�0, it is the case that Vi � delay-safei(t).

Proof: Follows directly from Lemma 5.2.2 and Lemma 3.2.5, part 1.

In the following two lemmas and the subsequent corollary, we show that the sets Wi and

safei are equal. First, we show that Wi � safei and safei � Wi. Then the fact that

Wi = safei follows trivially.

Lemma 5.2.4 Wi � safei.

67

Proof: From the de�nition of safe in Section 3.2.1, we must show that any state p 2 Wi

satis�es: (i) futurei(p; 0) � Gi, and (ii) there exists some action � such that for every

p0; p00 2 Ri satisfying p
0 2 futurei(p; 0) and p0

��! p00, it is the case that p00 2 very-safei.

For the �rst condition, let � be an execution fragment of the vehicles automaton of n

steps, where n 2 N, that: starts in a state in Wi, is only comprised of states in Ri, involves

no input actions on port j, and has a limit time equal to zero. Letting pinit and p�nal be

the initial and �nal states of �, respectively, we must show that p�nal 2 Gi.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of no steps and, therefore, p�nal = pinit. Since pinit 2 Wi,

it follows that p�nal 2 Gi.

The inductive step involves showing that if � is an execution fragment of length n = k+ 1,

for some k 2 N, then p�nal 2 Gi. Let �
0 be the part of the execution fragment � comprised

of the �rst k steps. The induction hypothesis involves the assertion that if p0final is the �nal

state of �0, then it is the case that p0�nal 2 Gi. Since the �nal state of � is reached from the

�nal state of �0 by a single step, the inductive step involves the consideration of all possible

steps leading from p0�nal to p�nal.

To complete the induction, we consider all possible discrete actions by cases:

1. the actions brake(i)j and unbrake(i)j are not enabled because � involves no input

actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero. Therefore, it

trivially follows that p�nal 2 Gi.

3. the actions colliding-pair(i0; i00), for i0; i00 2 I; i0 6= i00, and collision-effects(i000),

for i000 2 I , are not enabled because � is only comprised of states in Ri; recall that

Ri = Pnot-collided .

4. the actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j, and brick-wall(i00),

for i00 2 I; i00 6= i, do not a�ect the velocity of the vehicle i; that is, p�nal: _xi = p0�nal: _xi.

However, from the induction hypothesis, it is the case that p0�nal 2 Gi. Therefore, it

trivially follows that p�nal 2 Gi.

For the second condition, consider the action � = brake(i)j. The e�ect of this action is

to set the internal variable brake-req(i; j) to True. Therefore, it is the case that p00 2 PBij
.

From the proof of the �rst condition, it is the case that p0 2 Gi, and since the brake(i)j

action does not a�ect the velocity of the vehicle i, it is also the case that p00 2 Gi. From the

above conditions and the fact that p00 2 Ri, it follows that p
00 2 Vi. Finally, Lemma 5.2.2

implies that p00 2 very-safei, as needed.

Lemma 5.2.5 safei � Wi.

68

Proof: From Lemma 3.2.4, part 1, and the de�nition of safe in Section 3.2.1, it is the case

that safei � Gi and safei � Ri, respectively. It trivially follows that safei � Wi.

Corollary 5.2.6 Wi = safei.

Proof: Follows directly from Lemmas 5.2.4 and 5.2.5.

In the next three lemmas, we show that any state p in the set Ti is in the set delay-safei(d);

that is, any state Ri-reachable from p within an amount of time d through an execution

fragment that involves no input actions on port j, is in the set Gi and any state Ri-reachable

from the state p in exactly an amount of time d through an execution fragment that involves

no input actions on port j, is in the set safei.

Lemma 5.2.7 futurei(Ti; [0; d])� Gi.

Proof: Let � be an execution fragment of the vehicles automaton of n steps and trajec-

tories, where n 2 N, that: starts in a state in Ti, is only comprised of states in Ri, involves

no input actions on port j, and has a limit time t that lies in the interval [0; d]. Letting pinit

and p�nal be the initial and �nal states of �, respectively, we must show that p�nal 2 Gi.

We use induction on the length n of the execution fragment � and the assertion p�nal: _xi �

pinit: _xi + t�cmax to show that p�nal 2 Gi.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of a single point trajectory and, therefore, p�nal = pinit

and p�nal: _xi = pinit: _xi. Moreover, since t = 0, it is the case that t�cmax = 0. It trivially

follows that p�nal: _xi � pinit: _xi + t�cmax.

The inductive step involves showing that if � is an execution fragment of length n = k+1, for

some k 2 N, then p�nal: _xi � pinit: _xi + t�cmax. Let �
0 be the part of the execution fragment

� comprised of the �rst k steps and trajectories. The induction hypothesis involves the

assertion that if p0init and p0final are the initial and �nal states of �0, respectively, and

t0 2 [0; t] is the limit time of �0, then it is the case that p0�nal: _xi � p0init: _xi + t0�cmax. Since

the �nal state of � is reached from the �nal state of �0 by a single step or trajectory, the

inductive step involves the consideration of all possible steps and trajectories leading from

p0�nal to p�nal.

In the case of a step, keeping in mind that the limit times of �0 and � are equal, i.e., t0 = t,

we consider all possible discrete actions by cases:

1. the actions brake(i)j and unbrake(i)j are not enabled because � involves no input

actions on port j.

69

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and since all ve-

hicle velocities are restricted to be non-negative, it follows that p�nal: _xi � p0�nal: _xi.

Moreover, from the induction hypothesis, we have p0�nal: _xi � p0init: _xi + t0�cmax. Since

pinit = p0init and t = t0, it follows that p�nal: _xi � pinit: _xi + t�cmax.

3. the actions colliding-pair(i0; i00), for i0; i00 2 I; i0 6= i00, and collision-effects(i000),

for i000 2 I , are not enabled because � is only comprised of states in Ri; recall that

Ri = Pnot-collided .

4. the actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j, and brick-wall(i00),

for i00 2 I; i00 6= i, do not a�ect the velocity of the vehicle i; that is, p�nal: _xi = p0�nal: _xi.

Moreover, from the induction hypothesis we have p0�nal: _xi � p0init: _xi + t0�cmax. Since

pinit = p0init and t = t0, it follows that p�nal: _xi � pinit: _xi + t�cmax.

In the case of a trajectory, since the change in velocity is equal to the integral of the

acceleration and the acceleration is bounded from above by the quantity �cmax, it is the case

that p�nal: _xi � p0�nal: _xi + (t � t0)�cmax. Moreover, from the induction hypothesis we have

p0�nal: _xi � p0init: _xi+ t0�cmax. Since pinit = p0init, it follows that p�nal: _xi � pinit: _xi+ t�cmax. This

result completes the induction.

Since pinit 2 Ti, it is the case that pinit: _xi � _cmax � d�cmax. Moreover, from the above

induction we have p�nal: _xi � pinit: _xi + t�cmax. Therefore, p�nal: _xi � _cmax � (d� t)�cmax, and

since d�t � 0 and �cmax > 0, it follows that p�nal: _xi � _cmax; that is, p�nal 2 Gi, as needed.

Lemma 5.2.8 futurei(Ti; 0) � Ti.

Proof: From Lemma 5.2.4 and the de�nition of Ti it is the case that Ti � safei. Therefore,

from Lemma 3.2.4, part 2, it follows that futurei(Ti; 0) � safei. Moreover, Lemma 5.2.5

implies that futurei(Ti; 0) � Wi. It remains to be shown that for all p; p0 2 Ri such that

p 2 Ti and p0 2 futurei(p; 0), it is the case that p
0: _xi � _cmax � d�cmax.

Because of the non-negative constraint on the vehicle velocities, the only discrete action

that could potentially increase the velocity of the vehicle i is the collision-effects(i)

action. However, the collision-effects(i) action is not enabled because the function

futurei(p; 0) only considers Ri-reachable states. If follows that p
0: _xi � p: _xi. Moreover, since

p 2 Ti, it is the case that p: _xi � _cmax�d�cmax. It trivially follows that p0: _xi � _cmax�d�cmax,

as needed.

Lemma 5.2.9 Ti � delay-safei(d).

Proof:We must show that futurei(Ti; [0; d])� Gi and futurei(Ti; d) � safei. The �rst condi-

tion follows directly from Lemma 5.2.7. For the second condition, from Lemma 3.2.1, part 1,

70

we have that futurei(Ti; d) � futurei(Ti; [0; d]). Therefore, from Lemma 5.2.7 it follows that

futurei(Ti; d) � Gi. Moreover, since futurei(Ti; d) restricts the reachable states to the set

Ri, it is the case that futurei(Ti; d) � Ri. Therefore, it is the case that futurei(Ti; d) � Wi

and from Lemma 5.2.4 it follows that futurei(Ti; d) � safei, as needed.

In the following lemma, we show that the os-prot-soloi protector implements the protec-

tor Abs(vehicles; Si; Ri; Gi; j; d). Since the protector automata os-prot-soloi and Absj

involve the composition of the same sensor automaton with distinct controller automata,

it su�ces to show that the discrete controller automaton of the protector os-prot-soloi

implements the discrete controller automaton DC(vehicles; Si; Ri; Gi; j; d).

Lemma 5.2.10 os-prot-soloi � Abs(vehicles; Si; Ri; Gi; j; d).

Proof: As noted above, both the os-prot-soloi and the Absj protectors involve the com-

position of the same sensor automaton with distinct controller automata. From Theo-

rem 2.7.4, it su�ces to show that the discrete controller automaton of os-prot-soloi

implements DCj . This is shown by a simulation from the discrete controller automaton of

os-prot-soloi to DCj .

The mapping between the states of the discrete controller automaton of os-prot-soloi

and DCj is almost the identity. In the discrete controller automaton of os-prot-soloi,

the variable sendj is equal to either one of the labels brake and unbrake, or the value null.

In the abstract discrete controller automaton, these valuations simply map to either the

actions brake(i)j and unbrake(i)j , or the value null, respectively.

The start states for the discrete controller automaton of os-prot-soloi and DCj are the

states in which sendj = null. These are mapped to each other according to the mapping

discussed above.

Furthermore, since the trajectories in both discrete controller automata are identical, we

need only consider their discrete transitions. We analyze the actions of the implementation

by cases, letting p denote any complete state of the vehicles automaton that corresponds

to y, i.e., p 2 VALID and pdYvehicles = y.

1. The snapshot(y)j action of the implementation sets sendj to brake, or unbrake. In

order to show that the behavior of the implementation is allowed by the speci�cation,

we must show that the input action snapshot(y)j of the implementation sets the

value of the sendj variable in such a way that the subsequently enabled action � of

the implementation (i) guarantees that for all p0; p00 2 Ri such that p0 2 futurei(p; 0)

and p0 ��! p00, it is the case that p00 2 delay-safei(d), if p 2 safei, and (ii) is an arbitrary

output action of the implementation, otherwise.

First, consider the case in which p 2 safei. Since Corollary 5.2.6 implies that p 2 Wi,

71

the discrete controller automaton of os-prot-soloi sets the variable sendj according

to whether the state p is in Ti, or not.

On one hand, if p 62 Ti then the discrete controller automaton of os-prot-soloi

sets the variable sendj to brake and the brake(i)j action is enabled. However, since

p 2 safei, Lemma 3.2.4, part 2, implies that p0 2 safei and from Corollary 5.2.6 it

follows that p0 2 Wi. Moreover, since the brake(i)j action sets the brake-req(i; j)

variable to True and a�ects neither the velocity of any of the vehicles, nor any of the

collided variables, it is the case that p00 2 Ri \ Gi \ PBij
, i.e., p00 2 Vi. Finally, from

Lemma 5.2.3, it follows that p00 2 delay-safei(d), as needed.

On the other hand, if p 2 Ti then the discrete controller automaton of os-prot-soloi

sets the variable sendj to unbrake and the unbrake(i)j action is enabled. From

Lemma 5.2.8, it follows that p0 2 Ti. Moreover, since the unbrake(i)j action sets the

brake-req(i; j) variable to False and a�ects neither the velocity of the vehicle i, nor

any of the collided variables, it is the case that p00 2 Ti. Finally, from Lemma 5.2.9, it

follows that p00 2 delay-safei(d), as needed.

Next, consider the case in which p 62 safei. In this case, the snapshot(y)j action of

the discrete controller automaton of os-prot-soloi sets the variable sendj to either

brake or unbrake and, subsequently, enables either the action brake(i)j or the action

unbrake(i)j. However, when p 62 safei, the DCj automaton sets the variable sendj

arbitrarily and, subsequently, enables an arbitrary output action. Therefore, the

behavior of the discrete controller automaton of os-prot-soloi is allowed by that of

the DCj automaton.

Therefore, the e�ects of the snapshot(y)j action of the implementation are allowed

by its speci�cation.

2. The brake(i)j and unbrake(i)j actions have identical e�ects in both discrete controller

automata. When the sendj variable matches the labels brake and unbrake, or the

actions brake(i)j and unbrake(i)j, the respective action is performed and the sendj

variable is set to the value null in both discrete controller automata.

3. The environment action in both discrete controller automata is stuttering. It fol-

lows that the mapping between the states of the discrete controller automaton of

os-prot-soloi and the DCj automaton prior to and succeeding the execution of the

environment action remains the same.

Corollary 5.2.11 The protector os-prot-soloi guarantees Gi in the vehicles automa-

ton starting from Si given Ri.

Proof: Follows directly from Lemma 5.2.10 and Theorem 3.2.9.

72

Table 5.2 Formal de�nitions of os-prot, Gos-prot, Sos-prot, and Ros-prot.

os-prot �
Y

i2 I

os-prot-soloi

Gos-prot �
\
i 2 I

Gi

Sos-prot �
\
i2 I

Si

Ros-prot � Pnot-collided

5.3 Protection System os-prot

We now de�ne the overspeed protector os-prot. As in the vehicle-wise case, we restrict

the states of the vehicles automaton to the set Pnot-collided as de�ned in Section 4.2, i.e.,

Ros-prot = Pnot-collided. Let Gos-prot and Sos-prot be the intersection of the sets Gi and Si,

for all i 2 I , respectively, and os-prot be the composition of the protectors os-prot-soloi,

for all i 2 I . The protector os-prot guarantees that the vehicles automaton remains

within Gos-prot starting from Sos-prot given Ros-prot. For reference, The formal de�nition

of the os-prot automaton and of the sets Gos-prot, Sos-prot, and Ros-prot are shown in

Table 5.2.

Corollary 5.3.1 The protector os-prot guarantees Gos-prot in the vehicles automaton

starting from Sos-prot given Ros-prot.

Proof: Follows directly from Corollary 5.2.11 and Theorem 3.1.4.

73

74

Chapter 6

Example 2:

Collision Avoidance on a Single

Track

This chapter is similar to Chapter 5; instead of an overspeed protector, here we present

a collision protector for the vehicles automaton. We de�ne the protector cl-prot that

guarantees that none of the vehicles collide, provided that they are all abiding by the

speed limit. The cl-prot protector is de�ned as the composition of n separate copies

of another protector called cl-prot-soloi, one copy for each vehicle i 2 I . Each of the

cl-prot-soloi protectors, for i 2 I , is an implementation of a particular instantiation of

the abstract protector automaton of Section 3.2 and guarantees that the vehicle i does not

collide into any of the vehicles it trails.

6.1 Protection System cl-prot-soloi

The cl-prot-soloi automata are vehicle-wise collision protectors and individually guar-

antee that the vehicle i does not collide into any of the vehicles it trails, provided that all

vehicles are abiding by the speed limit and that all other vehicles i0 2 I; i0 6= i, do not collide

into any of the vehicles they respectively trail. Each of the cl-prot-soloi protectors, for

i 2 I , is an implementation of the abstract protector of Section 3.2 specialized to particular

de�nitions of the parameters PP, S, R, G, j, and d.

The physical plant automaton, PP, is de�ned to be the vehicles automaton of Figure 4.1.

The port j and the sampling period d are de�ned to be the port and sampling period with

which the protector cl-prot-soloi communicates with the vehicles automaton and are

assumed arbitrary. The set of \good" states G is de�ned to be the set of states in which the

75

vehicle i has not collided into any of the other vehicles, i.e., G = VALID�Pcollided(i). In this

chapter, we use the notation Gi to refer to this de�nition of the set G. The set R is de�ned

to be the set R = Pnot-overspeed

T�T
i0 2 I;i0 6=iGi0

�
. This de�nition restricts the states of the

vehicles automaton to states in which all of the vehicles are abiding by the speed limit

and in which each of the remaining vehicles has never collided into any other vehicle. The

set of states S is de�ned to be the set safe de�ned in Section 3.2.1; that is, the set of states

of the PP automaton for which a single input action of PP on port j can guarantee that,

provided no new input actions on port j are allowed, all subsequently R-reachable states

will be in G. Once again, the de�nition of the set safe is specialized to the above de�nitions

of the automaton PP, the sets R and G, and the port j. In this chapter, we use the notation

Ri and Si to refer to the above de�nitions of the sets R and S.

The cl-prot-soloi protector automaton is an implementation of the abstract protector

automaton Abs(vehicles; Si; Ri; Gi; j; d). More precisely, as is the case for the abstract

protector Absj , we de�ne the cl-prot-soloi automaton to be the composition of a sensor

and a discrete controller automaton. These automata are implementations of their abstract

equivalents of Figures 3.2 and 3.3, specialized however, to the above de�nitions of the

parameters PP, S, R, G, j, and d. The sensor automaton is precisely the specialization of

the sensor automaton of Figure 3.2 to the above de�nitions of the parameters PP, etc. The

discrete controller automaton is de�ned in Figure 6.1.

The braking strategy of the cl-prot-soloi protector is as follows. The protector instructs

the vehicle i to brake if it has a d time unit claim overlap with any of the vehicles it

trails; that is, the protector instructs the vehicle i to brake if there exists a vehicle i0, for

i0 2 I; i0 6= i, such that the sections of the track claimed by the vehicles i and i0 in time d

overlap and xi < xi0 . The rationale behind this braking strategy is that a collision between

two vehicles in the vehicles automaton can only be prevented by instructing the trailing

vehicle to brake.

It is important to note that the abstract protector automatonAbs(vehicles; Si; Ri; Gi; j; d)

complies with the assumptions made about the abstract protector in Section 3.2.1. In partic-

ular, since the vehicle position variables, the vehicle velocity variables, and the collided vari-

ables are output variables of the vehicles automaton, the set safe is Yvehicles-determinable

and actions that guarantee safety can be determined from the output variables Yvehicles of

the vehicles automaton (Axioms 3.2.4 and 3.2.5, respectively). Moreover, the sets Ri and

Gi are Yvehicles-determinable (Axioms 3.2.6 and 3.2.7, respectively) and the set of start

states Si is a subset of the set safe (Axiom 3.2.8), since Si is de�ned to be the set safe.

In Section 3.1 it was shown that the abstract protector Absj guarantees that the physical

plant PP remains within G starting from S given R. Similarly, the cl-prot-soloi automa-

ton guarantees that the vehicles automaton remains within Gi starting from Si given Ri.

This is shown in the following section.

76

Figure 6.1 Discrete controller automaton for the protector cl-prot-soloi.

Actions: Input: e, the environment action (stuttering)

snapshot(y)j, for each valuation y of Yvehicles
Output: brake(i)j

unbrake(i)j
Variables: Internal: sendj 2 fbrake; unbrake; nullg, initially null

Discrete Transitions:

snapshot(y)j

E�: if 9 i0 2 I; i0 6= i such that

y 62 disjoint-claimed-tracks(i; i0; d)^ (y:xi < y:xi0)

then

sendj := brake

else

sendj := unbrake

brake(i)j

Pre: sendj = brake

E�: sendj := null

unbrake(i)j

Pre: sendj = unbrake

E�: sendj := null

Trajectories:

w:sendj � null

6.2 Correctness of cl-prot-soloi

The main result to be shown is that cl-prot-soloi � Abs(vehicles; Si; Ri; Gi; j; d). Since

both cl-prot-soloi and Abs(vehicles; Si; Ri; Gi; j; d) involve the composition of the same

sensor automaton with distinct discrete controller automata, Theorem 2.7.4 applies. There-

fore, it su�ces to show that the discrete controller automaton of cl-prot-soloi of Fig-

ure 6.1 implements the discrete controller automaton DC(vehicles; Si; Ri; Gi; j; d) of Fig-

ure 3.3. According to Theorem 2.6.1, this follows by showing that there exists a simulation

relation between the states of the discrete controller automaton of cl-prot-soloi and the

discrete controller automaton DC(vehicles; Si; Ri; Gi; j; d). We �rst give some useful set

de�nitions, then prove some lemmas, and �nally show the existence of such a simulation

relation. The correctness proof follows the steps of the correctness proof of Section 5.2.

In this section, we use the notation futurei, safei, very-safei, and delay-safei to denote the

specialization of the function future, the sets safe and very-safe, and the function delay-safe,

which are de�ned in Section 3.2.1, to the automaton vehicles, the sets Ri and Gi, and

77

Table 6.1 Sets used in the correctness proof of cl-prot-soloi.

Wi � VALID; for i 2 I, de�ned by

Wi = fp 2 Ri \Gi j @ i
0 2 I; i0 6= i : p:Oi \ p:Oi0 6= ; ^ p:xi < p:xi0g

Vi � VALID; for i 2 I, de�ned by

Vi = Wi \ PBij

Ti(t) � VALID; for i 2 I, and t 2 R�0
, de�ned by

Ti(t) = fp 2 Ri \Gi j @ i
0 2 I; i0 6= i : p:Ci(t) \ p:Ci0(t) 6= ; ^ p:xi < p:xi0g

the port j of the cl-prot-soloi protector. Moreover, since the environment action of

the vehicles automaton is stuttering, its consideration is omitted in all inductive proofs

involving the PP automaton.

We proceed by de�ning several sets that are used in the correctness proof of the protector

cl-prot-soloi. For reference, their formal de�nitions appear in Table 6.1.

Let Wi be the subset of Ri \ Gi comprised of the states in which the section of the track

owned by the vehicle i does not overlap the section of track owned by any of the vehicles

it trails; that is, for every state p in Wi, p 2 Ri \ Gi and there does not exist i0 2 I; i0 6= i

such that p:Oi \ p:Oi0 6= ; and p:xi < p:xi0 .

Let Vi be the subset of Wi comprised of the states in which the protector j is requesting

the vehicle i to brake; that is, Vi = Wi \ PBij
.

Let Ti(t), where t 2 R
�0, be the subset of Ri \ Gi comprised of the states in which the

section of the track claimed in time t by the vehicle i does not overlap the section of the

track claimed in time t by any of the vehicles it trails; that is, for every state p in Ti(t),

p 2 Ri \ Gi and there does not exist i0 2 I; i0 6= i such that p:Ci(t) \ p:Ci0(t) 6= ; and

p:xi < p:xi0 .

Lemma 6.2.1 For all t; t0 2 R�0, t � t0, the following hold:

1. Ti(t) � Wi � Gi.

2. Vi � Wi � Gi.

3. Ti(t
0) � Ti(t).

4. Ti(0) = Wi.

78

Proof: Follow directly from the de�nitions of the sets Gi, Wi, and Ti(�), where � 2 R
�0,

and Lemma 4.4.2.

In the following three lemmas, we show that any state Ri-reachable from a state in Vi

through an execution fragment that involves no input actions on port j, is in Vi. In the

�rst lemma, we show that if the �nal state of such an execution fragment is in Gi and the

section of track owned by the vehicle i has not grown since the beginning of the execution

fragment, then the �nal state of the execution fragment is in Vi. In the second lemma, we

show that the �nal state of any such execution fragment is in Gi and the section of track

owned by the vehicle i does not grow throughout the execution fragment. Finally, the third

lemma combines these two results and states formally the desired property.

Lemma 6.2.2 Let p 2 Vi and p
0 2 futurei(p;R

�0). If p0 2 Gi and p
0:Oi � p:Oi then p

0 2 Vi.

Proof: We need to show that p0 2 Ri \Gi \ PBij
and that there does not exist i0 2 I; i0 6= i

such that p0:Oi \ p
0:Oi0 6= ; and p0:xi < p0:xi0 . We consider these conditions by cases:

1. p0 2 Ri.

This is the case because the function futurei(p;R
�0) only considers Ri-reachable states.

2. p0 2 Gi.

This is true by assumption.

3. p0 2 PBij
.

Since p 2 PBij
, it is the case that p:brake-req(i; j) = True. Moreover, the brake-req(i; j)

variable can only be set to False by an unbrake(i)j action | an action not allowed

by the function futurei(p;R
�0). Therefore, it follows that p0 2 PBij

, as needed.

4. @ i0 2 I; i0 6= i; such that p0:Oi \ p
0:Oi0 6= ; and p0:xi < p0:xi0 .

Because p 2 Vi we have that for all i0 2 I; i0 6= i such that p:xi < p:xi0 it is the

case that p:Oi \ p:Oi0 = ;; that is, for all i0 2 I; i0 6= i such that p:xi < p:xi0 it

is the case that max(p:Oi) < min(p:Oi0). However, by assumption it is the case

that p0:Oi � p:Oi. Therefore, since the vehicle velocities are restricted to be non-

negative, it follows that for all i0 2 I; i0 6= i such that p0:xi < p0:xi0 it is the case that

max(p0:Oi) < min(p0:Oi0). This is su�cient to guarantee that there does not exist

i0 2 I; i0 6= i such that p0:Oi \ p
0:Oi0 6= ; and p0:xi < p0:xi0 .

Lemma 6.2.3 For all p 2 Vi, if p
0 2 futurei(p;R

�0), then p0 2 Gi and p0:Oi � p:Oi.

79

Proof: Let � be an execution fragment of the vehicles automaton of n steps and trajec-

tories, where n 2 N, that: starts in a state in Vi, is only comprised of states in Ri, and

involves no input actions on port j. Letting pinit and p�nal be the initial and �nal states

of �, respectively, we must show that p�nal 2 Gi and p�nal:Oi � pinit:Oi. The proof is by

induction on the length n of the execution fragment �.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of a single point trajectory and, therefore, p�nal = pinit.

From Lemma 6.2.1, part 2, and the fact that pinit 2 Vi, it follows that p�nal 2 Gi. Moreover,

the fact that p�nal:Oi � pinit:Oi is trivially true.

The inductive step involves showing that if � is an execution fragment of length n = k+ 1,

for some k 2 N, then p�nal 2 Gi and p�nal:Oi � pinit:Oi. Let �
0 be the part of the execution

fragment � comprised of the �rst k steps and trajectories. The induction hypothesis involves

the assertion that if p0init and p0final are the initial and �nal states of �0, respectively, then

it is the case that p0�nal 2 Gi and p
0
�nal:Oi � p0init:Oi. Moreover, from Lemma 6.2.2 it follows

that p0�nal 2 Vi. Since the �nal state of � is reached from the �nal state of �0 by a single

step or trajectory, the inductive step involves the consideration of all possible steps and

trajectories leading from p0�nal to p�nal.

In the case of a step, we consider all possible discrete actions by cases:

1. the actions brake(i)j and unbrake(i)j are not enabled because � involves no input

actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and does not a�ect

the variables collided(i; i0), for i0 2 I; i0 6= i.

From the induction hypothesis, it is the case that p0�nal 2 Gi. Therefore, since the

internal action brick-wall(i) does not a�ect the variables collided(i; i0), for i0 2 I; i0 6=

i, it follows that p�nal 2 Gi.

Moreover, since the vehicle velocities are restricted to be non-negative, it is the case

that p�nal: _xi � p0�nal: _xi. From Lemma 4.4.3, part 1, it follows that p�nal:Oi � p0�nal:Oi.

However, from the induction hypothesis it is the case that p0�nal:Oi � p0init:Oi. There-

fore, since pinit = p0init, it follows that p�nal:Oi � pinit:Oi, as needed.

3. the actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j, and brick-wall(i00),

for i00 2 I; i00 6= i, a�ect neither the velocity of the vehicle i, nor the variables

collided(i; i000), for i000 2 I; i000 6= i.

From the induction hypothesis, it is the case that p0�nal 2 Gi. Therefore, since the

actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j, and brick-wall(i00), for

i00 2 I; i00 6= i, do not a�ect the variables collided(i; i000), for i000 2 I; i000 6= i, it follows

that p�nal 2 Gi.

80

Moreover, since the input actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j,

and the internal actions brick-wall(i00), for i00 2 I; i00 6= i, do not a�ect the velocity of

the vehicle i, it is the case that p�nal: _xi = p0�nal: _xi. From Lemma 4.4.3, part 1, it follows

that p�nal:Oi � p0�nal:Oi. However, from the induction hypothesis it is the case that

p0�nal:Oi � p0init:Oi. Therefore, since pinit = p0init, it follows that p�nal:Oi � pinit:Oi, as

needed.

4. the actions colliding-pair(i0; i00), for i0; i00 2 I; i0 6= i00, and collision-effects(i000),

for i000 2 I , are not enabled because � is only comprised of states in Ri and p
0
�nal 2 Vi.

In the case of a trajectory, since p0 2 Vi and Vi � PBij
, Lemma 4.4.4, part 1, implies that

p�nal:Oi � p0�nal:Oi. However, from the induction hypothesis it is the case that p0�nal:Oi �

p0init:Oi. Therefore, since pinit = p0init, it follows that p�nal:Oi � pinit:Oi. Moreover, since

p0�nal 2 Gi and the variables collided(i; i0), for all i0 2 I; i0 6= i, remain constant throughout

the trajectory, it follows that p�nal 2 Gi, as needed.

Lemma 6.2.4 futurei(Vi;R
�0) � Vi.

Proof: Follows directly from Lemmas 6.2.2 and 6.2.3.

In the following two lemmas, we use Lemma 6.2.4 to show that Vi � very-safei and Vi �

delay-safei(t), for any t 2 R
�0, respectively.

Lemma 6.2.5 Vi � very-safei.

Proof: From the de�nition of very-safe in Section 3.2.1, we must show that the condition

futurei(Vi;R
�0) � Gi is satis�ed. This follows directly from Lemma 6.2.4 and Lemma 6.2.1,

part 2.

