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Abstract

Managing communications in parallel processing systems has proven to be one of the
most critical problems facing designers.  As processor speeds continue to increase, com-
munication latency and bandwidth become more of a bottleneck.  Traditional network
routers receive messages that are examined and forwarded by a local router.  Performance
is lost both by the time spent examining a message in order to determine its destination,
and by the inability of a processor’s router to have a global sense of message traffic.

The NuMesh system defines a high-speed communication substrate optimized for off-line
routing.  The goal of the project is to explore a new approach to the construction of modu-
lar, high-performance digital systems in which the components plug together in a nearest-
neighbor three-dimensional mesh.  Each component module contains a specialized pro-
grammable communications controller that routes message traffic among neighboring
modules according to a precompiled pattern.  The NuMesh project reserves bandwidth for
possible message transfers at compile time. By setting fixed periods in which processors
can communicate with each other, no message data need be examined and a compile-time
analysis of message traffic can minimize network congestion.

This research will examine the hardware and communication protocols needed to take
advantage of scheduled communication, as well as the mechanisms needed to support
those cases in which the communication can not be specified at compile-time.  In addition,
flow-controlled transfers are  supported to allow the processors attached to the network to
inject or remove messages at undetermined times.  A novel architecture is presented that
utilizes these ideas.  A network chip is  implemented that can be connected to a variety of
off-the-shelf processors, providing a substrate for a heterogeneous parallel processing sys-
tem.

Thesis Supervisor: Stephen A. Ward
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction
Modern multiprocessor systems are limited by their communication networks.  As

processor speeds and network interfaces improve, communication bandwidth and latency

become more of a bottleneck.  Although much work has gone into reducing this limitation

[Dall87, Bian87, Bork88, Sche91, Lee90, Raja92], the problem persists. This research will

present a novel hardware architecture and communication protocol to optimize network

performance.  By assigning communication bandwidth at compile-time rather than run-

time, communications can be more efficiently routed and a host of problems such as dead-

lock and livelock can be avoided. The thrust of this research is to improve network perfor-

mance by minimizing network congestion and reducing run-time decisions to improve

communication throughput and latency.

1.1 NuMesh Overview
The NuMesh project[Ward93] explores a new approach to the construction of modu-

lar, high performance multiprocessor systems in which component modules plug together

in a nearest-neighbor three-dimensional mesh. Each component module contains a spe-

cialized programmable communications controller that routes message traffic among

neighboring modules according to a precompiled pattern. In addition, each node has an

independent computation unit that attaches to the communications controller and allows

messages to be injected and removed from the system.

In recent history, the backplane bus has been dominant as the primary mechanism for

connecting multiple devices together. For small numbers of devices, this model works

very well because the designer can simply connect additional processing elements to the

bus, without having to consider interactions with other devices or bus arbitration. A proto-

col has been standardized and a connecting device merely has to follow the protocol set up

by the bus designer. As the number of devices grow, the backplane bus quickly runs into

trouble, since it serializes all system level communication and impedance matching

becomes difficult. High performance designers have developed a variety of special pur-

pose networks, but they require the processor to be modified considerably in order to effi-
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ciently communicate with the network. One of the goals of the NuMesh project is to

standardize this interface so new nodes can easily be added to a parallel processing sys-

tem, and any off-the-shelf component can be connected to the network with limited over-

head.

This network involves point-to-point communications between NuMesh nodes so the

electrical difficulties of traditional busses are avoided. A designer can connect an arbitrary

number of processing elements depending on his application needs. The goal is for

devices to be added or removed from the network with a “Tinker-Toy” modularity.

A high level view of the NuMesh shows a large number of heterogeneous processors

that operate asynchronously. The processors are connected to a communication network

which orchestrates communications between the processors on a per cycle basis. At com-

pile time,communication streamsare extracted from the application and provide the infor-

mation necessary for the static network during operation. These streams specify a source

node, a destination node, and a requested bandwidth of communication. A compiler ana-

lyzes these streams and creates a schedule of communication for every communication

node. Consecutive clock cycles involve completely different communication patterns

through a single node. Some streams may have a very high bandwidth reserved for their

communication while others may only be allowed infrequent communication. These band-

widths are determined at compile time, although changes can be made during operation

with low overhead. Figure 1.1 shows a global communication pattern for a 2-D network of

nodes and how a snapshot of consecutive cycles might appear. Note that although mes-

sages A and B both use node (2,0), the communication can be time-sliced so that on con-

secutive clock cycles, the node is handling completely different communication streams.

Message C has been assigned a hundred percent bandwidth so it will be scheduled every

cycle. Effectively, this link will be reserved for that message and all other messages that

would logically go through this link would be misrouted around the link.

The communication controller in each NuMesh node, known as the communications

finite state machine (CFSM), mediates communications between the host node and its

immediate neighbors. Off-line analysis of internode communication provides separate

communication instructions, loaded during boot-up, for each NuMesh node. Each CFSM

provides control signals for its node during each cycle of a globally synchronous clock.
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Individual NuMesh nodes can be connected like Legos, to form the base platform for a

scalable, three-dimensional parallel processing machine. Network congestion is mini-

mized through off-line software efforts and the clock cycle delay can be heavily pipelined

A

B C

Clk i snapshot Clk i+1 snapshot

Global Communication Pattern

A

B C C

A

B

Figure 1.1High Level View of NuMesh

node(2,0)
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to provide exceptional performance, especially for those applications that have a limited

number of run-time decisions. A picture of a NuMesh node is included in Figure 1.2

1.2 Network Congestion
Typical deterministic routers [Dall87, Leig89] send messages around the network

without using any information based on other messages in the system.  Encoded destina-

tion addresses in the headers of these messages cause the routers to forward the messages

down particular paths.  If multiple messages need to use the same communication link at

the same time, all but one of the messages is delayed.   Often there will be unused nearby

paths down which a blocked message could be sent, but the deterministic router will be

unable to utilize them. Figure 1.3 illustrates a deterministic dimension-ordered, cartesian

router suffering needless congestion due to the fact that all messages are routed in the X

direction before the Y. A message can only advance one link in the network each clock

cycle. In a deterministic cartesian network, the messages always travel in the X direction

until the correct X coordinate is matched, and then messages are passed in the Y direction

A 3-D Mesh of NuMesh nodes
(diamond lattice)

  SPARC
Processor

NuMesh
Router

A Single NuMesh Node

Figure 1.2NuMesh Overview
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to match that coordinate. In the illustrated example, message A and message B are

advanced with no problem for the first two cycles. However, on the third cycle, both mes-

sages need to use the same communication link. Since only one message can use the link,

the other message must be either buffered or stalled until the link frees up. Buffering the

message ties up valuable memory resources while stalling the message ties up communi-

cation links in the network.

An obvious solution to the problem is for one of the messages to be misrouted. There

are several unused links in Figure 1.3, and message B need only be routed in the Y direc-

tion before the X direction in order to eliminate the contention. Figure 1.4 illustrates this

solution.

Adaptive routers attempt to take advantage of information obtained from recently

routed messages in order to utilize links that are not congested. While this misrouting of

messages can alleviate congestion, there are associated costs that arise.

The biggest problem that occurs is an increased cost due to hardware complexity. Most

adaptive routers today use the notion of virtual channels [Dall90]. Physical ports are mul-

tiplexed by virtual threads to keep any one particular communication thread from blocking

a resource. In addition, a more complicated communication controller remembers recent

network activity in its area and attempts to route subsequent traffic to parts of the network

that are less utilized. Much research [Dall91, Aoya93] has gone into trying to evaluate the

clk 1

clk2

clk3

clk1clk2

clk3

msg A

msg B

Figure 1.3Deterministic Router Suffers Congestion
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trade-off between adaptive router complexity vs network congestion improvement. Even

the most complex adaptive routers are often unable to minimize network congestion

because they do not have a global view of the network traffic. Since adaptive routers only

have information involving messages that pass through its node, they are unable to con-

sider global effects in their decisions. As a result, adaptive routers often make poor deci-

sions resulting in significant network congestion. A trivial example of this is portrayed in

Figure 1.5. The router that sends message B does not know anything about message A and

sends it on a path that will collide with message A. Likewise, the second node in this path

also has no knowledge of message A so it continues sending the message on a collision

course. Since no single router has information on the global state of the network, there are

communication permutations that can defeat even the more complex adaptive routers.

When optimizing from a global point of view, it may turn out that a particular message

should be misrouted, even adding to its latency, to minimize overall network congestion.

Adaptive routers have a difficult time discovering these cases.

This research proposes an architecture to be used in a system that allocates bandwidth

at compile-time. Messages have a reserved time during which they are guaranteed that no

other message will be occupying their chosen link. As a result, network congestion can be

minimized from a global sense rather than relying on local information. While most static

routers provide a fixed communication structure that demands communications at fixed

times, this router will allocate bandwidth for possible communications although it will not

clk 1

clk2

clk3
clk1

clk2clk3

msg A

msg B

Figure 1.4Sophisticated Router Eliminate Congestion



171717

require information to be transferred when a message has a communication link reserved.

In addition, mechanisms are present to allow run-time modifications of the scheduled

communications to allow for dynamic routing decisions that can not be determined at

compile-time. For applications that have communication phases or even evolving commu-

nication needs, mechanisms are present to allow the communication patterns to be cached

and changed when needed.

1.3 Router Complexity
A basic deterministic router operates by looking at the header of a word and then

enabling a crossbar switch to connect the appropriate input to the appropriate output. In

order to handle multiple messages at once, multiple crossbars are used. Adaptive routers

use a more complex structure since they have to manage both the buffer space associated

with virtual channels and the routing decision based on whatever pieces of state they are

recording. Typically, none of these operations can be pipelined because they depend on

information that can come from a variety of sources at unspecified times.

Additionally, many dynamic routers require a roundtrip transfer of data since the

receiving node is required to send an acknowledgment once it accepts data. Since data can

be blocked, the sending node has to wait for the transfer to complete before the transfer is

ended.

clk 1

clk2

clk3
clk1

clk2clk3

msg A

msg B

clk 1clk2

clk3

Figure 1.5Adaptive Routers Still Suffer Congestion
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One of the primary goals in this project is to minimize the node latency to either an

internode transfer or a small RAM lookup. In addition, the entire architecture is heavily

pipelined to allow maximum throughput. Since the communication schedules are deter-

mined at compile time, no information need be looked up in the data word to determine a

destination. As a result, as soon as a word arrives at a node, its destination is known and it

can be immediately forwarded.

Static routing systems often have no need for buffering since communication paths are

fixed. While the NuMesh project does reserve bandwidth at compile-time, it does not try

to predict the times at which messages can be injected or removed from the network. In

order to prevent data from being overwritten or dropped in the communication network

due to a processor failing to remove messages at the end of a communication path, the net-

work provides for flow control to allow messages to back up in the system. This requires

that buffering be possible for all communication streams. However, the timing for the node

need not suffer. While dynamic routing systems often need a round trip communication to

ensure a successful transfer, this research utilizes a unique protocol that takes advantage of

the scheduled nature of the communication to communicate transfer success with a single

internode transfer time.

1.4 CFSM Architecture Overview
A NuMesh node contains a Communication Finite State Machine(CFSM) designed to

execute a control instruction for every static communication stream that flows through the

node.  Attempting to keep track of this state information in a single FSM could prove quite

expensive since the number of states of the CFSM would be proportional to the product of

the number of states in each of the individual streams.  In addition, limited dynamic deci-

sions allowed for a particular static stream would affect the state of the entire CFSM. One

solution to this problem is to break up the CFSM into a number of smaller FSMs, each

charged with the responsibility of a single communication stream.  This insight leads to

two possibilities.  First, the individual FSMs could be replicated in hardware, allowing

true parallelism.  Each replicated FSM could issue independent nonconflicting control sig-

nals for its particular static stream.  The second approach involves using a single FSM

time-sliced among a number of independent virtual communication streams. Streams
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requiring greater bandwidth could be called more frequently by the scheduler.  Strict

adherence to either of the two approaches would yield unacceptable constraints on the

CFSM.  The first approach limits the number of communication streams to the number of

physical FSMs implemented.  The second approach allows an unlimited number of virtual

streams, but interleaves them sequentially.

The NuMesh combines both ideas. Two physical and independent pipelines operate

concurrently, with each pipeline being allowed thirty-two virtual streams. Each pipeline

can choose to have any of the thirty-two streams run on any clock cycle. Each of these

streams consists of a single instruction that allows communication between any two

sources and destinations on the chip. In the common case, these transfers will involve the

four ports on the chip. Since there are two independent pipelines, all four ports on the net-

work can be used on every clock cycle.

The connection between the two pipelines occurs in the schedule RAM. This RAM

serves to indicate which stream will operate on every clock. Two stream numbers are

encoded in this RAM that serve as indices for the instruction RAM that contains the

instruction for each pipeline’s thirty-two streams. Another index in the schedule RAM

serves to pick out the next entry of the schedule RAM. This allows schedules of an arbi-

trary length (up to 128) to be created. While the schedule length of each of the pipelines

can be different, the schedule in the schedule RAM will be their least common multiple.

Once a communication instruction is selected, the ports are next read and written on

subsequent cycles. In between this operation, the data get stored in a register. Since all of

these operations are set up at compile time, the architecture can be heavily pipelined to

allow the clock cycle to be determined by an internode transfer or a small RAM read. A

skeleton picture of the architecture is included in Figure 1.6. Much of the detail for the

CFSM is omitted, since this figure is intended only to give a high level view of the chip’s

operation. Support for flow control, dynamic updates, bootstrapping, etc. are included in a

later chapter.

The operation of the CFSM is broken up into four stages. The schedule RAM is first

read in order to determine which streams will be read for a particular clock cycle. The sec-

ond stage involves each pipeline reading the instruction for a particular stream. The third
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stage causes a source input word to be read and stored in a register. The fourth stage has

the source word being written to the appropriate destination.

1.5 Thesis Outline
The remainder of this thesis is organized as follows: Chapter 2 presents the design

space of the NuMesh project and the assumptions made for the rest of the thesis. Chapter 3

presents background and related work. Chapter 4 presents the Instruction Set Architecture

(ISA) and discusses the reasoning and trade-offs made in the general architecture design.

Figure 1.6Hardware Overview

Schedule RAM

next stream# stream#

to other pipeline

Instruction RAM

stream instruction

to read enables

write control

source word

data

write enables

to destination
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Chapter 5 presents a detailed description of the implementation. Chapter 6 presents the

result of the chip design and describes the complete hardware and software environment

of the NuMesh project. A discussion of future work and an evaluation of the system is also

provided.
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Chapter 2

Design Space

2.1 NuMesh Design Space Decision
A parallel processing system attempts to take advantage of the fact that applications

often have largely independent computational portions that can run concurrently and

require some amount of communication between the processes in order to complete.

These processes run on different nodes of the parallel processing system, periodically

injecting and removing data from the communication network in order to meet the com-

munication demands of the application.  Decisions made when implementing the commu-

nication network, the processing nodes, and the interface between the two, have marked

effects on the number and style of applications that can be supported.

2.1.1 Dynamic Networks

The most general approach to parallel programming is to assume no information about

the frequency and patterns of communication that will occur over the course of an applica-

tion.  The need for communication occurs because a node either requests information that

exists on another node or it computes some value that needs to be sent to another node.  If

no information about the frequency or patterns of these communications is known, the

sending processor includes a destination address for the message, and the communication

network must be able to interpret this data at run-time and eventually route the data to the

correct node.  The communication routers can keep track of previous messages and can be

supplied with various control bits from neighboring nodes to help determine the least con-

gested route for forwarding messages.  Routers implemented in this fashion form the

broad class of communication networks called dynamic networks [Dall87, Leig89,

Lind91, Chie92]. Dynamic routers have the benefits of simplified programming and com-

pilation models.  Since all routing decisions are data dependent, the application need only

determine where a desired piece of data resides or where a message needs to be sent.  The

rest of the routing problem is handled in hardware.  This dependence on limited hardware

to handle the routing decisions suffers a number of disadvantages as well:
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• Nodes create messages and inject them into the communication network in an unpre-

dictable pattern causing hot-spots of congestion to be created. Since each node of the com-

munication network has a limited amount of information about which links in the system

are currently being used, messages may be stalled due to congested links even though

alternative links may be free.

• Every time a message is forwarded a node in the communication network, a data-

dependent decision must be made by the router to determine which direction the message

should next be sent.  For routers attempting to incorporate more information into this deci-

sion, the latency of a message through a node is even greater, since the decision process

involves some number of gate delays.

Dynamic networks do not attempt to take advantage of communication information

present in the application at compile-time. While some applications may yield little such

information, many applications provide at least some indication as to the communication

that will occur over the course of the application. This information may include the source

and destination of upcoming messages, the relative frequency at which nodes can expect

to send and receive messages, the exact timing of when processes will send or receive

messages, and the evolving communication patterns that might occur under depending on

branches taken in the application. While applications may provide all or none of this infor-

mation at compile-time, dynamic routers can not take advantage of the case even when

communication is fully specified.

2.1.2 Systolic Networks

The opposite end of the spectrum yields a system in which the timing of all communi-

cations is completely defined at compile time[Beet85].  The processors have a fixed time

at which they will create and accept messages, and the communication network knows

exactly when and where it will be required to transfer messages through the system. The

only variable is the actual data being transferred.  The communication nodes consist of

simple configurable switches that get set at compile time forming direct physical connec-

tions between communicating nodes. Since no run-time data dependent decisions are

being made, these switches can operate very quickly.  Physical resources are never shared

between nodes, so congestion is not an issue.  The processing nodes must be able to send
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and remove messages from the network at predictable times to allow for maximum trans-

fer rates.

While this system works very well for applications involving a small number of regu-

lar communications, its uses are limited.  As the number of communications in an applica-

tion grows, the number of available physical links starts to become a scarce resource.

Applications that require more complicated communication structures require the commu-

nication FSMs to be more intelligent in allocating physical links to the various communi-

cations needs.

2.1.3 Static Networks

Similar to systolic networks, static networks demand that all communication patterns

and timing be known at compile time. Static networks allow applications to specify more

communication paths than systolic networks by allowing physical channels to be shared

among a number of communications required by the application[Lee90, Peza93].  The

FSMs of the communication routers can be time-multiplexed such that a separate set of

communication paths can be supported on every cycle.  Since the exact timing of the pro-

cessors is known at compile time, the communication FSMs can know exactly where each

message is to be routed on each clock cycle.  The communication network can be viewed

as one giant finite state machine that is orchestrating communications between the proces-

sors.  When this FSM is being created, a clever compiler can utilize all the physical links

in the system, thereby maximizing bandwidth for the system.  Unavoidable congestion can

be handled by time-multiplexing physical channels among the multiple messages request-

ing use of the channel.  The system has the advantages that no run-time data dependent

decisions need to be made, and congestion can be minimized at compile time.  An arbi-

trary number of messages can be used by the application since the communication FSMs

can allow nodes to share the physical resources by time-multiplexing the channels.  How-

ever a number of disadvantages remain:

• The application code must be written such that every communication can be

extracted at compile time.  Not only does the source and destination for each communica-

tion message need to be known, but the exact time at which the processing nodes create

and accept messages must also be known.  Any dynamic behavior in the system can be
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lethal since the communication network can be viewed as one big FSM that demands pre-

cise timing.

• The processing units must be designed such that the time to execute code is com-

pletely predictable.  Even something as simple as a cache miss can completely throw off

the timing of the system.  Traditional microprocessors have a number of sources of vari-

able timing.  Traps, interrupts, cache misses, and DRAM refreshes are just a few of the

sources that prevent application code timing from being easily predictable.

While static networks are more robust than systolic networks, the processor must be

carefully engineered and characterized to allow for the precise timing needed in a static

system. Static networks are optimized for applications that exhibit an arbitrary number of

regular communications. Both the computation and communication behavior of the appli-

cation must be evident at compile-time. While this model does not hold for all parallel

applications, a large body of scientific and graphics code can be made to fit this model.

2.1.4 NuMesh system

The NuMesh system examines a different point in the design space.  At compile time,

the NuMesh system tries to take advantage of paths of communication in a system, but

does not require exact timing information from the processing nodes.Virtual streams of

communication are extracted from the application that identify a source node, a destina-

tion node, and a requested bandwidth that determines how often this communication is

likely to occur.  A directed graph of communication can be composed from the virtual

streams of communication.  Similar to the static network, the graph of communication

gets mapped to a global FSM of communication, part of which gets stored on each com-

munication node.  Each virtual stream gets scheduled for some number of clocks, based on

the bandwidth request set up in the program.  When a virtual stream is scheduled, data

need not be sent, but a communication path will be reserved between the source and desti-

nation of the message.  Since a message can travel one hop on every clock cycle, schedul-

ing a virtual stream implies assigning consecutive cycles on consecutive nodes of the

communication path for the stream.  This model of communication is termedscheduled

communication.
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While the communication network reserves bandwidth between communicating

nodes, the processors are dynamic in nature, meaning that the exact time at which mes-

sages will be injected or removed from the network is variable.  This requires that words

be allowed to back up in the communication network, without upsetting the timing of the

global FSM.  Some amount of buffering is assigned to each virtual stream at each node of

the communication path.

The decoupling of the communication network from the attached processors yields an

interesting combination of static and dynamic behavior. The static nature of the communi-

cation network allows the system to take advantage of improved network performance due

to the faster cycle times and reduced congestion.  At the same time, the restrictive timing

constraints of processors found in a traditional static systems are removed, preventing the

dynamic behavior of caches and other unpredictable processor effects from crippling the

timing of the system.

The disadvantages of the NuMesh approach are that bandwidth in the communication

network may go wasted if the processor is unable to fill its reserved communication slots

and the processor may be unable to send a message if a virtual stream is not scheduled but

the processor is ready to send data.  Also, the application must be written such that the

sources and destinations of messages can be extracted at compile time.  Although the

NuMesh system does support limited dynamic routing, there is a cost in efficiency.

2.2 Scheduled Communication
This thesis assumes that communication patterns can be extracted from the parallel

language in which the applications are written. Scheduled communication indicates that

some determination has been made as to the communication of the processors during com-

pile time. Ideally, all sources and destinations will be specified, and an idea of how often

each communication will occur will be provided. Once these virtual streams are specified,

a scheduler can load state into each of the NuMesh communication routers that executes a

run-time schedule matching the requests of the virtual streams.

However, the determination may be that there are a variety of run-time decisions that

will be made. Even for these cases, the NuMesh will load instructions during bootup that

allow the nodes to handle more dynamic communication. Off-line analysis of application
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code may even determine that some routing decisions will be data dependent. In these

cases, some mechanism must be incorporated in the scheduled communication to allow

for these checks of data. The more regular and predictable the communication patterns,

the more benefit can be extracted from scheduled communication.

Scheduled communication does not suffer from the rigidity of static or systolic rout-

ing. While a purely systolic system demands that communication be fixed and that data be

sent in a regular pattern, a scheduled communication system reserves bandwidth between

processors, although this bandwidth need not be used if the source processor has no data

to be sent. Dynamic communication has even more flexibility, since all decisions are made

during run-time, although this flexibility naturally leads to network congestion and possi-

bly pathological network performance such as livelock or deadlock.

By assuming that the applications can have their scheduled communication extracted

at compile-time, this thesis can take advantage of minimized network congestion, a lack of

data-dependent routing decisions, and the ability for the hardware to know about possible

upcoming communications well ahead of the actual transfer of data.

Figure 2.1 presents a simple example of the kind of information that a scheduled com-

munication analysis might present. In the example, the communication needs of a four

node system are examined. In the figure, five communication messages are identified.

Each message has a bandwidth assigned to it that represents the percentage of the time that

the message is expected to appear in the network. A bandwidth of twenty-five percent

would mean that the communication links needed for that message would be utilized

around one out of every four clock cycles. These bandwidth numbers need not be exact,

but they will be used to reserve communication links for a particular message. If a mes-

sage gets allocated twenty-five percent bandwidth, but then the sending processor only

sends out a message every hundred cycles, then there will be a lot of cycles reserved for

that particular communication that are not used. Likewise, if the sending processor has

data available to be sent every other cycle, the network will be unable to accommodate all

the processor’s attempts to inject messages into the network, and data will back up in the

sending processor’s memory causing the application to stall. While neither of these situa-

tions is catastrophic, the closer the assigned bandwidth is to the processor’s performance,

the better the application will perform.
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The size metric obtained during off-line analysis serves only to indicate how the band-

width should be scheduled. When a processor is ready to inject a message into the net-

work, it is usually ready to inject the entire message, regardless of size. If a node has a

bandwidth assignment of fifty percent, that means that the data links for that communica-

tion will be used every other cycle on average. If the messages are of size two, the proces-

sor ideally will have consecutive cycles available to inject both words of the message into

the network. The communication thread will not be scheduled again for another two

cycles while the processor gets the next message ready. If the message size were one, then

the processor would have every other cycle reserved to send its one word message. While,

for this example, the difference between size one and size two messages being sent with a

fifty percent bandwidth is not that significant, the difference is important for messages of a

larger size that might be scheduled infrequently. A message of size thirty communication

words might get assigned a bandwidth of one percent. If no size limits are taken into

account, the schedule would provide this communication thread one cycle of reserved

bandwidth for every hundred cycles. Taking the size metric into account, the thread gets

thirty consecutive cycles of reserved bandwidth followed by two hundred and seventy
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cycles of not getting scheduled. The application performance might be drastically differ-

ent for the two cases.

Once the scheduled communication information has been extracted, graph analysis

can yield a viable network schedule that attempts to meet the required bandwidth and size

constraints. The example in Figure 2.1 assumes a fixed path between the nodes, but in

practice all that may be specified are the source node and the destination node of the mes-

sage, allowing more flexibility in the scheduling process. While some constraints may be

impossible to satisfy, the communication streams compiler can decide how to come as

close as possible to satisfying them. For the simple example in Figure 2.1, one possible

schedule is illustrated in Figure 2.2. The schedule that was generated has four cycles in

length. For this example, it should be noted that each node can handle two distinct com-

munications on each clock cycle. Each message appears in the schedule based on the

bandwidth that was assigned to the node. For example, message A requested a bandwidth

of twenty-five percent. Looking at the schedule, we see that node zero (the source node for

message A) has message A scheduled in slot zero. This demands that node one, the next

node in the communication path, has message A scheduled in clock cycle one. Conse-

quently, node two has message A scheduled in clock cycle two. For messages B and E,

which both have a bandwidth of fifty percent, the messages appear in two out of the four

cycles for each of the nodes in those paths. Since message B has a size of two, it gets

scheduled for two consecutive clock cycles while message E with a size of one gets sched-

uled every other cycle. This will be the communication pattern for these nodes for all time

since after the fourth clock cycle, the schedule starts over again at clock cycle 0. While

this simple example is trivial to schedule, more complicated applications provide more

complicated communication schedules that often require multiple phases of communica-

tion in order to complete.

2.3 Machine Model
The NuMesh node in this thesis consists of a processor, a memory, and a router. The

processor is largely irrelevant to this work since one of the goals of this project is to allow

for any off-the-shelf processor to be connected to a NuMesh router. The amount of mem-

ory on the node is arbitrary, and will logically be determined by the choice of processor.
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The NuMesh communication finite state machine (CFSM) serves as the router, and is the

focus of this work. Each of these nodes has four connectors that allow multiple NuMesh

nodes to be snapped together to form point-to-point connections. In aggregate, these nodes

form a multiprocessor with a user determined total number of nodes. The NuMesh project

is careful not to define any sort of memory structure in the global sense, nor does it restrict

itself to any particular message passing philosophy. The idea is that these decisions can be

made in software and easily laid on top of the NuMesh architecture. Some small efforts

have been made in hardware to facilitate different strategies, although NuMesh takes the

RISC approach in limiting the amount of hardware that is thrown at problems which can

be more easily solved in software.

For the prototype implementation, each NuMesh node is connected to a SPARC pro-

cessor and eight megabytes of memory. The CFSM is implemented in a custom gate array

chip designed by the author for this project.
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Chapter 3

Related Work

The NuMesh project defines a communication substrate for scheduled communication.

The project attempts to limit network congestion while minimizing both latency and

throughput in the network. By taking advantage of scheduled communication, network

performance can be more efficiently managed. The logical end of the NuMesh project is a

parallel processing system with an arbitrary number of network nodes. Over the past

decade, much research has gone into trying to optimize parallel processing networks from

both the hardware and software angles. Many previous projects have dealt with some of

the myriad ideas that the NuMesh project needs to be successful. This chapter will serve as

a literature review of the major areas upon which the NuMesh project is built. Logically,

these areas fall into eight categories: network theory, adaptive networks, the iWarp project,

scheduled communication, programming environments utilizing scheduled communica-

tion, NuMesh prototypes, communication standards, and system architecture issues. The

headings in this chapter will address these eight areas.

3.1 Network Theory
Many people have tried to both characterize and create oblivious or deterministic rout-

ing schemes[Dall87, Leig89, Raja92]. For a routing scheme to be termed deterministic,

the only information allowed when choosing a message route is the message destination,

which is usually stored in the first word of the message. This simplest algorithm for deter-

ministic routing is thebasic greedy,dimension-ordered algorithm. It works for any carte-

sian network withd dimensions. The algorithm is as follows:

• Messages are routed in dimension 1

• If a node has multiple messages that need to use the same link, the mes-

sage with the farthest distance to go gets preference

• Once a message reaches the correct location for dimension 1, the process

is repeated for all remaining dimensionsd
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Much research has gone into analyzing the basic greedy algorithm on the 1-1 packet

routing problem[Leig93, Raja92]. The 1-1 packet routing problem consists of a number of

single word messages, called packets, being routed at the same time in a network. Each

node in the network will receive at most one packet, although some nodes will receive no

packets. Figure 3.1 shows an example of greedy routing on a 5 x 5 mesh. In the example,

packets are first routed in the X direction until they reach the proper X coordinate, where

they are then routed in the Y direction. The packets can advance one node every cycle. In

the case of packets A and B, they reach the middle node of the bottom row on the third

cycle, and then both want to be routed in the positive Y direction. In the case of the simple

greedy algorithm, packet B would be routed first because it has farther to go. Packet A

would have to be buffered and sent out on the next cycle.

Ideally, a network designer expects two factors to determine the number of cycles a

packet will take when being routed in a network. The first is the network’s diameter. The

diameter refers to the longest path in the network. In the case of an N x N mesh, this path

would be (N-1) x 2 or 2N-2. This number affects the latency in that it describes the total

number of hops a packet may have to take. The second factor is the network’s bisection

bandwidth. The bisection bandwidth refers to the smallest number of wires that must be

cut to split the network in two. This metric is important when we consider all the nodes on

one side of the network trying to communicate with the nodes on the other side of the net-

work. The bisection bandwidth can give the designer an idea of how much of a bottleneck

the middle of the network could become, thus causing packets to be delayed due to con-

gestion over these midsection links. To figure out the performance ramifications of the

bisection bandwidth limit, one divides the total number of processors in the network by

the bisection bandwidth. The metric assumes that all nodes are communicating to the

nodes on the opposite side of the network and therefore have to go through the wires in the

bisection bandwidth. Designers often consider a network’s diameter and bisection band-

width an upper bound for the communication times a network can support.

Surprisingly, for the 1-1 packet routing problem in the 2-D case, the basic greedy algo-

rithm can be shown to always run in optimal time: 2N-2 cycles for an N x N mesh. This

number is optimal since any packet traveling across the diameter of the network must take

at least 2N-2 hops. Unfortunately, the queue size for the worst case of a 1-1 packet routing
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problem can be  [Leig92]. For all practical purposes, this yields an unacceptable

constraint on the network as memory requirements become far too demanding since net-

works can be composed of many processors. Another alternative involves stalling mes-

sages when they are blocked rather than storing them in a buffer queue. While this does

allow for constant queue sizes regardless of network size, the run-time performance for the

worst case is . In [Leig93], the author makes a conjecture that if constant queue sizes

are required for any bounded degree network of total size Q, the worst case performance

for the network will be . This observation suggests that the number of cycles

required to complete the routing will be proportional to the total number of nodes in the

system rather than the diameter or bisection bandwidth of the network. The diameter and

Figure 3.1Greedy Routing in a 5 x 5 Mesh
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bisection bandwidth may turn out to be grossly optimistic when used for estimating net-

work delays. While this remains unproven, the ramifications of the conjecture are quite

startling. The rest of this section will show an example of network congestion that is much

worse than the diameter and bisection bandwidth of the network predicts.

Consider the case of a three dimensional network of processors arranged N x N x N.

The diameter of this network is 3N-3. There can be at most N-1 hops in each dimension

and there are three dimensions. To calculate the bisection bandwidth, one need only con-

sider slicing the network down the middle of any of the symmetric planes. Since two of

three dimensions will be split, N2 wires must be cut. Since there are a total of N3 nodes in

the network, one would expect that the bisection bandwidth sets a performance limit of

 on the network since N3 processors might be sending messages over N2 links. In

light of these two constraints, one might expect that for the 1-1 routing problem, the num-

ber of routing steps would be proportional to N. Leighton’s conjecture, however, suggests

that the running time will be much worse for some cases. To illustrate one of these worst

case examples, one can consider a variety of very commonly used routing examples. One

such example is a bit-reverse operation. In this example, all processors with network

addresses (i, j, k) send messages to (i’, j’, k’) where i’ is the bit reversal of k, j’ is the bit

reversal of j, and k’ is the bit reversal of i.

Consider routing this series of communications with any dimension-order determinis-

tic routing scheme. Once again we will assume the 1-1 routing problem which only allows

one message for each destination. Removing this restriction of 1-1 routing only makes the

congestion worse since processors may be receiving multiple messages at the same time.

For the sake of simplicity, assume that every node is sending a message. The first step is to

route all of the messages in the z dimension to the correct xy plane. A slice of the cube

through the x dimension at x=n is provided in Figure 3.2.  During the first phase of rout-

ing, all of the packets in a particular yz plane are routed to the same column, since the final

z coordinate is the reverse of the original x coordinate. A total of N steps is required to

complete this first phase, since there will be no contention in the network. The second

phase of routing involves sending all packets to the correct y coordinate. At this point, all

of the packets in a particular yz plane will be in the same column. The destination of these

packets will be the reverse of the source’s y coordinate for each packet.  Figure 3.3 illus-

Θ N( )
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trates the phase 2 routing that occurs. Now examine a link at the midpoint of the column.

Since all packets are being routed to the y coordinate corresponding to the bit reverse of

the source, all packets except the endpoint packets will have to cross this middle link. At

the beginning of the stage, there were a total of N2 packets in this column. Since

packets have to cross this single link in a serial fashion, the number of routing steps to

complete this phase must be . The final phase of the algorithm involves routing mes-

sages to the correct x coordinate. The time for this phase must be  due to the fact that

there can be at most N packets in any X dimension. This must be true because the problem

statement demanded that each node receive only one message, and if all other dimensions

have been routed, there can be at most N packets that need to be routed among N proces-

sors of any network row. Still, the second phase of the routing process has determined that

the total routing time is . The network diameter and bisection bandwidth gave over-

optimistic predictions of network performance. The reason this example performs so

poorly is that during the first phase of routing, all of the packets in a yz plane are routed to

Figure 3.2YZ Plane Corresponding to x=n, After Phase 1 Routing
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the same column. Then in the second phase of routing this column of nodes has a flurry of

activity to route packets in the y direction, while all other nodes in the plane are idle. A

simple compile-time scheduling of these communications could have spread the work

around to all of the nodes, and a routing time of  could have been achieved.

In [Leig93], the author shows that the odds of randomly choosing a communication

pattern that breaks the basic greedy deterministic routing algorithm is quite small. Unfor-

tunately, the author also states that the number of communication patterns that people pro-

gram happen to intersect these worst case patterns quite regularly for reasons not quite

understood.

This example illustrates that deterministic routers can behave quite poorly. The analy-

sis also assumes that communication packets are all being sent at the same time, as is

required by the 1-1 packet routing problem. In reality, messages are created and sent ran-

domly and the communication patterns are quite confusing. Messages are routed in all
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directions at the same time. One very serious problem that can occur is deadlock. Dead-

lock occurs when messages can block a communication link while waiting for their next

communication link to become free. A cycle of dependencies can occur that prevents any

message from ever seeing progress. Figure 3.4 provides an example of deadlock. Each

node in the 2 x 2 array has a message that is attempting to make a right turn. However,

each path needed for a right turn is occupied by another packet that in turn is attempting to

make a right turn. Since no resource will ever free up, these packets are blocked for all

time. Dally proved that dimension-ordered deterministic routing avoids deadlock

[Dall91], but most dynamic algorithms need special consideration to avoid deadlock.

Deadlock avoidance has been a serious issue in the routing community for some time

[Lind91, Bour94]. While many solutions have been proposed, all cost the router in com-

plexity and area. If compile-time scheduling is used, all deadlock cycles can be trivially

avoided by breaking any detected cycles of dependencies.

For a two dimensional mesh network, much effort has gone into designing constant

queue algorithms that operate in near optimal time [Raja92, Leig89]. Currently, the best

bound for queue size that results in the still optimal 2N-2 routing time for the 1-1 routing

problem requires a buffer size of 112 per node[Raja92]. Of course, this buffer requirement

goes up considerably when the restriction of 1-1 routing goes away. Scheduled communi-

Figure 3.4Deadlock Example for a Deterministic Router
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cation can be optimized to allow much smaller buffer sizes, or to even remove buffers alto-

gether. The approach of the NuMesh project is to have a limited amount of buffering

designated to handle flow control.

The analysis of deterministic routers so far has not attempted to take into account

router complexity. As methods for dealing with deadlock, arbitration, or even buffer stor-

age become more complex, router delays become more significant. In [Agar91], the author

attempts to include switch delays into the network performance model. Not surprisingly,

in most cases the network performance degrades linearly, and degrades far worse than lin-

early in others as the switching time in the node increases for two and three dimension net-

works. For lower dimension networks, not only do the node switching times affect

performance, but they can be observed to be one of the critical factors in determining net-

work performance. This demonstrates that as routers make more run-time decisions, the

effect of router complexity must be considered when determining the benefit to the sys-

tem. Unfortunately, many such studies completely ignore router complexity.

3.2 Virtual Channels and Adaptive Routers
Two of the bigger potential problems when routing with dynamic routers are the possi-

bility of deadlock and the inability of one message to pass another if the first message is

blocked. Figure 3.5 illustrates the second problem. Message A is unable to travel in the

negative Y direction because of network congestion. As a result, Message B gets blocked

behind message A, even though its path is clear to the following nodes. There is no mech-

anism for allowing one message to pass another.  In [Dall90], the author introduces the

idea of virtual channels to alleviate this problem. Virtual channels manage to decouple

buffer storage from physical channels to allow for a number of virtual communication

streams that are distinct from each other. If one virtual stream is blocked, the packet can be

stored in that stream’s virtual buffer, while another stream can pass the blocked stream via

another virtual channel. Figure 3.6 demonstrates the virtual channel solution. Although

message A is still blocked from going in the negative Y direction, the entire packet can be

stored in a buffer until its required link frees up, allowing message B to utilize the link it

needs.
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Virtual channels can also have the virtue of provably eliminating deadlock. A simple

example taken from [Dall90] describes how virtual channels can eliminate deadlock.

Deadlock occurs because of a created cycle of dependencies in which each member of the

cycle needs a resource that is currently being used by another member of the cycle. One

Figure 3.5Network Contention Caused by a Blocked Message
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Figure 3.6Virtual Channels Relieve Tension
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model of virtual channels refuses to allow these dependencies to occur. A normal mesh is

connected by bidirectional communication links. Virtual channels will be placed on top of

these links to create two distinct networks. One of these networks will only provide links

that go in the positive X and Y directions, while the other virtual network will only sup-

port links in the negative X and Y directions. There will be separate buffer storage for each

of these virtual networks. Cycles could never occur, because buffers in either of the virtual

networks could never form a cycle. For a deadlock cycle to occur, there must be a circular

chain of resource dependencies in which the first packet of the chain is waiting for a link

to free up that is currently being blocked by a series of packets that eventually can be

traced back to the first packet of the cycle. With the two virtual networks described above,

a packet being blocked in the positive X or Y direction can never be blocked by a link in

the negative X or Y direction. This means that a deadlock cycle could never occur.

While virtual channels significantly improve channel utilization for deterministic rout-

ers, for a reasonable number of virtual channels (4-8), the throughput of the interconnec-

tion networks is still limited to about sixty percent of the network’s capacity [Dall90]. In

addition, virtual channels add significantly to the complexity of the chip. Not only does

the control logic become more complicated, but the router must be able to handle an addi-

tional layer of switching since data has to be switched among the virtual channels as well

as the physical ports. Virtual channels also fail to alleviate hot spots in the network, even

when alternate paths are available. At the lowest level, the router is still implemented as a

deterministic router.

To address “hot spots” in the network, a variety of adaptive routing scheme have been

designed. The basic idea behind adaptive routers is to route packets along alternative paths

if a requested link is busy. As a result, data can be fanned out to areas of the network that

are less congested. A fully adaptive router considers all possible paths between nodes

when sending packets in the network. Adaptive routers can choose from among several

paths based on network loading, network faults, or any other dynamic data that the switch

is recording. Unfortunately, by increasing the number of alternative paths a packet can

take, the number of possibilities for deadlock is multiplied. A full adaptive router is

described in [Lind91]. In order to prevent deadlock, a total of 2n virtual channels are
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required where n is the number of nodes along any dimension. The hardware complexity

required to implement such a scheme is prohibitive.

As a compromise, several schemes have been developed that allow limited adaptabil-

ity. By limiting the number of choices a packet can travel, the number of virtual channels

needed to avoid deadlock can be reduced.

One such limited adaptive scheme is theturn model of adaptive routing [Glas92]. The

turn modelsupports a user defined number of virtual channels, but requires none. For

every set of channels, every possible cycle must be identified. For every possible cycle,

one of the turns must be disallowed in order to break the cycle. The routers must take these

Figure 3.7Two Distinct Virtual Networks Avoid Deadlock
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absent links into account when determining which direction to next route a packet. One

could consider these links to be permanently busy. In order to prevent all of the cycles in a

two dimensional mesh, one fourth of the communication links must be eliminated. This

scheme allows for limited adaptability while ensuring a deadlock-free network. The com-

plexity of the switches increases since unusual constraints must be checked for every

node.

Another popular limited adaptive scheme is theplanar-adaptiverouting scheme

[Chie92]. As a compromise between a deterministic routing scheme and a fully adaptive

routing scheme, the planar-adaptive scheme tries to route two dimensions at the same

time. Subplanes are selected at each point in a packet’s transfer and any edge on the plane

may be used for a transfer. If some edge of the plane becomes congested, packets will be

routed to the less congested side of the plane. To be deadlock free, this scheme requires

three virtual channels per physical channel in a two dimensional mesh, and six virtual

channels for a three dimensional network. Each subplane is effectively broken up into

three virtual subplanes in order to prevent any possible cycles from being created.

While many adaptive schemes purport to create significant network improvement,

these studies often neglect the effect of router complexity. If the complexity of the switch

causes the latency and the throughput of the network to decrease, this must be overcome

by improvements to the network congestion at a commensurate rate. One significant study

out of Illinois [Aoya92] studied exactly this trade-off and determined that full adaptability

was not worth the added complexity and that even partial adaptability was questionable.

Adaptability negatively effects network performance in two ways. The added virtual

channels required to prevent deadlock increases both the arbitration time and control logic

of the router. Larger crossbar switches slow down the effective clock cycle of the routing

node, since crossbar switch delays grow at a rate  where N is the number of virtual

channels supported on the node. The authors of [Ayoa92] provided for up to eight degrees

of adaptability, meaning that up to eight virtual channels were allowed per physical chan-

nel. On average, they discovered that for each added virtual channel, the utilization of the

corresponding physical channel. needed to go up thirty percent to justify the cost of the

adaptability overhead. While this seems possible for the addition of one or two such chan-

Θ N2( )
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nels given the right kind of network traffic, their study showed that many more channels

rarely justified their cost.

