
Massachusetts Institute of Technology

Laboratory for Computer Science

Technical Report 711

Modularity in the Presence of

Subclassing

Raymie Stata
April 1997

Publication History

This report is a revision of a thesis of the same title submitted to the Department of Electri-

cal Engineering and Computer Science at the Massachusetts Instutite of Technology. This

revision is also published by Digital Equipment Corporation as SRC Research Report 145.

c Massachusetts Institute of Technology 1996.

This research was supported in part by the Defense Advanced Research Projects Agency,

monitored by the O�ce of Naval Research under contract N00014{92{J{1795, and by the

National Science Foundation under grant CCR{9504248.

Abstract

Classes are harder to subclass than they need be. This report addresses this problem, show-

ing how to design classes that are more modular and easier to subclass without sacri�cing

the extensibility that makes subclassing useful to begin with.

We argue that a class should have two interfaces, an instance interface used by program-

mers manipulating instances of the class, and a specialization interface used by programmers

building subclasses of the class. Instance interfaces are relatively well understood, but de-

sign principles for specialization interfaces are not.

In the context of single inheritance, we argue that specialization interfaces should be

partitioned into class components. A class component groups part of a class's state together

with methods to maintain that state. Class components establish abstraction boundaries

within classes, allowing modular replacement of components by subclasses. Achieving this

replaceability requires reasoning about each component as an independent unit that depends

only on the speci�cations of other components and not on their implementations.

We introduce the concept of abstract representation to denote the view of a class's state

given in its specialization interface. This view is more detailed than the view used to

describe instances of the class, revealing details that describe the interfaces between class

components. It is less detailed than the actual implementation, hiding implementation

details that should not be exposed even to specializers.

We also consider multiple inheritance, speci�cally, Snyder's model of encapsulated mul-

tiple inheritance. We advocate separating class components into individual classes called

mixins. Instantiable classes are built by combining multiple mixins. With the mixin style

of design, class hierarchies have more classes than in equivalent single-inheritance designs.

These classes have smaller, simpler interfaces and can be reused more exibly.

To explore the impact our ideas might have on program design, we consider classes from

existing libraries in light of the proposed single- and multiple-inheritance methodologies.

To explore the impact our ideas might have on language design, we present two di�erent

extensions to Java, one that provides a level of static checking for single-inheritance designs,

and another that adds the encapsulated model of multiple inheritance.

Acknowledgements

This report revises a PhD dissertation of the same title. My advisor, John Guttag, con-

tributed to the thesis in innumerable ways. His own research on software engineering, and

the courses he's developed and taught, were important, technical inuences. By turning my

attention to the right issues, o�ering key, technical insights, keeping me focused at the right

level of abstraction, and providing expert feedback on an endless stream of notes, papers,

and drafts, he guided me in turning vague intuitions into useful ideas and eventually into a

dissertation. By mixing unlimited freedom to explore ideas with invaluable wisdom and ad-

vice, he created a unique environment in which I could develop as a researcher. By o�ering

encouragement, support, patience, and understanding, he made graduate school survivable.

He made my graduate school experience irreplaceable.

Barbara Liskov also contributed to the thesis in essential ways. Her own work on pro-

gramming methodology and language design, and the courses she's developed and taught,

inuenced and inspired the thesis. As a member of my committee, she worked hard to help

me extract, re�ne, organize and explain the central ideas of the thesis. Her e�ort went well

beyond the call of duty, and the thesis is much better for it.

Luca Cardelli was also an invaluable member of my committee. Once again, his own

work on the foundations of object-oriented programming and type systems inuenced the

thesis. In his insightful comments on papers and chapters, he brought a valuable perspective

to the thesis. He asked incisive questions|and suggested important cuts|that improved

many aspects of the thesis.

My work bene�ted greatly from input from many people, including Steve Garland, Alan

Heydon, Daniel Jackson, Depak Kapur, John Lamping, Gary Leavens, Rustan Leino, An-

drew Meyer, Greg Nelson, Nate Osgood, Anna Pogosyants, Yang-Meng Tan, Jim O'Toole,

Franklyn Turbeck, John Turkovitch, Mark Reinhold, Mark Vandevoorde, Michael Vanhilst,

and Jeannette Wing. David Evans in particular spent many hours discussing ideas and

commenting on writing and presentations. My work bene�ted from experience gained at

Draper Labs, and from a productive stay at Digital Equipment's System Research Center.

This work owes much to the seminal writing of Dijstra, Hoare, and Parnas. It also owes

much to the people, past and present, who made MIT the great institution it is today, and

in particular to those who made 6.001, 6.170, 6.035, and 6.821 such great courses.

I would like to thank my family and friends for their support and encouragement and

for giving me the con�dence needed to start the thesis|and to �nish. I would like to thank

in particular my parents for their love and support and for encouraging me in my interests

and education. I'd like to o�er special thanks to Kimberly Sweidy for her support, patience,

inspiration, understanding, encouragement, wisdom, exuberance, and love.

Contents

1 Introduction 1

1.1 Language model : 3

1.2 Class components : 4

1.3 Overview : 7

2 Basic methodology 9

2.1 Instance interfaces : 9

2.2 Conventions for extensible state : 10

2.3 Specialization interfaces : 13

2.4 Abstract representations : 15

2.5 Summary : 18

3 Validating classes 19

3.1 Validation criterion : 19

3.2 Reasoning about local components : 20

3.3 Reasoning about subclasses : 22

3.4 Reasoning about instance interfaces : 27

3.5 Summary : 30

4 Formal speci�cation and veri�cation 33

4.1 Formal object speci�cations : 34

4.2 Formal specialization speci�cations : 37

4.3 Behavioral subclassing : 37

4.4 Verifying local components : 42

4.5 Shadowed components : 51

4.6 Specifying and verifying constructors : 52

5 Improving extensibility 55

5.1 Particular and assumed speci�cations : 55

5.2 Extensible specialization speci�cations : 57

6 Design implications 67

6.1 Design examples : 67

6.2 Control abstractions : 70

6.3 Designing specialization interfaces : 71

6.4 Language design : 75

7 Multiple inheritance 79

7.1 Mixins : 80

7.2 Speci�cation and veri�cation : 85

7.3 Program design : 85

7.4 Summary : 88

8 Conclusion 91

8.1 Summary : 91

8.2 Contributions : 91

8.3 Related work : 93

8.4 Future work : 95

8.5 Conclusion : 96

Bibliography 97

Chapter 1

Introduction

Reuse and modularity are two important principles for improving programmer productivity.

Object-oriented class libraries support software reuse in two ways. First, they de�ne \black

boxes" that can be used as-is in a variety of contexts. Second, they de�ne \extensible

boxes" that can be customized via subclassing to �t the needs of a particular context.

Achieving modularity for black-box reuse is well-understood, but we do not yet understand

how to achieve modularity for extensible-box reuse. The goal of this report is to reconcile

modularity with the extensibility a�orded by subclassing.

Modular designs are composed of loosely coupled components. An important technique

for decreasing coupling is to use speci�cations to draw abstraction barriers around com-

ponents. (Speci�cations are documentation that hides implementation details; we use the

term \speci�cation" and \documentation" interchangeably.) A component is said to be

independent of other components if it depends only on their speci�cations and is said to

break abstraction barriers if it depends on their implementations.

In existing programming methodologies, classes are treated as the unit of modularity. As

a result, documentation for class libraries draws abstraction barriers around entire classes

(see, e.g., [Borland94] and [Microsoft94]). This is �ne for instantiators, clients whose code

manipulates instances of a class. However, specializers, clients who create subclasses, use

method override to replace parts of classes, and thus interact with classes at a �ner gran-

ularity. For specializers, classes are too coarse a unit of modularity. As a result, when

given documentation in terms of entire classes, specializers are forced to break abstraction

barriers.

For example, consider a class IntSet of mutable integer-set objects. An informal spec-

i�cation for IntSet is given in Fig. 1.1. This documentation draws an abstraction barrier

around the entire IntSet class. Such documentation is �ne for instantiators, but it does

not answer the questions of specializers. For example, assume a programmer wants to build

a multiset abstraction by subclassing IntSet. Can it be done? If so, which methods should

be overridden? What constraints must be met by overridden methods? These questions are

not answered by documentation that takes the entire class as the unit of modularity.

Because of method override, specializers need a unit of modularity smaller than the en-

tire class. At �rst, one might think that individual methods should be the unit of modularity

for specializers; after all, methods are what get replaced by method override. However, if

methods were the unit of modularity, then the methods of a class would have to be inde-

1

2 CHAPTER 1. INTRODUCTION

Documentation for the IntSet class:

IntSet objects are mutable, integer-set objects

public void addElement(int el)

Modi�es this

E�ects Adds el to this.

public void addElements(IntVector els)

Modi�es this

E�ects Adds elements of els to this.

public boolean contains(int el)

E�ects Returns true iff el is a member of this.

public IntEnumeration elements()

E�ects Returns an enumeration yielding the elements of this.

public boolean isEmpty()

E�ects Returns true iff this is empty.

public boolean removeElement(int el)

Modi�es this

E�ects If el in this, remove it and return true; otherwise, return false.

public void removeElements(IntVector els)

Modi�es this

E�ects Removes elements of els from this.

public int size()

E�ects Returns the number of elements in this.

public String toString()

E�ects Returns a printable representation of this.

...other public methods elided...

protected void uncache(int el)

Modi�es this

E�ects Invalidates the internal membership cache at el.

Figure 1.1: Description of IntSet typical of today's documentation.

1.1. LANGUAGE MODEL 3

pendent of one another, i.e., they could not share any hidden implementation information.

As we shall see, this is too strict. In particular, to support extensibility for state, methods

cannot always be made independent of each other.

To reconcile modularity and extensibility, this report starts with the assumption that

classes should have two interfaces, one for instantiators and one for specializers. The report

proposes entire classes as the unit of modularity for instance interfaces and class components

as the unit of modularity for specialization interfaces. After describing class components,

the report pursues a number of additional results that follow from using them as the unit of

modularity. The report describes both formal and informal documentation for specialization

interfaces. It describes a validation criteria for classes built out of class components. Fi-

nally, the report presents advice, based on class components, about designing specialization

interfaces that are both modular and extensible.

The next section describes the language assumptions of the report. Sec. 1.2 gives an

overview of class components and how they facilitate documentation, validation, and design.

Sec. 1.3 both describes the organization of the report and summarizes its results.

1.1 Language model

This report assumes a model of object-oriented programming based on objects, object types,

and classes. The model is a standard, single inheritance model, except that, like Theta

([Day95]), it separates object types from classes and it associates behavioral speci�cations

with object types. Chapter 7 considers multiple inheritance.

An object is a set of instance variables and code for its methods.

An object type describes the behavior of objects. Looked at the other way around, we

say that an object implements an object type when the object behaves as described by the

type. In most work on object-oriented programming, object types include only signature

speci�cations that describe the types of method arguments and results. In this report, object

types are also associated with object speci�cations that describe the behavior of objects.

Object speci�cations consist of an abstract description of the object's state together with

descriptions of the behaviors of the object's methods. The method descriptions are given

in terms of the abstract state, not in terms of the instance variables used to represent that

state. Object speci�cations are described in more detail in the next chapter, and a formal

approach is described in Sec. 4.1.

A class is a template consisting of method and instance variables de�nitions. Instanti-

ating a class creates a new object that has the instance variables and method code de�ned

by the class. Instantiating a class C creates a direct instance of C. An instance of C is a

direct instance of either C or any subclass of C. Where object types describe the behavior

of objects apart from any implementations, classes describe the implementations of objects.

We say that a class implements an object type when all its direct instances implement the

type.

A class is de�ned by a set of local method and instance variable de�nitions and an

optional superclass from which additional de�nitions are inherited. A class can also de�ne

class variables that are shared by all instances of the class. A class overrides a superclass

method by de�ning locally a method with the same name as one of its superclass's methods.

As in many languages, a method can have one of three implementation categories: �nal,

4 CHAPTER 1. INTRODUCTION

deferred, or overridable. Final methods cannot be overridden by subclasses, overridable

methods can. Deferred methods are methods a class declares and calls in its other methods

but for which it does not provide code. Subclasses provide code for deferred methods by

overriding them. A class with deferred methods is called a deferred class and cannot be

instantiated. (In the literature, deferred methods and classes are often called \abstract"

methods and classes.)

Also in many languages, a method can be public, protected, or private, meaning, respec-

tively, the method is visible to instantiators and specializers, is visible only to specializers,

or is visible only inside the class itself. Except where explicitly noted, instance variables

are private, i.e., only visible inside the class itself.

The instance interface of a class is the interface used by instantiators; the specialization

interface is the interface used by specializers and includes protected methods. The instance

speci�cation documents the instance interface of a class, while the specialization speci�ca-

tion documents the specialization interface. Given our language model, one can see that

specialization speci�cations need to document protected methods while instance speci�ca-

tions do not. We will show that there are other, more important di�erences between the

two.

1.2 Class components

This report is centered around a simple idea: that classes should be built out of class

components. A class component is a piece of state|called substate|and a set of methods

responsible for maintaining that state.

Class components are illustrated in Fig. 1.2, which gives a partial implementation of

IntSet. In this �gure, IntSet has two class components, one for the actual elements of the

set, and another for a cache used to cache membership tests. The substate of the elements

component is represented by an IntVector object, an array of integers whose size changes

dynamically. This part of the representation is maintained by the methods addElement,

removeElement, and elements. The substate of the cache component is represented by an

integer and a boolean and is maintained by the methods contains and uncache. As this

example illustrates, class components are very much like data abstractions: encapsulated

state manipulated by a set of operations. This similarity explains why class components

are good units of modularity.

Class components have historical roots in programming conventions for extensible state.

In the context of subclassing, extensibility means allowing a subclass to provide its own im-

plementation of some aspect of its superclass. Programming languages directly support

extensibility for methods by allowing subclasses to provide their own implementations for

superclass methods. However, languages do not directly support extensibility for state:

there is no mechanism that allows subclasses to provide their own representations of super-

class state.

To address this asymmetry, programmers have developed class components as a con-

vention that does allow subclasses to provide their own representations for superclass state.