Lemma 6.2.6 For any t 2 R�0, it is the case that Vi � delay-safei(t).

Proof: Follows directly from Lemma 6.2.5 and Lemma 3.2.5, part 1.

In the next three lemmas and the subsequent corollary, we show that the sets Wi and safei

are equal. First, we show that any state that is Ri-reachable from a state p in Wi through

an execution fragment that involves no input actions on port j and has a limit time equal

to zero, is in the set Wi. Then, we show that Wi � safei and safei � Wi. Finally, the

subsequent corollary states that Wi = safei.

Lemma 6.2.7 futurei(Wi; 0) � Wi.

81

Proof: Let � be an execution fragment of the vehicles automaton of n steps, where n 2 N,

that: starts in a state in Wi, is only comprised of states in Ri, involves no input actions on

port j, and has a limit time equal to zero. Moreover, let pinit and p�nal be the initial and

�nal states of �, respectively. By induction on the length n of the execution fragment �,

we show that p�nal 2 Wi.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of no steps and, therefore, p�nal = pinit. Since pinit 2 Wi,

it follows that p�nal 2 Wi.

The inductive step involves showing that if � is an execution fragment of length n = k+ 1,

for some k 2 N, then p�nal 2Wi. Let �
0 be the part of the execution fragment � comprised

of the �rst k steps. The induction hypothesis involves the assertion that if p0final is the �nal

state of �0, then it is the case that p0�nal 2Wi. Since the �nal state of � is reached from the

�nal state of �0 by a single step, the inductive step involves the consideration of all possible

steps leading from p0�nal to p�nal.

To complete the induction, we consider all possible discrete actions by cases:

1. the actions brake(i)j and unbrake(i)j are not enabled because � involves no input

actions on port j.

2. the actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j, a�ect neither the

velocity of any of the vehicles, nor the variables collided(i; i00), for i00 2 I; i00 6= i.

From the induction hypothesis, it is the case that p0�nal 2 Wi. Since the actions

brake(i0)j0 , unbrake(i0)j0 , for i0 2 I; j0 2 J; j0 6= j, do not a�ect the variables

collided(i; i00), for i00 2 I; i00 6= i, it follows that p�nal 2 Gi.

Moreover, the actions brake(i0)j0 and unbrake(i0)j0 , for i
0 2 I; j0 2 J; j0 6= j, do not

a�ect the velocity of any of the vehicles, i.e., p�nal: _xi00 = p0�nal: _xi00 , for all i
00 2 I . From

Lemma 4.4.3, part 1, it follows that the section of the track owned by each of the

vehicles does not grow, i.e., p�nal:Oi00 � p0�nal:Oi00 , for all i
00 2 I . Since p0�nal 2 Wi, the

sections of track owned in state p0�nal by the vehicle i does not overlap the sections of

track owned by any of the vehicles it trails. From above however, p�nal:Oi00 � p0�nal:Oi00 ,

for all i00 2 I , and, therefore, the same applies for the state p�nal.

Finally, since all states in � are, by de�nition, restricted to the set Ri, it follows that

p�nal 2 Wi.

3. the brick-wall(i0) actions, for i0 2 I , set the velocity of the vehicle i0 to zero and

a�ect neither the variables collided(i; i00), for i00 2 I; i00 6= i, nor the velocity of any of

the other vehicles, i.e., p�nal: _xi000 = p0�nal: _xi000 , for all i
000 2 I; i000 6= i0.

Without loss of generality, consider a particular brick-wall(i0) action, for some i0 2 I .

From the induction hypothesis, it is the case that p0�nal 2 Wi. Since the brick-wall(i
0)

82

action does not a�ect the variables collided(i; i00), for i00 2 I; i00 6= i, it follows that

p�nal 2 Gi.

The brick-wall(i0) action sets the velocity of the vehicle i0 to zero. Therefore, since

the vehicle velocities are restricted to be non-negative, it is the case that p�nal: _xi0 �

p0�nal: _xi0 . From Lemma 4.4.3, part 1, it follows that p�nal:Oi0 � p0�nal:Oi0 . Moreover,

since the brick-wall(i0) action does not a�ect the velocity of any of the other vehicles,

it is the case that p�nal: _xi00 = p0�nal: _xi00 , for all i
00 2 I; i00 6= i0. Again, from Lemma 4.4.3,

part 1, it follows that the section of the track owned by any of the vehicles other than

i0 does not grow, i.e., p�nal:Oi00 � p0�nal:Oi00 , for all i
00 2 I; i00 6= i0.

Since p0�nal 2 Wi, the sections of track owned in state p0�nal by the vehicle i does

not overlap the sections of track owned by any of the vehicles it trails. From above

however, p�nal:Oi00 � p0�nal:Oi00 , for all i
00 2 I , and, therefore, the same applies for the

state p�nal.

Finally, since all states in � are, by de�nition, restricted to the set Ri, it follows that

p�nal 2 Wi.

4. the actions colliding-pair(i0; i00), for i0; i00 2 I; i0 6= i00, and collision-effects(i000),

for i000 2 I , are not enabled because � is only comprised of states in Ri and p
0
�nal 2 Wi.

Lemma 6.2.8 Wi � safei.

Proof: From the de�nition of safe in Section 3.2.1, we must show that any state p 2 Wi

satis�es: (i) futurei(p; 0) � Gi, and (ii) there exists some action � such that for every

p0; p00 2 Ri satisfying p
0 2 futurei(p; 0) and p0 ��! p00, it is the case that p00 2 very-safei.

(i) The �rst condition follows from Lemma 6.2.7, Lemma 6.2.1, part 1, and the fact that

p 2 Wi.

(ii) For the second condition, consider the state p00 that follows from p0 after a brake(i)j

action is executed, i.e., let � = brake(i)j. Since the brake(i)j action does not a�ect the

velocity of the vehicle i, it is the case that p00:Oi = p0:Oi. However, from Lemma 6.2.7 and

the fact that p 2 Wi it follows that p
0 2 Wi. Since (i) p

0 2 Wi, (ii) the execution fragment

� is restricted to the set Ri, and (iii) the brake(i)j action a�ects neither the variables

collided(i; i0), for i0 2 I; i0 6= i, nor the velocity of any of the vehicles (and, therefore, nor

the section of the track owned by any of the vehicles), it follows that p00 2 Wi. Moreover,

since p00 follows from p0 after a brake(i)j action, it is the case that p
00 2 PBij

. From the

above conditions, it follows that p00 2 Vi. Finally, Lemma 6.2.5 implies that p
00 2 very-safei,

as needed.

Lemma 6.2.9 For any p 2 Ri, if p 2 safei then p 2 Wi.

83

Proof: We show the contrapositive; that is, for any p 2 Ri, if p 62 Wi then p 62 safei. Since

Wi = fp 2 Ri \ Gi j @ i
0 2 I; i0 6= i : p:Oi \ p:Oi0 6= ; ^ p:xi < p:xi0g and p 2 Ri, we

consider the condition p 62 Gi and the condition that there exists i0 2 I; i0 6= i, such that

p:Oi \ p:Oi0 6= ; and p:xi < p:xi0 .

1. p 62 Gi.

From Lemma 3.2.4, part 1, it is the case that safei � Gi. Since p 62 Gi, it follows that

p 62 safei.

2. 9 i0 2 I; i0 6= i, such that p:Oi \ p:Oi0 6= ; and p:xi < p:xi0 .

Without loss of generality, let i0 2 I; i0 6= i; be the vehicle that satis�es the conditions

p:Oi \ p:Oi0 6= ; and p:xi < p:xi0 . Since p 2 VALID, it is the case that the vehicles in

state p have no positive length extent overlap and, therefore, there is only one vehicle

i0, for i0 2 I; i0 6= i, satisfying the conditions p:Oi \ p:Oi0 6= ; and p:xi < p:xi0.

We must show that p 62 safei. However, p 2 safei implies that there exists some

input action � on port j such that for every p0; p00 2 Ri satisfying p0 2 futurei(p; 0)

and p0 ��! p00, it is the case that p00 2 very-safei. Therefore, it su�ces to show that

for any input action � on port j, there exist p0; p00 2 Ri satisfying p0 2 futurei(p; 0)

and p0 ��! p00, such that p00 62 very-safei. We consider each input action � on port j

separately.

(a) � = brake(i)j.

Consider the state p0 2 Ri that is reached from the state p through the execution

of the action brick-wall(i0) and satis�es the condition p0:�xi0 = 0; that is, p0 2 Ri

such that p0: _xi0 = 0 and p0:�xi0 = 0.

Since the actions brick-wall(i0) and brake(i)j a�ect neither the position, nor

the velocity of the vehicle i, it is the case that p00:xi = p0:xi = p:xi and p00: _xi =

p0: _xi = p: _xi. Therefore, since the section of track owned by the vehicle i depends

only on the position and the velocity of the vehicle i, it is the case that p00:Oi =

p0:Oi = p:Oi. Similarly, since the brick-wall(i0) action does not a�ect the

position of the vehicle i0 but sets its velocity to zero and the brake(i)j action

a�ects neither the position, nor the velocity of the vehicle i0, it follows that

p00:xi0 = p0:xi0 = p:xi0 and p00: _xi0 = p0: _xi0 = 0. Therefore, since p:Oi \ p:Oi0 6= ;,

p00:Oi = p:Oi, and p00:xi0 = p:xi0, it is the case that p
00:xi0 2 p00:Oi.

Now, consider the evolution of the vehicles automaton following the state p00

in which the vehicle i0 remains stationary. Since p00:xi0 2 p00:Oi, it follows that

at some state of such an evolution the action colliding-pair(i; i0) is enabled

and, subsequently, executed. The state of the vehicles automaton following the

execution of the action colliding-pair(i; i0) would, therefore, not be in Gi. It

follows that p00 62 very-safei which implies that p 62 safei.

84

(b) � = unbrake(i)j.

Consider the state p0 2 Ri that is reached from the state p through the execution

of the actions brick-wall(i0) and unbrake(i)j0, for all j
0 2 J; j0 6= j, and satis�es

the condition p0:�xi0 = 0; that is, p0 2 Ri such that p0: _xi0 = 0, p0:�xi0 = 0, and

p0:brake-req(i; j 0) = False, for all j0 2 J; j0 6= j.

Since the actions brick-wall(i0) and unbrake(i)j0 , for all j
0 2 J , a�ect neither

the position, nor the velocity of the vehicle i, it follows that p00:xi = p0:xi = p:xi

and p00: _xi = p0: _xi = p: _xi. Therefore, since the section of track owned by the

vehicle i depends only on the position and the velocity of the vehicle i, it is

the case that p00:Oi = p0:Oi = p:Oi. Similarly, since the action brick-wall(i0)

does not a�ect the position of the vehicle i0 but sets its velocity to zero and the

actions unbrake(i)j0, for all j
0 2 J , a�ect neither the position, nor the velocity

of the vehicle i0, it follows that p00:xi0 = p0:xi0 = p:xi0 and p00: _xi0 = p0: _xi0 = 0.

Therefore, since p:Oi \ p:Oi0 6= ;, p00:Oi = p:Oi, and p00:xi0 = p:xi0 , it is the case

that p00:xi0 2 p00:Oi.

Now, consider the evolution of the vehicles automaton following the state p00

in which the vehicle i moves forward and the vehicle i0 remains stationary. Since

p00:xi0 2 p00:Oi, it follows that at some state of such an evolution the action

colliding-pair(i; i0) is enabled and, subsequently, executed. The state of the

vehicles automaton following the execution of the action colliding-pair(i; i0)

would, therefore, not be in Gi. It follows that p
00 62 very-safei which implies that

p 62 safei.

Thus, for any input action � on port j, there exist p0; p00 2 Ri satisfying p0 2

futurei(p; 0) and p0 ��! p00, such that p00 62 very-safei. It follows that p 62 safei, as

needed.

Corollary 6.2.10 Wi = safei.

Proof: Follows directly from Lemmas 6.2.8 and 6.2.9.

In the next few lemmas, we show that any state p in the set Ti(t), for any t 2 R
�0, is in the

set delay-safei(t); that is, any state Ri-reachable from p within an amount of time t through

an execution fragment that involves no input actions on port j, is in the set Gi and any

state Ri-reachable from the state p in exactly an amount of time t through an execution

fragment that involves no input actions on port j, is in the set safei.

Lemma 6.2.11 Let p 2 Ti(�), where � 2 R�0, and p0 2 futurei(p; t), where t 2 [0; �]. If

p0 2 Gi and p
0:Ci(� � t) � p:Ci(�), then p0 2 Ti(� � t).

85

Proof: We need to show that p0 2 Ri \ Gi and that there does not exist i0 2 I; i0 6= i such

that p0:Ci(� � t) \ p0:Ci0(� � t) 6= ; and p0:xi < p0:xi0 . We consider the conditions by cases:

1. p0 2 Ri.

This is the case because the function futurei(p; t) only considers Ri-reachable states.

2. p0 2 Gi.

This is true by assumption.

3. @ i0 2 I; i0 6= i; such that p0:Ci(� � t) \ p0:Ci0(� � t) 6= ; and p0:xi < p0:xi0.

Because p 2 Ti(�) we have that for all i
0 2 I; i0 6= i, such that p:xi < p:xi0 , it is the

case that p:Ci(�)\ p:Ci0(�) = ;; that is, for all i0 2 I; i0 6= i, such that p:xi < p:xi0 , it

is the case that max(p:Ci(�)) < min(p:Ci0(�)). However, by assumption it is the case

that p0:Ci(� � t) � p:Ci(�). Therefore, since the vehicle velocities are restricted to be

non-negative, it follows that for all i0 2 I; i0 6= i, such that p0:xi < p0:xi0 , it is the case

that max(p0:Ci(� � t)) < min(p0:Ci0(� � t)). This is su�cient to guarantee that there

does not exist i0 2 I; i0 6= i, such that p0:Ci(� � t)\ p0:Ci0(� � t) 6= ; and p0:xi < p0:xi0 .

Lemma 6.2.12 For all p 2 Ti(�), where � 2 R
�0, and p0 2 futurei(p; t), where t 2 [0; �], it

is the case that p0 2 Gi and p
0:Ci(� � t) � p:Ci(�).

Proof: Let � 2 R�0 and � be an execution fragment of the vehicles automaton of n steps

and trajectories, where n 2 N, that: starts in a state in Ti(�), is only comprised of states

in Ri, involves no input actions on port j, and has a limit time t that lies in the interval

[0; �]. Letting pinit and p�nal be the initial and �nal states of �, respectively, we must show

that p�nal 2 Gi and p�nal:Ci(� � t) � pinit:Ci(�). The proof is by induction on the length n

of the execution fragment �.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of a single point trajectory and, therefore, p�nal = pinit

and �:ltime = 0, i.e., t = 0. From Lemma 6.2.1, part 1, and the fact that pinit 2 Ti(�), it

follows that p�nal � Gi. Moreover, since t = 0, the fact that p�nal:Ci(� � t) � pinit:Ci(�) is

trivially true.

The inductive step involves showing that if � is an execution fragment of length n = k+ 1,

for some k 2 N, with �:ltime = t, where t 2 [0; �], then p�nal 2 Gi and p�nal:Ci(� � t) �

pinit:Ci(�). Let �0 be the part of the execution fragment � comprised of the �rst k steps

and trajectories and let �0:ltime = t0, where t0 2 [0; t]. The induction hypothesis involves

the assertion that if p0init and p
0
final are the initial and �nal states of �

0, respectively, then it

is the case that p0�nal 2 Gi and p
0
�nal:Ci(� � t0) � p0init:Ci(�). Moreover, from Lemma 6.2.11

86

it follows that p0�nal 2 Ti(� � t0). Since the �nal state of � is reached from the �nal state of

�0 by a single step or trajectory, the inductive step involves the consideration of all possible

steps and trajectories leading from p0�nal to p�nal.

In the case of a step, keeping in mind that the limit times of �0 and � are equal, i.e., t0 = t,

we consider all possible actions by cases:

1. the actions brake(i)j and unbrake(i)j are not enabled because � involves no input

actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and does not a�ect

the variables collided(i; i0), for i0 2 I; i0 6= i.

From the induction hypothesis, it is the case that p0�nal 2 Gi. Therefore, since the

internal action brick-wall(i) does not a�ect the variables collided(i; i0), for i0 2 I; i0 6=

i, it follows that p�nal 2 Gi.

Moreover, since the vehicle velocities are restricted to be non-negative, it is the case

that p�nal: _xi � p0�nal: _xi. From Lemma 4.4.3, part 2, it follows that p�nal:Ci(� �

t) � p0�nal:Ci(� � t0). However, from the induction hypothesis it is the case that

p0�nal:Ci(� � t0) � p0init:Ci(�). Therefore, since pinit = p0init, it follows that p�nal:Ci(� �

t) � pinit:Ci(�), as needed.

3. the actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j, and brick-wall(i00),

for i00 2 I; i00 6= i, a�ect neither the velocity of the vehicle i, nor the variables

collided(i; i000), for i000 2 I; i000 6= i.

From the induction hypothesis, it is the case that p0�nal 2 Gi. Therefore, since the

actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j, and brick-wall(i00), for

i00 2 I; i00 6= i, do not a�ect the variables collided(i; i000), for i000 2 I; i000 6= i, it follows

that p�nal 2 Gi.

Moreover, since the input actions brake(i0)j0 , unbrake(i
0)j0 , for i

0 2 I; j0 2 J; j0 6= j,

and the internal actions brick-wall(i00), for i00 2 I; i00 6= i, do not a�ect the velocity

of the vehicle i, it is the case that p�nal: _xi = p0�nal: _xi. From Lemma 4.4.3, part 2, it

follows that p�nal:Ci(� � t) � p0�nal:Ci(� � t0). However, from the induction hypothesis

it is the case that p0�nal:Ci(� � t0) � p0init:Ci(�). Therefore, since pinit = p0init, it follows

that p�nal:Ci(� � t) � pinit:Ci(�), as needed.

4. the actions colliding-pair(i0; i00), for i0; i00 2 I; i0 6= i00, and collision-effects(i000),

for i000 2 I , are not enabled because � is only comprised of states in Ri and p0�nal 2

Ti(� � t0).

In the case of a trajectory, Lemma 4.4.4, part 2, implies that p�nal:Ci(��t) � p0�nal:Ci(��t
0).

However, from the induction hypothesis it is the case that p0�nal:Ci(� � t0) � p0init:Ci(�).

87

Therefore, since pinit = p0init, it follows that p�nal:Ci(� � t) � pinit:Ci(�). Moreover, since

p0�nal 2 Gi and the variables collided(i; i0), for all i0 2 I; i0 6= i, remain constant throughout

the trajectory, it follows that p�nal 2 Gi, as needed.

Lemma 6.2.13 For � 2 R�0 and t 2 [0; �], it is the case that futurei(Ti(�); t) � Ti(� � t).

Proof: Follows directly from Lemmas 6.2.11 and 6.2.12.

Lemma 6.2.14 For all t 2 R�0, it is the case that Ti(t) � delay-safei(t).

Proof: We need to show that futurei(Ti(t); [0; t]) � Gi and futurei(Ti(t); t) � safei. The

�rst condition follows directly from Lemma 6.2.13 and Lemma 6.2.1, part 1. For the second

condition, from Lemma 6.2.13 and Lemma 6.2.1, part 3, it is the case that futurei(Ti(t); t) �

Wi. Therefore, Lemma 6.2.8, implies that futurei(Ti(t); t) � safei, as needed.

In the following lemma, we show that the cl-prot-soloi protector implements the pro-

tector Abs(vehicles; Si; Ri; Gi; j; d). Since the protector automata cl-prot-soloi and

Absj involve the composition of the same sensor automaton with distinct discrete con-

troller automata, it su�ces to show that the discrete controller automaton of the protector

cl-prot-soloi implements the DC(vehicles; Si; Ri; Gi; j; d) automaton.

Lemma 6.2.15 cl-prot-soloi � Abs(vehicles; Si; Ri; Gi; j; d).

Proof: Both the cl-prot-soloi and the Absj protectors involve the composition of the

same sensor automaton with distinct discrete controller automata. From Theorem 2.7.4, it

su�ces to show that the discrete controller automaton of cl-prot-soloi implements DCj .

This is shown by a simulation from the discrete controller automaton of cl-prot-soloi to

DCj .

As in the overspeed case, the mapping between the states of the discrete controller automa-

ton of cl-prot-soloi and DCj is almost the identity. In the discrete controller automaton

of cl-prot-soloi, the variable sendj is equal to either one of the labels brake and unbrake,

or the value null. In the abstract discrete controller automaton, these valuations simply

map to either the actions brake(i)j and unbrake(i)j, or the value null, respectively.

The start states for the discrete controller automaton of cl-prot-soloi and DCj are the

states in which sendj = null. These are mapped to each other according to the mapping

discussed above.

Furthermore, since the trajectories in both discrete controller automata are identical, we

need only consider their discrete transitions. We analyze the actions of the implementation

by cases, letting p denote any complete state of the vehicles automaton that corresponds

to y, i.e., p 2 VALID and pdYvehicles = y.

88

1. The snapshot(y)j action of the implementation sets sendj to brake, or unbrake. In

order to show that the behavior of the implementation is allowed by the speci�cation,

we must show that the input action snapshot(y)j of the implementation sets the

value of the sendj variable in such a way that the subsequently enabled action � of

the implementation (i) guarantees that for all p0; p00 2 Ri such that p0 2 futurei(p; 0)

and p0 ��! p00, it is the case that p00 2 delay-safei(d), if p 2 safei, and (ii) is an arbitrary

output action of the implementation, otherwise.

First, consider the case in which p 2 safei. Since Corollary 6.2.10 implies that p 2 Wi,

the discrete controller automaton of cl-prot-soloi sets the variable sendj according

to whether the state p is in Ti(d), or not.

On one hand, if p 62 Ti(d) then the discrete controller automaton of cl-prot-soloi

sets the variable sendj to brake and the brake(i)j action is enabled. However, since

p 2 Wi, Lemma 6.2.7 implies that p
0 2Wi. Moreover, since the brake(i)j action a�ects

neither the velocity of any of the vehicles, nor any of the collided variables, it follows

that p00 2 Ri, p
00 2 Gi, and p00: _xi = p0: _xi. Therefore, Lemma 4.4.3, part 1, implies

that p00:Oi � p0:Oi. From the above conditions and the non-negative constraint on the

vehicle velocities, it follows that p00 2 Wi. Moreover, since the brake(i)j action sets

the brake-req(i; j) variable to True, it follows that p00 2 Vi. Finally, from Lemma 6.2.6

it follows that p00 2 delay-safei(d), as needed.

On the other hand, if p 2 Ti(d) then the discrete controller automaton of the protector

cl-prot-soloi sets the variable sendj to unbrake and the unbrake(i)j action is

enabled. However, since p 2 Ti(d), Lemma 6.2.13 implies that p0 2 Ti(d). Since the

unbrake(i)j action a�ects neither the velocity of any of the vehicles, nor any of the

collided variables, it follows that p00 2 Ri, p
00 2 Gi, and p00: _xi = p0: _xi. Therefore,

Lemma 4.4.3, part 2, implies that p00:Ci(d) � p0:Ci(d). From the above conditions

and the non-negative constraint on the vehicle velocities, it follows that p00 2 Ti(d).

Finally, from Lemma 6.2.14 it follows that p00 2 delay-safei(d), as needed.

Next, consider the case in which p 62 safei. In this case, the snapshot(y)j action of

the discrete controller automaton of cl-prot-soloi sets the variable sendj to either

brake or unbrake and, subsequently, enables either the action brake(i)j, or the action

unbrake(i)j. However, when p 62 safei, the DCj automaton sets the variable sendj

arbitrarily and, subsequently, enables an arbitrary output action. Therefore, the

behavior of the discrete controller automaton of cl-prot-soloi is allowed by that of

the DCj automaton.

Therefore, the e�ects of the snapshot(y)j action of the implementation are allowed

by its speci�cation.

2. The brake(i)j and unbrake(i)j actions have identical e�ects in both discrete controller

automata. When the sendj variable matches the label brake or unbrake or the action

89

brake(i)j and unbrake(i)j, respectively, the respective action is performed and the

sendj variable is set to null in both discrete controller automata.

3. The environment action in both discrete controller automata is stuttering. It fol-

lows that the mapping between the states of the discrete controller automaton of

cl-prot-soloi and the DCj automaton prior to and succeeding the execution of the

environment action remains the same.

Corollary 6.2.16 The protector cl-prot-soloi guarantees Gi in the vehicles automaton

starting from Si given Ri.

Proof: Follows directly from Lemma 6.2.15 and Theorem 3.2.9.

6.3 Protection System cl-prot

We now de�ne the collision protector cl-prot. While considering the cl-prot automa-

ton, we restrict the states of the vehicles automaton to the set Pnot-overspeed as de�ned in

Section 4.2, i.e., Rcl-prot = Pnot-overspeed . Let Gcl-prot and Scl-prot be the intersection of

Gi and Si, for all i 2 I , respectively, and cl-prot be the composition of the protectors

cl-prot-soloi, for all i 2 I . The protector cl-prot guarantees that the vehicles au-

tomaton remains within Gcl-prot starting from Scl-prot given Rcl-prot. For reference, the

formal de�nitions of the cl-prot automaton and the sets Gcl-prot, Scl-prot, and Rcl-prot

are shown in Table 6.2.

Lemma 6.3.1 The protector cl-prot guarantees Gcl-prot in the vehicles automaton

starting from Scl-prot given Rcl-prot.

In the following proof, we show that all the states of an execution of PP�cl-prot starting

from Scl-prot given Rcl-prot are in Gcl-prot. This is done by applying Theorem 3.1.8 and

showing that the second condition of the theorem does not hold.

Proof: Let � be any execution of the system PP�cl-prot starting from a state in Scl-prot

and in which all states are in Rcl-prot.

From Theorem 3.1.8, one of the following holds:

1. Every state in � is in Gcl-prot =
T

i 2 I Gi.

2. � can be written as �1
_ �2, where

90

Table 6.2 Formal de�nitions of cl-prot, Gcl-prot, Scl-prot, and Rcl-prot.

cl-prot �
Y

i 2 I

cl-prot-soloi

Gcl-prot �
\
i 2 I

Gi

Scl-prot �
\
i 2 I

Si

Rcl-prot � Pnot-overspeed

(a) All state occurrences in �1 except possibly the last state occurrence are in the

set Gcl-prot =
T

i 2 I Gi.

(b) If the last state occurrence in �1 is in Gi, for some i 2 I , then there exists

i0 2 I; i0 6= i, such that the last state occurrence in �1 is in Gi0 .

(c) All state occurrences in �2 except possibly the �rst state occurrence are in the

set
T

i 2N past(Gi; �), for some N � I , where jN j � 2.

We proceed by showing that it is not possible to decompose � as �1
_ �2 while satisfying

the three aforementioned conditions.

The violation of
T

i 2 I Gi can only occur through the violation of at least one of the

conditions Gi, where i 2 I . Moreover, each of these conditions are violated only through

the execution of a colliding-pair action. Without loss of generality, suppose that the �rst

condition that is violated in � is the condition Gi, for some i 2 I , and that such a violation

has resulted through a colliding-pair(i; i0) action, for some i0 2 I; i0 6= i. Let p and p0 be

the states of the vehicles automaton prior to and succeeding this colliding-pair(i; i0)

action, i.e., p; p0 2 Rcl-prot such that p ��! p0, where � = colliding-pair(i; i0). Since

the colliding-pair(i; i0) action only sets the collided(i; i0) variable to True, it follows that

p0 2 Gi

T�T
i00 2 I;i00 6=i Gi00

�
. Now, we attempt to decompose � as �1

_ �2:

1. Suppose we split � at any state preceding the state p. Then the state p is in �2. Since

p0 is the �rst state in which one of the conditions Gi00 , for i
00 2 I , is violated, it is the

case that p 2
T

i00 2 I Gi00 and there does not exist N � I such that jN j � 2 and p 2T
i 2N past(Gi; �). Therefore, the third condition is violated and this decomposition

of � is not valid.

91

2. Suppose we split � at the state p. Then the state p0 is in �2. Since p0 is the �rst

state in which one of the conditions Gi00 , for i
00 2 I , is violated and since the state

p0 is in Gi

T�T
i00 2 I;i00 6=i Gi00

�
, it follows that there does not exist N � I such that

jN j � 2 and p0 2
T

i 2N past(Gi; �). Therefore, the third condition is violated and

this decomposition of � is not valid.

3. Suppose we split � at the state p0. Then p0 is the last state of �1 and the �rst state of

�2. However, p
0 2 Gi

T�T
i00 2 I;i00 6=i Gi00

�
. Therefore, the second condition is violated

and this decomposition of � is not valid.

4. Suppose we split � at any state succeeding p0. Then the state p0 is in �1. Since

p0 2 Gi

T�T
i00 2 I;i00 6=i Gi00

�
, it is the case that p0 62

T
i00 2 I Gi00 . Therefore, the �rst

condition is violated and this decomposition of � is not valid.

Therefore, the execution � cannot be decomposed into any such �1 and �2. It follows

that the �rst clause of Theorem 3.1.8 must hold; that is, every state in � is in Gcl-prot.

This implies that the protector cl-prot guarantees Gcl-prot in the vehicles automaton

starting from Scl-prot given Rcl-prot.

92

Chapter 7

Example 3:

Collision Avoidance on Merging

Tracks

This chapter treats collision avoidance among vehicles that are traveling on a track involving

a binary merge. We �rst augment the model of the PRT 2000TM to involve a track topology

consisting of two merging tracks | the new model is referred to as the merge-vehicles

automaton. Then we de�ne the protector merge-prot that guarantees that none of the

vehicles of the merge-vehicles automaton collide, assuming that they are all abiding

by the speed limit. The merge-prot protector is de�ned as the composition of n(n �

1)=2 separate copies of another protector called merge-prot-pairfi;i0g, one copy for each

unordered pair fi; i0g of vehicles of the merge-vehicles automaton, for i; i0 2 I; i 6= i0.