The Illinois study fully breaks down and compares the cost of the router based on two

metrics. Internode delay refers to the amount of time it takes data to get between chips

including output buffers, wire delays, and input latches. Intranode delay is determined by

the features of the designed router. The Illinois study further breaks down intranode delays

into two more metrics.Path setupis described as the time it takes a routing node to decode

the packet address and choose an appropriate channel destination.Data throughdelays

measure the amount of time the data is delayed due to flow control overhead. These two

delays can occur in parallel, so only the worst of the two delays determines the routing

delay. The planar-adaptive baseline router is implemented in a .8 micron CMOS gate array

technology. The internode delay ends up taking 4.9 ns. The intranode delay is much

greater. For the baseline case, thepath setupdelay is 10.3 ns while thedata through over-

head is 5.7 ns. Since thepath setupdelay describes the minimum amount of decoding

work the node must do to route a packet, a breakdown of this delay is included in Figure

3.8. Since the flow control operations require information from neighbors, it takes two

clock cycles for the flow control to complete. This means that the two cycles ofdata

through overhead set the clock period to be 11.4 ns. Compared to the 4.9ns of internode

transfer time, we see that the overhead for even this limited adaptive routing scheme is

quite significant.

By increasing the number of degrees of adaptive freedom, one also increases the num-

ber of required virtual channels needed to avoid deadlock. The more adaptability that is

added to the network, the more possibility there is to form a deadlock cycle. To ensure

deadlock avoidance, the common solution is to create distinct planes of virtual channels.

However, as the number of degrees of adaptive channels are increased, the overhead for

the adaptive channels becomes significant. Figure 3.9 analyzes thepath setup delayand

thedata through delayas the number of degrees of freedom are increased. The basic pla-

nar-adaptive router corresponds to two degrees of freedom. In all cases, the internode

delay stays constant at 4.9 ns. Another interesting data point to consider is the case with

one degree of freedom. This corresponds to the most basic deterministic dimension-

ordered router. Even for this case, thepath setup delayis still 5.7 ns, although thedata
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through delay reduces to 3.0 ns. The critical path comes from the fact that the header

address decode and the routing decision must occur serially

This analysis of the cost for dynamic routers indicates that a scheduled communication

router could greatly improve network performance. Not only could compile-time schedul-

ing eliminate the need for costly deadlock-avoidance hardware, but congestion could be

Switch Function Switch Delay

address decoder 3.3 ns

routing decision block 2.1 ns

flow control handler 2.6 ns

cross bar switch 1.1 ns

virtual channel controller 1.2 ns

total 10.3 ns

Figure 3.8Breakdown ofPath Setup Delay

Degree of
Freedom

Path Setup Delay Data Through Delay

1 5.7 ns 3.0 ns

2 10.3 ns 5.7 ns

3 14.6 ns 8.8 ns

4 17.1 ns 16.5 ns

5 29.8 ns 26.1 ns

6 56.5 ns 51.9 ns

7 114.9 ns 109.5 ns

8 243.8 ns 237.9 ns

Figure 3.9Delay of Router as Degrees of Freedom are Added
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minimized analyzing potential hot-spots in the network when scheduling the actual mes-

sage routes. In addition, since no header address decode or run time routing decision need

occur in a scheduled communication network, thepath setup delayand thedata through

delay can be significantly decreased. The communication router delay can be reduced to

strictly the internode delay plus whatever minimal gate delays can not be determined on

previous cycles in a pipelined implementation. Compared to the previous example, this

would be a reduction of network delay of sixty-six percent.

3.3 iWarp
The iWarp project attempts to take some advantage of static schedules through a

unique hardware architecture [Bork90]. The iWarp project created network nodes that

integrated a communication router and a processing unit into a single chip. The iWarp cre-

ators targeted their machine to high speed signal, image, and scientific computing. The

processing unit consists of parallel computation units designed to carry out operations

completely independent of the communication router. The interface between the two parts

is a high speed register file. By integrating the processing unit and the communication

unit, a very high exchange rate between the two can be achieved at the cost of processing

flexibility. All iWarp nodes must have this identical processing capability. Figure 3.10

illustrates a single iWarp node.

The iWarp network combines two very different methods for processor communica-

tion. iWarps attempts to combine the efficiency of systolic routing with the generality of

dynamic message passing. Each iWarp node has eight unidirectional ports that can be con-

figured in an arbitrary manner. A simple example would be for two of the ports to be con-

nected to each of four neighbors to form a two dimensional mesh.

In order to support systolic routing, the iWarp system allows for channels to be created

between computation units for an arbitrary amount of time. A communicationpathway

gets established by a special header word called anopen pathway marker. These pathway

markers have all of the routing information encoded in their data. As this marker passes

nodes that are to be included in the systolic path, logical channels and an associated buffer

register get reserved. Once the path is completely set up, words can be transferred at very

rapid rates since no data dependent decisions need be made. When the source processing
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node wishes to destroy thepathway, it sends aclose pathway marker that frees up each of

the reserved resources on each node. Computation units can communicate with thepath-

ways through a set of registers located in the register files. These registers can be read and

written at arbitrary times by the computation unit. This means that although a systolic path

is set up, flow control must still be implemented to keep registers at the end of the path

from being overwritten. Flow control in the iWarp system is exercised on a per word basis.

In order to reserve a pathway, theopen pathway marker contains a series of addresses that

corresponds to nodes in which the systolic path will need to “turn”. When a node sees an

open pathway marker it compares the first address against the contents of a small content

addressable memory (CAM) that has been written by the computation unit. If a match is

found, then the node is either the final destination of the path or the pathway must turn a

corner. This information is also encoded in the top word. The node reserves the appropri-

ate logical channel and strips off the top address. Theopen pathway markerthan proceeds

to the next node in its path. If no match is found in the CAM, then the node assumes that

the pathway is supposed to continue in the same direction from which it entered the node

Floating
Point
Multiplier

Floating
Point
Adder

Integer
Logic
Unit

Local
Memory

Register File

Communication Router

Figure 3.10Major Units of the iWarp Processor [Borkar]
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and the appropriate logical channel is reserved. This scheme allows a small amount of data

to be encoded in theopen pathway marker.

The iWarp communication routers also support dynamic, wormhole routing. To do this

the header of the message acts in a similar fashion to theopen pathway marker. Links are

requested by the header, and when a link is allocated to a message, all subsequent packets

of a message will follow that same link on subsequent clock cycles. In the case of message

passing, once the message is finished with a link, there is no need to actively close a path-

way since the pathway never gets reserved for future communications. Also, in the case of

message passing, the destination of the transfer is a message queue. A chief difference in

the two communication models in the iWarp system comes from the fact that systolic com-

munications occur directly through program access to a small number of registers and the

program is assumed to be able to perform operations for every systolic word that is trans-

ferred. Transfer words may build up in a small queue, but the program will consume them

one at a time by reading the appropriate register. In the message passing model, it is

assumed that the entire message must be received before the program can begin doing use-

ful work on the message. The messages get transferred into the local memory of the desti-

nation processor.

As paths get reserved by both systolic and dynamic communications in the iWarp sys-

tem, the number of physical channels can quickly be used up. To get around this problem,

twenty logical channels are defined that can be assigned to any of the physical ports in

software. For example, if two systolic pathways and one dynamic message all require the

same physical channel, they may be assigned separate logical channels. A round-robin

scheduler then alternates between these communication requests giving each path equal

bandwidth. A communication queue is assigned along with each logical channel to store

the data when a particular channel is not scheduled to run. Each queue has the ability to

hold eight thirty-two bit words. If a particular logic channel’s queue become full, the pre-

vious link in the path will be required to spin until queue space is emptied. These twenty

logical channels can be assigned to the computation units as well as the physical channels.

If a logical channel’s destination queue is filled, the scheduler is smart enough to avoid

scheduling that channel as long as the queue remains filled. A large reservation table is

available for the twenty logical channels that provide a mapping to physical ports.
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Dynamic messages look for free spots in this reservation table when attempting to reserve

bandwidth.

A variety of systolic vs message passing experiments were run on the iWarp system

[Gros92]. Not too surprisingly, the more systolic paths that could be determined by the

system, the better the various applications performed. Since the systolic communication

paths communicate via the very fast register file while the dynamic message passing com-

municate through local memory, the application writers discovered they could greatly

improve performance by utilizing systolic communication.

The iWarp system suffers from a couple of performance penalties. Once a systolic path

is set up, data can be transferred at the maximum network rate of 40MHz. However, the

openandclose path marker instructions operated much more slowly. These packets travel

through the system at 10MHz when going straight and 6.66 MHz when turning in the net-

work. In addition, the computation unit must create these markers by appending several

addresses into a single marker. The computation units can create these addresses at a rate

of 50ns per address that causes a route to turn. This overhead can be significant if many

systolic paths are being set up over the course of an application. It also affects the latency

of the first word in a systolic communication. There is no capability in the iWarp system to

allow for communication paths that use the same link to get assigned different band-

widths. Suppose there is a systolic path set up that is utilizing nearly one-hundred percent

of the physical channel bandwidth. If a low throughput dynamic message tries to utilize

the same physical link by requesting one of the free logical channels, it will immediately

be assigned half of the physical channel’s bandwidth by the scheduler. There is no mecha-

nism in dynamic messages that tries to avoid hot spots or congestion in the network. Ide-

ally, one would like the dynamic messages to be routed to less congested portions of the

network. Deadlock is also possible among the dynamic messages, so virtual channels must

be utilized to provide protection against this. Finally, the computation model requires the

computation unit to spin when waiting for a message or systolic word to arrive. This pre-

vents the unit from responding to other communication streams that may be routed to the

same computation unit and it requires that all data arrive sequentially.

The iWarp system provides an interesting compromise between traditional systolic

routing and dynamic message passing. A variety of software compilers for C and FOR-
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TRAN were developed for the programming of the iWarp system. Parallel program gener-

ators were developed for image processing. The iWarp system demonstrates that compile-

time knowledge of systolic paths can be exploited to yield superior performance, espe-

cially for scientific and image processing applications. It also demonstrates that dynamic

message passing and static routing could exist in the same environment to handle cases

that are not predictable at compile time.

3.4 Scheduled Communication
To avoid the potential hazards associated with dynamic routing, an alternative scheme

has been developed based on the idea of scheduled communication. Scheduled communi-

cation guarantees congestion-free paths between communication nodes based on a pre-

compiled communication schedule. Flow control can be implemented to prevent uncer-

tainties at either end of the path, but available throughput is guaranteed to be constant.

3.4.1 GF11

One of the earliest supercomputers to utilize scheduled communication is the GF11

[Beet85] computer designed at IBM in 1985. It was designed for numerical solutions of

problems in quantum chromodynamics. This machine has up to 576 floating point proces-

sors connected by three stages of a Benes network called theMemphis switch. The proces-

sors operate on the same instruction with different data in a Single-Instruction Multiple-

Data architecture. The three stages of the Benes network consist of 24 24-input muxes

connected by a “perfect shuffle” through the middle stage. Figure 3.11 shows a picture of

the Memphis switch.

A total of 1024 possible configurations can be loaded into the Memphis switch allow-

ing a wide variety of communication patterns to be supported. For most applications, only

a small number of these configurations need to be supported. If a two dimensional mesh of

nodes is needed and only nearest neighbor communication is allowed, a very simple con-

nection pattern can be programmed into the crossbars. Simple mechanisms exist to allow

the different crossbars to switch between configurations very quickly. While it is possible

to dynamically compute and load an entirely new configuration during run time, the over-

head makes this action prohibitive. It is expected that configurations will be loaded exclu-

sively at compile-time for efficiency’s sake.
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The GF11 performs quite well for the types of applications for which it is designed.

Compared to the fastest general purpose multiprocessor of its day (Cray I), the GF11 com-

pleted its application in one one-hundredth the time.

3.4.2 Bianchini-Shen Algorithm

A number of projects attempt to schedule communication once the communication

problem has been represented in a direct graph. The directed graph consists of a represen-

tation of all the processing nodes in an application combined with connections between

the processing units that represent communication requirements. In many cases these

scheduling algorithms work to map the processing units to physical nodes and assign com-

munication bandwidth to the various messages that might be created. Of course, these

algorithms require that all communications are specified at compile-time. An example

directed graph is shown in Figure 3.12.
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Figure 3.11GF11 Memphis Switch
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In [Bian87], the authors developed an efficient polynomial time scheme for reading an

arbitrary directed graph, mapping the graph down to a multi-processor system, and obtain-

ing optimal network schedules. An optimal network schedule is defined as a schedule that

minimizes the sum of the link costs for all of the links in the system. To explain their

model, first there are a series of terms that must be defined:

• Iij  - the link connecting nodes ni and nj.

• Cij  - the capacity of link Iij

• fij  - the volume of traffic on link Iij

• uij  - the fraction of link capacity used

• cij  - the cost of routing traffic onto link Iij

• tij  - the traffic volume specified between nodes ni and nj

The scheduler implements an algorithm similar to multi-commodity fluid-flow. The

links can be viewed as pipes and specified communication can be viewed as fluid flowing

through the pipes. Fluid breaks off at different paths to equalize the pressure in the net-

work. The scheduler works to form this equalization of pressure in the data communica-

tion network. A significant deviation from the fluid flow model results because messages

1

2

3

4

5 6

Figure 3.12An Example Directed Acyclic Graph (DAG)



545454

flowing in opposite directions over a bidirectional link do not cancel, but must be handled

separately. Once this model is accepted, the authors in [Bian87] propose two algorithms to

solve the scheduling, loosely based on multi-commodity flow.

The first model isproportionate traffic build-up. Some small number of traffic volume

is first scheduled. For every link, fij is calculated based on the messages scheduled during

this initial stage. Since Cij  is defined by the network, uij  can be determined. After the ini-

tial calculation, unscheduled communication gets added to the schedule. Each time a new

tij  is added to the network, all possible paths are considered through the calculation of cij .

Each piece of message traffic is routed along the path with the least cost, and the fij  and the

uij  are updated. The biggest difficulty in this algorithm is determining the granularity of

message traffic added during each iteration. If too much is added, the cost functions

become meaningless, but too small a granularity and the process takes too long. The cost

function can prevent over-saturation of any link by setting a saturated link’s cost to infin-

ity.

The second model for scheduling is termedsuccessive route improvement. An initial

traffic pattern is laid on the links based on a simple metric such as shortest path. uij is cal-

culated for all the links. Paths are smoothed by attempting to shift uij from highly utilized

links to undersaturated links. Once no possible reroutes are found, traffic flow in the path

of the over-saturated links is proportionally reduced to provide a valid schedule.

Of the two described schemes, the authors determined thesuccessive route improve-

mentalgorithm to be more valuable. Unfortunately, the authors discovered the algorithm is

not polynomial in computation time but is  in time, where N is the total number

of nodes in the system and L is the total number of links. A series of modifications to the

algorithm can result in polynomial calculation time. The first important observation is that

rerouting decisions can be made by only considering the most costly link in the path rather

then calculating the cost of the entire path. This must be valid because the link with the

highest uij  in the network must be the bottleneck for the path. The second important obser-

vation involves the use of minimum spanning trees. A minimum spanning tree is the set of

communication links that connect all nodes of the network such that only links with the

smallest uij are used. Once the minimum spanning tree is calculated, whenever a link has

uij  greater than one and needs to reroute communication, one only need to consider rerout-

O N2 2L×( )
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ing traffic to links on the minimum spanning tree since it represents the least used connec-

tion paths in the network. The combination of these two changes to the algorithm reduces

the running time to .

3.4.3 Shukla-Agrawal Algorithm

In [Shuk91], the authors propose a scheme for scheduling based on the idea of output

consistency. Output consistency demands that the communication time for transmitting

messages be equal to the computation time of the node that receives the message. If the

communication time is too great, the receiving node will spend a majority of its time idle,

while if the processing rate is too large, messages will overflow the receiving node requir-

ing an excessive amount of storage or blocking links on the network. One of the disadvan-

tages of traditional wormhole routing is the first-come first served policy for resolving

contention. Without knowledge of the receiving node, wormhole routing will often cause

messages that are urgently needed to be delayed, while messages going to a node that has

plenty of work will be forwarded. They propose a scheduling scheme that matches

assigned communication bandwidth to the ability of the receiving node to process the data.

The authors start by assuming a directed graph of communication requirements exists,

although the information in the graph is slightly different than in [Bian87]. Messages are

scheduled according to the average processing time of the receiving node. For every com-

munication path, a slack metric is created that attempts to measure the difference between

the frequency of message transfer time versus processing time. Traffic can be assigned

more or less bandwidth depending on the sign value of this slack metric. Whenever new

communication paths are desired, all paths between nodes are considered, and whichever

path minimizes slack in the network as a whole is chosen. While the scheduling time for

this algorithm is not polynomial, the performance of the algorithm is quite good when

compared with traditional wormhole routing. In benchmarks using wormhole routing,

nodes are often starved for data because message throughput is not guaranteed. In the

scheduled routing examples, messages arrive just as processors can consume them, pre-

venting nodes from being idle and minimizing network congestion. Both latency and

throughput are significantly better for the scheduled communication examples.

3.4.4 Dataflow Algorithms

O L Llog⋅( )
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While the previous two subsections described some of the algorithms for scheduling

communication, some consideration must be taken into the design of architectures that can

handle scheduled communication. Some work has been done in this area, most notably in

the iWarp project described in section 2 of this chapter. Another area that has seen a lot of

interest is the hardware support of dataflow architectures. Dataflow techniques tradition-

ally map easily to block level languages. The block languages map easily to directed

graphs which in turn can be handled by scheduled communication systems.

The communication models for dataflow architectures range from the fully dynamic

case in which processes are created and scheduled based on run time decisions, to fully

static cases where all communications are precisely determined at compile time. Some

work has gone into handling intermediate models of communications. One such model is

the self-timed model in which the order of processes is known, but the exact timing is not.

In [Lee90], the authors discovered that when the exact order of processes is known, the

access pattern for shared memories can also be extracted. In order for the exact order to be

defined, the paths for communications must also be present. This information can be used

to create schedules between nodes that define an order of communications, although the

exact timing is not known. As long as some reasonable bound can be put on the relative

timing of events, a compile-time scheduling of precedence graphs can yield fairly effective

global schedules. The only additional requirement is that some sort of synchronization

stage must be added to allow for the phases of communications to be changed. While the

dataflow model does not perfectly fit into the scheduled communication model, there is a

subclass of applications that can be handled. The authors of [Lee90] attempted to illustrate

that the dataflow model can take advantage of a scheduled communication architecture,

provided only limited dataflow models are allowed.

3.5 Scheduled Communication Programming Environments
The previous section shows that when scheduled communication information is

extracted from applications in the form of directed graphs, there are several algorithms

that have been developed to efficiently compile this information for arbitrary hardware

architectures that support scheduled communications. This section shows a large body of

work that has gone into creating a variety of parallel languages that allow programmers to



575757

design applications in such a way that the extraction of directed graphs from the applica-

tions becomes very easy. These source languages support a wide variety of programming

styles including graphical interfaces for constructing large DSP systems, semantics to

facilitate dataflow architectures, and simple language extensions that allow for general

purpose programming to be mapped to a static schedule. A brief listing of some of these

efforts follows:

• Programmed Communication Services (PCS) - PCS is a set of program-

ming tools designed to allow a user to define abstract network communica-

tions at a high level that is later mapped and routed on an arbitrary physical

network. It was developed primarily for the iWarp system. [Hinr95]

• Virtual Connection Facility (VCF) - VCF is a set of library routines that

implement static communications, primarily for the Intel Paragon super-

computer.

• Adapt - Adapt is a high level programming language designed for image

processing. It utilizes the PCS tools to express static communications.

[Webb92]

• Assign - Assign is a parallel program generator that attempts to statically

schedule memory accesses from the source application. The memory

address space is distributed across all nodes in the system, and communica-

tion paths are set up for those nodes whose tasks require memory accesses

from neighboring nodes. [OHal91]

• Fx - This is a high level programming language that allows the user to

easily express data parallelism and sharing between processing nodes. It

relies heavily on distinct tasks that are user-specified with data being

scheduled between these tasks at specific times. [Subl93]

• LaRCS - LaRCS stands for a Language for Regular Communication

Structures. LaRCS is a description language that allows a programmer to

specify both static and dynamic communication information. The goal of

the language is to allow for both automatic and guided mapping of parallel

languages to parallel architectures. [Lo90]
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• CONIC - The CONIC system was developed to allow users to hierarchi-

cally develop tasks that could be combined and mapped on to a distributed

network. The user can specify communication connections at each level of

the hierarchy, and the final system maps the tasks and schedules their com-

munications across the system.[Mage89]

• Graph Description Language (GDL) - GDL is another configuration lan-

guage that allows users to specify network communication. It is designed

for the Prep-P system that targets reconfigurable networks. [Berm87]

• Graph Abstractions for Concurrent Programming (GARP) - GARP is

designed as a set of rules to fully specify a graph of network communica-

tions in a parallel application. It is used as notation in traditional parallel

languages to allow directed graphs to be extracted easily from the parallel

language. There is no notion of time in the notation which limits its use for

applications that have changing needs. [Kapl88]

• Gabriel - Gabriel is a digital signal processing (DSP) design environment

that combines a high level graphical interface with programmer defined

communication information to allow arbitrary DSP systems to be easily

mapped to scheduled communication graphs.[Bier90]

• Graphic Oriented Signal-Processing Language (GOSPL) - GOSPL is a

block-diagram system designed to create single-sample-rate applications

based on pre-defined computation blocks. [Karj90]

• Quicksig - This block-diagram system from Lincoln Labs provides the

user a LISP-like environment that combines block-level diagrams with user

specified signal-objects that can be down-sampled at arbitrary points in the

system. [Ziss86]

While the number of distinct programming efforts is too great to individually explain,

a few representative efforts will be described to examine the different types of approaches

to scheduled communication systems.

3.5.1 Programmed Communication Service (PCS) Tool Chain
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PCS was developed to aid programmers in developing applications in the connection-

based communication model[Hinrichs]. The primary target architecture is the iWarp sys-

tem, although the authors contend the tools map easily to any scheduled communication

architecture. PCS assigns resources at compile time through the use of user-defined com-

munication connections. Once the actual application is loaded, the communication sched-

ules are fixed across all the nodes, so run-time communication has negligible overhead.

The system supports several alternatives for mapping processing units to physical process-

ing nodes including full programmer specification as well as complete automation.

When creating an application with PCS tools, the programmer must create anarray

program as well as anode program. Two example programs are copied from [Hinr95] in

Figure 3.13. The figure shows an array program specifying input and output ports on two

of the nodes. In the node program, the actual data transfers are specified as the created

ports are reserved.

Thearray program and thenode program are analyzed in a mapping stage that assigns

the nodes to physical locations. The user can specify the exact physical location of the

nodes if this is desired. Otherwise, a mapping unit will attempt to place the nodes in an

sample array program

outport = create_port(node(0,0),“out”);
inport = create_port(node(0,1), “in”);
nw = create_network(outport, inport);

sample node program

pcs_init();
if (self == node(0,0)) {

port = get_port(“out”);
send_msg(port, data);

}
if (self == node(0,1)) {

port = get_port(“in”);
recv_msg(port, data);

Figure 3.13Example Code for the PCS Tools
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optimal configuration based on specified communications. At this point a complete com-

munication graph exists, and a scheduling algorithm can compute the communication

schedules for each node. At run time, the network scheduling information gets loaded to

each of the nodes after a global synchronization has been established.

Now that the basic tools have been described for building blocks of communication,

one can imagine creating a library of such utilities that the user could then hook together

in much the same fashion. For instance, a series of DSP blocks such as filters or FFTs

could be defined and then linked together in much the same manner as Figure 3.13. The

PCS tools have been used for a variety of applications and have been used in the creation

of several parallel program generators developed at Carnegie Mellon University. One big

limitation to the system is the inability to specify array modules that vary in time. To

accomplish changing needs for an application, a series of array modules must be run in

sequence.

3.5.2 LaRCS - A Language for Describing Parallel Computations

LaRCS is part of the OREGAMI system that is designed to take advantage of regular-

ity present in parallel applications [Lo90]. The OREGAMI project relies on the user’s

knowledge of computational power combined with efficient combinatorial algorithms to

maximize performance. LaRCS is the description language that allows the programmer to

specify static and dynamic behavior in an application.

The LaRCS programming language consists of three major components per applica-

tion. First a series of nodes are defined that correspond to the different processes in the

application. These can be thought of as nodes in a directed graph. Second, a series of com-

munication phases are described. For each communication phase, a series of communica-

tion links are set down that define the edges of the directed graph. Finally, an ordering of

the communication phases is described that corresponds to the dynamic ordering of opera-

tion in the application. The exact timing for each of the phases need not be specified, but

all communication links within a phase need to be known.

An example taken from [Lo90] describes how the language works. The application is

the n-body problem. Their implementation of the n-body problem assumes an odd number

of bodies are located in space in a ring and are under the action of some kind of field from
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all other bodies. The goal is to discover the equilibrium positioning of each of the n bod-

ies. To accomplish this, the bodies must communicate both with their immediate neigh-

bors as well as the more distant neighbors in the ring. The algorithm works in two phases.

First communication occurs with each body communicating its accumulated forces to its

neighbor for (n-1)/2 steps. Then for nodes on the other side of the ring, chordal informa-

tion is passed to each node’s opposite in the ring. This process can be repeated a number

of times for accuracy.

Figure 3.14 shows the LaRCS code for implementing this problem. First the n bodies

are numbered from 0 to (n-1). Then two types of comtypes or graph edges are defined. A

ring_edge defines a nearest neighbor connection, while a chordal_edge defines a connec-

tion to the node on the opposite side of the ring. Next, two comphases of communication

are defined. A comphase corresponds to a static communication graph that does not vary

with time. The ring phase describes a static communication graph in which all nodes are

connected to their nearest neighbor to form a ring. The chordal phase describes a static

communication graph is which each node has a single connection to the node on the oppo-

site side of the ring. The last phase of the program describes the computation. The “ring”

phase is to operate for (n-1)/2 steps followed by a single step of the “chordal” phase.

These phases correspond to the dynamic portion of the scheduling. For instance, although

(n-1)/2 steps of the ring phase are supposed to occur, the number of clock cycles this will

takes depends completely on the topology of the network and how long each communica-

nodetype body
labels 0..(n-1)

comtype ring_edge(i) body(i) => body((i+1))
comtype chordal_edge(i) body(i) => body((i+(n+1)/2)
comphase ring

forall i in 0..(n-1) {ring_edge(i)}
comphase chordal

forall i in 0..(n-1) {chordal_edge(i)};
phase_expr

((ring |> compute)**(n-1)/2 |> chordal |>
compute)**s

Figure 3.14LaRCS Code for N-Body Problem
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tion takes. Once the n bodies are mapped to physical nodes, a scheduler will have to deter-

mine for how long each phase will have to be scheduled in order to allow the computation

and communication to be guaranteed to complete.

LaRCS has a distinct advantage over PCS because it takes into account that communi-

cation needs may change over time and that each phase can be unpredictable in length.

LaRCS has been shown to handle a variety of applications because it does not require all

computation and communication times to be completely static. Its flexibility in scheduling

phases allows programmers to see the benefits of scheduled communications while not

being held to a rigid static model.

3.5.3 Gabriel

Gabriel is a DSP design environment from Berkeley[Bier90]. Gabriel applications are

formed by connecting a series of block-level library models and connecting them together

in a dataflow-like graph. The Gabriel system compiles the block information and creates

static schedules to implement the models on DSP systems in real-time. Gabriel is driven

by a graphical interface in which the user can drag-and-drop application modules to form

DSP systems.

While the libraries contain a large number of block functions including filters, FFTs,

up and down samplers, and counters, the user can elect to create new library functions

(called “stars”) as well. The creation of a new module involves simply defining the ports,

providing default parameters if needed, and providing a function call to describe the pro-

cessing that needs to occur.

An example taken from [Bier90] describes a new filter with the difference equation of

. The code required to implement the star library module is

shown in Figure 3.15. Library specification is completed in a Lisp-like language.input

andoutput operators define ports on the block whileparam operators indicate arguments

that can be passed to the block. The function is described as all_pole, which is subse-

quently defined by thedef_function. The all-pole function assigns to the output the differ-

ence of thein signal and the two product terms. When calculating the product,out means

the previousout value andout@1 means the last validout value going back one step. Once

y n( ) x n( ) a1y n 1–( )– a2y n 2–( )–=
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this block is defined, it appears in the graphical library as a block with two ports and it can

be used in any system.

The Gabriel system is one of many DSP modeling systems that map nicely to a sched-

uled communication architectures. Once the system is specified, a directed graph can eas-

ily be extracted from the block diagram. A sophisticated scheduler allows the user to map

the block level diagram to arbitrary architectures with a small amount of guidance. Several

real-time systems have been developed using the Gabriel system including sophisticated

filters and digital modems.

3.6 Earlier NuMesh Prototypes
The NuMesh prototype FSM was a first cut attempt at defining an architecture that

could adequately support scheduled communications [Hono91]. The prototype implemen-

tation supports four neighbors in a two dimensional mesh configuration. The boards were

created from off-the-shelf TTL parts consisting of PALs, FIFOs, transceivers, small mem-

ories and some analog components to support system clocking. Each board was also con-

nected to a TI DSP chip through two unidirectional FIFOs to allow words to be transferred

back and forth between the FSM and the DSP. At compile time, each FSM is loaded with

state information describing all of the communication that could go through the node. On

each clock cycle, a single communication word can be transferred based on run time

checks that determine if input data is valid and if the output port is free.

(defstar all-pole
(input in)
(output out(max_delay 2))
(param a1 0.0)
(param a2 0.9)
(function all-pole)

def_function all-pole()
output(difference in (product a1 out)

 (product a2 out@1)) out))

Figure 3.15A Filter Implementation in Gabriel
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A picture of the prototype datapath is included in Figure 3.16. Each node has two

transceivers that correspond to the node’s north and east ports. The south and west trans-

ceivers are located on the neighboring nodes. Two 1024 word FIFOS are used for commu-

nicating with the DSP processor.

A simple FSM model is used to control the datapath. Ten bits of addressing combined

with four bits of condition code serve to index a RAM that holds the scheduled communi-

cation. Instructions desiring a transfer between ports spin until both the data becomes

available and the destination port is free. Words being transferred in the north/south direc-

tion or the east/west direction take only a single cycle while words needing to turn a cor-

ner suffer an additional cycle of delay due to a transfer between the two busses shown in

Figure 3.16. The four condition code inputs to the RAM serve to indicate whether each of

the four ports contain data in the transceiver.

Coding applications involves explicitly writing communication code for each FSM.

These communications must be ordered such that one communication must be observed

passing through a node before the FSM is ready to accept the next communication. The

N E

WS

UpFIFO DownFIFO

Figure 3.16Prototype NuMesh Datapath from
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exact timing of the arrival data is unnecessary since an instruction can spin until data

arrives and early arriving data can be stored in the transceiver until an instruction finally

sees it. There is a limited ability to change the FSM during run time through a single

access register that serves to provide the control RAM an updated address. This register

can be accessed through a jump instruction that causes a neighboring node to start execut-

ing from a different point in the communication schedule. An example of user code is

included in Figure 3.17. In the example, data is transferred in either direction between the

west and south ports. Flow control is handled explicitly in the program. Input data is

checked for through theiFulls flag and a free output port is checked for through theoFulls

flag. Since the data is turning a corner, the data must first be transferred through the trans-

ceiver connecting the two busses. In order for the DSP to communicate with the network,

the DSP code must include commands that involve reading or writing the FIFOs.

While the NuMesh prototype is useful for illustrating proof of concept and for hand-

coding small examples, it has several limitations that prevent it from being used in a com-

plex programming system. One limitation comes from the FSM’s inability to be broken up

Loop:
(case iFulls

(South ())
(West (goto FromWest))
(else (Hold)))

(case oFulls
(West (goto Loop))
(else (DriveS LoadXns)))

(DriveXew LoadW)
(goto Loop)

FromWest:
(case oFulls

(South (goto Loop))
(else (DriveW LoadXew)))

(DriveXns LoadW)
(goto Loop)

Figure 3.17Sample Code for NuMesh Prototype
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into multiple smaller FSMs. The sequential nature of the hardware can cause a single com-

munication thread to block all other communication threads that go through the node.

Code can be written that allows the FSM to skip threads that are not ready, but the size of

the FSM grows as the product of all the states of the individual communication threads.

Even limited dynamic changes to any one communication thread must, by definition,

change the state of the entire FSM and upset the entire communication schedule. While

this can be programmed around by keeping multiple copies of slightly different FSM

structures in memory with a jump instruction switching between them, the cost becomes

prohibitive when more than a very small number of dynamic decisions are allowed.

Flow control is handled through the use ofiFulls andoFulls checks that occur each

cycle. Since these checks involve data dependencies, a key benefit of scheduled communi-

cation is lost. Cycle times must be significantly greater than an internode transfer time

because a significant amount of data dependent calculation must occur. No buffering is

present to allow data to be temporarily stored in order to free a port, so data must remain

blocking a port until a communication thread manages to grab it. Another restriction is

that only a single instruction can operate at a time, even though there may be multiple free

ports through which an additional transfer can be made.

The early system taught a number of lessons for designing scheduled communication

architectures. Data-dependent instructions were shown to be impractical since they greatly

increase cycle times. The ability to support multiple FSMs, either by timeslicing or

through actual replication, was shown to be vital in order to keep any one communication

thread from becoming a bottleneck. Figure 3.18 demonstrates two types of communica-

tions that can benefit from timeslicing and physical replication of the FSM.

The FIFO interface to the processor was slow and unwieldy and forced messages to

have an ID of some kind since the order of words in the FIFO could be mixed. The ability

for flow control was also thought to be useful since the rate at which words could be

injected or extracted from the communication network was unpredictable.

In his Master’s thesis, John Pezaris explored a number of more complicated FSM

enhancements[Peza94]. Some of the more interesting ideas he explored include multiple

single-threaded FSMs that can switch context very quickly, a central arbiter that decides
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which FSM threads can gain control of the ports on every cycle, and multiple processing

units on the CFSM that allow computation to occur directly in the CFSM datapath.

3.7 High Speed Communication Efforts
In addition to supporting scheduled communications, another goal of the NuMesh

project is to support high-speed communication from a circuit design perspective. Many

efforts have been undertaken to move away from backplane busses toward point-to-point

communications. Two leading efforts for supporting high speed communication are the

Scalable Coherent Interface (SCI) [Gust92] and the Reliable Router Project from MIT

[Dall94].

3.7.1 Scalable Coherent Interface (SCI)

The Scalable Coherent Interface [Gust92] was a joint effort among many bus design-

ers and system architects who realized that bus-based communication schemes had funda-

mental limits that cause them to be bottlenecks as computation power continues to grow.

The signaling rate of bus-based backplanes is limited by imperfect transmission lines that

result when devices are added or removed from the bus. The serial nature of busses pre-

vent multiple communications from occurring at the same time even though the communi-

Figure 3.18Communication Patterns Can Require Virtual and Physical FSMs

Independent ports can be used at the same time
even on the same cycle

A node must be able to handle a number of
communications that pass through it
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cations may involve distinct processing nodes. The SCI standard was debated by many

researchers and approved as a IEEE standard in 1992.

The original design of SCI touts three high level objectives:

• Scalability - The standard is defined in such a way that a system with

thousands of processors can take advantage of it while even a simple desk-

top system communicating with a small number of local devices does not

suffer from excessive overhead.

• Coherence - The developers recognized shared memory as a fundamental

problem when connecting multiple devices together. SCI supports the effi-

cient use of cache memories by supporting a general cache coherency pro-

tocol. This remains controversial in the community.

• Interface - The system supports an open standardized interface that allows

many users to incorporate their products seamlessly into a larger system.

The goal of SCI is to support not only multiprocessor communication, but

internal local area networks (LANs), desktop workstation busses, shared

servers, and even I/O interfaces.

The SCI standard requires two fundamental changes in the way a bus transmits infor-

mation. The first problem of bus-based systems comes from the signaling rate. As more

devices are added to a bus and the distance between communications increases, the signal-

ing time greatly increases due to capacitive load or transmission line effects. In order to

get around this, the SCI initiative does not wait for a signal to finish propagating before

sending the next signal. When sending information over large distances on fiberoptic

cables, the speed of light is the limiting factor in determining delay. In the SCI protocol,

multiple signals may be on the line at the same time. An end-to-end acknowledgment tells

the sender if the data arrived. The second fundamental change comes from the fact that a

bus has a single path for completing all communications. The SCI standard uses multiple

signal links and allows transfers between independent units to occur concurrently.

Figure 3.19 illustrates a block diagram of the SCI architecture. Data comes in from the

right and the address is stripped from the header word. If the message is using the node

only as a passway to get to another node, the word gets sent to the Bypass FIFO to be
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immediately forwarded. If the message is destined for the node, it gets sent to either the

request or receive queue depending on whether it is a response to a message sent or a new

message. The response unit reads words from the queue and consumes them at whatever

rate it can handle. New messages can be created by the node and sent to the transmit

queues. These message can either be requests for new data or responses to nodes indicat-

ing that a message has been received. By keeping the request and response queues sepa-

rate, the chance for deadlock is reduced since excessive requests can never keep responses

from being sent. A node must keep data around until it sees the appropriate response. SCI

nodes can be connected in a variety of topologies depending on desired network perfor-

mance. Low cost LANs may connect desktop computers in a ring pattern, although buffer-

ing is required since nodes may be handling multiple messages destined for separate nodes

at any given time. This scheme should be much cheaper than traditional backplane con-

nections since very few circuit boards are needed, and the same boards can be replicated

for all of the devices.

The SCI standard provides a cache coherence scheme through the use of a distributed,

doubly linked list of caches. The developers believe that directory-based cache coherency

is a must for systems of larger sizes since processor snooping quickly becomes prohibi-
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Figure 3.19Block Diagram of SCI Architecture
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tive. The directory contains a list of all processors that share a particular data structure.

When a word is written, this list of pointers is traced so that all copies of the data structure

can be updated. SCI defines a series of lock primitives that must be supported to allow

atomic operations such as compare-and-swap, masked swaps, and fetch-and-adds. These

primitives are needed for maintaining the directory list without the list itself suffering

from the coherence problem.

The SCI initiative is an important step in attempting to define the next generation of

bus design. A general bus interface allows designers with multiple processing objectives to

see a standard interface to the network. The overhead of implementing SCI leaves much to

be desired. Messages must have headers that are examined by each SCI node, and the

designer must take care to avoid deadlocking potential in the network. SCI is a poor

choice for implementing designs that exhibit scheduled communications, since it is inca-

pable of making any decisions at compile time. Also, the idea of a forced cache coherency

scheme leaves much to be desired because systems can have a wide variety of memory

models. Finally, the requirement of end-to-end acknowledgment in the network signifi-

cantly increases network traffic and forces nodes to needlessly keep data around and possi-

bly stall while waiting for the acknowledgment.

3.7.2 Reliable Router

The Reliable Router is designed for two-dimensional mesh topologies and provides a

unique protocol for ensuring fault tolerance in the network while simultaneously offering

a unique adaptive routing protocol. Figure 3.20 shows a high level block diagram of the

Reliable Router. Basically, a single 6x6 crossbar switch allows messages to be routed from

any of the four ports or the processor interface to any of these same ports as an output. An

additional diagnostic port can be chosen for debugging purposes. Four virtual channels are

overlaid on the physical channels to support the adaptive routing scheme. Two of these

channels form minimally adaptive networks, a third virtual network supports deterministic

routing to break deadlock cycles, and the fourth virtual network, permits non-minimal

adaptive steps for fault tolerant routing. On every cycle, one of these virtual channels is

chosen for routing a message depending on the result of the communication controller.

While the adaptive routing scheme chosen for the Reliable Router is not very applicable to
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scheduled communication, there are two ideas present in the work that the NuMesh

project can explore.

The Reliable Router takes a new approach to solving the problem of global clock dis-

tribution. Each router is clocked using a different local oscillator, at the same nominal fre-

quency. To transfer data, the clock is sent along with the data, and multiple latches on the

receiver serve to synchronize the clock on the receiving end. Occasionally, dummy flits

must be sent from the source to destination to keep the latches aligned.

The second novel idea in the Reliable Router comes from the use of bidirectional sig-

naling. Data can be sent from both directions at the same time over the same wires. Very

small voltage swings (~ 250 mV) are used when signaling. When data is being transferred

in both directions simultaneously, the receiver must first subtract off the signal it transmit-

ted in order to see a valid signal. A variety of techniques is used to minimize the noise in

this system. The line is modeled as a transmission line, with perfectly tuned termination

resistors. Since process variations can significantly alter these resistor values, the resistors

can be tuned under programming control. Current is kept roughly equal in the two drivers

to keep the power planes from fluctuating. Finally, when the drivers are turned on, they are

staggered to prevent current spikes from causing ground bounce.

3.8 System Issues
The NuMesh project involves a fair amount of system design in addition to the design
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Figure 3.20High Level Block Diagram of Reliable Router
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of the communication routing chip. These system decisions have a marked impact on the

design of the chip and significantly affect everything from high level instruction set design

down to package design. This section will discuss the background that leads to three sys-

tem decisions that significantly affect the design of the CFSM.

3.8.1 Network Gap

A study out of Carnegie Mellon University [Magg95] showed that a large networkgap

could be a determining factor in network performance. Network gap is defined as the time

between successive injections of messages into the network by a single processor. The

study argues that while latency can be masked through prefetching or context switching,

network gap presents a fundamental limitation on network bandwidth. Bisection band-

width is usually defined as the minimum number of wires connecting two halves of the

network. The author of [Magg95] argues that in practice, network processors may find it

impossible to inject messages into the network at a rate that is able to utilize the maximum

bisection bandwidth, and the maximum bandwidth might better defined as the maximum

rate at which processors can inject messages into the network without the network becom-

ing congested, assuming a uniform distribution of messages. The author provides a rough

estimation of network gap by dividing a parallel processing system’s peak GFlops by the

bisection bandwidth present in the network. The numbers give an idea of the minimum

amount of time that must exist between processors injecting messages into the network

before the network will be flooded. A large gap number indicates that processors can quite

easily flood the network unless messages are sent very infrequently. Figure 3.21 lists the

estimated gaps for several popular parallel processing machines.

On the other end of the spectrum, high overhead for processors injecting messages into

the network can be debilitating. Many commodity processors suffer from excessive over-

head since they are not designed with network communication in mind. Parallel process-

ing machines that utilize custom processors tend to reduce this overhead to a small

number of cycles. For a machine that has reduced its gap metric to a couple of cycles, it is

vital for the overhead to be low so the processors can take advantage of the network’s abil-

ity to handle high message injection rates.
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The author in [Magg95] goes on to show a high correlation between low network gap

numbers and the ability of parallel systems to sustain high computation rates. The lesson

to be taken from this is that when designing parallel systems, great care should be taken to

reduce the overhead of injecting messages into the system, and the network should be able

to handle high injection rates from the processors.

3.8.2 Global Clocking

Global clocking is the most widely used method for timing digital systems. Traditional

clocking schemes involve starting with a single clock and fanning it out to all clocked ele-

ments through a global clock network. Great care is taken to match the delays in the clock

tree. For a multiprocessor system, this scheme is not possible since the delays across

nodes are far too significant and matching delays becomes impossible. Even when wave

propagation methods are perfectly tuned, the clock skew is still composed of several gate

delays, and there exists an added dependency on a single clock source that can be unreli-

able. Multiprocessor systems often attempt to allow every processing node its own clock.

If these clocks need to be synchronous, as in the case for a static scheduled system, special

efforts must be made to minimize skew.