The key to this convention, as illustrated by IntSet, is that methods in the elements compo-

nent call the methods of the cache component rather than accessing the instance variables

representing the cache. Subclasses replace the representation of a superclass component

1.2. CLASS COMPONENTS 5

class IntSet f

// ``elements'' component

private IntVector els = new IntVector();

public overridable void addElement(int el) f

if (! els.contains(el)) els.addElement(el);

g;

public overridable boolean removeElement(int el) f

this.uncache(el); // Maintain cache validity

return els.removeElement(el); // Call remove method of IntVector

g;

public overridable IntEnumeration elements() f

return els.elements();

g;

// ``cache'' component

private int c_val; // Value currently in cache

private boolean c_valid = false; // True only if c_val is valid

public overridable boolean contains(int el) f

if (c_valid && c_val == el) return true;

for(IntEnumeration e = this.elements(); e.hasMoreElements();)

if (el == e.nextElement()) f

c_valid = true; c_val = el;

return true;

g;

return false;

g;

protected overridable void uncache(int el) f

if (c_val == el) c_valid = false;

g;

..other methods elided

g;

Figure 1.2: Implementation of IntSet.

6 CHAPTER 1. INTRODUCTION

class IntSet2 extends IntSet f

// Replace the ``cache'' component

private long c_bits; // Used as a bitmap; caches 0 - 63 only

// If c_bits[i] is true, then i is in the cache

private �nal boolean c_test(int el)

// If el is in range, return c_bits[el], otherwise return false

f return 0 <= el && el < 64 && c_bits & (1 << el); g

private �nal void c_set(int el, boolean val) f

// If el is in range, set c_bits[el] = val

if (0 <= el && el < 64)

c_bits = (c_bits & ~(1 << el)) | (val ? (1 << el) : 0);

g

public boolean contains(int el) f

if (c_test(el)) return true;

for(IntEnumeration e = this.elements(); e.hasMoreElements();) f

c_set(el, true);

if (el == e.nextElement()) return true;

g;

return false;

g;

protected void uncache(int el)

f c_set(el, false); g;

g;

Figure 1.3: Subclass of IntSet that replaces the cache.

by overriding the methods of a component with new code that uses a new representation.

For example, IntSet2 in Fig. 1.3 replaces the representation of the cache by overriding

contains and uncache with code that represents the cache using a bit vector. This new

representation can cache up to sixty-four hits, but it only caches hits on zero through sixty-

three, so IntSet2 is best used where membership tests on small, positive numbers dominate.

(IntSet2 inherits but does not use the instance variables c valid and c val, the old rep-

resentation of the cache. Sec. 6.4.4 explains how these orphaned instance variables can be

optimized away.)

In addition to facilitating extensibility, class components are good units of modularity

for specialization interfaces. We saw earlier that the entire class is too big a unit. At

the other extreme, individual methods are too small a unit of modularity. For example,

consider the cache component of IntSet. The methods of this component, contains and

uncache, share implementation information about the representation of the cache, e.g.,

that c valid and c val are used to represent the cache and that c val is a cached hit only

when c valid is true. This shared implementation information means that contains and

uncache cannot be made independent of one another. However, the two methods taken

together are independent: a specializer can replace them as a group with no knowledge of

c valid and c val.

1.3. OVERVIEW 7

Thus, class components are ideal for reconciling extensibility and modularity. This re-

alization leads to insights into design, documentation, and validation. For example, an

important part of designing specialization speci�cations is deciding what state should be

extensible. This extensible state should be subdivided into pieces that can be replaced in-

dependently, and each piece should be given its own class component. The documentation

of specialization interfaces should identify the class components; this means documenting

both the substate and the methods that make up the component. Class components should

be independent of one another. This means that one component should not directly ac-

cess the representations of other components but instead should access the substates of

other components by calling their methods. For example, the contains method of IntSet

does not directly access the representation of the elements of an IntSet but instead calls

elements. Similarly, the removeElements method does not access the rep of the cache but

instead calls uncache.

The need for independence feeds back into the design and documentation of specializa-

tion interfaces. If components are to be independent of one another, then each component

must o�er a su�cient interface to the others. For example, the existence of uncache is mo-

tivated by the desire to support independent access to the cache by removeElement. Also,

documenting class components in an independent manner often requires exposing aspects of

a class's state that is hidden from instantiators. For example, documenting the component

containing uncache requires exposing the existence of the membership cache to specializers

even though this cache need not be mentioned in the documentation given to instantiators.

1.3 Overview

This report introduces class components and explains why we think that they are the right

unit of modularity for specialization interfaces. The report also explores the implications of

designing specialization interfaces in terms of class components. The next chapter describes

class components in more detail. It then describes how to document the specialization

interface of classes built out of them. This documentation establishes abstraction boundaries

around components, allowing subclasses to replace them without looking at the code of

superclasses. The chapter also describes the di�erences between instance and specialization

interfaces, justifying our decision to separate them.

Chapter 3 describes validation of specialization interfaces. This chapter �rst de�nes the

validation criterion for specialization interfaces. Part of our criterion is the classical one

for data abstractions: a class must implement the behavior described by its speci�cation.

Another part of our criterion is a new one introduced for specialization interfaces: the

components of a class must be independent of one another. After de�ning this validation

criterion, the rest of Chapter 3 focuses on the new aspect: reasoning about classes in a way

that ensures the independence of components.

Chapter 4 describes formal speci�cation and veri�cation of specialization interfaces. This

chapter formalizes results described informally by the previous two chapters. Chapter 5

extends these speci�cations in a way that improves the extensibility without sacri�cing

modularity.

Chapter 6 looks at design issues that arise in the context of specialization interfaces.

First, it presents design guidelines for specialization interfaces, drawing on existing class

8 CHAPTER 1. INTRODUCTION

libraries for examples. Next, it looks at the design of languages, presenting an extension to

Java that supports class components.

Chapter 7 considers separating class components into separate classes, called mixins,

that can be combined using multiple inheritance. The chapter assumes Snyder's encapsu-

lated model of multiple inheritance, and it presents an extension to the Java language that

embodies this model. The mixin style of design leads to class hierarchies with more classes

than in equivalent single-inheritance designs, but in which classes have smaller, simpler

interfaces and in which classes can be reused more exibly.

Chapter 2

Basic methodology

Modularity is a product of both methodology and good design. Methodology de�nes the

unit of modularity and the system of documentation. A good methodology allows modu-

larity, but it does not necessitate it: good use of the methodology|i.e., good design|is

required as well. This chapter focuses on the methodology side of modularity; the design

side is discussed a bit here and more in Chapter 6. This chapter looks in particular at

documentation for classes. A good system of documentation is important because it de-

scribes modules as abstractions apart from any particular implementation. This is central

to achieving independence, allowing clients and implementors of modules reason about their

code independently. It also is central to achieving good design by making interface designs

more tangible and thus easier to evaluate.

There are two units of modularity in our methodology. For instantiators, the unit of

modularity is the entire class. Sec. 2.1 describes how to document instance interfaces. For

specializers, the unit of modularity is class components. Sec. 2.2 describes the programming

conventions for class components, and Sec. 2.3 looks at documentation for specialization

interfaces given in terms of class components. These sections also introduce examples used

throughout the report.

Although the mechanics of specifying instance and specialization interfaces are similar,

the information contained by their speci�cations is di�erent. Sec. 2.4 looks at this di�erence.

2.1 Instance interfaces

Chapter 1 explains that classes need two interfaces, one for instantiators and another for

specializers. The one for instantiators takes the entire class as the unit of modularity. We

draw abstraction boundaries around entire classes by documenting classes with object spec-

i�cations. Object speci�cations describe the behavior of objects. The object speci�cation

documenting a class describes the behavior of direct instances of the class. (Documenting

classes by describing their instances is nothing new and goes back at least to [Hoare72].)

IntSetISpec, an example object speci�cation for IntSet, is given in Fig. 2.1. This

is an informal speci�cation, using the notation from [Liskov86] (formal speci�cations are

described in Chapter 4). IntSetISpec illustrates the two basic parts found in all object

speci�cations: the abstract state, which describes the state of objects, and the method

speci�cations, which describe the behavior of the methods of objects.

9

10 CHAPTER 2. BASIC METHODOLOGY

object speci�cation IntSetISpec f // Documents instance interface

state �eld elements; // A mathematical set of integers

public void addElement(int el);

// Modifies: this.elements

// Effects: Adds el to this.elements.

public boolean removeElement(int el);

// Modifies: this.elements

// Effects: Removes el from this.elements, returning true iff

// el is in to begin with.

public IntEnumeration elements();

// Effects: Returns an enumeration of integers in this.elements.

public boolean contains(int el);

// Effects: Returns true iff el is in this.elements.

..other methods elided

g;

Figure 2.1: Instantiator's view of IntSet.

The abstract state of IntSetISpec is given in the state �eld declaration (in general,

there can be multiple �eld declarations). These declarations declare abstract-state �elds.

Abstract-state �elds are �elds of objects much like instance variables, except that they

do not exist at run-time. They are �ctions created to abstract away from the details of

instance variables. These �ctional �elds do not appear in any code, but they do appear in

the speci�cations of methods.

Methods are speci�ed in terms of pre-conditions that must be hold on entry to a method

and post-conditions that are established on exit. The requires clause describes a method's

pre-condition, constraining the arguments on which the method is de�ned. The code calling

a method is responsible for establishing the method's pre-condition. None of the methods

in IntSetISpec have pre-conditions, which means they can be called with any arguments.

The modi�es and e�ects clauses together describe a method's post-condition. The modi�es

clause constrains the behavior of the method by restricting what it is allowed to change:

the method can only change what is listed in its modi�es clause. The e�ect clause describes

the behavior of the method, i.e., it describes in what ways the method changes objects and

what values the method returns. In Fig. 2.1, the post-condition of addElement says that

addElement modi�es the elements �eld of this by inserting el into it.

2.2 Conventions for extensible state

As discussed in Chapter 1, class components support extensibility for state. In the context

of subclassing, extensibility means allowing subclasses to provide their own implementation

of some aspect of their superclasses. For example, subclasses can provide their own code

2.2. CONVENTIONS FOR EXTENSIBLE STATE 11

for deferred and overridable methods. With class components, the �nal, overridable, and

deferred distinction can be applied to state. When applied to state, �nal, deferred and

overridable are called representation categories.

Overridable and deferred state is extensible: subclasses can provide their own repre-

sentations for it. The overridable state of a class is state for which the class provides a

representation that can be replaced by subclasses. The deferred state is state a class as-

sumes exist but for which it provides no representation, depending instead on subclasses

to provide representations. Final state is not extensible: subclasses cannot provide their

own representations for �nal state but rather must inherit the superclass's representation.

Overridable, deferred, and �nal state are all supported by class components.

An overridable class component is a group of public and protected, overridable methods

and a set of private instance variables maintained by them. Only methods in the component

may access the instance variables assigned to the component. These methods are called

the component's accessors. If a method outside the component needs to access the state

represented by these instance variables, it must call the accessors of the component rather

than directly access the variables. Thus, for example, removeElement in IntSet (Fig. 1.2)

calls uncache rather than accessing c valid and c val, and contains calls elements rather

than accessing els. As illustrated in by IntSet2 (Fig. 1.3), which represents the cache using

a bit-map, a subclass replaces the representation of an overridable component by overriding

all accessors of the component with new code that accesses the new representation.

For convenience, an overridable class component may contain helper methods, private,

�nal methods that are useful for implementing the component's accessors. For example, in

IntSet2, the cache component contains the helper methods c test and c set that perform

bit-level operations. Helper methods may only be called by methods in their own component

and may not be called by methods in other components.

A deferred class component is a group of public and protected, deferred methods. De-

ferred components are also associated with deferred state. Deferred state is assumed to exist

by the code of �nal and overridable methods, but the class provides no representation for

it. The �nal and overridable methods of a class access the deferred state of a component

by calling the component's deferred methods, which are also called accessors. A subclass

provides a representation for deferred state by overriding these accessors with code that

access a representation provided by the subclass.

An example of deferred state is given in Fig. 2.2. This �gure presents a partial im-

plementation of Rd (\reader"), a character input stream inspired by the Modula-3 library

[Brown91]. Di�erent subclasses of Rd read characters from di�erent sources, e.g., the source

of FileRd is disk �les, while the source of SocketRd is network connections. Bu�ering,

using an internal array to facilitate the reading of characters o� devices in blocks rather

than individually, is important to the performance of readers. The state associated with

bu�ering|and the code that manipulates that state|is included in Rd so it can be shared

by all subclasses. The state associated with the source a reader is deferred because it

is di�erent in di�erent subclasses. This deferred state is accessed by calling the deferred

nextChunk (see, for example, the code of getChar). Subclasses provide a representation

for this deferred state by providing code for nextChunk that accesses the subclass-provided

representation.

Final state is not extensible, so it is a little outside of the topic of this section (\conven-

12 CHAPTER 2. BASIC METHODOLOGY

class Rd f // Character input streams

// Rd class implements source-independent buffering.

// Deferred component: substate = char's not yet read from underlying source

protected deferred char[] nextChunk();

// Returns the next block of characters from the source.

// Subclasses override this accessor with code that directly accesses

// the representation of the underlying source of characters.

// Final component: substate = buffer of characters

private char[] buffered = new char[0];

private int cur = 0;

public �nal char getChar() throws EofException f

if (cur == buffered.length) f

buffered = this.nextChunk();

cur = 0;

if (buffered.length == 0) throw new EofException();

g;

return buffered[cur++];

g;

..other methods elided

g;

Figure 2.2: Partial implementation of Rd.

2.3. SPECIALIZATION INTERFACES 13

tions for extensible state"), but we include a discussion of �nal components for completeness.

A �nal class component is a group of public and protected, �nal methods and a set of as-

sociated instance variables. Although it is possible to use protected and public instance

variables for �nal state, we assume that private instance variables are used (protected and

public instance variables are discussed in Chapter 6). In Fig. 2.2, the state associated with

the bu�er of a reader is �nal. This state is represented by the instance variables buffered

and cur.

Because the �nal state of a class cannot be replaced by subclasses, it is safe for all

methods of the class to directly access its representation. For example, if the cache of

IntSet (Fig. 1.2) were �nal rather than overridable, then the code of removeElement could

manipulate c valid and c val directly instead of calling uncache. Thus, the purpose of

grouping of methods into �nal components is not to enforce implementation restrictions but

to help break up a class into smaller, more digestible pieces.