Each of these merge-prot-pairfi;i0g protectors, for i; i
0 2 I; i 6= i0, is an implementation of

a particular instantiation of the abstract protector automaton of Section 3.2 and guarantees

that the vehicles i and i0 do not collide into each other.

7.1 Augmented Physical Plant: merge-vehicles

In this section we augment the model for the system of n vehicles to involve a merge of two

sections of track. We replace the position component of a vehicle's state with a location

component | a component that speci�es the track on which the vehicle is traveling and

the vehicle's position with respect to the merge point | and update the de�nitions of

the discrete steps and the trajectories of the vehicles automaton to handle the location

variables. We replace the brake and unbrake input actions of the vehicles automaton

with protect input actions which allow single protectors to instruct multiple vehicles to

apply their \emergency" brakes. Finally, we augment the de�nitions of the discrete actions

93

pertaining to vehicle collisions such that the blame for a particular collision is assigned to

either only the trailing vehicle, if one vehicle collides into the other vehicle from behind, or

both vehicles, if the vehicles collide sideways while merging.

The set of track locations in the vehicles automaton was a line. In the case of a binary

merge, the set of locations is a Y-shaped track | two incoming branches and one outgoing

branch. We de�ne the set of locations L as follows:

L = (fleft; rightg �R<0) [(foutg �R�0)

Each location l, for l 2 L, is comprised of two components; the �rst component represents

the branch of the track on which the vehicle is traveling and the second component represents

the position of the vehicle with respect to the merge point. The locations on the top branch

of the merge have the label left and a negative real number as their respective components.

Similarly, the locations on the bottom branch of the merge have the label right and a

negative real number as their respective components. The locations on the merged section

of the track are speci�ed by the label out and a non-negative real number. The point

hout; 0i is the �rst point on the merged section of the track that no two vehicles can occupy

simultaneously. For notational brevity, we use l:b and l:x to denote the branch and the

position components of the location l, respectively.

We de�ne a partial order on L, as follows. If hb1; x1i and hb2; x2i are locations in L then

hb1; x1i � hb2; x2i if and only if x1 � x2 and either b1 = b2, or b2 = out. In other words,

two locations are incomparable if one speci�es a location on the left branch and the other

speci�es a location on the right branch; otherwise, they are comparable and their order is

given by the ordering on their real component.

A closed interval in L is speci�ed with an ordered pair of locations that are comparable,

e.g., [hleft;�1i; hout; 2:5i], and contains all locations between them. Addition with non-

negative scalars on L is de�ned as follows: if hb; xi is a location in L and y 2 R�0, then

hb; xi+y is equal to hb; x+yi if x+y is negative, and hout; x+yi otherwise. It is important

to note that for all y 2 R�0, hb; xi+ y exists and hb; xi � (hb; xi+ y).

The automaton merge-vehicles of Figure 7.1 models a physical system of n vehicles

traveling on a track involving a Y-shaped merge. The merge-vehicles automaton is the

result of augmenting the vehicles automaton of Chapter 4 to allow for the Y-shaped track

topology.

In the new model, each of the position components xi of the state of the vehicles automaton

is replaced with the corresponding location component li. This entails simply replacing the

occurrences of xi with li:x. The derived variables stop-disti, max-rangei(t), and max-veli(t),

for i 2 I and t 2 R�0, de�ned for the vehicles automaton in Section 4.3, carry over

unchanged to the merge-vehicles automaton. The derived variables Ei, Oi, and Ci(t),

94

Figure 7.1 The merge-vehicles automaton.

Actions: Variables

Input: Internal:
e, the environment action (stuttering)

protect(C)j , for all C 2 P(I); j 2 J

�xi 2R, for all i 2 I, initially �xi 2 R

brake(i) 2 Bool, for all i 2 I,

initially False

brake-req(i; j) 2 Bool, for all i 2 I; j 2 J ,

initially False
Internal: Output:

colliding-pair(i; i0), for all i; i0 2 I; i0 6= i

collision-effects(i), for all i 2 I

brick-wall(i), for all i 2 I

li 2 L, for all i 2 I, initially li 2 L

_xi 2R, for all i 2 I, initially _xi 2 R
collided(i; i0) 2 Bool, for all i; i0 2 I; i0 6= i,

initially False

subject to VALID

Discrete Transitions:

protect(C)j
E�: for all i 2 C

brake-req(i; j) := True

if :brake(i) then

brake(i) := True

if _xi = 0 then �xi := 0

else �xi := �cbrake
for all i 2 I � C

brake-req(i; j) := False

if brake(i) ^ (: _k 2 J brake-req(i; k)) then

brake(i) := False

�xi :2 [�cmin; �cmax]

colliding-pair(i; i0)

Pre: :collided(i; i0)
^(Ei \Ei0 6= ;)

^(li < min(Ei \Ei0))

E�: collided(i; i0) := True

if (li:b 6= li0 :b)

^(li:b 6= out) ^ (li0 :b 6= out)

then
collided(i0; i) := True

collision-effects(i)

Pre: collided(�; i; �)

E�: _xi :2R
�0

�xi :2R

brick-wall(i)
Pre: True

E�: _xi := 0

if brake(i) then �xi := 0
else �xi :2 [0; �cmax]

Trajectories:

for all i; i0 2 I; i 6= i0, collided(i; i0) is constant throughout w

for all i 2 I and j 2 J , brake(i) and brake-req(i; j) are constant throughout w

for all i; i0 2 I; i 6= i0

the function w:�xi is integrable

for all t 2 TI

w(t): _xi = w(0): _xi +
R t

0
w(s):�xi ds

w(t):li:x = w(0):li:x+
R t

0
w(s): _xi ds

if :w:collided(i; i0)
^(w(t):Ei \w(t):Ei0 6= ;)

^(w(t):li < min(w(t):Ei \ w(t):Ei0))
then

t = w:ltime

subject to VALID

95

for i 2 I and t 2 R�0, de�ned for the vehicles automaton in Sections 4.1 and 4.3, extend

to the merge-vehicles automaton by replacing the position variables with their location

counterparts.

In the vehicles automaton, a collision between two vehicles is recorded solely by the

trailing vehicle | as if it is the only vehicle blamed for the collision. The rationale behind

this approach is that the trailing vehicle is the only vehicle that is capable of preventing a

collision through braking; that is, the trailing vehicle is liable for the collision. This rationale

carries over to the merge-vehicles automaton with the exception that in the merge-

vehicles automaton it is possible for two vehicles to collide sideways while merging. In such

situations, it is not clear which vehicle is liable for the collision and, therefore, the collision is

recorded by both vehicles involved in the collision. This is done by augmenting the e�ects of

the colliding-pair(i; i0) actions, for i; i0 2 I; i 6= i0, so that a colliding-pair(i; i0) action

sets both the variables collided(i; i0) and collided(i0; i) to True when the vehicles i and i0 are

colliding sideways while merging. If indeed the vehicles i and i0 are colliding sideways while

merging, although both of the actions colliding-pair(i; i0) and colliding-pair(i0; i) are

enabled, only one of them is actually executed and neither of them is enabled thereafter.

The interpretation of the collided(i; i0) variables, for i; i0 2 I; i 6= i0, still remains the same;

that is, each of the variables collided(i; i0), for i; i0 2 I; i 6= i0, denotes whether the vehicle i

has collided into the vehicle i0. However, if collided(i; i0) = True and collided(i0; i) = False,

then it follows that the vehicle i has collided into the vehicle i0 from behind, where as, if

collided(i; i0) = True and collided(i0; i) = True, then it follows that the vehicles i and i0 have

collided sideways while merging.

The brake(i)j and unbrake(i)j actions of the vehicles automaton, for i 2 I and j 2 J ,

are replaced by the protect(C)j actions, for C 2 P(I) and j 2 J . These actions enable a

protector j to instruct each of the vehicles in the set of vehicles C to apply its \emergency"

brakes. If a vehicle i is a member of C then it is requested to brake by the protector j,

emulating a brake(i)j action of the vehicles automaton; otherwise, any previous request

of the protector j to brake the vehicle i is revoked, emulating an unbrake(i)j action of the

vehicles automaton.

As in the case of the vehicles automaton, the set of input actions of the merge-vehicles

automaton includes the actions protect(C)j, for C 2 P(I) and j 2 J ; that is, the merge-

vehicles automaton allows each protector j, for j 2 J , to brake any subset of the vehicles.

However, it is often the case that a protector j, for some j 2 J , need not schedule but a

subset of the actions protect(C)j , for C 2 P(I). In such cases, the protector j is speci�ed

as having only the output actions that it is capable of scheduling and the remaining input

actions of the merge-vehicles automaton on port j are ignored.

The remaining state variables and discrete actions of the vehicles automaton as well as the

notational shorthand collided(i; �), collided(�; i), and collided(�; i; �), for all i 2 I , de�ned

96

for the vehicles automaton in Section 4.1, carry over to the merge-vehicles automaton

unchanged.

In the case of the trajectories of the merge-vehicles automaton, it is important to note

that due to the nature of the set of locations L, as the vehicles travel past the merge point,

the branch component of their location variables changes from either left, or right to out.

Finally, we rede�ne the set VALID to account for the new track topology.

VALID � states(merge-vehicles); de�ned as the set of states of the merge-vehicles

automaton that satisfy the following conditions:

1. @ i; i0 2 I; i 6= i0, such that the set Ei \ Ei0 is a positive length closed interval

of L.

2. _xi � 0, for all i 2 I .

3. If :collided(�; i; �) then �xi 2 [�cmin; �cmax], for all i 2 I .

4. If :collided(�; i; �)^ brake(i) then if _xi = 0 then �xi = 0 else �xi = �cbrake , for all

i 2 I .

The merge-vehicles automaton complies with the assumptions made about the PP au-

tomaton in Section 3.2.1. The merge-vehicles automaton has neither input variables,

nor output actions, on any of its ports (Axioms 3.2.1 and 3.2.2, respectively). Moreover,

each of the actions protect(Cj)j , for j 2 J and Cj = fi j brake-req(i; j) = Trueg, is a no-op

input action on port j for any R � VALID. Therefore, the set of no-op input actions on

each port j 2 J and any R � VALID is non-empty (Axiom 3.2.3).

Henceforth, we assume that the sets disjoint-extents(i; i0), disjoint-owned-tracks(i; i0), and

disjoint-claimed-tracks(i; i0; t), for i; i0 2 I; i 6= i0 and t 2 R�0, de�ned for the vehicles

automaton in Section 4.3, have been extended to the merge-vehicles automaton to in-

corporate the rede�nitions of the derived variables used in their de�nitions. Moreover, we

assume that the Lemmas 4.4.1, 4.4.2, 4.4.3, 4.4.4, and 4.4.5 extend to the merge-vehicles

automaton in the obvious way.

7.2 Auxiliary Sets for the merge-vehicles Automaton

This section presents several auxiliary sets for the merge-vehicles automaton that are

comprised of states that satisfy particular properties. While their formal de�nitions appear

in Table 7.1, their informal descriptions follow.

comparable(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID comprised of the states in which

the locations of the vehicles i and i0 are comparable.

97

incomparable(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID comprised of the states in

which the locations of the vehicles i and i0 are not comparable.

yield-comparable(i; i0); for i; i0 2 I; i 6= i0, is the subset of comparable(i; i0) comprised of

the states in which, in the case of a claim overlap between the vehicles i and i0, the

vehicle i must yield to the vehicle i0. When the locations of the vehicles i and i0 are

comparable, the vehicle i must yield to the vehicle i0 if the location of the vehicle i is

strictly less than the location of the vehicle i0.

yield-incomparable(i; i0); for i; i0 2 I; i 6= i0, is the subset of incomparable(i; i0) comprised of

the states in which, in the case of a claim overlap between the vehicles i and i0, the

vehicle i must yield to the vehicle i0. When the locations of the vehicles i and i0 are

not comparable, the vehicle i must yield to the vehicle i0 if either only the vehicle i0

owns the merge point, or the vehicle i is traveling on the left branch and neither or

both vehicles own the merge point.

yield(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID comprised of the states in which, in

the case of a claim overlap between the vehicles i and i0, the vehicle i must yield to

the vehicle i0 in order to prevent a potential collision between the vehicles i and i0.

Since the above de�nitions only depend on the output variables of the merge-vehicles au-

tomaton, we often use the above sets to classify states of the output state set Ymerge-vehicles.

The following lemma describes some properties of the sets de�ned above.

Lemma 7.2.1 For all i; i0 2 I; i 6= i0, the following hold:

1. VALID = comparable(i; i0) [incomparable(i; i0).

2. comparable(i; i0) = yield-comparable(i; i0) [yield-comparable(i0; i).

3. yield-comparable(i; i0) \ yield-comparable(i0; i) = ;.

4. incomparable(i; i0) = yield-incomparable(i; i0) [yield-incomparable(i0; i).

5. yield-incomparable(i; i0)\ yield-incomparable(i0; i) = ;.

Proof: We prove each of the conditions separately:

1. This follows directly from the de�nition of comparable(i; i0) and incomparable(i; i0), for

i; i0 2 I; i 6= i0.

2. For all i; i0 2 I; i 6= i0, the sets yield-comparable(i; i0) and yield-comparable(i0; i) are

both subsets of the set comparable(i; i0). Therefore, it su�ces to show that any

state p in the set comparable(i; i0), for some i; i0 2 I; i 6= i0, is either in the set

yield-comparable(i; i0), or in the set yield-comparable(i0; i).

98

Table 7.1 Auxiliary sets for the merge-vehicles automaton.

comparable(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

comparable(i; i0) = fp 2 VALID j (p:li:b = p:li0 :b) _ (p:li:b = out) _ (p:li0 :b = out)g

incomparable(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

incomparable(i; i0) = VALID� comparable(i; i0)

yield-comparable(i; i0) � comparable(i; i0); for i; i0 2 I; i 6= i0, de�ned by

yield-comparable(i; i0) = fp 2 comparable(i; i0) j p:li < p:li0g

yield-incomparable(i; i0) � incomparable(i; i0); for i; i0 2 I; i 6= i0, de�ned by

yield-incomparable(i; i0) = fp 2 incomparable(i; i0) j (hout; 0i 62 p:Oi ^ hout; 0i 2 p:Oi0)

_ (hout; 0i 2 p:Oi ^ hout; 0i 2 p:Oi0

^ p:li:b = left)

_ (hout; 0i 62 p:Oi ^ hout; 0i 62 p:Oi0

^ p:li:b = left)g

yield(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

yield(i; i0) = yield-comparable(i; i0) [yield-incomparable(i; i0)

Let the state p be any state in comparable(i; i0), for some i; i0 2 I; i 6= i0. Since

comparable(i; i0) � VALID, it is the case that p 2 VALID. Therefore, the sections of

the track occupied by the vehicles i and i0 do not have a positive length closed interval

overlap. It follows that it is not possible for their locations to coincide; that is, for any

p 2 comparable(i; i0), it is the case that p:li 6= p:li0. Therefore, regarding the ordering

of the locations of the vehicles i and i0, there are only two viable cases:

(a) p:li < p:li0 . In this case, p 2 yield-comparable(i; i0).

(b) p:li0 < p:li. In this case, p 2 yield-comparable(i0; i).

3. If p 2 yield-comparable(i; i0) then it is the case that p:li < p:li0 . It follows that

p 62 yield-comparable(i0; i). Similarly, if p 2 yield-comparable(i0; i) then it is the case

that p:li0 < p:li. It follows that p 62 yield-comparable(i; i0). This su�ces.

4. For all i; i0 2 I; i 6= i0, the sets yield-incomparable(i; i0) and yield-incomparable(i0; i)

are both subsets of the set incomparable(i; i0). Therefore, it su�ces to show that any

99

state p in the set incomparable(i; i0), for some i; i0 2 I; i 6= i0, is either in the set

yield-incomparable(i; i0), or in the set yield-incomparable(i0; i).

Let the state p be any state in incomparable(i; i0), for some i; i0 2 I; i 6= i0, and without

loss of generality let the vehicle i be the vehicle traveling on the left incoming edge.

Regarding the ownership of the merge point by each of the vehicles, there are four

cases:

(a) hout; 0i 2 p:Oi ^ hout; 0i 2 p:Oi0. In this case, p 2 yield-incomparable(i; i0) and

p 62 yield-incomparable(i0; i).

(b) hout; 0i 62 p:Oi^hout; 0i 62 p:Oi0. Similarly to above, p 2 yield-incomparable(i; i0)

and p 62 yield-incomparable(i0; i).

(c) hout; 0i 62 p:Oi ^ hout; 0i 2 p:Oi0. In this case, p 2 yield-incomparable(i; i0) and

p 62 yield-incomparable(i0; i).

(d) hout; 0i 2 p:Oi ^ hout; 0i 62 p:Oi0. In this case, p 62 yield-incomparable(i; i0) and

p 2 yield-incomparable(i0; i).

5. This condition follows from the analysis in the proof of condition 4.

7.3 Protection System merge-prot-pairfi;i0g

Each merge-prot-pairfi;i0g automaton, for i; i
0 2 I; i 6= i0, is a vehicle-pair collision pro-

tector and guarantees that the vehicles i and i0 do not collide into each other, provided

that all the vehicles are abiding by the speed limit and the vehicles of all other vehicle

pairs do not collide between themselves. Each of the merge-prot-pairfi;i0g protectors, for

i; i0 2 I; i 6= i0, is an implementation of the abstract protector of Section 3.2 specialized to

particular de�nitions of the parameters PP, S, R, G, j, and d.

The physical plant automaton, PP, is de�ned to be the merge-vehicles automaton of

Figure 7.1. The port j and the sampling period d are de�ned to be the port and sampling

period with which the protector merge-prot-pairfi;i0g communicates with the merge-

vehicles automaton. They are assumed arbitrary and are �xed for the rest of the chap-

ter. The set of \good" states G is de�ned to be the set of states in which the vehicles i

and i0 have not collided into each other, i.e., G = VALID � Pcollided(i;i0) � Pcollided(i0;i).

In this chapter, we use the notation Gfi;i0g to denote the de�nition of G that is spe-

ci�c to the merge-prot-pairfi;i0g protector. The set R is de�ned to be the set R =

Pnot-overspeed

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0gGfi00;i000g

�
. This de�nition restricts the states of

the merge-vehicles automaton to states in which all the vehicles are abiding by the

speed limit and in which the vehicles of all other vehicle pairs fi00; i000g, for i00; i000 2 I; i00 6=

100

i000; fi00; i000g 6= fi; i0g, have not collided into each other. The set S is de�ned to be the set

safe as de�ned in Section 3.2.1; that is, the set of states of the PP automaton for which

a single input action of PP on port j can guarantee that, provided no new input actions

on port j are allowed, all subsequently R-reachable states will be in G. Once again, the

de�nition of the set safe is specialized to the above de�nitions of the automaton PP, the

sets R and G, and the port j. In this chapter, we use the notation Rfi;i0g and Sfi;i0g to refer

to the above de�nitions of the sets R and S.

The merge-prot-pairfi;i0g protector automaton is an implementation of the abstract pro-

tector automaton Abs(merge-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d). More precisely, as is the

case for the abstract protector Absj , we de�ne the merge-prot-pairfi;i0g automaton to be

the composition of a sensor and a discrete controller automaton. These automata are im-

plementations of their abstract equivalents of Figures 3.2 and 3.3 specialized, however, to

the above de�nitions of the parameters PP, S, R, G, j, and d. The sensor automaton is

precisely the specialization of the sensor automaton of Figure 3.2 to the above de�nitions

of the parameters PP, etc. The discrete controller automaton is de�ned in Figure 7.2.

The braking strategy of the merge-prot-pairfi;i0g protector is as follows. The protector

is allowed to brake the vehicles i and i0 only if the sections of the track they claim in time d

overlap. Given that the vehicles i and i0 are indeed involved in such a claim overlap, there

are two possible scenarios depending on whether the locations of the vehicles i and i0 are

comparable, or not. If their locations are comparable, then the vehicle i is instructed to

brake if it trails the vehicle i0; otherwise, the vehicle i0 is instructed to brake. On the other

hand, if the vehicle locations are not comparable, the vehicle i is instructed to brake either

if only the vehicle i0 owns the merge point, or if both or neither vehicles own the merge

point and the vehicle i is traveling on the left branch; otherwise, the vehicle i0 is instructed

to brake. In the latter case, we choose to brake the vehicle traveling on the left branch for

no particular reason. In fact, it is plausible to brake either or both of the vehicles involved

in the claim overlap. However, if both of the vehicles were instructed to brake, it would

be possible to reach a bottleneck state | a state in which both of the incoming vehicles

involved in the claim overlap are instructed to brake thereafter and, subsequently, none of

the trailing incoming vehicles would be capable of proceeding.

The braking strategy considers the case in which both the vehicles i and i0 own the merge

point. Although this situation is a valid state of the merge-vehicles automaton, in the

following section it is shown that such states are excluded from the reachable state set

of the composition of the merge-vehicles automaton and all the merge-prot-pairfi;i0g

protectors, for i; i0 2 I; i 6= i0. It is also important to note that, according to the braking

strategy and provided that the sections of track owned by the vehicles i and i0 are disjoint,

if the locations of the vehicles i and i0 are not comparable, then the section of the track

owned by the vehicle to be braked is entirely upstream of the merge point.

101

Figure 7.2 Discrete controller automaton for the protector merge-prot-pairfi;i0g.

Actions: Input: e, the environment action (stuttering)

snapshot(y)j, for each valuation y of Ymerge-vehicles
Output: protect(C)j, for C 2 P(fi; i0g)

Variables: Internal: sendj 2 P(fi; i
0g) [null, initially null

Discrete Transitions:

snapshot(y)j

E�: if y 62 disjoint-claimed-tracks(i; i0; d) then

if y 2 yield(i; i0) then

sendj := fig

else

sendj := fi0g

else

sendj := ;

protect(C)j

Pre: sendj = C

E�: sendj := null

Trajectories:

w:sendj � null

It is important to note that the abstract protector automaton Abs(merge-vehicles; Sfi;i0g;

Rfi;i0g; Gfi;i0g; j; d) complies with the assumptions made about the abstract protector in Sec-

tion 3.2.1. In particular, since the vehicle location variables, the vehicle velocity variables,

and the collided variables are output variables of the merge-vehicles automaton, the set

safe is Ymerge-vehicles-determinable and actions that guarantee safety can be determined

from the output variables of the merge-vehicles automaton (Axioms 3.2.4 and 3.2.5,

respectively). Moreover, the sets Rfi;i0g and Gfi;i0g are Ymerge-vehicles-determinable (Ax-

ioms 3.2.6 and 3.2.7, respectively) and the set of start states Sfi;i0g is a subset of the set

safe (Axiom 3.2.8), since Sfi;i0g is de�ned to be the set safe.

In Section 3.1 it was shown that the abstract protector Absj guarantees that the physical

plant PP remains within G starting from S given R. Similarly, the merge-prot-pairfi;i0g

automaton guarantees that the merge-vehicles automaton remains within Gfi;i0g starting

from Sfi;i0g given Rfi;i0g. This is shown in the following section.

102

7.4 Correctness of merge-prot-pairfi;i0g

The main result to be shown is thatmerge-prot-pairfi;i0g � Abs(merge-vehicles; Sfi;i0g;

Rfi;i0g; Gfi;i0g; j; d). Since both merge-prot-pairfi;i0g and Abs(merge-vehicles; Sfi;i0g;

Rfi;i0g; Gfi;i0g; j; d) involve the composition of the same sensor automaton with distinct dis-

crete controller automata, Theorem 2.7.4 applies. Therefore, it su�ces to show that the

discrete controller automaton of the protector merge-prot-pairfi;i0g of Figure 7.2 im-

plements the discrete controller automaton DC(merge-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d)

of Figure 3.3. From Theorem 2.6.1, this follows by showing that there exists a simu-

lation relation between the states of the discrete controller automaton of the protector

merge-prot-pairfi;i0g and the discrete controller automaton DC(merge-vehicles; Sfi;i0g;

Rfi;i0g; Gfi;i0g; j; d). We �rst give some set de�nitions, then prove some lemmas, and �nally

show the existence of such a simulation relation.

In this section, we use the notation futurefi;i0g, safefi;i0g, very-safefi;i0g, and delay-safefi;i0g

to denote the specialization of the function future, the sets safe and very-safe, and the

function delay-safe, which are de�ned in Section 3.2.1, to the automaton merge-vehicles,

the sets Rfi;i0g and Gfi;i0g, and the the port j of the merge-prot-pairfi;i0g protector.

Moreover, since the environment action of the merge-vehicles automaton is stuttering,

its consideration is omitted in all inductive proofs involving the PP automaton.

We proceed by de�ning several sets that are used in the correctness proof of the protector

merge-prot-pairfi;i0g. For reference, their formal de�nitions appear in Table 7.2.

Let Wfi;i0g be the subset of Rfi;i0g\Gfi;i0g comprised of the states in which the section of the

track owned by the vehicle i does not overlap the section of track owned by the vehicle i0;

that is, Wfi;i0g = Rfi;i0g \Gfi;i0g \ disjoint-owned-tracks(i; i0).

Let V(i;i0) be the subset of Wfi;i0g comprised of the states in which the vehicle i is being

instructed to brake by the protector j and either the locations of the vehicles i and i0 are

comparable and li < li0 , i.e., the vehicle i is trailing the vehicle i0, or the locations of the

vehicles i and i0 are incomparable and the section of the track owned by the vehicle i is

entirely upstream of the merge point hout; 0i. Moreover, let Vfi;i0g be de�ned as Vfi;i0g =

V(i;i0) [V(i0;i).

Let Tfi;i0g(t), where t 2 R�0, be the subset of Rfi;i0g \ Gfi;i0g comprised of the states in

which the section of the track claimed in time t by the vehicle i does not overlap the

section of the track claimed in time t by the vehicle i0; that is, Tfi;i0g(t) = Rfi;i0g \Gfi;i0g \

disjoint-claimed-tracks(i; i0; t).

The following lemma de�nes the relation among the sets Gfi;i0g,Wfi;i0g, Vfi;i0g, and Tfi;i0g(t),

for t 2 R�0.

Lemma 7.4.1 For all t; t0 2 R�0, t � t0, the following hold:

103

Table 7.2 Sets used in the correctness proof of merge-prot-pairfi;i0g.

Wfi;i0g � VALID; for i; i0 2 I; i 6= i0, de�ned by

Wfi;i0g = Rfi;i0g \Gfi;i0g \ disjoint-owned-tracks(i; i0)

V(i;i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

V(i;i0) = fp 2Wfi;i0g \ PBij
j (p 2 comparable(i; i0) ^ p:li < p:li0)

_ (p 2 incomparable(i; i0) ^max(p:Oi) < hout; 0i)g

Vfi;i0g � VALID; for i; i0 2 I; i 6= i0, de�ned by

Vfi;i0g = V(i;i0) [V(i0;i)

Tfi;i0g(t) � VALID; for i; i0 2 I; i 6= i0, and t 2 R�0
, de�ned by

Tfi;i0g(t) = Rfi;i0g \Gfi;i0g \ disjoint-claimed-tracks(i; i0; t)

1. Tfi;i0g(t) � Wfi;i0g � Gfi;i0g.

2. Vfi;i0g � Wfi;i0g � Gfi;i0g.

3. Tfi;i0g(t
0) � Tfi;i0g(t).

4. Tfi;i0g(0) = Wfi;i0g.

Proof: Follow directly from the de�nitions of the sets Vfi;i0g, Wfi;i0g, and Tfi;i0g(�), where

� 2 R�0, and Lemma 4.4.2.

In the following three lemmas, we show that any state Rfi;i0g-reachable from a state in V(i;i0)

through an execution fragment that involves no input actions on port j, is in Wfi;i0g. In the

�rst lemma, we show that if the �nal state of such an execution fragment is in Gfi;i0g and the

section of track owned by the vehicle i has not grown since the beginning of the execution

fragment, then the �nal state of the execution fragment is in Wfi;i0g. In the second lemma,

we show that the �nal state of any such execution fragment is in Gfi;i0g and the section of

track owned by the vehicle i does not grow throughout the execution fragment. Finally, the

third lemma combines these two results and states formally the desired property.

Lemma 7.4.2 Let p 2 V(i;i0) and p0 2 futurefi;i0g(p;R
�0). If p0 2 Gfi;i0g and p0:Oi � p:Oi,

then p0 2 Wfi;i0g.

Proof:We need to show that p0 2 Wfi;i0g; that is, we need to show that the state p0 is in the

set Rfi;i0g\Gfi;i0g\disjoint-owned-tracks(i; i
0). By assumption, it is the case that p0 2 Gfi;i0g.

104

Therefore, it remains to be shown that p0 2 Rfi;i0g and p0 2 disjoint-owned-tracks(i; i0). We

consider these two conditions by cases:

1. p0 2 Rfi;i0g.

This is the case because the function futurefi;i0g(p;R
�0) only considers Rfi;i0g-reachable

states.

2. p0 2 disjoint-owned-tracks(i; i0).

Since p 2 V(i;i0), there are two possible cases: (i) p 2 comparable(i; i0) and p:li < p:li0,

and (ii) p 2 incomparable(i; i0) and max(p:Oi) < hout; 0i.

In the �rst case, it is as if the vehicle i is trailing the vehicle i0 on a single track. Since

p 2 V(i;i0) � Wfi;i0g, the sections of the track owned by the vehicles i and i0 in state

p are disjoint. Since p 2 comparable(i; i0) and p:li < p:li0, it follows that max(p:Oi) <

min(p:Oi0). Moreover, Lemma 4.4.2, part 2, implies that max(p:Oi) < p:li0. Therefore,

because of the non-negative constraint on the vehicle velocities and the assumption

that p0:Oi � p:Oi, it follows that p
0 2 disjoint-owned-tracks(i; i0).

In the second case, since max(p:Oi) < hout; 0i, the section of the track owned by

the vehicle i in state p is strictly within the incoming directed edge p:li:e. Since

p0:Oi � p:Oi, the same is true for the section of track owned by the vehicle i in

state p0. Therefore, since the vehicle i0 is traveling on the adjacent incoming branch,

it follows that p0 2 disjoint-owned-tracks(i; i0).