A novel global clocking strategy designed for earlier NuMesh prototypes is proposed

in [Prat94]. Each node in a network has an independent clock oscillator with the same

Machine Processor GFlops
Bisection
GWords/s

Gap

CrayC916 16 16 15.4 1.04

CrayT916 16 30 25 1.2

CrayT3D 2048 307.6 9.6 32

IBM SP-2 128 34 .32 106.4

CM-5 1024 131.1 .45 291

Intel Paragon 1024 230.4 .7 329

Figure 3.21Estimation of Network Gap
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nominal frequency. Clocks average the phase of all their neighbors and adjust their own

phase to match. Naively averaging the phase difference of neighbors results in the possi-

bility of a cycle occurring in which a stable situation is reached with all clocks being offset

by an amount such that the cycle of phase errors adds up to . Figure 3.22 shows an

example of such a case that the authors call mode-lock. The situation is stable since all of

a node’s neighbors phase errors average to zero.

To remove the possibility of mode-lock, the authors submit a new error function to

correct a node’s phase. Rather than a linear phase error correction scheme (which corre-

sponds to averaging the phase of all the nodes), a phase error correction of the form in Fig-

ure 3.23 is proposed.

In a 2-D mesh, it takes at least four nodes to create a cycle. If a cycle were to exist, at

least one of the nodes would have to have a phase between and , since the sum of the

four nodes phases is . The node that has a phase in this range will be on the negative

slope of the restoring graph, meaning that mode-lock is no longer a stable state. One we

agree that the phases can be matched, the only remaining problem is to match frequencies.

While each oscillator is of the same nominal frequency, these frequencies will not be iden-

tical due to differences in the devices. The authors in [Prat94] have devised a scheme to

match frequencies of neighboring nodes through a phase-locked loop that has weak DC

feedback.

The authors were able to create networks of four nodes and demonstrate phase errors

of less than .1% of a cycle. Much larger networks were simulated and show similar results.

2π

Figure 3.22Example of Mode-Lock in Clock Distribution From [Prat94]
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Unfortunately, the authors discovered that this clocking methodology does not work

for the diamond topology. The diamond topology creates loops of nodes with up to six

members. As a result, the phase error of all six nodes can be under  and a cycle of phase

adding to  will still exist. The authors propose another scheme for synchronization for

the diamond topology. The system starts with a single node being the “leader”. Under soft-

ware control, other nodes in the system are told to sync up with the original node one at a

time. If the order of the nodes is controlled, mode lock can be avoided since whenever a

cycle of nodes is closed, all but one of the nodes can already be in sync.

3.8.3 3-D Diamond Topology

The 3-D Diamond topology represents a novel network communication design that

grew out of efforts within the NuMesh architecture group [Prat95]. The 3-D diamond

topology boasts of several advantages over traditional 3-D cartesian networks. Chief

among these is the reduction in switch complexity for each of the nodes. In the 3-D carte-

sian network, each node can have up to six neighbors. The diamond network can have at

most four. One key resource when designing network nodes is the pinout required for

communication. This can often be the limiting resource for the network bandwidth.

Assuming constant pinout between the design of a diamond node and a cartesian node, the

diamond node can have fifty percent more pins per channel. The number of neighbors also

affects switch complexity. At some level, a network node can be seen to implement a full

crossbar connecting all input ports to output ports. The complexity of a crossbar grows as

the square of the number of inputs. This crossbar area and speed can be seen as the pri-
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Figure 3.23Error Correction to Break Mode-Lock
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mary contributors to the switch’s complexity. Since the diamond topology is implemented

with two fewer ports than the cartesian node, the complexity is much less. Even taking

into account the advantage of wider channels for the diamond node, the complexity is 2/3

that of the cartesian node. Figure 3.24 shows a comparison of the two switches.

Another subtle advantage of the 3-D diamond network comes from the way multiple

nodes are linked together. To form a diamond network node, four connectors sit on a plane

with two connectors facing up and two connectors facing down. Figure 3.25 shows an

example of a diamond node. By needing connectors in one dimension only, the insertion

forces required to remove and add nodes to the network are much more manageable. Tra-

ditional three-dimensional cartesian nodes need connectors in two directions making

extraction of a node much more difficult.

P = Total Node Pins (Fixed)
C = Number of Node Channels
W = Width of Channels = P/C
Switch Complexity = C2W

Channels Channel Width Switch Complexity

4 P/4 4P

6 P/6 6P

Figure 3.24Comparison of Diamond and Cartesian Switches

Diamond

Cartesian

Figure 3.25Example Diamond Network Node
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The addressing for the coordinate system in diamond lattice space actually requires

four coordinates, as explained in [Prat93]. However, deterministic algorithms do exist and

a simple mapping from a 3-D cartesian mesh to the diamond network can be accom-

plished. Surprisingly, it can even be shown that in two networks composed of the same

number of nodes, the diamond network can simulate the cartesian network with only a fac-

tor of three slowdown. Considering the fewer neighbors on each diamond network node,

this result speaks well for the diamond network. Research into the properties of the dia-

mond network is ongoing. Initial studies of the network show that the diamond network

has many redundant paths between nodes, but that deterministic algorithms tend to create

hot spots in the center of the network. A scheduled communication algorithm can take

advantage of the redundant paths and significantly boost network performance.
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Chapter 4

NuMesh CFSM Architecture
The NuMesh system is geared toward applications in which virtual streams of commu-

nication can be extracted at compile time. These virtual streams of communication deter-

mine sources and destinations of messages, as well as an indication of the likely frequency

of communication. The NuMesh architecture takes advantage of this information and cre-

ates a statically scheduled global FSM that manages the communication over the course of

the application. The virtual streams do not indicate anything about the timing of the pro-

cessors, meaning that the exact time that messages are injected or removed from the net-

work is not known.

There are two fundamental ideas in the NuMesh project that guide all decisions in both

hardware and software. The first idea is that scheduled communication can be extracted

from many applications. High level languages, compilers, schedulers, and the hardware

must all be able to support and take advantage of scheduled communication. Software

analysis of this communication can minimize network congestion and prevent a host of

problems found in traditional dynamic communication systems. The hardware design

must include an instruction set and hardware mechanisms that can utilize scheduled com-

munication information coming from the software analysis.

The second fundamental idea is that hardware architecture must be able to run faster

than traditional routing systems because the number of run time decisions can be drasti-

cally reduced. Also, since most of the routing information is gathered at compile time, the

communication hardware can perform most operations far in advance of the actual data

transfer, resulting in a cycle time that is determined by a very small number of gate delays

and either an internode transfer, or a small RAM read or write. The hardware can be

heavily pipelined to meet this goal. Although support for dynamic routing is desirable, the

common case that the NuMesh router will handle is for scheduled communications. Any

support for dynamic routing must not interfere with the higher level goal of reducing the

cycle time.
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4.1 Hardware Overview
At compile time, every NuMesh CFSM is loaded with a local copy of an FSM that

determines the order and frequency of possible transfers that it will support. In aggregate,

these CFSMs will be performing a global schedule of communication based on the data

extracted from the application at compile time. Each node exchanges data between its

ports and processor interface registers based on this global schedule. Every communica-

tion stream going through a node is allocated some number of clock cycles based on its

bandwidth request and the schedule compiler. This local schedule forms an outer loop of

control that the CFSM will repeatedly execute over the course of the application. A num-

ber of mechanism are provided to allow limited dynamic control over this schedule.

There are a number of architectural features designed to take advantage of scheduled

communication. This chapter focuses in on some of these ideas and discusses trade-offs

that went into their design. A brief description of the key architecture features on the

CFSM follows:

• Virtual Streams - Each CFSM node has to support some number of virtual streams

over the course of an application. While some of these steams can run concurrently, the

rest must be time-multiplexed to give each stream it requested bandwidth. The NuMesh

CFSM supports execution of two physical streams at the same time while allowing for up

to sixty-four streams to be supported on each node.

• Flow Control - Since the processor timing is not precisely known at compile time,

messages may back up in the communication network. To handle this case, flow control is

implemented in the CFSM. Because the communication is scheduled and nodes know

which virtual stream will be running in advance, the protocol involves only a single inter-

node transfer time and requires only two single-direction wires.

• Buffers - In order to support separate virtual streams on every cycle as well as flow

control, some amount of buffering is needed in the system. Since messages are associated

with particular virtual streams, every virtual stream is provided a single word of buffering.

• Processor Interface - Although the communication schedule is static, the processors

can inject and remove messages at arbitrary times. The interface between the processors

and the network consists of a number of shared memory locations. Every virtual stream
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has assigned interface locations for insertion and removal from the network. A number of

mechanisms are provided to minimize the amount of time data stays waiting in these

shared memory locations.

• Scheduler - The scheduler is organized as a RAM with three fields. Two of the fields

indicate which virtual FSM will run on a particular clock. The third field indicates the next

scheduler instruction to be executed. At compile time, the scheduler is loaded with

instructions that form an outer loop of control for the FSM. The pointer field can be writ-

ten to allow for easy changes between schedules.

• Instructions - The virtual FSMs consist of a single instruction that specifies the

behavior of a virtual stream through a node. The index from the scheduler selects one of

thirty-two virtual stream instructions for each of the two pipelines. Each virtual stream

instruction has its own buffer register that gets used if data backs up in the network.

The following sections describe in more detail the ideas behind the architectural fea-

tures in the NuMesh CFSM.

4.2 Multiple Communication Streams
The number of virtual streams is completely dependent on the application being run. A

node may need to support only a single communication stream that gets scheduled every

clock cycle, or it may need to support many tens of separate communications that go to

distinct processors in the network. Each NuMesh communication router gets loaded at

compile-time with state information for all communication streams that will run through

the node. In aggregate, these routers form a global FSM of communication in which a vir-

tual stream will be guaranteed some amount of bandwidth during which physical links

will be free for the stream’s exclusive use. One of the problem in supporting an architec-

ture for scheduled communication is the organization of each node’s communication

FSM. The node must be able to support a large number of virtual streams flowing through

the node, and must be able to schedule each stream for an independent number of clock

cycles. The first requirement allows for flexibility in the types of applications that can be

supported, while the second allows each virtual stream to reserve an arbitrary amount of

bandwidth.

The NuMesh prototype taught that organizing communication streams using one giant
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FSM is impractical. Typically, the state required for each communication stream can be

described by a very simple FSM handling a handful of states. The number of states

required to track all of these simple FSMs in a single node level FSM grows as the product

of the states required to track each communication stream individually. Also, trying to

structure the communication schedule as a single FSM seriously constrains the ability of

any single communication streams to make dynamic decisions, since any data dependent

branch necessarily impacts all communication streams rather than just a single targeted

stream.

The limitation in the previous NuMesh design can be addressed by restructuring the

CFSM as multiple independent FSMs, each of which is assigned to track a single commu-

nication channel. This observation suggests two alternative architectural approaches.

The first approach is to timeslice a single FSM controller among a number of virtual

FSMs stored in a small RAM. Although this prohibits the FSM from controlling multiple

communication streams on the same cycle, it does have the advantage that the number of

supported streams is limited only by the state RAM size rather than by the amount of hard-

ware in the system. Consider the communication scheme illustrated in Figure 4.1. Five

separate messages are routed through the middle node of a 3x3 mesh. Rather than organiz-

ing the communication in a single FSM, five virtual FSMs could be created with each

FSM allowed control of the node for an amount of time determined at compile time. If

during operation it was determined that message B needed to be changed to a different

route, the virtual FSM corresponding to that node could be updated without affecting the

timing relationships required for the other four messages. Since the system relies on

scheduled communication, any NOP or bubble inserted into a particular node’s timing can

be devastating to the global schedule created for the system. By organizing the communi-

cation into distinct FSMs that get allocated bandwidth at compile time, the destruction of

any one communication stream’s route is guaranteed to affect only that particular commu-

nication stream’s timing.

Time-slicing solves the problems of state explosion and dynamic changes to the com-

munication schedule, but it still suffers from the limitation that only a single communica-

tion stream can operate on every cycle. Consider the communication schedule in Figure

4.2. Suppose that messages A and B request a bandwidth of one hundred percent. Assume
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that they can not be rerouted through other nodes due to congestion not shown in the fig-

ure. Ideally, both communications would be allowed full bandwidth since they utilize

independent ports. If both communication messages are supported by virtual FSMs that

are timesliced, they can at most operate every other clock cycle. One solution to this is to

support multiple physical FSMs on each communication node. As long as these communi-

cation FSMs are using independent resources, they could operate concurrently to allow

different streams full bandwidth. While this allows true N-way parallelism for N physical

FSMs, the value of additional FSMs drops considerably as N increases. The number of

useful physical FSMs depends on the number of independent resources on the node that

each can utilize. Resources include the physical ports, memory locations in the processor

interface, and locations within the communication node used for internal calculations. For

a topology supporting N ports, one could easily imagine N messages being routed to sepa-

rate processor interface locations at full bandwidth.

Strict adherence to virtual FSMs or multiple physical FSMs imposes unacceptable

constraints on the CFSM capabilities. The former offers the ability for an unbounded num-

A

B

C

D E

Figure 4.1Illustration of Need for Virtual FSMs
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ber of virtual streams but interleaves them sequentially while the latter limits the number

of streams while offering real N-way parallelism. Furthermore, the natural bound on the

number of communication streams and on the requirement for real parallelism stem from

independent sources. The number of streams required to support an application reflects the

communication structure and complexity of the node, as well as the partitioning and place-

ment of processing nodes on the mesh. A tight limit on the total number of streams

restricts the class of communications that can be supported. The requirement for real par-

allelism is bounded by the topology of the mesh and the internal makeup of the communi-

cation node.

For the NuMesh project, the number of physical FSMs supported is two. This was cho-

sen largely based on the fact that the topology is based on a four-neighbor node. At any

time, two independent communication streams can be routed through a node, provided

they use independent ports. The added benefit of being able to simultaneously route up to

four streams to the processor interface from each of the four ports is not worth the com-

plexity and area required to implement this in hardware. The number of virtual streams in

A
B

Figure 4.2Illustration of Need for Physical Replication of FSM
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the CFSM is thirty-two per pipeline. This number was determined mainly by the size of

the memory required to implement the virtual streams. The memory size must be kept

down to meet the higher level goal of allowing the cycle time to be determined by either a

internode transfer time or a small RAM lookup. Thirty-two streams per pipeline was also

shown to be adequate for a variety of applications written in simulation.

4.3 Flow Control
Even though the communication router sets up a static schedule of communication, the

processors attached to the network can remove or send messages depending on the

dynamic behavior of an application. If a processor is slow to remove messages from the

system, but the sending node continuously sends new communication words, words in a

particular virtual stream may start to back up in the network. In order to keep words at the

end of the virtual stream from being overwritten, there must be some notion of flow con-

trol implemented. Flow control implies that a transfer can be made only if the receiving

node can accept new data. If data starts to back up, either a communication word must be

stalled on a link, or the word must be temporarily buffered. Stalling a word is unacceptable

in the NuMesh system, because on every cycle a physical link may be used by a com-

pletely different virtual stream. This means that there must exist some way to buffer words

on a NuMesh node. Flow control is particularly difficult in a scheduled communication

architecture, because a node can not be stalled if a word needs to be buffered. Any unex-

pected clock cycle in one of the NuMesh nodes could throw off the global timing of the

entire communication network. This section will explore a novel flow control protocol and

will discuss a variety of buffering options for the NuMesh architecture.

4.3.1 Conventional Flow Control

Dynamic networks implement flow control in one of two ways. In the first scheme,

every virtual channel has some amount of buffer storage. When a node wants to make a

transfer to a neighboring node using a particular virtual channel, it sends a request over a

set of control lines. The receiving node checks the virtual channel’s buffer storage, and

sees if it can accept another word. The sending node may send the data along with this

request. The receiving node then sends an acknowledgment if it can accept the new data.

An important point to realize is that this protocol takes two internode transfers to com-
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plete. The transmit and acknowledge must occur in series, because the receiving node has

no idea what virtual channel the sending node might want to use.

In the second scheme, the dynamic network is able to reduce the protocol to a single

internode transfer. A node transmits the availability of every virtual channel to each of its

neighbors. For systems using a small number of virtual channels, this protocol is manage-

able, although the number of pins dedicated to the protocol is proportional to the number

of virtual channels. Another drawback to this second scheme, is that an extra word of

buffer storage for each virtual channel must be provided that can not be used for normal

buffer storage. This requirement comes about because the virtual channel is effectively

sending an acknowledge before it knows the current state of the virtual channel’s buffer

storage. Consider the case in which the same virtual channel is being used for two consec-

utive clock cycles. As the first word is being transferred between nodes, the receiving node

must indicate whether the virtual channel is available for the second transfer. In order to

avoid two internode transfer times, the control line value must not depend on the result of

the first cycle’s transfer. This means that a virtual channel must indicate that it is full when

it has one additional buffer spot empty. That extra buffer slot will only be used if consecu-

tive clock cycle transfers occur over the same virtual channel. If the virtual channel is

requested every other clock cycle, the sending node will see a full buffer queue even when

there is still an empty slot. Between the wasted buffer word per virtual channel, and the

increased decision time to interpret the virtual channel control lines, this scheme too has

its drawbacks.

The NuMesh architecture is designed to support a large number of virtual streams.

Since these virtual streams must follow a global schedule, if one stream gets blocked it

must not affect the timing of any of the other virtual channels. A blocked communication

word must get quickly buffered in order to free up the physical link for the next clock

cycle when a completely different virtual stream might be scheduled. The next time the

blocked stream gets scheduled, the buffered word must be quickly extracted from buffer

storage and sent into the communication network. To meet these constraints, it is essential

that each virtual stream has its own buffer storage. The amount of this buffer storage will

be discussed in the next section. One advantage of a scheduled communication architec-

ture is that a unique flow control protocol can be utilized. While dynamic systems suffer
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from either two internode transfers per word in one scheme and increased pinout and

wasted buffer storage in another, the scheduled communication protocol escapes both pen-

alties. The NuMesh protocol involves a single internode transfer, requires only a single bit

line regardless of the number of virtual streams, and does not need to waste any buffer

storage. The next subsection will describe the mechanics of this protocol.

4.3.2 Scheduled Communication Flow Control Protocol

In a scheduled communication system, the virtual stream that is to be run on every

clock cycle is known at compile time. This information is stored in some format in the

communication router. As a result, much of the overhead of an actual transfer can occur

well before the data is exchanged between nodes. On every cycle, only one virtual stream

is allowed to accept new data, so only a single bit of information needs to be transferred to

the source node. Since the receiving node knows ahead of time which virtual stream is

going to be used, it can decide whether or not it can accept new data ahead of time. In the

case of a dynamic router either the acceptance of the data must occur in serial, or the state

of all virtual channels must be transmitted ahead of time. In the scheduled communication

architecture, the acceptance for only the scheduled virtual stream can be sent at the same

time data is to be transferred.

Figure 4.3 represents the exchange of information that occurs. The receiving node B

can decide on the previous clock cycle whether or not it can accept new data from the

sending node A. If that stream has been previously blocked and some number of buffered

words exist for the stream, the receiving node may decide not to accept new words. Node

B would indicate this by sending a low value on theaccept line when the communication

stream is scheduled. During the same clock cycle, the sending node A can send its data

(along with avalid bit) to the receiving node. No decision needs to be made yet based on

the receiving node’s ability to accept data. At some point in the future (possibly the same

clock cycle or the next), the node can examine theacceptbit received from the receiving

node and can decide whether or not the transfer was successful. If it discovers the receiv-

ing node was unable to accept the communication word, it must be stored in a buffer that

belongs to the particular communication stream.
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On the following clock cycle, the receiving node becomes the sending node for the

next hop of the communication stream. If no flow control backup is occurring, the word

transferred to node B on the previous cycle gets transmitted to the destination of node B’s

instruction while at the same time node B receives anaccept bit from the destination node.

Two important results should be noted from this scheme. First, only a single internode

transfer time is required even though flow control is implemented. This allows unrelated

virtual streams to operate on consecutive clock cycles. Second, the flow control overhead

does not lengthen the cycle time of the node. Since the machine can be pipelined arbi-

trarily as long as the scheduled times of transfers are met, the handshake overhead can be

pushed back to previous stages or future stages in the architecture. The goal of limiting the

cycle time to a single internode transfer time or a small RAM lookup has been met.

4.4 Buffering
One consequence of the decision to support flow control is the requirement for storage

buffers. In a scheduled communication architecture, if a word can not be transferred, it

must be immediately buffered since on the next clock cycle a different communication

stream may need to use the same resource as the blocked communication stream. Tradi-

tional dynamic routers might provide some amount of global storage in which a word can

be temporarily stored. Since the destination address is stored in the header of dynamic

packets, this scheme can simply reroute messages it finds in the buffer once the contention

frees up. In a scheduled communication system, the problem is more difficult. There is no

sending
node

receiving
nodedata

valid

accept

Figure 4.3Flow Control Protocol for Scheduled Communication

Node A Node B
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destination information stored in the data. If a word in a communication stream gets

blocked and stored in a buffer, the word must not be transferred again until the communi-

cation stream is again scheduled. Effectively, words must somehow be associated with the

communication stream to which they belong. Figure 4.4 represents the need for buffering

in a scheduled communication system. In order to operate efficiently, the architecture must

allow for the buffers to be checked very quickly and the overhead in assigning and remov-

ing words from buffers must not affect the cycle time of the node.

The NuMesh solution is to assign some amount of buffering to every communication

stream that goes through the node. Since the communication streams are scheduled at

compile time, the storage for a particular stream can be checked before a potential com-

munication occurs. This allows a node to indicate to its predecessor in the communication

path that it can not accept new data since it already has valid data to transfer. One effect of

msg A

to processorfrom processor

msg A

to processor
from processor

Unblocked messages travel at a rate of one hop per node

Processor uncertainty requires messages to be buffered

msg A

to processor
from processor

The buffers must be emptied before new messages are accepted

Figure 4.4Illustration of Buffering for Scheduled Communication



909090

the amount of buffering per stream is how much progress a very large message will make

before it starts to get blocked. If every communication stream on every node had an infi-

nite amount of storage, then the messages would back up at the node connected to the des-

tination processor, allowing the processor to consume data at its maximum rate. If a single

word of storage per stream is allowed, then messages get spread out across the network,

until the destination processor is able to accept the single word on its connected network

node. Each buffer word of storage costs a single thirty-two bit register of storage. Since a

desirable feature of the architecture is support for a large number of virtual streams in

order to support a wider variety of applications, there must be some limit placed the

amount of buffer storage per virtual stream. The current implementation of the NuMesh

supports sixty-four total virtual streams. Since a goal of the project is to keep cycle times

down to a small RAM read or write, the number of buffer registers per stream must be held

down to keep the register file from getting too large. The next two subsections will com-

pare two of the more cost effective solutions to this problem. First a single word per

stream will be examined, followed by two words of storage per stream.

4.4.1 Single Buffer Word Per Virtual Stream

If a single word of buffer storage is allowed for each virtual stream, and there are two

physical pipelines, each containing thirty-two virtual streams, this means the node will

support a total of sixty-four words of buffer storage. If more than a single word of storage

is allowed per node, not only does the area of the buffer storage start to become signifi-

cant, but the complexity of managing the buffers grows. If multiple words are stored on a

node for a particular communication stream, the order the words arrived must be noted

because there is no information in the data itself that indicates order. The datapath for the

node also becomes more complicated since an incoming communication word can be

routed to one of many buffer destinations as well as the four destination ports. Restricting

the amount of buffer storage to a single communication word per stream simplifies the

datapath and the communication complexity.

A single word of storage for each stream is the minimal solution for handling the flow

control problem for scheduled communication. Words must be stored somewhere, and

every virtual stream needs the capability to store a word if thing back up. However, there

are two significant drawbacks to allowing only one word of buffer storage per virtual
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stream. The first constraint deals with the manner in which backed up words in the net-

work get cleared. Assume a linear array of nodes as pictured in Figure 4.5. If the commu-

msg A

from processor

blocked stream results in one word bufferred per node

msg A

once block is removed, only end node can empty buffer

to processor

to processor

Iteration i

Iteration i+1

msg A

bubble propagates backwards one node per scheduled iteration

to processor
Iteration i+2

msg A

After the stream is scheduled N times (where N is the length of the path)

to processor
Iteration i+N

from processor

from processor

from processor

the buffers are free and the stream can accept new data

Figure 4.5Recovering From Network Blockage
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nication stream has been blocked for awhile due to the destination processor not removing

words from the network, a single word will be stored in each node in the buffer register

corresponding to the virtual stream. Once the processor can start accepting new words,

ideally one would like a word to be read out of every node’s buffer register and transferred

along the path. In practice this can not happen. When the stream is scheduled, each node

except for the last one will look in the buffer register of the node next in line and see a

word stored in the stream’s buffer register. This will indicate that a word can not be for-

warded and the buffers will stay full. The last node will successfully complete the transfer

since the destination processor can read the input word. The next time the stream is sched-

uled, again, every node but the second to last will see a full buffer on the following node.

The second to last node will be able to transfer its word to the last node, but that is all the

progress that can occur. In fact, for a chain of N nodes, the stream will have to be sched-

uled N times before all of the buffers can empty. Unfortunately, there is no faster way that

these buffers can be cleared. The fundamental flaw is that a piece of information at the end

of a chain needs to be propagated backwards N hops. Since the clock cycle is limited to a

single internode transfer, it must take N clock cycles for this piece of information to prop-

agate back to the first node. When a stream is scheduled, it only gets scheduled for one

clock cycle, so it must take N iterations of getting scheduled before this information can

arrive at the first node in the system.

The second drawback of a single buffer per stream is that it restricts the maximum

bandwidth at which a stream can operate. In normal operation a stream will read from its

source port on one cycle, and then write to its destination port on the following cycle. A

node is allowed to do a read only if its buffer register is empty. If it were full, then the node

should take its source word from the buffer register rather than take new data from another

node. When a node is writing a destination port, it is discovering whether or not the desti-

nation node is able to accept new data at the same time. If it can not accept new data, the

node must put the communication word into the stream’s buffer storage. Assume that a

stream is operating at one hundred percent bandwidth. This means that on every cycle, the

node is both reading the source port of the stream and writing a destination port of the

stream. In order for the read to occur, the buffer must be guaranteed to be empty. However,

at the same time, the word being written may have to be stored into the buffer storage.
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This means that the read operation will not know if the buffer storage is empty until after

an internode transfer from the destination node. Only at that time can it send an internode

transfer to the source node indicating whether or not it can accept new data. In fact, the

last word of a transfer in a stream that involves many hops may determine whether or not

the first node in the path can make a transfer. Figure 4.6 illustrates this problem. If the pro-

cessor decides not to remove the last word from the network, then it must be stored in the

buffer register of the communication stream. However, this means that the node can not

accept a new data word, so the previous node must also store its data. This effect ripples

backwards until the initial node is unable to accept a new word because its buffer register

is full. This result is catastrophic since it requires the cycle time for a node to involve N

internode transfers where N is the number of hops in the longest possible path of the net-

work.

Fortunately, there is a simple constraint that solves this problem. The same stream

must be prohibited from operating on consecutive clock cycles. This ensures that the same

stream will not be attempting a read and a write at the same time on any one node. This

serves to break the cycle of dependencies that occurs since the result of a failed write no

longer affects the acceptance of new data during the same clock cycle. The obvious down-

side is that streams can not be allocated more than fifty percent bandwidth. Since many

applications might require streams of very high bandwidth, this constraint is unacceptable.

However, there are ways around this problem. For instance, one communication stream

may be broken up into two identical communication streams having a bandwidth of fifty

percent. The scheduler could then alternate between the two streams, and the effect would

? ? ? ?
to proc

Message at 100% Bandwidth

?

Figure 4.6Flow Control Ripple Across All Nodes
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be identical to a single stream with one hundred percent bandwidth. While some care must

be taken to prevent out of order communications, this scheme can be made to work and is

discussed further in section 4.6 of this chapter.

4.4.2 Two Buffer Words Per Stream

Allowing for two words of buffering per virtual stream has interesting impact on both

problems presented by the single buffering scheme. Again assume that a stream has been

blocked and the all buffer registers are filled on all the nodes of the communication path,

as illustrated in Figure 4.7. When the destination processor unblocks, again this informa-

tion can only flow back a single cycle, and only the last node of the path can transfer a

word. The next time the stream is scheduled, the second to last node can transfer a word,

and the last node can forward its second buffered word. The bubble of information still

propagates back one node per clock cycle, but the destination processor can continue to

receive one communication word per scheduled cycle. At the end of N schedule iterations,

the bubble will have propagated back to the source node, and every buffer will contain

only a single word. At this point the source processor can begin injecting words into the

stream again. As in the single buffer case, it takes N iterations before the congestion is

eliminated, but in this example, the destination processor can receive data on every sched-

uled iteration.

Allowing two buffers per stream also allows for an interesting solution to the problem

of scheduling a stream every clock cycle. If the buffers are implemented as described in

the previous paragraph, than the problem remains. To show this, imagine every node hav-

ing one word stored in its buffer while attempting to read and write other words in the

same stream. There is still a dependency on the one free buffer slot in each node that is

exactly equivalent to the case in which there is one buffer per stream.

However, there is a solution that allows the same stream to operate every clock cycle.

Assume that the flow control protocol is modified such that a stream does not assert its

accept bit unless there is no word stored in the buffer. If a stream is scheduled with one

hundred percent bandwidth, it can be trying to write and read a word at the same time. It

will only try to read a new word if the buffer is completely empty. Even if the write even-

tually fails and the node reads a new word, both words can be stored in the buffer registers
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since there is room for two words. If there is already a word stored in the buffer, than the

read will indicate that the node can not accept new data, regardless of the success of the

msg A

from processor

blocked stream results in two words bufferred per node

msg A

once block is removed, only end node can empty buffer

to processor

to processor

Iteration i

Iteration i+1

msg A

bubble propagates backwards one node per scheduled iteration

to processor
Iteration i+2

msg A

After the stream is scheduled N times (where N is the length of the path)
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write operation. This scheme prevents the rippling of information across several nodes,

because the read operation of the stream does not depend on the success of the write oper-

ation. This scheme has the negative effect, that for streams scheduled at less than one hun-

dred percent bandwidth, both buffer locations can never be used. Since a stream is marked

full when it contains a single word in its buffer, no new words will be accepted even

though there is still a buffer spot free.

4.4.3 NuMesh Buffer Scheme

While the two buffer per virtual stream idea clearly adds utility over the single buffer

per stream idea, this implementation of the NuMesh uses only a single buffer. Since the

system currently supports sixty-four virtual streams, even the single buffer word scheme

requires sixty-four words of storage. Since these buffers have to be accessed every cycle,

keeping the size of the buffer register file down seems worth the loss in utility. Also,

allowing two buffer words per stream complicates the overhead in managing the streams.

Given a larger chip size and faster RAM, the trade-off may be worth it. Ideally, one might

even consider allowing the assignment of buffers to streams to be under software control.

The addition of a single buffer per stream allows for a very simple flow control proto-

col to be implemented. The flow control in no way affects the timing of the scheduled

communication and does not add to the clock delay of the node. This protocol is unique to

scheduled communication and only works because all possible transfers are known in

advance, and work can be done ahead of time to limit the transfer of data to a simple inter-

node transfer. No data dependent decisions need to be made so communications can occur

at top speeds.

4.5 Processor-Network Interface
Although the NuMesh architecture will support virtual streams communication by

orchestrating a static global schedule, the times at which processors will inject and remove

messages from the system is unknown. The communication network serves to reserve

clock cycles during which only the scheduled virtual streams will be allowed to communi-

cate. There is an interface between the processors and the communication network at

which the two must become synchronized. A processor may be ready to inject a message

before a virtual stream is scheduled to communicate. Similarly, a message may reach its
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destination before the end processor is ready to remove the message from the network.

These transfers take place through memory locations that are shared between the pro-

cessors and the communication network. Each virtual stream can have its own set of loca-

tions on the beginning and end node of the virtual stream where words are transferred

between the dynamic processors and the scheduled communication network. Once a com-

munication word gets transferred to the last node of a virtual stream, the word will get

written into this shared memory space, and the attached processor can attempt to read the

word out of the network whenever it is ready. Similarly, when a processor wants to send a

message, it simply writes the shared memory location corresponding to the correct virtual

stream. When the virtual stream next gets scheduled, the word will be read out of this

memory location and transferred through the network according to the pre-defined sched-

ule. The number of locations reserved for each virtual stream is an architectural parameter

that can be adjusted by the designer. One can imagine a FIFO of several words for each

virtual stream that would allow the processor to inject several words into the network

before the stream finally gets scheduled, and would allow several words to arrive at a des-

tination processor before the processor needs to read the incoming words. On the other

hand, multiple words of shared memory per virtual stream can get very expensive, espe-

cially if the architecture supports a large number of virtual streams.

The current version of the NuMesh project supports sixteen separate locations of

shared memory address space. This means a node can support sixteen virtual streams that

either start or finish at any one processor in the system. Since the total number of virtual

streams supported by one node was set at two pipelines of thirty-two streams each, the

number sixteen was arrived at by assuming that roughly one out of every four virtual

streams going through a node could either start or finish at the node. Adding support for

more virtual streams is a reasonable thing to do, but for this implementation it made the

register file interface larger and more complicated. Since each of the pipelines and the

attached processor must use these registers, the shared memory is implemented as a three-

ported RAM.

In this implementation, each virtual stream interface register can only support one

word of communication. This means if a virtual stream injects a word into the network,

but the virtual stream is not scheduled immediately, the processor can not inject another
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word into the same stream until the previous word is accepted by the communication net-

work. Adding multiple words or small FIFOs for each virtual stream interface would allow

for greater decoupling between the processors and the communication network by allow-

ing multiple words of data to back up before needing to be removed. For the current

implementation, the cost of this was considered too great since the number and complexity

of the memory registers started to become significant.

4.5.1 Synchronizing the Processors and Communication Network

Simply providing shared memory locations between the processors and the scheduled

communication network does not mean that the application will behave as desired. For

instance, assume that at compile-time a virtual stream is given a bandwidth of one percent.

This would mean that one out of every hundred cycles would be reserved for the commu-

nication. Since the processor behavior is dynamic, it could inject a word for this stream

one cycle after the stream is scheduled. This would mean that the communication word

would sit in the interface for ninety-nine more cycles until it is scheduled again. Its effec-

tive latency would go significantly up. Unfortunately, there is no easy solution to this

dilemma. One solution is to assign the virtual stream a much greater bandwidth than the

processor can fill. If the message were thought to be important enough, it could be

assigned a bandwidth of ten percent. Nine out of the ten times the reserved bandwidth

would go wasted since the processor is only injecting a new message every hundred

cycles. However, the one time the message is injected, it will only wait a maximum of nine

cycles. The bandwidth metric can reflect not only the rate at which the processor will

inject messages into the system, but also the rate at which the system resources will be

dedicated to the stream’s transfer.

Synchronizing incoming words occurs a little more naturally. Suppose a processor

expects a word to arrive once every hundred cycles. The network can provide the stream a

one percent bandwidth. Now assume the computation has a hundred cycle loop and tries to

read from the shared memory interface for one out of every hundred cycles. Again, things

can line up such that the processor attempts a read a cycle before a word arrives in the

interface, causing the word to sit in the interface for the next ninety-nine cycles. However,

in this case, the processor can choose to spin until a word arrives. Once the processor gets

a valid word, the computation and communication cycles can be in sync, since there will
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be ninety-nine more cycles of computation before the next read is attempted, and this cor-

responds exactly to the amount of time it will take until the virtual stream is scheduled to

deliver a new word. Once the computation and communication get in sync, they can stay

in sync as long as the communication network can deliver words and the computation unit

keeps from suffering dynamic delays.

4.5.2 Communication Interface Mechanisms

An application can support a number of different models of communication. Some

applications might support very infrequent communication. For these cases, the possibility

of the processors and communication network syncing up is slim. Some applications may

have several virtual streams all routed to the same destination. For these cases, the possi-

bility of the processor managing to stay in sync will all messages is small, and some mes-

sages are bound to spend time sitting in the shared memory locations. One of the goals of

this architecture is to provide mechanisms that reduce the number of cycles that messages

spend in the shared memory interface.

One mechanism is to allow interrupts to occur whenever one or more messages have

arrived. At compile time, a set of input and output conditions can be set. These conditions

specify that whenever any combination of shared memory locations are either full or

empty, an interrupt occurs. This model works well for applications that communicate

infrequently. The computation can occur on the processing node uninterrupted until new

messages arrive at the node. A new message causes an interrupt, and a handler can dis-

cover which virtual stream has a new message. The interrupt handler can then read the

new message and update the computation accordingly. Although interrupts are tradition-

ally slow, this mechanism prevents the code from constantly needing to poll the shared

memory registers.

A second mechanism allows the processor to read the state of all of the shared memory

registers at the same time. By examining the validity of all of the registers at the same

time, the application code can dispatch to various routines based on which messages have

arrived. This mechanism handles applications that have several virtual streams routed to

the same destination. Since the sending processors are unpredictable in the frequency of

injecting messages, the destination node can check on all incoming message locations at
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the same time and only service those that have delivered new data. The synchronization

problem is avoided by allowing the processor to handle only those messages that have

arrived. After the messages are consumed, the processor can again check the state of the

shared memory interface to determine which virtual streams delivered new messages.

The third mechanism supports the kind of synchronization described at the beginning

of this section. A single shared memory location can be read or written, and the processor

can choose to stall if no word has arrived or if an outgoing slot is still full. Over time, the

processor and communication network might naturally sync up, since the processor can

stall until the relative timings are in phase.

These interface mechanisms provide a fair amount of flexibility in the communication

model of the application. Applications may choose to use some combination of all three

mechanisms over their operation. The NuMesh project goal of decoupling the static timing

of the communication and the dynamic timing of the processors makes complete syn-

chrony difficult. The described mechanisms simply attempt to reduce the penalty of what

is inherently a difficult timing problem.

4.6 Scheduler Architecture
Since it has been decided that there will exist support for multiple virtual streams on

each node, there must be some mechanism for choosing which virtual stream will operate

on every clock cycle. Each virtual stream through a node can be reduced to a single

instruction that gets executed every time the stream is scheduled. An outer loop of control

decides which virtual stream will operate on every clock cycle. One might imagine a large

RAM with a pointer that simply increments and reads out an instruction on every cycle. If

a stream were to be scheduled with fifty percent bandwidth, the instruction would appear

in every other slot of the RAM. However, there must be some way to distinguish between

the same virtual stream being scheduled twice and two separate streams that have the same

behavior through a node. The difference comes from the associated buffer storage. The

first case should use a single buffer word of storage, while the second needs two separate

buffer locations. When a word gets buffered, it needs to stay in the buffer until the stream

gets scheduled again. Even though two separate streams have the same path through a par-

ticular node, they might go down completely different paths at later nodes. If these two
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streams were to share the same buffer location, words might accidentally be transferred

between the streams.

To avoid this confusion, there is a separate piece of hardware called the scheduler.

Every virtual stream gets an independent instruction, even if it is a direct copy of another

instruction. The job of the scheduler is to choose which virtual stream will be run during

each clock cycle. Since there are two separate physical pipelines, the scheduler picks two

virtual streams to be run every clock cycle. The scheduler can assign any bandwidth to a

communication stream, although the scheduler must follow the pattern of communication

set up at compile time. Figure 4.8 illustrates the operation of the scheduler.

At compile time, the scheduler is loaded with the information indicating the pattern of

stream assignments that is to be followed. The scheduled information defines an outer

control loop of a fixed size, with each stream being scheduled some percentage of the

loop. Although variations are possible, typically all nodes in a mesh will have scheduling

loops of the same size. A third entry in the scheduler chooses which scheduling instruction

will next be executed. Since the scheduler is always executing a loop of a certain size, one

might expect a counter to simply increment the scheduler’s instruction and simply loop

back to the beginning when a special control bit was present. However, it is possible that

stream
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stream
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Figure 4.8Scheduler Operation
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multiple schedules could be present in the scheduler, and this third field could be written

by the processor to allow an easy mechanism to switch between separate schedules.

A high level compiler will be responsible for generating these schedules and making

sure that communication streams involving transfers between nodes will be scheduled in

the appropriate slots. Figure 4.9 demonstrates the scheduling constraints across two nodes.

If Message A requests a bandwidth of ten percent in a schedule with a loop size of ten,

then it will be allocated one of the ten clock cycles. Assume for node 1 the slot chosen is

the sixth cycle. This requires that message A be scheduled in the seventh slot for node 2 to

ensure that the message can travel through the mesh with a single clock latency per node.

If the stream were scheduled on a different clock cycle in node 2, the exchange of data

would never occur.

For every clock cycle, two independent streams can be scheduled. At compile time,

these slot are attempted to be filled as much as possible. Any scheduling slot that does not

receive a scheduled stream results in a NOP being scheduled. No communication will

occur in the pipeline for that clock cycle. Idle cycles in the communication schedule

results in lower communication throughput for the network. One of the hardest jobs of the

compiler is to avoid the idle cycles. Fortunately, there are tricks that can be played to
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reduce them. Assume that the compiler generates the schedules for a node shown in Figure

4.10. The first pipeline requires a schedule length of three while the second pipeline needs

a schedule length of four. Since the scheduler needs the loop size for determining sched-

ules to be the same, a naive solution would be to set the schedule length to four, and cause

the second pipeline to idle every fourth clock cycle. A much better solution is illustrated in

Figure 4.11. The length of the schedule is dictated by the least common multiple of the

natural lengths the compiler found. Effectively, the scheduling loops for each pipeline are

unrolled until equal scheduling lengths can be found. This process can be repeated by the

compiler across several nodes until a global schedule length is found by the system. If it

turns out that the natural schedule lengths found by the compiler for several pipelines

involve relative primes, then the schedule size may need to be too large in order to elimi-

nate all NOPs in the schedules. For these cases, idle cycles may still be included. It may

also be the case that some particular node has a relatively small amount of traffic going

through it when compared to other nodes. Idle stages may be added in this case, simply

because there is no work for the node to accomplish.

An application may have changing communication needs over time. A particular

schedule of communication may need to be completely changed in order to support new

communication demands. The ability to support this is accomplished in two ways. First a

variety of different schedules can be stored in the switching node at compile time. When

computation nodes determine that a new communication phase is coming, a simple

Clk
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1 stream A
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3 stream A

4 stream C
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instruction can cause a completely new schedule to start operating. Care must be taken

when making this switch. All nodes must make the switch at exactly the same time in

order to keep synchronous communication in the mesh. One scheme accomplishes this by

providing a very low bandwidth stream that checks the processor interface at specific

times in order to notice a request for a new schedule. Every node checks their processor

interface at exactly the same time to see if a new communication schedule is requested.

Even if some of the processors make the schedule swap and other do not, the rest of the

processors will eventually make the change at exactly the same relative time in the loop.

This manages to keep the nodes in sync with each other, although some care must be taken

to handle straggling communications from old streams. Another scheme for switching

schedules has one processing node sending a message to all processors indicating the

change. A very low bandwidth stream can be assigned for just this purpose. All the nodes

clk
cycle

stream 1 stream 2

1 stream A stream D

2 stream B stream E

3 stream A stream F

4 stream C stream D

5 stream A stream E

6 stream B stream F

7 stream A stream D
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Figure 4.11Avoiding Idle Slots by Lengthening the Schedule
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will be guaranteed to change schedules in a particular order at a particular rate since the

initiating message will arrive at each node at a predetermined time.

It may be the case that several large communication schedules are needed over the

course of an application. It may be impractical to store these separate schedules in the

CFSM. For these cases, the processors can serve as a memory storage for additional

schedules. Whenever a new schedule is needed, the processor can write the scheduler dur-

ing operation to change its contents. This process may take many clock cycles to write

large schedules, but presumably once a schedule is loaded it operates for a much larger

number of clock cycles making the overhead insignificant. Synchrony between the nodes

can be maintained as long as there are only fixed times at which the schedules can be

updated and if the schedules can all be swapped in an organized manner.

The CFSM scheduler provides all the mechanisms mentioned in this section. The

actual details of the implementation will be left for the next chapter.