The conventions for extensible state can be summarized in two simple statements:

1. Partition methods and instance variables into �nal, overridable, and deferred compo-

nents.

2. Implement each component independent of the the other overridable components in

the class.

This second point is important to making an overridable component overridable: if sub-

classes of class C are going to replace component G and inherit other components, then

C's implementation of those other components must be independent of the way C happens

to implement G. We have already described one aspect of establishing this independence:

the instance variables of a component may be accessed only by the methods in the com-

ponent. However, independence goes beyond not looking at instance variables, e.g., it also

includes not depending on the code of methods. In general, one component is indepen-

dent of another if it depends only on the speci�cation of the other component, not on its

implementation. The next section explains how to specify components. The next chapter

looks the steps necessary to ensure that the implementation of a component depends only

on these speci�cations and not on implementation details.

2.3 Specialization interfaces

An informal specialization speci�cation for IntSet is given in Fig. 2.3. Speci�cations for

specialization interfaces have two parts: an object speci�cation that describes instances of

the class, and a division of labor that partitions this object speci�cation into class compo-

nents. The form for the object-speci�cation part is the same as for all object speci�cations

although, as discussed below, the content of the object speci�cations for the instance and

specialization interfaces di�er. The division of labor assigns each abstract-state �eld and

method of the specialization interfaces' object speci�cation to one of the interfaces class

components. As illustrated in Fig. 2.3, divisions of labor are given in the form of component

clauses that group together substate �eld declarations, which indicate the abstract-state

�elds assigned to the component, and the method speci�cations of methods assigned to the

component.

14 CHAPTER 2. BASIC METHODOLOGY

specialization speci�cation IntSetSSpec f

state �eld elements; // A mathematical set of integers

state �eld cache; // Also a mathematical set of integers

invariant cache � elements // All methods must preserve this

overridable component f

substate �eld elements;

public void addElement(int el);

// Modifies: this.elements

// Effects: Adds el to this.elements.

public boolean removeElement(int el);

// Modifies: this.elements, this.cache

// Effects: Removes el from this.elements, returning true iff

// el is in to begin with.

public IntEnumeration elements();

// Effects: Returns an enumeration of the integers in this.elements.

g;

overridable component f

substate �eld cache;

public boolean contains(int el);

// Modifies: this.cache

// Effects: Returns true iff el is in this.elements.

protected void uncache(int el);

// Modifies: this.cache

// Effects: Removes el from this.cache

g;

..other methods elided

g;

Figure 2.3: Informal specialization speci�cation of IntSet.

2.4. ABSTRACT REPRESENTATIONS 15

As suggested above, the content of the object speci�cations given for the instance and

specialization interfaces di�er. Speci�cations for the specialization interface are typically

more detailed than those for the instance interface. Our theory does not require that the ob-

ject speci�cations for these two interfaces di�er, but in practice specializers typically need to

know more about a class than instantiators do. For example, IntSetSSpec is more detailed

than IntSetISpec in exposing the existence of the membership cache, allowing subclasses

to replace it. As another example, IntSetSSpec has an invariant while IntSetISpec does

not, an invariant important to the correct maintenance of the cache. These kinds of di�er-

ences between the object speci�cations for the instance and specialization interfaces will be

discussed in subsequent sections and chapters.

We did not mention invariants when we introduced object speci�cations, but any object

speci�cation can have an invariant. An invariant describes a constraint on the speci�ca-

tion's abstract-state �elds that must be established by constructors and preserved by all

methods. The invariant of an object speci�cation is an implicit part of all method speci�-

cations: it may be assumed on entrance and must be preserved on exit. Thus, for example,

contains may assume the invariant even though it is not part of the explicit pre-condition

of contains. Similarly, removeElement must preserve the invariant even though it is not

part of the explicit post-condition of removeElement. Invariants are just one of many dif-

ferent kinds of information that might be put into object speci�cation. Other examples

include constraints for establishing history properties [Liskov94] or complexity information

for bounding algorithms [Musser96]. We highlight invariants because, as discussed in the

next section, they are particularly important in the context of specialization interfaces. For

simplicity, we ignore other kinds of information that could be included in object speci�ca-

tions, but our results can be extended to handle additional information.

IntSetSSpec has two overridable class components, one associated with the elements

�eld and the other associated with the cache �eld. RdSSpec (Fig. 2.4), a specialization

speci�cation for Rd, illustrates documentation for �nal and deferred components. Docu-

mentation for class components lifts the programming conventions for components to the

level of abstract state. Even though deferred components do not have an implementation,

they do have abstract state. Thus, at the abstract level, rather than at the level of instance

variables, it becomes possible to describe the state assigned to deferred components.

2.4 Abstract representations

Instance and specialization interfaces are both documented using object speci�cations. How-

ever, as indicated earlier, the specializer's object speci�cation is more detailed than the

instantiator's. The specializer's object speci�cation has a more detailed view of the class's

state and includes speci�cations for protected methods. For example, IntSetSSpec re-

veals the existence of the membership cache to specializers and also includes the protected

method uncache. Similarly, RdSSpec reveals that the source of a reader is split into the

components buffered and ondevice and also includes the protected method nextChunk

(c.f. the instance speci�cation in Fig. 2.5). The extra details found in the specializer's

object speci�cation describe abstract interfaces that class components use to interact with

each other.

Again, one way in which the specializer's object speci�cation is more detailed than

16 CHAPTER 2. BASIC METHODOLOGY

specialization speci�cation RdSSpec f

state �eld buffered; // Sequence of characters

state �eld ondevice; // Sequence of characters

�nal component f

substate �eld buffered;

public char getChar() throws EofException;

// Modifies: this.ondevice, this.buffered

// Effects: If this.buffered and this.ondevice are both empty,

// signals EOF. Otherwise, first may (but may not) move a prefix

// of this.ondevice onto the end of this.buffered, then removes

// and returns the first character of this.buffered.

g

deferred component f

substate �eld ondevice;

protected char[] nextChunk();

// Modifies: this.ondevice

// Effects: Removes and returns a prefix of this.ondevice.

// Returns the empty sequence only if this.ondevice is empty.

g

..other methods elided

g;

Figure 2.4: Informal specialization speci�cation of Rd.

object speci�cation RdISpec f

state �eld source; // Sequence of characters

public char getChar() throws EofException;

// Modifies: this.source

// Effects: If this.source is empty, signals EOF. Otherwise,

// removes and returns the first character of this.source.

..other methods elided

g;

Figure 2.5: Informal instance speci�cation of Rd.

2.4. ABSTRACT REPRESENTATIONS 17

the instantiator's is by having a more detailed view of the class's abstract state. We call

this more detailed view the abstract representation. This term emphasizes that it is at

a level of abstraction between the fully-abstract state given in the instance speci�cation

and the instance variables manipulated by code. As a slogan, we say that the abstract

representation should expose the implementation strategy without exposing implementation

details. Implementation strategies includes internal mechanisms such as caching (e.g., in

IntSet), bu�ering (e.g., in Rd), or the fact that some structures are sorted. Such strategies

are \implementation details" as far as instantiators are concerned, but they are important

in terms of the interactions among components.

The other way in which the specializer's object speci�cation is more detailed than the

instantiator's is by including protected methods. Protected methods arise where a class

component maintains aspects of a class's state that is visible in the specializer's object

speci�cation of the class but not in the instantiator's. Often, such components include

accessors to allow other components to manipulate this state in ways not available to in-

stantiators. Protecting accessors hides them from instantiators but exposes the full interface

to subclasses. For example, the uncache accessor of IntSet must be visible to subclasses

because subclasses that replace the elements component need to call it and because sub-

classes that replace the cache component need to provide their own implementation for it.

At the same time, this accessor should be hidden from instantiators because the cache is

irrelevant to instantiators. A similar argument applies to the nextChunk accessor of Rd.

Another di�erence between the instantiator's and specializer's object speci�cations is

the role played by invariants. In particular, in classes constructed from class components,

invariants on the abstract representation serve in lieu of representation invariants. We

call these invariants abstract representation invariants not only because they are invariants

on abstract representations but also because of their role as surrogates for representation

invariants.

E�cient implementations of methods must be able to make assumptions about the

relationships among di�erent parts of an object's state. For example, in IntSet, contains

assumes that the cache of a set is a subset of the set's elements, and removeElement assumes

that els contains no duplicate entried (i.e., no number is stored in els more than once). In

the context of classical data abstractions, both of these assumptions would be expressed as

representation invariants. However, as discussed in the next few paragraphs, in the context

of subclassing, not all such assumptions can be captured as representation invariants.

Even in the context of subclassing, representation invariants can still be used to capture

assumptions that relate state within a component such as the \no duplicates" assumption

from above. Such invariants can be established by data-type induction, i.e., by making

sure that the methods that have access to the instance variables preserve the invariant. In

our example, the no duplicates property can be established by ensuring that addElement,

removeElement, and elements all preserve it.

However, representation invariants cannot be used to capture assumption that relate

state from multiple components such as the cache-validity property. This is because sub-

classes might replace the representations of some of the state involved. For example, consider

a subclass of IntSet that replaces the elements component and inherits the cache compo-

nent. The inherited code for contains still assumes that cache is a subset of elements, but

the representation of elements has been replaced. Instead of expressing multi-component

18 CHAPTER 2. BASIC METHODOLOGY

properties in terms of the concrete representation, they must be expressed in terms of the

abstract representation. Thus, we see that the invariants on the abstract representation

serve in lieu of invariants on representations to express properties that relate state from

multiple components.

2.5 Summary

Classes have two interfaces, one for instantiators and once for clients. The unit of modularity

for instance interfaces is the entire class. They are documented using object types.

The unit of modularity for specialization interfaces is class components. Class com-

ponents are a programming convention that support the overridable, deferred and �nal

representation categories for the state of classes. Under this convention, the methods and

instance variables of classes are partitioned into �nal, overridable, and deferred compo-

nents, and each component is implemented independently of the implementations of other

overridable components.

The class components making up a class are documented by giving an object speci�-

cation together with a division of labor that divides the state and methods of the object

speci�cation into class components. Specialization speci�cations need their own object

speci�cation and cannot use the instance speci�cation. This is because the specialization

speci�cation reveals more detail, details pertaining to the interfaces between class compo-

nents. When designing specialization interfaces, designers need to think in terms of an

implementation strategy, i.e., a level of abstraction above the implementation but below

the instance speci�cation.

Chapter 3

Validating classes

Validation is any activity intended to increase our con�dence that a class behaves as in-

tended. Validation typically consists of some combination of testing and reasoning. Testing

involves placing the class in a particular context and seeing if it behaves as expected. Rea-

soning involves inspecting the implementation of a class and arguing that it will behave

correctly in all possible contexts. Reasoning can be done formally or informally. Much

formal reasoning can be done mechanically. Mechanical reasoning can range from simple

type checks, to anomaly checking, to full, formal veri�cation.

All forms of validation depend on some notion of what it means for a class to \behave

as intended." We call this notion the validation criterion. Our starting point for de�ning

such a criterion is the slogan \a class is correct if it meets its speci�cation." Sec. 3.1 looks

at what it means for a class to meet both its instance and specialization speci�cations.

The Sections 3.2 and 3.3 apply this criterion to informal reasoning about the correctness of

class relative to its specialization interface. Sec. 3.4 explains how the correctness of a class

relative to its instance interface can be deduced from correctness relative to its specialization

speci�cation.

3.1 Validation criterion

Recall that classes have two speci�cations, one for instantiators and one for specializers.

The instance speci�cation of a class consists of an object speci�cation. A class implements

its instance speci�cation if all instances of the class behave as described by the speci�cation.

The specialization speci�cation consists of an object speci�cation together with a divi-

sion of labor. The validation criterion for a class against its specialization speci�cation is

two-fold. First, instances of the class must behave as described by the object-speci�cation

part of the specialization speci�cation. Second, each class component de�ned by the division

of labor must be implemented independently of the implementations of the other overrid-

able components in the class. This means that each class component can depend only on

the speci�cations of other class components; it cannot depend on the implementations of

methods nor on the representation of state assigned to other components. If components

are independent, then subclasses can replace some of the components without breaking the

others.

19

20 CHAPTER 3. VALIDATING CLASSES

The following implementation of removeElement is behaves correctly but is not inde-

pendent of the representation of another component:

public overridable boolean removeElement(int el) f

boolean result = els.removeElement(el);

if (result) c_valid := false; // Bug: accesses rep of cache!

return result;

g;

This code would be �ne if the only validation criterion were that a class implement the

object-speci�cation part of its specialization speci�cation. However, this code is not valid

because it depends on the representation of the cache and thus is not independent of the

implementation of the cache component.

The following code also behaves correctly but is also not valid, this time because it is

not independent of the implementation of a method it calls:

protected overridable void uncache(int el) f

c_valid = false; // Invalidate even if el not in cache

g;

public overridable boolean removeElement(int el) f

boolean result = els.removeElement(el);

if (result) this.uncache(2); // Assume that uncache ignores the

return result; // value of its argument.

g;

This version of uncache always invalidates the cache no matter what the value of its ar-

gument. Although not the most e�cient thing to do, it is still correct. This version of

removeElement takes advantage of the fact that uncache ignores its argument. Like the

version of removeElement that accessed c valid, this version behaves correctly but is not

valid because it depends on the implementation of uncache.

3.2 Reasoning about local components

The implementation of a class contains two kinds of components: components implemented

locally and components inherited from a superclass. This section considers reasoning about

local components. Local components include superclass components overridden by the class,

deferred components of the superclass implemented by the class, and new methods de�ned

by the class. We want to reason about the correctness of the local components of a class

relative to the class's specialization speci�cation.

The implementation of a local component consists of a set of instance variables that

represent the state of the component and code for the component's methods. Programmers

reason about this code|both formally and informally|in pretty much the same way they

reason about code for classical data abstractions (see, e.g., [Liskov86],[Dahl92]). This rea-

soning involves inspecting the code to make sure that it does what it is supposed to. We do

not review this inspection process here. Instead, we explain the additional steps necessary

to ensure that the code of a component is independent of other, overridable components in

the class.

3.2. REASONING ABOUT LOCAL COMPONENTS 21

3.2.1 Calling methods

The �rst aspect of being independent of other components is to reason about calls to

overridable methods in terms of speci�cations rather than implementations. Because calls

to overridable components are reasoned about in terms of their speci�cations, these calls will

still work as expected when subclasses replace the components with new code implementing

the same speci�cation.