Lemma 7.4.3 If p 2 V(i;i0) and p
0 2 futurefi;i0g(p;R

�0), then p0 2 Gfi;i0g and p0:Oi � p:Oi.

Proof: Let � be an execution fragment of the merge-vehicles automaton of n steps and

trajectories, where n 2 N, that: starts in a state in V(i;i0), is only comprised of states in

Rfi;i0g, and involves no input actions on port j. Letting pinit and p�nal be the initial and

�nal states of �, respectively, we must show that p�nal 2 Gfi;i0g and p�nal:Oi � pinit:Oi. The

proof is by induction on the length n of the execution fragment �.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of a single point trajectory and therefore, p�nal = pinit.

From Lemma 7.4.1, part 2, and the fact that pinit 2 V(i;i0) � Vfi;i0g, it follows that p�nal 2

Gfi;i0g. Moreover, the fact that p�nal:Oi � pinit:Oi is trivially true.

The inductive step involves showing that if � is an execution fragment of length n = k+1, for

some k 2 N, then p�nal 2 Gfi;i0g and p�nal:Oi � pinit:Oi. Let �
0 be the part of the execution

fragment � comprised of the �rst k steps and trajectories. The induction hypothesis involves

the assertion that if p0init and p0final are the initial and �nal states of �0, respectively, then

105

it is the case that p0�nal 2 Gfi;i0g and p0�nal:Oi � p0init:Oi. Moreover, from Lemma 7.4.2 it

follows that p0�nal 2 Wfi;i0g. Since the �nal state of � is reached from the �nal state of �0

by a single step or trajectory, the inductive step involves the consideration of all possible

steps and trajectories leading from p0�nal to p�nal.

In the case of a step, we consider all possible actions by cases:

1. the actions protect(C)j, for C 2 P(fi; i0g), are not enabled because � involves no

input actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and does not a�ect

the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since the

brick-wall(i) action does not a�ect the collided(i; i0) and collided(i0; i) variables, it

follows that p�nal 2 Gfi;i0g.

Moreover, since the vehicle velocities are restricted to be non-negative, it is the case

that p�nal: _xi � p0�nal: _xi. From Lemma 4.4.3, part 1, it follows that p�nal:Oi � p0�nal:Oi.

However, from the induction hypothesis it is the case that p0�nal:Oi � p0init:Oi. There-

fore, since pinit = p0init, it follows that p�nal:Oi � pinit:Oi, as needed.

3. the actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and brick-wall(i00), for

i00 2 I; i00 6= i, a�ect neither the velocity of the vehicle i, nor the collided(i; i0) and

collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since

the actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and brick-wall(i00), for

i00 2 I; i00 6= i, do not a�ect the collided(i; i0) and collided(i0; i) variables, it follows that

p�nal 2 Gfi;i0g.

Moreover, since the input actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and

the internal actions brick-wall(i00), for i00 2 I; i00 6= i, do not a�ect the velocity of the

vehicle i, it is the case that p�nal: _xi = p0�nal: _xi. From Lemma 4.4.3, part 1, it follows

that p�nal:Oi � p0�nal:Oi. However, from the induction hypothesis it is the case that

p0�nal:Oi � p0init:Oi. Therefore, since pinit = p0init, it follows that p�nal:Oi � pinit:Oi, as

needed.

4. the internal actions colliding-pair(i00; i000), for i00; i000 2 I; i00 6= i000, and the inter-

nal actions collision-effects(i0000), for i0000 2 I , are not enabled because � is only

comprised of states in Rfi;i0g and p0�nal 2 Wfi;i0g.

Since pinit 2 V(i;i0) � PBij
and the execution fragment leading from pinit to p

0
�nal involves no

input actions on port j, it follows that p0�nal 2 PBij
. Therefore, in the case of a trajectory

from p0�nal to p�nal, Lemma 4.4.4, part 1, implies that p�nal:Oi � p0�nal:Oi. However, from the

induction hypothesis it is the case that p0�nal:Oi � p0init:Oi. Therefore, since pinit = p0init, it

106

follows that p�nal:Oi � pinit:Oi. Moreover, since p0�nal 2 Gfi;i0g and the variables collided(i; i
0)

and collided(i0; i) remain constant throughout the trajectory, it follows that p�nal 2 Gfi;i0g,

as needed.

Lemma 7.4.4 futurefi;i0g(V(i;i0);R
�0) � Wfi;i0g.

Proof: Follows directly from Lemmas 7.4.2 and 7.4.3.

In the following lemma, we extend the result of Lemma 7.4.4 to the set Vfi;i0g.

Lemma 7.4.5 futurefi;i0g(Vfi;i0g;R
�0) � Wfi;i0g.

Proof: Follows directly from Lemma 7.4.4 and the fact that Vfi;i0g = V(i;i0) [V(i0;i).

In the following two lemmas, we use Lemma 7.4.5 to show that Vfi;i0g � very-safefi;i0g and

Vfi;i0g � delay-safefi;i0g(t), for any t 2 R
�0, respectively.

Lemma 7.4.6 Vfi;i0g � very-safefi;i0g.

Proof: Follows directly from Lemma 7.4.5 and Lemma 7.4.1, part 1.

Lemma 7.4.7 For any t 2 R�0, it is the case that Vfi;i0g � delay-safefi;i0g(t).

Proof: Follows directly from Lemma 7.4.6 and Lemma 3.2.5, part 1.

In the next three lemmas and the subsequent corollary, we show that the sets Wfi;i0g and

safefi;i0g are equal. First, we show that any state that is Rfi;i0g-reachable from a state p in

Wfi;i0g through an execution fragment that involves no input actions on port j and has a

limit time equal to zero, is in the set Wfi;i0g. Then, we show that Wfi;i0g � safefi;i0g and

safefi;i0g � Wfi;i0g. Finally, the subsequent corollary states that Wfi;i0g = safefi;i0g.

Lemma 7.4.8 futurefi;i0g(Wfi;i0g; 0) � Wfi;i0g:

Proof: Let � be an execution fragment of the merge-vehicles automaton of n steps,

where n 2 N, that: starts in a state in Wfi;i0g, is only comprised of states in Rfi;i0g, involves

no input actions on port j, and has a limit time equal to zero. Let pinit and p�nal be the

initial and �nal states of �, respectively. By induction on the length n of the execution

fragment �, we show that p�nal 2 Wfi;i0g.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of no steps and, therefore, p�nal = pinit. Since pinit 2 Wfi;i0g,

it follows that p�nal 2 Wfi;i0g.

107

The inductive step involves showing that if � is an execution fragment of length n = k+1, for

some k 2 N, then p�nal 2 Wfi;i0g. Let �
0 be the part of the execution fragment � comprised

of the �rst k steps. The induction hypothesis involves the assertion that if p0final is the �nal

state of �0, then it is the case that p0�nal 2 Wfi;i0g. Since the �nal state of � is reached from

the �nal state of �0 by a single step, the inductive step involves the consideration of all

possible steps leading from p0�nal to p�nal.

To complete the induction, we consider all possible discrete actions by cases:

1. the actions protect(C)j, for C 2 P(fi; i0g), are not enabled because � involves no

input actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and a�ects neither

the velocity of the vehicle i0, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Wfi;i0g � Gfi;i0g. There-

fore, since the brick-wall(i) action does not a�ect the collided(i; i0) and collided(i0; i)

variables, it follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi � p0�nal: _xi. Moreover, since the brick-wall(i) action does not a�ect the veloc-

ity of the vehicle i0, it is the case that p�nal: _xi0 = p0�nal: _xi0 . From Lemma 4.4.3, part 1,

it follows that p�nal:Oi � p0�nal:Oi and p�nal:Oi0 � p0�nal:Oi0 . Therefore, since p
0
�nal 2

Wfi;i0g � disjoint-owned-tracks(i; i0), it follows that p�nal 2 disjoint-owned-tracks(i; i0).

Finally, since all states in � are, by de�nition, restricted to the set Rfi;i0g, it follows

that p�nal 2 Wfi;i0g.

3. the brick-wall(i0) action sets the velocity of the vehicle i0 to zero and a�ects neither

the velocity of the vehicle i, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Wfi;i0g � Gfi;i0g. Therefore,

since the brick-wall(i0) action does not a�ect the collided(i; i0) and collided(i0; i)

variables, it follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi0 � p0�nal: _xi0 . Moreover, since the brick-wall(i0) action does not a�ect the ve-

locity of the vehicle i, it is the case that p�nal: _xi = p0�nal: _xi. From Lemma 4.4.3, part 1,

it follows that p�nal:Oi0 � p0�nal:Oi0 and p�nal:Oi � p0�nal:Oi. Therefore, since p
0
�nal 2

Wfi;i0g � disjoint-owned-tracks(i; i0), it follows that p�nal 2 disjoint-owned-tracks(i; i0).

Finally, since all states in � are, by de�nition, restricted to the set Rfi;i0g, it follows

that p�nal 2 Wfi;i0g.

4. the actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and brick-wall(i00), for

i00 2 I�fi; i0g, a�ect neither the velocities of the vehicles i and i0, nor the collided(i; i0)

and collided(i0; i) variables.

108

From the induction hypothesis, it is the case that p0�nal 2 Wfi;i0g � Gfi;i0g. Therefore,

since the actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and brick-wall(i00),

for i00 2 I�fi; i0g, do not a�ect the collided(i; i0) and collided(i0; i) variables, it follows

that p�nal 2 Gfi;i0g.

Moreover, since the input actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and

the internal actions brick-wall(i00), for i00 2 I � fi; i0g, do not a�ect the velocities

of the vehicles i and i0, it is the case that p�nal: _xi = p0�nal: _xi and p�nal: _xi0 = p0�nal: _xi0 .

From Lemma 4.4.3, part 1, it follows that p�nal:Oi � p0�nal:Oi and p�nal:Oi0 � p0�nal:Oi0.

Therefore, since p0�nal 2 Wfi;i0g � disjoint-owned-tracks(i; i0), it is the case that p�nal 2

disjoint-owned-tracks(i; i0).

Finally, since all states in � are, by de�nition, restricted to the set Rfi;i0g, it follows

that p�nal 2 Wfi;i0g.

5. the internal actions colliding-pair(i00; i000), for i00; i000 2 I; i00 6= i000, and the inter-

nal actions collision-effects(i0000), for i0000 2 I , are not enabled because � is only

comprised of states in Rfi;i0g and p0�nal 2 Wfi;i0g.

Lemma 7.4.9 Wfi;i0g � safefi;i0g.

Proof: From the de�nition of safe in Section 3.2.1, we must show that any state p 2 Wfi;i0g

satis�es: (i) futurefi;i0g(p; 0) � Gfi;i0g, and (ii) there exists some input action � on port j

such that for every p0; p00 2 Rfi;i0g satisfying p
0 2 futurefi;i0g(p; 0) and p

0 ��! p00, it is the case

that p00 2 very-safefi;i0g.

(i) Since p 2 Wfi;i0g, the �rst condition follows from Lemma 7.4.8 and Lemma 7.4.1, part 1.

(ii) For the second condition, let � be the action protect(C)j, where C = fig, if p 2

yield(i; i0), and C = fi0g, otherwise. Without loss of generality, let p 2 yield(i; i0) and

C = fig.

Throughout the execution fragment from p to p0, the actions colliding-pair(i00; i000), for

i00; i000 2 I; i00 6= i000, and collision-effects(i0000), for i0000 2 I , are not enabled. Therefore,

since none of the other discrete actions of the merge-vehicles automaton can increase

the velocities of the vehicles i and i0, Lemma 4.4.3, part 1, implies that p0:Oi � p:Oi and

p0:Oi0 � p:Oi0. Moreover, since the protect(fig)j action does not a�ect the velocity of

the vehicle i, Lemma 4.4.3, part 1, implies that p00:Oi � p:Oi. Since p00:Oi � p:Oi and

p 2 yield(i; i0), it is the case that in the state p00 either the locations of the vehicles i and i0

are comparable and the vehicle i is trailing the vehicle i0, or the locations of the vehicles i

and i0 are not comparable and the section of track owned by the vehicle i is entirely upstream

of the merge point hout; 0i.

109

Moreover, considering the step from p0 to p00, the protect(fig)j action a�ects neither the

velocity of any of the vehicles, nor any of the collided variables. Therefore, since Lemma 7.4.8

implies that p0 2 Wfi;i0g, it follows that p
00 2 Rfi;i0g and p00 2 Gfi;i0g. In addition, since the

protect(fig)j action does not a�ect the velocities of the vehicles i and i0, Lemma 4.4.3,

part 1, implies that p00:Oi � p0:Oi and p00:Oi0 � p0:Oi0. Therefore, since p0 2 Wfi;i0g, it

follows that p00 2 disjoint-owned-tracks(i; i0). From the above conditions, it follows that

p00 2 Wfi;i0g.

In addition, since the protect(fig)j action sets the variable brake-req(i; j) to True, it is

also the case that p00 2 PBij
.

Thus, since p00 2 Wfi;i0g, p
00 2 PBij

, and either the locations of the vehicles i and i0 in the

state p00 are comparable and the vehicle i is trailing the vehicle i0, or the locations of the

vehicles i and i0 in the state p00 are not comparable and the section of track owned by the

vehicle i is entirely upstream of the merge point hout; 0i, it follows that p00 2 V(i;i0) � Vfi;i0g.

Finally, Lemma 7.4.6 implies that p00 2 very-safefi;i0g, as needed.

Lemma 7.4.10 For any p 2 Rfi;i0g, if p 2 safefi;i0g then p 2Wfi;i0g.

Proof: We show the contrapositive; that is, for any p 2 Rfi;i0g, if p 62 Wfi;i0g then p 62

safefi;i0g. Since Wfi;i0g = Rfi;i0g \ Gfi;i0g \ disjoint-owned-tracks(i; i0) and p 2 Rfi;i0g, we

consider the conditions p 62 Gfi;i0g and p 62 disjoint-owned-tracks(i; i0) separately.

1. p 62 Gfi;i0g.

From Lemma 3.2.4, part 1, it is the case that safefi;i0g � Gfi;i0g. Since p 62 Gfi;i0g, it

follows that p 62 safefi;i0g.

2. p 62 disjoint-owned-tracks(i; i0).

We must show that p 62 safefi;i0g. In order for the state p 2 Rfi;i0g to be in the

set safefi;i0g there must exist some input action � on port j such that for every

p0; p00 2 Rfi;i0g satisfying p0 2 futurefi;i0g(p; 0) and p0 ��! p00, it is the case that p00 2

very-safefi;i0g. Therefore, it su�ces to show that for any input action � on port j,

there exist p0; p00 2 Rfi;i0g satisfying p0 2 futurefi;i0g(p; 0) and p0 ��! p00, such that

p00 62 very-safefi;i0g.

Without loss of generality, suppose that the vehicles i and i0 are traveling on adjacent

branches in the state p, i.e., p 2 incomparable(i; i0), and let � = protect(fi; i0g)j.

Since Lemma 3.2.1, part 3, implies that p 2 futurefi;i0g(p; 0), consider the case where

p0 = p. Since p0 = p and the input action protect(fi; i0g)j a�ects neither the lo-

cation, nor the velocity of the vehicles i and i0, it follows that p00:li = p0:li = p:li,

p00: _xi = p0: _xi = p: _xi, p
00:li0 = p0:li0 = p:li0, and p00: _xi0 = p0: _xi0 = p: _xi0. Therefore,

110

since the section of track owned by any vehicle depends only on its location and

its velocity, it is the case that p00:Oi = p0:Oi = p:Oi and p00:Oi0 = p0:Oi0 = p:Oi0.

Therefore, since p 62 disjoint-owned-tracks(i; i0), p00:Oi = p:Oi, and p00:Oi0 = p:Oi0,

it follows that p00 62 disjoint-owned-tracks(i; i0). Moreover, since the vehicles i and

i0 are traveling on adjacent branches in state p, p00:li = p:li, p
00:li0 = p:li0, and

p00 62 disjoint-owned-tracks(i; i0), it follows that hout; 0i 2 p00:Oi and hout; 0i 2 p00:Oi0 .

Again, without loss of generality, suppose that the vehicle i0 is the �rst of the vehicles i

and i0 to reach the merge point hout; 0i and that the vehicles i and i0 have not collided

up until the point in time when the vehicle i0 reaches the merge point. Moreover,

consider the evolution of the merge-vehicles automaton following the state p00 in

which a brick-wall(i0) action is executed at the exact instant in time when the

location of the vehicle i0 equals the merge point hout; 0i and the vehicles i and i0

move forward and remain stationary thereafter, respectively. Since hout; 0i 2 p00:Oi,

it follows that at some state of such an evolution the action colliding-pair(i; i0) is

enabled and, subsequently, executed. The state of the merge-vehicles automaton

following the execution of the action colliding-pair(i; i0) would, therefore, not be

in Gfi;i0g. It follows that p
00 62 very-safefi;i0g which implies that p 62 safefi;i0g.

Using similar analyses, it can be shown that for any p 2 Rfi;i0g and any input action

� on port j, there exist p0; p00 2 Rfi;i0g satisfying p0 2 futurefi;i0g(p; 0) and p0 ��! p00,

such that p00 62 very-safefi;i0g. It follows that p 62 safefi;i0g, as needed.

Corollary 7.4.11 Wfi;i0g = safefi;i0g.

Proof: Follows directly from Lemmas 7.4.9 and 7.4.10.

In the next few lemmas, we show that any state p in the set Tfi;i0g(t), for any t 2 R�0, is

in the set delay-safefi;i0g(t); that is, any state Rfi;i0g-reachable from p within an amount of

time t through an execution fragment that involves no input actions on port j, is in the set

Gfi;i0g and any stateRfi;i0g-reachable from the state p in exactly an amount of time t through

an execution fragment that involves no input actions on port j, is in the set safefi;i0g.

Lemma 7.4.12 Let p 2 Tfi;i0g(�), where � 2 R
�0, and p0 2 futurefi;i0g(p; t), where t 2 [0; �].

If p0 2 Gfi;i0g, p
0:Ci(� � t) � p:Ci(�), and p0:Ci0(� � t) � p:Ci0(�), then p0 2 Tfi;i0g(� � t).

Proof:We need to show that p0 2 Rfi;i0g\Gfi;i0g\ disjoint-claimed-tracks(i; i0; � � t). Since

p0 2 Gfi;i0g, it remains to be shown that p
0 2 Rfi;i0g and p

0 2 disjoint-claimed-tracks(i; i0; � �

t). We consider these two conditions by cases:

111

1. p0 2 Rfi;i0g.

This is the case because the function futurefi;i0g(p; t) only considers Rfi;i0g-reachable

states.

2. p0 2 disjoint-claimed-tracks(i; i0; � � t).

Since p 2 disjoint-claimed-tracks(i; i0; �), p0:Ci(� � t) � p:Ci(�), and p0:Ci0(� � t) �

p:Ci0(�), it follows that p
0 2 disjoint-claimed-tracks(i; i0; � � t), as needed.

Lemma 7.4.13 For all p 2 Tfi;i0g(�), where � 2 R�0, and p0 2 futurefi;i0g(p; t), where

t 2 [0; �], it is the case that p0 2 Gfi;i0g, p
0:Ci(� � t) � p:Ci(�), and p

0:Ci0(� � t) � p:Ci0(�).

Proof: Let � 2 R�0 and � be an execution fragment of the merge-vehicles automaton of

n steps and trajectories, where n 2 N, that: starts in a state in Tfi;i0g(�), is only comprised

of states in Rfi;i0g, involves no input actions on port j, and has a limit time t that lies in

the interval [0; �]. Letting pinit and p�nal be the initial and �nal states of �, respectively, we

must show that p�nal 2 Gfi;i0g, p�nal:Ci(��t) � pinit:Ci(�), and p�nal:Ci0(��t) � pinit:Ci0(�).

The proof is by induction on the length n of the execution fragment �.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of a single point trajectory and, therefore, p�nal = pinit

and �:ltime = 0, i.e., t = 0. From Lemma 7.4.1, part 1, and the fact that pinit 2 Tfi;i0g(�), it

follows that p�nal 2 Gfi;i0g. Moreover, since t = 0, the conditions p�nal:Ci(��t) � pinit:Ci(�)

and p�nal:Ci0(� � t) � pinit:Ci0(�) are trivially true.

The inductive step involves showing that if � is an execution fragment of length n = k+ 1,

for some k 2 N, with �:ltime = t, where t 2 [0; �], then p�nal 2 Gfi;i0g, p�nal:Ci(� � t) �

pinit:Ci(�), and p�nal:Ci0(� � t) � pinit:Ci0(�). Let �
0 be the part of the execution fragment

� comprised of the �rst k steps and trajectories and let �0:ltime = t0, where t0 2 [0; t]. The

induction hypothesis involves the assertion that if p0init and p0final are the initial and �nal

states of �0, respectively, then it is the case that p0�nal 2 Gfi;i0g, p
0
�nal:Ci(�� t

0) � p0init:Ci(�),

and p0�nal:Ci0(� � t0) � p0init:Ci0(�). Moreover, from Lemma 7.4.12 it follows that p0�nal 2

Tfi;i0g(� � t0). Since the �nal state of � is reached from the �nal state of �0 by a single

step or trajectory, the inductive step involves the consideration of all possible steps and

trajectories leading from p0�nal to p�nal.

In the case of a step, keeping in mind that the limit times of �0 and � are equal, i.e., t0 = t,

we consider all possible actions by cases:

1. the actions protect(C)j, for C 2 P(fi; i0g), are not enabled because � involves no

input actions on port j.

112

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and a�ects neither

the velocity of the vehicle i0, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since the

brick-wall(i) action does not a�ect the collided(i; i0) and collided(i0; i) variables, it

follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi � p0�nal: _xi. Moreover, since the brick-wall(i) action does not a�ect the veloc-

ity of the vehicle i0, it is the case that p�nal: _xi0 = p0�nal: _xi0 . From Lemma 4.4.3, part 2,

it follows that p�nal:Ci(� � t) � p0�nal:Ci(� � t0) and p�nal:Ci0(� � t) � p0�nal:Ci0(� � t0).

However, from the induction hypothesis we have p0�nal:Ci(� � t0) � p0init:Ci(�) and

p0�nal:Ci0(�� t
0) � p0init:Ci0(�). Therefore, since pinit = p0init, it follows that p�nal:Ci(��

t) � pinit:Ci(�) and p�nal:Ci0(� � t) � pinit:Ci0(�), as needed.

3. the brick-wall(i0) action sets the velocity of the vehicle i0 to zero and a�ects neither

the velocity of the vehicle i, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since the

brick-wall(i0) action does not a�ect the collided(i; i0) and collided(i0; i) variables, it

follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi0 � p0�nal: _xi0 . Moreover, since the brick-wall(i0) action does not a�ect the ve-

locity of the vehicle i, it is the case that p�nal: _xi = p0�nal: _xi. From Lemma 4.4.3, part 2,

it follows that p�nal:Ci(� � t) � p0�nal:Ci(� � t0) and p�nal:Ci0(� � t) � p0�nal:Ci0(� � t0).

However, from the induction hypothesis we have p0�nal:Ci(� � t0) � p0init:Ci(�) and

p0�nal:Ci0(�� t
0) � p0init:Ci0(�). Therefore, since pinit = p0init, it follows that p�nal:Ci(��

t) � pinit:Ci(�) and p�nal:Ci0(� � t) � pinit:Ci0(�), as needed.

4. the actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and brick-wall(i00), for

i00 2 I�fi; i0g, a�ect neither the velocities of the vehicles i and i0, nor the collided(i; i0)

and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since

the actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and brick-wall(i00), for

i00 2 I � fi; i0g, do not a�ect the collided(i; i0) and collided(i0; i) variables, it follows

that p�nal 2 Gfi;i0g.

Moreover, since the input actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and

the internal actions brick-wall(i00), for i00 2 I � fi; i0g, do not a�ect the velocities

of the vehicles i and i0, it is the case that p�nal: _xi = p0�nal: _xi and p�nal: _xi0 = p0�nal: _xi0 .

From Lemma 4.4.3, part 2, it follows that p�nal:Ci(� � t) � p0�nal:Ci(� � t0) and

p�nal:Ci0(� � t) � p0�nal:Ci0(� � t0). However, from the induction hypothesis we have

p0�nal:Ci(��t
0) � p0init:Ci(�) and p

0
�nal:Ci0(��t

0) � p0init:Ci0(�). Therefore, since pinit =

113

p0init, it follows that p�nal:Ci(� � t) � pinit:Ci(�) and p�nal:Ci0(� � t) � pinit:Ci0(�), as

needed.

5. the internal actions colliding-pair(i00; i000), for i00; i000 2 I; i00 6= i000, and the inter-

nal actions collision-effects(i0000), for i0000 2 I , are not enabled because � is only

comprised of states in Rfi;i0g and p0�nal 2 Tfi;i0g(� � t0).

In the case of a trajectory, Lemma 4.4.4, part 2, applies and it follows that p�nal:Ci(� � t) �

p0�nal:Ci(��t
0) and p�nal:Ci0(��t) � p0�nal:Ci0(��t

0). However, from the induction hypothesis

it is the case that p0�nal:Ci(�� t0) � p0init:Ci(�) and p
0
�nal:Ci0(�� t0) � p0init:Ci0(�). Therefore,

since pinit = p0init, it follows that p�nal:Ci(��t) � pinit:Ci(�) and p�nal:Ci0(��t) � pinit:Ci0(�).

Moreover, since p0�nal 2 Gfi;i0g and the collided(i; i0) and collided(i0; i) variables remain

constant throughout the trajectory, it follows that p�nal 2 Gfi;i0g, as needed.

Lemma 7.4.14 For � 2 R�0 and t 2 [0; �], it is the case that futurefi;i0g(Tfi;i0g(�); t) �

Tfi;i0g(� � t).

Proof: Follows directly from Lemmas 7.4.12 and 7.4.13.

Corollary 7.4.15 For any t 2 R�0, it is the case that futurefi;i0g(Tfi;i0g(t); 0) � Tfi;i0g(t).

Proof: Follows directly from Lemma 7.4.14.

Lemma 7.4.16 For any t 2 R�0, it is the case that Tfi;i0g(t) � delay-safefi;i0g(t).

Proof: From the de�nition of delay-safe in Section 3.2.1, we must show that:

1. futurefi;i0g(Tfi;i0g(t); [0; t])� Gfi;i0g, and

2. futurefi;i0g(Tfi;i0g(t); t) � safefi;i0g.

The �rst condition follows directly from Lemma 7.4.14 and Lemma 7.4.1, part 1. More-

over, Lemma 7.4.14 and Lemma 7.4.1, part 4, imply that futurefi;i0g(Tfi;i0g(t); t) � Wfi;i0g.

Therefore, the second condition follows from Lemma 7.4.9.

In the following lemma, we show that the merge-prot-pairfi;i0g protector implements the

Abs(merge-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d) protector. Since the protector automata

merge-prot-pairfi;i0g and Absj involve the composition of the same sensor automaton

with distinct controller automata, it su�ces to show that the discrete controller automa-

ton of the protector merge-prot-pairfi;i0g implements the discrete controller automaton

DC(merge-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d).

114

Lemma 7.4.17 merge-prot-pairfi;i0g�Abs(merge-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d).

Proof: Both the merge-prot-pairfi;i0g and the Absj protectors involve the composition

of the same sensor automaton with distinct controller automata. From Theorem 2.7.4,

it su�ces to show that the discrete controller automaton of merge-prot-pairfi;i0g im-

plements DCj . This is shown by a simulation from the discrete controller automaton of

merge-prot-pairfi;i0g to DCj .

The mapping between the states of the discrete controller automaton of the protector

merge-prot-pairfi;i0g andDCj is almost the identity. In the discrete controller automaton

of merge-prot-pairfi;i0g, the variable sendj is equal to either a member of P(fi; i
0g), or the

value null. In DCj , these valuations simply map to either the actions protect(C)j, where

C is the member of P(fi; i0g) that corresponds to the valuation of the variable sendj of the

discrete controller automaton of merge-prot-pairfi;i0g, or the value null, respectively.

The start states for the discrete controller automaton of merge-prot-pairfi;i0g and DCj

are the states in which sendj = null. These are related to each other according to the

mapping discussed above.

Furthermore, since the trajectories in both discrete controller automata are identical, we

need only consider their discrete transitions. We analyze the actions of the implementation

by cases, letting p denote any complete state of the merge-vehicles automaton that

corresponds to the output state y, i.e., p 2 VALID and pdYmerge-vehicles = y.

1. The snapshot(y)j action of the implementation sets sendj to an element of P(fi; i
0g).

In order to show that the behavior of the implementation is allowed by the speci�ca-

tion, we must show that the input action snapshot(y)j of the implementation sets the

value of the sendj variable in such a way that the subsequently enabled action � of the

implementation (i) guarantees that for all p0; p00 2 Rfi;i0g such that p
0 2 futurefi;i0g(p; 0)

and p0 ��! p00, it is the case that p00 2 delay-safefi;i0g(d), if p 2 safefi;i0g, and (ii) is an

arbitrary output action of the implementation, otherwise.

First, consider the case in which p 2 safefi;i0g. Since Corollary 7.4.11 implies that p 2

Wfi;i0g, the discrete controller automaton of merge-prot-pairfi;i0g sets the variable

sendj according to whether the state p is in Tfi;i0g(d), or not.