4.7 Instruction Set Architecture
Now that mechanisms for the scheduler have been described, the virtual FSMs them-

selves need to be defined. Each virtual FSM provides all the information necessary to han-

dle a communication stream. This includes the management of flow control, the transfer of

data from one port to another, interactions with the processor interface, and any run time

support for dynamic routing that is needed. One can imagine writing a few lines of code

for each virtual FSM. However, the latency goal for transferring a communication word

through a node is one clock cycle. In addition, that clock cycle should take no longer than

a single internode transfer or a small RAM lookup.

Each virtual FSM consists of a single instruction opcode, a source specification and a

destination specification. There is a single word of buffer storage associated with every

instruction. The instructions can reference any of the ports, the processor interface, all the

buffer storage in a pipeline, the memory address space of the node, and a variety of inter-

nal locations used for booting and system management. The following subsections will

illustrate the different kinds of instructions supported and why there is a need for each

type.

4.7.1 Flow Control Move Instruction



106106106

The standard method for transferring messages through the mesh will involve a single

flow control move instruction (fmove). Consider the communication occurring in node 1

in Figure 4.12. The sole communication operation that will occur in node 1 is a transfer

from node 1’s -X port to its +Y port. Whenever the stream for message A gets scheduled,

node 1 will attempt to read from the negative X direction, and then on the following cycle

it will write to the positive Y direction. However, in addition to the simple transfer, the

mechanics for flow control must also be handled without adding any length to the node’s

clock cycle.

A key observation in the handling of the flow control is that the same stream can not

operate on two consecutive clock cycles. While this was done for different reasons, it

serves to greatly simplify the flow control logic. The buffer word of storage for each

stream has a valid bit associated with it that indicates whether valid data has been stored.

The buffer register is effectively a single register in a register file that gets addressed by the

stream number specified by the schedule. At the beginning of the stream’s read cycle, the

first piece of information that must be sent is whether or not the node is allowed to receive

new data. To determine this, the stream’s buffer register must be checked. If a valid word

is found, the node must not send anaccept bit to the previous node. In the case of Figure

4.12, instead of reading the negative X port for data, the stream will take its input word

from its buffer register. A potential flaw arises from the fact that the buffer register must be

read before the internodeacceptsignal can be sent. This seems to violate the goal of a lim-

ited cycle time since the buffer registers are effectively a small RAM. This is where the

advantage of scheduled communication is exploited. Since it is known at compile time the

msg A node 1

Figure 4.12Illustration offmove Instruction
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exact clock cycle that the stream for message A is going to run on node 1, the status of the

buffer register can be read on the previous cycle. Since the same stream can not be sched-

uled two cycles in a row, there is no possible way that the status of the buffer register can

change during that clock cycle. This means that the status of theacceptbit is known at the

very beginning of the clock cycle. Once the source word is read from either the port or the

buffer, the word is stored into a register at the end of the clock cycle. There is the possibil-

ity that the sending node has no data to send. Along with every data transfer is a single

valid bit that determines whether the data lines hold real values. All thirty-two bits of data

and thevalid bit are stored in the source register. Since there can be only one source word

per physical pipeline, the logic to write the source word into a register is very simple.

On the following clock cycle, the source word is written to the appropriate location. If

the sourcevalid bit indicates that the data is not valid, then no data will be written on this

cycle. If the word is valid, the appropriate destination will be written. Once again, flow

control overhead must be considered. In Figure 4.12, the word is written in the positive Y

direction. At the same time, the other node connected to this port has decided whether or

not it can accept new data and is transmitting anaccept bit. If the node indicates it can not

accept new data, node 1 must write the buffer word into its buffer storage. Once again

there appears to be a problem in that the buffer register write (really a RAM write) can not

start until the node reads theaccept bit. This problem is solved by always writing the word

into the stream’s buffer register file. It is only the valid bit of the buffer register that gets

written based on the value of theacceptbit. The valid bits for all the buffer registers are

arranged as a single thirty-two bit register. This means that once theacceptbit arrives on

the node, it can almost immediately be stored into the correct location without a full RAM

write being needed. This enables the clock cycle time to meet the system goals. The flow

control protocol for the sending and receiving nodes is illustrated in Figure 4.13. The

entire flow control scheme can basically be implemented without any overhead since

much of the work can be done ahead of the actual data transfer.

4.7.2 Conditional Flow Control

While thefmove instruction handles most communications that can occur in the mesh,

there are two problems it can not handle. For reasons related to flow control, the same

communication stream can not be scheduled for two consecutive instructions. As a result,
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special efforts must be made to allow a communication path a bandwidth of one hundred

percent. One way to handle the problem would be to create two streams that follow an

identical path and are assigned fifty percent bandwidth. The scheduler would switch back

and forth between the two streams, and the effective bandwidth between the source and

destination would be one hundred percent. Figure 4.14 shows message A being split into

two identical streams, A1 and A2. The scheduler alternates between the two streams, and

the sending processor would inject messages alternately into each of the streams. As long

as there is no blocking in the network, the scheme will work fine, and full bandwidth can

be achieved for the communication.

Figure 4.15 shows one of the streams being blocked due to the destination processor

being unable to accept a communication word for one cycle. The word gets temporarily

stored in message A1’s buffer register. On the following cycle, the contention clears, but

now message A2 is scheduled. It sees no blocking so its word get transferred to the proces-

sor. However, originally the communication word for message A1 was injected into the

Sending
Node

Receiving
Node

valid bit

data

accept bit

Protocol:

Sending Node

1. If accept bit is set, transfer is completed.

2. If acceptbit is not set, data word and valid
bit are written into stream’s buffer register.

3. Always look in buffer register first
for a source word.

Receiving Node

1. Assertaccept bit if
buffer register is empty.

2. If buffer register is full,
use buffer register data
as source and deassert
accept bit.

Figure 4.13Flow Control Protocol
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network a cycle before the communication word for message A2. Due to the fact that mes-

sage A1 was stalled because of the temporary blocking by the destination processor, the

word in message A2 is able to pass message A1. Unless ordering information is encoded

in the messages themselves, the data can be transferred out of order without the processor

being able to detect the misordering.

The second limitation of thefmove instruction comes from its inability to properly

handle messages. When processors communicate using messages, the entire message is

treated as a logical unit. Either the entire message should be sent, or none of it should be

sent. Similarly, if the head of a message gets stored in a buffer register, the rest of a mes-

sage should be stored in a buffer register. If a message of length ten requests a bandwidth

of ten percent in a schedule of length one-hundred, ideally the message would have ten

consecutive slots in the schedule. In order for any node in the message’s path to be able to

store the entire message in case of blocking, a separate virtual stream can be assigned to

msg A1

msg A2
BA2

BA1 BA1

BA2 to proc

the scheduler alternates between two identical streams

Figure 4.14100% Bandwidth Can Be Achieved By Duplicating the stream

msg A1

msg A2
BA2

BA1 BA1

BA2 to proc

Figure 4.15A Blocking stream Can Cause Out of Order Data
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each word in the message. If each of these streams is defined by an identical instruction, in

the best case all ten words of the message will be routed through the network with worm-

hole routing. If these instructions were allfmove instructions, the previous paragraph

illustrated that words could be transferred out of order. Another problem also exists. Sup-

pose the processor injecting the message into the network is not able to do so until the fifth

of the ten streams is scheduled. The header would be transferred on the cycle actually

reserved for the fifth word of the message. By the time the tenth stream is finished, only

five words of the ten word message will have been routed. Since the message’s allocated

bandwidth is over, ninety more cycles will go by until the rest of the message is routed.

Both of these problems are avoided by the creation of a conditional flow control

(cmove) instruction. Thecmoveinstruction works by remembering the transfer success of

the previous instruction. If the previous instruction had a read success but a write failure,

this means that a valid source word was read but the destination location refused an addi-

tional word. Thecmoveinstruction will expect a valid source word to be available and will

immediately put the word in the stream’s buffer register. Likewise, if the previous instruc-

tion failed during a read due to either a valid word not being offered or the stream’s buffer

register being full, thecmove instruction will also fail on the read and indicate that it can

not accept new data. A message can be sent by having the head of a message sent with a

traditionalfmove instruction and the rest of the body words sent withcmove instructions.

This causes all the words of the message to be treated exactly the same as the header of the

message, regardless of the state of the network. Consider the example back from Figure

4.15. Two messages were allowed to pass each other due to the pattern of congestion in the

network. Using thecmove instruction is illustrated in Figure 4.16. Since stream A1 sends

its word into its buffer, stream A2 will also send its word into its buffer, regardless of

whether the processor can accept new data. Communication words can no longer pass

each other in transit. The downside to this scheme is that words must now be transferred in

groups of two. However, one hundred percent bandwidth can be achieved.

The second problem of partial messages being sent is also avoided. If the first stream

of a series does not see a valid source word, the rest of the streams in the message will not

attempt to read any data from the processor, even if the header word is eventually available

for transfer.
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4.7.3 Blind Move Instruction

Occasionally, words can be transferred without any regard to the flow control protocol.

Systems supporting graphics or digital signal processing might be systolic in nature, guar-

anteeing that data is to be transferred on every cycle. For these cases, the flow control pro-

tocol restriction of a stream not being allowed to be scheduled every clock cycle is

pointless, since the only reason the restriction exists is due to the possibility of words

being buffered. A systolic system can demand that words are injected and removed from

the network on every clock cycle. The blind move instruction (bmove) allows transfers to

take place regardless of the handshake between thevalid andaccept bits.

4.7.4 Forking Communication

A forking or multicast operation involves copying communication words and sending

them to multiple destinations. Many applications need a particular node to send identical

data to multiple locations. This problem presents a particular difficulty in a scheduled

communication system. Consider the example in Figure 4.17. Message A is to be routed to

multiple nodes. A simple way for a fork to be implemented would be for thefmove

instruction to support multiple destinations. The flow control semantics for this become

complicated. For a transfer to be considered successful, theaccept bits from all of the des-

tinations must be asserted. If any oneaccept bit comes back deasserted, not only does the

word need to be stored in a buffer, but the information of which transfers succeeded and

which failed must also be stored. The next time the stream is scheduled and the source

word is taken from the buffer register, the word must only be transferred to those locations

msg A1

msg A2

BA2

BA1 BA1

BA2
to proc

(fmove)

(cmove)

Figure 4.16The Conditional Flow Control Instruction Preserves Order
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that were unable to read the word on the last attempt. Between the complexity of manag-

ing this scheme and the overloading of thefmove instruction, this scheme would cause

more overhead to the clock cycle time than the value of the fork instruction warrants. A

much simpler scheme is implemented instead.

To accomplish an N-way fork in a node, N consecutive streams must be scheduled.

Consider the first node of in the communication stream in Figure 4.17. The first node

wishes to transfer data in the positive X direction, the negative Y direction, and the nega-

tive X direction. Three consecutive streams are required to accomplish this. The solution

is illustrated in Figure 4.18. All three streams use thefmove instruction and a single

source and destination. The first stream takes a word from the processor interface, and

attempts to transfer it to the positive X direction. At the same time the node is writing the

X direction, the next stream is attempting to read from the exact same port. For the first

communication stream’s write to succeed, both the node connected to the positive X port

and the second communication stream in the same node must assert anacceptbit. If either

of theseacceptbits is not asserted, the outgoing data must be invalidated and the word

must be written in the first stream’s buffer storage. This overhead comes for free because

the second stream’sacceptbit can be calculated during the previous cycle. If no flow con-

trol blocking occurs, at the end of the first stream’s operation, the node connected to the

Message A

Figure 4.17Forking Operations Require Data Replication
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positive X port and the second stream will each have a valid copy of the data. If a flow

control block occurred, neither of these will have obtained a valid copy of the data, but the

first stream will have the communication word stored in its buffer, and the fork will be

attempted again the next time the stream is scheduled.

In the case when the transfers succeeds, the second stream would then attempt to write

the communication word to the negative Y port on the following clock cycle. At the same

time, the third communication stream would be reading the same port. Once again, for the

transfer to succeed, theaccept bits for both the node connected to the negative Y port and

the third stream must be asserted. In this manner, an N-way fork can be accomplished with

no overhead, although it takes N clock cycles. If data is being forked to many destinations,

a tree of forks can be set up among many nodes, and the penalty can be reduced to log N

time rather than linear time.

4.7.5 Join Operations

fmove proc5, +x

fmove +x, -y

fmove -y, -x

stream 1

stream 2

stream 3

Figure 4.18Single Node Fork
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A join operation allows several communication streams to be combined into a single

stream. Figure 4.19 shows an example of a join operation. Messages A, B, C, and D all get

combined into a single communication stream that gets routed to the final node’s proces-

sor. The reason for a join operation is to allow several low bandwidth streams to be com-

bined in any arbitrary order into what might become a fairly high bandwidth stream. By

combining the independent streams into a single stream at the end of the communication

path, the overhead needed by the final node’s processor is significantly reduced. It only

ever needs to check one communication stream for incoming data. In addition, by reduc-

ing the number of communication streams in the network, the potential for congestion is

also reduced. Join operations may be used when scheduling all the different streams

becomes too difficult due to a large number of communication requests in the network.

Implementing this scheme in a scheduled architecture is problematic. Since every stream’s

communication FSM consists of a single instruction, one scheme might be to specify mul-

tiple sources for a stream. However, the problems of arbitration and flow control manage-

ment quickly rule this scheme out. Instead, an alternate scheme is implemented. For an N-

way join, N+1 communication streams must be created at the node where the join occurs.

Consider the example in Figure 4.19. In the middle node, four streams are combined into

one. For each of the source communication streams, the instruction specifies the appropri-

A B

C
D

Figure 4.19Example of a Join Operation

E
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ate port as a source, but instead of specifying the positive X port as a destination, stream

E’s buffer register is specified as the destination. If stream E’s buffer register is already

full, flow control semantics dictate that the word get stored in the stream’s own buffer reg-

ister. The communication instruction for stream E will not specify any source, although it

will be implemented with anfmove instruction. Since it uses normal flow control protocol,

it will always check its own buffer register for a source word. If one of the other four

streams inserted a word into stream E’s buffer register, it will become stream E’s source

word. The four input streams can be assigned any bandwidth, and this scheme will cor-

rectly work. The only restriction on this scheme, is that out of order transfers be allowed.

Of course, for a join operation involving streams with different bandwidth allocations, the

proper order of the data is not really defined.

4.7.6 Pipeline Transfers

Many communication streams may attempt to use the same port resources. Ideally, the

scheduler can determine a schedule that allows all streams to be timed such that a stream

can read a source word on one clock cycle, and write its destination on the following

cycle. Occasionally, a resource may already be in use by the other pipeline, and the sched-

uler may not find any other scheduling slots for the stream. As a result, the word may need

to be stalled for a cycle. This can be accomplished by having the stream write its commu-

nication word in some unused buffer register. The next stream scheduled could read this

buffer register and write the appropriate port as a destination. The net effect is that the

communication word still gets transferred over the same ports, but it has one extra cycle

latency through the node. Figure 4.20 shows an example of stalling a message.

Stalling a message has the negative effect of requiring an extra stream to be scheduled.

Occasionally, there may be idle slots in the opposite pipeline’s schedule in which it might

make more sense for the extra stream to be scheduled. To accomplish this, the two pipe-

lines in the system must be able to communicate. The natural location for such a commu-

nication is the ports themselves. For example, assume the communication stream in Figure

4.20 needs to be stalled a cycle. The normal communication instruction involves anfmove

instruction from the negative X port to the negative Y port. The stall mechanism can hap-

pen over any of the unused ports. The first stream can read an input word from the nega-

tive X port, but might write it to the positive X port. At the same time this stream is
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writing, a stream in the opposite pipeline could read the positive X port. On the following

clock cycle, this second stream would write the negative Y port. Full flow control seman-

tics are supported, and the communication word gets transferred between pipelines. Some

care must be taken to cause the original stream’sacceptbit to come from the second pipe-

line rather than from a node connected to the positive X port. However, since this condi-

tion can be detected in an earlier clock cycle, the bypass of theaccept bit comes for free.

The semantics for a fork operation and a pipeline transfer are similar but have impor-

tant differences. A fork must happen within a single pipeline, and the logic for the original

stream’sacceptbit is the logical AND of the connecting node’saccept bit and the next

stream’saccept bit. A pipeline transfer occurs between consecutive streams in opposite

pipelines. If this case is detected, only theacceptbit of the opposite pipeline’s stream is

checked, and the connecting node’saccept bit is ignored.

4.7.7 Storing Extra Instructions

A particular phase of communication may require a node to only use a small number

of communication streams. If this is the case, the streams for several phases of communi-

cations can be stored in the CFSM, since each pipeline can hold thirty-two virtual FSMs.

unused buffer

msg
A

msg
A

Figure 4.20Messages Can be Stalled With an Unused Buffer

scheduling difficulties
may require this stream
to be stalled for a cycle
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Since the scheduler indicates which streams will run on every clock cycle, streams from

future communication phases will never be accidentally run.

The number of streams used over the course of an application may exceed the maxi-

mum storage capabilities of the CFSM. In these cases, the processor can act as a main

memory for communication instructions that might need to be used the CFSM. During the

execution of the application, the CFSM acts as a cache, holding only those instructions

that are currently needed. When a communication phase change occurs, the virtual FSMs

can be written from the processor interface and updated with the new instructions. The vir-

tual FSMs are part of the memory address space and can be written dynamically. One

mechanism for supporting simple dynamic routing would be to allow the processors to set

up communication streams on the fly by accessing the CFSM’s memory address space

based on run time decisions.

4.8 Communication Instruction Reads
While most communication streams will simply transfer data between the node’s

ports, a node’s source word can come from a variety of locations. These include the node’s

physical ports, processor interface locations, and any stream’s communication buffer. In

addition a special source can be specified that causes a stream to read its buffer register

without clearing its validity on a successful data transfer. This mechanism was added to

potentially allow hard constants to exist in the datapath without getting cleared every time

they are read.

A read operation is also responsible for recording aread success bit that will be saved

for the following instruction in the pipeline. For abmove instruction, all reads will be

marked as successes since flow control is turned off.

For acmove instruction, theread success bit is simply copied from its previous value.

A multi-word message will be transferred by having the header issue anfmove instruction

and the body words issuecmove instructions. Since each body word of the message

should see the exact same read action occur as for the header, passing theread success bit

along between successive cmove instructions is the correct operation.

For anfmove instruction theread success bit must be calculated. A read is considered

to have succeeded if a valid word is received from the encoded source in the stream’s
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instruction. If a word is grabbed from a stream’s buffer register instead, the read is marked

as a failure. This informs followingcmove instructions that the encoded location should

not be checked for a source word. A stream will always check its buffer register for valid

data, so the correct source will be checked. If a stream tries to read valid data from a port,

but no data is available, theread successbit must be marked invalid. The followingcmove

instructions should not attempt to read the port, even if valid data is present. This prevents

messages from being half sent. If another buffer register or the processor interface is read,

theread success bit depends on whether a valid word is received.

Flow control semantics are supported for transfers within a node as well as the ports. If

an fmove instruction wishes to write another stream’s buffer register or the processor reg-

ister interface, these resources must be allowed to accept new data. In the case of writing

another stream’s buffer register, thefmove write must fail if a word already resides in the

buffer register. During the read of the source word, the validity of a destination location

within a node is also read so it can be determined ahead of time whether a write operation

can be allowed. If this operation were to happen at the same time as the actual write itself,

then two RAM accesses would be required - the first to check if a valid word already

resides in the location, and the second to perform the actual write. This violates the

NuMesh goal of only allowing a single RAM access to determine the cycle time of the

node. Writing to the processor interface works exactly the same way. During the read

operation, the ability for the interface to accept new words is also checked.

4.9 Communication Instruction Writes
The write operation for a stream is fairly simple. The instruction word has an encoded

destination that specifies the location to be written. In addition to writing the specified des-

tination, the stream’s buffer register also is written. Thevalid bit for the buffer register gets

set based on the result of the destination’s ability to accept data and the type of instruction

opcode. Abmove instruction never sets thevalid bit unless the buffer stream is the actual

encoded destination.

A cmove instruction mimics the action of the previous stream. If the previous stream

wrote a valid word into its buffer register, thecmove stream will do the same thing.
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The fmove opcode causes the flow control protocol to be observed. For the case when

a port is a destination, the connecting node’saccept bit is checked. If the bit is asserted,

thevalid bit of the word in the buffer register is set to zero. If theacceptbit is deasserted,

the valid bit gets set since the transferred word was not accepted, and the buffered word

must be sent again when the stream gets rescheduled. For the case when either another

stream’s buffer or the processor interface is chosen, the ability of these locations to accept

data will have been determined on the previous cycle. The stream’s buffer registervalid bit

will be set based on this information.

The CFSM must also support writing into the memory address space of the node for

both bootstrapping and run time dynamic purposes. A specific destination coding corre-

sponds to writing the memory address space. This kind of write can never fail, regardless

of the type of instruction opcode selected. Words can be transferred to the memory address

space in a similar fashion to all other communication transfers. Data ports, the processor

interface, or any of the buffer registers can be sources for writing the memory address

space. Message can even be forked with one of the branches going to write the memory

address space. The high order bits of the communication word choose which piece of

memory on the chip will be written, while the lower order bits serve as the data to be writ-

ten. Possible locations within the memory address space are included in Figure 4.21.

Many of these locations serve system level needs and will be discussed in section 4.8 of

this chapter.

4.10 System Issues
The NuMesh project faces a host of system design issues that are difficult to solve. The

architecture design of the CFSM is required to aid in the solution of some of those prob-

lems. This section will discuss some of the architectural features that are implemented to

make the system design more manageable.

4.10.1 Booting

The NuMesh system is designed to be booted by a host processor connected to one of

the ports of the mesh. This idea is illustrated in Figure 4.22. On power-up, all nodes are

idle, waiting for information to come in on any port. The host computer sends schedule

and instruction data to the node to which it is connected. The instructions set up paths to
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each of its neighbors so the host computer can send booting information to each of the

nodes. The information fans out until the host computer can load application schedules

and instructions into each of the nodes. Finally, the host computer sends around a message

that takes each node out of boot node at the same time, and the application communication

code is run.

Processors also get booted over the communication network. One of the destinations

to which the CFSM can transfer data is a JTAG interface to the processor. In the prototype

NuMesh modules, this JTAG interface can be used to boot the attached processor - the

microSPARC. Through this interface, the processor can be initialized and its memory can

be loaded with application code. When each CFSM node gets initialized during bootup,

part of the process is to boot the microSPARC as well. The JTAG interface can be read by

the CFSM as a source to provide debugging support for the processor.

A CFSM node gets booted one pipeline at a time. Special memory locations get writ-

ten to switch the loading of boot information between the two pipelines. The pipeline is

Location Function

Scheduler Scheduler contents can be altered at any time

Schedule Pointer An index into the scheduler can be written to
allow quick changes between communication
phases

Communication
streams

Communication instructions can be overwritten
at any time

Processor JTAG A JTAG interface to the processor can be writ-
ten by the CFSM

Reset Bits A node can reset any of its neighbors and put
them in boot mode

Clk System Bits A node can tell any of its neighbors to perform
clock synchronization with it

Diagnostic LEDs A set of LEDs can be written for diagnostic
purposes

Figure 4.21Components of a Node’s Memory Address Space
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designed to detect when a node is trying to boot it and will execute a single instruction of

reading the specified port and writing the memory address space until the node is taken out

of boot mode. Implementation details of the booting process will be included in the next

chapter on architecture implementation.

4.10.2 System Clocking

The NuMesh system runs on a synchronous global clock in a scheme described in

[Prat95]. All clocks start with the same nominal frequency, but can start out of phase with

each other. The node connected to the host computer first synchronizes with each of its

neighbors by telling each of the nodes in turn to match its phase. Every CFSM node has a

separate clock bit line that is connected to each of its neighbors. These lines can be written

as part of the memory address space. When a node sees a clock line from its neighbor

pulled high, the node matches phase with the clock line of the neighbor. Successive nodes

are added to the collection of phase matched nodes until the fanout includes all nodes in

the system. The order in which the nodes are added to the collection of matched phased

nodes is important, but is completely under the control of the host computer. The host

computer can create a communication path to any node and then transfer a word to the

node’s memory address space that asserts the various clock lines.

host
computer

Figure 4.22Booting the Mesh Occurs From A Host Computer

NuMesh
Node

NuMesh
Node

NuMesh
Node

NuMesh
Node

NuMesh
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Node

NuMesh
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NuMesh
Node

NuMesh
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4.10.3 Reset Logic

When the nodes are powered up, the nodes are in an idle state. Each node has a reset

line connected to each of its neighbors. When a node sees a reset line asserted by any of its

neighbors, it immediately goes into boot mode and starts trying to read communication

words from the port where the reset was initiated. Any valid words are written to the

node’s memory address port. A node can be programmed to ignore resets from certain

ports in case there might be a defective node in the mesh or a node is on the edge of the

mesh. Once a reset is initiated, the reset can not be over-ridden by a subsequent reset until

the original reset line gets deasserted.

One of the side-effects of the power-up reset is to clear all thevalid bits in a node for

the buffer registers and the processor interface registers. This prevents power-up errors

from mistakenly loading these registers with what the node will think is valid data. Resets

from a neighbor do not cause all the valid bits to be cleared, although writing a special

location in the memory address space can explicitly clear these bits. One way for a node to

change communication phases or to load new instruction streams dynamically is for a

neighboring node to assert its reset line and put the stream into boot mode in order to load

the new data. Since this operation could occur in real time, it may not make sense to auto-

matically clear out all the node’s state. On the other hand, if an application decides to go to

a new phase of communication, it may make sense to clear out all the data from the previ-

ous phase. Since instructions may get overwritten with completely new instructions, it

may make no sense to have data that has backed up due to flow control in the previous

phase of communication reside in the new streams’ buffers. Having a simple mechanism

to immediately clear out all the buffer registers can be very useful.

4.10.4 Diagnostic Support

No parallel processing system is complete until lights can be seen flashing. With this

goal in mind, four LEDs per node exist that can be written as part of the memory address

space. When the nodes are powered up, these bits default to the on position. As each node

goes through the booting process, the lights can flash in interesting patterns to give the

illusion of computation.
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4.11 Communication Models
Several models of communication can be supported on the NuMesh architecture. This

section will illustrate a few, though certainly not all, of the ways applications may commu-

nicate over the NuMesh network.

4.11.1 Scheduled Streams

The NuMesh architecture is designed to optimally support scheduled communication.

In this model, a set of communication streams can be extracted at compile time. A com-

piler serves to lay down all communication paths to minimize congestion by assigning

communication stream instructions to each node. A scheduler than orchestrates the com-

munications assigning a bandwidth to each communication stream and ensuring that

neighboring nodes in a communication path schedule their communication instruction in

the appropriate slot. More complicated operations such as forks or joins are broken down

into combinations of individual communication streams with added constraints. If a set of

communication stream requests can not be met, the compiler tries to meet as many con-

straints as possible, but will reduce the scheduled bandwidth of selected paths until a valid

schedule can be achieved.

The input for this model can come from a variety of forms. Graphical block languages

or annotated parallel languages are reduced to time-varying directed graphs that can be

handled by a robust compiler. Small numbers of dynamic decisions can be handled by

assuming scheduling paths for all the possible outcomes of the dynamic decisions. As

long as the required number of scheduled communications does not grow too large, this

model of scheduled communication runs very fast on the NuMesh architecture. Since no

run-time data need be checked, the cycle time of the transfers is much less than that of

dynamic routing. In addition, there are no worst case patterns since congestion can be

minimized by the compiler.

4.11.2 Nearest Neighbor Communication

Some applications require frequent communications to nearest neighbor nodes. Scien-

tific applications in physics and chemistry as well as graphics based applications often

involve nearest neighbor communications that can occur randomly throughout the course

of an application. The NuMesh architecture can quite easily support this model. Every
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node can set up one virtual path to each of its four neighbors, and these streams can be

scheduled very tightly allowing each path to get a share of the bandwidth. Each virtual

stream will have a single processor interface register assigned to it. Whenever the applica-

tion decides it needs to communicate with a particular neighbor, the message gets dropped

in the processor interface register that belongs to the appropriate stream. Four more pro-

cessors registers get reserved for receiving messages from each of the four neighbors. The

application can either poll these locations periodically, or an interrupt can occur whenever

a word arrives at the node.

4.11.3 Dynamic Communication

Dynamic communication presents the biggest problem for the NuMesh architecture,

but it can still be handled. For small meshes, a communication path for every pair of nodes

can be set up, and the processor can simply drop a message in the appropriate interface

register to send a message to any node. As the number of communication streams required

for this becomes too large, one can imagine sending messages across the mesh using the

nearest neighbor model. At each node, the processor looks at the header and determines

the next hop in the message’s path. It then alters the header word and drops the message

into the interface register corresponding to the appropriate neighbor. The number of hops

can be reduced by setting up various express channels that quickly send a message to spe-

cific quadrants of the mesh. From there the nearest-neighbor communications can finish

the routing. Any sort of virtual network can be laid on top of the NuMesh topology to

allow for an arbitrary communication scheme. The overhead comes from having to route

the message at each hop to the processor and forcing data dependent computation to occur

in order to choose the next hop.

4.11.4 Hybrids

In practice, hybrids of all three of these communication models can be used. Some

streams can be scheduled with very high bandwidth if their communication patterns are

known, while low bandwidth channels can be set up to handle dynamic routing that goes

through the processor. In addition, the node can store multiple communication patterns

and switch between them as communication needs in an application change. If a great

many different communication patterns are needed, even the processor can store some of



125125125

these schedules in its memory and download the information to the CFSM when neces-

sary.

4.12 Architecture Overview
The previous sections describe an architecture capable of supporting scheduled com-

munication. A variety of mechanisms are included to facilitate run time dynamics for

many different application groups. The following chapter discusses the implementation of

the instruction set architecture. This section will serve as an overview of the description of

the NuMesh communication FSM

4.12.1 Instruction Set

A single instruction format is supported, with each instruction taking fourteen bits.

Each instruction contains three fields: an opcode, a source and a destination. Figure 4.23

defines the three fields of the instruction format.

4.12.2 Pipeline Overview

The NuMesh CFSM can be broken down into a four stage pipeline. During the first

stage, the scheduler determines which virtual stream will run for each pipeline. During the

second stage the stream’s communication instruction is read. The third stage involves the

reading of a source word from either the ports, the processor interface registers, or the

buffer registers. During the fourth stage, the appropriate destination is written from among

the ports, the processor registers, the buffer registers, or the memory address space.The

flow control protocol is implemented during the third and fourth stages of the pipelines

and may cause reads or writes from locations other than those encoded in the communica-

tion instruction. A skeleton picture of the architecture is shown in Figure 4.24.

Much detail, including paths for preloading the RAMs, system support hardware, pro-

cessor interface support, the second pipeline, and the datapath of the chip, are omitted for

clarity. The following chapter will discuss the architecture in much more detail and will

provide diagrams of the entire chip architecture.
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Opcode Sources Destinations

5 061213 11

• bits 13-12opcode

- 00 fmove - flow control move. Standard flow control protocols are followed.
- 01cmove -conditional flow control move. The transfer success of the previ-
ous instruction is followed.
- 10bmove - blind move. No flow control semantics are followed.

• bits 11 - 6sources

- (0-3) node ports
- (6) processor jtag TDO bit
- (7) bflow read location
- (16-31) processor interface registers
- (32-63) buffer registers for all streams

• bits 5 - 0destinations

- (0-3) node ports
- (6) memory address space
- (7) bflow write location
- (16-31) processor interface registers

Figure 4.23Instruction Definition
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Figure 4.24Hardware Architecture Design
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Chapter 5

CFSM Implementation

The CFSM was implemented using Chip Express, Laser Programmable Gate Array

(LPGA) parts. The CX2000 series from Chip Express is fabricated in a .6 micron, 3-layer

metal CMOS process. Separate configurable SRAMs exist for implementing higher speed

memories. Parts are created by a single mask single-etch process.

The CFSM is designed as a four stage pipeline. The goal of the pipeline is to allow for

a cycle time limited by either a single internode transfer or a small RAM operation, plus a

minimum number of gates. This chapter will describe the implementation of the design

and give diagrams for each of the stages. While the presented design will be organized for

clarity, logic delays can often be traded off between stages of the pipeline, allowing certain

signals to be precalculated. These decisions can be made based on the delays or signaling

characteristics of the memories, as well as the characteristics of internode transfers. Since

these decisions are largely determined by the process in which the architecture is imple-

mented, the discussions of such decisions will be held to a minimum. The goal of this

chapter is to present the CFSM architecture in manner that allows any designer to under-

stand its operation.

5.1 Stage 1: The Scheduler
The scheduler is responsible for selecting a virtual stream to operate for each pipeline.

It also sets the outer loop size of the schedule to be run. Once the end of the schedule is

reached, the scheduler must detect this immediately and restart the schedule without los-

ing a clock cycle. Ideally, multiple schedules can be stored in the scheduler, and switching

between the different schedules can be done with minimal and predictable overhead.

The scheduler is pictured in Figure 5.1. Its major component is a static RAM whose

words contain three fields. Each of the lower two fields contain a five bit number corre-

sponding to the virtual stream that is to be run in each pipeline. The third field contains a

seven bit index back into the RAM of the next scheduler instruction to be executed. This

makes the total size of the schedule RAM 128x17 bits. Schedule lengths must be kept
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under 128 instructions in length. While this number is somewhat arbitrary, it allows for

complicated schedules to be implemented, while the total size of the schedule RAM is still

small enough to allow for quick accesses. Under normal operation, the last instruction of a

schedule will point back to the first instruction in the schedule. Instead of a pointer, the

index to the schedule RAM could have been implemented with a counter and a control bit.

A pointer was used instead to allow for quick switching between stored schedules in the

RAM. While the schedule is executing, this third field of any entry can be updated with the

first address of a different loop. When the schedule RAM executes the modified instruc-

tion, the pointer causes a whole new schedule to start executing.

Multiple schedules can be stored in separate locations in the schedule RAM. The

pointer index into the schedule RAM can be written as part of the memory address space.

This ability to write the pointer allows for quick changes of communication phases in the

system. A single scheduled instruction can try to transfer a word from the processor inter-

Schedule RAM

read
address

write
address

write
data

write
web

7

17

1

55

77

1

7
5

5

stream #stream #pointer

Figure 5.1Stage 1 - Scheduler
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from pipe 1
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face registers to the pointer. Whenever a processor wants to change phases, it can write

this register with the index appropriate to the new phase.

The schedule RAM locations can also be written as part of the memory address space.

Each word of the schedule RAM is seventeen bits long. This allows both the address and

the data to be encoded in a single thirty-two bit data word. During boot mode, the schedule

RAM will always read from address location zero. Once the pipeline leaves boot mode,

the first instruction to be read will still be from location zero. This allows for a simple pro-

gramming model in which the first schedule to be run is loaded in the first addresses of the

RAM. A write to the schedule pointer location can get around this constraint.

Routing proved to be the biggest difficulty in the implementation of the chip. The Chip

Express technology has a limited number of routing channels available. To make the rout-

ing problem easier, only one of the two pipelines is allowed to write the schedule RAM

and the schedule pointer. If the other pipeline attempts a write to the scheduler’s memory

locations, the data is simply dropped. In this implementation, only pipeline zero can write

the schedule space.

5.2 Stage 2: Reading Instructions
The second stage of the pipeline serves two main purposes. The instruction of the

scheduled stream is read and partially decoded, and the valid bit of the stream’s buffer reg-

ister is checked for valid data. Figure 5.2 shows a diagram of the implementation of stage

two for one of the two pipelines. The input stream number serves as an index into the

instruction RAM. During boot mode, this index will be forced to zero, providing a consis-

tent behavior when the pipeline is switched out of boot mode. Under normal operation, the

stream’s fourteen bit instruction will be read out of the RAM and passed on to the next

stage of the pipeline. At the same time, the buffer register valid bit of the stream will be

read to discover whether or not the stream can accept new data on the next clock cycle.

While Figure 5.2 shows only a single port on the valid bit RAM, there are actually several

ports, but only a single read port gets accessed by the second stage logic. The rest of the

ports will be discussed later.

During boot mode, the instruction RAM contains no valid data. When the chip is pow-

ered up, no reset line will be active, so a NOP instruction gets forced into the instruction
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stream through a mux at the output of the instruction RAM. Once one of the ports asserts a

reset, an instruction requesting transfers from the resetting port to the memory address

space will be spliced into the instruction stream of the node through the output mux. Every

cycle will generate such a transfer until the reset is cleared or boot mode is left. Since a

write to a memory address space can not fail, there is no reason to worry about flow con-

trol backups on these transfers. Writing the memory address space allows a node to load

its schedule RAM, instruction RAM, and even to exit boot mode.

For purposes of limiting the routing complexity of the data path, a pipeline may write

its own instruction RAM, but not the other pipeline’s instruction RAM. Separate boot

modes indicate which pipeline should be executing transfers. If a pipeline realizes that the
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other pipeline is booting, it splices NOPs into the instruction stream. Since data words are

fourteen bits long and require a five bit address, a single thirty-two bit communication

word can be transferred to the memory address space and write an entire instruction.

Finally, it was determined that the internode transfer time was the critical path in the

CFSM. To allow port reads in the following stage to occur as fast as possible, the port

enables are one-hot encoded at the end of stage two.

5.3 Stage 3: Reading Sources
The third stage of the pipeline requires a source word to be read from the encoded

source of the instruction or the stream’s buffer register, depending on the buffer valid bit

from stage 2 and the opcode of the instruction. Figure 5.3 shows a diagram of most of the

functionality required for the source read.

The buffer registers are read on every cycle. If a source encoding translates to another

stream’s buffer register, the valid bit read the previous stage and the opcode will determine

which buffer register is read. If the opcode isbmove the encoded buffer stream will

always be read. If anfmove instruction is used, a valid bit indicates that a word has backed

up in the stream’s buffer register, and the buffered word will be used. Similarly, if acmove

instruction is used and the read success indicates a failure, then the encoded source is dis-

carded and the stream’s buffer register is instead read.

The final source word can come from one of four places: the ports, the processor regis-

ters, the buffer registers, and the JTAG interface to the processor. If flow control is being

used, the source word mux will read the buffer register if a backed up word is detected or

if a cmove instruction requires a buffer read to mimic the previous instruction.

If the source location of the instruction is a port, the port enable will be asserted at the

very beginning of the clock cycle. At the same time, the accept bit can be sent to the port

from which the read is occurring, since the valid bit of the stream’s buffer register is read

on the previous cycle. Once a source word is chosen, it gets stored in a register for use by

the next cycle.

The destination field of the instruction can specify a processor register or a buffer reg-

ister for writing the source word. If flow control instructions are used, these writes must

fail if a valid word already exists in the destination processor register or buffer stream. In
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order to check this, these valid bits must be read during the read stage of the pipeline. In

the case of the buffer registers, an extra read port is added to the valid bit RAM. Since this

RAM is really a thirty-two bit register, the logic is fairly simple. The valid bits of the pro-

cessor registers must also have an extra read port to read this bit a cycle early. These two

valid bits get transferred to the fourth stage of the pipeline.

Since the internode transfer time dominates the cycle time of the system, the destina-

tion field of the instruction is decoded in the third stage to provide one-hot encoding for

the drivers of the ports. These four signals are directly stored in registers that can immedi-

ately turn the drivers on at the beginning of the next cycle.

instructionstream #valid port decode
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Some logic included in the design of the third stage is not shown for clarity. The buffer

registers are bypassed in case a read and write to the same location occurs on the same

cycle. Although the same stream can not be scheduled on consecutive clock cycles, the

ability to specify other stream’s buffers makes this a possibility.

The read success logic is also not shown. The read success bit can only be zero if the

accept bit is not asserted or if thevalid bit of the final source word is not set. The read suc-

cess bit determines the behavior of the read stage if thecmove instruction is selected. It’s

main effect is on the mux that chooses from the various locations for the source word. It

can also determine whether or not the stream is allowed to accept a word of input data.

5.4 Stage 4: Writing Destinations
The fourth stage of the pipeline is for writing destinations. Destinations can include

the ports, the processor registers, the buffer registers, the JTAG interface, and the memory

address space. A diagram of the fourth stage is shown in Figure 5.4.

Theacceptbit is received from one of the ports or from any of the on-chip locations,

and determines whether the valid bit of the stream’s buffer register will be written. On

every cycle, the buffer register is written. Normally the buffer register of the stream will be

source wordinstruction validsport wt decode stream #
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written, unless an alternate buffer register destination is encoded into the instruction. A

mux selects between the stream’s address and an encoded buffer address based on flow

control semantics and the pre-computedvalid bits. The incomingacceptbit is directly

connected to the data line of the buffer valid bit register, minimizing the amount of delay

that this cross chip signal must undergo. The address can be decoded ahead of time, allow-

ing theacceptbit to be registered immediately.

The source word is connected to the data ports, the processor registers, and all of the

locations in the memory address space. Since the validity of writes to alternate buffer reg-

isters or the processor registers is determined on the previous cycle and stored in a register,

these bits can now act as write enables for the buffer and processor registers.

The logic for capturing the write success information forcmove instructions is not

shown. The only way a write can fail is if theaccept bit, whether from a connecting node

or from an internal location such as the buffer or processor registers, is deasserted. The

write success bit determines whether or not thevalid bit of the stream’s buffer register will

be marked valid.

5.5 Memory Address Space
The memory address space is a single destination to which words can be transferred.

Regardless of the flow control implications of the opcode, a write to the memory address

space will never fail. The only requirement for the transfer to succeed is that the data word

itself be marked valid. The memory address space includes a wide variety of physical

locations. The upper three bits of the data word specify the space in which the data is to be

written. In some cases, such as the schedule RAM, there may be multiple addresses within

the space that are chosen by the remaining high order bits. The data for the actual write

always starts from the least significant bit of the data word. Figure 5.5 shows the mapping

of communication words to the memory address space.

5.5.1 Clear Valid Bits

When location zero is written in the memory address space, no data actually gets writ-

ten, but a valid communication word is necessary for the transfer to succeed. All the buffer

register valid bits and the processor valid bits get cleared. This function is useful for power

up and for switches in communication phases. When a new communication pattern starts



137137137

executing, communication streams may be completely rewritten. Since any buffered

words refer to the old communication streams, a clear valid signal can clear all of the buff-

ers at the same time.

5.5.2 Schedule RAM

When a word gets transferred to the schedule RAM location, the communication word

provides both the address and data for the location to be written. Since the top three bits of

the word specify the schedule RAM, the next seven bits specify the address within the

schedule RAM that gets written. The bottom seventeen bits hold the data to be written into

the schedule RAM.

This location is used to write new schedules, one schedule instruction at a time. In

operation, one communication stream will periodically be reading a processor register or a

port and trying to transfer words to the memory address space. When a new schedule is

written, words are provided by the processor or another node and they get loaded into the

schedule RAM. Even though a schedule is being created, the final switch does not have to

happen until the entire schedule is created. To do this a schedule will be created in a part of

the schedule RAM not being used by the current schedule. When the new schedule is fin-

Location bits [31:29] Addr Bits Data Bits

Clear Valids 000 N/A N/A

Sched RAM 001 [28:22] [16:0]

Instruction RAM 010 [28:24] [13:0]

Boot/Reset 011 N/A [12:0]

NOP 100 N/A N/A

Jtag/LEDs 101 N/A [8:0]

Clk System Bits 110 N/A [3:0]

Schedule Pointer 111 N/A [6:0]

Figure 5.5Memory Address Space
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ished, a final communication word can write the schedule pointer with the first address of

the new schedule.

5.5.3 Instruction RAM

The instruction RAM is written in a similar fashion to the schedule RAM. The top

three bits specify the pipeline’s instruction RAM, the next five bits specify the address

within the RAM, and the bottom fourteen bits specify the instruction to be written. To save

on datapath routing, one pipeline can not write the other pipeline’s instruction RAM.

Future designs could easily be allowed to do this by adding a sixth bit of addressing that

specifies the RAM to be written.