3.2.2 Accessing state

Another aspect of being independent of other components is not depending on the repre-

sentations of their state. This means that if the code in one components needs to access the

state assigned to another, overridable component, it should do so by calling the methods of

the other component rather than by accessing its instance variables. When done through

methods, accesses of the state of an overridable component will still work as expected when

subclasses replace the component.

Binary methods, generally a problem (see, e.g., [Liskov93] and [Bruce96]), must be

treated with care. A binary method of class C is a method that takes one or more arguments

of type C in addition to this. In most languages, the code in binary C's methods has

privileged access to all arguments of type C, not just to this. In particular, this code can

access the private instance variables of those arguments. This privileged access supports

e�cient implementations of some data types, but it must be used sparingly to to achieve

independence.

Consider the following class:

class C f

// Overridable ``count'' component

private int m_count;

public overridable getCount() f return m_count; g

public overridable addCounts(C o)

f return m_count + o.getCount(); g

...

g

The code for addCounts can safely access m count of this. However, this code should not

access m count for o. This is because the class implementing o may be a subclass of C that

has replaced the count component with code that does not use m count to represent count.

Instead of accessing m count for o, addCounts should call getCount instead.

In short, instance variables representing overridable state should only be accessed for

this and not for other arguments. For all of its arguments, a binary method can safely

access the instance variables representing �nal state.

3.2.3 Assuming invariants

Invariants are important in reasoning about the correctness of method code [Liskov86]. For

example, the code of removeElement (Fig. 1.2) assumes no duplicates in this.els, i.e., that

22 CHAPTER 3. VALIDATING CLASSES

no element appears in this.els twice. The code of contains assumes that an element of

the cache is also an element of elements.

In the context of class components, there are two kinds of implementation invariants.

First, there are invariants that relate state within a single component, e.g., the \no dupli-

cates" invariant. Such an invariant can be established by showing that it is preserved by

the code of each of the component's methods. For example, addElement, removeElement,

and elements all preserve the no duplicates invariant. Because only the methods in a

component access the instance variables of the component, only these methods need to be

checked to establish an invariant on these instance variables.

The second kind of invariant relates state assigned to di�erent components, e.g., the

cache validity invariant. As explained in the previous chapter, such invariants cannot be

established directly on the instance variables. In place of such invariants, programmers

must instead use abstract representation invariants, i.e., invariants on the abstract state of

the object speci�cations of specialization speci�cations.

3.2.4 Abstracting state

When choosing a representation for a class and coding the class's methods, the implementor

has in mind an abstraction function, a relationship between the class's instance variables

and the class's abstract state. For classical data abstractions, the abstraction function maps

the entire representation to the entire abstract state. In the context of class components,

each component needs its own subabstraction function. These subabstraction functions map

the component's instance variables to the abstract state assigned to the component.

For example, IntSet (Fig. 1.2) needs two subabstraction functions, one for the elements

component and the other for the cache component. The function for the elements compo-

nent returns the set consisting of the elements of els. The function for the cache component

returns the empty set when c valid is false and the singleton set consisting of c val when

c valid is true.

Subabstraction functions are central to formal veri�cation of classes and will be discussed

further in Chapter 4. However, even when classes are not formally veri�ed, subabstraction

functions are useful for informal reasoning, and it is a good idea for implementors to docu-

ment the subabstraction function of each class component.

3.3 Reasoning about subclasses

Root classes are classes without superclasses, such as IntSet in Fig. 1.2. All non-deferred

components of a root class are local, so root classes are easy to reason about: just reason

about each local component as described in the previous section.

Subclasses are a little trickier. The validation criterion described in Sec. 3.1 applies

equally to root classes and subclasses. Local components of a subclass|i.e., superclass

components overridden by the subclass, deferred components of the superclass implemented

by the subclass, and new local components|are still reasoned about as described in the

previous section. However, unlike root classes, subclasses contain inherited components.

Also, unlike root classes, subclasses can use super to call superclass versions of methods.

3.3. REASONING ABOUT SUBCLASSES 23

This section discusses reasoning about inherited methods and super. It assumes that

the subclass's set of abstract-state �elds is the same as the superclass's. The next chapter

handles the case when the sub- and superclass have di�erent abstract-state �elds.

3.3.1 Reusing superclass code

Subclasses can reuse code of their superclasses, both by inheriting components and by using

super to call superclass versions of methods. Superclass code reused by the subclass may

in turn call code provided by the subclass; for example, an inherited method may call an

overridden one. Code provided by the subclass must meet assumptions made about it by

inherited superclass code. (In addition to this issue, reasoning about super entails other

issues discussed in Sec. 3.3.4.)

Superclass code makes two assumptions that subclasses need to respect. First, superclass

code assumes that the superclass invariant is preserved. If this code is going to work

when reused by the subclass, the subclass will have to preserve the superclass's invariant.

For example, contains depends on the cache validity invariant; a subclass that inherits

contains must preserve this invariant. To ensure that the subclass (and its subclasses)

will preserve the superclass's invariant, we require that the subclass's invariant imply the

superclass's.

The second assumption made by superclass code is that the methods of this implement

the speci�cations given to them in the superclass. For example, the correctness of contains

in Fig. 1.2 depends on the behavior of elements. If a subclass replaces elements and

inherits contains, it should replace elements with code that does what contains expects

it to. To ensure that the subclass's code for methods implements the behavior expected

by superclass code, we require that the subclass speci�cations of overridable and deferred

methods imply their speci�cations in the superclass. This rule applies to all methods for

which the subclass can provide code, not just to methods for which the subclass actually

does provide code. Applying this rule to all methods ensures that subclasses of the subclass,

which can replace methods not replaced by the subclass, also respect assumptions made by

the superclass.

3.3.2 Inherited methods

Local components are reasoned about by inspecting their code. However, recall that a

goal of this report is to allow specializers to build subclasses without looking at the code

of superclasses. We need a way to ensure that the code of inherited methods behaves as

described by the subclass's speci�cation without actually looking at this code.

We are assuming that the superclass implements its speci�cation. This means that in-

herited methods behave as described by the superclass's speci�cation. If this superclass

speci�cation implies the subclass speci�cation, then the subclass speci�cation will also de-

scribe the inherited code. Thus, we ensure that inherited methods meet their subclass

speci�cations by requiring that their superclass speci�cations imply their subclass speci�-

cations.

This implication is opposite the implication in the previous subsection. There, subclass

speci�cations imply superclass speci�cations to ensure that subclass-provided code behaves

as expected by the superclass. Here, superclass speci�cations imply subclass speci�cations

24 CHAPTER 3. VALIDATING CLASSES

Method kind Implication(s) between speci�cations

Final superclass) subclass

Inherited overridable superclass , subclass

Overridden overridable superclass (subclass

Deferred superclass (subclass

Table 3.1: Behavioral subclassing.

to ensure that superclass-provided code behaves as described by the subclass. Note that

the implications of this subsection and the previous one both apply to inherited, overridable

methods. This means that the speci�cations of such methods in the sub- and superclass

interfaces end up being logically equivalent.

A subclass that inherits a component must inherit the component as a whole|it may

not separate the elements of the component. For example, a subclass of IntSet that inher-

ited the element component may not put addElement and removeElement into separate

class components. If a subclass did split them up, subclasses of this subclass could override

addElement without overriding removeElement, which would be an error. When a sub-

class replaces a component, it may break it up. In our example, a subclass that replaces

the elements component could put addElement and removeElement into separate class

components.

3.3.3 Behavioral subclassing

Collectively, we refer to the rules from the previous two subsections as behavioral subclassing.

In short, these rules are:

1. The speci�cations of overridable and deferred methods in the subclass must imply

their speci�cations in the superclass, and the invariant of the subclass must imply the

invariant of the superclass.

2. The speci�cations of inherited methods in the subclass must be implied by their

speci�cations in the superclass.

3. Components inherited from the superclass may not be broken up by the subclass.

These rules ensure that superclass code reused by the subclass behaves as expected. Ta-

ble 3.1 summarizes the implications between the speci�cations of methods in the sub- and

superclass speci�cations.

To understand how behavioral subclassing works, consider a specialization speci�cation

that is the same as IntSetSSpec (Fig. 2.3) in every way except for the speci�cation of

elements:

specialization speci�cation IntSetSSpec2 f

...

overridable component f

...

3.3. REASONING ABOUT SUBCLASSES 25

public IntEnumeration elements();

// Effects: Returns an enumeration of the integers in

// this.elements. This enumeration yields these integers

// in ascending order.

g;

...

g;

This speci�cation for elements is stronger than the one in IntSetSSpec: it returns an

enumeration that yields its elements in ascending order. If IntSetSSpec is the specializa-

tion speci�cation of IntSet, could IntSetSSpec2 be the specialization speci�cation of a

behavioral subclass of IntSet? The answer is \yes"|but only for subclasses that over-

ride the element component of IntSet. Because of rule (1), the subclass's speci�cation of

elements can be stronger than the superclass's only when the subclass overrides elements.

This makes sense: Subclasses that inherit the element component cannot be speci�ed by

IntSetSSpec2 because the inherited code for elements does not (necessarily) meet this

stronger speci�cation. A subclass can strengthen the speci�cation of superclass methods

only when the subclass provides its own code for that method|code that meets the stronger

speci�cation.

Now consider another specialization speci�cation, also the same as IntSetSSpec except

for the speci�cation of elements:

specialization speci�cation IntSetSSpec3 f

...

overridable component f

...

public IntEnumeration elements();

// Effects: Returns an enumeration of *some* of the integers

// in this.elements.

g;

...

g;

This speci�cation for elements is weaker than the one in IntSetSSpec: it returns an

enumeration that yields a subset of the elements in this.elements. Could this be the

specialization speci�cation of a behavioral subclass of IntSet? The answer here is \no"

because contains|and perhaps other methods of IntSet|depend on the stronger behav-

ior of elements. A subclass cannot weaken the speci�cation of superclass methods because

inherited methods may depend on the stronger behavior. (By adding more information to

specialization speci�cations, we could allow subclasses to weaken the speci�cation of super-

class methods. Such information might include, e.g., the fact that contains is the only

method that calls elements. However, we do not feel that the ability to weaken speci�ca-

tions is worth the extra complexity it would add to speci�cations and to reasoning.)

3.3.4 Shadowing components

Half way between inheriting a component on the one hand and completely replacing it

on the other is to shadow a component. When a class shadows a superclass component,

26 CHAPTER 3. VALIDATING CLASSES

class CIntSet extends IntSet f

// Shadowing ``elements'' component of IntSet:

private int m_addCount;

public void addElement(int el) f

m_addCount += 1;

super.addElement(el);

g;

public int addCount() f

return m_addCount;

g;

g;

Figure 3.1: Subclass of IntSet that shadows a component.

it replaces some of the component's methods but does not replace the representation of

the component's substate. The class may also add new methods and new substate to a

shadowed component.

CIntSet (Fig. 3.1) extends IntSet to count the number of times addElement is called.

CIntSet shadows the elements component of IntSet: it does not replace the representa-

tion of elements but it extends the state of the component to include a counter. It also

adds a new method. Notice that CIntSet uses super to invoke the superclass version of

addElement. Shadowed components typically use super in this way.

The convention for shadowed components is as follows:

� The subclass does not provide a representation for the substate of shadowed compo-

nents. Instead, the superclass's representation is used. In CIntSet, for example, the

representation of elements is not replaced.

� Because the superclass represents this substate using instance variables not visible

to the subclass, the subclass cannot directly access the representation of this state.

Instead, the subclass manipulates this state using super to call superclass accessors.

In our example, addElements calls the superclass version of addElements to update

the elements �eld.

� The subclass can add new substate �elds to a shadowed components. These new �elds

are represented using subclass instance variables, and a local subabstraction function

de�nes the new substate �elds in terms of these instance variables. In our example, a

new addCount �eld is added to the state of the elements component.

� The subclass need not override all methods of shadowed components. In our example,

removeElement and elements are both inherited.

� A subclass cannot break up a shadowed component. That is, the component in the

subclass must include at least the methods and substate �elds of component in the

superclass, although it may contain more. Our example follows this rule.

3.4. REASONING ABOUT INSTANCE INTERFACES 27

When super is used to call the superclass version of a method, the superclass's speci�cation

of the method is used to reason about the call.

Super can only be used in shadowed components. Further, a shadowed component can-

not call superclass versions of methods in other components, only of methods in itself. Other

uses of super are not modular. For example, imagine that a subclass of IntSet inherits

the elements component but overrides the cache with a version of contains that called

the elements method via super. This subclass would work �ne. However, if a subclass of

this subclass replaced the elements component and inherited the cache component, then

the cache component would no longer work because its call to elements would invoke the

wrong version.

More general mechanisms exist for invoking overridden code. For example, in C++, the

invocation:

o->C::m(..arguments..)

invokes the code for method m provided by class C, where C is an arbitrary superclass of

o. Whereas super allows the invocation of only the immediate superclass's version of a

method, more general mechanisms such as the one in C++ allows the invocation of any

superclass's version. The methodology de�ned by this report supports the invocation of

only the immediate superclass's version of a method, not an arbitrary superclass's version.

This restriction follows from the philosophy that subclassing is an implementation issue:

the superclasses of a class is not considered to be part of a class's speci�cation, so subclasses

of the class should not be able to depend on those superclasses.

3.4 Reasoning about instance interfaces

So far, this chapter has looked at showing that a class implements its specialization spec-

i�cation. Reasoning about a class also includes showing that it implements it instance

speci�cation. The correctness of classes relative to their instance speci�cations cannot be

reasoned about by inspecting code because the code of inherited methods is not available

for inspection. Instead, we reason about the correctness of a class relative to its instance

speci�cation by relating the instance speci�cation to the specialization speci�cation.

The validation criterion for specialization interfaces says that a class must implement the

object-speci�cation part of its specialization speci�cation. This fact can be used to reason

about instance interfaces: a class will implement its instance speci�cation if its instance

speci�cation is a behavioral supertype of the object-speci�cation part of its specialization

speci�cation.