On one hand, if p 62 Tfi;i0g(d) then the discrete controller automaton of the pro-

tector merge-prot-pairfi;i0g sets the variable sendj to either fig, or fi0g accord-

ing to the strategy described in Section 7.3. Therefore, the snapshot(y)j action

enables either the protect(fig)j action, or the protect(fi0g)j action. Since p 2

Wfi;i0g, Lemma 7.4.8 implies that p0 2 Wfi;i0g. Moreover, since the protect(fig)j

and protect(fi0g)j actions a�ect neither the velocity of any of the vehicles, nor any

of the collided variables, it follows that p00 2 Rfi;i0g, p
00 2 Gfi;i0g, p

00: _xi = p0: _xi,

115

and p00: _xi0 = p0: _xi0 . Therefore, since p0 2 Wfi;i0g, Lemma 4.4.3, part 1, implies

that p00 2 disjoint-owned-tracks(i; i0). From the above conditions, it follows that

p00 2 Wfi;i0g. Moreover, since the protect(fig)j and protect(fi0g)j actions set

the brake-req(i; j) and brake-req(i0; j) variables, respectively, to True, it follows that

p00 2 Vfi;i0g. Finally, Lemma 7.4.7 implies that p
00 2 delay-safefi;i0g(d), as needed.

On the other hand, if p 2 Tfi;i0g(d) then the discrete controller automaton of the pro-

tector merge-prot-pairfi;i0g sets the variable sendj to ; and the protect(;)j action

is enabled. Since p 2 Tfi;i0g(d), Corollary 7.4.15 implies that p
0 2 Tfi;i0g(d). Moreover,

since the protect(;)j action a�ects neither the velocity of any of the vehicles, nor

any of the collided variables, it follows that p00 2 Rfi;i0g, p
00 2 Gfi;i0g, p

00: _xi = p0: _xi,

and p00: _xi0 = p0: _xi0 . Therefore, since p0 2 Tfi;i0g(d), Lemma 4.4.3, part 2, implies

that p00 2 disjoint-claimed-tracks(i; i0; d). From the above conditions, it follows that

p00 2 Tfi;i0g(d). Finally, Lemma 7.4.16 implies that p
00 2 delay-safefi;i0g(d), as needed.

Next, consider the case in which p 62 safefi;i0g. In this case, the snapshot(y)j action

of the discrete controller automaton of merge-prot-pairfi;i0g sets the variable sendj

to either fig, fi0g, or ; and, subsequently, enables either the protect(fig)j action,

the protect(fi0g)j action, or the protect(;)j action, respectively. However, when

p 62 safefi;i0g, theDCj automaton sets the variable sendj arbitrarily and, subsequently,

enables an arbitrary output action. Therefore, the behavior of the discrete controller

automaton of the protector merge-prot-pairfi;i0g is allowed by that of the DCj

automaton.

Therefore, the e�ects of the snapshot(y)j action of the implementation are allowed

by its speci�cation.

2. The protect(C)j actions, for C 2 P(fi; i0g), have identical e�ects in both discrete

controller automata. When the sendj variable matches either the set C, or the

protect(C)j action, respectively, the action protect(C)j is executed and the sendj

variable is set to null in both discrete controller automata.

3. The environment action in both discrete controller automata is stuttering. It fol-

lows that the mapping between the states of the discrete controller automaton of

merge-prot-pairfi;i0g and the DCj automaton prior to and succeeding the execu-

tion of the environment action remains the same.

Corollary 7.4.18 The protector merge-prot-pairfi;i0g guarantees that the automaton

merge-vehicles remains within Gfi;i0g starting from Sfi;i0g given Rfi;i0g.

Proof: Follows directly from Lemma 7.4.17 and Theorem 3.2.9.

116

Table 7.3 Formal de�nitions of merge-prot, Gmerge-prot, Smerge-prot, and Rmerge-prot.

merge-prot �
Y

i;i0 2 I;i 6=i0

merge-prot-pairfi;i0g

Gmerge-prot �
\

i;i0 2 I;i6=i0

Gfi;i0g

Smerge-prot �
\

i;i0 2 I;i 6=i0

Sfi;i0g

Rmerge-prot � Pnot-overspeed

7.5 Protection System merge-prot

We now de�ne the collision protector merge-prot. While considering the automaton

merge-prot, we restrict the states of the merge-vehicles automaton to Pnot-overspeed as

de�ned in Section 4.2, i.e., Rmerge-prot = Pnot-overspeed . Let Gmerge-prot and Smerge-prot

be the intersection of Gfi;i0g and Sfi;i0g, for all fi; i0g, where i; i0 2 I; i 6= i0, respec-

tively, and merge-prot be the composition of merge-prot-pairfi;i0g, for all fi; i
0g, where

i; i0 2 I; i 6= i0. The protector merge-prot guarantees that merge-vehicles remains

within Gmerge-prot starting from Smerge-prot given Rmerge-prot. For reference, the for-

mal de�nitions of the merge-prot automaton and the sets Gmerge-prot, Smerge-prot, and

Rmerge-prot are shown in Table 7.3.

Lemma 7.5.1 The protector merge-prot guarantees that the merge-vehicles automa-

ton remains within Gmerge-prot from Smerge-prot given Rmerge-prot.

In the following proof, we show that all the states of an execution of PP � merge-prot

starting from Smerge-prot given Rmerge-prot are in Gmerge-prot. This is done by applying

Theorem 3.1.8 and showing that the second condition of the theorem does not hold.

Proof: Let � be any execution of the system PP� merge-prot starting from a state in

Smerge-prot and in which all states are in Rmerge-prot.

From Theorem 3.1.8, one of the following holds:

1. Every state in � is in Gmerge-prot =
T

i;i0 2 I;i6=i0 Gfi;i0g.

2. � can be written as �1
_ �2, where

117

(a) All state occurrences in �1 except possibly the last state occurrence are in the

set Gmerge-prot =
T

i;i0 2 I;i6=i0 Gfi;i0g.

(b) If the last state occurrence in �1 is in Gfi;i0g, for some i; i
0 2 I; i 6= i0, then there

exists i00; i000 2 I; i00 6= i000; fi00; i000g 6= fi; i0g, such that the last state occurrence in

�1 is in Gfi00;i000g.

(c) All state occurrences in �2 except possibly the �rst state occurrence are in the

set
T

fi00;i000g 2N past(Gfi00;i000g; �), for some N � ffi; i0g j i; i0 2 I; i 6= i0g, where

jN j � 2.

We proceed by showing that it is not possible to decompose � as �1
_ �2 while satisfying

the three aforementioned conditions.

The violation of
T

i;i0 2 I;i6=i0 Gfi;i0g can only occur through the violation of at least one

of the conditions Gfi;i0g, where i; i0 2 I; i 6= i0. Moreover, each of these conditions are

violated only through the execution of a colliding-pair action. Without loss of generality,

suppose that the �rst condition that is violated in � is the condition Gfi;i0g, for some

i; i0 2 I; i 6= i0, and that such a violation has resulted through a colliding-pair(i; i0)

action. Let p and p0 be the states of the merge-vehicles automaton prior to and succeeding

this colliding-pair(i; i0) action, i.e., p; p0 2 Rmerge-prot such that p ��! p0, where � =

colliding-pair(i; i0). Since the colliding-pair(i; i0) action only sets the collided(i; i0)

variable to True, it follows that p0 2 Gfi;i0g

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0g Gfi00;i000g

�
. Now,

we attempt to decompose � as �1
_ �2:

1. Suppose we split � at any state preceding the state p. Then the state p is in

�2. Since p0 is the �rst state in which one of the conditions Gfi00;i000g, for i
00; i000 2

I; i00 6= i000, is violated, it is the case that p 2
T

i00;i000 2 I;i00 6=i000 Gfi00;i000g and there

does not exist N � ffi00; i000g j i00; i000 2 I; i00 6= i000g such that jN j � 2 and p 2T
fi00;i000g 2N past(Gfi00;i000g; �). Therefore, the third condition is violated and this de-

composition of � is not valid.

2. Suppose we split � at the state p. Then the state p0 is in �2. Since p0 is the �rst

state in which one of the conditions Gfi00;i000g, for i
00; i000 2 I; i00 6= i000, is violated and

since the state p0 is in Gfi;i0g

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0g Gfi00;i000g

�
, it follows that

there does not exist N � ffi00; i000g j i00; i000 2 I; i00 6= i000g such that jN j � 2 and

p0 2
T

fi00;i000g 2N past(Gfi00;i000g; �). Therefore, the third condition is violated and this

decomposition of � is not valid.

3. Suppose we split � at the state p0. Then p0 is the last state of �1 and the �rst state

of �2. However, p
0 2 Gfi;i0g

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0g Gfi00;i000g

�
. Therefore, the

second condition is violated and this decomposition of � is not valid.

4. Suppose we split � at any state succeeding p0. Then the state p0 is in �1. Since

p0 2 Gfi;i0g

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0g Gfi00;i000g

�
, it follows that the state p0 is not

118

in the set
T

i00;i000 2 I;i00 6=i000 Gfi00;i000g. Therefore, the �rst condition is violated and this

decomposition of � is not valid.

Therefore, the execution � cannot be decomposed into any such �1 and �2. It follows that

the �rst clause of Theorem 3.1.8 must hold; that is, every state in � is in Gmerge-prot. This

implies that the protector merge-prot guarantees Gmerge-prot in the merge-vehicles

automaton starting from Smerge-prot given Rmerge-prot.

119

120

Chapter 8

Example 4:

Collision Avoidance on a General

Graph of Tracks

In this chapter, we consider a general track topology involving binary merges and diverges.

We �rst augment the model of the PRT 2000TM to involve a track topology consisting of

multiple branches interconnected by Y-shaped merges and diverges | the new model is

referred to as the graph-vehicles automaton. Then we de�ne the protector graph-prot

that guarantees that none of the vehicles of the graph-vehicles automaton collide, assum-

ing that they are all abiding by the speed limit. The graph-prot protector is de�ned as the

composition of n(n�1)=2 separate copies of another protector called graph-prot-pairfi;i0g,

one copy for each unordered pair fi; i0g of vehicles of the graph-vehicles automaton, for

i; i0 2 I; i 6= i0. Each of these graph-prot-pairfi;i0g protectors, for i; i
0 2 I; i 6= i0, is an im-

plementation of a particular instantiation of the abstract protector automaton of Section 3.2

and guarantees that the vehicles i and i0 do not collide into each other.

8.1 Augmented Physical Plant: graph-vehicles

In this section we augment the model for the system of n vehicles to involve a track topology

involving binary merges and diverges. This is done by extending the de�nition of the

location of a vehicle to support a graph of tracks and by introducing an additional internal

discrete action which is used to update the location variables of the vehicles as they cross

the junction points in the track topology.

The track topology is represented by a directed graph G = (V;E), where V and E denote

the sets of vertices and edges of the graph G, respectively. The vertices and edges of the

121

graph G correspond, respectively, to the junctions and branches of the track topology. Any

edge e of the graph G is speci�ed by an ordered pair of vertices that denote the initial and

the �nal vertices of the directed edge e, i.e., e = hvinit; v�nali. We use the notation e:vinit

and e:v�nal to denote the initial and �nal vertices of the edge e, respectively. The function

length : E ! R�0
maps an edge to its length. Moreover, the functions in(v), out(v), and

e(v) map the vertex v of the graph G to its sets of incoming edges, outgoing edges, and

both incoming and outgoing edges, respectively; that is, in : V ! P(E), out : V ! P(E),

and e : V ! P(E), with e(v) = in(v)[out(v), for all v 2 V .

The graph G, as de�ned above, is assumed to satisfy the following conditions:

� All the edges of the graphG are of su�cient length to rule out collisions among vehicles

that are neither on identical, nor on contiguous edges; that is, if dmax is the maximum

sampling period of all the protectors under consideration, the length of each edge

in the graph G is greater than �xmax = _cmaxdmax � _c2max=2�cbrake | the maximum

distance a vehicle can travel if left free for dmax time units and instructed to brake

thereafter, under the assumption that the vehicle does not collide and is abiding by the

speed limit. This restriction rules out the possibility of a vehicle having a dmax time

unit claim overlap with a vehicle that is more than one edge upstream or downstream.

� All the merges and diverges of the graph G are Y-shaped; that is, for each vertex v

in the graph G, it is the case that hjin(v)j; jout(v)ji 2 fh1; 1i; h2; 1i; h1; 2ig.

� All cycles must contain at least three edges. This condition ensures that the ordering

of the locations of vehicles traveling on successive branches of the track topology is

well de�ned.

Any point on the graph G is represented by a pair consisting of the directed edge of the

graph G and the distance of the particular point from the initial vertex of the directed edge.

The formal de�nition of the set L of locations is as follows:

L = fhe; xi j e 2 E and x 2 [0; length(e)]g

The set of locations is constrained by the length of the edges of the graph G; that is, for

l 2 L and l = he; xi, it is the case that x 2 [0; length(e)]. We use the notation l:e and l:x

to denote the edge and position components of the location l, respectively. It is important

to note that, in this representation scheme, the vertices of the graph G have non-unique

representations; that is, for all edges e; e0 2 E, with e:v�nal = e0:vinit, it is the case that

the location l = he; length(e)i is identical to the location l0 = he0; 0i. Finally, two locations

in L are comparable if they are locations either on identical, or on successive edges, i.e.,

the locations l; l0 2 L are comparable only if either l:e = l0:e, or l:e:v�nal = l0:e:vinit or

l:e:vinit = l0:e:v�nal.

122

Addition of a non-negative scalar y to a location l 2 L, where l = he; xi, maps the location

l to the set of locations that can be reached from the location l by traveling a distance

y downstream. The set he; xi + y always exists and is de�ned to be either the singleton

fhe; x + yig, if x + y � length(e), or the set

S
" 2 out(e:v�nal)

(h"; 0i+ (x+ y � length(e))),

otherwise. This de�nition handles the cases in which the locations he; xi+ y extend past a

single split or merge, or even multiple splits and/or merges in the track topology.

It is important to note that addition of a location l with a non-negative scalar that is

bounded by the minimum distance from the location l to the closest second junction down-

stream results in a set of locations in which each location l0 is comparable to the loca-

tion l and satis�es the inequality l � l0; that is, for all l 2 L, where l = he; xi, and

y 2 [0; length(e) � x + min " 2 out(e:v�nal)
length(")], the location l is comparable to all loca-

tions in l + y and, moreover, l � l0, for all l0 2 l + y. In particular, since the length of each

edge of the graph G is assumed to be greater than �xmax, addition of a location l with

a non-negative scalar y � �xmax results in a set of locations in which each location l0 is

comparable to the location l and satis�es the inequality l � l0.

A closed interval in L is speci�ed with an ordered pair of comparable locations and contains

all locations between them, e.g., [he1; x1i; he2; x2i]. The partial ordering on comparable

locations in L is as follows: he1; x1i � he2; x2i if and only if either x1 � x2 and e1 = e2, or

e1:v�nal = e2:vinit.

Due to the fact that the extent of a vehicle may extend beyond a split in the track topology,

we rede�ne the notion of the section of the track occupied by a particular vehicle as the

union of the intervals extending from the current position of the vehicle to a point on the

track that is a distance clen downstream; that is, the extent of a vehicle i 2 I is the set

Ei =
S

l0i 2 li+clen
[li; l

0
i].

In view of breaking the right-of-way symmetry when vehicles approach a merge in the track

topology, we must de�ne a prioritization scheme. In Chapter 7, the prioritization was based

on the con�guration of the merge; namely, the vehicle traveling on the right branch of the

merge had priority over a vehicle traveling on the left branch. In the case of the graph

of tracks, the notion of either left, or right is not well de�ned. Therefore, we associate

a unique priority index to each edge of the graph and give priority to vehicles traveling on

the edge whose priority index is greater. Let the function priority be an injection from the

set of edges E of the graph G, to the set of natural numbers N; that is, priority : E ! N,

where for any e; e0 2 E; e 6= e0, it is the case that priority(e) 6= priority(e0).

The new model of the physical system, called graph-vehicles, is presented in Figure 8.1.

The graph-vehicles automaton is the result of augmenting the merge-vehicles automa-

ton of Chapter 7 so as to involve a general track topology consisting of Y-shaped merges and

diverges. Each of the reset-location(i) actions, for i 2 I , is enabled when the vehicle i

has reached the �nal point of the directed edge on which it is traveling, i.e., the vehicle i

123

Figure 8.1 The graph-vehicles automaton.

Actions: Variables

Input: Internal:

e, the environment action (stuttering)

protect(C)j , for all C 2 P(I); j 2 J

�xi 2R, for all i 2 I, initially �xi 2 R

brake(i) 2 Bool, for all i 2 I,

initially False

brake-req(i; j) 2 Bool, for all i 2 I; j 2 J ,

initially False
Internal: Output:

colliding-pair(i; i0), for all i; i0 2 I; i0 6= i

collision-effects(i), for all i 2 I

brick-wall(i), for all i 2 I

reset-location(i), for all i 2 I

li 2 L, for all i 2 I, initially li 2 L

_xi 2R, for all i 2 I, initially _xi 2 R

collided(i; i0) 2 Bool, for all i; i0 2 I; i0 6= i,

initially False

subject to VALID

Discrete Transitions:

protect(C)j

E�: for all i 2 C

brake-req(i; j) := True

if :brake(i) then

brake(i) := True

if _xi = 0 then �xi := 0

else �xi := �cbrake

for all i 2 I � C

brake-req(i; j) := False

if brake(i) ^ (: _k 2 J brake-req(i; k)) then

brake(i) := False

�xi :2 [�cmin; �cmax]

colliding-pair(i; i0)

Pre: :collided(i; i0)

^(Ei \Ei0 6= ;)

^(li < min(Ei \Ei0))

E�: collided(i; i0) := True

if (li:e 6= li0 :e)

^(li:e:v�nal = li0 :e:v�nal)

then

collided(i0; i) := True

collision-effects(i)

Pre: collided(�; i; �)

E�: _xi :2R
�0

�xi :2R

reset-location(i)

Pre: li:x = length(li:e)

E�: li:e :2 out(li:e)

li:x := 0

brick-wall(i)

Pre: True

E�: _xi := 0

if brake(i) then �xi := 0

else �xi :2 [0; �cmax]

Trajectories:

for all i; i0 2 I; i 6= i0, collided(i; i0) is constant throughout w

for all i 2 I and j 2 J , brake(i) and brake-req(i; j) are constant throughout w

for all i; i0 2 I; i 6= i0

the function w:�xi is integrable

for all t 2 TI

w(t): _xi = w(0): _xi +
R t

0
w(s):�xi ds

w(t):li:x = w(0):li:x+
R t

0
w(s): _xi ds

if :w:collided(i; i0)

^(w(t):Ei \w(t):Ei0 6= ;)

^(w(t):li < min(w(t):Ei \ w(t):Ei0))

then

t = w:ltime

if w(t):li:x = length(w(t):li:e) then

t = w:ltime

subject to VALID

124

is located on a vertex of the graph G. At that point in time, its location is nondetermin-

istically set to the initial point of an arbitrary outgoing edge of the vertex on which the

vehicle i is located.

The remaining state variables, derived variables, and discrete actions of either the vehicles

automaton of Chapter 4, or the merge-vehicles automaton of Chapter 7 as well as the

notational shorthand collided(i; �), collided(�; i), and collided(�; i; �), for all i 2 I , de�ned

for the vehicles automaton in Section 4.1, carry over to the graph-vehicles automaton

unchanged.

As in the case of the merge-vehicles automaton, the set of input actions of the graph-

vehicles automaton includes the actions protect(C)j, for C 2 P(I) and j 2 J ; that is,

the graph-vehicles automaton allows each protector j, for j 2 J , to brake any subset

of the vehicles. However, it is often the case that a protector j, for some j 2 J , need

not schedule but a subset of the actions protect(C)j, for C 2 P(I). In such cases, the

protector j is speci�ed as having only the output actions that it is capable of scheduling

and the remaining input actions of the graph-vehicles automaton on port j are ignored.

The VALID set of the graph-vehicles automaton is the rede�nition of the VALID set of

the vehicles automaton to account for the new track topology representation.

VALID � states(graph-vehicles); de�ned as the set of states of the graph-vehicles

automaton that satisfy the following conditions:

1. @ i; i0 2 I; i 6= i0, such that the set Ei \ Ei0 contains a positive length closed

interval of L.

2. _xi � 0, for all i 2 I .

3. If :collided(�; i; �) then �xi 2 [�cmin; �cmax], for all i 2 I .

4. If :collided(�; i; �)^ brake(i) then if _xi = 0 then �xi = 0 else �xi = �cbrake , for all

i 2 I .

The graph-vehicles automaton complies with the assumptions made about the PP au-

tomaton in Section 3.2.1. The graph-vehicles automaton has neither input variables, nor

output actions, on any of its ports (Axioms 3.2.1 and 3.2.2, respectively). Moreover, each

of the actions protect(Cj)j , for j 2 J and Cj = fi j brake-req(i; j) = Trueg, is a no-op

input action on port j for any R � VALID. Therefore, the set of no-op input actions on

each port j 2 J and any R � VALID is non-empty (Axiom 3.2.3).

125

8.2 Auxiliary Derived Variables and Auxiliary Sets for the

graph-vehicles Automaton

In this section, we de�ne auxiliary derived variables and sets for the graph-vehicles

automaton. Most of these variables and sets carry over from either the vehicles, or the

merge-vehicles automata. In such cases, the variables and sets are rede�ned only when

their extension to the graph-vehicles automaton is not obvious.

As in Chapter 7, we assume that the variables stop-disti, max-rangei(t), and max-veli(t),

de�ned for the vehicles automaton in Section 4.3, extend to involve location instead of

position variables in the obvious way.

As in the case of the extents of the vehicles of the graph-vehicles automaton, we rede�ne

the sections of track owned and claimed by the vehicles in the graph-vehicles automaton.

While their formal de�nitions appear in Table 8.1, their informal interpretations follow.

Oi; for i 2 I , is the section of track that the vehicle i \owns". A vehicle i owns all

track intervals that extend from the current position of the vehicle i to the points on

the track that the vehicle i can reach even if it is braked immediately. Due to the

possibility of such track intervals extending beyond a split in the track topology, the

variable Oi is the union of all the intervals that the vehicle i owns.

Ci(t); for i 2 I and t 2 R�0
, is the section of track that the vehicle i \claims" within t time

units. A vehicle i claims within t time units all track intervals that extend from the

current position of the vehicle i to the points on the track that the vehicle i can reach

if braked after t time units and assuming worst-case vehicle behavior up to the point

in time when it is braked. Due to the possibility of such track intervals extending

beyond a split in the track topology, the variable Ci(t) is the union of all the intervals

that the vehicle i claims within t time units.

Henceforth, we assume that the sets disjoint-extents(i; i0), disjoint-owned-tracks(i; i0), and

disjoint-claimed-tracks(i; i0; t), for i; i0 2 I; i 6= i0 and t 2 R�0
, de�ned for the vehicles

automaton in Section 4.3, have been extended to the graph-vehicles automaton to in-

corporate the rede�nitions of the derived variables used in their de�nitions. Moreover, we

assume that the Lemmas 4.4.1, 4.4.2, 4.4.3, 4.4.4, and 4.4.5 extend to the graph-vehicles

automaton in the obvious way.

Several auxiliary sets for the graph-vehicles automaton are described below. Their formal

de�nitions appear in Table 8.2.

successive(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID that consists of the states

in which the vehicles i and i0 are traveling in succession either on the same, or on

126

Table 8.1 Auxiliary derived variables for the graph-vehicles automaton.

Oi � L; for all i 2 I, de�ned by

Oi =
[

l0i 2 li+(stop-disti+clen)

[li; l
0
i]

Ci(t) � L; for all i 2 I and t 2 R�0, de�ned by

Ci(t) =
[

l0i 2 li+(max-rangei(t)�max-veli(t)2=(2�cbrake)+clen)

[li; l
0
i]

successive directed edges; that is, states in which either the vehicle i is downstream

of the vehicle i0, or the vehicle i0 is downstream of the vehicle i.

adjacent(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID that consists of the states in which

the vehicles i and i0 are traveling on di�erent tracks that lead to the same junction;

that is, the edges on which the vehicles i and i0 are traveling are distinct and have the

same �nal vertex.

proximate(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID that consists of the states in

which the vehicles i and i0 are traveling either in succession as de�ned by the set

successive(i; i0), or on adjacent tracks as de�ned by the set adjacent(i; i0).

remote(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID that consists of the states in

which the vehicles i and i0 are traveling neither in succession as de�ned by the set

successive(i; i0), nor on adjacent tracks as de�ned by the set adjacent(i; i0).

yield-successive(i; i0); for i; i0 2 I; i 6= i0, is the subset of successive(i; i0) that consists of the

states in which, in the case of a claim overlap among the vehicles i and i0, the vehicle i

must yield to the vehicle i0. When the vehicles i and i0 are traveling in succession,

the vehicle i must yield to the vehicle i0 if the vehicle i is trailing the vehicle i0. The

vehicle i is said to be trailing the vehicle i0 if the location of the vehicle i is strictly

less than the location of the vehicle i0.

yield-adjacent(i; i0); for i; i0 2 I; i 6= i0, is the subset of adjacent(i; i0) that consists of the

states in which, in the case of a claim overlap among the vehicles i and i0, the vehicle i

must yield to the vehicle i0. When the vehicles i and i0 are traveling on adjacent

incoming tracks, the vehicle i must yield to the vehicle i0 if either only the vehicle i0

owns the upcoming merge point, or the vehicle i0 has priority and neither or both

vehicles own the merge point.

yield(i; i0); for i; i0 2 I; i 6= i0, is the subset of VALID that consists of the states in which,

127

Table 8.2 Auxiliary sets for the graph-vehicles automaton.

successive(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

successive(i; i0) = fp 2 VALID j (p:li:e = p:li0 :e)

_ (p:li:e:v�nal = p:li0 :e:vinit)

_ (p:li0 :e:v�nal = p:li:e:vinit)g

adjacent(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

adjacent(i; i0) = fp 2 VALID j (p:li:e 6= p:li0 :e) ^ (p:li:e:v�nal = p:li0 :e:v�nal)g

proximate(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

proximate(i; i0) = successive(i; i0) [adjacent(i; i0)

remote(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

remote(i; i0) = VALID � proximate(i; i0)

yield-successive(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

yield-successive(i; i0) = fp 2 successive(i; i0) j p:li < p:li0g

yield-adjacent(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

yield-adjacent(i; i0) = fp 2 adjacent(i; i0) j (hp:li:e; length(p:li:e)i 62 p:Oi

^ hp:li0 :e; length(p:li0 :e)i 2 p:Oi0)

_ (hp:li:e; length(p:li:e)i 2 p:Oi

^ hp:li0 :e; length(p:li0 :e)i 2 p:Oi0

^ priority(p:li:e) < priority(p:li0 :e))

_ (hp:li:e; length(p:li:e)i 62 p:Oi

^ hp:li0 :e; length(p:li0 :e)i 62 p:Oi0

^ priority(p:li:e) < priority(p:li0 :e))g

yield(i; i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

yield(i; i0) = yield-successive(i; i0) [yield-adjacent(i; i0)

128

in the case of a claim overlap among the vehicles i and i0, the vehicle i must yield to

the vehicle i0 in order to prevent a potential collision between the vehicles i and i0.

The following lemma describes some properties of the sets de�ned above.

Lemma 8.2.1 For all i; i0 2 I; i 6= i0, the following hold:

1. VALID = proximate(i; i0) [remote(i; i0).

2. proximate(i; i0) \ remote(i; i0) = ;.

3. successive(i; i0) = yield-successive(i; i0)[yield-successive(i0; i).

4. yield-successive(i; i0) \ yield-successive(i0; i) = ;.

5. adjacent(i; i0) = yield-adjacent(i; i0) [yield-adjacent(i0; i).

6. yield-adjacent(i; i0) \ yield-adjacent(i0; i) = ;.

Proof: We prove each of the conditions separately:

1. The condition that VALID = proximate(i; i0) [remote(i; i0), for each i; i0 2 I; i 6= i0,

follows from the de�nition of the sets proximate(i; i0) and remote(i; i0).

2. As for the �rst condition, the condition that proximate(i; i0)\remote(i; i0) = ;, for each

i; i0 2 I; i 6= i0, follows from the de�nition of the sets proximate(i; i0) and remote(i; i0).

3. For all i; i0 2 I; i 6= i0, the sets yield-successive(i; i0) and yield-successive(i0; i) are both

subsets of the set successive(i; i0). Therefore, it su�ces to show that any state p in the

set successive(i; i0), for some i; i0 2 I; i 6= i0, is either in the set yield-successive(i; i0),

or in the set yield-successive(i0; i).

Let the state p be any state in successive(i; i0), for some i; i0 2 I; i 6= i0. Since

successive(i; i0) � VALID, it is the case that p 2 VALID. Therefore, the sections

of the track occupied by the vehicles i and i0 do not have a positive length closed

interval overlap. It follows that it is not possible for their locations to coincide; that

is, for any p 2 successive(i; i0), it is the case that p:li 6= p:li0. Therefore, regarding the

ordering of the locations of the vehicles i and i0, there are only two viable cases:

(a) p:li < p:li0 . In this case, p 2 yield-successive(i; i0).

(b) p:li0 < p:li. In this case, p 2 yield-successive(i0; i).

4. If p 2 yield-successive(i; i0) then it is the case that p:li < p:li0. It follows that p 62

yield-successive(i0; i). Similarly, if p 2 yield-successive(i0; i) then it is the case that

p:li0 < p:li. It follows that p 62 yield-successive(i; i0). This su�ces.

129

5. For all i; i0 2 I; i 6= i0, the sets yield-adjacent(i; i0) and yield-adjacent(i0; i) are both

subsets of the set adjacent(i; i0). Therefore, it su�ces to show that any state p in the

set adjacent(i; i0), for some i; i0 2 I; i 6= i0, is either in the set yield-adjacent(i; i0), or

in the set yield-adjacent(i0; i).

Let the state p be any state in adjacent(i; i0), for some i; i0 2 I; i 6= i0, and without loss

of generality let the vehicle i0 be the vehicle traveling on the incoming edge of greater

priority, i.e., priority(p:li:e) < priority(p:li0:e). Regarding the ownership of the merge

point by each of the vehicles, there are four cases:

(a) hout; 0i 2 p:Oi ^ hout; 0i 2 p:Oi0 . In this case, p 2 yield-adjacent(i; i0) and

p 62 yield-adjacent(i0; i).