5.5.4 Boot/Reset

The boot and reset signals are combined into a single location. Three bits serve strictly

to put either of the pipelines into boot mode. The high order bits corresponds to an enable

that indicates the boot signals are valid. Each of the next two bits can put either of the two

pipelines in or out of boot mode. If a pipeline is put into boot mode, it will attempt to read

words from whatever port has its reset line asserted, and transfer them into the memory

address space. If no reset line is asserted, the pipeline will be idle until a reset line is

asserted. If a pipeline detects that it is not in boot mode, but the other pipeline is in boot

mode, NOP instructions are spliced into the instruction stream. At power-up, the first pipe-

line is put into boot mode. After a node receives its communication words and the booting

process is finished, a final word must be transferred to take both pipelines out of boot

mode.

Bits 4-12 are used for the reset lines of the node. Each node has a bi-directional reset

line going to each neighbor, requiring a total of four bits. Four additional bits are used for

a reset mask. This mask can cause a node to ignore reset signals from certain ports. The

mask is used for nodes at the end of the mesh or for connections to faulty nodes that may

cause noise on the reset lines. In addition, since the reset lines are bi-directional, when a

node pulls a line high, it must not think the reset is coming from a neighbor. This is pre-

vented by masking out the reset from the port a node is driving. The last bit is used as an

enable for writing both the reset lines and the reset line masks. This allows the booting bits

to be handled independently from the reset lines. When a node is fully booted, it will usu-
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ally be responsible for booting a neighbor. It does this by asserting a reset line to the node.

This causes the neighbor to constantly try to read words from the booted node and transfer

them into the memory address space. streams will have been set up in the booting node to

allow for the transfer of communication words to the unbooted node. When the final word

is transferred, the node should deassert the reset line, since the neighbor node is pulled out

of boot mode.

At power-up, the reset mask is set to allow any resets, and the reset lines are deas-

serted.

5.5.5 JTAG/LEDs

One memory location space is reserved for writing the connecting processor’s JTAG

interface as well as writing any of four LEDs. A total of eight bits are needed. The bottom

five bits are used by the LEDs. The fifth bit is used to indicate that a valid write to the

LEDs is occurring. The next four bits go straight to the LEDs. At power-up, the LEDs are

loaded with high values. This can serve as a quick check that the nodes are receiving

power and that the booting process has begun.

The next four higher bits are connected to the processor’s JTAG interface. The highest

bit is an enable on the tri-state output drivers. By successively writing these JTAG bits, the

processor can be initialized and even loaded with source code. Although this process is

slow due to the serial nature of JTAG transfers, it is a one-time booting charge.

5.5.6 Clock System Bits

In order for the mesh to be synchronized, nodes must be added to a synchronous group

in a pattern that prevents cycles from occurring. When a node receives a clock system bit,

it tries to synchronize clocks with the node from which the clock bit came. Every node has

one clock system bit line per neighbor. One of the first operations at power-up is to create

a synchronous clock for the system. A host computer is connected to a node at one corner

of the mesh. The node connected to the host becomes the first node in the synchronous

group. By transferring the appropriate words to the memory address space, the node can

assert the clock lines for any of the neighbors. Then these neighbors can assert clock sys-

tem bits for their neighbors. The pattern for adding nodes to the synchronous group is

under complete control of the software.
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5.5.7 Schedule Pointer

A single location space in memory is reserved for the schedule pointer. The bottom

seven bits of the communication word is used for this transfer. This location can be written

to quickly switch between schedules in the schedule RAM. If the schedule RAM has

enough room to store multiple schedules, writing the schedule pointer to switch schedules

is far more efficient than creating an entirely new schedule by writing individual schedule

RAM locations.

5.6 Datapath
The datapath on the chip can be described as two busses that can read or write almost

every location on the chip. Each pipeline has control of one of the busses, and they shares

resources such as the ports, scheduler, and the processor interface. At some level, the data-

path required for the ports can be thought of as two pipelined crossbar switches, since a

new word of data can be read from any of the ports on any clock cycle, and any port can be

written by either bus on any clock cycle.

Z
cmos
driver

source 1 source 2

bi-directional port

ports
buffers
proc interface

control

control

source busses

destination busses

valid bits

Figure 5.6Datapath of Port Data
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Figure 5.6 shows the datapath for one of the data ports. The ports are bidirectional, and

a software violation must occur if two pipelines are attempting to write data to the same

port on the same clock cycle. The pads have pull-ups attached to them to keep lines at a

stable value when a port is not being used. A port is just one of the many inputs that can

drive data on a pipeline’s source bus. However, only the two destination busses can drive

data onto the port. Control logic picks between the two busses based on whether or not

either is attempting to use the port. The enable of the tri-state is connected to thevalid bit

of the source word being written to the port. If a word is not marked valid, then no infor-

mation will be driven on the ports. Both the source and destination busses go to many

locations on the chip since they are the primary vehicle for transferring information. It is

the routing of these two busses that leads to the complications in routing the design.

Thevalid andacceptbit drivers and receivers are implemented as a single driver and a

single receiver per port. On any given cycle, at most one pipeline can be either reading or

writing any one port under normal operation. Pipeline reads requires anaccept bit to be

sent while pipeline writes requires avalid bit to be sent. On any clock, only one of these

four signals can be active. This makes the logic for the valid/accept line simply the logical

OR of the twovalid bits and the twoacceptbits. Since the communication is scheduled,

the node connected to the other side of the port will be performing the complementary

action since both nodes reading or writing the port is an invalid operation. One important

result of this implementation is that a a single directional line can be used for transmitting

either anacceptor avalid bit. On every clock cycle, the meaning of this line can change.

There is one such line going in each direction between nodes. Since single directional

lines are faster than bidirectional lines, this allows the flow control protocol to operate

more quickly.

Each port has a single valid/accept receiver that can change meaning on every cycle.

Although the data ports are bi-directional, data can flow only in one direction on each

clock cycle. Since the communication is scheduled, the receiving node knows whether the

transmitted bit is avalid bit or anacceptbit. Similar to the single transmitting line, the fact

that the receiver can be implemented as a single directional line speeds up the chip’s oper-

ation.
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The datapath diagrams do not show how fork operations or pipeline transfers occur. A

fork operation requires that the same data be read and written on the same pipeline on the

same clock cycle. In addition, a neighbor node may also be reading the result of the data

write. For a transfer to succeed, both the internal reading stream and the external reading

stream must assertacceptbits. This bypass condition is detected a cycle early and the

source and destination busses are bypassed accordingly.

Similarly, a pipeline transfer requires one pipeline to be writing a port while another

pipeline reads the port. When this operation is detected, a neighbor node may not be part

of the transaction. The bypass paths between the source and destination busses for this

case also exists. Also, for the pipeline transfer, an externalaccept bit must be ignored, and

the acceptbit must come strictly from the reading pipeline. The valid/accept lines are

bypassed to handle this case.

5.7 Processor Interface
The processor interface supports sixteen registers that are mapped into the memory

address space of the processor. The CFSM can reference the locations in the processor

register file. Sixteen locations are encoded in the instruction word for reading and writing

the processor registers. Full flow control semantics are supported on the CFSM side of the

interface. For flow control semantics to be followed on the processor side, either thevalid

bits of the registers must be explicitly checked before a transfer is made, or an interrupt to

the processor can inform the unit when certain flow control characteristics exist.

Each pipeline has a single port to access the processor register files. This creates the

constraint that on any cycle, a pipeline may be reading or writing the processor registers,

but not both. Due to the nature of the pipeline, this means that an instruction that reads the

processor registers can not follow an instruction that writes the processor registers. This

constraint allows the processor register file to have only three ports rather than six, but

comes at a cost of increasing the scheduling complexity. The processor registers and valid

bits are all bypassed to allow for maximum transfer rates if the same locations are being

read and written at the same time.

The processor register valid bits consist of a sixteen bit register that indicates what reg-

isters hold valid data. Thesevalid bits actually have six ports due to the requirement of
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flow control. When writing a processor register with anfmove instruction, thevalid bit of

the register gets checked during the read stage of the pipeline. Since an actual read or write

to the processor registers can be occurring in the pipeline, an added port to the valid bits

must be added to allow this flow control check. Since thevalid bits are made up of simple

logic, this requirement does not add to the critical path.

The interface between the register file and the attached processor of the node is a much

more difficult decision. Standard bus interfaces for microprocessors were first considered

as a solution to the processor interface problem. The S-Bus and M-Bus interfaces are both

well defined and supported by a wide variety of processors. However, both protocols have

tremendous overhead resulting in a single transfer taking tens of processor cycles to com-

plete. Ideally, the processor interface should be able to transfer words at the same rate the

network can transfer words to the processor interface. If it takes tens of clock cycles to

transfer words between the network and the processor, the benefits of scheduled communi-

cation gets drastically reduced.
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Fortunately, there exist busses with much better performance. The bus chosen for the

NuMesh prototype nodes is the Local Graphics Bus, defined by Sun Microsystems (also

called the AFX bus). The Local Graphics Bus is designed to support high throughput

graphics communications for the micro-SPARC family of processors. By deciding to use

the Local Graphics Bus, the types of processors that can be connected to the NuMesh net-

work are members of the micro-SPARC family and other computation units that can

observe the Local Graphics Bus protocol. While this is not an ideal general solution, it

works well to demonstrate the prototype NuMesh system. Active research on a better pro-

cessor interface is ongoing.

The AFX bus has several desirable characteristics. Write accesses have a latency of

two cycles, although multiple writes can be pipelined such that successive writes take a

single cycle each. Read accesses take two clock cycles. The AFX bus targets 256 Mbytes

of address space in a system memory map. The data lines for the bus are shared with the

main memory bus of the processor and up to eight bytes of data can be transferred at a

time.

The local graphics bus (AFX bus) is implemented by adding simple logic to the third

port of the processor registers. The signals required to implement the AFX bus are

included in figure Figure 5.8. The sixteen processor registers are mapped into the memory

locations of the processor such that whenever an application tries to access locations in a

certain range, a bus access is initiated between the processor and the CFSM.

While the local graphics bus allows for a variable response time when requests for

reads or writes are made, the NuMesh system can guarantee the quickest possible access

time, since internally, all that is occurring is a simple read or write access to a dedicated

access port. This greatly simplifies the logic needed to support the bus, and maps quite

easily to a standard address/data protocol that other computation units such as DSPs or

graphics chips can take advantage of. By tying certain signals high or low, the bus protocol

can be greatly simplified to support more simple protocols.

Figure 5.9 shows the logic necessary for the local graphics bus. To implement the local

graphics bus protocol, a pipeline is formed such that the CFSM can support the maximum

rate of transfers from the processor. The AB lines specify the address of the register being
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accessed. If both the AEN and the LO_ADDR are active, then a valid access is beginning.

The SREPLY bits indicate whether a read or write access is occurring. Since the SREPLY

signal can come at unspecified number of clock cycles after the address, the address must

be registered until a new access starts. This is accomplished through the feedback mux of

the address register. If the SREPLY bits indicate a write access, the write data will appear

on the following clock cycle. This data can be registered and the write will complete on

the following clock cycle. A read can also finish on the cycle following the request. As a

result, the SREPLY bits can quickly be turned into the PREPLY bits indicating to the pro-

cessor that the accesses have been accomplished. Using this logic, the CFSM can support

a read on every other clock cycle, and a write can be supported on every clock cycle, after

the initial two cycle delay of the first write.

Logic is not shown to support the interrupts and the reading of allvalid bits. When the

processor writes location twenty-four, the interrupt mask is written. The bottom sixteen

bits of the mask check for empty locations while the top sixteen bits check for full loca-

Signal Name Function Driver

AEN Address Enable - indicates the address
lines contain valid data

Processor

AB[4:0] Address Bits - Used to select a particular
address from the processor interface

Processor

LO_ADDR Low Address Select - Serves to indicate
which address byte is being sent. NuMesh
ignores address if high bytes is indicated

Processor

P_REPLY[1:0] Indicates when Slave is sending valid data NuMesh

S_REPLY Indicates when processor is sending valid
data

Processor

INT_L Interrupt line to processor NuMesh

DB[32:0] Thirty-three bit data bus (one bit for
optional valid)

both

Figure 5.8Control Lines Between Processor and NuMesh
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tions. A one in any interrupt mask bit location indicates that the condition is active. If any

of thevalid bits meet the conditions checked for in the mask, the interrupt bit is asserted.

Figure 5.10 shows an example of how the interrupt mask works.

The processor can read address sixteen to get a sixteen bit data word consisting of all

the valid bits of the processor registers. An application might access this word to deter-

mine which messages have arrived, and then dispatch to different code based on this

result. This mechanism is much faster than the interrupt mechanism, since an interrupt can

take many cycles to take effect.
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Any time the processor reads a processor register word, thevalid bit gets sent as a

thirty-third bit. If the processor reads a double word, this bit will appear in the application

as the second word. In this manner, an application can try to read messages and check for

their validity based on this extra transferred bit. If a single word access is attempted, the

extra bit is simply ignored.

5.8 Booting Process
Mechanisms to facilitate the booting process have been described throughout this

chapter. This section will serve to give a step by step description of how a mesh gets

booted, from power-up to the running of an application. For this example, the mesh pic-

tured in Figure 5.11 will be used.

0000000010001000 0001000000000001

Interrupt Mask

An interrupt  will be asserted if:
- processor register 0 is not valid
- processor register 12 is not valid
- processor register 3 is valid
- processor register 7 is valid

Figure 5.10Interrupt Mask Example

node 0 node 1

node 3 node 2

host

Figure 5.11Network for Booting Example
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The first step of the booting process involves the power-up signal that occurs when the

system is turned on. Through an RC circuit, all nodes receive a power-up signal that

causes them to go into boot mode. The particular boot mode chosen is for pipeline one.

Since no reset signal is asserted, each node will be idle, waiting for a reset line to go active

on one of its ports. The power-up signal clears all of the buffer and processor register valid

bits that might accidentally get set, sets the LEDs to active, clears out the processor inter-

rupt and reset masks, and deactivates all system bits.

Next the host computer asserts the reset line for node 0. This causes node 0 to con-

stantly attempt to read words from the negative X port and write them to its memory

address space. The host can now send words to any locations in node 0. If words need to

be sent to the second pipeline, the host can send a control word that switches booting con-

trol between the two pipelines. The processor attached to node 0 gets initialized by the

host computer writing words to the processor JTAG interface. Rather than setting up the

final communication schedule for node 0, a pipe must be set up so that node 1 can receive

words from the host computer. Essentially a single stream can be constantly executed on

node 0 that transfers words from the negative X port to the negative Y port.

Once the host has control of node 0, it can send a word to node 0 that causes it to assert

the clock system bit that is connected to node 1. After a few clock cycles, it can be

assumed that node 0 and node 1 are in sync. When this has occurred, the host can write a

word to node 0 that causes the reset line between node 0 and node 1 to be asserted. This

causes node 1 to transfer words from node 0 into its memory address space. Node 1 can be

set up with a path that allows the host to write the memory address space of node 2. Again

the clocks are synced, and the reset line is asserted. Eventually, all nodes will be added to

the synced clock network, and final communication schedules and instructions can be

loaded to the nodes. The paths for loading the more remote nodes can be successively cre-

ated, until all nodes have their final schedules and instructions loaded. Since the host com-

puter has control of all data transfers, and words are not transferred until the global clock

is established, the exact timing that each node is taken out of boot mode can be exactly

known. When the last node is taken out of boot mode, all nodes are in sync and the appli-

cation can begin. Nodes can periodically be rebooted by a processor if a new schedule or

new instructions need to be loaded, but it is expected that boot mode will only be used



149149149

before the application begins, and any subsequent dynamic behavior would happen by a

node repeatedly writing its memory address space.

5.9 Packaging and Pinout
The package selected for the CFSM chip was a 299 Pin Grid Array (PGA). One of the

bigger constraints when choosing a target technology was finding one that could be fit into

a package with enough pins. The Chip Express pad design allows pull-up or pull-down

resistors to be attached to every pin, and a variety of slew-rate controlled drivers are sup-

ported.

Since the CFSM architecture supports four neighbors as well as the processor inter-

face, many pins are needed for its implementation. On any given clock cycle, many of

these pins may not need to be driven. In order to prevent signals from degrading to meta-

stable values, pull-up resistors are attached to the data pins to prevent current spikes. Since

it is also possible for many pins to switch at once, all drivers are implemented with a high

slew-rate control to prevent current spikes that might cause ground bounce in the chip.

The power-up pin controls many of the initialization functions on the chip, and should

only be active when the chip is first turned on. To prevent noise on this pin from acciden-

tally reinitializing the chip, the receiver for this pin has added hysteresis. Since the power-

up signal is active for several clock cycles while noise on the pin should be fleeting, this

technique serves to isolate the signal from the noise.

A complete listing of all signal pins on the chip is included in Figure 5.12. A total of

200 pins are needed for signaling on the chip. An additional fifty pins are used for power

and ground signals on the chip.

5.10 Constraints in the Chip Express Design Flow
Chip Express constraints added two significant changes to the design of the CFSM.

The RAMs in the Chip Express design require that the read address be latched in on the

clock cycle preceding the cycle in which the data is expected to be offered. The design of

the pipeline assumes that the read operation of the RAM is combinational, and that the

address can be created at the beginning of the cycle in which data is expected. In most

cases, the difference is irrelevant since the read address in the design is coming straight
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from a register. For these cases, the register is effectively moved into the RAM module. In

some cases in the design, some combinational logic occurs between stages and the address

is figured out early in one of the stages. For these cases, the addresses must be precom-

puted on the previous cycle in order to be stored in the register of the RAM module. Fortu-

nately, only minor modifications must be made to allow this to work, and the critical path

Signal
Number
of Pins

Direction Attached Resistor?

Data Ports 32 x 4 = 128 Bi-directional Pull-Up Resistor

Valid/Accept Input 1 x 4 = 4 Input Pull-Down Resistor

Valid/Accept Output 1 x 4 = 4 Output None

Clock System Bits 1 x 4 = 4 Output None

Reset Lines 1 x 5 = 5 4 Bi-directional
1 Output (proc)

Pull-Down Resistor

proc JTAG port 1 x 4 3 Output
1 Input

None

AFX AB(address) 5 Input None

AFX DB(data) 33 Bi-directional None

AFX AEN(enable) 1 Input None

AFX
ADDR_LO(enable)

1 Input None

AFX SREPLY 2 Input None

AFX PREPLY 2 Output None

Processor Interrupt 1 Output None

Power_reset 1 Input None

LEDs 4 Output None

System Clk 1 Input None

Total Pins = 200

Figure 5.12Pinout Listing of Chip
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is not affected.

The second constraint is much more serious. The system design for clock distribution

can minimize skew between the clock signals of any two nodes. On each node, the clock

signal is an input to the CFSM chip. Additional and unpredictable skew delay can occur

when the clock goes through a pin and a receiver. Traditionally, a phase-locked loop can

force the external and the internal clocks to match. Unfortunately, the Chip Express logic

family (CX2000) did not support this phase locked loop. As a result, the skew between the

clocks became unacceptable. Consider the example in Figure 5.13. Node 0 is attempting to

transmit data to node 1. Ideally, an entire clock cycle is allowed for the transfer. Data is

latched on rising edges of the clock. In the example, if the rising edge of node 1 occurs

much after the rising edge of node 0, the data being transmitted by node 0 may start to

change before node 1 has a chance to latch the data.

Some amount of skew can be tolerated due to the hold time characteristics of the logic

in the transmit path. The absence of a phase-locked loop causes enough skew potential to

keep the hold time delays from solving the problem. As a result, a new clocking scheme

was implemented. All nodes transmit on the rising edge of the clock, but receive data on

the falling edge of the clock. Consider the same example as before, in Figure 5.14.

In this example, since the transmit and receive edges do not line up, clock skew can

not cause the wrong data to be latched, although it can reduce the effective amount of time

allowed for the transfer. The biggest drawback to this system is that only half a clock cycle

is allowed for a data transfer. This causes the internode transfer time to be the critical path

in the CFSM.

transmit

receive

Node 0

Node 1

Figure 5.13Clock Skew Can Cause Transmit Errors



152

transmit

receive

Node 0

Node 1

Figure 5.14Overcoming Clock Skew
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Chapter 6

Conclusion and Results

The goal of this thesis is to show the design and implementation of an architecture

capable of efficiently supporting scheduled communication. Virtual streams of communi-

cation are extracted from an application at compile time. These virtual streams indicate a

source processor, a destination processor, and a requested bandwidth of communication. A

directed graph of communication can be extracted from these virtual streams, and a global

schedule of communication can be created that choreographs communication in the net-

work. By taking advantage of scheduled communication information already present in

many applications, the NuMesh system can minimize congestion by intelligently schedul-

ing the virtual streams. In addition, the clock cycle of the network can be reduced due to

the absence of data-dependent decisions and a simple flow control protocol. Although the

communication network is static, the processors attached to each node are unpredictable in

nature and can inject and remove messages at arbitrary times. A flow control protocol is

supported to allow messages to back up in the network without affecting the choreo-

graphed schedule of the network.

The rest of this chapter is devoted to summarizing the thesis. First the major architec-

tural ideas are discussed. Then the design flow for the actual chip is described. Once the

chips were received a variety of testing environments were created. Finally, some effort is

made to evaluate the architecture based on the two fundamental goals of reducing the net-

work router’s cycle time and minimizing congestion. The chapter ends with some ideas of

future work.

6.1 Architectural Features
This thesis discusses several architectural ideas unique to a scheduled communication

system. A goal of this thesis was to walk through a series of architecture decisions that

were made when designing the system. It is hoped that future designers of scheduled com-

munication architectures can take advantage of some of these features. This section will

recap some of the more important features of the NuMesh architecture.
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6.1.1 Virtual FSMs for Virtual Streams

Applications can support a variety of communication models that result in very differ-

ent numbers of virtual streams. A goal of the NuMesh architecture is to support an arbi-

trary number of streams without performance being lost for applications that require fewer

or greater numbers of streams. The NuMesh CFSM supports two physical pipelines of

communication that allow two different virtual streams to operate on every clock cycle.

Since the NuMesh system supports four ports, this allows all four port to be used on every

clock cycle. In addition, each of the pipelines can be time-multiplexed to support up to

thirty-two virtual streams each. The architecture does not put a limit on the number of vir-

tual streams, but the implemented chip uses a total of sixty-four due to memory con-

straints.

By arranging the NuMesh CFSM as a combination of many small virtual FSMs, each

supporting a single virtual stream, the number of state bits required to keep track of the

global communication FSM is reduced. In addition, a scheduler can assign each virtual

stream an arbitrary amount of bandwidth without having to design a complicated global

FSM.

6.1.2 Flow Control Protocol

Once it was discovered that words could back up in the communication network, flow

control needed to be implemented. A novel protocol is introduced that allows flow control

to occur on a single communication word. The protocol only requires a single internode

transfer to complete and only requires two bits of information to be exchanged between

the nodes involved in the transfer.

The flow control scheme requires some amount of buffering for each virtual stream,

since each virtual stream has the potential to be blocked. A single word of buffering is pro-

vided for each virtual stream. The flow control protocol dictates that a virtual stream is not

allowed to accept new data if its buffer register is full. Since the virtual streams are sched-

uled at compile time, the CFSM can decide a cycle earlier whether a virtual stream will

accept a new word of data. At the same time the transmitting node is sending a data word

along with a singlevalid bit, the receiving node can transmit a singleaccept bit that indi-
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cates whether the stream will accept new data. Instead of two cycles or multiple buffers

being required as in traditional dynamic routing systems, the NuMesh architecture can

accomplish the handshake in a single clock cycle and with one buffer per virtual stream.

6.1.3 Scheduler

One might have assumed that the CFSM state memory could have consisted of a single

RAM containing a program of instruction to be executed during run-time. Each instruction

could correspond to the actions of a single virtual stream, and the streams could be sched-

uled for greater bandwidth by being simply replicated in the loop as needed.

This thesis showed the benefits of decoupling the scheduler state from the virtual

stream instructions. Since each virtual stream must have its own buffer storage, there must

be a distinction between two streams that travel the same path through a node and a single

stream that is scheduled twice. The CFSM architecture defines a single instruction for up

to sixty-four virtual streams. The scheduler simply decides which of these sixty-four

streams gets scheduled on every cycle. The scheduler forms an outer loop of control

across all the CFSMs and forms a global schedule. Another advantage of decoupling the

scheduler from the instructions is that either can be changed without a complicated pro-

gram code needing to be updated.

6.1.4 Processor Interface

Since the static communication network has to interact with the dynamic timing of the

processors, there must be an interface to synchronize the two. A register file of shared

memory locations is described, which allows each virtual stream some number of loca-

tions to store words at each end of the communication path. A variety of techniques are

described to reduce the number of cycles that words spend waiting in these shared mem-

ory locations. Mechanisms for interrupts, polling of all the streams, and single stream flow

control are described, and the benefits of each are discussed.

6.1.5 Dynamics in a Scheduled Architecture

Static routers require very precise timing between all processors and the communica-

tion network. This thesis shows how dynamic behavior can be incorporated into a static
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communication network. Virtual streams are assigned certain clock cycles for operation at

compile time. If the dynamic timing behavior of the destination processor of a virtual

stream prevents the node from removing messages from the communication network,

messages back up along the communication path according to the flow control protocol

described in 6.1.2. An important result of this protocol is that when words are backed up

and stored in buffers, the entire operation occurs within the scheduled clock cycle of the

virtual stream that is operating. On the following clock cycle, a completely different set of

virtual streams may be operating and the blockage from the previous virtual stream has no

lingering effect on the timing of the network. This allows schedules to be created at com-

pile time without any regard to the fact that virtual streams can behave dynamically in that

they may be backed up in the network depending on the processors’ behavior.

Several mechanisms are described to allow for run-time changes to the static schedule.

Both virtual stream instructions and CFSM schedules can be written during operation of

an application. Since these writes can only occur at precise times that are set up at compile

time, it is possible for the entire system to change its communication patterns at the same

time. Multiple schedules and extra sets of virtual stream instructions can be stored in the

CFSM at compile time, allowing a single write to completely change the static schedule

being run on a node. For more subtle changes, individual schedule slots and virtual stream

instructions can also be written by the processor as they are needed during an application.

6.2 Design Flow
The process of implementing the chip involved several stages of design. High level C

simulations of a variety of architectures were implemented and refined. Separate hardware

modules were created as modules for thensim[Metc95] simulator environment. Once the

communication needs for a wide variety of communication strategies were identified, the

architecture could be tweaked to optimize for the common case.

Once the basic architecture was identified, behavioral verilog code was developed in

order to provide a detailed picture of the CFSM. While the verilog code was too compli-

cated to simulate many nodes concurrently, a small number of nodes could be booted and

provided with snippets of communication traffic obtained from the high level simulator.
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Next, the target architecture needed to be selected. The biggest constraint on the

design turned out to be the required pin-out of the design. Originally, a six-neighbor 3-D

cartesian network was planned. The 3-D diamond network was selected as an interesting

compromise that provided fewer ports as well as a chance to explore a novel topology.

Traditional university chip designs use the MOSIS design process. The MOSIS process

did not provide a package that could support the pin-out of the design. FPGAs were

explored as an alternative to custom chips due to their ability to allow quick experimenta-

tion on the hardware. However, the inefficient routing of FPGAs and their slow cycle

times made them a poor choice. Even a scaled down version of the CFSM consisting of a

single pipeline and limited stream support could not easily fit on an FPGA. As a compro-

mise, the Chip Express laser-cut technology was chosen. They were able to support the

pin-out demands of the design and provide performance significantly better than FPGAs,

although not quite as good as custom ASICs. Once the target technology was chosen, the

behavioral verilog was changed into structural verilog that met the requirements for the

Chip Express technology.

Once the structural verilog was simulated with a set of benchmarks, the verilog design

was fed into Synopsys for synthesis. While Synopsys was able to turn the verilog descrip-

tion into a Chip Express netlist, critical paths needed to be hand-tuned to reduce delays.

The critical path at this point was identified as time required to get data from one chip’s

drivers through another chip’s receivers and latched into a register. Only estimated delays

were used at this point, since the design had yet to be physically routed. Once hand-tuning

possibilities were exhausted, the design was shipped to Chip Express for routing. Eventu-

ally, the routing succeeded and an actual delay file was returned. This data file determined

the clock cycle of the chip at about 37 MHz under worst case conditions.

6.3 Testing
Testing for the chip design occurred at three separate levels. Chip Express was pro-

vided with over five thousand test vectors that tested the basic functionality of the chip.

Before chips were returned, these test vectors were run on the chip at 1 MHz. These vec-

tors were comprised of the same tests that were run on both the behavioral and structural

verilog. Each benchmark involved a reboot of the chip and a full loading of chip state from
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the datapath. These benchmarks are included in Figure 6.1.

Once the initial chips were returned, two testing environments were created in the MIT

lab. The first involves a wire wrapped FPGA-based board. A small Xilinx 4005-PC84

FPGA is connected to a host computer and its pins are connected to one of the ports of the

CFSM chip. The FPGA can control the CFSM clock, reset, and power-up pins. Words can

be downloaded into the FPGA which acts as a synchronous FIFO and supplies words to

the pins of the CFSM. In this manner, arbitrary benchmarks can be downloaded into the

FPGA and subsequently used to boot and run sample communications patterns on the

CFSM. The LEDs can be used as a final destinations for words that get transferred to vari-

ous parts of the chip to allow for a quick indication if a benchmark succeeded.

The second testing environments takes advantage of JTAG boundary scan. An addi-

tional testing feature is added to the design of the chip. All of the pads around the edge of

the chip are linked together in a serial chain as indicated in Figure 6.2. A JTAG controller

is included to provide control over this scan chain. The JTAG controller can override the

value currently on each pin with a user-controlled value that gets serially shifted. In this

manner, every input pin can be supplied with a user defined value without any additional

external connection to the pin. Similarly, the output value of each pin can be latched and

read out through the same serial shift chain, allowing the user to see the state of all the pins

without needing any external connections to the pins.

Five external pins on the chip are used to control this interface. By asserting the appro-

priate JTAG opcode, the chip will use either the serially shifted data or the current values

on its pins for an upcoming clock cycle. At the end of a clock cycle, all of the values of the

pins can be shifted back out and examined. Special software allows the mechanics of the

interface to be abstracted away by a series of high level commands. The user can simply

write benchmarks and execute them, examining the state of the pins at any point in the

code. Using this technique, any of the original benchmarks can be run and all ports can

easily be tested. Multiple chips can be connected, and the JTAG boundary chain of both

chips can be connected to form a single boundary scan chain. This allows more compli-

cated benchmarks to be executed with extensive debugging possible at any stage of the

benchmark.
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Benchmark Description

Buffer_Write Words transferred from port to buffer register

PReg_Write Words transferred from port to processor register

Buffer_Read-Write One thread writes buffer reg while another reads

Buffer_1pipe-2read Consecutive threads try to read a buffer register after
words are transferred there from port

PReg_1pipe-2read Consecutive threads try to read a processor register
after words are transferred from their from port

Buffer_1pipe-2write Consecutive threads try to write same buffer register
using flow control

PReg_1pipe-2write Consecutive threads try to write same processor regis-
ter using flow control

Preg_2pipe Multiple threads in each pipeline access the same pro-
cessor register

Bmove Combinations of blind moves occur between ports

CMove Messages of various sizes are transferred under vari-
ous flow control conditions

Fork Words are forked among various ports under various
conditions

Pipeline Transfer Words are transferred between pipelines

Memory Various memory locations are written including
scheduler, instructions, LED, clk sys, and JTAG

Proc_test Words are exchanged between the ports and processor
through the interface registers

Proc_Interrupt Words are transferred through interface registers such
that mask conditions are met and interrupt fires

Proc_Valid Processor reads all valid bits over Local Graphics Bus

2node Traffic is routed between two connected nodes

4node Traffic is routed between four connected nodes

Figure 6.1Description of testing Benchmarks
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6.4 Cycle Time
One of the goals of this thesis is to produce a communication architecture that allows

for a very fast cycle time. Special care was spent to reduce all critical paths to either an

internode transfer or a small RAM access. The architecture presented meets this goal. The

implemented chip achieved a maximum frequency of just under 37 MHz. However, this

chip is designed as a prototype for a scheduled communication system. Since a target

architecture of a laser-cut gate array was chosen, performance was compromised. A more

aggressive full-custom implementation could have drastically increased the frequency of

the design.

Comparing the maximum clock frequency of the NuMesh CFSM to other dynamic

routers is a difficult proposition since a wide variety of technologies and implementations

are possible and can confuse the comparison. The main advantage of the NuMesh CFSM

is the lack of data dependent run time decisions and the ability to perform flow control

operations with a single internode transfer. A paper out of Illinois [Aoya93] made a com-

parison to dynamic routers, all implemented in the same technology. In the paper, each

contributor to the clock period was identified. Since the contributors to the delay for the

Figure 6.2JTAG Boundary Scan (Input Pin)
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control

to circuit
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NuMesh CFSM have been fully specified, it is possible to compare the performance of the

Numesh CFSM to a variety of dynamic routers.

The paper from Illinois describes a base-line adaptive router that allows two degrees of

freedom. While a traditional deterministic router routes messages along dimensions in a

particular order, their base-line adaptive router allows the router to choose from between

two dimensions to advance the message. Messages are routed among planes in a particular

order, but not dimensions.

In the design of adaptive and deterministic routers, the delay can be broken down to

two components. The first is the intranode, or internal delay a word has to undergo before

being sent. For a deterministic router, this delay might simply be an examination of the

header address and the overhead of choosing the appropriate channel for transfer. An

adaptive router might have a few more decisions to make depending on how many degrees

of freedom the adaptive router can choose between. This intranode delay can further be

broken down into two components. The first is termed thepath setup while the second is

called thedata throughdelay. Thepath setup delay refers to the time the router takes to set

up the crossbar transfer based on the decoding of the header address. For the Illinois base-

line adaptive router, thesetup pathdelays are included in Figure 6.3.

Delay Component Description Delay

Address Decoder Chooses destination ports based on
header address

3.3 ns

Routing Decision Arbitrates among requests of address
decoder result

2.1 ns

Packet Update Controls switch operation and updates
header packet based on decision

2.6 ns

Crossbar Switch Time for data to go through crossbar 1.1 ns

Virtual Channel Multiplexes virtual channels among
physical channel

1.2 ns

Total 10.3 ns

Figure 6.3Components of Path Setup Delay
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The second component of the intranode delay is termed thedata through delay. The

data through delay comes from the overhead of managing flow control on a transfer. For

the Illinois baseline router, the delay time consists of the components illustrated in Figure

6.4. To allow for data synchronization and flow control management between nodes, it

takes twodata throughdelays for a message to be transferred. For the baseline Illinois

router, twodata through delays is greater than thesetup path delay so the intranode delay

is 5.7*2 = 11.4 ns.

The components of the internode delay are more simple. They are described in Figure

6.5. Basically, data has to get through an output driver, and input receiver, and then is

latched. Although this delay is a non-trivial 4.9 ns, the delay is far less than the 11.4 ns

required by the intranode delay. The Illinois router cycle is dominated by the intranode

delay, even though it is the most simple of the adaptive routers they examined. If more

degrees of freedom are allowed in the adaptive router, the intranode delay becomes much

worse.

The Illinois paper goes on to examine a deterministic router based on the same

assumptions as their adaptive router. For the deterministic router, thepath setupdelay

becomes 5.7 ns while thedata throughdelay becomes 3.0 ns. The internode delay remains

fixed at 4.9 ns. The savings in intranode delay come from the absence of any virtual chan-

nel controller and the more simple routing decision that is made. However, two internode

Delay Component Description Delay

Internal Flow Control Time for internal flow control
decisions

2.2 ns

Crossbar Switch Time for flow control data to
propagate through node

1.0 ns

Virtual Channel Time for negotiation of vir-
tual channel

2.5 ns

Total 5.7 ns

Figure 6.4Components of Data Through Delay
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transfer times are required per message word, so the cycle time is 4.9*2 = 9.8, only a small

savings over the simple adaptive routing case.

The NuMesh CFSM can also be modeled based on these assumptions. By far, the big-

gest savings comes from the fact that only a single internode transfer is required per word.

The intranode delay for the NuMesh router consists of only thepath setup delay, since

most ofdata throughdelay occurs in parallel with thepath setup delay, and the rest occurs

on a later stage of the pipeline. Compared to thepath setupdelay of the adaptive router,

only the crossbar switch delay and some amount of the routing decision delay is charged

to the NuMesh CFSM. Even if the routing decision delay is assumed to be equal to that of

the adaptive case (a doubtful proposition, since no data dependent decisions need be

made), the total intranode delay would be 1.1 + 2.1 = 3.2ns. Since thepath setupdelay in

the NuMesh design occurs in a different pipeline stage than the internode transfer, the

NuMesh cycle time will be the worse of thepath setupdelay and the internode delay. That

gives the CFSM a clock period of 4.9ns. This is 50% of the clock period of the determinis-

tic router, and 43% of the simple adaptive router. The Illinois router was implemented in a

.8 micron CMOS gate array library from Mitsubishi Corporation.

Since the NuMesh cycle time is determined by an internode transfer, one could imag-

ine using fancier signaling techniques or even pipelining the internode transfer itself to

allow for an even faster clock cycle. Pipelining the internode transfer would add an addi-

tional constraint involving the number of required bubbles between operation of the same

Delay Component Description Delay

Output Buffer Time for data to get off chip 2.5 ns

Input Buffer Time for data to get on chip .6 ns

Input Latch Setup time to latch data .8 ns

Synchronizer Time charged for differences
between system clocks

1.0 ns

Total 4.9 ns

Figure 6.5Components of Internode Delay
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stream, but would allow for very high data throughput. Since no data dependent decisions

need ever be made in the NuMesh design, the cycle time can be continually decreased as

technology improves. A direct comparison of the three routers is included in Figure 6.6.

6.5 Network Congestion
A second goal of this thesis was to provide a communication routing chip that can effi-

ciently support scheduled communication. In order for the architecture to be considered

useful, it must be shown that scheduled communication operating on the NuMesh system

can outperform dynamic communication. The previous section showed that the cycle time

of the network can be improved by fifty percent or more. This section will show that

scheduled communication can reduce congestion in the network enough to provide signif-

icantly improved application performance.

Chris Metcalf[Metc97], will compare scheduled communication to a variety of

dynamic routing schemes. In some of his early analysis, he takes several well-known

application kernels and compares their performance for both off-line scheduled routing on

the Numesh, and on-line dynamic communication methods. For the rest of this section, it

should be noted that the cycle time for all routers is assumed to be the same. The added

benefit of the increased potential frequency of the NuMesh CFSM is not taken into

account. Three application kernels that Metcalf studied are parallel prefix, transpose, and

prefix.

Intranode Delay Internode Delay Total Cycle Time

Deterministic
Router

5.7 ns 4.9 ns 9.8 ns

Adaptive
Router

11.4 ns 4.9 ns 11.4 ns

NuMesh
Router

<=3.1 ns 4.9 ns 4.9 ns

Figure 6.6Cycle Time Comparison of Routers
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A parallel prefix algorithm works as follows. Assume there exists some operation

. A group of nodes is labeled fromn0 - nN. Each nodeni holds the value .

The operator can be any associative function such as ADD, MIN, or OR. Parallel

machines use parallel prefix for a variety of algorithms such as graph traversal, traveling

salesman, and various min/max problems. Since the communications for a parallel prefix

are known at compile time, they can be completely scheduled. The algorithm does require

several phases of communications that must be loaded in during operation. Metcalf’s com-

parison of different communication schemes for the parallel prefix algorithm is included

in Figure 6.7.

The second application Metcalf looked at was the transpose benchmark. In a three-

dimensional array, every node sends data to another node based on its address. Messages

⊗ n0 … ni⊗ ⊗

Figure 6.7Comparison of Routing Schemes for Parallel Prefix
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are transferred from (x,y,z) to (z,y,x). Two Kilobytes of data are transferred from each

node. For this application, both deterministic and adaptive schemes are compared to the

NuMesh scheduled routing. The results are shown in Figure 6.8.

The final application kernel is a bit reverse. Again, all nodes are sending data to other

nodes based on their address. In this case, every node is assigned a binary address of

non1...nN. A two Kilobyte message is sent to the node with addressnNnk-1...n0. Again,

both deterministic and dynamic routing schemes are compared to NuMesh scheduled

communication. Results are shown in Figure 6.9.

For all three applications, the scheduled communication model outperforms both the

deterministic and adaptive schemes. The deterministic schemes suffer because nodes

Figure 6.8Comparison of Routing Schemes for Transpose
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attempt to force too much data over selected links while free nearby links remain unused.

The adaptive scheme suffers because bottlenecks are generated by some of the misroutes

resulting in even longer delays than the simple deterministic router. If the frequency of the

communication nodes was taken into account, the NuMesh scheduled communication

results would fare significantly better, and the adaptive scheme would fall even further

behind the deterministic scheme.

6.6 NuMesh Environment
The CFSM forms just one part of the NuMesh system. The goal of the NuMesh project

is to provide a hardware and a software solution for scheduled communication. This thesis

has discussed a hardware architecture that is optimized for scheduled communication.

Figure 6.9Comparison of Routing Schemes for Bit Reverse
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These chips were designed and received and will be incorporated into a multi-node sys-

tem. This section will discuss the software environment that can take advantage of the

implemented hardware and provide a framework in which programmers can write and

execute parallel applications.

6.6.1 COP

The Communication Operators Language (COP) is proposed as part of Chris Met-

calf’s PhD thesis as a language for implementing scheduled communication. COP allows

communication to be expressed at a high level and can include complex router-level

semantics that might be difficult to specify on a per node basis. Operators for broadcasting

messages, setting up communication streams between nodes, or even specifying various

permutation patterns are included in a library. A programmer can simply use high level

abstractions when writing applications, and the COP compiler can capture the parallelism

needed at the node level.

The COP compiler can even decide when some decisions need to be handled dynami-

cally. If multiple phases of communication are needed, the COP compiler can set up cor-

rect barriers to allow phases of scheduled communication on the NuMesh. If true dynamic

routing is needed, the COP compiler might lay down many paths connecting all nodes at

some low bandwidth and allow the computation units to insert messages as they see fit.

Ideally, scheduled communication streams will be generated from the high level language,

since the Numesh system is geared toward handling these cases, but the goal of the COP

compiler is to be able to handle any parallel application.

6.6.2 Bullfrog

The Bullfrog environment was created as part of Mike Connel’s Master’s thesis

[Conn96]. It describes a high level approach to developing NuMesh applications. A pro-

grammer can link together function blocks with data streams using either text or a graphi-

cal interface. A library of function blocks are described that provide basic signal

processing and computation operations. The user can either link these blocks together, or

create new application blocks that can be added to the library. An example of a trivial sys-

tem is shown in Figure 6.10. A library module for calculating the square of a number is
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defined. A user can connect two of these blocks to form an application or to form another

library module that raises a number to the fourth power.

Complicated DSP, graphics, or scientific applications can be built out of the various

library modules allowing a user to ignore the details of the scheduled communication. The

output of the Bullfrog system is a set of primitive function block instances along with any

run-time parameters that they require, and a set of stream connections that can later be

mapped to the communication hardware.

6.6.3 Lilypad

The Lilypad system was developed by Greg Spurrier for his Master’s thesis. While the

Bullfrog Block Diagram approach to programming is very attractive to the user for its ease

of use and flexibility, it suffers from two limitations. First, it assumes a one-to-one map-

ping of a computation module to a processing node. This provides a very serious con-

straint in that a complex system might quite easily consist of more primitive blocks than

there are nodes in the system. Secondly, primitive blocks may have a set of constraints that

must be followed when they are connected. For instance, dataflow-type blocks might

require all inputs to be valid before firing, or might be able to begin computation when it

receives any of its multiple inputs. The Bullfrog system had no special mechanisms

present for combining blocks. While this was attractive for simple applications, more

complicated programs require a higher level of sophistication.

The Lilypad system was developed to automatically generate control procedures that

allow an arbitrary number of primitive blocks to reside on a single NuMesh node, thereby

eliminating the one-to-one constraint imposed by Bullfrog. In addition a set of conven-

X2 X2

Figure 6.10A Simple Bullfrog Example

X4
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tions were defined that specify the state of input and output streams required before a

block may be invoked. These conventions turn into synchronous barriers in the scheduled

communication streams that are eventually extracted from the user block diagram.