One object speci�cation is a behavioral supertype another if it correctly describes all

objects described by the other. The term supertype is used because object speci�cations are

used to document object types. A behavioral supertype is a \more general" speci�cation,

i.e., it describes more objects. The behavioral subtype is \more speci�c." Behavioral

subtyping is discussed in detail in [Liskov94]; formal rules for behavioral subtyping are

given in Sec. 4.1.2. For the purposes of this section, a simple rule su�ces: a subtype must

have a more detailed view of an object than its behavioral supertypes do. This has three

28 CHAPTER 3. VALIDATING CLASSES

implications: the subtypes has more methods; the subtype has more abstract-state �elds;

the subtype has a stronger invariant and stronger method speci�cations.

For example, the object speci�cation in Fig. 2.1 is a behavioral supertype of the object

speci�cation part of the specialization speci�cation in Fig. 2.3. This is because the spe-

cialization speci�cation reveals more methods (uncache) and more state (the cache) and

has a stronger invariant. Thus, if we assume that IntSet (Fig. 1.2) correctly implements

the specialization speci�cation in Fig. 2.3, then it follows that it correctly implements the

instance speci�cation in Fig. 2.1.

In Java and most languages, the \class" construct de�nes both what this report calls a

class and what this report calls an object type. That is, Java class C de�nes a type that is

also named C. Inside the code of class C, this can be used wherever the type C is expected.

In languages like this, good design practice requires that the instance speci�cations of all

subclasses of C be behavioral subtypes of the instance speci�cation of C. For example,

code similar to the following appears in the ET++ View class (ET++ is a GUI framework

[Weinand95]):

public ViewStretcher createStretcher() f

DocView dv = this.getDocView();

if (dv == null) return CreateViewStretcher(this);

else return CreateViewStretcherWithRect(this, dv.contentRect());

g;

The code of createStretcher passes this as an argument to other routines. These other

routines expect their �rst arguments to meet the instance speci�cation of View. The cor-

rectness of createStretcher assumes that the instance speci�cations of all subclasses of

View are behavioral subtypes of the instance speci�cation of View.

Behavioral subtyping of instance speci�cations does not follow automatically from be-

havioral subclassing. That is, if class D is a behavioral subclass of C, it does not follow that

the instance speci�cation of D is a behavioral subtype of the instance speci�cation of C. In

languages like Java in which D is treated like a subtype of C, programmers must explicitly

check to ensure that the instance speci�cation of D is a behavioral subtype of that of C.

3.4.1 Instance invariants

Note that the instance interface for IntSet is simpler than its specialization speci�cation.

The instance speci�cation hides the membership cache. Unfortunately, behavioral subtyping

by itself is not always enough to allow instance speci�cations to hide abstract-state �elds

of the specialization interface.

In IntSet3 (Fig. 3.2), fastRemove removes elements from elements without invalidat-

ing the cache. This allows removeElements to remove multiple elements while invalidating

the cache only once. Cache validity is not an invariant of IntSet3 because it is not preserved

by fastRemove. As a result, cache validity must be an explicit pre-condition of contains.

We still would like to use the simple instance speci�cation in Fig. 2.1 for IntSet3, but

we cannot because behavioral subtyping will not allow us to get rid of the precondition of

contains.

This is an example of a larger pattern not uncommon in object-oriented programs.

Protected methods like fastRemove are allowed to \get inside" the implementation and

3.4. REASONING ABOUT INSTANCE INTERFACES 29

class IntSet3 f // Alternative set implementation

public void removeElements(int els[]) f

// Modifies: this.elements, this.cache

// Effects: Empties the cache and removes elements of els from this.elements.

this.invalidate();

for(IntEnumeration e = this.elements(); e.hasMoreElements();)

fastRemove(e.nextElement());

g;

// ``elements'' component (overridable):

private IntVector els = new IntVector();

public overridable void addElement(int el) f

// Modifies: this.elements

// Effects: Adds el to this.elements

...same as Fig. 1.2

g;

protected overridable boolean fastRemove(int el) f

// Modifies: this.elements (does not change cache!)

// Effects: Removes el, returning true iff el already in

return els.removeElement(el);

g;

public overridable IntEnumeration elements() f

// Effects: Returns an enumeration of integers in this.elements

...same as Fig. 1.2

g;

// ``cache'' component (overridable):

private int c_val;

private boolean c_valid = false;

public overridable boolean contains(int el) f

// Requires: this.cache � this.elements

// Modifies: this.cache

// Effects: Returns true iff el is in this.elements. May update the cache,

// but will ensure that the new this.cache is a subset of this.elements.

...same as Fig. 1.2

g;

protected overridable void invalidate();

// Modifies: this.cache

// Effects: Empties the cache

c_valid = false;

g;

g;

Figure 3.2: Alternative integer-set class.

30 CHAPTER 3. VALIDATING CLASSES

do things that instantiators cannot do. In order to specify such methods, specialization

interfaces must expose �elds like cache. However, subclasses that call these protected

methods usually \�x things" before returning, so �elds like cache can be hidden in instance

speci�cations. Instance invariants support this pattern.

Instance invariants are invariants that must be established by constructors and pre-

served by all public methods of an object but that may not be preserved by all protected

methods of an object. For example, the cache validity invariant (this:c � this:s) is an

instance invariant of IntSet3. Instance invariants always hold when an instantiator calls

a public method, so they can be dropped from the preconditions of methods in instance

speci�cations.

In general, let S be the object-speci�cation part of a specialization speci�cation, T

be an instance speci�cation, and I be an instance invariant of S. Let S0 be the object

speci�cation that results from taking S and dropping all preconditions that are implied

by I (e.g., dropping the cache-validity precondition of contains). T is a valid instance

speci�cation for classes implementing S if S0 is a behavioral supertype of T . This is just

what is necessary to drop the cache �eld from the instance speci�cation of IntSet3.

(In the formal notation of the next chapter, instance invariants are used to augment

behavioral subtyping by augmenting the precondition rule as follows:

� Precondition: I [thispre=this�] ^ T .pre
m
[A(thispre)=thispre]) S:ospec.pre

m

This augmented rule lets the instance speci�cation drop preconditions that are implied by

the instance invariant.)

In languages like Java that assume subclasses are subtypes, instance invariants cannot

be established by data type induction. That is, they cannot be established by inspecting the

constructors and public methods to see if the invariant is preserved. This problem can be

�xed by making instance invariants part of specialization speci�cations, just like invariants

must be made part of object speci�cations in the presense of subtyping [Liskov94]. That

is, a specialization speci�cation is now an object speci�cation, a division of labor, and

an instance invariant. The rules for behavioral subclassing are augmented to require the

subclass's instance invariant implies the superclass's.

3.5 Summary

Validation is the broad process of increasing our con�dence that a class behaves as in-

tended. It includes such activities as testing, type checking, informal reasoning, and formal

veri�cation. All forms of validation depends on a validation criterion that de�nes what

it means for a class to \behave as intended." The validation criterion for specialization

interfaces has two aspects. First, functional correctness: instances of the class must im-

plement the object-speci�cation part of a class's specialization speci�cation. This is the

same as the classical validation criterion for data abstractions. Second, independence: the

implementation of each class component must be independent of the implementations of

other overridable components. This independence allows subclasses to replace overridable

components without breaking inherited code.

Correctness of local components is reasoned about much in the same way correctness of

classical data abstractions is reasoned about. To ensure independence of components, this

3.5. SUMMARY 31

classical reasoning has to be augmented by extra concerns:

� Calls to other methods in the class must be reasoned about in terms of their speci�-

cation, not their implementations.

� One component must access the state of another overridable component by calling

the methods of the other component, not by directly accessing instance variables.

� Abstraction functions must map on a per-component basis, i.e., they must map the

instance variables of each component to the abstract state assigned to the component.

(The next chapter looks at abstraction functions in more detail.)

� Representation invariants can only relate instance variables within the same compo-

nent. Invariants involving state from multiple components must be handled using

abstract representation invariants.

Subclasses reuse superclass code. The rules of behavioral subclassing are needed to

ensure (1) that subclass-provided code meets assumptions made about it by the reused code,

and (2) that the subclass speci�cation of inherited methods actually describes the inherited

code. The two basic rules that ensure these are (1) the subclass invariant and speci�cations

of overridable and deferred methods must imply their superclass equivalents, and (2) the

superclass speci�cations of inherited methods must imply their subclass speci�cations.

With super, a subclass can shadow an overridable class component. In this case, the

superclass retains responsibility for representing the substate assigned to the component.

The subclass can add substate �elds to a shadowed component. In this case, a local sub-

abstraction function de�nes the new substate �elds in terms of instance variables provided

by the subclass.

The correctness criterion for a class's instance interface is the classical criterion that

the class correctly implement the behavior described by the class's instance speci�cation.

Because of inherited methods, the code of a class cannot be veri�ed directly against its

speci�cation. Instead, the correctness of a class relative to its instance speci�cation is

deduced from the correctness of the class relative to its specialization speci�cation. In

particular, the class implements its instance speci�cation if the instance speci�cation is a

behavioral supertype of the object-type part of the class's specialization speci�cation. The

behavioral supertype relation can be extended with instance invariants to help hide �elds

of the abstract representation from instantiators.

32

Chapter 4

Formal speci�cation and

veri�cation

This chapter formalizes the results of the previous two chapters. It presents formal speci�-

cations for specialization interfaces and describes how to verify classes against specialization

speci�cations. We present these formal results for two reasons. First, they are useful in their

own right. As one tries to increase the precision of informal documentation, it tends to get

long-winded and, as a result, confusing. Formal speci�cations, on the other hand, are simul-

taneously precise, clear, and concise. In addition, formal speci�cations can be mechanically

checked both for syntax and for certain semantic \goodness" properties [Guttag93], helping

designers to catch mistakes. Formal veri�cation, where it is possible, greatly improves con-

�dence in the correctness of code. Even where veri�cation against full speci�cations is not

cost-e�ective, veri�cation against partial speci�cations has proven useful [Detlefs96]. The

second reason to pursue formal speci�cations and veri�cation is that it helps us evaluate

our informal results. By formalizing our informal techniques in a manner that is sound

and elegant, we increase our con�dence in the soundness of and, more generally, in the

\goodness" of the informal techniques.

The �rst two sections of this chapter describe formal speci�cations for specialization

interfaces. The �rst section presents a formal model for object speci�cations. Sec. 4.2 de-

scribes how object speci�cations are combined with division of labor speci�cations and also

with constructor speci�cations to formally specify specialization interfaces. The following

three sections describe the procedure for verifying classes against specialization speci�ca-

tions. This procedure has two steps. The �rst step is checking that the subclass is a

behavioral subclass of its superclass. Sec. 4.3 formalizes the informal rules of behavioral

subclassing described in Sec. 3.3.3. The second step is verifying the code of local class

components, i.e., components for which the class provides its own code. This involves both

checking for functional correctness and for independence of component implementations.

Sec. 4.4 shows how to verify normal class components; Sec. 4.5 describes veri�cation for

shadowed components. Sec. 4.6 ends this chapter by discussing speci�cation and veri�ca-

tion of constructors.

33

34 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

4.1 Formal object speci�cations

This report assumes the speci�cation model for objects described in [Liskov94]. Like many

models, this model assumes that program states include an environment that maps variables

to object identi�ers and a store that maps object identi�ers to values. State is the the space

of program states. If � is a State, then:

� �:env : Var!Obj

� �:store : Obj!Val

where Var is the set of program variables, Obj is the set of object identi�ers, and Val is

the set of values that objects can take on. Given a variable x and a state �, x� denotes

�:store(�:env(x)), the value of x in state �. The store of a state is a partial function de�ned

only on those objects that are allocated in that state; the set of allocated objects in state

�, alloc(�), is the domain of the �:store.

An object speci�cation T has a number of components:

� T:oids, a subset of Obj, is the identi�ers of objects subsumed by T .

� T:sort, a subset of Val, is a space of values, called a sort, de�ning the underlying

values that objects subsumed by T can take on. T objects cannot always take on all

of these values; the invariant of T limits the possibilities.

� T:methods is a set of identi�ers containing the names of T 's methods. T .pre
m
is the

precondition of method m and T .post
m
is its postcondition. Pre- and postconditions

are expressed as boolean-valued terms with free variables this, pre, and, in postcondi-

tions, post. The variable this is the implicit \self" argument to the method, pre is the

state before the method is called, and post is the state after the method is called. Pre-

conditions are predicates on pre, and postconditions are relations on (pre, post)-pairs.

Pre- and postconditions also contain free Var variables for the formal arguments of

the method and the special free Val variable result for the result of the method.

� T:inv is an invariant that all T objects must obey. T:inv is a boolean-valued term

containing the free variable this ranging over Var and � ranging over State. The

invariant is interpreted as an axiom constraining allowable program states:

8 this : T:oids; � : State � this 2 alloc(�)) T:inv

As in informal speci�cations, the invariant of T is considered an implicit part of the

speci�cation of T 's methods. That is, a method may assume the invariant even if it

is not implied by the method's precondition and must preserve the invariant even if

it is not implied by the method's postcondition.

4.1.1 Example

An object speci�cation for the instance interface of IntSet is given in Fig. 4.1. This

speci�cation employs a surface syntax that is close to the syntax used in the previous

speci�cation for informal speci�cation.

4.1. FORMAL OBJECT SPECIFICATIONS 35

object speci�cation IntSetISpec f // IntSet instance specification

uses Set(Int, IntSet);

state is IntSet; // defines IntSet.sort

public void addElement(int el) f

Modi�es: this

Ensures: this
post

= insert(el; thispre)

g

public boolean contains(int el) f

Ensures: result = el 2 this
pre

g

..other methods elided

g

Figure 4.1: Partial object speci�cation for instance interface of IntSet.

Our object speci�cations use Larch Shared Language (LSL) traits to de�ne sorts and

function symbols used in speci�cations [Guttag93]. IntSetISpec in Fig. 4.1 uses the trait

Set. The Set trait is given in Fig. 4.2. The Set trait �rst gives signatures for insert, delete,

and other common functions on sets. Next, it asserts axioms that de�ne these functions.

The generated by axiom states that all sets can be generated from just the empty set

and the insert function. When a speci�cation uses a trait, it imports the de�nitions of

that trait. A speci�cation can rename symbols imported from a trait. For example, when

the IntSet class uses the Set trait, it renames the sort E to Int and the sort C to IntSet,

meaning IntSet (the sort) will be a set of Int. As this example indicates, we use separate

name spaces for sorts and for classes.