(b) hout; 0i 62 p:Oi^hout; 0i 62 p:Oi0. Similarly to above, p 2 yield-adjacent(i; i0) and

p 62 yield-adjacent(i0; i).

(c) hout; 0i 62 p:Oi ^ hout; 0i 2 p:Oi0 . In this case, p 2 yield-adjacent(i; i0) and

p 62 yield-adjacent(i0; i).

(d) hout; 0i 2 p:Oi ^ hout; 0i 62 p:Oi0 . In this case, p 62 yield-adjacent(i; i0) and

p 2 yield-adjacent(i0; i).

6. This condition follows from the analysis in the proof of condition 5.

8.3 Protection System graph-prot-pairfi;i0g

The graph-prot-pairfi;i0g automata, for i; i0 2 I; i 6= i0, are vehicle-pair collision protectors

and guarantee that the vehicles i and i0 do not collide into each other, provided that all the

vehicles are abiding by the speed limit and the vehicles of all other vehicle pairs do not collide

between themselves. Each of the graph-prot-pairfi;i0g protectors, for i; i
0 2 I; i 6= i0, is an

implementation of the abstract protector of Section 3.2 specialized to particular de�nitions

of the parameters PP, S, R, G, j, and d.

The physical plant automaton, PP, is de�ned to be the graph-vehicles automaton of

Figure 8.1. The port j and the sampling period d are de�ned to be the port and sampling

period with which the protector graph-prot-pairfi;i0g communicates with the graph-

vehicles automaton. While the port j is assumed arbitrary, the sampling period d is

restricted to the set (0; dmax], where dmax is the maximum protector sampling period pre-

sented in Section 8.1. The set of \good" states G is de�ned to be the set of states in which

the vehicles i and i0 have not collided into each other, i.e., G = VALID � Pcollided(i;i0) �

Pcollided(i0;i). In this chapter, we use the notation Gfi;i0g to denote the de�nition of G

that is speci�c to the graph-prot-pairfi;i0g protector. The set R is de�ned to be the

130

set R = Pnot-overspeed

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0gGfi00;i000g

�
. This de�nition restricts the

states of the graph-vehicles automaton to states in which all the vehicles are abid-

ing by the speed limit and in which the vehicles of all other vehicle pairs fi00; i000g, for

i00; i000 2 I; i00 6= i000; fi00; i000g 6= fi; i0g, have not collided into each other. The set S is de�ned

to be the set safe de�ned in Section 3.2.1; that is, the set of states of the PP automaton

for which a single input action of PP on port j can guarantee that, provided no new input

actions on port j are allowed, all subsequently R-reachable states will be in G. Once again,

the de�nition of the set safe is specialized to the above de�nitions of the automaton PP,

the sets R and G, and the port j. In this chapter, we use the notation Rfi;i0g and Sfi;i0g to

refer to the above de�nitions of the sets R and S.

The graph-prot-pairfi;i0g protector automaton is an implementation of the abstract pro-

tector automaton Abs(graph-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d). More precisely, as is the

case for the abstract protector Absj , we de�ne the graph-prot-pairfi;i0g automaton to

be the composition of a sensor and a discrete controller automaton. These automata are

implementations of their abstract equivalents of Figures 3.2 and 3.3 specialized, however,

to the above de�nitions of the parameters PP, S, R, G, j, and d. The sensor automaton is

precisely the specialization of the sensor automaton of Figure 3.2 to the above de�nitions

of the parameters PP, etc. The discrete controller automaton is de�ned in Figure 8.2.

The braking strategy of the graph-prot-pairfi;i0g protector is as follows. The protector is

allowed to brake the vehicles i and i0 only if the sections of the track they claim in d time

units overlap. Given that the vehicles i and i0 are indeed involved in such a claim overlap,

there are two possible scenarios depending on whether the vehicles i and i0 are traveling

in succession, or on adjacent tracks. If the vehicles are traveling in succession, then the

vehicle i is instructed to brake if it trails the vehicle i0; otherwise, the vehicle i0 is instructed

to brake. On the other hand, if the vehicles i and i0 are traveling on adjacent edges, the

vehicle i is instructed to brake either if only the vehicle i0 owns the merge point, or if both

or neither vehicles own the merge point and the vehicle i0 is traveling on the edge of greater

priority; otherwise, the vehicle i0 is instructed to brake.

It is important to note that the abstract protector automaton Abs(graph-vehicles; Sfi;i0g;

Rfi;i0g; Gfi;i0g; j; d) complies with the assumptions made about the abstract protector in Sec-

tion 3.2.1. In particular, since the vehicle location variables, the vehicle velocity variables,

and the collided variables are output variables of the graph-vehicles automaton, the set

safe is Ygraph-vehicles-determinable and actions that guarantee safety can be determined

from the output variables of the graph-vehicles automaton (Axioms 3.2.4 and 3.2.5,

respectively). Moreover, the sets Rfi;i0g and Gfi;i0g are Ygraph-vehicles-determinable (Ax-

ioms 3.2.6 and 3.2.7, respectively) and the set of start states Sfi;i0g is a subset of the set

safe (Axiom 3.2.8), since Sfi;i0g is de�ned to be the set safe.

In Section 3.1 it was shown that the abstract protector Absj guarantees that the physical

131

Figure 8.2 Discrete controller automaton for the protector graph-prot-pairfi;i0g.

Actions: Input: e, the environment action (stuttering)

snapshot(y)j, for each valuation y of Ygraph-vehicles
Output: protect(C)j, for C 2 P(fi; i0g)

Variables: Internal: sendj 2 P(fi; i0g) [null, initially null

Discrete Transitions:

snapshot(y)j

E�: if y 62 disjoint-claimed-tracks(i; i0; d) then

if y 2 yield(i; i0) then

sendj := fig

else

sendj := fi0g

else

sendj := ;

protect(C)j

Pre: sendj = C

E�: sendj := null

Trajectories:

w:sendj � null

plant PP remains within G starting from S given R. Similarly, the graph-prot-pairfi;i0g

automaton guarantees that the graph-vehicles automaton remains within Gfi;i0g starting

from Sfi;i0g given Rfi;i0g. This is shown in the following section.

8.4 Correctness of graph-prot-pairfi;i0g

The main result to be shown is that graph-prot-pairfi;i0g � Abs(graph-vehicles; Sfi;i0g;

Rfi;i0g; Gfi;i0g; j; d). Since both graph-prot-pairfi;i0g and Abs(graph-vehicles; Sfi;i0g;

Rfi;i0g; Gfi;i0g; j; d) involve the composition of the same sensor automaton with distinct dis-

crete controller automata, Theorem 2.7.4 applies. Therefore, it su�ces to show that the

discrete controller automaton of the protector graph-prot-pairfi;i0g of Figure 8.2 imple-

ments the discrete controller automaton DC(graph-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d) of

Figure 3.3. From Theorem 2.6.1, this follows by showing that there exists a simulation

relation between the states of the discrete controller automaton of graph-prot-pairfi;i0g

132

Table 8.3 Sets used in the correctness proof of graph-prot-pairfi;i0g.

Wfi;i0g � VALID; for i; i0 2 I; i 6= i0, de�ned by

Wfi;i0g = Rfi;i0g \Gfi;i0g \ disjoint-owned-tracks(i; i0)

Bfi;i0g � VALID; for i; i0 2 I; i 6= i0, de�ned by

Bfi;i0g = Wfi;i0g \ PBij
\ PBi0j

V(i;i0) � VALID; for i; i0 2 I; i 6= i0, de�ned by

V(i;i0) = fp 2Wfi;i0g \ PBij
j (p 2 successive(i; i0) ^ p:li < p:li0)

_ (p 2 adjacent(i; i0) ^ p:Oi � [p:li; hp:li:e; length(p:li:e)i])g

Vfi;i0g � VALID; for i; i0 2 I; i 6= i0, de�ned by

Vfi;i0g = V(i;i0) [V(i0;i)

Tfi;i0g(t) � VALID; for i; i0 2 I; i 6= i0, and t 2 R�0, de�ned by

Tfi;i0g(t) = Rfi;i0g \Gfi;i0g \ disjoint-claimed-tracks(i; i0; t)

and the discrete controller automaton DC(graph-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d). We

�rst give some set de�nitions, then prove some lemmas, and �nally show the existence of

such a simulation relation.

In this section, we use the notation futurefi;i0g, safefi;i0g, very-safefi;i0g, and delay-safefi;i0g

to denote the specialization of the function future, the sets safe and very-safe, and the

function delay-safe, which are de�ned in Section 3.2.1, to the automaton graph-vehicles,

the sets Rfi;i0g and Gfi;i0g, and the the port j of the graph-prot-pairfi;i0g protector.

Moreover, since the environment action of the graph-vehicles automaton is stuttering,

its consideration is omitted in all inductive proofs involving the PP automaton.

We proceed by de�ning several sets that are used in the correctness proof of the protector

graph-prot-pairfi;i0g. For reference, their formal de�nitions appear in Table 8.3.

Let Wfi;i0g be the subset of Rfi;i0g\Gfi;i0g comprised of the states in which the section of the

track owned by the vehicle i does not overlap the section of track owned by the vehicle i0;

that is, Wfi;i0g = Rfi;i0g \Gfi;i0g \ disjoint-owned-tracks(i; i0).

Let Bfi;i0g be the subset of of Wfi;i0g comprised of the states in which the vehicles i and i0

are both being instructed to brake by the protector j; that is, Bfi;i0g = Wfi;i0g\PBij
\PBi0j

.

133

Let V(i;i0) be the subset of Wfi;i0g comprised of the states in which the vehicle i is being

instructed to brake by the protector j and either the vehicles i and i0 are traveling in

succession and li < li0 , i.e., the vehicle i is trailing the vehicle i0, or the vehicles i and i0

are adjacent and the section of the track owned by the vehicle i is entirely upstream of the

merge point hout; 0i. Moreover, let Vfi;i0g be de�ned as Vfi;i0g = V(i;i0) [V(i0;i).

Let Tfi;i0g(t), where t 2 R�0
, be the subset of Rfi;i0g \ Gfi;i0g comprised of the states in

which the section of the track claimed in time t by the vehicle i does not overlap the

section of the track claimed in time t by the vehicle i0; that is, Tfi;i0g(t) = Rfi;i0g \Gfi;i0g \

disjoint-claimed-tracks(i; i0; t).

The following lemma de�nes the relation among the sets Gfi;i0g, Wfi;i0g, Bfi;i0g, Vfi;i0g, and

Tfi;i0g(t), for t 2 R
�0
.

Lemma 8.4.1 For all t; t0 2 R�0, t � t0, the following hold:

1. Tfi;i0g(t) � Wfi;i0g � Gfi;i0g.

2. Vfi;i0g � Wfi;i0g � Gfi;i0g.

3. Bfi;i0g � Wfi;i0g � Gfi;i0g.

4. Tfi;i0g(t
0
) � Tfi;i0g(t).

5. Tfi;i0g(0) = Wfi;i0g.

Proof: Follow directly from the de�nitions of the sets Wfi;i0g, Bfi;i0g, Vfi;i0g, and Tfi;i0g(�),

where � 2 R�0
, and Lemma 4.4.2.

In the next two lemmas, we show that any state p in the set Bfi;i0g is in the set very-safefi;i0g;

that is, any state Rfi;i0g-reachable from p through an execution fragment that involves no

input actions on port j, is in the set Gfi;i0g. In the �rst lemma, we show that any state that

is Rfi;i0g-reachable from p through an execution fragment that involves no input actions on

port j, is in the set Wfi;i0g. In the second lemma, we show that Bfi;i0g � very-safefi;i0g.

Lemma 8.4.2 futurefi;i0g(Bfi;i0g;R
�0
) �Wfi;i0g:

Proof: Let � be an execution fragment of the graph-vehicles automaton of n steps and

trajectories, where n 2 N, that: starts in a state in Bfi;i0g, is only comprised of states in

Rfi;i0g, and involves no input actions on port j. Let pinit and p�nal be the initial and �nal

states of �, respectively. By induction on the length n of the execution fragment �, we

show that p�nal 2 Wfi;i0g.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of a single point trajectory and, therefore, p�nal = pinit.

Since pinit 2 Bfi;i0g, Lemma 8.4.1, part 3, implies that p�nal 2 Wfi;i0g.

134

The inductive step involves showing that if � is an execution fragment of length n = k+1, for

some k 2 N, then p�nal 2 Wfi;i0g. Let �
0
be the part of the execution fragment � comprised

of the �rst k steps and trajectories. The induction hypothesis involves the assertion that if

p0final is the �nal state of �0, then it is the case that p0�nal 2 Wfi;i0g. Since the �nal state

of � is reached from the �nal state of �0 by a single step, the inductive step involves the

consideration of all possible steps and trajectories leading from p0�nal to p�nal.

In the case of a step, we consider all possible discrete actions by cases:

1. the actions protect(C)j, for C 2 P(fi; i0g), are not enabled because � involves no

input actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and a�ects neither

the velocity of the vehicle i0, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Wfi;i0g � Gfi;i0g. There-

fore, since the brick-wall(i) action does not a�ect the collided(i; i0) and collided(i0; i)

variables, it follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi � p0�nal: _xi. Moreover, since the brick-wall(i) action does not a�ect the veloc-

ity of the vehicle i0, it is the case that p�nal: _xi0 = p0�nal: _xi0 . From Lemma 4.4.3, part 1,

it follows that p�nal:Oi � p0�nal:Oi and p�nal:Oi0 � p0�nal:Oi0 . Therefore, since p0�nal 2

Wfi;i0g � disjoint-owned-tracks(i; i0), it follows that p�nal 2 disjoint-owned-tracks(i; i0).

Finally, since all states in � are, by de�nition, restricted to the set Rfi;i0g, it follows

that p�nal 2 Wfi;i0g.

3. the brick-wall(i0) action sets the velocity of the vehicle i0 to zero and a�ects neither

the velocity of the vehicle i, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Wfi;i0g � Gfi;i0g. Therefore,

since the brick-wall(i0) action does not a�ect the collided(i; i0) and collided(i0; i)

variables, it follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi0 � p0�nal: _xi0 . Moreover, since the brick-wall(i0) action does not a�ect the ve-

locity of the vehicle i, it is the case that p�nal: _xi = p0�nal: _xi. From Lemma 4.4.3, part 1,

it follows that p�nal:Oi0 � p0�nal:Oi0 and p�nal:Oi � p0�nal:Oi. Therefore, since p0�nal 2

Wfi;i0g � disjoint-owned-tracks(i; i0), it follows that p�nal 2 disjoint-owned-tracks(i; i0).

Finally, since all states in � are, by de�nition, restricted to the set Rfi;i0g, it follows

that p�nal 2 Wfi;i0g.

4. the actions protect(C)j0 , for C 2 P(I) and j0 2 J; j0 6= j, brick-wall(i00), for

i00 2 I � fi; i0g, and reset-location(i000), for i000 2 I , a�ect neither the velocities of

the vehicles i and i0, nor the collided(i; i0) and collided(i0; i) variables.

135

From the induction hypothesis, it is the case that p0�nal 2 Wfi;i0g � Gfi;i0g. Therefore,

since the actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, brick-wall(i00), for

i00 2 I � fi; i0g, and reset-location(i000), for i000 2 I , do not a�ect the collided(i; i0)

and collided(i0; i) variables, it follows that p�nal 2 Gfi;i0g.

Moreover, since the input actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and

the internal actions brick-wall(i00), for i00 2 I � fi; i0g, and reset-location(i000),

for i000 2 I , do not a�ect the velocities of the vehicles i and i0, it is the case that

p�nal: _xi = p0�nal: _xi and p�nal: _xi0 = p0�nal: _xi0 . From Lemma 4.4.3, part 1, it follows

that p�nal:Oi � p0�nal:Oi and p�nal:Oi0 � p0�nal:Oi0. Therefore, since p0�nal 2 Wfi;i0g �

disjoint-owned-tracks(i; i0), it is the case that p�nal 2 disjoint-owned-tracks(i; i0).

Finally, since all states in � are, by de�nition, restricted to the set Rfi;i0g, it follows

that p�nal 2 Wfi;i0g.

5. the internal actions colliding-pair(i00; i000), for i00; i000 2 I; i00 6= i000, and the inter-

nal actions collision-effects(i0000), for i0000 2 I , are not enabled because � is only

comprised of states in Rfi;i0g and p0�nal 2 Wfi;i0g.

Since, pinit 2 B(i;i0) � PBij
\ PBi0j

and the execution fragment leading from pinit to p0�nal

involves no input actions on port j, it follows that p0�nal 2 PBij
\ PBi0j

. Therefore, in the

case of a trajectory from p0�nal to p�nal, Lemma 4.4.4, part 1, implies that p�nal:Oi � p0�nal:Oi

and p�nal:Oi0 � p0�nal:Oi0 . Therefore, since p0�nal 2 Wfi;i0g � disjoint-owned-tracks(i; i0), it

follows that p�nal 2 disjoint-owned-tracks(i; i0). Moreover, since p0�nal 2 Wfi;i0g � Gfi;i0g and

the variables collided(i; i0) and collided(i0; i) remain constant throughout the trajectory, it

follows that p�nal 2 Gfi;i0g. Finally, since all states in � are, by de�nition, restricted to the

set Rfi;i0g, it follows that p�nal 2 Wfi;i0g, as needed.

Lemma 8.4.3 Bfi;i0g � very-safefi;i0g.

Proof: Follows directly from Lemma 8.4.2, Lemma 8.4.1, part 3, and the de�nition of

very-safe in Section 3.2.1.

In the next three lemmas and the subsequent corollary, we show that the sets Wfi;i0g and

safefi;i0g are equal. First, we show that any state that is Rfi;i0g-reachable from a state p in

Wfi;i0g through an execution fragment that involves no input actions on port j and has a

limit time equal to zero, is in the set Wfi;i0g. Then, we show that Wfi;i0g � safefi;i0g and

safefi;i0g � Wfi;i0g. Finally, the subsequent corollary states that Wfi;i0g = safefi;i0g.

Lemma 8.4.4 futurefi;i0g(Wfi;i0g; 0) � Wfi;i0g:

Proof: Let � be an execution fragment of the graph-vehicles automaton of n steps,

where n 2 N, that: starts in a state in Wfi;i0g, is only comprised of states in Rfi;i0g, involves

136

no input actions on port j, and has a limit time equal to zero. Let pinit and p�nal be the

initial and �nal states of �, respectively. By induction on the length n of the execution

fragment �, we show that p�nal 2 Wfi;i0g.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of no steps and, therefore, p�nal = pinit. Since pinit 2 Wfi;i0g,

it follows that p�nal 2 Wfi;i0g.

The inductive step involves showing that if � is an execution fragment of length n = k+1, for

some k 2 N, then p�nal 2 Wfi;i0g. Let �
0
be the part of the execution fragment � comprised

of the �rst k steps. The induction hypothesis involves the assertion that if p0final is the �nal

state of �0, then it is the case that p0�nal 2 Wfi;i0g. Since the �nal state of � is reached from

the �nal state of �0 by a single step, the inductive step involves the consideration of all

possible steps leading from p0�nal to p�nal.

To complete the induction, we consider all possible discrete actions by cases:

1. the actions protect(C)j, for C 2 P(fi; i0g), are not enabled because � involves no

input actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and a�ects neither

the velocity of the vehicle i0, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Wfi;i0g � Gfi;i0g. There-

fore, since the brick-wall(i) action does not a�ect the collided(i; i0) and collided(i0; i)

variables, it follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi � p0�nal: _xi. Moreover, since the brick-wall(i) action does not a�ect the veloc-

ity of the vehicle i0, it is the case that p�nal: _xi0 = p0�nal: _xi0 . From Lemma 4.4.3, part 1,

it follows that p�nal:Oi � p0�nal:Oi and p�nal:Oi0 � p0�nal:Oi0 . Therefore, since p0�nal 2

Wfi;i0g � disjoint-owned-tracks(i; i0), it follows that p�nal 2 disjoint-owned-tracks(i; i0).

Finally, since all states in � are, by de�nition, restricted to the set Rfi;i0g, it follows

that p�nal 2 Wfi;i0g.

3. the brick-wall(i0) action sets the velocity of the vehicle i0 to zero and a�ects neither

the velocity of the vehicle i, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Wfi;i0g � Gfi;i0g. Therefore,

since the brick-wall(i0) action does not a�ect the collided(i; i0) and collided(i0; i)

variables, it follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi0 � p0�nal: _xi0 . Moreover, since the brick-wall(i0) action does not a�ect the ve-

locity of the vehicle i, it is the case that p�nal: _xi = p0�nal: _xi. From Lemma 4.4.3, part 1,

137

it follows that p�nal:Oi0 � p0�nal:Oi0 and p�nal:Oi � p0�nal:Oi. Therefore, since p0�nal 2

Wfi;i0g � disjoint-owned-tracks(i; i0), it follows that p�nal 2 disjoint-owned-tracks(i; i0).

Finally, since all states in � are, by de�nition, restricted to the set Rfi;i0g, it follows

that p�nal 2 Wfi;i0g.

4. the actions protect(C)j0 , for C 2 P(I) and j0 2 J; j0 6= j, brick-wall(i00), for

i00 2 I � fi; i0g, and reset-location(i000), for i000 2 I , a�ect neither the velocities of

the vehicles i and i0, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Wfi;i0g � Gfi;i0g. Therefore,

since the actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, brick-wall(i00), for

i00 2 I � fi; i0g, and reset-location(i000), for i000 2 I , do not a�ect the collided(i; i0)

and collided(i0; i) variables, it follows that p�nal 2 Gfi;i0g.

Moreover, since the input actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and

the internal actions brick-wall(i00), for i00 2 I � fi; i0g, and reset-location(i000),

for i000 2 I , do not a�ect the velocities of the vehicles i and i0, it is the case that

p�nal: _xi = p0�nal: _xi and p�nal: _xi0 = p0�nal: _xi0 . From Lemma 4.4.3, part 1, it follows

that p�nal:Oi � p0�nal:Oi and p�nal:Oi0 � p0�nal:Oi0. Therefore, since p0�nal 2 Wfi;i0g �

disjoint-owned-tracks(i; i0), it is the case that p�nal 2 disjoint-owned-tracks(i; i0).

Finally, since all states in � are, by de�nition, restricted to the set Rfi;i0g, it follows

that p�nal 2 Wfi;i0g.

5. the internal actions colliding-pair(i00; i000), for i00; i000 2 I; i00 6= i000, and the inter-

nal actions collision-effects(i0000), for i0000 2 I , are not enabled because � is only

comprised of states in Rfi;i0g and p0�nal 2 Wfi;i0g.

Lemma 8.4.5 Wfi;i0g � safefi;i0g.

Proof: From the de�nition of safe in Section 3.2.1, we must show that any state p 2 Wfi;i0g

satis�es: (i) futurefi;i0g(p; 0) � Gfi;i0g, and (ii) there exists some input action � on port j

such that for every p0; p00 2 Rfi;i0g satisfying p
0 2 futurefi;i0g(p; 0) and p

0 ��! p00, it is the case

that p00 2 very-safefi;i0g.

(i) Since p 2 Wfi;i0g, the �rst condition follows from Lemma 8.4.4 and Lemma 8.4.1, part 1.

(ii) For the second condition, let � be the action protect(fi; i0g)j .

From Lemma 8.4.4, it follows that p0 2 Wfi;i0g. Now, considering the step from p0 to p00, since

the protect(fi; i0g)j action a�ects neither the velocity of any of the vehicles, nor any of the

collided variables, it follows that p00 2 Rfi;i0g, p
00 2 Gfi;i0g, p

00: _xi = p0: _xi, and p00: _xi0 = p0: _xi0 .

Therefore, Lemma 4.4.3, part 1, implies that p00:Oi � p0:Oi and p00:Oi0 � p0:Oi0 . Since

138

p0 2 Wfi;i0g, it follows that p
00 2 disjoint-owned-tracks(i; i0). From the above conditions, it

follows that p00 2 Wfi;i0g.

Moreover, since the protect(fi; i0g)j action sets the internal variables brake-req(i; j) and

brake-req(i0; j) to True, it is the case that p00 2 PBij
\ PBi0j

. Since p00 2 Wfi;i0g, it follows

that p00 2 Bfi;i0g.

Finally, Lemma 8.4.3 implies that p00 2 very-safefi;i0g, as needed.

Lemma 8.4.6 For any p 2 Rfi;i0g, if p 2 safefi;i0g then p 2 Wfi;i0g.

Proof: We show the contrapositive; that is, for any p 2 Rfi;i0g, if p 62 Wfi;i0g then p 62

safefi;i0g. Since Wfi;i0g = Rfi;i0g \ Gfi;i0g \ disjoint-owned-tracks(i; i0) and p 2 Rfi;i0g, we

consider the conditions p 62 Gfi;i0g and p 62 disjoint-owned-tracks(i; i0) separately.

1. p 62 Gfi;i0g.

From Lemma 3.2.4, part 1, it is the case that safefi;i0g � Gfi;i0g. Since p 62 Gfi;i0g, it

follows that p 62 safefi;i0g.

2. p 62 disjoint-owned-tracks(i; i0).

We must show that p 62 safefi;i0g. In order for the state p 2 Rfi;i0g to be in the

set safefi;i0g there must exist some input action � on port j such that for every

p0; p00 2 Rfi;i0g satisfying p0 2 futurefi;i0g(p; 0) and p0 ��! p00, it is the case that p00 2

very-safefi;i0g. Therefore, it su�ces to show that for any input action � on port j,

there exist p0; p00 2 Rfi;i0g satisfying p0 2 futurefi;i0g(p; 0) and p0 ��! p00, such that

p00 62 very-safefi;i0g.

Using similar analyses to those presented in the proofs of Lemmas 6.2.9 and 7.4.10,

it can be shown that for any p 2 Rfi;i0g and any input action � on port j, there

exist p0; p00 2 Rfi;i0g satisfying p0 2 futurefi;i0g(p; 0) and p0 ��! p00, such that p00 62

very-safefi;i0g. It follows that p 62 safefi;i0g, as needed.

Corollary 8.4.7 Wfi;i0g = safefi;i0g.

Proof: Follows directly from Lemmas 8.4.5 and 8.4.6.

In the following three lemmas, we show that any state Rfi;i0g-reachable from a state in V(i;i0)

through an execution fragment that involves no input actions on port j and has a limit time

that lies in the interval [0; dmax], is in the set Wfi;i0g. In the �rst lemma, we show that if the

�nal state of such an execution fragment is in Gfi;i0g and the section of track owned by the

139

vehicle i has not grown since the beginning of the execution fragment, then the �nal state

of the execution fragment is in Wfi;i0g. In the second lemma, we show that the �nal state

of any such execution fragment is in Gfi;i0g and the section of track owned by the vehicle

i does not grow throughout the execution fragment. The third lemma states the desired

property which follows directly from the �rst two lemmas.

Lemma 8.4.8 Let p 2 V(i;i0) and p0 2 futurefi;i0g(p; [0; dmax]). If p0 2 Gfi;i0g and p0:Oi �

p:Oi, then p0 2 Wfi;i0g.

Proof:We need to show that p0 2 Wfi;i0g; that is, we need to show that the state p0 is in the

set Rfi;i0g\Gfi;i0g\disjoint-owned-tracks(i; i
0
). Since p0 2 Gfi;i0g, by assumption, it remains

to be shown that p0 2 Rfi;i0g and p0 2 disjoint-owned-tracks(i; i0). We consider these two

conditions by cases:

1. p0 2 Rfi;i0g.

This is the case because the function futurefi;i0g(p;R
�0
) only considers Rfi;i0g-reachable

states.

2. p0 2 disjoint-owned-tracks(i; i0).

Since p 2 V(i;i0), there are two possible scenarios: (i) p 2 successive(i; i0) and p:li <

p:li0, (ii) p 2 adjacent(i; i0) and p:Oi � [p:li; hp:li:e; length(p:li:e)i].

In the �rst case, it is as if the vehicle i is trailing the vehicle i0 on a single track. Since

p 2 V(i;i0) � Wfi;i0g, the sections of the track owned by the vehicles i and i0 in state

p are disjoint. Now, consider the section of track owned by the vehicle i in the state

p0. Since p0:Oi � p:Oi, it follows that p:li = min(p:Oi) � p0:li = min(p0:Oi) and there

exist locations in p:Oi that are at least as downstream as any of the locations in p0:Oi.

Next, consider the section of track owned by the vehicle i0 in the state p0. Because

of the non-negative constraint on the vehicle velocities it follows that the location

p0:li0 = min(p0:Oi0) is either equal to, or downstream of the location p:li0 = min(p:Oi0).

Moreover, the sections of track owned by the vehicle i0 in state p0 could only range

from the location p0:li0 up to the locations that are a distance �xmax downstream

from the location p:li0 . Therefore, because of the constraint on the length of the edges

in the track topology and the constraint on the minimum number of edges comprising

a cycle in the track topology, it follows that p0 2 disjoint-owned-tracks(i; i0).

In the second case, since p:Oi � [p:li; hp:li:e; length(p:li:e)i], the section of the track

owned by the vehicle i in state p is strictly within the incoming directed edge p:li:e.

Since p0:Oi � p:Oi, the same is true for the section of track owned by the vehicle i

in state p0. Similarly to above, because of the non-negative constraint on the vehicle

velocities it follows that the location p0:li0 = min(p0:Oi0) is either equal to, or down-

stream of the location p:li0 = min(p:Oi0). Moreover, the sections of track owned by

140

the vehicle i0 in state p0 could only range from the location p0:li0 up to the locations

that are a distance �xmax downstream from the location p:li0. Therefore, because

of the constraint on the length of the edges in the track topology, the constraint on

the minimum number of edges comprising a cycle in the track topology, the fact that

the vehicles are traveling on adjacent tracks in state p, and the fact that the section

of track owned by the vehicle i remains within the incoming branch, it follows that

p0 2 disjoint-owned-tracks(i; i0).

Lemma 8.4.9 If p 2 V(i;i0) and p0 2 futurefi;i0g(p; [0; dmax]), then it is the case that p0 2

Gfi;i0g and p0:Oi � p:Oi.