6.6.4 Tadpole

The Tadpole compiler handles the job of turning a graph of communication streams

into scheduled communication that can run on the NuMesh hardware [Lopr97]. Both the

COP language and the Bullfrog/Lilypad software environments cause a directed graph of

virtual streams to be extracted from the user application. This graph contains communica-

tion requirements between all nodes as well as bandwidth requests for each communica-

tion. The communication needs may change over time.

The Tadpole streams compiler works by first laying down all requested communica-

tion paths according to the shortest path of communication. For the initial attempt, many

links will go unused while some links will be assigned a bandwidth greater than that

which they are capable of carrying. Through a simulated annealing approach, the traffic

gets thinned out across available links until all communication bandwidth requests are

eventually met. Some messages may get misrouted and shortest path conventions may no

longer be followed, but every communication path will get some bandwidth assigned dur-

ing which its communication links are guaranteed to be free. If the scheduler decides that

the bandwidth constraints can not be met, allocated bandwidth among all messages gets

equally reduced until a valid schedule is produced.

Schedules are generated for each of the two pipelines on every NuMesh node, and

complex operation such as forks and joins are also supported. Multiple communication

phases are supported by scheduling each phase of communication separately, and then

providing glue to allow the phases to switch during operation. The COP compiler can ana-

lyze changing communication phases and provide Tadpole with directives for managing

multiple generated schedules. Once Tadpole generates its schedule, the code can be down-

loaded to the NuMesh CFSMs for operation.

Tadpole provides the final pieced of the software hierarchy that allows a user to design

applications in a very high-level language or graphical environment that avoids the details

of the NuMesh architecture.
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6.7 Future Work
Now that hardware and software environments exist for creating parallel applications,

the first order of business is to implement a wide range of parallel applications. In order to

run larger applications, a multi-node system of thirty-two nodes will be implemented. This

will require strict attention to a variety of system issues including clock synchrony, power

distribution, cooling, physical support, and debugging support.

Ideally, the NuMesh system could be connected to a host that resides on the internet

and allows programmers to remotely execute applications. A variety of user support pro-

grams will have to be written to support this idea.

The number of transistors allowed on a chip is growing at phenomenal rates, with a

billion transistor chip being predicted in a few years. One could imagine a large number of

small microprocessors or DSP cores being implemented on a single chip. The communi-

cation between these processors could occur through special registers set up at compile

time in a similar fashion to the NuMesh system. Bandwidth could be assigned between

registers of these processors in exactly the same fashion as the communication is currently

scheduled in the NuMesh system. By allowing communication between integrated proces-

sors through high speed register files, very fine grain parallelism could be exploited, even

on a per instruction basis. Since the pin limitations of the current NuMesh system would

be eliminated in favor of virtually an unlimited number of short metal lines between pro-

cessors, the system could handle large amounts of high speed communication. This idea

could prove to be one of the few manageable ways to organize large numbers of proces-

sors on a single chip that provides truly fine-grained parallelism.

The NuMesh is a logical system to implement compute intensive multi-media applica-

tions. One proposed idea is for a graphics processing unit to be designed that could take

the place of the SPARC processor in the current design. Each graphics unit could perform

one part of complex multi-media operations such as MPEG encoding or 3-D graphics

manipulation. Since most multi-media applications involve very regular communications,

the NuMesh is a natural choice for implementation.

To improve the CFSM, a more aggressive circuit implementation could drastically

reduce the cycle time of the network. Although the local graphics bus speed currently sets
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an upper bound on network performance, an alternative or even custom bus could be

implemented to improve system performance. Much work has gone into fast signaling

between chips, and this technique would serve to greatly improve the critical path of the

NuMesh CFSM.
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Appendix A

Verilog Code

This appendix includes the verilog code used to synthesize the initial design of the

chip. The synthesized netlist was later hand-tuned to improve the timing of critical paths.

The verilog code is broken up into separate files.

• sched.v - This files describes the logic required by the scheduler.

• pipeline.v - This file includes the logic for an entire pipeline, except for the sched-

uler. The current implementation uses two such pipeline modules.

• datapath.v - Thhis file included drivers, receivers, and processor interface logic used

in the CFSM.

• CFSM.v - This file connects the previous file together. In additional, system level

logic bits are implemented here.

• modules.v - This file contains all of the base level modules used in the system. They

form the building blocks from which more complicated designs are created.
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“sched.v”

/* Stage one of the CFSM pipeline */

module schedule_ram(stage4_sched_addr, stage4_sched_web,
    stage4_sched_data,
    stage4_sched_ptr_web,
    ram_out_index1, ram_out_index2, clk, bootmode);

input [6:0] stage4_sched_addr;
input stage4_sched_web, clk, bootmode;
input stage4_sched_ptr_web;
input [16:0] stage4_sched_data;
output [4:0] ram_out_index1, ram_out_index2;

wire [6:0] ramadd, finramadd;
wire [6:0] ram_out_pointer, finram_out_ptr;
wire [16:0] stage4_sched_data;
wire [6:0] stage4_sched_addr;
wire stage4_sched_web;
wire hibit0, hibit1, lobit0, lobit1, lobit2, lobit3, lobit4, lobit5,
     lobit6, lobit7, lobit8, lobit9, lobit10, lobit11, lobit12, lobit13,
     lobit14, lobit15, lobit16, lobit17;

/* Schedule RAM is 128 x 17.  Only one pipeline is allowed to write the
RAM at any given time.  This is a software convention. */

assign finramadd = (bootmode == 0) ? 7’b0000000:ramadd;

hilo lobt0 (.LO(lobit0), .HI(hibit0));
hilo lobt1 (.LO(lobit1), .HI(hibit1));
hilo lobt2 (.LO(lobit2));
hilo lobt3 (.LO(lobit3));
hilo lobt4 (.LO(lobit4));
hilo lobt5 (.LO(lobit5));
hilo lobt6 (.LO(lobit6));
hilo lobt7 (.LO(lobit7));
hilo lobt8 (.LO(lobit8));
hilo lobt9 (.LO(lobit9));
hilo lobt10 (.LO(lobit10));
hilo lobt11 (.LO(lobit11));
hilo lobt12 (.LO(lobit12));
hilo lobt13 (.LO(lobit13));
hilo lobt14 (.LO(lobit14));
hilo lobt15 (.LO(lobit15));
hilo lobt16 (.LO(lobit16));
hilo lobt17 (.LO(lobit17));
/*
sim_ram128x17 ram_dual_128_17_2c2_inst (stage4_sched_addr,
finram_out_ptr, stage4_sched_data[16:0], {ram_out_pointer,
ram_out_index1, ram_out_index2}, stage4_sched_web, clk);
*/
ram_dual_128_17_2c2 ram_dual_128_17_2c2_inst

(.AA0(stage4_sched_addr[0]), .AA1(stage4_sched_addr[1]),
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.AA2(stage4_sched_addr[2]), .AA3(stage4_sched_addr[3]),

.AA4(stage4_sched_addr[4]), .AA5(stage4_sched_addr[5]),
        .AA6(stage4_sched_addr[6]),

 .AB0(finram_out_ptr[0]), .AB1(finram_out_ptr[1]),
        .AB2(finram_out_ptr[2]), .AB3(finram_out_ptr[3]),
        .AB4(finram_out_ptr[4]), .AB5(finram_out_ptr[5]),
        .AB6(finram_out_ptr[6]),
        .DA0(stage4_sched_data[0]), .DA1(stage4_sched_data[1]),
        .DA2(stage4_sched_data[2]), .DA3(stage4_sched_data[3]),
        .DA4(stage4_sched_data[4]), .DA5(stage4_sched_data[5]),
        .DA6(stage4_sched_data[6]), .DA7(stage4_sched_data[7]),
        .DA8(stage4_sched_data[8]), .DA9(stage4_sched_data[9]),
        .DA10(stage4_sched_data[10]), .DA11(stage4_sched_data[11]),
        .DA12(stage4_sched_data[12]), .DA13(stage4_sched_data[13]),
        .DA14(stage4_sched_data[14]), .DA15(stage4_sched_data[15]),
        .DA16(stage4_sched_data[16]),

 .DB0(lobit0), .DB1(lobit1),
        .DB2(lobit2), .DB3(lobit3),
        .DB4(lobit4), .DB5(lobit5),
        .DB6(lobit6), .DB7(lobit7),
        .DB8(lobit8), .DB9(lobit9),
        .DB10(lobit10), .DB11(lobit11),
        .DB12(lobit12), .DB13(lobit13),
        .DB14(lobit14), .DB15(lobit15),
        .DB16(lobit16),

.QB0(ram_out_index2[0]), .QB1(ram_out_index2[1]),
        .QB2(ram_out_index2[2]), .QB3(ram_out_index2[3]),
        .QB4(ram_out_index2[4]),
        .QB5(ram_out_index1[0]), .QB6(ram_out_index1[1]),
        .QB7(ram_out_index1[2]), .QB8(ram_out_index1[3]),
        .QB9(ram_out_index1[4]),
        .QB10(ram_out_pointer[0]), .QB11(ram_out_pointer[1]),
        .QB12(ram_out_pointer[2]), .QB13(ram_out_pointer[3]),
        .QB14(ram_out_pointer[4]), .QB15(ram_out_pointer[5]),
        .QB16(ram_out_pointer[6]),
        .CKA(clk), .WEA(stage4_sched_web), .SELA(hibit0),

.CKB(clk), .WEB(lobit17), .SELB(hibit1));

/* pipeline 1 gets the bottom five bits, and pipeline 2 gets the next
five bits */

/* the address field will get the high seven bits of the
schedule ram */

assign finram_out_ptr = (bootmode == 0) ? 7’b0000000:
(stage4_sched_ptr_web == 0) ?

stage4_sched_data[6:0]:ram_out_pointer;

/* myreg #(7) nxt(finram_out_ptr, ramadd, clk); */
endmodule
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“pipeline.v”

module pipeline0(stage1_index, dp_src, dp_preg, dp_accept,
out1_sched_web,
outdp_src_ports,
outdp_src_preg_addr, outdp_accept, outdp_write_ports,
outdp_write_data, outdp_preg_waddr, outdp_preg_web,
outdp_preg_read_clr, out1_sched_ptr_web,
clk, my_boot, other_boot, clear_val, stage4_toggle,
stage4_clr_val, stage4_jtag_web,
stage4_clk_sys_web, reset, jtag_in, stage4_source_reg);

input clk, dp_accept, my_boot, other_boot, clear_val, jtag_in;
input [3:0] reset;
input [4:0] stage1_index;
input [32:0] dp_src, dp_preg;

output [3:0] outdp_src_ports, outdp_write_ports;
output [3:0] outdp_src_preg_addr, outdp_preg_waddr;
output [32:0] outdp_write_data, stage4_source_reg;
output out1_sched_web, out1_sched_ptr_web, outdp_accept;
output outdp_preg_web, outdp_preg_read_clr, stage4_clr_val;
output stage4_toggle;
output stage4_clk_sys_web, stage4_jtag_web;

wire [13:0] newiw, stage3_iw;
wire [4:0] stage2_index,stage3_index, stage4_breg_waddr;
wire [4:0] finstage3_index, stage2_breg_read_addr;
wire [4:0] stage2_breg_valid_read, stage3_breg_valid_read;
wire [4:0] stage3_breg_read_addr, stage3_breg_waddr;
wire outdp_preg_read_en;
wire rsuccess, wsuccess, stage4_wsuccess;
wire  stage2_valid, finstage2_valid;
wire stage4_breg_web, stage2_valid_pre;
wire [32:0] stage3_source_reg;
wire [32:0] stage3_breg_out, stage3_breg_out_pre;
wire [3:0] stage2_src_ports, stage2_src_preg_addr;
wire [3:0] stage2_write_ports, stage3_write_ports;
wire [5:0] stage4_write_addr;
wire stage3_preg_write_en;
wire stage4_iw_web, stage4_valid_bit;
wire stage3_other_valid, stage3_other_valid_pre, stage3_valid;
wire pipe_read_write, pre_outdp_accept, pre_stage3_source_val;
wire stage3_mem_addr, stage4_mem_addr;
wire stage3_source_reg_pre;
wire dp_accept_final, stage3_buf_sel, bootmode, jtag_source;
wire [13:0] reset_word, finaliw;
wire stage2_preg_read_en, stage2_preg_read_clr, stage2_preg_write_en;
wire pre_stage2_accept, stage2_pipe_read_write;
wire stage2_bmove, stage2_cmove, stage2_fmove;
wire stage3_bmove, stage3_cmove, stage3_fmove;
wire stage4_cmove, stage4_fmove, port_write_detect;
wire stage2_accept, stage3_write_detect, stage2_buf_sel, stage2_mem_addr;
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wire stage3_outdp_preg_web, stage4_preg_write_en;
wire [4:0] stage1_index_fin;
wire wsuca, wsucb, stage_wsuca, stage4_wsucb, stage2_breg_read_addr_pre;

wire hibit0, hibit1, lobit0, lobit1, lobit2, lobit3, lobit4, lobit5,
     lobit6, lobit7, lobit8, lobit9, lobit10, lobit11, lobit12, lobit13,
     lobit14;

wire hibitb0, hibitb1, lobitb0, lobitb1, lobitb2, lobitb3, lobitb4, lobitb5,
     lobitb6, lobitb7, lobitb8, lobitb9, lobitb10, lobitb11, lobitb12,
     lobitb13, lobitb14, lobitb15, lobitb16, lobitb17, lobitb18,
     lobitb19, lobitb20, lobitb21, lobitb22, lobitb23, lobitb24,
     lobitb25, lobitb26, lobitb27, lobitb28, lobitb29, lobitb30,
     lobitb31, lobitb32;

/* start of stage 2 */
/* instruction RAM is 32 x 16 */
/* input order: address a and b interleaved low to high, data, read
output, write enable, clk */

assign stage1_index_fin = (bootmode == 0) ? 5’b00000:stage1_index;

myreg #(5) index1(stage1_index_fin, stage2_index, clk);

assign bootmode = my_boot & other_boot;

/* boot word is one of four ports or proc reg 0 */
assign reset_word = (reset[0] == 1) ? 16’h0006:

    (reset[1] == 1) ? 16’h0046:
    (reset[2] == 1) ? 16’h0086:
    (reset[3] == 1) ? 16’h00C6:16’h034D;

/* mux to select which instruction will be used, boot or regular */
assign finaliw = (my_boot == 0) ? reset_word:

 (other_boot == 0) ? 14’h034D:newiw;

my_ram32x14 ram_dual_32_14_1c2_inst (stage4_source_reg[28:24],
stage2_index, stage4_source_reg[13:0], newiw, stage4_iw_web, clk);
/*
hilo lobt0 (.LO(lobit0), .HI(hibit0));
hilo lobt1 (.LO(lobit1), .HI(hibit1));
hilo lobt2 (.LO(lobit2));
hilo lobt3 (.LO(lobit3));
hilo lobt4 (.LO(lobit4));
hilo lobt5 (.LO(lobit5));
hilo lobt6 (.LO(lobit6));
hilo lobt7 (.LO(lobit7));
hilo lobt8 (.LO(lobit8));
hilo lobt9 (.LO(lobit9));
hilo lobt10 (.LO(lobit10));
hilo lobt11 (.LO(lobit11));
hilo lobt12 (.LO(lobit12));
hilo lobt13 (.LO(lobit13));
hilo lobt14 (.LO(lobit14));
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ram_dual_32_14_1c2 ram_dual_32_14_1c2_inst
                 (.AA0(stage4_source_reg[24]), .AA1(stage4_source_reg[25]),
                  .AA2(stage4_source_reg[26]), .AA3(stage4_source_reg[27]),
                  .AA4(stage4_source_reg[28]),
                  .AB0(stage1_index[0]), .AB1(stage1_index[1]),
                .AB2(stage1_index[2]), .AB3(stage1_index[3]),
                .AB4(stage1_index[4]),
                .DA0(stage4_source_reg[0]), .DA1(stage4_source_reg[1]),
                  .DA2(stage4_source_reg[2]), .DA3(stage4_source_reg[3]),
                  .DA4(stage4_source_reg[4]), .DA5(stage4_source_reg[5]),
                  .DA6(stage4_source_reg[6]), .DA7(stage4_source_reg[7]),
                  .DA8(stage4_source_reg[8]), .DA9(stage4_source_reg[9]),
                  .DA10(stage4_source_reg[10]), .DA11(stage4_source_reg[11]),
                  .DA12(stage4_source_reg[12]), .DA13(stage4_source_reg[13]),
                  .DB0(lobit0), .DB1(lobit1),
                .DB2(lobit2), .DB3(lobit3),
                .DB4(lobit4), .DB5(lobit5),
                .DB6(lobit6), .DB7(lobit7),
                .DB8(lobit8), .DB9(lobit9),
                .DB10(lobit10), .DB11(lobit11),
                .DB12(lobit12), .DB13(lobit13),
                .QB0(newiw[0]), .QB1(newiw[1]),
                  .QB2(newiw[2]), .QB3(newiw[3]),
                  .QB4(newiw[4]), .QB5(newiw[5]),
                  .QB6(newiw[6]), .QB7(newiw[7]),
                  .QB8(newiw[8]), .QB9(newiw[9]),
                  .QB10(newiw[10]), .QB11(newiw[11]),
                  .QB12(newiw[12]), .QB13(newiw[13]),
                  .CKA(clk), .SELA(hibit0), .WEA(stage4_iw_web),
                .CKB(clk), .SELB(hibit1), .WEB(lobit14));
*/
/* in stage 2 the RAM is read and the instruction is registered along
with the thread number.  Also, the valid bit of the b register is read. */
/* input order: radd1, radd2, wadd1, wdat1, wadd2, web1, web2, rout1,
rout2, clk, reset (second write always writes a zero) */

/* the buffer register that will be read will either be the register
number specified in the instruction or the thread number.  The buffer
will be the thread number unless the alternate buffer source is set,
and either: 1.  It is a bmove, 2. It is flow control and the thread
valid is not set, 3. It is a cmove and the rsuccess is set. */

assign stage2_breg_read_addr_pre =  ((finaliw[11] == 1’b1) &&
((finaliw[13:12] == 2’b00) ||
((finaliw[13:12] == 2’b01) &&
(finstage2_valid == 1’b0)))) ? 1:0;

assign stage2_breg_read_addr = ((stage2_breg_read_addr_pre == 1) ||
((finaliw[11] == 1) &&
 (stage2_cmove == 1) && (rsuccess == 1)))
? finaliw[10:6]:stage2_index;
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myreg #(5) bregr (stage2_breg_read_addr, stage3_breg_read_addr, clk);

RAM_4port_breg Breg_valid_ram(stage2_index,stage3_breg_valid_read,
      stage4_breg_waddr, stage4_valid_bit,
      stage3_breg_read_addr,
      stage4_breg_web,
      stage2_valid, stage3_other_valid,
      clk, clear_val);

/* pass the valid bit of the thread number to stage 3. */

assign finstage2_valid = (bootmode == 0) ? 0:stage2_valid;
myreg valid_reg(.D(finstage2_valid), .Q(stage3_valid), .CLK(clk));

/* pass instruction word to the third stage */
myreg #(14) outreg(finaliw, stage3_iw, clk);

/* pass the thread number to the third stage */
myreg #(5) out2reg(stage2_index, stage3_index, clk);

/* start of stage 3 */

/* decode of sources */
/* First the read port signals are decoded and sent to the ports */

assign stage2_src_ports[0] = (finaliw[11:6] == 6’b000000) ? 1:0;
assign stage2_src_ports[1] = (finaliw[11:6] == 6’b000001) ? 1:0;
assign stage2_src_ports[2] = (finaliw[11:6] == 6’b000010) ? 1:0;
assign stage2_src_ports[3] = (finaliw[11:6] == 6’b000011) ? 1:0;

assign outdp_src_ports = stage2_src_ports;

/* The processor registers can only be accessed for a read on a single
port.  Because of this, an instruction is not allowed to read and
write a processor register.  If a flow control write is needed, the
valid bit is read in during the third pipeline stage.  Two signals are
created to indicate preg read and write enables */
assign jtag_source = (stage3_iw[11:6] == 6’b000110) ? 1:0;

assign stage2_preg_read_en = (finaliw[11:10] == 2’b01) ? 0:1;
myreg prgread (stage2_preg_read_en, outdp_preg_read_en, clk);

assign stage2_preg_read_clr = ((stage2_preg_read_en == 0) &&
       (pre_stage2_accept == 1)) ? 0:1;

myreg prgclr (stage2_preg_read_clr, outdp_preg_read_clr, clk);

assign stage2_preg_write_en = (finaliw[5:4] == 2’b01) ? 0:1;
myreg prgwt (stage2_preg_write_en, stage3_preg_write_en, clk);
myreg prgwt2 (stage3_preg_write_en, stage4_preg_write_en, clk);

/* the preg address will be either the read address or the write
address.  Software conventions will not allow both. If doing a flow
control write, I need to read the valid bit now. */
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assign stage2_src_preg_addr = (stage2_preg_read_en == 0) ?
     finaliw[9:6]:finaliw[3:0];

myreg #(4) pregaddr (stage2_src_preg_addr, outdp_src_preg_addr, clk);

/* the alternate register to be read for the valid bit of the buffer
register will be the buffer register of another register encoded in
the instruction.  I will read a destination for flow control purposes.
*/

assign stage2_breg_valid_read = (finaliw[5] == 1) ?
finaliw[4:0]:finaliw[10:6];

myreg #(5) bvalrd (stage2_breg_valid_read, stage3_breg_valid_read, clk);

/* The valid bit of the buffer register will be either the thread’s
valid bit or alternate buffer register’s valid bit. */

assign stage3_breg_out[32] = (finstage3_index == stage3_breg_read_addr) ?
   stage3_valid:stage3_other_valid;

/* input order: write address interleaved with read address, data, ,
read output, web, clk */
/*
sim_ram32x32 ram_dual_32_32_1a2_inst (stage4_breg_waddr,
stage2_breg_read_addr, stage4_source_reg[31:0],
stage3_breg_out_pre[31:0], stage4_breg_web, clk);
*/

hilo lobtb0 (.LO(lobitb0), .HI(hibitb0));
hilo lobtb1 (.LO(lobitb1), .HI(hibitb1));
hilo lobtb2 (.LO(lobitb2));
hilo lobtb3 (.LO(lobitb3));
hilo lobtb4 (.LO(lobitb4));
hilo lobtb5 (.LO(lobitb5));
hilo lobtb6 (.LO(lobitb6));
hilo lobtb7 (.LO(lobitb7));
hilo lobtb8 (.LO(lobitb8));
hilo lobtb9 (.LO(lobitb9));
hilo lobtb10 (.LO(lobitb10));
hilo lobtb11 (.LO(lobitb11));
hilo lobtb12 (.LO(lobitb12));
hilo lobtb13 (.LO(lobitb13));
hilo lobtb14 (.LO(lobitb14));
hilo lobtb15 (.LO(lobitb15));
hilo lobtb16 (.LO(lobitb16));
hilo lobtb17 (.LO(lobitb17));
hilo lobtb18 (.LO(lobitb18));
hilo lobtb19 (.LO(lobitb19));
hilo lobtb20 (.LO(lobitb20));
hilo lobtb21 (.LO(lobitb21));
hilo lobtb22 (.LO(lobitb22));
hilo lobtb23 (.LO(lobitb23));
hilo lobtb24 (.LO(lobitb24));
hilo lobtb25 (.LO(lobitb25));
hilo lobtb26 (.LO(lobitb26));
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hilo lobtb27 (.LO(lobitb27));
hilo lobtb28 (.LO(lobitb28));
hilo lobtb29 (.LO(lobitb29));
hilo lobtb30 (.LO(lobitb30));
hilo lobtb31 (.LO(lobitb31));
hilo lobtb32 (.LO(lobitb32));

ram_dual_32_32_1a2 ram_dual_32_32_1a2_inst
   (.AA0(stage4_breg_waddr[0]), .AA1(stage4_breg_waddr[1]),
    .AA2(stage4_breg_waddr[2]), .AA3(stage4_breg_waddr[3]),
    .AA4(stage4_breg_waddr[4]),
    .AB0(stage2_breg_read_addr[0]),
    .AB1(stage2_breg_read_addr[1]), .AB2(stage2_breg_read_addr[2]),
    .AB3(stage2_breg_read_addr[3]), .AB4(stage2_breg_read_addr[4]),
    .DA0(stage4_source_reg[0]), .DA1(stage4_source_reg[1]),
    .DA2(stage4_source_reg[2]), .DA3(stage4_source_reg[3]),
    .DA4(stage4_source_reg[4]), .DA5(stage4_source_reg[5]),
    .DA6(stage4_source_reg[6]), .DA7(stage4_source_reg[7]),
    .DA8(stage4_source_reg[8]), .DA9(stage4_source_reg[9]),
    .DA10(stage4_source_reg[10]), .DA11(stage4_source_reg[11]),
    .DA12(stage4_source_reg[12]), .DA13(stage4_source_reg[13]),
    .DA14(stage4_source_reg[14]), .DA15(stage4_source_reg[15]),
    .DA16(stage4_source_reg[16]), .DA17(stage4_source_reg[17]),
    .DA18(stage4_source_reg[18]), .DA19(stage4_source_reg[19]),
    .DA20(stage4_source_reg[20]), .DA21(stage4_source_reg[21]),
    .DA22(stage4_source_reg[22]), .DA23(stage4_source_reg[23]),
    .DA24(stage4_source_reg[24]), .DA25(stage4_source_reg[25]),
    .DA26(stage4_source_reg[26]), .DA27(stage4_source_reg[27]),
    .DA28(stage4_source_reg[28]), .DA29(stage4_source_reg[29]),
    .DA30(stage4_source_reg[30]), .DA31(stage4_source_reg[31]),
    .DB0(lobitb0), .DB1(lobitb1),
    .DB2(lobitb2), .DB3(lobitb3),
    .DB4(lobitb4), .DB5(lobitb5),
    .DB6(lobitb6), .DB7(lobitb7),
    .DB8(lobitb8), .DB9(lobitb9),
    .DB10(lobitb10), .DB11(lobitb11),
    .DB12(lobitb12), .DB13(lobitb13),
    .DB14(lobitb14), .DB15(lobitb15),
    .DB16(lobitb16), .DB17(lobitb17),
    .DB18(lobitb18), .DB19(lobitb19),
    .DB20(lobitb20), .DB21(lobitb21),
    .DB22(lobitb22), .DB23(lobitb23),
    .DB24(lobitb24), .DB25(lobitb25),
    .DB26(lobitb26), .DB27(lobitb27),
    .DB28(lobitb28), .DB29(lobitb29),
    .DB30(lobitb30), .DB31(lobitb31),
    .QB0(stage3_breg_out_pre[0]), .QB1(stage3_breg_out_pre[1]),
    .QB2(stage3_breg_out_pre[2]), .QB3(stage3_breg_out_pre[3]),
    .QB4(stage3_breg_out_pre[4]), .QB5(stage3_breg_out_pre[5]),
    .QB6(stage3_breg_out_pre[6]), .QB7(stage3_breg_out_pre[7]),
    .QB8(stage3_breg_out_pre[8]), .QB9(stage3_breg_out_pre[9]),
    .QB10(stage3_breg_out_pre[10]), .QB11(stage3_breg_out_pre[11]),
    .QB12(stage3_breg_out_pre[12]), .QB13(stage3_breg_out_pre[13]),
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    .QB14(stage3_breg_out_pre[14]), .QB15(stage3_breg_out_pre[15]),
    .QB16(stage3_breg_out_pre[16]), .QB17(stage3_breg_out_pre[17]),
    .QB18(stage3_breg_out_pre[18]), .QB19(stage3_breg_out_pre[19]),
    .QB20(stage3_breg_out_pre[20]), .QB21(stage3_breg_out_pre[21]),
    .QB22(stage3_breg_out_pre[22]), .QB23(stage3_breg_out_pre[23]),
    .QB24(stage3_breg_out_pre[24]), .QB25(stage3_breg_out_pre[25]),
    .QB26(stage3_breg_out_pre[26]), .QB27(stage3_breg_out_pre[27]),
    .QB28(stage3_breg_out_pre[28]), .QB29(stage3_breg_out_pre[29]),
    .QB30(stage3_breg_out_pre[30]), .QB31(stage3_breg_out_pre[31]),
    .CKA(clk), .SELA(hibitb0), .WEA(stage4_breg_web),
    .CKB(clk), .SELB(hibitb1), .WEB(lobitb32));

/* Here is the bypass for the buffer registers.  Software conventions
must not allow the same thread to operate back to back or esle a race
condition will occur. */

assign stage3_breg_out[31:0] = ((stage4_breg_waddr == stage3_breg_read_addr)
 && (stage4_breg_web == 1’b1))
 ? stage4_source_reg[31:0]:stage3_breg_out_pre[31:0];

/* detect case where pipeline is reading and writing the same port
high active */

assign stage2_pipe_read_write = ((stage3_write_ports == stage2_src_ports)
&& (stage3_write_detect == 1)) ? 1:0;

myreg piperw (stage2_pipe_read_write, pipe_read_write, clk);

/* The accept bit is generated when a move doesn’t use flow control,
when a move uses conditional flow control and the rsuccess bit is set,
or when regular flow control is used and the thread’s buffer register
is empty opcode map: blind = 00, flow = 01, cmove = 10, cnmove = 11*/

/* I use a pre_outdp_accept in order to handle the case when I have a
same pipe read/write case */

assign stage2_bmove = (finaliw[13:12] == 2’b00) ? 1:0;
assign stage2_cmove = (finaliw[13:12] == 2’b10) ? 1:0;
assign stage2_fmove = (finaliw[13:12] == 2’b01) ? 1:0;

myreg bm (stage2_bmove, stage3_bmove, clk);
myreg cm (stage2_cmove, stage3_cmove, clk);
myreg fm (stage2_fmove, stage3_fmove, clk);

myreg cm2 (stage3_cmove, stage4_cmove, clk);
/*myreg fm2 (stage3_fmove, stage4_fmove, clk);*/

assign pre_stage2_accept = ((stage2_bmove == 1) ||
   ((stage2_cmove == 1) && (rsuccess == 1)) ||
   ((stage2_fmove == 1) && (finstage2_valid == 0)))
   ? 1:0;

myreg pacc (pre_stage2_accept, pre_outdp_accept, clk);

/* If I am reading and writing the same pipe, I will zero out the
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accept bit because a fork operation is occurring.  Since I will not be
reading another port, I don’t want to send out an accept to another
port by accident */

assign stage2_accept = (stage2_pipe_read_write == 1) ?
0:pre_stage2_accept;

assign outdp_accept = stage2_accept;

/* the source register value will come from either the p registers,
the b registers, or the datapath.  A=00 or 01, B=10, C=11.  The valid
bit will not yet be finalized to handle the read/write same pipeline
case.  */

assign stage2_buf_sel = (finaliw[11] == 1) ? 0:pre_stage2_accept;
myreg bufreg (stage2_buf_sel, stage3_buf_sel, clk);

assign {stage3_source_reg_pre, stage3_source_reg[31:0]} = (jtag_source == 1) ?
    {32’h80000000, jtag_in}:
   (stage3_buf_sel == 0) ? stage3_breg_out:
   (outdp_preg_read_en == 0) ? dp_preg:dp_src;

/* A read fails if the accept bit is not set or if a flow control read
yields no valid word.  The pre_outdp_accept is used to ignore the
zeroing out affect of the pipe read/write case. */

assign rsuccess = ((pre_outdp_accept == 1’b0) || ((stage3_fmove == 1) &&
   (stage3_source_reg[32] == 0))) ? 0:1;

/* decode of destinations */
/* The decode of destinations is one hot encoded for prompt execution
in stage 4.  The four special locations are also decoded */

assign stage2_write_ports[0] = (finaliw[5:0] == 6’b000000) ? 1:0;
assign stage2_write_ports[1] = (finaliw[5:0] == 6’b000001) ? 1:0;
assign stage2_write_ports[2] = (finaliw[5:0] == 6’b000010) ? 1:0;
assign stage2_write_ports[3] = (finaliw[5:0] == 6’b000011) ? 1:0;

myreg #(4) wtpts (stage2_write_ports, stage3_write_ports, clk);
/* The mem address location corresponds to writing any of the various
memories. */

assign stage2_mem_addr = (finaliw[5:0] == 6’b000110) ? 0:1;
myreg memadr (stage2_mem_addr, stage3_mem_addr, clk);

/* Thread number is passed on to the next stage */
assign finstage3_index = (bootmode == 0) ? 5’b00000:stage3_index;

/* the undecoded destination field is passed to stage 4 */
myreg #(6) waddr(stage3_iw[5:0], stage4_write_addr, clk);

/* the one-hot encoded port control signals are passed to stage 4, and
immediately sent to the ports */

assign outdp_write_ports = stage3_write_ports;
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/* The source word is passed to stage 4 */
myreg #(33) source_val_reg(stage3_source_reg, stage4_source_reg, clk);

/* The decoded memory location destination bit is passed to stage 4 */
myreg mem_add_reg(.D(stage3_mem_addr), .Q(stage4_mem_addr), .CLK(clk));

/* The valid bit from the processor register source word is passed to
stage 4.  If a processor register is a destination, the destination
location’s valid bit will appear here. */

/* stage 4 */
/* invalidate accept bit for same pipe read/write if the read stage is
unable to accept a word. */
assign dp_accept_final = ((pipe_read_write == 1) &&

  (pre_outdp_accept == 0)) ? 0:dp_accept;

/* The various write enables of memory locations depend on both the
mem_addr bit being set and the top two bits in the source word. */
assign stage4_clr_val = ((stage4_source_reg[32:29] == 4’b1000) &&

 (stage4_mem_addr == 1’b0)) ? 0:1;/* clear vals */
assign out1_sched_web = ((stage4_source_reg[32:29] == 4’b1001) &&

 (stage4_mem_addr == 1’b0)) ? 1:0; /*SchRAM */
assign stage4_iw_web = ((stage4_source_reg[32:29] == 4’b1010) &&

      (stage4_mem_addr == 1’b0)) ? 1:0; /*iwRAM */
assign stage4_toggle = ((stage4_source_reg[32:29] == 4’b1011) &&

      (stage4_mem_addr == 1’b0)) ?
      0:1; /* boot*/

assign stage4_jtag_web = ((stage4_source_reg[32:29] == 4’b1101) &&
      (stage4_mem_addr == 1’b0)) ?
      0:1; /*jtag*/

assign stage4_clk_sys_web = ((stage4_source_reg[32:29] == 4’b1110) &&
      (stage4_mem_addr == 1’b0)) ?
      0:1; /* out clocks */

assign out1_sched_ptr_web = ((stage4_source_reg[32:29] == 4’b1111 ) &&
 (stage4_mem_addr == 1’b0)) ? 0:1; /*SchRAM ptr*/

assign stage3_write_detect = stage3_write_ports[3] | stage3_write_ports[2] |
   stage3_write_ports[1] | stage3_write_ports[0];

/*myreg wtdt (stage3_write_detect, port_write_detect, clk);*/

/* This line merely renames the source word.  I have it only to make
warning messages disappear in the compiler */

assign outdp_write_data[32] = (((stage2_pipe_read_write == 1) &&
        (pre_stage2_accept == 0)) ||
       ((stage3_cmove == 1) && (wsuccess == 0)) ||
       ((pipe_read_write == 1) &&
(dp_accept_final == 0))) ?
       0:stage3_source_reg_pre;

assign outdp_write_data[31:0] = stage3_source_reg[31:0];
assign stage3_source_reg[32] = ((pipe_read_write == 1) &&

(dp_accept_final == 0)) ?
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0:stage3_source_reg_pre;

/* this is the address of the p-register being written.  The initial
enable was calculated in the previous stage and comes straight from a
register.  The final write enable depends on the initial write enable
being set plus one of the following: 1. a blind move 2. A flow control
move and the destination valid bit being zero 3. a cmove plus the
wsuccess being set. */

assign outdp_preg_waddr = stage4_write_addr[3:0];
assign stage3_outdp_preg_web = ((stage3_preg_write_en == 0) &&

  ((stage3_bmove == 1) ||
  ((stage3_fmove == 1) && (dp_preg[32] == 0)) ||
  ((stage3_cmove == 1) && (wsuccess == 1)))

                          && (stage3_source_reg[32] == 1)) ? 0:1;
myreg pweb (stage3_outdp_preg_web, outdp_preg_web, clk);

/* the bit that gets written into the B register will be invalid if
the write succeeds */
assign stage4_valid_bit = ((wsuccess == 0) ||

  ((stage4_breg_waddr == stage4_write_addr[4:0]) &&
   (stage4_write_addr[5] == 1’b1)))  ? stage4_source_reg[32]:0;

/* The b register write address is either the thread number or a
buffer that is encoded as a destination.  It is a buffer encoded as a
destination if the address is specified in the instruction and one of
the following: 1. it is a bmove 2. it is a flow control move and the
destination valid bit is clear 3. it is a cmove and the previous
wsucess is set. */

assign stage3_breg_waddr = ((stage3_iw[5] == 1) &&
(((stage3_fmove == 1) && (stage3_other_valid == 0)) ||
 ((stage3_cmove == 1) && (wsuccess == 1)) ||
 (stage3_bmove == 1))) ?
   stage3_iw[4:0]:finstage3_index;

myreg #(5) bwt (stage3_breg_waddr, stage4_breg_waddr, clk);

assign stage4_breg_web = (stage4_source_reg[32] == 1’b0) ? 0:1;

/* a write success fails if a conditional flow control statement sees
the wsuccess bit not set or if a flow control statement tries to write
a port but doesn’t receive the accept bit, or if a write to a
processor register or buffer register fails */

/*assign wsuccess = (((stage4_fmove == 1) && (port_write_detect ==
                 1’b1) && (dp_accept_final == 1’b0))
                || ((stage4_cmove == 1) &&
                 (stage4_wsuccess == 1’b0))
                || (stage4_preg_write_en !=
                 outdp_preg_web)
                || ((stage4_breg_waddr != stage4_write_addr[4:0]) &&
                 (stage4_write_addr[5] == 1’b1)))  ? 0:1;

myreg wsuccess_reg(.D(wsuccess), .Q(stage4_wsuccess), .CLK(clk));
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*/

assign wsuca = ((stage3_fmove == 1) && (stage3_write_detect == 1))
              ? 1:0;
assign wsucb =        ((stage3_breg_waddr != stage3_iw[4:0]) &&
               (stage3_iw[5] == 1)) ? 0:1;

myreg w1 (wsuca, stage4_wsuca, clk);
myreg w2 (wsucb, stage4_wsucb, clk);

/* the wsuccess bit gets registered */

assign wsuccess = (((stage4_wsuca == 1) && (dp_accept_final == 0)) ||
                 (stage4_wsucb == 0) ||
                 (stage4_preg_write_en != outdp_preg_web) ||
                 ((stage4_cmove == 1) && (stage4_wsuccess == 0))) ? 0:1;

myreg wsuccess_reg(.D(wsuccess), .Q(stage4_wsuccess), .CLK(clk));
endmodule
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“datapath.v”

module datapath(outdp_src_preg_addr1, outdp_accept1, outdp_write_ports1,
outdp_write_data1, outdp_preg_waddr1, outdp_preg_web1,
outdp_preg_read_clr1,
outdp_src_preg_addr2, outdp_accept2, outdp_write_ports2,
outdp_write_data2, outdp_preg_waddr2, outdp_preg_web2,
outdp_preg_read_clr2,
outdp_src_ports1, outdp_src_ports2, proc_AB,
proc_DB, proc_AEN, proc_LO_ADDR,proc_INT_L,
proc_P_REPLY, proc_S_REPLY, dp_src1, dp_preg1,
dp_accept1, dp_src2, dp_preg2, dp_accept2,
valacc_in, valacc_out, minx_data, posx_data, miny_data,
posy_data, clk, clear_val, bootmode);

input outdp_accept1, outdp_accept2;
input clk, clear_val, bootmode;
input [3:0] outdp_src_preg_addr1, outdp_src_preg_addr2;
input [4:0] proc_AB;
input [3:0] outdp_src_ports1, outdp_src_ports2;
input [3:0] outdp_write_ports1, outdp_write_ports2;
input [32:0] outdp_write_data1, outdp_write_data2;
input [3:0] outdp_preg_waddr1, outdp_preg_waddr2;
input outdp_preg_web1, outdp_preg_web2;
input outdp_preg_read_clr1, outdp_preg_read_clr2;
input proc_AEN, proc_LO_ADDR;
input [1:0] proc_S_REPLY;

input [3:0] valacc_in;
output [3:0] valacc_out;
inout [31:0] posx_data, minx_data, posy_data, miny_data;

inout [32:0] proc_DB;
output dp_accept1, dp_accept2, proc_INT_L;
output [1:0] proc_P_REPLY;
output [32:0] dp_src1, dp_src2, dp_preg1, dp_preg2;

wire [3:0] write_webs1, write_webs2;
wire proc_web, proc_read;
wire [3:0] procw_addr, rwr_port, rw_port1, rw_port2;
wire [3:0] proc_addr, val1, val2, acc1, acc2, valacc_outfin;
wire [3:0] read_ens1_fin, read_ens2_fin, write_webs1_fin, write_webs2_fin;
wire [32:0] proc_out;
wire [31:0] proc_data;
wire [3:0] temp_write_ports1, temp_write_ports2, read_ens1, read_ens2;
wire [15:0] preg_valid_bits;
wire [31:0] dp_src1_pre0, dp_src1_pre1, dp_src1_pre2, dp_src1_pre3;
wire [31:0] dp_src2_pre0, dp_src2_pre1, dp_src2_pre2, dp_src2_pre3;
wire [32:0] dp_src1_pre, dp_src2_pre;
wire [32:0] outdp_write_data1_fin, outdp_write_data2_fin;
wire [3:0] outdp_src_ports1_fin, outdp_src_ports2_fin;
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/* Since our implementation in chip express logic can have only two
ports, we will only allow one pipeline to read or write a processor
register on any given clock cycle */

/* the read_write address from the CFSM can only be one of four
possibilities.  */
assign rw_port1 = (outdp_preg_web1 == 0) ?

outdp_preg_waddr1:outdp_src_preg_addr1;
assign rw_port2 = (outdp_preg_web2 == 0) ?

outdp_preg_waddr2:outdp_src_preg_addr2;

/* If either pipeline is trying to write, the write enable is active
(low) */

/* The data port is used for both reading and writing.  If reading,
the port must not be driven by someone else */

/* These correspond to a set of pins, some of which are bidirectional.
The addr, web, and en are all dedicated input pins from the processor.
If the processor is enabled and the web is high (inactive), the
proc_out gets written to the processor.  If the enable is active and
the web is active, the write data appears on the proc_data lines.  The
proc_data_port corresponds to the physical bidirectional port of the
processor.  Proc_port_web and proc_port_en also correspond to the port
signals.  The proc_biport also handles making the actually processor
access every other CFSM cycle (processor cycle is twice as slow as
CFSM).  This is a little shaky, the processor clock is put in a
logical or for both the processor enable and the processor write
enable.  My first analysis says that even if skew messes me up, I will
write an incorrect value followed by writing the correct value.  The
only possible flaw is that the address is not set up in time, and I
end up writing a random location.  */
proc_biport pads (proc_AB, proc_AEN,

  proc_out, proc_DB, proc_S_REPLY, proc_P_REPLY,
  proc_LO_ADDR, proc_INT_L, proc_addr, proc_web, proc_read,
  proc_data, clk, preg_valid_bits, bootmode);

/* This is the set of 16 processor registers.  The inputs are ordered
as follows: CFSM address, CFSM write port, CFSM read port, CFSM web,
proc read/write address, proc write port, proc read port, proc web,
clk */

my_ram16x32 proc_ram (rw_port1, outdp_write_data1_fin[31:0], dp_preg1[31:0],
      rw_port2, outdp_write_data2_fin[31:0], dp_preg2[31:0],
      proc_addr[3:0], proc_data, proc_out[31:0],
      outdp_preg_web1, outdp_preg_web2, proc_web, clk);

/* There are four locations being used on any clock cycle: The first
two ports are read ports read the two CFSM read addresses into the
valid bits of the two processor register busses.  The proc addr causes
a valid bit to be read into proc_out[32].   */
RAM_3portclr preg_valid(outdp_src_preg_addr1, outdp_src_preg_addr2,

        proc_addr[3:0], outdp_preg_waddr1,
outdp_preg_waddr2, outdp_write_data1_fin[32],
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outdp_write_data2_fin[32],
outdp_preg_web1, outdp_preg_web2, proc_web,
dp_preg1[32], dp_preg2[32], proc_out[32],

        outdp_preg_read_clr1, outdp_preg_read_clr2, proc_read,
        clk, clear_val, preg_valid_bits);

/* dealing with multiple writes */
/* if a port is being written by both pipelines, only one will succeed
and this will be determined by a bit that will flip every time a
decision is made */

/* if a write data word is invalid, I will never to a write so I
disable all the port write signals */
assign write_webs1 = (outdp_write_data1[32] == 0) ?