4.1.2 Behavioral subtyping

This report assumes the behavioral subtype relationship de�ned in [Liskov94]. One ob-

ject speci�cation is a behavioral subtype of another if all objects described by the �rst

speci�cation are also described by the second.

A su�cient condition for object speci�cation S to be a behavioral subtype of object

speci�cation T is the existence of an abstraction function A from S:sort to T:sort such that:

� Invariant rule: S:inv) T:inv[A(this�)=this�]

� Method rule: For all m2T:methods:

{ Pre-condition: T .pre
m
[A(thispre)=thispre]) S.pre

m

{ Post-condition:

S.postm) T .postm[A(this
pre)=thispre; A(thispost)=thispost]

The reversed implication for pre-conditions reects their contravariant nature.

36 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

Set(E, C): trait

includes Integer %% Trait defining the sort Int

introduces

fg:! C

insert, delete:E,C! C

size:C! Int

2:E,C! Bool

[, __, _-_:C,C! C

�:C,C! Bool

asserts

C generated by fg, insert

8 e; e1; e2:E; s; s1; s2:C

insert(insert(s; e1); e2) = insert(insert(s; e2); e1)

insert(s; e) = insert(insert(s; e); e)

:(e 2 fg)

e1 2 insert(e2; s) , e1 = e2 _ e1 2 s

size(fg) = 0

size(insert(e; s)) = (ife 2 s then size(s)else size(s) + 1)

e1 2 delete(e2; s) , (e1 6= e2 ^ e1 2 s)

e 2 (s1 [s2) , e 2 s1 _ e 2 s2
e 2 (s1 \ s2) , e 2 s1 ^ e 2 s2

e 2 (s1 � s2) , e 2 s1 ^ :(e 2 s2)

s1 � s2 , (s1 � s2) = fg

end Set

Figure 4.2: Set trait.

4.2. FORMAL SPECIALIZATION SPECIFICATIONS 37

4.2 Formal specialization speci�cations

Specialization interfaces are speci�ed with an object speci�cation, a division of labor, and

constructor speci�cations:

SpecializationSpec= ObjectSpec� LaborDiv� ConsSpecs

If S is a specialization speci�cation, the object speci�cation part of S is denoted by S:ospec.

The division of labor part of S is denoted by two components, S.methodsi, the set of methods

assigned to component i, and S.substatei, the sort of the substate assigned to component i.

Discussion of constructor speci�cations is deferred to Sec. 4.6.

To facilitate the partitioning of the abstract state into substates, S:ospec:sort and each

of the S.substatei must be Larch tuple sorts. Larch tuples are tuples with named �elds,

like immutable records in programming languages. Each �eld in the S:ospec:sort tuple must

appear in exactly one of the S.substatei. This requirement can be written as:

S:ospec:sort =
Y
i

S.substatei

The tuple-sort product operator takes tuple sorts with disjoint �eld names and returns

the tuple sort that combines all the �eld names and �eld sorts of all the individual sorts.

Tuple-sort product is unde�ned on tuples that do not have disjoint �eld names.

A specialization speci�cation for IntSet is given in Fig. 4.3. The abstract state for the

entire speci�cation is given by the \state is" followed by a tuple sort. The substates of

components are given by the \substate is" declarations. Each �eld in the abstract state

declaration must appear in exactly one of the substate declarations. The state of IntSet

has two �elds, s and c. The �eld s, which contains the elements of the set, is the substate

of the component that contains the methods addElement, removeElement, and elements.

The method elements returns an enumeration, which is speci�ed with two �elds, seq

giving the values yielded by the enumeration, and index giving the current position of the

enumeration. The �eld c, used by contains to cache membership tests, is the substate of

the component that contains the methods contains and uncache.

4.3 Behavioral subclassing

Sec. 3.3 points out that, when reasoning about subclasses, it is not enough to reason about

the correctness of local code. In addition, to ensure that superclass code reused by the

subclass works as expected, the subclass must be shown to be a behavioral subclass of the

superclass. The rules of behavioral subclassing constrain the speci�cation of a subclass

relative to the speci�cation of its superclass. The rules of behavioral subclassing also take

into account what methods the subclass has overridden. This section formalizes the rules

for behavioral subclassing.

We break behavioral subclassing into two sets of rules. The �rst set of rules de�ne

inclusion for specialization speci�cations. One specialization speci�cation includes another

if all classes implementing the latter speci�cation also implement the former. The second

set of rules de�ne simple behavioral subclassing. These are simple, very restrictive rules for

behavioral subclassing.

38 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

specialization speci�cation IntSetSSpec f // Spec of IntSet

uses Integer, Set(Int, IntSet);

state is [s:IntSet, c:IntSet];

invariant this
�:c � this

�:s;

overridable component f

substate is [s:IntSet];

public void addElement(int el) f

Modi�es this;

Ensures this
post:s = insert(thispre:s; el);

g;

public boolean removeElement(int el) f

Modi�es this;

Ensures this
post:s = delete(thispre:s; el) ^ result = el 2 this

pre:s;

g;

public IntEnumeration elements() f

Ensures result:index = 0 ^ len(result:seq) = size(thispre:s)

^ (8 i � i 2 this
pre:s , i 2 result:seq);

g;

g

overridable component f

substate is [c:IntSet];

public boolean contains(int el) f

Modi�es this:c;

Ensures result = el 2 this
pre:s;

g;

protected void uncache(int el) f

Modi�es this:c;

Ensures el 62 this
post:c ^ this

post:c � this
post:c;

g;

g;

g;

Figure 4.3: Formal specialization speci�cation for IntSet

4.3. BEHAVIORAL SUBCLASSING 39

C

S

S’

T’

T

D

Impl(D,T’)

Includes(S’,S)

Impl(C,S)

Simple(T’,S’,L)

Subclass(D,C,L) Includes(T,T’)

Local components
of D are verified
against T’

Figure 4.4: Full behavioral subclassing.

By combining inclusion with simple behavioral subclassing, we get the de�nition for full

behavioral subclassing given by the following equation:

Subclass(T; S; L) = 9T 0; S0 � Includes(T; T 0)^ Simple(T 0; S0; L)^ Includes(S0; S)

where Full : SpclSpec� SpclSpec�OverrideList!Bool

Simple : SpclSpec� SpclSpec�OverrideList!Bool

Includes : SpclSpec� SpclSpec!Bool

Both full and simple behavioral subclassing are relations on two specialization speci�cations

plus a list of methods that have been overridden by the subclass. Inclusion is a relation on

two specialization speci�cations.

Fig. 4.4 graphically denotes the above equation. In this �gure, class D is a subclass of

class C. L is the set of methods overridden by D. We are given that C implements spe-

cialization speci�cation S. We want to know: Is D speci�ed by specialization speci�cation

T is a behavioral subclass of C? Our rule for full behavioral subclassing answers \yes, if

there exist two intermediate speci�cations T 0 and S0 such that S includes S0, T includes T 0,

and T 0 is a simple behavioral subclass of S0." A full veri�cation of D includes verifying the

local components of D. As indicated by the �gure, these components are veri�ed against

specialization speci�cation T 0. Veri�cation of local components is discussed in Sec. 4.4.

Full and simple behavioral subclassing are both behavioral subclassing relationships.

That is, they both ensure that superclass code reused by the subclass works as expected.

As mentioned earlier, simple behavioral subclassing is very restrictive. Full behavioral sub-

classing generalizes this restrictive relationship by combining it with inclusion. Splitting

behavioral subclassing into inclusion and simple behavioral subclassing simpli�es the over-

all description. In particular, behavioral subclassing de�ned here allows for the sub- and

superclasses to have di�erent abstract states, a case ignored in Sec. 3.3. By handling di�er-

ences of state in the rules for inclusion, we avoid spelling out complicated rules to handle

corner cases that arise when subclasses override components.

40 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

specialization speci�cation IntSetSSpec2 f // Alternative spec for IntSet

uses Integer, FiniteMap(IntBoolMapSort, Int, Bool);

state is [m:IntBoolMapSort, c:IntSet];

invariant 8 e � e 2 this
�:c) (de�ned(this�:m;e) ^ apply(this�:m;e));

overridable component f

substate is [m:IntMapSort];

public void addElement(int el) f

Modi�es this;

Ensures this
post:m = update(thispre:m; el; true);

g;

public boolean removeElement(int el) f

Modi�es this;

Ensures

this
post:m = update(thispre:m; el; false)

^ result = apply(thispre:m; el);

g;

...

g

...

g;

Figure 4.5: Map-based speci�cation for IntSet

Sec. 4.3.1 gives su�cient conditions for inclusion. Sec. 4.3.2 de�nes simple behavioral

subclassing. Sec. 4.3.3 gives an example of full behavioral subclassing.

4.3.1 Inclusion of specialization speci�cations

Specialization speci�cation � includes specialization speci�cation � if all classes that imple-

ment � also implement � . This section gives two sets of su�cient conditions for inclusion.

One way a specialization speci�cation can include another when it merges components

of the other. When specialization speci�cation � includes � by merging components, � and

� are the same (textually) in every way except that two or more components of � may be

merged in � . Two components are merged by combining both their methods and substate

�elds. For example, the speci�cation of IntSet in Fig. 4.3 is included by a speci�cation that

is the same except that it only has a single component to which all state and all methods

are assigned.

Another way a specialization speci�cation can include another is when it can be simu-

lated by the other. For example, the map-based speci�cation of IntSet in Fig. 4.5 can be

shown to include the set-based speci�cation in Fig. 4.3 in this way.

When � includes � by simulation, then � and � must have the same method suite

and the same grouping of methods into components. In addition, there must exist an

abstraction function from �:ospec:sort to �:ospec:sort that respects component boundaries.

4.3. BEHAVIORAL SUBCLASSING 41

When composed with this abstraction function, � must both respect the assumptions of �

and must correctly describe code provided by classes implementing �.

In more detail, the abstraction function A from � to � must ful�ll the following criteria:

1. A respects component boundaries. � and � have the same groupings of methods into

components. A must map the substate of each component independently, i.e., it must

be the product of multiple subabstraction functions Ai:

A(x) =
Y
i

Ai(x#�.substatei)

for each component i, where the range of Ai is � .substatei. (x#S is x projected onto

S, i.e., x with only the S �elds.)

2. Under A, � respects assumptions made by classes implementing �. Assume a class

C implements �. This code makes assumptions about this that must be met by

subclasses that override methods of C. These assumptions are that subclasses will

preserve the invariant of �, and also that subclasses will implement the speci�cations

of deferred and overridable methods given in �. � must respect these assumptions.

This can be formalized as:

�:ospec:inv[A(this�)=this�]) �:ospec:inv

If there is an instance invariant, then a similar implication must hold. Also, for each

deferred and overridable method m:

�:ospec.pre
m
) �:ospec.pre

m
[A(thispre)=thispre]

�:ospec.post
m
[A(thispre)=thispre; A(thispost)=thispost]) �:ospec.post

m

3. Under A, � correctly describes code provided by classes implementing �. Again, assume

a class C implements �. This means the code of C implements the method speci�cations

of �. � must correctly specify this code. This is assured when the speci�cations of

these methods in � is no stronger than their speci�cations in �. That is, for all �nal

and overridable methods m:

�:ospec.prem[A(this
pre)=thispre]) �:ospec.prem

�:ospec.post
m
) �:ospec.post

m
[A(thispre)=thispre; A(thispost)=thispost]

4.3.2 Simple behavioral subclassing

Simple behavioral subclassing is de�ned by three rules:

� The abstract states and invariants of the sub- and superclass speci�cations are the

same (textually).

� Methods common to the sub- and superclass must have the same speci�cations in the

sub- and superclass except for superclass methods overridden by the subclass, which

may have stronger speci�cations in the subclass. There are no constraints on the

speci�cations of new methods introduced by the subclass.

42 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

� The subclass must inherit method components as a whole and cannot break them up.

That is, the subclass's division of labor must group inherited methods and associated

state the same as the superclass's does. However, the subclass may regroup the state

and methods of components it replaces.

As mentioned before, these rules for behavioral subclassing are very restrictive, much more

so than the rules given in Sec. 3.3. These restrictions are overcome by combining this rule

with inclusion.

Regarding method signatures, the rules of the programming language determine what

changes are allowed in method signatures. For example, Java allows a subclass to make

the return-type of a method more speci�c (i.e., a subtype), but does not otherwise allow

changes in method signatures.

4.3.3 Example

We illustrate full behavioral subclassing with PrioritySet (Fig. 4.6 and Fig. 4.7), a subclass

of IntSet. PrioritySets are like sets except they support a method pop which extracts

the least element from the set. The implementation of PrioritySet inherits the methods

contains and uncache, overrides the methods addElement, removeElement, and elements,

and de�nes the new method pop.

In showing that PrioritySet is a behavioral subclass of IntSet, the �rst step is to �nd

S0, a new speci�cation for IntSet included by the old IntSet speci�cation. S0 must have

the same object speci�cation as the speci�cation in Fig. 4.6. One such speci�cation is the

speci�cation in Fig. 4.6 minus the pop method. This inclusion relation can be proven using

the abstraction function:

toPSet(x) =

(
fg for x = fgp
insert(toPSet(x0); i) for x = insertp(x

0; i)

Fig. 4.6 is T 0, a simple behavioral subtype of S0 against which IntPrioritySet is veri�ed.

In this case, T and T 0 can be the same.

4.4 Verifying local components

As discussed in Sec. 3.1, each class component must implement its speci�cation and must

be independent of the implementations of other overridable components. We verify that

a component is correct using standard data re�nement procedures ([Hoare72], [Liskov86],

[Dahl92]) adapted to ensure independence. This section describes this adaptation. It starts

with an overview of our approach, discusses the mechanics, and ends with an example. This

section assumes that super is not used in to implement local components; the next section

discusses super.

4.4.1 Achieving independence

To achieve independence, the standard re�nment procedures must be adapted in two ways.