Proof: Let � be an execution fragment of the graph-vehicles automaton of n steps and

trajectories, where n 2 N, that: starts in a state in V(i;i0), is only comprised of states in

Rfi;i0g, involves no input actions on port j, and has a limit time that lies in the interval

[0; dmax]. Letting pinit and p�nal be the initial and �nal states of �, respectively, we must

show that p�nal 2 Gfi;i0g and p�nal:Oi � pinit:Oi. The proof is by induction on the length n

of the execution fragment �.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of a single point trajectory and, therefore, p�nal = pinit.

From Lemma 8.4.1, part 2, and the fact that pinit 2 V(i;i0) � Vfi;i0g, it follows that p�nal 2

Gfi;i0g. Moreover, the fact that p�nal:Oi � pinit:Oi is trivially true.

The inductive step involves showing that if � is an execution fragment of length n = k+1, for

some k 2 N, then p�nal 2 Gfi;i0g and p�nal:Oi � pinit:Oi. Let �
0
be the part of the execution

fragment � comprised of the �rst k steps and trajectories. The induction hypothesis involves

the assertion that if p0init and p0final are the initial and �nal states of �0, respectively, then

it is the case that p0�nal 2 Gfi;i0g and p0�nal:Oi � p0init:Oi. Moreover, from Lemma 8.4.8 it

follows that p0�nal 2 Wfi;i0g. Since the �nal state of � is reached from the �nal state of �0

by a single step or trajectory, the inductive step involves the consideration of all possible

steps and trajectories leading from p0�nal to p�nal.

In the case of a step, we consider all possible actions by cases:

1. the actions protect(C)j, for C 2 P(fi; i0g), are not enabled because � involves no

input actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and does not a�ect

the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since the

141

brick-wall(i) action does not a�ect the collided(i; i0) and collided(i0; i) variables, it

follows that p�nal 2 Gfi;i0g.

Moreover, since the vehicle velocities are restricted to be non-negative, it is the case

that p�nal: _xi � p0�nal: _xi. From Lemma 4.4.3, part 1, it follows that p�nal:Oi � p0�nal:Oi.

However, from the induction hypothesis it is the case that p0�nal:Oi � p0init:Oi. There-

fore, since pinit = p0init, it follows that p�nal:Oi � pinit:Oi, as needed.

3. the actions protect(C)j0 , for C 2 P(I) and j0 2 J; j0 6= j, brick-wall(i00), for

i00 2 I; i00 6= i, and reset-location(i000), for i000 2 I , a�ect neither the velocity of the

vehicle i, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since

the actions protect(C)j0 , for C 2 P(I) and j0 2 J; j0 6= j, brick-wall(i00), for

i00 2 I; i00 6= i, and reset-location(i000), for i000 2 I , do not a�ect the collided(i; i0)

and collided(i0; i) variables, it follows that p�nal 2 Gfi;i0g.

Moreover, since the input actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and

the internal actions brick-wall(i00), for i00 2 I; i00 6= i and reset-location(i000), for

i000 2 I , do not a�ect the velocity of the vehicle i, it is the case that p�nal: _xi = p0�nal: _xi.

From Lemma 4.4.3, part 1, it follows that p�nal:Oi � p0�nal:Oi. However, from the

induction hypothesis it is the case that p0�nal:Oi � p0init:Oi. Therefore, since pinit =

p0init, it follows that p�nal:Oi � pinit:Oi, as needed.

4. the internal actions colliding-pair(i00; i000), for i00; i000 2 I; i00 6= i000, and the inter-

nal actions collision-effects(i0000), for i0000 2 I , are not enabled because � is only

comprised of states in Rfi;i0g and p0�nal 2 Wfi;i0g.

Since p0init 2 V(i;i0) � PBij
and the execution fragment leading from p0init to p

0
�nal involves no

input actions on port j, it follows that p0�nal 2 PBij
. Therefore, in the case of a trajectory

from p0�nal to p�nal, Lemma 4.4.4, part 1, implies that p�nal:Oi � p0�nal:Oi. However, from

the induction hypothesis it is the case that p0�nal:Oi � p0init:Oi. Since pinit = p0init, it follows

that p�nal:Oi � pinit:Oi. Moreover, since p0�nal 2 Gfi;i0g and the variables collided(i; i0) and

collided(i0; i) remain constant throughout the trajectory, it follows that p�nal 2 Gfi;i0g, as

needed.

Lemma 8.4.10 futurefi;i0g(V(i;i0); [0; dmax]) � Wfi;i0g.

Proof: Follows directly from Lemmas 8.4.8 and 8.4.9.

In the following lemma, we extend the result of Lemma 8.4.10 to the set Vfi;i0g.

Lemma 8.4.11 futurefi;i0g(Vfi;i0g; [0; dmax]) � Wfi;i0g.

142

Proof: Follows directly from Lemma 8.4.10 and the fact that Vfi;i0g = V(i;i0) [V(i0;i).

The following lemma states that any state p in the set Vfi;i0g is in the set delay-safefi;i0g(d);

that is, any state Rfi;i0g-reachable from p within an amount of time d through an execution

fragment that involves no input actions on port j, is in the set Gfi;i0g and any state Rfi;i0g-

reachable from p in exactly an amount of time d through an execution fragment that involves

no input actions on port j, is in the set safefi;i0g.

Lemma 8.4.12 Vfi;i0g � delay-safefi;i0g(d).

Proof: Follows from Lemma 3.2.4, part 1, Lemma 8.4.11, Corollary 8.4.7, and the fact that

d � dmax.

In the next few lemmas, we show that any state p in the set Tfi;i0g(t), for any t 2 R�0
, is

in the set delay-safefi;i0g(t); that is, any state Rfi;i0g-reachable from p within an amount of

time t through an execution fragment that involves no input actions on port j, is in the

set Gfi;i0g and any state Rfi;i0g-reachable from p in exactly an amount of time t through an

execution fragment that involves no input actions on port j, is in the set safefi;i0g.

Lemma 8.4.13 Let p 2 Tfi;i0g(�), where � 2 R
�0, and p0 2 futurefi;i0g(p; t), where t 2 [0; �].

If p0 2 Gfi;i0g, p
0:Ci(� � t) � p:Ci(�), and p0:Ci0(� � t) � p:Ci0(�), then p0 2 Tfi;i0g(� � t).

Proof: We need to show that p0 2 Rfi;i0g \ Gfi;i0g \ disjoint-claimed-tracks(i; i0; � � t).

Since p0 2 Gfi;i0g, by assumption, it remains to be shown that p0 2 Rfi;i0g and p0 2

disjoint-claimed-tracks(i; i0; � � t). We consider these two conditions by cases:

1. p0 2 Rfi;i0g.

This is the case because the function futurefi;i0g(p; t) only considers Rfi;i0g-reachable

states.

2. p0 2 disjoint-claimed-tracks(i; i0; � � t).

Since p 2 Tfi;i0g(�), it is the case that p 2 disjoint-claimed-tracks(i; i0; �). There-

fore, since p0:Ci(� � t) � p:Ci(�) and p0:Ci0(� � t) � p:Ci0(�), it follows that p0 2

disjoint-claimed-tracks(i; i0; � � t), as needed.

Lemma 8.4.14 For all p 2 Tfi;i0g(�), where � 2 R�0, and p0 2 futurefi;i0g(p; t), where

t 2 [0; �], it is the case that p0 2 Gfi;i0g, p
0:Ci(� � t) � p:Ci(�), and p0:Ci0(� � t) � p:Ci0(�).

143

Proof: Let � 2 R�0
and � be an execution fragment of the graph-vehicles automaton of

n steps and trajectories, where n 2 N, that: starts in a state in Tfi;i0g(�), is only comprised

of states in Rfi;i0g, involves no input actions on port j, and has a limit time t that lies in

the interval [0; �]. Letting pinit and p�nal be the initial and �nal states of �, respectively, we

must show that p�nal 2 Gfi;i0g, p�nal:Ci(��t) � pinit:Ci(�), and p�nal:Ci0(��t) � pinit:Ci0(�).

The proof is by induction on the length n of the execution fragment �.

For the base case, consider the execution fragment � of length n = 0; that is, � is an

execution fragment that consists of a single point trajectory and, therefore, p�nal = pinit

and �:ltime = 0, i.e., t = 0. From Lemma 8.4.1, part 1, and the fact that pinit 2 Tfi;i0g(�), it

follows that p�nal 2 Gfi;i0g. Moreover, since t = 0, the facts that p�nal:Ci(� � t) � pinit:Ci(�)

and p�nal:Ci0(� � t) � pinit:Ci0(�) are trivially true.

The inductive step involves showing that if � is an execution fragment of length n = k+ 1,

for some k 2 N, with �:ltime = t, where t 2 [0; �], then p�nal 2 Gfi;i0g, p�nal:Ci(� � t) �

pinit:Ci(�), and p�nal:Ci0(� � t) � pinit:Ci0(�). Let �
0
be the part of the execution fragment

� comprised of the �rst k steps and trajectories and let �0:ltime = t0, where t0 2 [0; t]. The

induction hypothesis involves the assertion that if p0init and p0final are the initial and �nal

states of �0, respectively, then it is the case that p0�nal 2 Gfi;i0g, p
0
�nal:Ci(�� t0) � p0init:Ci(�),

and p0�nal:Ci0(� � t0) � p0init:Ci0(�). Moreover, from Lemma 8.4.13 it follows that p0�nal 2

Tfi;i0g(� � t0). Since the �nal state of � is reached from the �nal state of �0 by a single

step or trajectory, the inductive step involves the consideration of all possible steps and

trajectories leading from p0�nal to p�nal.

In the case of a step, keeping in mind that the limit times of �0 and � are equal, i.e., t0 = t,

we consider all possible discrete actions by cases:

1. the actions protect(C)j, for C 2 P(fi; i0g), are not enabled because � involves no

input actions on port j.

2. the brick-wall(i) action sets the velocity of the vehicle i to zero and a�ects neither

the velocity of the vehicle i0, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since the

brick-wall(i) action does not a�ect the collided(i; i0) and collided(i0; i) variables, it

follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi � p0�nal: _xi. Moreover, since the brick-wall(i) action does not a�ect the veloc-

ity of the vehicle i0, it is the case that p�nal: _xi0 = p0�nal: _xi0 . From Lemma 4.4.3, part 2,

it follows that p�nal:Ci(� � t) � p0�nal:Ci(� � t0) and p�nal:Ci0(� � t) � p0�nal:Ci0(� � t0).

However, from the induction hypothesis it is the case that p0�nal:Ci(��t
0
) � p0init:Ci(�)

and p0�nal:Ci0(� � t0) � p0init:Ci0(�). Therefore, since pinit = p0init, it follows that

p�nal:Ci(� � t) � pinit:Ci(�) and p�nal:Ci0(� � t) � pinit:Ci0(�), as needed.

144

3. the brick-wall(i0) action sets the velocity of the vehicle i0 to zero and a�ects neither

the velocity of the vehicle i, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since the

brick-wall(i0) action does not a�ect the collided(i; i0) and collided(i0; i) variables, it

follows that p�nal 2 Gfi;i0g.

Since the vehicle velocities are restricted to be non-negative, it is the case that

p�nal: _xi0 � p0�nal: _xi0 . Moreover, since the brick-wall(i0) action does not a�ect the ve-

locity of the vehicle i, it is the case that p�nal: _xi = p0�nal: _xi. From Lemma 4.4.3, part 2,

it follows that p�nal:Ci(� � t) � p0�nal:Ci(� � t0) and p�nal:Ci0(� � t) � p0�nal:Ci0(� � t0).

However, from the induction hypothesis it is the case that p0�nal:Ci(��t
0
) � p0init:Ci(�)

and p0�nal:Ci0(� � t0) � p0init:Ci0(�). Therefore, since pinit = p0init, it follows that

p�nal:Ci(� � t) � pinit:Ci(�) and p�nal:Ci0(� � t) � pinit:Ci0(�), as needed.

4. the actions protect(C)j0 , for C 2 P(I) and j0 2 J; j0 6= j, brick-wall(i00), for

i00 2 I � fi; i0g, and reset-location(i000), for i000 2 I , a�ect neither the velocities of

the vehicles i and i0, nor the collided(i; i0) and collided(i0; i) variables.

From the induction hypothesis, it is the case that p0�nal 2 Gfi;i0g. Therefore, since

the actions protect(C)j0 , for C 2 P(I) and j0 2 J; j0 6= j, brick-wall(i00), for

i00 2 I � fi; i0g, and reset-location(i000), for i000 2 I , do not a�ect the collided(i; i0)

and collided(i0; i) variables, it follows that p�nal 2 Gfi;i0g.

Moreover, since the input actions protect(C)j0, for C 2 P(I) and j0 2 J; j0 6= j, and

the internal actions brick-wall(i00), for i00 2 I � fi; i0g, and reset-location(i000),

for i000 2 I , do not a�ect the velocities of the vehicles i and i0, it is the case that

p�nal: _xi = p0�nal: _xi and p�nal: _xi0 = p0�nal: _xi0 . From Lemma 4.4.3, part 2, it follows that

p�nal:Ci(� � t) � p0�nal:Ci(� � t0) and p�nal:Ci0(� � t) � p0�nal:Ci0(� � t0). However,

from the induction hypothesis it is the case that p0�nal:Ci(� � t0) � p0init:Ci(�) and

p0�nal:Ci0(�� t0) � p0init:Ci0(�). Therefore, since pinit = p0init, it follows that p�nal:Ci(��

t) � pinit:Ci(�) and p�nal:Ci0(� � t) � pinit:Ci0(�), as needed.

5. the internal actions colliding-pair(i00; i000), for i00; i000 2 I; i00 6= i000, and the inter-

nal actions collision-effects(i0000), for i0000 2 I , are not enabled because � is only

comprised of states in Rfi;i0g and p0�nal 2 Tfi;i0g(� � t0).

In the case of a trajectory, Lemma 4.4.4, part 2, implies that p�nal:Ci(��t) � p0�nal:Ci(��t
0
)

and p�nal:Ci0(� � t) � p0�nal:Ci0(� � t0). However, from the induction hypothesis it is the

case that p0�nal:Ci(� � t0) � p0init:Ci(�) and p0�nal:Ci0(� � t0) � p0init:Ci0(�). Therefore, since

pinit = p0init, it follows that p�nal:Ci(� � t) � pinit:Ci(�) and p�nal:Ci0(� � t) � pinit:Ci0(�).

Moreover, since p0�nal 2 Gfi;i0g and the collided(i; i0) and collided(i0; i) variables remain

constant throughout the trajectory, it follows that p�nal 2 Gfi;i0g, as needed.

145

Lemma 8.4.15 For � 2 R�0 and t 2 [0; �], it is the case that futurefi;i0g(Tfi;i0g(�); t) �

Tfi;i0g(� � t).

Proof: Follows directly from Lemmas 8.4.13 and 8.4.14.

Corollary 8.4.16 For any t 2 R�0, it is the case that futurefi;i0g(Tfi;i0g(t); 0) � Tfi;i0g(t).

Proof: Follows directly from Lemma 8.4.15.

Lemma 8.4.17 For any t 2 R�0, it is the case that Tfi;i0g(t) � delay-safefi;i0g(t).

Proof: From the de�nition of delay-safe in Section 3.2.1, we must show that:

1. futurefi;i0g(Tfi;i0g(t); [0; t])� Gfi;i0g, and

2. futurefi;i0g(Tfi;i0g(t); t) � safefi;i0g.

The �rst condition follows directly from Lemma 8.4.15 and Lemma 8.4.1, part 1. More-

over, Lemma 8.4.15 and Lemma 8.4.1, part 5, imply that futurefi;i0g(Tfi;i0g(t); t) � Wfi;i0g.

Therefore, the second condition follows from Lemma 8.4.5.

In the following lemma, we show that the protector graph-prot-pairfi;i0g implements the

protector Abs(graph-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d). Since the protector automata

graph-prot-pairfi;i0g and Absj involve the composition of the same sensor automaton

with distinct controller automata, it su�ces to show that the discrete controller automa-

ton of the protector graph-prot-pairfi;i0g implements the discrete controller automaton

DC(graph-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d).

Lemma 8.4.18 graph-prot-pairfi;i0g�Abs(graph-vehicles; Sfi;i0g; Rfi;i0g; Gfi;i0g; j; d).

Proof: Both the graph-prot-pairfi;i0g and the Absj protectors involve the composition

of the same sensor automaton with distinct controller automata. From Theorem 2.7.4,

it su�ces to show that the discrete controller automaton of graph-prot-pairfi;i0g im-

plements DCj . This is shown by a simulation from the discrete controller automaton of

graph-prot-pairfi;i0g to DCj .

The mapping between the states of the discrete controller automaton of the protector

graph-prot-pairfi;i0g andDCj is almost the identity. In the discrete controller automaton

of graph-prot-pairfi;i0g, the variable sendj is equal to either a member of P(fi; i0g), or the

value null. In DCj , these valuations simply map to either the actions protect(C)j, where

146

C is the member of P(fi; i0g) that corresponds to the the valuation of the variable sendj of

the discrete controller automaton of graph-prot-pairfi;i0g, or the value null, respectively.

The start states for the discrete controller automaton of graph-prot-pairfi;i0g and DCj

are the states in which sendj = null. These are related to each other according to the

mapping discussed above.

Furthermore, since the trajectories in both discrete controller automata are identical, we

need only consider their discrete transitions. We analyze the actions of the implementation

by cases, letting p denote any complete state of the graph-vehicles automaton that

corresponds to the output state y, i.e., p 2 VALID and pdYgraph-vehicles = y.

1. The snapshot(y)j action of the implementation sets sendj to an element of P(fi; i0g).

In order to show that the behavior of the implementation is allowed by the speci�ca-

tion, we must show that the input action snapshot(y)j of the implementation sets the

value of the sendj variable in such a way that the subsequently enabled action � of the

implementation (i) guarantees that for all p0; p00 2 Rfi;i0g such that p
0 2 futurefi;i0g(p; 0)

and p0 ��! p00, it is the case that p00 2 delay-safefi;i0g(d), if p 2 safefi;i0g, and (ii) is an

arbitrary output action of the implementation, otherwise.

First, consider the case in which p 2 safefi;i0g. Since Corollary 8.4.7 implies that p 2

Wfi;i0g, the discrete controller automaton of graph-prot-pairfi;i0g sets the variable

sendj according to whether the state p is in Tfi;i0g(d), or not.

On one hand, if p 62 Tfi;i0g(d) then the discrete controller automaton of the pro-

tector graph-prot-pairfi;i0g sets the variable sendj to either fig, or fi0g accord-

ing to the strategy described in Section 8.3. Therefore, the snapshot(y)j action

enables either the protect(fig)j action, or the protect(fi0g)j action. Since p 2

Wfi;i0g, Lemma 8.4.4 implies that p0 2 Wfi;i0g. Moreover, since the protect(fig)j

and protect(fi0g)j actions a�ect neither the velocity of any of the vehicles, nor any

of the collided variables, it follows that p00 2 Rfi;i0g, p
00 2 Gfi;i0g, p

00: _xi = p0: _xi,

and p00: _xi0 = p0: _xi0 . Therefore, since p0 2 Wfi;i0g, Lemma 4.4.3, part 1, implies

that p00 2 disjoint-owned-tracks(i; i0). From the above conditions, it follows that

p00 2 Wfi;i0g. Moreover, since the protect(fig)j and protect(fi0g)j actions set

the brake-req(i; j) and brake-req(i0; j) variables, respectively, to True, it follows that

p00 2 Vfi;i0g. Finally, Lemma 8.4.12 implies that p00 2 delay-safefi;i0g(d), as needed.

On the other hand, if p 2 Tfi;i0g(d) then the discrete controller automaton of the pro-

tector graph-prot-pairfi;i0g sets the variable sendj to ; and the protect(;)j action

is enabled. Since p 2 Tfi;i0g(d), Corollary 8.4.16 implies that p0 2 Tfi;i0g(d). Moreover,

since the protect(;)j action a�ects neither the velocity of any of the vehicles, nor

any of the collided variables, it follows that p00 2 Rfi;i0g, p
00 2 Gfi;i0g, p

00: _xi = p0: _xi,

and p00: _xi0 = p0: _xi0 . Therefore, since p0 2 Tfi;i0g(d), Lemma 4.4.3, part 2, implies

147

that p00 2 disjoint-claimed-tracks(i; i0; d). From the above conditions, it follows that

p00 2 Tfi;i0g(d). Finally, Lemma 8.4.17 implies that p00 2 delay-safefi;i0g(d), as needed.

Next, consider the case in which p 62 safefi;i0g. In this case, the snapshot(y)j action

of the discrete controller automaton of graph-prot-pairfi;i0g sets the variable sendj

to either fig, fi0g, or ; and, subsequently, enables either the protect(fig)j action,

the protect(fi0g)j action, or the protect(;)j action, respectively. However, when

p 62 safefi;i0g, theDCj automaton sets the variable sendj arbitrarily and, subsequently,

enables an arbitrary output action. Therefore, the behavior of the discrete controller

automaton of the protector graph-prot-pairfi;i0g is allowed by that of the DCj

automaton.

Therefore, the e�ects of the snapshot(y)j action of the implementation are allowed

by its speci�cation.

2. The protect(C)j actions, for C 2 P(fi; i0g), have identical e�ects in both discrete

controller automata. When the sendj variable matches either the set C, or the

protect(C)j action, the action protect(C)j is executed and the sendj variable is

set to null in both discrete controller automata.

3. The environment action in both discrete controller automata is stuttering. It fol-

lows that the mapping between the states of the discrete controller automaton of

graph-prot-pairfi;i0g and the DCj automaton prior to and succeeding the execu-

tion of the environment action remains the same.

Corollary 8.4.19 The protector graph-prot-pairfi;i0g guarantees that the automaton

graph-vehicles remains within Gfi;i0g starting from Sfi;i0g given Rfi;i0g.

Proof: Follows directly from Lemma 8.4.18 and Theorem 3.2.9.

8.5 Protection System graph-prot

We now de�ne the collision protector graph-prot. While considering the automaton

graph-prot, we restrict the states of the graph-vehicles automaton to Pnot-overspeed as

de�ned in Section 4.2, i.e., Rgraph-prot = Pnot-overspeed . Let Ggraph-prot and Sgraph-prot

be the intersection of Gfi;i0g and Sfi;i0g, for all fi; i0g, where i; i0 2 I; i 6= i0, respec-

tively, and graph-prot be the composition of graph-prot-pairfi;i0g, for all fi; i
0g, where

i; i0 2 I; i 6= i0. The protector graph-prot guarantees that graph-vehicles remains

within Ggraph-prot starting from Sgraph-prot given Rgraph-prot. For reference, the for-

mal de�nitions of the graph-prot automaton and the sets Ggraph-prot, Sgraph-prot, and

Rgraph-prot are shown in Table 8.4.

148

Table 8.4 Formal de�nitions of graph-prot, Ggraph-prot, Sgraph-prot, and Rgraph-prot.

graph-prot �
Y

i;i0 2 I;i6=i0

graph-prot-pairfi;i0g

Ggraph-prot �
\

i;i0 2 I;i 6=i0

Gfi;i0g

Sgraph-prot �
\

i;i0 2 I;i 6=i0

Sfi;i0g

Rgraph-prot � Pnot-overspeed

Lemma 8.5.1 The protector graph-prot guarantees that the graph-vehicles automa-

ton remains within Ggraph-prot starting from Sgraph-prot given Rgraph-prot.

In the following proof, we show that all the states of an execution of PP � graph-prot

starting from Sgraph-prot given Rgraph-prot are in Ggraph-prot. This is done by applying

Theorem 3.1.8 and showing that the second condition of the theorem does not hold.

Proof: Let � be any execution of the system PP � graph-prot starting from a state in

Sgraph-prot and in which all states are in Rgraph-prot.

From Theorem 3.1.8, one of the following holds:

1. Every state in � is in Ggraph-prot =

T
i;i0 2 I;i6=i0 Gfi;i0g.

2. � can be written as �1
_ �2, where

(a) All state occurrences in �1 except possibly the last state occurrence are in the

set Ggraph-prot =

T
i;i0 2 I;i6=i0 Gfi;i0g.

(b) If the last state occurrence in �1 is in Gfi;i0g, for some i; i0 2 I; i 6= i0, then there

exists i00; i000 2 I; i00 6= i000; fi00; i000g 6= fi; i0g, such that the last state occurrence in

�1 is in Gfi00;i000g.

(c) All state occurrences in �2 except possibly the �rst state occurrence are in the

set

T
fi00;i000g 2N past(Gfi00;i000g; �), for some N � ffi; i0g j i; i0 2 I; i 6= i0g, where

jN j � 2.

We proceed by showing that it is not possible to decompose � as �1
_ �2 while satisfying

the three aforementioned conditions.

149

The violation of

T
i;i0 2 I;i 6=i0 Gfi;i0g can only occur through the violation of at least one of

the conditions Gfi;i0g, where i; i
0 2 I; i 6= i0. Moreover, each of these conditions are violated

only through the execution of a colliding-pair action. Without loss of generality, suppose

that the �rst condition that is violated in � is the condition Gfi;i0g, for some i; i0 2 I; i 6= i0,

and that such a violation has resulted through a colliding-pair(i; i0) action. Let p and

p0 be the states of the system prior to and succeeding this colliding-pair(i; i0) action,

i.e., p; p0 2 Rgraph-prot such that p ��! p0, where � = colliding-pair(i; i0). Since the

colliding-pair(i; i0) action only sets the collided(i; i0) variable to True, it follows that the

state p0 is in the set Gfi;i0g

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0g Gfi00;i000g

�
. Now, we attempt to

decompose � as �1
_ �2:

1. Suppose we split � at any state preceding the state p. Then the state p is in

�2. Since p0 is the �rst state in which one of the conditions Gfi00;i000g, for i
00; i000 2

I; i00 6= i000, is violated, it is the case that p 2
T

i00;i000 2 I;i00 6=i000 Gfi00;i000g and there

does not exist N � ffi00; i000g j i00; i000 2 I; i00 6= i000g such that jN j � 2 and p 2T
fi00;i000g 2N past(Gfi00;i000g; �). Therefore, the third condition is violated and this de-

composition of � is not valid.

2. Suppose we split � at the state p. Then the state p0 is in �2. Since p0 is the �rst

state in which one of the conditions Gfi00;i000g, for i
00; i000 2 I; i00 6= i000, is violated and

since the state p0 is in Gfi;i0g

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0g Gfi00;i000g

�
, it follows that

there does not exist N � ffi00; i000g j i00; i000 2 I; i00 6= i000g such that jN j � 2 and

p0 2
T

fi00;i000g 2N past(Gfi00;i000g; �). Therefore, the third condition is violated and this

decomposition of � is not valid.

3. Suppose we split � at the state p0. Then p0 is the last state of �1 and the �rst state

of �2. However, p
0 2 Gfi;i0g

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0g Gfi00;i000g

�
. Therefore, the

second condition is violated and this decomposition of � is not valid.

4. Suppose we split � at any state succeeding p0. Then the state p0 is in �1. Since

p0 2 Gfi;i0g

T�T
i00;i000 2 I;i00 6=i000;fi00;i000g6=fi;i0g Gfi00;i000g

�
, it follows that the state p0 is not

in the set

T
i00;i000 2 I;i00 6=i000 Gfi00;i000g. Therefore, the �rst condition is violated and this

decomposition of � is not valid.

Therefore, the execution � cannot be decomposed into any such �1 and �2. It follows that

the �rst clause of Theorem 3.1.8 must hold; that is, every state in � is in Ggraph-prot. This

implies that the protector graph-prot guarantees Ggraph-prot in the graph-vehicles

automaton starting from Sgraph-prot given Rgraph-prot.

150

Chapter 9

Composing the Overspeed and

Collision Avoidance Protection

Systems

In the previous chapters, we presented example protectors whose correct operation required

that the physical plant automaton at hand satis�ed particular properties. For instance,

in the case of the vehicles automaton of Chapter 4, the overspeed protector os-prot of

Chapter 5 assumes that none of the vehicles collide among themselves and the collision

protector cl-prot of Chapter 6 assumes that none of the vehicles exceed the speed limit.

Similarly, the merge-prot protector of Chapter 7 and the graph-prot protector of Chap-

ter 8 guarantee that none of the vehicles collide among themselves in the merge-vehicles

and graph-vehicles automata, respectively, provided that all the vehicles are abiding by

the speed limit. In this chapter, we compose the overspeed and collision protectors for the

vehicles automaton and show that the resulting protector guarantees that the vehicles in

the vehicles automaton neither exceed the speed limit, nor collide among themselves. We

extend these results to the merge-vehicles and graph-vehicles automata after assum-

ing that the overspeed protector os-prot of Chapter 5 extends, virtually unchanged, to

the merge-vehicles and graph-vehicles automata.

9.1 Overspeed and Collision Avoidance for the vehicles

Automaton

In the following lemma, we show that the composition of the protectors os-prot and cl-

prot guarantees that the vehicles in the vehicles automaton neither exceed the speed

limit, nor collide among themselves.

151

Lemma 9.1.1 The composition of os-prot and cl-prot is a protector that guarantees

Gos-prot \ Gcl-prot in the vehicles automaton starting from Sos-prot \ Scl-prot.

In the following proof, we show that all the states of an execution of PP�os-prot�cl-prot

starting from Sos-prot \ Scl-prot are in Gos-prot \ Gcl-prot. This is done by applying

Theorem 3.1.7 and showing that the second condition of the theorem does not hold.

Proof: Let � be any execution of the system PP � os-prot � cl-prot starting from a

state in Sos-prot \ Scl-prot.

From Theorem 3.1.7, one of the following holds:

1. Every state in � is in Gos-prot \ Gcl-prot.

2. � can be written as �1
_ �2, where

(a) All state occurrences in �1 except possibly the last are in Gos-prot \Gcl-prot.