   4’b0000:outdp_write_ports1;

assign write_webs2 = (outdp_write_data2[32] == 0) ?
   4’b0000:outdp_write_ports2;

/* logic for handling two reads to the same port.  If an accept is not
going to be generated, then I don’t want to read the port.  Pipeline 1
will always win if both pipelines are trying to read the same port.
The valid bits are handled elsewhere. */

assign read_ens1 = (outdp_accept1 == 0) ? 4’b0000:outdp_src_ports1;
assign read_ens2 = (outdp_accept2 == 0) ? 4’b0000:outdp_src_ports2;

assign valacc_outfin[0] = read_ens1_fin[0] | read_ens2_fin[0] |
       write_webs1_fin[0] | write_webs2_fin[0];

assign valacc_outfin[1] = read_ens1_fin[1] | read_ens2_fin[1] |
       write_webs1_fin[1] | write_webs2_fin[1];

assign valacc_outfin[2] = read_ens1_fin[2] | read_ens2_fin[2] |
       write_webs1_fin[2] | write_webs2_fin[2];

assign valacc_outfin[3] = read_ens1_fin[3] | read_ens2_fin[3] |
       write_webs1_fin[3] | write_webs2_fin[3];

myreg #(4) rd1 (read_ens1, read_ens1_fin, clk);
myreg #(4) rd2 (read_ens2, read_ens2_fin, clk);

myreg #(4) rd1b (outdp_src_ports1, outdp_src_ports1_fin, clk);
myreg #(4) rd2b (outdp_src_ports2, outdp_src_ports2_fin, clk);

myreg #(4) wt1 (write_webs1, write_webs1_fin, clk);
myreg #(4) wt2 (write_webs2, write_webs2_fin, clk);

myreg #(33) wdat1 (outdp_write_data1, outdp_write_data1_fin, clk);
myreg #(33) wdat2 (outdp_write_data2, outdp_write_data2_fin, clk);

/* must zero out incoming accept if not writing a port */
assign dp_accept1 = acc1[0] | acc1[1] | acc1[2] | acc1[3];
assign dp_accept2 = acc2[0] | acc2[1] | acc2[2] | acc2[3];

/* send valid and accept bits */
/* the valacc driver is simply the logical or of the four signals that
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all can drive the line high.  */

ostc06hh padout0 (.D(valacc_outfin[0]), .Z(valacc_out[0]));
ostc06hh padout1 (.D(valacc_outfin[1]), .Z(valacc_out[1]));
ostc06hh padout2 (.D(valacc_outfin[2]), .Z(valacc_out[2]));
ostc06hh padout3 (.D(valacc_outfin[3]), .Z(valacc_out[3]));

/* receive valid and accept bits */
/* the valid receive consists of the four signals trying to drive the
external val/acc line onto the appropriate signal: read_ens->dp_src1,
read_ens2->dp_src2, write_webs1->dp_accept1, write_webs2->dp_accept2.
It is here that the cross transfer valid/accept change occurs as well.
If a pipeline is trying to read and the opposite pipeline is trying to
write, the accept is the logical or of the external accept and the
reading pipeline’s accept. */
valacc_receive minxr(val1[0], val2[0], acc1[0], acc2[0],

   read_ens1_fin[0], read_ens2_fin[0],
   write_webs1_fin[0], write_webs2_fin[0], valacc_in[0], clk);

valacc_receive posxr(val1[1], val2[1], acc1[1], acc2[1],
   read_ens1_fin[1], read_ens2_fin[1],
   write_webs1_fin[1], write_webs2_fin[1], valacc_in[1], clk);

valacc_receive minyr(val1[2], val2[2], acc1[2], acc2[2],
   read_ens1_fin[2], read_ens2_fin[2],
   write_webs1_fin[2], write_webs2_fin[2], valacc_in[2], clk);

valacc_receive posyr(val1[3], val2[3], acc1[3], acc2[3],
   read_ens1_fin[3], read_ens2_fin[3],
   write_webs1_fin[3], write_webs2_fin[3], valacc_in[3], clk);

/* must zero out incoming valids if not writing a port */

myand4 dp1 (dp_src1_pre0, dp_src1_pre1, dp_src1_pre2,
          dp_src1_pre3, dp_src1_pre[31:0]);
assign dp_src1_pre[32] = val1[0] | val1[1] | val1[2] | val1[3];

myand4 dp2 (dp_src2_pre0, dp_src2_pre1, dp_src2_pre2,
          dp_src2_pre3, dp_src2_pre[31:0]);
assign dp_src2_pre[32] = val2[0] | val2[1] | val2[2] | val2[3];

assign dp_src1 = ((outdp_src_ports1_fin == write_webs1_fin) &&
  (outdp_src_ports1_fin != 4’h0)) ? outdp_write_data1_fin:
 ((outdp_src_ports1_fin == write_webs2_fin) &&
  (outdp_src_ports1_fin != 4’h0)) ? outdp_write_data2_fin:
 dp_src1_pre;

assign dp_src2 = ((outdp_src_ports2_fin == write_webs2_fin) &&
  (outdp_src_ports2_fin != 4’h0)) ? outdp_write_data2_fin:
 ((outdp_src_ports2_fin == write_webs1_fin) &&
  (outdp_src_ports2_fin != 4’h0)) ? outdp_write_data1_fin:
 dp_src2_pre;
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/* These are the thirty two bit datapaths.  The ports are ordered as
follows: wdat1, wen1, ren1, wdat2, wen2, ren2, rdat1, rdat2, external
port.  At this point, only one of the pipelines will be reading or
writing the port.  It can be the case that I am reading and writing
the ports, it’s sort of a cheap way to do pipeline swapping.  */

biport_32 minx1(outdp_write_data1_fin[31:0], write_webs1_fin[0],
read_ens1_fin[0], outdp_write_data2_fin[31:0],
write_webs2_fin[0], read_ens2_fin[0], dp_src1_pre0,
dp_src2_pre0, minx_data, clk);

biport_32 posx1(outdp_write_data1_fin[31:0], write_webs1_fin[1],
read_ens1_fin[1], outdp_write_data2_fin[31:0],
write_webs2_fin[1], read_ens2_fin[1], dp_src1_pre1,
dp_src2_pre1, posx_data, clk);

biport_32 miny1(outdp_write_data1_fin[31:0], write_webs1_fin[2],
read_ens1_fin[2], outdp_write_data2_fin[31:0],
write_webs2_fin[2], read_ens2_fin[2], dp_src1_pre2,
dp_src2_pre2, miny_data, clk);

biport_32 posy1(outdp_write_data1_fin[31:0], write_webs1_fin[3],
read_ens1_fin[3], outdp_write_data2_fin[31:0],
write_webs2_fin[3], read_ens2_fin[3], dp_src1_pre3,
dp_src2_pre3, posy_data, clk);

endmodule
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“CFSM.v”
`timescale 1ns / 10ps
`include “modules.v”
`include “sched.v”
`include “pipeline0.v”
`include “pipeline1.v”
`include “datapath.v”

module CFSM(valacc_in, valacc_out, minx_data,  posx_data,
   miny_data, posy_data, pjtag_in, pjtag_pin, clk_sys_pin,
   proc_AB, proc_DB,
   proc_AEN, proc_LO_ADDR, proc_INT_L, proc_P_REPLY,
   proc_S_REPLY, LED_pin, clk, reset, proc_reset_port,
   power_reset);

input clk, power_reset, proc_AEN, proc_LO_ADDR, pjtag_in;
input [1:0] proc_S_REPLY;
inout [3:0] reset;

inout [31:0] minx_data, posx_data, miny_data, posy_data;
inout [32:0] proc_DB;
input [3:0] valacc_in;
input [4:0] proc_AB;

output [3:0] valacc_out, LED_pin;
output [1:0] proc_P_REPLY;
output proc_INT_L, proc_reset_port;
output [2:0] pjtag_pin;
output [3:0] clk_sys_pin;

wire clk, stage4_sched_web1;
wire [4:0] stage2_index1, stage2_index2;
wire [32:0] dp_preg1, dp_preg2, dp_src1, dp_src2;
wire dp_accept1, dp_accept2;
wire outdp_accept1, outdp_accept2;
wire [3:0] outdp_src_preg_addr1, outdp_src_preg_addr2;
wire [3:0] outdp_src_ports1, outdp_src_ports2;
wire [3:0] outdp_write_ports1, outdp_write_ports2;
wire [32:0] outdp_write_data1, outdp_write_data2;
wire [32:0] stage4_source_reg1, stage4_source_reg2;
wire [3:0] outdp_preg_waddr1, outdp_preg_waddr2;
wire outdp_preg_web1, outdp_preg_web2;
wire outdp_preg_read_clr1, outdp_preg_read_clr2;
wire bootmode1, next_bootmode1, bootmode2, next_bootmode2;
wire [12:0] toggle;
wire stage4_toggle1, stage4_toggle2;
wire bootmode;
wire [3:0] next_clk_sys, clk_sys;
wire clk_sys1, clk_sys2, jtag1, jtag2;
wire [3:0] next_jtag, jtag;
wire reset_mode, stage4_clr_val1;
wire jtag_in_pre, jtag_in_fin, stage4_clr_val2, clear_val, power_reset_final;
wire [3:0] reset_in, led, next_led;
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/* reset, boot toogle, and bootmode are low active */

/* boot mode is entered anytime the global reset is deasserted.  Also
it can be toggled by writing the appropriate memory location */

/* clk_driver ckd (clk_in, clk); */

assign next_bootmode1 = ((reset_mode == 1) |
 (((toggle[2] == 0) && (toggle[0] == 0)) ||
  ((toggle[2] == 1) && (bootmode1 == 0)))) ? 0:1;

assign next_bootmode2 = ((reset_mode == 0) &&
 (((toggle[2] == 0) && (toggle[1] == 0)) ||
  ((toggle[2] == 1) && (bootmode2 == 0)))) ? 0:1;

myreg  bootreg1 (next_bootmode1, bootmode1, clk);
myreg  bootreg2 (next_bootmode2, bootmode2, clk);

assign bootmode = bootmode1 & bootmode2;

assign toggle = (stage4_toggle1 == 0) ? stage4_source_reg1[12:0]:
(stage4_toggle2 == 0) ? stage4_source_reg2[12:0]:
       13’b1111111111111;

reset_port rp (toggle[7:3], toggle[11:8], reset, proc_reset_port,
       reset_in, power_reset, power_reset_final, bootmode,
       reset_mode, toggle[12], clk);

assign next_jtag = (power_reset_final == 1) ? 4’b0000:
    (jtag1 == 0) ? stage4_source_reg1[3:0]:
    (jtag2 == 0) ? stage4_source_reg2[3:0]:

                    jtag;
myreg #(4) jtag_reg (next_jtag, jtag, clk);

ossc06hh padj0 (.D(jtag[0]), .OE(jtag[3]), .Z(pjtag_pin[0]));
ossc06hh padj1 (.D(jtag[1]), .OE(jtag[3]), .Z(pjtag_pin[1]));
ossc06hh padj2 (.D(jtag[2]), .OE(jtag[3]), .Z(pjtag_pin[2]));

assign next_led = (power_reset_final == 1) ? 4’b1111:
    (jtag1 == 0) ? stage4_source_reg1[7:4]:
    (jtag2 == 0) ? stage4_source_reg2[7:4]:

                    led;
myreg #(4) led_reg (next_led, led, clk);

ostt12hh padl0 (.D(led[0]), .Z(LED_pin[0]));
ostt12hh padl1 (.D(led[1]), .Z(LED_pin[1]));
ostt12hh padl2 (.D(led[2]), .Z(LED_pin[2]));
ostt12hh padl3 (.D(led[3]), .Z(LED_pin[3]));

iptndh padjin1 (.Z(pjtag_in), .ZI(jtag_in_pre));
dfnnn ltjtag (.D(jtag_in_pre), .Q(jtag_in_fin), .CPN(clk));

assign next_clk_sys =  (power_reset_final == 1) ? 4’b0000:
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       (clk_sys1 == 0) ? stage4_source_reg1[3:0]:
       (clk_sys2 == 0) ? stage4_source_reg2[3:0]:

                       clk_sys;
myreg #(4) clk_sys_reg (next_clk_sys, clk_sys, clk);

ostc06hh pads0 (.D(clk_sys[0]), .Z(clk_sys_pin[0]));
ostc06hh pads1 (.D(clk_sys[1]), .Z(clk_sys_pin[1]));
ostc06hh pads2 (.D(clk_sys[2]), .Z(clk_sys_pin[2]));
ostc06hh pads3 (.D(clk_sys[3]), .Z(clk_sys_pin[3]));

assign clear_val = stage4_clr_val1 & stage4_clr_val2 & bootmode;

schedule_ram t1(stage4_source_reg1[28:22], stage4_sched_web1,
stage4_source_reg1[16:0],
stage4_sched_ptr_web1,
stage2_index1, stage2_index2,
clk, bootmode);

pipeline0 pipeA(stage2_index1, dp_src1, dp_preg1, dp_accept1,
              stage4_sched_web1,
              outdp_src_ports1,
              outdp_src_preg_addr1, outdp_accept1, outdp_write_ports1,
              outdp_write_data1, outdp_preg_waddr1, outdp_preg_web1,

      outdp_preg_read_clr1,
      stage4_sched_ptr_web1,
      clk, bootmode1, bootmode2, clear_val,
      stage4_toggle1, stage4_clr_val1, jtag1,
      clk_sys1, reset_in, jtag_in_fin, stage4_source_reg1);

pipeline1 pipeB(stage2_index2, dp_src2, dp_preg2, dp_accept2,
              outdp_src_ports2,
              outdp_src_preg_addr2, outdp_accept2, outdp_write_ports2,
              outdp_write_data2, outdp_preg_waddr2, outdp_preg_web2,

      outdp_preg_read_clr2,
      clk, bootmode2, bootmode1, clear_val,
      stage4_toggle2, stage4_clr_val2, jtag2,
      clk_sys2, reset_in, jtag_in_fin, stage4_source_reg2);

datapath dp(outdp_src_preg_addr1, outdp_accept1, outdp_write_ports1,
            outdp_write_data1, outdp_preg_waddr1, outdp_preg_web1,

    outdp_preg_read_clr1,
    outdp_src_preg_addr2, outdp_accept2,
    outdp_write_ports2, outdp_write_data2, outdp_preg_waddr2,
    outdp_preg_web2, outdp_preg_read_clr2,
    outdp_src_ports1,
    outdp_src_ports2, proc_AB, proc_DB,
    proc_AEN, proc_LO_ADDR, proc_INT_L, proc_P_REPLY, proc_S_REPLY,
    dp_src1, dp_preg1, dp_accept1, dp_src2, dp_preg2,
    dp_accept2, valacc_in, valacc_out, minx_data,
    posx_data, miny_data, posy_data, clk, clear_val, bootmode);

endmodule
/*Beware of the man-eating cow! */
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“modules.v”

/* This is a listing of basic modules */

module clk_driver(clk_in, clk);
input clk_in;
output clk;
wire clk_pre;

iptnnh padclk1 (.Z(clk_in), .ZI(clk_pre));
cdqn6 clktree (.A(clk_pre), .Z(clk));

endmodule

module mymux_2(A,B,SEL,Z);
// synopsys template
parameter w = 1;
input [w-1:0] A,B;
input SEL;
output [w-1:0] Z;

assign Z = (SEL == 0) ? A:B;
endmodule

module mymux_3(A,B,C,SEL,Z);
/* three way mux A=00 or 01, B=10, C=11 */
// synopsys template
parameter w = 1;
input [w-1:0] A,B,C;
input [1:0] SEL;
output [w-1:0] Z;
assign Z = (SEL[0] == 0) ? B:

   (SEL == 2'b01) ? A:C;
endmodule

module mymux_4(A,B,C,D,SEL,Z);
/* three way mux A=00 or B=01, C=10, D=11 */
// synopsys template
parameter w = 1;
input [w-1:0] A,B,C,D;
input [1:0] SEL;
output [w-1:0] Z;

assign Z = (SEL == 2'b00) ? A:
   (SEL == 2'b01) ? B:
   (SEL == 2'b10) ? C:D;

endmodule

module myreg(D,Q,CLK);
  // synopsys template
  parameter w = 1;
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  input [w-1:0] D;
  output [w-1:0] Q;
  reg [w-1:0] Q;
  input CLK;

  always @(posedge CLK)
    Q = D;

endmodule

module mylatch(D, G, Q);
// synopsys template
  parameter width=1;
  input G;
  input [width-1:0] D;
  output [width-1:0] Q;

  reg [width-1:0] Q;

  always @(G or D)
    begin
      if( G)
        Q = D;
    end

endmodule

module myreg_low(D,Q,CLK);
  // synopsys template
  parameter w = 1;
  input [w-1:0] D;
  output [w-1:0] Q;
  reg [w-1:0] Q;
  input CLK;

  always @(negedge CLK)
    Q = D;

endmodule

module mycomparator (A,B,Z);
// synopsys template
parameter w = 1;
/* Z is 0 if A = B */
input [w-1:0] A, B;
output Z;

assign Z = (A==B) ? 0:1;

endmodule

module mytristate( A,E,Z);
// synopsys template
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parameter width = 1;

input E;
input [width-1:0] A;
output [width-1:0] Z;

wire [width-1:0] Z = E ? A : 'bz;

endmodule

module myand (A, B, C);
// synopsys template

input [15:0] A,B;
output [15:0] C;

assign C[0] = A[0] & B[0];
assign C[1] = A[1] & B[1];
assign C[2] = A[2] & B[2];
assign C[3] = A[3] & B[3];
assign C[4] = A[4] & B[4];
assign C[5] = A[5] & B[5];
assign C[6] = A[6] & B[6];
assign C[7] = A[7] & B[7];
assign C[8] = A[8] & B[8];
assign C[9] = A[9] & B[9];
assign C[10] = A[10] & B[10];
assign C[11] = A[11] & B[11];
assign C[12] = A[12] & B[12];
assign C[13] = A[13] & B[13];
assign C[14] = A[14] & B[14];
assign C[15] = A[15] & B[15];

endmodule

module myand4 (A, B, C, D, E);
// synopsys template

input [31:0] A,B,C,D;
output [31:0] E;

assign E[0] = A[0] & B[0] & C[0] & D[0];
assign E[1] = A[1] & B[1] & C[1] & D[1];
assign E[2] = A[2] & B[2] & C[2] & D[2];
assign E[3] = A[3] & B[3] & C[3] & D[3];
assign E[4] = A[4] & B[4] & C[4] & D[4];
assign E[5] = A[5] & B[5] & C[5] & D[5];
assign E[6] = A[6] & B[6] & C[6] & D[6];
assign E[7] = A[7] & B[7] & C[7] & D[7];
assign E[8] = A[8] & B[8] & C[8] & D[8];
assign E[9] = A[9] & B[9] & C[9] & D[9];
assign E[10] = A[10] & B[10] & C[10] & D[10];
assign E[11] = A[11] & B[11] & C[11] & D[11];
assign E[12] = A[12] & B[12] & C[12] & D[12];
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assign E[13] = A[13] & B[13] & C[13] & D[13];
assign E[14] = A[14] & B[14] & C[14] & D[14];
assign E[15] = A[15] & B[15] & C[15] & D[15];
assign E[16] = A[16] & B[16] & C[16] & D[16];
assign E[17] = A[17] & B[17] & C[17] & D[17];
assign E[18] = A[18] & B[18] & C[18] & D[18];
assign E[19] = A[19] & B[19] & C[19] & D[19];
assign E[20] = A[20] & B[20] & C[20] & D[20];
assign E[21] = A[21] & B[21] & C[21] & D[21];
assign E[22] = A[22] & B[22] & C[22] & D[22];
assign E[23] = A[23] & B[23] & C[23] & D[23];
assign E[24] = A[24] & B[24] & C[24] & D[24];
assign E[25] = A[25] & B[25] & C[25] & D[25];
assign E[26] = A[26] & B[26] & C[26] & D[26];
assign E[27] = A[27] & B[27] & C[27] & D[27];
assign E[28] = A[28] & B[28] & C[28] & D[28];
assign E[29] = A[29] & B[29] & C[29] & D[29];
assign E[30] = A[30] & B[30] & C[30] & D[30];
assign E[31] = A[31] & B[31] & C[31] & D[31];

endmodule

module reset_port(reset_out_write, reset_mask_write,  reset_port,
   proc_reset_port, final_reset_in, power_reset,
   power_reset_final, bootmode, reset_mode,
   toggle_web, clk);

input [4:0] reset_out_write;
input [3:0] reset_mask_write;
input power_reset, clk, bootmode, toggle_web;
inout [3:0] reset_port;
output proc_reset_port;
output reset_mode, power_reset_final;
output [3:0] final_reset_in;

wire next_proc_reset, proc_reset;
wire [3:0] next_reset_out, next_reset_mask, reset_in;
wire [3:0] reset_out, reset_mask, pre_reset_in, next_reset_in;

reset_pads rset_pads(reset_out, reset_port, reset_in,
     proc_reset, proc_reset_port, clk );

assign next_proc_reset = (power_reset_final == 1) ? 0:
 (toggle_web == 0) ? reset_out_write[4]:proc_reset;

myreg proc_reset_reg (next_proc_reset, proc_reset, clk);

assign next_reset_out = (power_reset_final == 1) ? 4'h0:
(toggle_web == 0) ?
 reset_out_write[3:0]:reset_out;

assign next_reset_mask = (power_reset_final == 1) ? 4'hF:
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 (toggle_web == 0) ?
 reset_mask_write:reset_mask;

myreg #(4) reset_out_reg (next_reset_out, reset_out, clk);
myreg #(4) reset_mask_reg (next_reset_mask, reset_mask, clk);

assign next_reset_in = (power_reset_final == 1) ? 4'h0:
       ((bootmode == 0) && (final_reset_in != 4'h0))  ?
       final_reset_in:reset_in;

myreg #(4) reset_in_reg (next_reset_in, pre_reset_in, clk);

assign final_reset_in[0] = pre_reset_in[0] & reset_mask[0];
assign final_reset_in[1] = pre_reset_in[1] & reset_mask[1];
assign final_reset_in[2] = pre_reset_in[2] & reset_mask[2];
assign final_reset_in[3] = pre_reset_in[3] & reset_mask[3];

assign reset_mode = ((power_reset_final == 1) || ((bootmode == 1) &&
    (next_reset_in != 4'h0))) ? 1:0;

ipcnnh padpr1 (.ZI(power_reset_pre), .Z(power_reset));
dfnnn ltres (.D(power_reset_pre), .Q(power_reset_final), .CPN(clk));

endmodule

module reset_pads (reset_out, reset_port, reset_in, proc_reset,
   proc_reset_port, clk);

input [3:0] reset_out;
input proc_reset, clk;
inout [3:0] reset_port;
output [3:0] reset_in;
output proc_reset_port;
wire [3:0] reset_in_pre;

bstcnd06hh padbit0 (.D(reset_out[0]), .OE(reset_out[0]),
      .Z(reset_port[0]), .ZI(reset_in_pre[0]));

bstcnd06hh padbit1 (.D(reset_out[1]), .OE(reset_out[1]),
     .Z(reset_port[1]), .ZI(reset_in_pre[1]));

bstcnd06hh padbit2 (.D(reset_out[2]), .OE(reset_out[2]),
      .Z(reset_port[2]), .ZI(reset_in_pre[2]));

bstcnd06hh padbit3 (.D(reset_out[3]), .OE(reset_out[3]),
      .Z(reset_port[3]), .ZI(reset_in_pre[3]));

dfnnn ltres0 (.D(reset_in_pre[0]), .Q(reset_in[0]), .CPN(clk));
dfnnn ltres1 (.D(reset_in_pre[1]), .Q(reset_in[1]), .CPN(clk));
dfnnn ltres2 (.D(reset_in_pre[2]), .Q(reset_in[2]), .CPN(clk));
dfnnn ltres3 (.D(reset_in_pre[3]), .Q(reset_in[3]), .CPN(clk));

ostc06hh padpr (.D(proc_reset), .Z(proc_reset_port));

endmodule
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module biport_32(wdat1, wen1, ren1, wdat2, wen2, ren2, rdat1, rdat2,
 port_data, clk);

/* enable is high */
input [31:0] wdat1, wdat2;
input  wen1, ren1, wen2, ren2, clk;
inout [31:0] port_data;
output [31:0] rdat1, rdat2;

wire [31:0] r_port, wdat, r_port_pre;
wire wen;

assign wen = wen1 | wen2;

bstcnu06hh padb0 (.D(wdat[0]), .OE(wen), .Z(port_data[0]), .ZI(r_port_pre[0]));
bstcnu06hh padb1 (.D(wdat[1]), .OE(wen), .Z(port_data[1]), .ZI(r_port_pre[1]));
bstcnu06hh padb2 (.D(wdat[2]), .OE(wen), .Z(port_data[2]), .ZI(r_port_pre[2]));
bstcnu06hh padb3 (.D(wdat[3]), .OE(wen), .Z(port_data[3]), .ZI(r_port_pre[3]));
bstcnu06hh padb4 (.D(wdat[4]), .OE(wen), .Z(port_data[4]), .ZI(r_port_pre[4]));
bstcnu06hh padb5 (.D(wdat[5]), .OE(wen), .Z(port_data[5]), .ZI(r_port_pre[5]));
bstcnu06hh padb6 (.D(wdat[6]), .OE(wen), .Z(port_data[6]), .ZI(r_port_pre[6]));
bstcnu06hh padb7 (.D(wdat[7]), .OE(wen), .Z(port_data[7]), .ZI(r_port_pre[7]));
bstcnu06hh padb8 (.D(wdat[8]), .OE(wen), .Z(port_data[8]), .ZI(r_port_pre[8]));
bstcnu06hh padb9 (.D(wdat[9]), .OE(wen), .Z(port_data[9]), .ZI(r_port_pre[9]));
bstcnu06hh padb10 (.D(wdat[10]), .OE(wen), .Z(port_data[10]), .ZI(r_port_pre[10]));
bstcnu06hh padb11 (.D(wdat[11]), .OE(wen), .Z(port_data[11]), .ZI(r_port_pre[11]));
bstcnu06hh padb12 (.D(wdat[12]), .OE(wen), .Z(port_data[12]), .ZI(r_port_pre[12]));
bstcnu06hh padb13 (.D(wdat[13]), .OE(wen), .Z(port_data[13]), .ZI(r_port_pre[13]));
bstcnu06hh padb14 (.D(wdat[14]), .OE(wen), .Z(port_data[14]), .ZI(r_port_pre[14]));
bstcnu06hh padb15 (.D(wdat[15]), .OE(wen), .Z(port_data[15]), .ZI(r_port_pre[15]));
bstcnu06hh padb16 (.D(wdat[16]), .OE(wen), .Z(port_data[16]), .ZI(r_port_pre[16]));
bstcnu06hh padb17 (.D(wdat[17]), .OE(wen), .Z(port_data[17]), .ZI(r_port_pre[17]));
bstcnu06hh padb18 (.D(wdat[18]), .OE(wen), .Z(port_data[18]), .ZI(r_port_pre[18]));
bstcnu06hh padb19 (.D(wdat[19]), .OE(wen), .Z(port_data[19]), .ZI(r_port_pre[19]));
bstcnu06hh padb20 (.D(wdat[20]), .OE(wen), .Z(port_data[20]), .ZI(r_port_pre[20]));
bstcnu06hh padb21 (.D(wdat[21]), .OE(wen), .Z(port_data[21]), .ZI(r_port_pre[21]));
bstcnu06hh padb22 (.D(wdat[22]), .OE(wen), .Z(port_data[22]), .ZI(r_port_pre[22]));
bstcnu06hh padb23 (.D(wdat[23]), .OE(wen), .Z(port_data[23]), .ZI(r_port_pre[23]));
bstcnu06hh padb24 (.D(wdat[24]), .OE(wen), .Z(port_data[24]), .ZI(r_port_pre[24]));
bstcnu06hh padb25 (.D(wdat[25]), .OE(wen), .Z(port_data[25]), .ZI(r_port_pre[25]));
bstcnu06hh padb26 (.D(wdat[26]), .OE(wen), .Z(port_data[26]), .ZI(r_port_pre[26]));
bstcnu06hh padb27 (.D(wdat[27]), .OE(wen), .Z(port_data[27]), .ZI(r_port_pre[27]));
bstcnu06hh padb28 (.D(wdat[28]), .OE(wen), .Z(port_data[28]), .ZI(r_port_pre[28]));
bstcnu06hh padb29 (.D(wdat[29]), .OE(wen), .Z(port_data[29]), .ZI(r_port_pre[29]));
bstcnu06hh padb30 (.D(wdat[30]), .OE(wen), .Z(port_data[30]), .ZI(r_port_pre[30]));
bstcnu06hh padb31 (.D(wdat[31]), .OE(wen), .Z(port_data[31]), .ZI(r_port_pre[31]));

dfnnn ltb0 (.D(r_port_pre[0]), .Q(r_port[0]), .CPN(clk));
dfnnn ltb1 (.D(r_port_pre[1]), .Q(r_port[1]), .CPN(clk));
dfnnn ltb2 (.D(r_port_pre[2]), .Q(r_port[2]), .CPN(clk));
dfnnn ltb3 (.D(r_port_pre[3]), .Q(r_port[3]), .CPN(clk));
dfnnn ltb4 (.D(r_port_pre[4]), .Q(r_port[4]), .CPN(clk));
dfnnn ltb5 (.D(r_port_pre[5]), .Q(r_port[5]), .CPN(clk));
dfnnn ltb6 (.D(r_port_pre[6]), .Q(r_port[6]), .CPN(clk));
dfnnn ltb7 (.D(r_port_pre[7]), .Q(r_port[7]), .CPN(clk));



207207207

dfnnn ltb8 (.D(r_port_pre[8]), .Q(r_port[8]), .CPN(clk));
dfnnn ltb9 (.D(r_port_pre[9]), .Q(r_port[9]), .CPN(clk));
dfnnn ltb10 (.D(r_port_pre[10]), .Q(r_port[10]), .CPN(clk));
dfnnn ltb11 (.D(r_port_pre[11]), .Q(r_port[11]), .CPN(clk));
dfnnn ltb12 (.D(r_port_pre[12]), .Q(r_port[12]), .CPN(clk));
dfnnn ltb13 (.D(r_port_pre[13]), .Q(r_port[13]), .CPN(clk));
dfnnn ltb14 (.D(r_port_pre[14]), .Q(r_port[14]), .CPN(clk));
dfnnn ltb15 (.D(r_port_pre[15]), .Q(r_port[15]), .CPN(clk));
dfnnn ltb16 (.D(r_port_pre[16]), .Q(r_port[16]), .CPN(clk));
dfnnn ltb17 (.D(r_port_pre[17]), .Q(r_port[17]), .CPN(clk));
dfnnn ltb18 (.D(r_port_pre[18]), .Q(r_port[18]), .CPN(clk));
dfnnn ltb19 (.D(r_port_pre[19]), .Q(r_port[19]), .CPN(clk));
dfnnn ltb20 (.D(r_port_pre[20]), .Q(r_port[20]), .CPN(clk));
dfnnn ltb21 (.D(r_port_pre[21]), .Q(r_port[21]), .CPN(clk));
dfnnn ltb22 (.D(r_port_pre[22]), .Q(r_port[22]), .CPN(clk));
dfnnn ltb23 (.D(r_port_pre[23]), .Q(r_port[23]), .CPN(clk));
dfnnn ltb24 (.D(r_port_pre[24]), .Q(r_port[24]), .CPN(clk));
dfnnn ltb25 (.D(r_port_pre[25]), .Q(r_port[25]), .CPN(clk));
dfnnn ltb26 (.D(r_port_pre[26]), .Q(r_port[26]), .CPN(clk));
dfnnn ltb27 (.D(r_port_pre[27]), .Q(r_port[27]), .CPN(clk));
dfnnn ltb28 (.D(r_port_pre[28]), .Q(r_port[28]), .CPN(clk));
dfnnn ltb29 (.D(r_port_pre[29]), .Q(r_port[29]), .CPN(clk));
dfnnn ltb30 (.D(r_port_pre[30]), .Q(r_port[30]), .CPN(clk));
dfnnn ltb31 (.D(r_port_pre[31]), .Q(r_port[31]), .CPN(clk));

assign rdat1 = (ren1 == 1) ? r_port:32'hFFFFFFFF;
assign rdat2 = (ren2 == 1) ? r_port:32'hFFFFFFFF;

assign wdat[0] = (wdat1[0] & wen1) | (wdat2[0] & wen2);
assign wdat[1] = (wdat1[1] & wen1) | (wdat2[1] & wen2);
assign wdat[2] = (wdat1[2] & wen1) | (wdat2[2] & wen2);
assign wdat[3] = (wdat1[3] & wen1) | (wdat2[3] & wen2);
assign wdat[4] = (wdat1[4] & wen1) | (wdat2[4] & wen2);
assign wdat[5] = (wdat1[5] & wen1) | (wdat2[5] & wen2);
assign wdat[6] = (wdat1[6] & wen1) | (wdat2[6] & wen2);
assign wdat[7] = (wdat1[7] & wen1) | (wdat2[7] & wen2);
assign wdat[8] = (wdat1[8] & wen1) | (wdat2[8] & wen2);
assign wdat[9] = (wdat1[9] & wen1) | (wdat2[9] & wen2);
assign wdat[10] = (wdat1[10] & wen1) | (wdat2[10] & wen2);
assign wdat[11] = (wdat1[11] & wen1) | (wdat2[11] & wen2);
assign wdat[12] = (wdat1[12] & wen1) | (wdat2[12] & wen2);
assign wdat[13] = (wdat1[13] & wen1) | (wdat2[13] & wen2);
assign wdat[14] = (wdat1[14] & wen1) | (wdat2[14] & wen2);
assign wdat[15] = (wdat1[15] & wen1) | (wdat2[15] & wen2);
assign wdat[16] = (wdat1[16] & wen1) | (wdat2[16] & wen2);
assign wdat[17] = (wdat1[17] & wen1) | (wdat2[17] & wen2);
assign wdat[18] = (wdat1[18] & wen1) | (wdat2[18] & wen2);
assign wdat[19] = (wdat1[19] & wen1) | (wdat2[19] & wen2);
assign wdat[20] = (wdat1[20] & wen1) | (wdat2[20] & wen2);
assign wdat[21] = (wdat1[21] & wen1) | (wdat2[21] & wen2);
assign wdat[22] = (wdat1[22] & wen1) | (wdat2[22] & wen2);
assign wdat[23] = (wdat1[23] & wen1) | (wdat2[23] & wen2);
assign wdat[24] = (wdat1[24] & wen1) | (wdat2[24] & wen2);
assign wdat[25] = (wdat1[25] & wen1) | (wdat2[25] & wen2);
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assign wdat[26] = (wdat1[26] & wen1) | (wdat2[26] & wen2);
assign wdat[27] = (wdat1[27] & wen1) | (wdat2[27] & wen2);
assign wdat[28] = (wdat1[28] & wen1) | (wdat2[28] & wen2);
assign wdat[29] = (wdat1[29] & wen1) | (wdat2[29] & wen2);
assign wdat[30] = (wdat1[30] & wen1) | (wdat2[30] & wen2);
assign wdat[31] = (wdat1[31] & wen1) | (wdat2[31] & wen2);

endmodule
/*

module valacc_driver(val1_en, val2_en, acc1_en, acc2_en, port_valacc);

input val1_en, val2_en, acc1_en, acc2_en;

output port_valacc;
wire drive_sig;
assign drive_sig = val1_en | val2_en | acc1_en | acc2_en;

endmodule
*/
module valacc_receive(valid1, valid2, accept1, accept2, val1_en,

       val2_en, acc1_en, acc2_en, port_valacc, clk);

input val1_en, val2_en, acc1_en, acc2_en, port_valacc, clk;
output valid1, valid2, accept1, accept2;
wire data, valid1_pre, valid2_pre, acc1_pre, acc2_pre, data_pre;

ipcndh padval (.Z(port_valacc), .ZI(data_pre));
dfnnn ltaden (.D(data_pre), .Q(data), .CPN(clk));

assign valid1 = val1_en & (acc2_en | data);
assign valid2 = val2_en & (acc1_en | data);
assign accept1 = acc1_en & (val2_en | data);
assign accept2 = acc2_en & (val1_en | data);

endmodule

module mydecode_4 (address, lines);
/* outputs are low active */
input [3:0] address;
output [15:0] lines;

assign lines = ~(1'b1 << address);

endmodule

module mydecode_5 (address, lines);
/* outputs are low active */
input [4:0] address;
output [31:0] lines;

assign lines = ~(1'b1 << address);
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endmodule

module mymux32_1 (A, sel, out);

input [31:0] A;
input [4:0] sel;
output out;

assign out = A[sel];
endmodule

module mymux16_1 (A, sel, out);

input [15:0] A;
input [3:0] sel;
output out;

assign out = A[sel];
endmodule

module mymux8_1 (A, sel, out);

input [7:0] A;
input [2:0] sel;
output out;

assign out = A[sel];
endmodule

module RAM_4port_breg(r_add1,r_add2, w_add1, wdat1, w_add2, web1,
 r_out1, r_out2, clk, bootmode);

/* this RAM is implemented with a gated 32 bit register.  For this
specialized RAM, there are two read addresses and two write addresses.
The second write address always writes a zero when its write enable is
set.  */

input [4:0] r_add1, r_add2, w_add1, w_add2;
input web1, clk, bootmode;
input wdat1;
output r_out1, r_out2;

wire [31:0] wadd1_dec, wadd2_dec, current_val, next_value, finnext_val;
wire r_out1_pre, r_out2_pre;

assign finnext_val = (bootmode == 0) ? 32'h00000000:next_value;
myreg #(32) bregv(finnext_val, current_val, clk);

assign r_out1_pre = current_val[r_add1];
assign r_out2_pre = current_val[r_add2];

assign r_out1 = ((r_add1 == w_add1) && (web1 == 1)) ? wdat1:
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(r_add1 == w_add2) ? 0:r_out1_pre;

assign r_out2 = ((r_add2 == w_add1) && (web1 == 1)) ? wdat1:r_out2_pre;

mydecode_5 w1decode (w_add1, wadd1_dec);
mydecode_5 w2decode (w_add2, wadd2_dec);

assign next_value[0] = (wadd2_dec[0] == 0) ? 0:
                       ((wadd1_dec[0] == 0) && (web1 == 1))
                                               ? wdat1:current_val[0];

assign next_value[1] = (wadd2_dec[1] == 0) ? 0:
                       ((wadd1_dec[1] == 0) && (web1 == 1))
                                               ? wdat1:current_val[1];

assign next_value[2] = (wadd2_dec[2] == 0) ? 0:
                       ((wadd1_dec[2] == 0) && (web1 == 1))
                                               ? wdat1:current_val[2];

assign next_value[3] = (wadd2_dec[3] == 0) ? 0:
                       ((wadd1_dec[3] == 0) && (web1 == 1))
                                               ? wdat1:current_val[3];

assign next_value[4] = (wadd2_dec[4] == 0) ? 0:
                       ((wadd1_dec[4] == 0) && (web1 == 1))
                                               ? wdat1:current_val[4];

assign next_value[5] = (wadd2_dec[5] == 0) ? 0:
                       ((wadd1_dec[5] == 0) && (web1 == 1))
                                               ? wdat1:current_val[5];

assign next_value[6] = (wadd2_dec[6] == 0) ? 0:
                       ((wadd1_dec[6] == 0) && (web1 == 1))
                                               ? wdat1:current_val[6];

assign next_value[7] = (wadd2_dec[7] == 0) ? 0:
                       ((wadd1_dec[7] == 0) && (web1 == 1))
                                               ? wdat1:current_val[7];

assign next_value[8] = (wadd2_dec[8] == 0) ? 0:
                       ((wadd1_dec[8] == 0) && (web1 == 1))
                                               ? wdat1:current_val[8];

assign next_value[9] = (wadd2_dec[9] == 0) ? 0:
                       ((wadd1_dec[9] == 0) && (web1 == 1))
                                               ? wdat1:current_val[9];

assign next_value[10] = (wadd2_dec[10] == 0) ? 0:
                       ((wadd1_dec[10] == 0) && (web1 == 1))
                                               ? wdat1:current_val[10];

assign next_value[11] = (wadd2_dec[11] == 0) ? 0:
                       ((wadd1_dec[11] == 0) && (web1 == 1))
                                               ? wdat1:current_val[11];
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assign next_value[12] = (wadd2_dec[12] == 0) ? 0:
                       ((wadd1_dec[12] == 0) && (web1 == 1))
                                               ? wdat1:current_val[12];

assign next_value[13] = (wadd2_dec[13] == 0) ? 0:
                       ((wadd1_dec[13] == 0) && (web1 == 1))
                                               ? wdat1:current_val[13];

assign next_value[14] = (wadd2_dec[14] == 0) ? 0:
                       ((wadd1_dec[14] == 0) && (web1 == 1))
                                               ? wdat1:current_val[14];

assign next_value[15] = (wadd2_dec[15] == 0) ? 0:
                       ((wadd1_dec[15] == 0) && (web1 == 1))
                                               ? wdat1:current_val[15];

assign next_value[16] = (wadd2_dec[16] == 0) ? 0:
                       ((wadd1_dec[16] == 0) && (web1 == 1))
                                               ? wdat1:current_val[16];

assign next_value[17] = (wadd2_dec[17] == 0) ? 0:
                       ((wadd1_dec[17] == 0) && (web1 == 1))
                                               ? wdat1:current_val[17];

assign next_value[18] = (wadd2_dec[18] == 0) ? 0:
                       ((wadd1_dec[18] == 0) && (web1 == 1))
                                               ? wdat1:current_val[18];

assign next_value[19] = (wadd2_dec[19] == 0) ? 0:
                       ((wadd1_dec[19] == 0) && (web1 == 1))
                                               ? wdat1:current_val[19];

assign next_value[20] = (wadd2_dec[20] == 0) ? 0:
                       ((wadd1_dec[20] == 0) && (web1 == 1))
                                               ? wdat1:current_val[20];

assign next_value[21] = (wadd2_dec[21] == 0) ? 0:
                       ((wadd1_dec[21] == 0) && (web1 == 1))
                                               ? wdat1:current_val[21];

assign next_value[22] = (wadd2_dec[22] == 0) ? 0:
                       ((wadd1_dec[22] == 0) && (web1 == 1))
                                               ? wdat1:current_val[22];

assign next_value[23] = (wadd2_dec[23] == 0) ? 0:
                       ((wadd1_dec[23] == 0) && (web1 == 1))
                                               ? wdat1:current_val[23];

assign next_value[24] = (wadd2_dec[24] == 0) ? 0:
                       ((wadd1_dec[24] == 0) && (web1 == 1))
                                               ? wdat1:current_val[24];

assign next_value[25] = (wadd2_dec[25] == 0) ? 0:
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                       ((wadd1_dec[25] == 0) && (web1 == 1))
                                               ? wdat1:current_val[25];

assign next_value[26] = (wadd2_dec[26] == 0) ? 0:
                       ((wadd1_dec[26] == 0) && (web1 == 1))
                                               ? wdat1:current_val[26];

assign next_value[27] = (wadd2_dec[27] == 0) ? 0:
                       ((wadd1_dec[27] == 0) && (web1 == 1))
                                               ? wdat1:current_val[27];

assign next_value[28] = (wadd2_dec[28] == 0) ? 0:
                       ((wadd1_dec[28] == 0) && (web1 == 1))
                                               ? wdat1:current_val[28];

assign next_value[29] = (wadd2_dec[29] == 0) ? 0:
                       ((wadd1_dec[29] == 0) && (web1 == 1))
                                               ? wdat1:current_val[29];

assign next_value[30] = (wadd2_dec[30] == 0) ? 0:
                       ((wadd1_dec[30] == 0) && (web1 == 1))
                                               ? wdat1:current_val[30];

assign next_value[31] = (wadd2_dec[31] == 0) ? 0:
                       ((wadd1_dec[31] == 0) && (web1 == 1))
                                               ? wdat1:current_val[31];

endmodule

module RAM_3portclr(rport1, rport2, port3, wport1, wport2,
    wdat1, wdat2,
    web1, web2, web3, dp_preg1, dp_preg2, proc_out,
    clr1, clr2, clr3, clk, bootmode, current_value);