First, the code of one method must be veri�ed in terms of the speci�cations of other methods

it calls. This is simple enough. Second, just as the code of one component may not access

4.4. VERIFYING LOCAL COMPONENTS 43

specialization speci�cation PrioritySetSSpec f

uses Integer, Set(Int, IntSet), PrioritySet(Int, PrioritySet);

state [p:PrioritySet, c:IntSet];

invariant 8 e � e 2 this
�:c) e 2p this

�:p;

overidable component f

substate [p:PrioritySet];

public void addElement(int el) f

Modi�es this;

Ensures this
post:p = insertp(this

pre:p; el);

g;

public boolean removeElement(int el) f

Modi�es this;

Ensures this
post:p = deletep(this

pre:p; el) ^ result = el 2p this
pre:p;

g;

public int pop() throws(Bounds) f

Modi�es this;

Ensures this
post:p = rest(thispre:p) ^ (thispre:p = fgp) throws(Bounds))

^ (thispre:p 6= fgp) result = head(thispre:p));

g;

public IntEnumeration elements() f

Ensures result:index = 0 ^ len(result:seq) = size(thispre:s)

^ (8 i � i 2 this
pre:s , i 2 result:seq);

g;

g;

overridable component f

substate [c:IntSet];

public boolean contains(int el) f

Modi�es this:c;

Ensures result = el 2p this
pre:p;

g;

protected void uncache() f

Modi�es this:c;

Ensures el 62 this
post:c;

g;

g;

g;

Figure 4.6: Specialization speci�cation of PrioritySet.

44 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

PrioritySet(E, C): trait

assumes TotalOrder(E)

includes Integer

introduces

fgp:! C

_2p _:E,C! Bool

insertp, deletep:E,C! C

biggest:C! E

rest:C! C

sizep:C! Int

asserts

C generated by fgp; includep

8 e; e1; e2:E; p:C

:(e 2 fgp)

insertp(insertp(p; e1); e2) = insertp(insertp(p; e2); e1)

insertp(p; e) = insertp(insertp(p; e); e)

e1 2 insertp(e2; p) , e1 = e2 _ e1 2p p

sizep(fgp) = 0

sizep(insertp(e;p)) = (ife 2p p then sizep(p) else sizep(p) + 1)

e1 2p deletep(e2; p) , (e1 6= e2 ^ e1 2p p)

e = head(p) , (e 2 p ^ (e1 < e _ e1 62p p))

rest(fgp) = fgp

p 6= fgp) (e 2 rest(p) , e 6= head(p))

end PrioritySet

Figure 4.7: Trait de�nint priority sets.

4.4. VERIFYING LOCAL COMPONENTS 45

the instance variables of another, the formal reasoning of one component cannot make

reference to the instance variables of another. Achieving this second adaptation is more

subtle.

The domain of the abstraction function used to verify a method de�nes the \concrete"

view of this used to reason about the method. In the standard data re�nement techniques,

every method is veri�ed using the same abstraction function. This function maps the entire

concrete state to its entire abstract state. This means the concrete view of this used to

reason about every method includes all the instance variables of this. Unfortunately, this

approach (illustrated in Fig. 4.8a) violates the restriction about the formal reasoning of one

component not referring to the instance variables of others. (For simplicity, this chapter

assumes abstraction functions rather than abstraction relations, but the results can be

extended to abstraction relations.)

To adapt the standard re�nement procedure to class components, each component needs

its own view of the concrete state of this. For each component, the state of this has two

parts, the state assigned to the component, called the internal state, and the state assigned

to other components, called the external state. The concrete view of this seen by a com-

ponent includes only to the instance variables representing the component's internal state.

This view hides the representation of the external state by treating that state abstractly.

This per-component view of this is illustrated in Fig. 4.8b. The concrete view of this

seen by each class component is a product of the internal representation and the external,

abstract state. In each component, the concrete view of this is related to the fully abstract

view by a compound abstraction function that is the identity on the external state and

is de�ned by an internal abstraction function on the internal state. With this compound

abstraction function, one can verify method code as in standard re�nements. The iden-

tity part of the compound abstraction function hides the internal abstraction functions of

other class components, achieving independence: if the internal abstraction function of one

component changes, the veri�cation of other components is still valid.

This basic adaptation of the standard re�nement techniques must be extended to deal

with �nal state. Recall from Sec. 2.2 that every component in a class can access the

representation of the class's local �nal state (local �nal state is �nal state implemented by

the class itself, as against �nal state inherited from the superclass). This is safe because

subclasses cannot replace the representation of �nal state. Thus, the view of this seen

by each class component includes both its own representation and the representation of

the class's �nal state. This extended view of this is illustrated in Fig. 4.8c. Each class

component uses the same abstraction function to map the representation of the �nal state.

4.4.2 Mechanics

This subsection looks at the mechanics of verifying local components of class C against

specialization speci�cation T . Table 4.1 summarizes symbols de�ned in this subsection and

gives particular values used to verify the addElement method of IntSet.

For each local component j, the veri�er de�nes a subabstraction function Aj :

Aj : C.repj!T .substatej

where C.rep
j
denotes the instance variables assigned to the local component j (C.rep

j
is

46 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

Rep Spec

Concrete Abstract

Concrete Abstract

Abstraction
function

Identity

(a) Traditional simulation

(b) Adapted simulation

External
spec

Internal
rep Internal

abstraction
function

External
spec

Internal
spec

Concrete Abstract

Identity

(c) Fully adapted simulation

External
spec

Internal
rep Internal

abstraction
function

External
spec

Internal
spec

Local,
final rep

L.,final
spec

Local, final
abstraction
function

Figure 4.8: Classical and adapted re�nements.

4.4. VERIFYING LOCAL COMPONENTS 47

C.repi = Instance variables assigned to component i

= [els : IntVector]

C.replf = Instance variables representing local �nal state

= [](IntSet has no �nal state)

T .substatei = Sort of substate of component i

= [s : IntSet]

T .substatelf = Sort of local �nal state

= []

Ei = State whose representation component i may not access

=
Q

j 62fi;fg T .substatej

= [c : IntSet]

Ai = Subabstraction function for component i

: C.repi!T .substatei
= � r � [s := toSet(r:els)]

Alf = Subabstraction function for local �nal state

: C.replf!T .substatelf
= � r � []

Vi = Function for verifying component i

: (C.repi � C.repj � Ei)!T:ospec:sort

= � r � Ai(r#C.repi)�Ai(r#C.replf)� (r#Ei)

= � r � [s := toSet(r:els); c := r:c]

Table 4.1: Symbols for verifying local methods in component i of class C against special-

ization speci�cation T . Also given are particular values for i = add, the class component of

IntSet containing addElement, removeElement, and elements.

a tuple with named �elds, where each �eld is an instance variable). This function de�nes

how the component's instance variables are used to represent the component's substate.

Each local component is veri�ed separately. Let i be the component we are interested in

verifying. Let lf be the local component of �nal state. For the purpose of veri�cation, we

can assume without loss of generality that there is only one component of local �nal state.

We assume for now that i 6= lf; we discuss i = lf below.

We now de�ne the concrete view of this used to verify the code of component i. As

illustrated by the left-hand side of Fig. 4.8c, this view includes the abstract, external state,

the concrete, local, �nal state, and the concrete, internal state. Thus, the code of component

i is veri�ed as if this had the sort:

this : C.rep
i
� C.replf �Ei

where Ei is shorthand for:

Ei =
Y

j 62fi;lfg

T .substatej

that is, the state of this whose representation the code of component i may not directly

access. The state in Ei is state assigned to deferred components and to overridable compo-

nents other than i.

48 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

Next, we de�ne the abstraction function Vi with which the code of component i is

veri�ed. Vi is the combination of the three subabstraction functions in Fig. 4.8c. Vi that

has the signature:

Vi : (C.repi � C.replf � Ei)!T:ospec:sort

Vi is de�ned by the equation:

Vi(r) = Ai(r#C.repi)Ai(r#C.replf)� (r#Ei)

where tup#Sort is result of projecting tuple tup onto tuple sort Sort, i.e., only the Sort �elds

of tup.

The methods of component i are veri�ed using Vi according to standard re�nement

procedures (see, e.g., [Liskov86]). Where the code of methods make calls to other methods,

the speci�cations of the called methods are used to reason about the calls.

The special case of i = lf, i.e., verifying the component of local, �nal state, is a bit

simpler than the general case. In this case, the state of this is divided into two parts rather

than three: the local, �nal state and the rest of the state. This component is veri�ed using

the abstraction compound function:

Vlf(r) = Ai(r#C.replf)� (r#Elf)

where

Elf =
Y

j 6=lf

T .substatej

The methods of the local �nal component are veri�ed using the abstraction function Vlf
in the usual manner.

4.4.3 Example

We illustrate the veri�cation procedure on the addElementmethod of IntSet. To verify

addElement, one needs the instance speci�cation for IntVector given in Fig. 4.9, which in

turn uses the LSL Sequence sort from [Guttag93]. A full veri�cation is not presented here,

just enough to illustrate the use of Vi to verify method components.

To verify addElement, one must de�ne Aadd, the subabstraction function for its com-

ponents. Informally, Aadd constructs an IntSet by inserting each element of this.els into

an initially empty set. More formally, Aadd maps the instance variable assigned to the

component to the substate maintained by the component as follows:

Aadd(r) = [s := toSet(r:els)]

where the function toSet is de�ned as:

toSet(x) =

(
fg for x = empty

insert(toSet(x0); i) for x = x0 ` i

(The functions empty and ` generate IntSequenceSort values; the sequence x ` i contains

the elements of sequence x followed by integer i.)

4.4. VERIFYING LOCAL COMPONENTS 49

object speci�cation IntVectorISpec f // IntVector instance spec

uses Integer, Sequence(Int, IntSequenceSort);

state IntSequenceSort;

public void addElement(int el) f

Modi�es this;

Ensures this
post = this

pre
` el;

g;

public boolean removeElement(int el) f

Modi�es this;

Ensures 9 s1; s2 �

el 62 s1 ^ (el = head(s2) _ isEmpty(s2))

^ this
pre = s1 jj s2

^ this
post = s1 jj tail(s2)

^ result = (el 2 this
pre);

g;

public boolean contains(int el) f

Ensures result = (el 2 this
pre);

g;

public int size() f

Ensures result = size(thispre);

g;

// .. spec's of other methods elided ..

g

Figure 4.9: Instance speci�cation of IntVector.

50 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

From Aadd follows the abstraction function Vadd:

Vadd(r)

= [s := Aadd(r):s; c := r:c]

= [s := toSet(r:els); c := r:c]

(IntSet has no �nal state, so we can ignore Alf in this case.) Vadd is used to verify the

code in the addElement component.

To verify a method in the addElement component, Vadd is composed with the speci�-

cation of the method to transform the speci�cation into the concrete domain assumed by

the implementation. Next, the proof rules of the language are used to show that the code

of the method meets its transformed speci�cation.

For example, composing Vadd with the ensures clause of addElement yields:

Vadd(this
post):s = insert(Vadd(this

pre):s; el)

which expands to:

toSet(thispost:els) = insert(toSet(thispre:els); el)

The code of addElement can be veri�ed against this in two cases, �rst when el is not

already in thispre:els and second when it is:

1. When el is in thispre.els, one can conclude that:

el 2 toSet(thispre:els)

Also, because addElement is not called in this case, one can conclude:

toSet(thispost:els) = toSet(thispre:els)

Combining these with the lemma

i 2 s) s = insert(s; i)

which is implied by the idempotence of insert, it follows that:

toSet(thispost:els) = insert(toSet(thispre:els); el)

So the ensures clause is met in this case.

2. When el is not in thispre.els, the e�ects of the invocation of IntVector's addElement

method must be taken into account. When this invocation returns, it establishes as

its postcondition:

thispost:els = thispre:els ` el

Applying toSet to each side, we get:

toSet(thispost:els) = toSet(thispre:els ` el)

4.5. SHADOWED COMPONENTS 51

It follows from the de�nition of toSet that:

toSet(s ` e) = insert(toSet(s); e)

Putting these two together, one gets:

toSet(thispost:els)

= toSet(thispre:els ` el)

= insert(toSet(thispre:els); el)

So the ensures clause is met in this case too.

A complete veri�cation of addElement must also verify the modi�es clause and must

verify that addElement preserves the class's invariant. The modi�es clause requires that

only this is modi�ed. This is true, but we must assume no \representation exposure," i.e.,

that changes to els a�ect only this and no other objects (c.f., [Scha�ert81, Leino95]).

Showing that addElement preserves its invariant means assuming

thispre:c � toSet(thispre:els)

and proving:

thispost:c � toSet(thispost:els)

Informally, the invariant is preserved because addElement does not change c and at most

adds an element to els. In more detail, we have just shown that:

toSet(thispost:els) = insert(toSet(thispre:els); el)

The body of addElement does nothing to change the c �eld, so:

thispre:c = thispost:c

Substituting these equalities into the assertion to be proved yields:

thispre:c � insert(toSet(thispre:els); el)

This assertion is implied by:

thispre:c � toSet(thispre:els)

which we can assume.

4.5 Shadowed components

To verify shadowed components (Sec. 3.3.4), both the rules of simple behavioral subclassing

and the veri�cation procedure for local methods must be modi�ed.

The rules for simple behavioral subclassing are augmented to indicate what happens

to shadowed components. A subclass cannot regroup methods of shadowed components.

When a subclass shadows a component, then the shadowing component (in the subclass)

must include at least the methods and all substate �elds of the shadowed component (in the

52 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

Concrete Abstract

Internal
abstraction
function

IdentitySuper
state

Super
state

External
state

New
internal
rep

External
state

Identity

Internal
state
extension

External
state

Internal
state

Figure 4.10: Re�nement when super is used.

superclass). The shadowing component may contain additional methods and substate �elds.

The shadowing component can strengthen the speci�cation of methods that it overrides,

even methods whose superclass version is invoked via super.

The veri�cation procedure is changed (a) to adapt the abstraction function for shadowed

components and (b) to clarify which speci�cation should be used to reason about calls via

super. Change (b) is simple: the superclass's speci�cation is used. The subclass version of

m is veri�ed against the subclass speci�cation for m, and subclass invocations of m through

this are also reasoned about using the subclass speci�cation for m.

Change (a) requires adding more structure to abstraction functions. This new structure

is illustrated in Fig. 4.10 and summarized in Table 4.2 (for simplicity, we ignore local �nal

state here). Assume that G is a superclass component shadowed by G0 in the subclass.