(b) The last state occurrence in �1 is in Gi, for some i 2 fos-prot;cl-protg, if

and only it is in Gi0 , for i
0 2 fos-prot;cl-protg; i0 6= i.

(c) All state occurrences in �2 except possibly the �rst state occurrence of �2 are in

past(Gos-prot; �) \ past(Gcl-prot; �).

We proceed by showing that it is not possible to decompose � into �1 and �2 as proposed

by the second clause of Theorem 3.1.7. Then it trivially follows that the �rst clause of

Theorem 3.1.7 holds; that is, for any such �, all states are in Gos-prot \Gcl-prot.

The violation of Gos-prot \ Gcl-prot can occur through the violation of either Gos-prot, or

Gcl-prot. On one hand, provided that no collisions have occurred, the violation of Gos-prot

can only occur within a trajectory of the vehicles automaton. On the other hand, the

violation ofGcl-prot can only occur through the execution of a colliding-pair(i; i
0
) action,

for some i; i0 2 I; i0 6= i. We analyze each of these cases separately.

1. In the �rst case, the key point is that the violation of the speed limit by any of the

vehicles in the vehicles automaton can only occur within a trajectory and that a

collision can not be recorded within a trajectory. Therefore, the fact that the speed

limit is violated prior to the occurrence of any vehicle collisions would imply that the

os-prot protector is not working correctly; that is, Corollary 5.3.1 is false.

Let w be the �rst trajectory in � containing a state occurrence in Gos-prot \ Gcl-prot.

Suppose that w is a TI -trajectory and let T 0
I be the subset of TI consisting of all t such

that (i; t; w(t)) 2 past(Gos-prot \ Gcl-prot; �). Then T 0
I is a non-empty subinterval of

TI that is \upward-closed", i.e., if t 2 T 0
I , t

0 2 TI , and t < t0, then t0 2 T 0
I . Since T

0
I is

an interval of reals, it has a left endpoint t which might or might not itself be in T 0
I . It

152

is important to note that since the collided(i; i0) variables, for i; i0 2 I; i 6= i0, remain

constant throughout any trajectory of the vehicles automaton, it is only possible to

violate the Gos-prot condition within the trajectory w; that is, all the states in w are

in the set Gcl-prot. Therefore, letting s = w(t), all state occurrences in � that precede

the state occurrence (i; t; s) are in the set Gos-prot \ Gcl-prot. Now, we attempt to

decompose � into �1 and �2.

(a) Suppose we split � at any state preceding the state (i; t; s). Then the state

(i; t; s) is in �2. Since (i; t; s) is in Gcl-prot and all states that precede the state

(i; t; s) are in Gos-prot \Gcl-prot, it is the case that (i; t; s) 62 past(Gos-prot; �)\

past(Gcl-prot; �). Since the state (i; t; s) is not the �rst state in �2, the third

condition is violated. Therefore, this decomposition of � is not valid.

(b) Suppose we split � at the state (i; t; s) and suppose that the state (i; t; s) is not

the last state of w. Then any state of the trajectory w that succeeds the state

(i; t; s) is in �2. Moreover, since all of the states in w are in Gcl-prot, none of

the states in w that succeed (i; t; s) are in past(Gos-prot; �) \ past(Gcl-prot; �).

Therefore, the third condition is violated and this decomposition of � is not valid.

(c) Suppose we split � at the state (i; t; s) and suppose that the state (i; t; s) is the

last state of w. Then since w is the �rst trajectory in � containing an occurrence

of a state in Gos-prot \Gcl-prot, it follows that (i; t; s) 2 Gos-prot \ Gcl-prot.

Moreover, since all the states in w are in Gcl-prot, it is the case that (i; t; s) 2

Gos-prot \Gcl-prot. Therefore, the second condition is violated and this decom-

position of � is not valid.

(d) Suppose we split � at a state s00 that succeeds the state (i; t; s). Let (i; t0; s0) be

a state of the trajectory w that succeeds the state (i; t; s) and precedes the state

s00. The state (i; t0; s0) is in �1. By de�nition of T 0
I , it is the case that (i; t

0; s0) is

in past(Gos-prot \Gcl-prot; �). Therefore, the �rst condition is violated and this

decomposition of � is not valid.

2. In the second case, the key point is that a collision can only be recorded by an action

and that such an action can not cause the velocity of a vehicle to exceed the speed

limit. Therefore, the fact that a collision among the vehicles occurs prior to the

violation of the speed limit would imply that the cl-prot protector is not working

correctly, i.e., Lemma 6.3.1 is false.

Without loss of generality, suppose that the Gcl-prot condition is violated through a

colliding-pair(i; i0) action, for some i; i0 2 I; i0 6= i. Let p and p0 be the states of the

system prior to and succeeding this colliding-pair(i; i0) action, i.e., p; p0 2 VALID

such that p ��! p0, where � = colliding-pair(i; i0). Since the colliding-pair(i; i0)

action only sets the collided(i; i0) variable to True, it follows that the state p0 is in the

set Gos-prot

T
Gcl-prot. Now, we attempt to decompose � into �1 and �2.

153

(a) Suppose we split � at any state preceding the state p. Then the state p is

in �2. Since p0 is the �rst state in Gos-prot \ Gcl-prot, it is the case that all

the states of � preceding p0 are in the set Gos-prot \ Gcl-prot; that is, p 62

past(Gos-prot \ Gcl-prot; �) and p 62 past(Gos-prot; �) \ past(Gcl-prot; �). Since

p is not the �rst state in �2, the third condition is violated. Therefore, this

decomposition of � is not valid.

(b) Suppose we split � at the state p. Then the state p0 is in �2. Since p
0
is the �rst

state in Gos-prot \ Gcl-prot, it is the case that all the states of � preceding p0

are in the set Gos-prot \ Gcl-prot; that is, p 62 past(Gos-prot \ Gcl-prot; �) and,

moreover, p 62 past(Gos-prot; �) \ past(Gcl-prot; �). Since p
0
follows from p in a

single step and p0 2 Gos-prot\Gcl-prot, it is the case that p
0 62 past(Gos-prot; �)\

past(Gcl-prot; �). Therefore, the third condition is violated and this decomposi-

tion of � is not valid.

(c) Suppose we split � at the state p0. Then p0 is the last state of �1 and the �rst

state of �2. Since p0 2 Gos-prot

T
Gcl-prot, the second condition is violated.

Therefore, this decomposition of � is not valid.

(d) Suppose we split � at any state succeeding p0. Then the state p0 is in �1. Since

p0 2 Gos-prot

T
Gcl-prot, the �rst condition is violated. Therefore, this decom-

position of � is not valid.

Therefore, the execution � cannot be decomposed into any such �1 and �2. It follows that

the �rst clause of Theorem 3.1.7 must hold; that is, every state in � is in Gos-prot\Gcl-prot.

This implies that the protector os-prot � cl-prot guarantees Gos-prot \ Gcl-prot in the

vehicles automaton starting from Sos-prot \ Scl-prot.

9.2 Overspeed and Collision Avoidance for the

merge-vehicles Automaton

In the following lemma, we state that the composition of the protectors os-prot and

merge-prot guarantees that the vehicles of the merge-vehicles automaton neither ex-

ceed the speed limit, nor collide among themselves. It is important to note that it is assumed

without proof that the protector os-prot and the Corollary 5.3.1 extend to the merge-

vehicles automaton. In fact, since the strategy of the os-prot protector de�ned for the

vehicles automaton in Chapter 5 does not depend on the nature of the track topology,

the os-prot protector of Chapter 5 extends to the merge-vehicles automaton virtually

unchanged.

154

Lemma 9.2.1 The composition of os-prot and merge-prot is a protector that guar-

antees Gos-prot \ Gmerge-prot in the merge-vehicles automaton starting from Sos-prot \

Smerge-prot.

Proof: This proof follows precisely the steps of the proof of Lemma 9.1.1.

9.3 Overspeed and Collision Avoidance for the

graph-vehicles Automaton

In the following lemma, we state that the composition of the protectors os-prot and

graph-prot guarantees that the vehicles of the graph-vehicles automaton neither ex-

ceed the speed limit, nor collide among themselves. It is important to note that it is assumed

without proof that the protector os-prot and the Corollary 5.3.1 extend to the graph-

vehicles automaton. In fact, since the strategy of the os-prot protector de�ned for the

vehicles automaton in Chapter 5 does not depend on the nature of the track topology,

the os-prot protector of Chapter 5 extends to the graph-vehicles automaton virtually

unchanged.

Lemma 9.3.1 The composition of os-prot and graph-prot is a protector that guar-

antees Gos-prot \ Ggraph-prot in the graph-vehicles automaton starting from Sos-prot \

Sgraph-prot.

Proof: This proof follows precisely the steps of the proof of Lemma 9.1.1.

155

156

Chapter 10

Conclusions and Future Work

This thesis investigates how the formal modeling and veri�cation techniques of computer

science can be used for the analysis of hybrid systems. The motivation behind such research

lies in the inherent similarity of the hierarchical and decentralized control strategies of

hybrid systems and the formal techniques used for the veri�cation of distributed systems in

computer science. The thesis focuses on the development of techniques that use hybrid I/O

automata to model automated transportation systems and to verify that their protection

subsystems enforce the desired safety properties. The long-term goal of such research is

to develop a simple and scalable framework for modeling complex hybrid systems with

stringent safety and performance requirements.

10.1 Summary

The thesis is split into two major parts. First, we develop an abstract model of a physical

plant that is interacting with several protectors. Second, we specialize the abstract models

of the physical system and the protectors to simpli�ed versions of the PRT 2000
TM

and its

overspeed and collision protection subsystems.

As indicated above, the �rst part of the thesis is devoted to the development of an abstract

model of a physical plant and a number of protectors that guarantee particular safety or

performance properties. Both the physical plant and the protectors are modeled as hybrid

I/O automata. The protector automata communicate with the physical plant automaton

through shared variables and discrete actions. If S, R, and G are subsets of the states of

the physical plant, then a protector automaton A for the physical plant PP guarantees G

from S given R provided that every �nite execution of the composition PP�A starting in

a state in S that only involves states in R ends in a state in G. It is shown that if two or

more protectors do not rely on the correct operation of each other, i.e., if the protectors

are independent, then their composition guarantees the properties guaranteed by each of

157

the protectors being composed. On the other hand, if the protectors rely on the correct

operation of each other, their composition guarantees the properties guaranteed by each of

the protectors being composed only under certain conditions.

The abstract protector is parameterized in terms of the physical plant PP, the start states

S, the sets of guarantee G and reliance R, the port j through which it communicates with

the physical plant automaton, and the sampling period d. It is de�ned as the composition

of a sensor and a discrete controller, both modeled as hybrid I/O automata. The sensor

automaton samples the output variables of the physical plant at intervals of d time units and

the discrete controller automaton issues protective actions so as to ensure that the physical

plant exhibits the desired safety properties. The correctness of the abstract protector re-

duces the correctness proof of a protector implementation to a simulation proof among the

states of the implementation and the particular instantiation of the abstract protector.

The second part of the thesis involves the proof of correctness of overspeed and collision

protectors for a simple model of an automated transportation system involving n vehicles.

The overspeed and collision protectors are rede�ned for three types of track topology: a

single track, a track involving a Y-shaped merge, and a general track topology comprised

of Y-shaped merges and diverges.

In the case of a single track, the overspeed protector is de�ned as the composition of n

protectors, each of which guarantees that a particular vehicle does not exceed the speed

limit, provided that none of the vehicles collide among themselves. Conversely, the collision

protector is de�ned as the composition of n protectors, each of which guarantees that a

particular vehicle does not collide into any of the vehicles it trails, provided that none of

the vehicles exceed the speed limit and that none of the other vehicles collide into any of

the vehicles they respectively trail.

In the cases of the more complicated track topologies, although the overspeed protector

remains unchanged, the collision protectors are restructured. They involve the composition

of n(n � 1)=2 protectors, each of which guarantees that a particular unordered pair of

vehicles do not collide between themselves, provided that none of the vehicles exceed the

speed limit and that the vehicles of all other unordered pairs of vehicles do not collide

between themselves.

Due to the correctness proof of the parameterized abstract protector, the proofs of correct-

ness of the overspeed protectors for the individual vehicles and of the collision protectors for

either individual, or unordered pairs of vehicles, are straightforward. They simply involve

demonstrating the existence of a simulation relation among the states of the particular

protector implementations and the particular instantiations of the parameterized abstract

protector.

The composition of the overspeed protectors is straightforward due to their independence.

158

The proof of correctness of the overspeed protection subsystem involves the application of

the aforementioned composition theorems for independent protectors. In the case of the

collision protectors, since the individual collision protectors rely on the correct operation of

each other, the proof of correctness of their composition is more involved. It relies on the

careful decomposition of the collision protection subsystem so that the failure of multiple

collision protectors at the same instant in time is prohibited. Similarly, the correct operation

of the composition of the overspeed and collision protection subsystems relies on the fact

that the overspeed protectors and the collision protectors can only fail through trajectories

and discrete actions, respectively.

10.2 Evaluation

The contributions of this thesis are twofold. First, we develop an abstract model of an

automated transportation system comprised of a physical plant and an arbitrary number of

protectors. Second, we specialize the abstract model so as to analyze and verify a particular

automated transportation system and its overspeed and collision protection systems.

The abstract models that are developed include the physical plant and a number of pro-

tectors. The abstract protector is parameterized in terms of the physical system, its start

states, its sets of guarantee and reliance, the port with which it communicates with the

physical plant and the sampling period. Therefore, the speci�cation of a particular au-

tomated transportation system involves re�nement of the abstract model. Moreover, the

proof of correctness of the abstract model leads to simple correctness proofs of the protector

implementations for particular instantiations of the abstract model. Finally, composition

of independent protectors is straightforward. The safety properties of the individual pro-

tectors are guaranteed by the composed protector. Such compositional assertions also hold

for dependent protectors under certain conditions. The use of abstraction, modular decom-

position, and composition is hoped to allow the scalability of the formal method analysis

and the veri�cation of large and complex hybrid systems.

In this work, we demonstrate how hybrid I/O automaton techniques can be applied to

the speci�cation and veri�cation of a very general automated transportation problem. We

believe that the techniques developed in this thesis complement more traditional safety

analysis. For example, safety engineers typically perform a fault-tree analysis to identify

possible causes of each system hazard and related dependencies among system components.

In our work, we use composition of automata to formalize these dependencies: to yield a

speed limited system, we compose the physical plant with a set of overspeed protectors,

one for each vehicle, and assume that no collisions occur in the physical system; conversely,

to yield a collision free physical system, we compose the physical system with a set of

collision protectors, either one for each vehicle, or one for each unordered pair of vehicles,

159

and assume that none of the vehicles exceed the speed limit. The composition of the

physical system in such ways formalizes the independence of the overspeed protectors, the

interdependence of the collision protectors and more importantly the interdependence of

the overspeed protectors and the collision protectors. We believe a more comprehensive

treatment in this style of all the protection subsystems would, as a by-product, yield a

signi�cant subtree of the fault-tree.

10.3 Future Work

In this thesis, the treatment of automated transportation systems is a case study in the use

of hybrid I/O automata to formally model hybrid systems. The focus of the research is in the

use of abstraction, modularity, and composition to develop an abstract model of automated

transportation systems to be used in the analysis and veri�cation of transportation systems

in use or under development. The long-term goal is to see how the formal methods of

computer science can be used to formally model hybrid systems in a modular and systematic

way and to verify their safety or performance characteristics. However, issues that have yet

to be addressed involve the topics of robustness, scalability, tractability, and the use of

formal methods as part of the system design process.

The work in this thesis assumes an ideal system; that is, the communication among the

various subsystems is assumed to be correct and reliable, and to occur in a timely fash-

ion. Moreover, the sampling of the state of the physical plant is assumed to be exact and

the e�ects of the protective actions are assumed to be precise. Since, these assumptions

are far from realistic, future research could involve the development of formal methods for

analyzing and verifying automated transportation systems that are robust with respect to

communication delays and uncertainty. For example, the treatment of automated trans-

portation systems of this thesis could be extended to allow delays in the communication

between the plant and the protectors and uncertainty either in the sampling of the state, or

in the e�ects of the protective actions. The treatment of automated transportation systems

could also be extended to allow fault tolerance; for example, allowing the track topology

to be dynamic so that vehicles are not allowed to travel on branches of the track that have

failed either structurally, or due to unexpected accidents.

In this thesis, we develop formal modeling techniques that are based on abstraction, mod-

ularity, and subsystem composition. The motivation behind this approach is the intent

to model and verify complex hybrid systems that involve hierarchical and decentralized

control schemes. Therefore, it is imperative to examine the scalability and tractability

characteristics of the formal modeling techniques developed. The success in modeling the

overspeed and collision protectors of an automated transportation system in this thesis in-

dicates that the modeling techniques that are based on hybrid I/O automata are scalable to

160

larger and more complex systems. However, the study and formal analysis of more complex

systems remains to be done. In particular, it would be interesting to examine how complex

continuous-time dynamics a�ect the formal modeling tools developed in this thesis. More-

over, the lengthy correctness proofs, which were done by hand in this thesis, expose issues

of tractability concerning the analysis and veri�cation of complex transportation systems.

In fact, they dictate that computer aided veri�cation methods for hybrid I/O automata be

developed.

The formal modeling techniques developed in this thesis are techniques intended for the

analysis and veri�cation of automated transportation systems. Future research could inves-

tigate the potential of using formal methods of computer science as an integral part of the

design of the hierarchical and decentralized control schemes of automated transportation

systems and of hybrid systems in general.

161

162

References

[1] Jean-Raymond Abrial, Egon B�orger, and Hans Langmaack. Formal Methods for Indus-

trial Applications: Specifying and Programming the Steam Boiler Control. In G. Goos,

J. Hartmanis, and J. van Leeuwen, editors, Methods for Semantics and Speci�cation,

International Conference and Research Center for Computer Science, volume 1165 of

Lecture Notes in Computer Science. Springer-Verlag, October 1996. The Methods for

Semantics and Speci�cation, International Conference and Research Center for Com-

puter Science took place in Schloss, Dagstuhl, Germany, in June 1995.

[2] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-

Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The

Algorithmic Analysis of Hybrid Systems. Theoretical Computer Science, 138(1):3{34,

February 1995. Preliminary version appeared as Ref. 3.

[3] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-

Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The

Algorithmic Analysis of Hybrid Systems. In Proc. 11th International Conference on

Analysis and Optimization of Systems, Discrete-Event Systems, volume 199 of Lecture

Notes in Control and Information Sciences, pages 331{351. Springer-Verlag, 1994.

[4] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid

Automata: An Algorithmic Approach to the Speci�cation and Veri�cation of Hybrid

Systems. In Hybrid Systems, volume 736 of Lecture Notes in Computer Science, pages

209{229. Springer-Verlag, 1993. Extended version appeared as Ref. 2.

[5] Rajeev Alur and David L. Dill. Automata for Modeling Real-Time Systems. In

Proc. 17th International Colloquium on Automata, Languages and Programming

(ICALP'90), volume 443 of Lecture Notes in Computer Science, pages 322{335.

Springer-Verlag, 1990.

[6] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer

Science, 126:183{235, 1994. Preliminary version appeared as Ref. 5.

[7] Michael S. Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control.

Doctor of Science Thesis, Dept. of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts, June 1995.

[8] Ekaterina Dolginova and Nancy A. Lynch. Safety Veri�cation for Automated Platoon

Maneuvers: A Case Study. In Oded Maler, editor, Proc. International Workshop on

Hybrid and Real-Time Systems (HART'97), volume 1201 of Lecture Notes in Computer

163

Science, pages 154{170. Springer-Verlag, 1997. The International Workshop on Hybrid

and Real-Time Systems took place in Grenoble, France, in March 1997.

[9] Jean-Marie Flaus and Ollagnon. Guy. Hybrid Flow Nets of Hybrid Processes Modeling

and Control. In Oded Maler, editor, Proc. International Workshop on Hybrid and

Real-Time Systems (HART'97), volume 1201 of Lecture Notes in Computer Science,

pages 213{227. Springer-Verlag, 1997. The International Workshop on Hybrid and

Real-Time Systems took place in Grenoble, France, in March 1997.

[10] Rainer Gawlick, Roberto Segala, J�rgen S�gaard-Andersen, and Nancy A. Lynch. Live-

ness in Timed and Untimed Systems. Technical Report MIT/LCS/TR-587, Labora-

tory for Computer Science, Massachusetts Institute of Technology, Cambridge, Mas-

sachusetts, December 1993.

[11] Rainer Gawlick, Roberto Segala, J�rgen S�gaard-Andersen, and Nancy A. Lynch.

Liveness in Timed and Untimed Systems. In Serge Abiteboul and Eli Shamir, ed-

itors, Proc. 21st International Colloquium on Automata, Languages and Program-

ming (ICALP'94), volume 820 of Lecture Notes in Computer Science, pages 166{177.

Springer-Verlag, 1994. The 21st International Colloquium on Automata, Languages

and Programming (ICALP'94) took place in Jerusalem, Israel, in July 1994. Full ver-

sion appeared as Ref. 10.

[12] Datta N. Godbole and John Lygeros. Longitudinal Control of a Lead Car of a Pla-

toon. IEEE Transactions on Vehicular Technology, 43(4):1125{1135, November 1994.

Also appeared in Proc. 13th American Control Conference, pages 398{402, Baltimore,

Maryland, June/July 1994.

[13] Datta N. Godbole, John Lygeros, and Shankar Sastry. Hierarchical Hybrid Control:

a Case Study. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid

Systems II, volume 999 of Lecture Notes in Computer Science, pages 166{190. Springer-

Verlag, 1995. Also appeared in Proc. 33rd IEEE Conference on Decision and Control,

pages 1592{1597, Orlando, Florida, December 1994.

[14] Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel, editors. Hybrid

Systems, volume 736 of Lecture Notes in Computer Science. Springer-Verlag, 1993. This

volume of LNCS was inspired by a workshop on the Theory of Hybrid Systems, held on

Oct. 19{21, 1992 at the Technical University, Lyngby, Denmark, and by a prior Hybrid

Systems Workshop, held on June 10{12, 1991 at the Mathematical Sciences Institute,

Cornell University.

[15] Constance Heitmeyer and Nancy Lynch. The Generalized Railroad Crossing: A Case

Study in Formal Veri�cation of Real-Time Systems. In Proc. 15th IEEE Real-Time

Systems Symposium, pages 120{131, San Juan, Puerto Rico, December 1994. IEEE

Computer Society Press.

[16] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Temporal Proof Methodologies

for Real-Time Systems. In Proc. 18th Annual Symposium on Principles of Programming

Languages, pages 353{366. ACM Press, 1991.

[17] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed Transition Systems.

In J.W. de Bakker, K. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proc.

164

REX Workshop \Real-Time: Theory in Practice", volume 600 of Lecture Notes in

Computer Science, pages 226{251. Springer-Verlag, 1992. The REX Workshop \Real-

Time: Theory in Practice" took place in Mook, The Netherlands, in June 1991.

[18] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Temporal Proof Methodolo-

gies for Timed Transition Systems. Information and Computation, 112(2):273{337,

August 1994. Preliminary versions of Part I and Part II appeared as Refs. 17 and 16,

respectively.

[19] Leslie Lamport. The Temporal Logic of Actions. Research Report 79, Digital Equip-

ment Corporation Systems Research Center, Palo Alto, California, December 1991.

[20] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Programming

Languages and Systems, 16(3):872{923, May 1994. Also appeared as Ref. 19.

[21] Gunter Leeb and Nancy A. Lynch. Proving Safety Properties of the Steam Boiler

Controller. In J.R. Abrial, E. B�orger, and H. Langmaack, editors, Formal Methods for

Industrial Applications: Specifying and Programming the Steam Boiler Control, volume

1165 of Lecture Notes in Computer Science. Springer-Verlag, October 1996. Preliminary

version presented as \Using Timed Automata for the Steam Boiler Controller Problem"

at the Methods for Semantics and Speci�cation, International Conference and Research

Center for Computer Science in Schloss, Dagstuhl, Germany in June 1995.

[22] John Lygeros. Hierarchical, Hybrid Control of Large Scale Systems. Doctor of Phi-

losophy Thesis, Dept. of Electrical Engineering and Computer Sciences, University of

California, Berkeley, May 1996.

[23] John Lygeros and Datta N. Godbole. An Interface between Continuous and Discrete

Event Controllers for Vehicle Automation. In Proc. 13th American Control Conference,

pages 801{805, Baltimore, Maryland, June/July 1994. Also appeared as Ref. 24.

[24] John Lygeros and Datta N. Godbole. An Interface between Continuous and Discrete

Event Controllers for Vehicle Automation. Technical Report UCB-ITS-PRR-94-12,

Institute of Transportation Studies, University of California, Berkeley, April 1994.

[25] John Lygeros, Datta N. Godbole, and Shankar Sastry. A Veri�ed Hybrid Controller

for Automated Vehicles. In 35th IEEE Conference on Decision and Control (CDC'96),

pages 2289{2294, Kobe, Japan, December 1996.

[26] John Lygeros, Datta N. Godbole, and Shankar Sastry. A Veri�ed Hybrid Controller for

Automated Vehicles. Technical Report UCB-ITS-PRR-97-9, Institute of Transporta-

tion Studies, University of California, Berkeley, 1997. To appear in the Special Issue on

Hybrid Systems of the IEEE Transactions on Automatic Control. Preliminary version

appeared as Ref. 25.

[27] John Lygeros, Datta N. Godbole, and Sastry Shankar. A Game Theoretic Approach

to Hybrid System Design. In R. Alur, T. Henzinger, and E. Sontag, editors, Proc.

DIMACS/SYCON Workshop on Veri�cation and Control of Hybrid Systems, Hybrid

Systems III: Veri�cation and Control, volume 1066 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, 1996. The DIMACS/SYCON Workshop on Veri�cation and

Control of Hybrid Systems took place in New Brunswick, New Jersey, in October

1995.

165

[28] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O

Automata. Technical Memo MIT/LCS/TM-544, Laboratory for Computer Science,

Massachusetts Institute of Technology, Cambridge, Massachusetts, December 1995.

[29] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O

Automata. In R. Alur, T. Henzinger, and E. Sontag, editors, Proc. DIMACS/SYCON

Workshop on Veri�cation and Control of Hybrid Systems, Hybrid Systems III: Veri�-

cation and Control, volume 1066 of Lecture Notes in Computer Science, pages 496{510.

Springer-Verlag, 1996. The DIMACS/SYCON Workshop on Veri�cation and Control

of Hybrid Systems took place in New Brunswick, New Jersey, in October 1995.

[30] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O

Automata. Preprint. Preliminary versions appeared as Refs. 28 and 29, June 1997.

[31] Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations | Part I:

Untimed Systems. Technical Memo MIT/LCS/TM-486, Laboratory for Computer Sci-

ence, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1993.

[32] Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations | Part I:

Untimed Systems. Information and Computation, 121(2):214{233, September 1995.

Preliminary version appeared as Ref. 31.

[33] Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations | Part II:

Timing-Based Systems. Technical Memo MIT/LCS/TM-487.c, Laboratory for Com-

puter Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, April

1995.

[34] Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations | Part II:

Timing-Based Systems. Information and Computation, 128(1):1{25, July 1996. Pre-

liminary version appeared as Ref. 33.

[35] Oded Maler, Zohar Manna, and Amir Pnueli. From Timed to Hybrid Systems. In

J.W. de Bakker, K. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proc. REX

Workshop \Real-Time: Theory in Practice", volume 600 of Lecture Notes in Com-

puter Science, pages 447{484. Springer-Verlag, 1992. The REX Workshop \Real-Time:

Theory in Practice" took place in Mook, The Netherlands, in June 1991.

[36] Zohar Manna and Amir Pnueli. Verifying Hybrid Systems. In Robert L. Grossman,

Anil Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems, volume 736

of Lecture Notes in Computer Science, pages 4{35. Springer-Verlag, 1993.

[37] Amir Pnueli and Joseph Sifakis, editors. Special Issue on Hybrid Systems, volume 138,

part 1 of Theoretical Computer Science. Elsevier Science Publishers, February 1995.

[38] Thomas Stauner, Olaf M�uller, and Max Fuchs. UsingHyTech to Verify an Automotive

Control System. In Oded Maler, editor, Proc. International Workshop on Hybrid and

Real-Time Systems (HART'97), volume 1201 of Lecture Notes in Computer Science,

pages 139{153. Springer-Verlag, 1997. The International Workshop on Hybrid and

Real-Time Systems took place in Grenoble, France, in March 1997.

[39] Peter Terwiesch, Erich Scheiben, Anders Jenry Petersen, and Thomas Keller. A Digital

Real-Time Simulator for Rail-Vehicle Control System Testing. In Oded Maler, editor,

166

Proc. International Workshop on Hybrid and Real-Time Systems (HART'97), volume

1201 of Lecture Notes in Computer Science, pages 199{212. Springer-Verlag, 1997. The

International Workshop on Hybrid and Real-Time Systems took place in Grenoble,

France, in March 1997.

[40] Adam L. Turk, Scott T. Probst, and Gary J. Powers. Veri�cation of Real Time Chem-

ical Processing Systems. In Oded Maler, editor, Proc. International Workshop on

Hybrid and Real-Time Systems (HART'97), volume 1201 of Lecture Notes in Com-

puter Science, pages 259{272. Springer-Verlag, 1997. The International Workshop on

Hybrid and Real-Time Systems took place in Grenoble, France, in March 1997.

[41] Pravin Varaiya. Smart Cars on Smart Roads: Problems of Control. IEEE Transactions

on Automatic Control, 38(2):195{207, 1993.

[42] H. B. Weinberg, Nancy Lynch, and Norman Delisle. Veri�cation of Automated Vehicle

Protection Systems. In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Systems

III: Veri�cation and Control, volume 1066 of Lecture Notes in Computer Science, pages

101{113. Springer-Verlag, 1996.

[43] Henri B. Weinberg. Correctness of Vehicle Control Systems: A Case Study. Master of

Science Thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge, Massachusetts, February 1996.

167

168