/* This RAM has 3 ports.  In addition, there are three clear signals */

input [3:0] rport1, rport2, port3, wport1, wport2;
input wdat1, wdat2, web1, web2, web3, clr1, clr2, clr3;
input clk, bootmode;

output dp_preg1, dp_preg2, proc_out;
output [15:0] current_value;

wire [15:0] radd1, radd2, add3, wadd1, wadd2, next_value;
wire [15:0] finnext_value;
wire pre_dp_preg1, pre_dp_preg2, pre_proc_out;

mydecode_4 dec1 (wport1, wadd1);
mydecode_4 dec2 (wport2, wadd2);
mydecode_4 dec3 (port3, add3);
mydecode_4 dec4 (rport1, radd1);
mydecode_4 dec5 (rport2, radd2);
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assign finnext_value = (bootmode == 0) ? 16'h0000:next_value;
myreg #(16) pregv(finnext_value, current_value, clk);

assign pre_dp_preg1 = current_value[rport1];
assign pre_dp_preg2 = current_value[rport2];
assign pre_proc_out = current_value[port3];

assign dp_preg1 = ((rport2 == rport1) && (clr2 == 0)) ? 0:
  ((port3 == rport1) && (clr3 == 0)) ? 0:
  ((wport1 == rport1) && (web1 == 0)) ? wdat1:
  ((wport2 == rport1) && (web2 == 0)) ? wdat2:
  ((port3 == rport1) && (web3 == 0)) ? 1'b1:pre_dp_preg1;

assign dp_preg2 = ((rport1 == rport2) && (clr1 == 0)) ? 0:
  ((port3 == rport2) && (clr3 == 0)) ? 0:
  ((wport2 == rport2) && (web2 == 0)) ? wdat2:
  ((wport1 == rport2) && (web1 == 0)) ? wdat1:
  ((port3 == rport2) && (web3 == 0)) ? 1'b1:pre_dp_preg2;

assign proc_out = ((rport1 == port3) && (clr1 == 0)) ? 0:
  ((rport2 == port3) && (clr2 == 0)) ? 0:
  ((wport1 == port3) && (web1 == 0)) ? wdat1:
  ((wport2 == port3) && (web2 == 0)) ? wdat2:pre_proc_out;

assign next_value[0] = (((radd1[0] == 0) && (clr1 == 0)) ||
                        ((radd2[0] == 0) && (clr2 == 0)) ||
                        ((add3[0] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[0] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[0] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[0] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[0];

assign next_value[1] = (((radd1[1] == 0) && (clr1 == 0)) ||
                        ((radd2[1] == 0) && (clr2 == 0)) ||
                        ((add3[1] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[1] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[1] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[1] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[1];

assign next_value[2] = (((radd1[2] == 0) && (clr1 == 0)) ||
                        ((radd2[2] == 0) && (clr2 == 0)) ||
                        ((add3[2] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[2] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[2] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[2] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[2];

assign next_value[3] = (((radd1[3] == 0) && (clr1 == 0)) ||
                        ((radd2[3] == 0) && (clr2 == 0)) ||
                        ((add3[3] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[3] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[3] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[3] == 0) && (web3 == 0)) ? 1'b1:
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                       current_value[3];

assign next_value[4] = (((radd1[4] == 0) && (clr1 == 0)) ||
                        ((radd2[4] == 0) && (clr2 == 0)) ||
                        ((add3[4] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[4] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[4] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[4] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[4];

assign next_value[5] = (((radd1[5] == 0) && (clr1 == 0)) ||
                        ((radd2[5] == 0) && (clr2 == 0)) ||
                        ((add3[5] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[5] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[5] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[5] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[5];

assign next_value[6] = (((radd1[6] == 0) && (clr1 == 0)) ||
                        ((radd2[6] == 0) && (clr2 == 0)) ||
                        ((add3[6] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[6] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[6] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[6] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[6];

assign next_value[7] = (((radd1[7] == 0) && (clr1 == 0)) ||
                        ((radd2[7] == 0) && (clr2 == 0)) ||
                        ((add3[7] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[7] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[7] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[7] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[7];

assign next_value[8] = (((radd1[8] == 0) && (clr1 == 0)) ||
                        ((radd2[8] == 0) && (clr2 == 0)) ||
                        ((add3[8] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[8] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[8] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[8] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[8];

assign next_value[9] = (((radd1[9] == 0) && (clr1 == 0)) ||
                        ((radd2[9] == 0) && (clr2 == 0)) ||
                        ((add3[9] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[9] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[9] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[9] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[9];

assign next_value[10] = (((radd1[10] == 0) && (clr1 == 0)) ||
                        ((radd2[10] == 0) && (clr2 == 0)) ||
                        ((add3[10] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[10] == 0) && (web1 == 0)) ? wdat1:
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                       ((wadd2[10] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[10] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[10];

assign next_value[11] = (((radd1[11] == 0) && (clr1 == 0)) ||
                        ((radd2[11] == 0) && (clr2 == 0)) ||
                        ((add3[11] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[11] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[11] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[11] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[11];

assign next_value[12] = (((radd1[12] == 0) && (clr1 == 0)) ||
                        ((radd2[12] == 0) && (clr2 == 0)) ||
                        ((add3[12] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[12] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[12] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[12] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[12];

assign next_value[13] = (((radd1[13] == 0) && (clr1 == 0)) ||
                        ((radd2[13] == 0) && (clr2 == 0)) ||
                        ((add3[13] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[13] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[13] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[13] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[13];

assign next_value[14] = (((radd1[14] == 0) && (clr1 == 0)) ||
                        ((radd2[14] == 0) && (clr2 == 0)) ||
                        ((add3[14] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[14] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[14] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[14] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[14];

assign next_value[15] = (((radd1[15] == 0) && (clr1 == 0)) ||
                        ((radd2[15] == 0) && (clr2 == 0)) ||
                        ((add3[15] == 0) && (clr3 == 0))) ? 0:
                       ((wadd1[15] == 0) && (web1 == 0)) ? wdat1:
                       ((wadd2[15] == 0) && (web2 == 0)) ? wdat2:
                       ((add3[15] == 0) && (web3 == 0)) ? 1'b1:
                       current_value[15];

endmodule

module proc_biport(proc_AB, proc_AEN, proc_out, proc_DB,
   proc_S_REPLY, proc_P_REPLY, proc_LO_ADDR,
   proc_INT_L, proc_addr_out, proc_web_ram, proc_en_ram,
   proc_data_ram, clk, preg_valid_bits, bootmode);

input [4:0] proc_AB;
input proc_LO_ADDR, clk;
input proc_AEN, bootmode;
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input [32:0] proc_out;
input [1:0] proc_S_REPLY;
input [15:0] preg_valid_bits;

output [3:0] proc_addr_out;
output proc_web_ram, proc_en_ram, proc_INT_L;
output [31:0] proc_data_ram;
output [1:0] proc_P_REPLY;

inout [32:0] proc_DB;

wire [4:0] proc_addr_pre, proc_addr, next_proc_addr;
wire [4:0] reg_proc_addr, proc_addr_ram;
wire proc_read, proc_web, proc_addr_en_pre, proc_addr_en;
wire lo_addr_pre, lo_addr, val_read;
wire [31:0] proc_data_pre, proc_data, next_int_bits, int_bits;
wire [1:0] sreply_pre, sreply, preply, sreply2, preply_out;
wire [32:0] fin_proc_out_pre, fin_proc_out;
wire [15:0] input_int, output_int;
wire interrupt, proc_out_en_pre, proc_out_en;

assign val_read = (reg_proc_addr[4] == 1'b1) ? 1:0;

assign fin_proc_out_pre = (val_read == 1) ?
      {17'b00000000000000000, preg_valid_bits}:proc_out;

myreg #(33) prreg (fin_proc_out_pre, fin_proc_out, clk);

ipcndh padaddr0 (.Z(proc_AB[0]), .ZI(proc_addr_pre[0]));
ipcndh padaddr1 (.Z(proc_AB[1]), .ZI(proc_addr_pre[1]));
ipcndh padaddr2 (.Z(proc_AB[2]), .ZI(proc_addr_pre[2]));
ipcndh padaddr3 (.Z(proc_AB[3]), .ZI(proc_addr_pre[3]));
ipcndh padaddr4 (.Z(proc_AB[4]), .ZI(proc_addr_pre[4]));
ipcndh pad2 (.Z(proc_AEN), .ZI(proc_addr_en_pre));
ipcndh padsrp0 (.Z(proc_S_REPLY[0]), .ZI(sreply_pre[0]));
ipcndh padsrp1 (.Z(proc_S_REPLY[1]), .ZI(sreply_pre[1]));
ipcndh padlo (.Z(proc_LO_ADDR), .ZI(lo_addr_pre));

dfnnn ltad0 (.D(proc_addr_pre[0]), .Q(proc_addr[0]), .CPN(clk));
dfnnn ltad1 (.D(proc_addr_pre[1]), .Q(proc_addr[1]), .CPN(clk));
dfnnn ltad2 (.D(proc_addr_pre[2]), .Q(proc_addr[2]), .CPN(clk));
dfnnn ltad3 (.D(proc_addr_pre[3]), .Q(proc_addr[3]), .CPN(clk));
dfnnn ltad4 (.D(proc_addr_pre[4]), .Q(proc_addr[4]), .CPN(clk));

dfnnn ltaden (.D(proc_addr_en_pre), .Q(proc_addr_en), .CPN(clk));
dfnnn ltspl1 (.D(sreply_pre[1]), .Q(sreply[1]), .CPN(clk));
dfnnn ltspl0 (.D(sreply_pre[0]), .Q(sreply[0]), .CPN(clk));
dfnnn ltlo (.D(lo_addr_pre), .Q(lo_addr), .CPN(clk));

assign next_proc_addr = ((proc_addr_en == 1) && (lo_addr == 1))
? proc_addr:reg_proc_addr;

myreg #(5) proc1 (next_proc_addr, reg_proc_addr, clk);
myreg #(5) proc2 (reg_proc_addr, proc_addr_ram, clk);
assign proc_addr_out = (sreply2 == 2'b11) ?
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       reg_proc_addr[3:0]:proc_addr_ram[3:0];

assign proc_en_ram = ((sreply2 == 2'b11) && (val_read == 0) &&
  (bootmode == 1)) ? 0:1;

assign proc_web = ((sreply2 == 2'b10) && (val_read == 0) &&
   (bootmode == 1)) ? 0:1;

myreg web1 (proc_web, proc_web_ram, clk);

assign next_int_bits = (bootmode == 0) ? 32'h00000000:
((preply == 2'b10) &&
(proc_addr_ram == 5'b11000)) ?
  proc_data_ram:int_bits;

myreg #(32) int_reg (next_int_bits, int_bits, clk);

myand input_empty (~preg_valid_bits, int_bits[15:0], input_int);
myand output_full (preg_valid_bits, int_bits[31:16], output_int);

assign interrupt = (((input_int != 16'h0000) ||
     (output_int != 16'h0000)) && (bootmode == 1)) ? 0:1;

ostc06hh padint0 (.D(interrupt), .Z(proc_INT_L));

myreg #(2) sbitbuf (sreply, sreply2, clk);
myreg #(2) pbitbuf (sreply2, preply, clk);

assign preply_out = (preply == 2'b11) ? 2'b11:
    (preply == 2'b10) ? 2'b10:2'b00;

ostc06hh padp0 (.D(preply_out[0]), .Z(proc_P_REPLY[0]));
ostc06hh padp1 (.D(preply_out[1]), .Z(proc_P_REPLY[1]));

myreg #(32) pdata (proc_data, proc_data_ram, clk);
assign proc_out_en_pre = ((sreply2 == 2'b11) && (bootmode == 1'b1)) ? 1:0;
myreg outen (proc_out_en_pre, proc_out_en, clk);

bstcnd12hh padbit0 (.D(fin_proc_out[0]), .OE(proc_out_en), .Z(proc_DB[0]),
.ZI(proc_data_pre[0]));
bstcnd12hh padbit1 (.D(fin_proc_out[1]), .OE(proc_out_en), .Z(proc_DB[1]),
.ZI(proc_data_pre[1]));
bstcnd12hh padbit2 (.D(fin_proc_out[2]), .OE(proc_out_en), .Z(proc_DB[2]),
.ZI(proc_data_pre[2]));
bstcnd12hh padbit3 (.D(fin_proc_out[3]), .OE(proc_out_en), .Z(proc_DB[3]),
.ZI(proc_data_pre[3]));
bstcnd12hh padbit4 (.D(fin_proc_out[4]), .OE(proc_out_en), .Z(proc_DB[4]),
.ZI(proc_data_pre[4]));
bstcnd12hh padbit5 (.D(fin_proc_out[5]), .OE(proc_out_en), .Z(proc_DB[5]),
.ZI(proc_data_pre[5]));
bstcnd12hh padbit6 (.D(fin_proc_out[6]), .OE(proc_out_en), .Z(proc_DB[6]),
.ZI(proc_data_pre[6]));
bstcnd12hh padbit7 (.D(fin_proc_out[7]), .OE(proc_out_en), .Z(proc_DB[7]),
.ZI(proc_data_pre[7]));
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bstcnd12hh padbit8 (.D(fin_proc_out[8]), .OE(proc_out_en), .Z(proc_DB[8]),
.ZI(proc_data_pre[8]));
bstcnd12hh padbit9 (.D(fin_proc_out[9]), .OE(proc_out_en), .Z(proc_DB[9]),
.ZI(proc_data_pre[9]));
bstcnd12hh padbit10 (.D(fin_proc_out[10]), .OE(proc_out_en), .Z(proc_DB[10]),
.ZI(proc_data_pre[10]));
bstcnd12hh padbit11 (.D(fin_proc_out[11]), .OE(proc_out_en), .Z(proc_DB[11]),
.ZI(proc_data_pre[11]));
bstcnd12hh padbit12 (.D(fin_proc_out[12]), .OE(proc_out_en), .Z(proc_DB[12]),
.ZI(proc_data_pre[12]));
bstcnd12hh padbit13 (.D(fin_proc_out[13]), .OE(proc_out_en), .Z(proc_DB[13]),
.ZI(proc_data_pre[13]));
bstcnd12hh padbit14 (.D(fin_proc_out[14]), .OE(proc_out_en), .Z(proc_DB[14]),
.ZI(proc_data_pre[14]));
bstcnd12hh padbit15 (.D(fin_proc_out[15]), .OE(proc_out_en), .Z(proc_DB[15]),
.ZI(proc_data_pre[15]));
bstcnd12hh padbit16 (.D(fin_proc_out[16]), .OE(proc_out_en), .Z(proc_DB[16]),
.ZI(proc_data_pre[16]));
bstcnd12hh padbit17 (.D(fin_proc_out[17]), .OE(proc_out_en), .Z(proc_DB[17]),
.ZI(proc_data_pre[17]));
bstcnd12hh padbit18 (.D(fin_proc_out[18]), .OE(proc_out_en), .Z(proc_DB[18]),
.ZI(proc_data_pre[18]));
bstcnd12hh padbit19 (.D(fin_proc_out[19]), .OE(proc_out_en), .Z(proc_DB[19]),
.ZI(proc_data_pre[19]));
bstcnd12hh padbit20 (.D(fin_proc_out[20]), .OE(proc_out_en), .Z(proc_DB[20]),
.ZI(proc_data_pre[20]));
bstcnd12hh padbit21 (.D(fin_proc_out[21]), .OE(proc_out_en), .Z(proc_DB[21]),
.ZI(proc_data_pre[21]));
bstcnd12hh padbit22 (.D(fin_proc_out[22]), .OE(proc_out_en), .Z(proc_DB[22]),
.ZI(proc_data_pre[22]));
bstcnd12hh padbit23 (.D(fin_proc_out[23]), .OE(proc_out_en), .Z(proc_DB[23]),
.ZI(proc_data_pre[23]));
bstcnd12hh padbit24 (.D(fin_proc_out[24]), .OE(proc_out_en), .Z(proc_DB[24]),
.ZI(proc_data_pre[24]));
bstcnd12hh padbit25 (.D(fin_proc_out[25]), .OE(proc_out_en), .Z(proc_DB[25]),
.ZI(proc_data_pre[25]));
bstcnd12hh padbit26 (.D(fin_proc_out[26]), .OE(proc_out_en), .Z(proc_DB[26]),
.ZI(proc_data_pre[26]));
bstcnd12hh padbit27 (.D(fin_proc_out[27]), .OE(proc_out_en), .Z(proc_DB[27]),
.ZI(proc_data_pre[27]));
bstcnd12hh padbit28 (.D(fin_proc_out[28]), .OE(proc_out_en), .Z(proc_DB[28]),
.ZI(proc_data_pre[28]));
bstcnd12hh padbit29 (.D(fin_proc_out[29]), .OE(proc_out_en), .Z(proc_DB[29]),
.ZI(proc_data_pre[29]));
bstcnd12hh padbit30 (.D(fin_proc_out[30]), .OE(proc_out_en), .Z(proc_DB[30]),
.ZI(proc_data_pre[30]));
bstcnd12hh padbit31 (.D(fin_proc_out[31]), .OE(proc_out_en), .Z(proc_DB[31]),
.ZI(proc_data_pre[31]));
ossc12hh padbit32 (.D(fin_proc_out[32]), .OE(proc_out_en), .Z(proc_DB[32]));

dfnnn ltb0 (.D(proc_data_pre[0]), .Q(proc_data[0]), .CPN(clk));
dfnnn ltb1 (.D(proc_data_pre[1]), .Q(proc_data[1]), .CPN(clk));
dfnnn ltb2 (.D(proc_data_pre[2]), .Q(proc_data[2]), .CPN(clk));
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dfnnn ltb3 (.D(proc_data_pre[3]), .Q(proc_data[3]), .CPN(clk));
dfnnn ltb4 (.D(proc_data_pre[4]), .Q(proc_data[4]), .CPN(clk));
dfnnn ltb5 (.D(proc_data_pre[5]), .Q(proc_data[5]), .CPN(clk));
dfnnn ltb6 (.D(proc_data_pre[6]), .Q(proc_data[6]), .CPN(clk));
dfnnn ltb7 (.D(proc_data_pre[7]), .Q(proc_data[7]), .CPN(clk));
dfnnn ltb8 (.D(proc_data_pre[8]), .Q(proc_data[8]), .CPN(clk));
dfnnn ltb9 (.D(proc_data_pre[9]), .Q(proc_data[9]), .CPN(clk));
dfnnn ltb10 (.D(proc_data_pre[10]), .Q(proc_data[10]), .CPN(clk));
dfnnn ltb11 (.D(proc_data_pre[11]), .Q(proc_data[11]), .CPN(clk));
dfnnn ltb12 (.D(proc_data_pre[12]), .Q(proc_data[12]), .CPN(clk));
dfnnn ltb13 (.D(proc_data_pre[13]), .Q(proc_data[13]), .CPN(clk));
dfnnn ltb14 (.D(proc_data_pre[14]), .Q(proc_data[14]), .CPN(clk));
dfnnn ltb15 (.D(proc_data_pre[15]), .Q(proc_data[15]), .CPN(clk));
dfnnn ltb16 (.D(proc_data_pre[16]), .Q(proc_data[16]), .CPN(clk));
dfnnn ltb17 (.D(proc_data_pre[17]), .Q(proc_data[17]), .CPN(clk));
dfnnn ltb18 (.D(proc_data_pre[18]), .Q(proc_data[18]), .CPN(clk));
dfnnn ltb19 (.D(proc_data_pre[19]), .Q(proc_data[19]), .CPN(clk));
dfnnn ltb20 (.D(proc_data_pre[20]), .Q(proc_data[20]), .CPN(clk));
dfnnn ltb21 (.D(proc_data_pre[21]), .Q(proc_data[21]), .CPN(clk));
dfnnn ltb22 (.D(proc_data_pre[22]), .Q(proc_data[22]), .CPN(clk));
dfnnn ltb23 (.D(proc_data_pre[23]), .Q(proc_data[23]), .CPN(clk));
dfnnn ltb24 (.D(proc_data_pre[24]), .Q(proc_data[24]), .CPN(clk));
dfnnn ltb25 (.D(proc_data_pre[25]), .Q(proc_data[25]), .CPN(clk));
dfnnn ltb26 (.D(proc_data_pre[26]), .Q(proc_data[26]), .CPN(clk));
dfnnn ltb27 (.D(proc_data_pre[27]), .Q(proc_data[27]), .CPN(clk));
dfnnn ltb28 (.D(proc_data_pre[28]), .Q(proc_data[28]), .CPN(clk));
dfnnn ltb29 (.D(proc_data_pre[29]), .Q(proc_data[29]), .CPN(clk));
dfnnn ltb30 (.D(proc_data_pre[30]), .Q(proc_data[30]), .CPN(clk));
dfnnn ltb31 (.D(proc_data_pre[31]), .Q(proc_data[31]), .CPN(clk));

endmodule

/*
module sim_ram128x17(write_addr, read_addr, write_data, read_port, web, clk);

input [6:0] write_addr, read_addr;
input [16:0] write_data;
input clk, web;
output [16:0] read_port;
reg [16:0] mem[127:0];
reg [6:0] read_addr_fin;

assign read_port = mem[read_addr_fin];

always @(posedge clk)
 read_addr_fin = read_addr;

always @(posedge clk)
      if( web === 1)
         mem[write_addr] = write_data;

endmodule

module sim_ram64x16(write_addr, read_addr, write_data, read_port, web, clk);
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input [5:0] write_addr, read_addr;
input [15:0] write_data;
input clk, web;
output [15:0] read_port;
reg [15:0] mem[63:0];
reg [5:0] read_addr_fin;

assign read_port = mem[read_addr_fin];

always @(posedge clk)
read_addr_fin = read_addr;

always @(posedge clk)
      if( web === 1)
         mem[write_addr] = write_data;

endmodule

module sim_ram32x14(write_addr, read_addr, write_data, read_port, web, clk);

input [4:0] write_addr, read_addr;
input [13:0] write_data;
input clk,web;
output [13:0] read_port;
reg [13:0] mem[31:0];
reg [5:0] read_addr_fin;

assign read_port = mem[read_addr_fin];

always @(posedge clk)
 read_addr_fin = read_addr;

always @(posedge clk)
      if( web === 1)
         mem[write_addr] = write_data;

endmodule

module sim_ram32x32(write_addr, read_addr, write_data, read_port, web, clk);

input [4:0] write_addr, read_addr;
input [31:0] write_data;
input clk, web;
output [31:0] read_port;
reg [31:0] mem[31:0];
reg [5:0] read_addr_fin;

wire [31:0] write_data_fin;
wire [4:0] read_addr_fin_pre, write_addr_fin;
wire web_fin;
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assign #10 write_addr_fin = write_addr;
assign #10 read_addr_fin_pre =  read_addr;
assign #10 write_data_fin =  write_data;
assign #10 web_fin =  web;

assign read_port = mem[read_addr_fin];

always @(posedge clk)
read_addr_fin = read_addr_fin_pre;

always @(posedge clk)
      if( web_fin === 1)
         mem[write_addr_fin] = write_data_fin;

endmodule
*/

module my_ram16x32(rwaddr1, wdat1, rport1, rwaddr2, wdat2, rport2,
                 rwaddr3, wdat3, rport3,  web1, web2, web3, clk);

input [3:0] rwaddr1, rwaddr2, rwaddr3;
input [31:0] wdat1, wdat2, wdat3;
input clk, web1, web2, web3;
output [31:0] rport1, rport2, rport3;

wire [31:0] pre_rport1, pre_rport2, pre_rport3;
wire [31:0] reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8,

    reg9, reg10, reg11, reg12, reg13, reg14, reg15;

wire [31:0] nextreg0, nextreg1, nextreg2, nextreg3, nextreg4,
    nextreg5, nextreg6, nextreg7, nextreg8, nextreg9,
    nextreg10, nextreg11, nextreg12, nextreg13, nextreg14,
    nextreg15;

wire [15:0] add1, add2, add3;

assign rport1 = ((rwaddr2 == rwaddr1) && (web2 == 0)) ? wdat2:
((rwaddr3 == rwaddr1) && (web3 == 0)) ? wdat3:pre_rport1;

assign rport2 = ((rwaddr1 == rwaddr2) && (web1 == 0)) ? wdat1:
((rwaddr3 == rwaddr2) && (web3 == 0)) ? wdat3:pre_rport2;

assign rport3 = ((rwaddr1 == rwaddr3) && (web1 == 0)) ? wdat1:
((rwaddr2 == rwaddr3) && (web2 == 0)) ? wdat2:pre_rport3;

assign nextreg0 = ((add1[0] == 0) && (web1 == 0)) ? wdat1:
  ((add2[0] == 0) && (web2 == 0)) ? wdat2:
  ((add3[0] == 0) && (web3 == 0)) ? wdat3:reg0;

assign nextreg1 = ((add1[1] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[1] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[1] == 0) && (web3 == 0)) ? wdat3:reg1;
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assign nextreg2 = ((add1[2] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[2] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[2] == 0) && (web3 == 0)) ? wdat3:reg2;

assign nextreg3 = ((add1[3] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[3] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[3] == 0) && (web3 == 0)) ? wdat3:reg3;

assign nextreg4 = ((add1[4] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[4] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[4] == 0) && (web3 == 0)) ? wdat3:reg4;

assign nextreg5 = ((add1[5] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[5] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[5] == 0) && (web3 == 0)) ? wdat3:reg5;

assign nextreg6 = ((add1[6] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[6] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[6] == 0) && (web3 == 0)) ? wdat3:reg6;

assign nextreg7 = ((add1[7] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[7] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[7] == 0) && (web3 == 0)) ? wdat3:reg7;

assign nextreg8 = ((add1[8] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[8] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[8] == 0) && (web3 == 0)) ? wdat3:reg8;

assign nextreg9 = ((add1[9] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[9] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[9] == 0) && (web3 == 0)) ? wdat3:reg9;

assign nextreg10 = ((add1[10] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[10] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[10] == 0) && (web3 == 0)) ? wdat3:reg10;

assign nextreg11 = ((add1[11] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[11] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[11] == 0) && (web3 == 0)) ? wdat3:reg11;

assign nextreg12 = ((add1[12] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[12] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[12] == 0) && (web3 == 0)) ? wdat3:reg12;

assign nextreg13 = ((add1[13] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[13] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[13] == 0) && (web3 == 0)) ? wdat3:reg13;

assign nextreg14 = ((add1[14] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[14] == 0) && (web2 == 0)) ? wdat2:
                   ((add3[14] == 0) && (web3 == 0)) ? wdat3:reg14;

assign nextreg15 = ((add1[15] == 0) && (web1 == 0)) ? wdat1:
                   ((add2[15] == 0) && (web2 == 0)) ? wdat2:
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                   ((add3[15] == 0) && (web3 == 0)) ? wdat3:reg15;

mydecode_4 dec1 (rwaddr1, add1);
mydecode_4 dec2 (rwaddr2, add2);
mydecode_4 dec3 (rwaddr3, add3);

myreg #(32) p0(nextreg0, reg0, clk);
myreg #(32) p1(nextreg1, reg1, clk);
myreg #(32) p2(nextreg2, reg2, clk);
myreg #(32) p3(nextreg3, reg3, clk);
myreg #(32) p4(nextreg4, reg4, clk);
myreg #(32) p5(nextreg5, reg5, clk);
myreg #(32) p6(nextreg6, reg6, clk);
myreg #(32) p7(nextreg7, reg7, clk);
myreg #(32) p8(nextreg8, reg8, clk);
myreg #(32) p9(nextreg9, reg9, clk);
myreg #(32) p10(nextreg10, reg10, clk);
myreg #(32) p11(nextreg11, reg11, clk);
myreg #(32) p12(nextreg12, reg12, clk);
myreg #(32) p13(nextreg13, reg13, clk);
myreg #(32) p14(nextreg14, reg14, clk);
myreg #(32) p15(nextreg15, reg15, clk);

wire [15:0] temp0 = {reg15[0], reg14[0], reg13[0], reg12[0], reg11[0],
                 reg10[0], reg9[0], reg8[0], reg7[0], reg6[0], reg5[0],
                 reg4[0], reg3[0], reg2[0], reg1[0], reg0[0]};

wire [15:0] temp1 = {reg15[1], reg14[1], reg13[1], reg12[1], reg11[1],
                 reg10[1], reg9[1], reg8[1], reg7[1], reg6[1], reg5[1],
                 reg4[1], reg3[1], reg2[1], reg1[1], reg0[1]};

wire [15:0] temp2 = {reg15[2], reg14[2], reg13[2], reg12[2], reg11[2],
                 reg10[2], reg9[2], reg8[2], reg7[2], reg6[2], reg5[2],
                 reg4[2], reg3[2], reg2[2], reg1[2], reg0[2]};

wire [15:0] temp3 = {reg15[3], reg14[3], reg13[3], reg12[3], reg11[3],
                 reg10[3], reg9[3], reg8[3], reg7[3], reg6[3], reg5[3],
                 reg4[3], reg3[3], reg2[3], reg1[3], reg0[3]};

wire [15:0] temp4 = {reg15[4], reg14[4], reg13[4], reg12[4], reg11[4],
                 reg10[4], reg9[4], reg8[4], reg7[4], reg6[4], reg5[4],
                 reg4[4], reg3[4], reg2[4], reg1[4], reg0[4]};

wire [15:0] temp5 = {reg15[5], reg14[5], reg13[5], reg12[5], reg11[5],
                 reg10[5], reg9[5], reg8[5], reg7[5], reg6[5], reg5[5],
                 reg4[5], reg3[5], reg2[5], reg1[5], reg0[5]};

wire [15:0] temp6 = {reg15[6], reg14[6], reg13[6], reg12[6], reg11[6],
                 reg10[6], reg9[6], reg8[6], reg7[6], reg6[6], reg5[6],
                 reg4[6], reg3[6], reg2[6], reg1[6], reg0[6]};

wire [15:0] temp7 = {reg15[7], reg14[7], reg13[7], reg12[7], reg11[7],
                 reg10[7], reg9[7], reg8[7], reg7[7], reg6[7], reg5[7],
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                 reg4[7], reg3[7], reg2[7], reg1[7], reg0[7]};

wire [15:0] temp8 = {reg15[8], reg14[8], reg13[8], reg12[8], reg11[8],
                 reg10[8], reg9[8], reg8[8], reg7[8], reg6[8], reg5[8],
                 reg4[8], reg3[8], reg2[8], reg1[8], reg0[8]};

wire [15:0] temp9 = {reg15[9], reg14[9], reg13[9], reg12[9], reg11[9],
                 reg10[9], reg9[9], reg8[9], reg7[9], reg6[9], reg5[9],
                 reg4[9], reg3[9], reg2[9], reg1[9], reg0[9]};

wire [15:0] temp10 ={reg15[10], reg14[10], reg13[10], reg12[10],
   reg11[10],reg10[10], reg9[10], reg8[10], reg7[10],
   reg6[10], reg5[10],reg4[10], reg3[10], reg2[10],
   reg1[10],reg0[10]};

wire [15:0] temp11 = {reg15[11], reg14[11], reg13[11], reg12[11],
 reg11[11], reg10[11], reg9[11], reg8[11], reg7[11],
 reg6[11], reg5[11], reg4[11], reg3[11], reg2[11],
 reg1[11], reg0[11]};

wire [15:0] temp12 = {reg15[12], reg14[12], reg13[12], reg12[12],
 reg11[12], reg10[12], reg9[12], reg8[12], reg7[12],
 reg6[12], reg5[12], reg4[12], reg3[12], reg2[12],
 reg1[12], reg0[12]};

wire [15:0] temp13 = {reg15[13], reg14[13], reg13[13], reg12[13],
 reg11[13], reg10[13], reg9[13], reg8[13], reg7[13],
 reg6[13], reg5[13], reg4[13], reg3[13], reg2[13],
 reg1[13], reg0[13]};

wire [15:0] temp14 = {reg15[14], reg14[14], reg13[14], reg12[14],
 reg11[14], reg10[14], reg9[14], reg8[14], reg7[14],
 reg6[14], reg5[14], reg4[14], reg3[14], reg2[14],
 reg1[14], reg0[14]};

wire [15:0] temp15 = {reg15[15], reg14[15], reg13[15], reg12[15],
 reg11[15], reg10[15], reg9[15], reg8[15], reg7[15],
 reg6[15], reg5[15], reg4[15], reg3[15], reg2[15],
 reg1[15], reg0[15]};

wire [15:0] temp16 = {reg15[16], reg14[16], reg13[16], reg12[16],
 reg11[16], reg10[16], reg9[16], reg8[16], reg7[16],
 reg6[16], reg5[16], reg4[16], reg3[16], reg2[16],
 reg1[16], reg0[16]};

wire [15:0] temp17 = {reg15[17], reg14[17], reg13[17], reg12[17],
 reg11[17], reg10[17], reg9[17], reg8[17], reg7[17],
 reg6[17], reg5[17], reg4[17], reg3[17], reg2[17],
 reg1[17], reg0[17]};

wire [15:0] temp18 = {reg15[18], reg14[18], reg13[18], reg12[18],
 reg11[18], reg10[18], reg9[18], reg8[18], reg7[18],
 reg6[18], reg5[18], reg4[18], reg3[18], reg2[18],
 reg1[18], reg0[18]};
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wire [15:0] temp19 = {reg15[19], reg14[19], reg13[19], reg12[19],
 reg11[19], reg10[19], reg9[19], reg8[19], reg7[19],
 reg6[19], reg5[19], reg4[19], reg3[19], reg2[19],
 reg1[19], reg0[19]};

wire [15:0] temp20 = {reg15[20], reg14[20], reg13[20], reg12[20],
 reg11[20], reg10[20], reg9[20], reg8[20], reg7[20],
 reg6[20], reg5[20], reg4[20], reg3[20], reg2[20],
 reg1[20], reg0[20]};

wire [15:0] temp21 = {reg15[21], reg14[21], reg13[21], reg12[21],
 reg11[21], reg10[21], reg9[21], reg8[21], reg7[21],
 reg6[21], reg5[21], reg4[21], reg3[21], reg2[21],
 reg1[21], reg0[21]};

wire [15:0] temp22 = {reg15[22], reg14[22], reg13[22], reg12[22],
 reg11[22], reg10[22], reg9[22], reg8[22], reg7[22],
 reg6[22], reg5[22], reg4[22], reg3[22], reg2[22],
 reg1[22], reg0[22]};

wire [15:0] temp23 = {reg15[23], reg14[23], reg13[23], reg12[23],
 reg11[23], reg10[23], reg9[23], reg8[23], reg7[23],
 reg6[23], reg5[23], reg4[23], reg3[23], reg2[23],
 reg1[23], reg0[23]};

wire [15:0] temp24 = {reg15[24], reg14[24], reg13[24], reg12[24],
 reg11[24], reg10[24], reg9[24], reg8[24], reg7[24],
 reg6[24], reg5[24], reg4[24], reg3[24], reg2[24],
 reg1[24], reg0[24]};

wire [15:0] temp25 = {reg15[25], reg14[25], reg13[25], reg12[25],
 reg11[25], reg10[25], reg9[25], reg8[25], reg7[25],
 reg6[25], reg5[25], reg4[25], reg3[25], reg2[25],
 reg1[25], reg0[25]};

wire [15:0] temp26 = {reg15[26], reg14[26], reg13[26], reg12[26],
 reg11[26], reg10[26], reg9[26], reg8[26], reg7[26],
 reg6[26], reg5[26], reg4[26], reg3[26], reg2[26],
 reg1[26], reg0[26]};

wire [15:0] temp27 = {reg15[27], reg14[27], reg13[27], reg12[27],
 reg11[27], reg10[27], reg9[27], reg8[27], reg7[27],
 reg6[27], reg5[27], reg4[27], reg3[27], reg2[27],
 reg1[27], reg0[27]};

wire [15:0] temp28 = {reg15[28], reg14[28], reg13[28], reg12[28],
 reg11[28], reg10[28], reg9[28], reg8[28], reg7[28],
 reg6[28], reg5[28], reg4[28], reg3[28], reg2[28],
 reg1[28], reg0[28]};

wire [15:0] temp29 = {reg15[29], reg14[29], reg13[29], reg12[29],
 reg11[29], reg10[29], reg9[29], reg8[29], reg7[29],
 reg6[29], reg5[29], reg4[29], reg3[29], reg2[29],
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 reg1[29], reg0[29]};

wire [15:0] temp30 = {reg15[30], reg14[30], reg13[30], reg12[30],
 reg11[30], reg10[30], reg9[30], reg8[30], reg7[30],
 reg6[30], reg5[30], reg4[30], reg3[30], reg2[30],
 reg1[30], reg0[30]};

wire [15:0] temp31 = {reg15[31], reg14[31], reg13[31], reg12[31],
 reg11[31], reg10[31], reg9[31], reg8[31], reg7[31],
 reg6[31], reg5[31], reg4[31], reg3[31], reg2[31],
 reg1[31], reg0[31]};

assign pre_rport1[0] = temp0[rwaddr1];
assign pre_rport1[1] = temp1[rwaddr1];
assign pre_rport1[2] = temp2[rwaddr1];
assign pre_rport1[3] = temp3[rwaddr1];
assign pre_rport1[4] = temp4[rwaddr1];
assign pre_rport1[5] = temp5[rwaddr1];
assign pre_rport1[6] = temp6[rwaddr1];
assign pre_rport1[7] = temp7[rwaddr1];
assign pre_rport1[8] = temp8[rwaddr1];
assign pre_rport1[9] = temp9[rwaddr1];
assign pre_rport1[10] = temp10[rwaddr1];
assign pre_rport1[11] = temp11[rwaddr1];
assign pre_rport1[12] = temp12[rwaddr1];
assign pre_rport1[13] = temp13[rwaddr1];
assign pre_rport1[14] = temp14[rwaddr1];
assign pre_rport1[15] = temp15[rwaddr1];
assign pre_rport1[16] = temp16[rwaddr1];
assign pre_rport1[17] = temp17[rwaddr1];
assign pre_rport1[18] = temp18[rwaddr1];
assign pre_rport1[19] = temp19[rwaddr1];
assign pre_rport1[20] = temp20[rwaddr1];
assign pre_rport1[21] = temp21[rwaddr1];
assign pre_rport1[22] = temp22[rwaddr1];
assign pre_rport1[23] = temp23[rwaddr1];
assign pre_rport1[24] = temp24[rwaddr1];
assign pre_rport1[25] = temp25[rwaddr1];
assign pre_rport1[26] = temp26[rwaddr1];
assign pre_rport1[27] = temp27[rwaddr1];
assign pre_rport1[28] = temp28[rwaddr1];
assign pre_rport1[29] = temp29[rwaddr1];
assign pre_rport1[30] = temp30[rwaddr1];
assign pre_rport1[31] = temp31[rwaddr1];

assign pre_rport2[0] = temp0[rwaddr2];
assign pre_rport2[1] = temp1[rwaddr2];
assign pre_rport2[2] = temp2[rwaddr2];
assign pre_rport2[3] = temp3[rwaddr2];
assign pre_rport2[4] = temp4[rwaddr2];
assign pre_rport2[5] = temp5[rwaddr2];
assign pre_rport2[6] = temp6[rwaddr2];
assign pre_rport2[7] = temp7[rwaddr2];
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assign pre_rport2[8] = temp8[rwaddr2];
assign pre_rport2[9] = temp9[rwaddr2];
assign pre_rport2[10] = temp10[rwaddr2];
assign pre_rport2[11] = temp11[rwaddr2];
assign pre_rport2[12] = temp12[rwaddr2];
assign pre_rport2[13] = temp13[rwaddr2];
assign pre_rport2[14] = temp14[rwaddr2];
assign pre_rport2[15] = temp15[rwaddr2];
assign pre_rport2[16] = temp16[rwaddr2];
assign pre_rport2[17] = temp17[rwaddr2];
assign pre_rport2[18] = temp18[rwaddr2];
assign pre_rport2[19] = temp19[rwaddr2];
assign pre_rport2[20] = temp20[rwaddr2];
assign pre_rport2[21] = temp21[rwaddr2];
assign pre_rport2[22] = temp22[rwaddr2];
assign pre_rport2[23] = temp23[rwaddr2];
assign pre_rport2[24] = temp24[rwaddr2];
assign pre_rport2[25] = temp25[rwaddr2];
assign pre_rport2[26] = temp26[rwaddr2];
assign pre_rport2[27] = temp27[rwaddr2];
assign pre_rport2[28] = temp28[rwaddr2];
assign pre_rport2[29] = temp29[rwaddr2];
assign pre_rport2[30] = temp30[rwaddr2];
assign pre_rport2[31] = temp31[rwaddr2];

assign pre_rport3[0] = temp0[rwaddr3];
assign pre_rport3[1] = temp1[rwaddr3];
assign pre_rport3[2] = temp2[rwaddr3];
assign pre_rport3[3] = temp3[rwaddr3];
assign pre_rport3[4] = temp4[rwaddr3];
assign pre_rport3[5] = temp5[rwaddr3];
assign pre_rport3[6] = temp6[rwaddr3];
assign pre_rport3[7] = temp7[rwaddr3];
assign pre_rport3[8] = temp8[rwaddr3];
assign pre_rport3[9] = temp9[rwaddr3];
assign pre_rport3[10] = temp10[rwaddr3];
assign pre_rport3[11] = temp11[rwaddr3];
assign pre_rport3[12] = temp12[rwaddr3];
assign pre_rport3[13] = temp13[rwaddr3];
assign pre_rport3[14] = temp14[rwaddr3];
assign pre_rport3[15] = temp15[rwaddr3];
assign pre_rport3[16] = temp16[rwaddr3];
assign pre_rport3[17] = temp17[rwaddr3];
assign pre_rport3[18] = temp18[rwaddr3];
assign pre_rport3[19] = temp19[rwaddr3];
assign pre_rport3[20] = temp20[rwaddr3];
assign pre_rport3[21] = temp21[rwaddr3];
assign pre_rport3[22] = temp22[rwaddr3];
assign pre_rport3[23] = temp23[rwaddr3];
assign pre_rport3[24] = temp24[rwaddr3];
assign pre_rport3[25] = temp25[rwaddr3];
assign pre_rport3[26] = temp26[rwaddr3];
assign pre_rport3[27] = temp27[rwaddr3];
assign pre_rport3[28] = temp28[rwaddr3];
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assign pre_rport3[29] = temp29[rwaddr3];
assign pre_rport3[30] = temp30[rwaddr3];
assign pre_rport3[31] = temp31[rwaddr3];

endmodule