When verifying G0, the substate �elds of G, i.e., the substate �elds represented by the

superclass, are treated like external state. That is, they are taken as part of the concrete

view of this, and an identity function is used to abstract them. G0 may contain more �elds

than G does. These new subclass �elds are de�ned by an internal abstraction function

mapping from the new instance variables of the subclass.

4.6 Specifying and verifying constructors

So far, this report has largely ignored constructors because, while the veri�cation of regular

methods is largely language independent, the veri�cation of constructors is not. Mechanisms

for object construction di�er from language to language, and the details of constructor veri-

�cation depend on these di�erences. This section presents the speci�cation and veri�cation

of constructors in the context of the Java language ([Javabeta95]).

In Java, object construction is a multi-step process involving initializers, initialization

expressions associated with instance variables, and constructors, special methods de�ned in

a class for object initialization. Assume that class Cn is being instantiated, where Cn�1 is

the direct superclass of Cn, Cn�2 is the direct superclass of Cn�1, and so on back to C0,

which is Object, the universal root class.

� First, space for a Cn object is allocated, and its instance variables are \pre-initialized"

to default values according to their type, e.g., numerical variables are initialized to

4.6. SPECIFYING AND VERIFYING CONSTRUCTORS 53

C.repi = Instance variables assigned to component i

S.substatei = Sort in superclass of substate of component i

Ei = Additional substate �elds added by C to component i

T .substatei = Sort of substate of component i

= S.substatei �Ei

Ai = Subabstraction function for component i

: C.repi!Ei

Vi = Function for verifying component i

: (C.repi � S.substatei �
Q

j 6=iC.substatej)!C:ospec:sort

= � s � (s"C.repi)� Ai(s#C.repi)

Table 4.2: Verifying component i, a class component of class C that shadows a superclass

component. T is the specialization speci�cation of C, and S is the specialization speci�ca-

tion of C's superclass. Ei are �elds of S that are being made part of the substate of i in

T .

zero, object references are initialized to nil. (The motivation for pre-initialization is

described below.)

� Constructors are called in a top-down manner, i.e., the constructor for C0, the root

class, is called �rst, then the constructor for C1, and so on. (In Java, classes can have

more than one constructor, but, for simplicity, we assume classes have only one.)

� Between the calls to the constructors of Ci and Ci+1, the instance variables of Ci+1

are initialized by evaluating their initializers. Initializers are evaluated according to

the textual order of instance-variable declarations in the class de�nition.

Object construction in Java (and in most languages) is intricate because both construc-

tors and initializers can call methods of the object being constructed. Because of method

override, these calls might dispatch to method code lower in the class hierarchy than the

constructor making the call. As a result, these methods might see instance variables that

have not yet been initialized by a constructor. Java's \pre-initialization" of instance vari-

ables ensures that these methods will not access completely uninitialized variables, but this

pre-initialization will not in general establish representation invariants assumed by these

methods.

To support straight-forward veri�cation of constructors, a programming convention is

assumed. In this convention, initializers are assumed have no side-e�ects. Further, initial-

izers and constructors can only call initialization methods of this: �nal, private methods

that are only called by initializers and constructors and not by other methods. Initialization

methods cannot assume any representation invariants.

4.6.1 Speci�cation of constructors

Like other routines, constructors are speci�ed using pre- and postconditions. However, to

simplify veri�cation, the postconditions of constructors are structured as conjunctions of

per-component postconditions. If T is a specialization interface, then:

54 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

R = All local instance variables of C

=
Q

i2LC.repi
O = Inherited and deferred state

=
Q

i62L T .substatei
Vcons = Constructor abstraction function

: (R�O)!T:ospec:sort

= � s � (s#O) �
Q

i2LAi(s#C.repi)

Table 4.3: Derivation of constructor abstraction function for verifying initialization code of

class C against specialization speci�cation T . L is the set of local class components, i.e.,

components for which C provides its own code. The subabstraction functions Ai must be

the same as those in Table 4.1.

� T .precons is the precondition of T 's constructor.

� T .post icons is a postcondition assertion for T 's constructor that only mentions sub-

state �elds assigned to component i. T .post icons is de�ned for �nal and overridable

components only.

� The full postcondition of T 's constructor is the conjunction of its per-component

postconditions:

T .postcons =
^
i

T .post icons

Again, i ranges over �nal and overridable components only.

The motivation for structuring constructor postconditions in this way is that the constructor

of a class should be able to selectively assume the postcondition of its immediate superclass's

constructor, i.e., it should be able to assume postconditions relating to components it

inherits but not those relating to components it replaces.

4.6.2 Veri�cation of constructors

Constructors, initializers, and initialization methods are all veri�ed using the constructor

abstraction function. Constructors must initialize all instance variables of a class, not just

the instance variables assigned to a single class component. Thus, the concrete view of

this assumed by this abstraction function treats the substates of all local components in

terms of their representations. The constructor abstraction function is the product of the

subabstraction functions used to verify local components; a de�nition of the constructor

abstraction function is given in Table 4.3.

On entry, the implementation of the constructor can assume S.post icons for components

i that have not been overridden, where S is the specialization speci�cation of the superclass.

Further, the implementation can assume that the instance variable initializers have been

executed. Under these assumptions, the body of the constructor can be veri�ed in the usual

way using the constructor abstraction function.

Chapter 5

Improving extensibility

There is a trade-o� between modularity and extensibility. At one extreme, allowing spe-

cializers to look at the source code of superclasses permits the widest range of customized

subclasses, but is not at all modular. At the other extreme, requiring that specializers over-

ride all methods of superclasses is very modular|it permits the widest range of changes to

superclasses that do not a�ect subclasses|but it results in no code reuse. The methodol-

ogy based on class components outlined in the previous chapters strikes a balance between

extensibility and modularity. However, we can improve the extensibility of this approach

without sacri�cing modularity. This chapter explains how.

Sec. 5.1 looks at splitting the specialization speci�cations of overridable methods into

one used when the method is inherited and another used when the method is overridden.

(Including the instance speci�cation, this brings the number of speci�cations for overridable

methods to three. Chapter 7 looks at a way to simplify this situation.) Sec. 5.2 looks at

improving the extensibility of formal speci�cations. By parameterizing sorts on a per-

object basis, the behavior of methods can be speci�ed in a manner that is both precise and

extensible.

5.1 Particular and assumed speci�cations

Consider IntSet4, in Fig. 5.1. IntSet4 is just like IntSet except that elements yields the

elements of the set in ascending order (IntSet4 achieves this by keeping els sorted). We

would like to specify IntSet4 such that (a) the instance speci�cation of IntSet4 says that

elements returns a sorted listing, (b) a subclass that inherits the elements component

can assume that elements returns a sorted listing, and (c) a subclass that overrides the

elements components does not have to implement an elements method that yields its

elements in ascending order.

This exibility can be achieved if the specialization speci�cation of a overridable method

can have two speci�cations, an particular speci�cation that describes what the class's own

version of the method actually does and an assumed speci�cation that constraints what

subclass versions of the method can do. The particular speci�cation is stronger than (i.e.,

implies) the assumed one. In the case of IntSet4, the particular speci�cation of elements

would say that elements yields the elements of the set in ascending order, while the assumed

speci�cation would say that it yields the elements of the set in any order.

55

56 CHAPTER 5. IMPROVING EXTENSIBILITY

class IntSet4 f

// ``elements'' component

private IntVector els = new IntVector();

// Rep invariant: no duplicates and kept in sorted order;

public overridable void addElement(int el) f

int i = findIndex(el);

if (i > 0 && els.elementAt(i-1) == el) return;

els.insertElementAt(el, i);

g;

public overridable boolean removeElement(int el) f

int i = findIndex(el);

if (i == 0 || els.elementAt(i-1) != el) return false;

this.uncache(el);

els.removeElementAt(el, i-1);

return true;

g;

public overridable IntEnumeration elements() f

return els.elements();

g;

private �nal int findIndex(int el) f

% Effects: Helper function for elements component that returns

% the highest index at which el can be inserted into els

% while keeping els in sorted order

if (el < els.firstElement()) return 0;

if (els.lastElement() <= el) return els.size();

int lo = 0;

int hi = els.size() - 1;

while(lo+1 < hi) f /* Invariant: els[lo] <= el < els[hi] */

int mid = hi - (hi-lo)/2;

if (el < els.elementAt(mid)) hi = mid;

else lo = mid;

g

return hi;

g

..other methods elided

g;

Figure 5.1: Integer sets with ordered enumeration.

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 57

With two speci�cations, the rules for reasoning about classes do not change, but they

have to be clari�ed to indicate which speci�cation is used when:

� The particular speci�cation is used when reasoning about the implementation of an

overridable method, i.e., the code of a method must do what the particular speci�-

cation of the method says it does. Because the particular speci�cation implies the

assumed speci�cation, this reasoning will ensure that the method meets both speci�-

cations.

� The assumed speci�cation is used when reasoning about a call from one method to

another method. For example, in IntSet4, the call to elements in contains must be

reasoned about using the assumed speci�cation of elements, which means contains

cannot assume that elements are yielded in ascending order.

� The particular speci�cations of methods are used when when reasoning about the

instance speci�cation of a class by comparing it to the specialization speci�cation.

� The superclass's particular speci�cation for the method is used when reasoning about

a call via super to a superclass version of a method.

� In the informal rules for behavioral subclassing (Sec. 3.3), the rules for overridable

methods must be clari�ed:

1. The particular speci�cations of inherited, overridable methods in the subclass

must be implied by their particular speci�cations in the superclass.

2. The assumed speci�cations of all overridable in the subclass must imply their

assumed speci�cations in the superclass.

� In the formal rules for inclusion (Sec. 4.3.1), the implication on method speci�cations

in the \respects clause" (rule (2), page 41) applies to the assumed speci�cations of

overridable methods, while the implication on method speci�cations in the \describes

clause" (rule (3), page 41) applies to the particular speci�cations of overridable meth-

ods.

In the formal rules for simple behavioral subclassing (Sec. 4.3.2), where it says that

overridden methods may have stronger speci�cations in the subclass, this means that

the assumed speci�cation in the subclass must imply the assumed speci�cation in the

superclass.

Note that there need not be any relation between the particular speci�cations of a sub- and

superclass.

5.2 Extensible specialization speci�cations

58 CHAPTER 5. IMPROVING EXTENSIBILITY

class IntCollection f

// Deferred ``elements'' component

public deferred void addElement(int el);

public deferred boolean removeElement(int el);

public deferred IntEnumeration elements();

// ``cache'' component (same as IntSet)

private int c_val; // Value currently in cache

private boolean c_valid = false; // True only if c_val is valid

public overridable boolean contains(int el) f

if (c_valid && c_val == el) return true;

for(IntEnumeration e = this.elements(); e.hasMoreElements();)

if (el == e.nextElement()) f

c_valid = true; c_val = el;

return true;

g;

return false;

g;

protected overridable void uncache(int el) f

if (c_val == el) c_valid = false;

g;

..About two dozen other methods implemented in terms of addElement,

removeElement, elements, and contains. For example:

public void removeElements(int els[]) f

for(IntEnumeration e = this.elements(); e.hasMoreElements();)

this.removeElement(e.nextElement());

g;

...

g;

Figure 5.2: Base class for integer-collection classes.

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 59

Fig. 5.2 gives IntCollection, a partial class for building integer collections. This class

is inspired by the Collection class in the Smalltalk library [Goldberg89]. This class pro-

vides code for about two dozen methods common to collection classes, such as membership-

testing, adding and removing multiple members from an array, and so-on. Subclasses pro-

vide their own implementation for the elements component and can inherit these two dozen

methods.

An informal speci�cation for IntCollection is given in Fig. 5.3. The aim of this

speci�cation is to be as general as possible. This will allow the reuse of IntCollection in

all kinds of collection classes, e.g., both ordered and unordered collections, and both set-like

and multiset-like collections. To achieve this generality, notice that the description of the

elements �eld|\a collection of integers"|is vague. The speci�cations of removeElement of

elements are also vague|they make vague hints about values being in elements \multiple

times."

A formal speci�cation can clear up this vagueness, but classes like IntCollection are

challenging to specify. What mathematical space should be used to model the elements

�eld? This space needs to include sets, multisets, sequences, and a wide-variety of other

collection values. How should the behavior of methods be speci�ed, given that the behavior

in di�erent subclasses can vary markedly? For example, in a set-like subclass, addElement

is an idempotent operation, i.e., after an element is inserted the �rst time, all subsequent

insertions of that element have no e�ect. In multiset-like subclasses, addElement is not

idempotent: each insertion of an element into such an object changes the state of the

object.

The challenge of designing mathematical spaces that are crafted so as to be reusable

is not unique to specifying specialization interfaces. The issue also arises in the context

of instance speci�cations. For example, most collection libraries have a collection type

that is a supertype of all other collection types, and specifying this type raises the same

issue. The issue also arises in the context of designing LSL handbooks, collections of LSL

traits de�ning related sorts [Guttag93]. Below we propose a solution that seems promising

for specifying both the instance and specialization speci�cations of classes. However, the

important point here is the identi�cation of the general problem as it pertains to specifying

classes. If formal methods are to be applied to object-oriented programs, some solution to

this problem|whether the one here or some other|will be necessary.

Our solution is to carefully craft the sorts used to model the abstract state of classes

like IntCollection. An extensible sort is a larger space of values containing subspaces of

values for which we can assert properties independently. In classes such as IntCollection,

where the abstract state of di�erent subclasses need di�erent, contradictory properties, each

subclass will get its own subspace of values and will assert the needed properties. A class

assertion is an axiom associated with a class that asserts properties for the subspace of

an extensible sort associated with all subclasses of the class. A component assertion is an

axiom associated with a class component that asserts properties for just those subclasses

that inherit the component.

5.2.1 Extensible sorts

When it comes to designing the abstract spaces for extensible classes, the challenge is this.

First, we need to de�ne a space of values that all share some general properties. For

60 CHAPTER 5. IMPROVING EXTENSIBILITY

specialization speci�cation IntCollectionSSpec f

state �eld elements; // A collection of integers

state �eld cache; // A set of integers

invariant if integer i 2 cache then i is a member of elements

overridable component f

substate �eld elements;

public void addElement(int el);

// Modifies: this.cache

// Effects: Adds el to this.elements.

public boolean removeElement(int el);

// Modifies: this.elements, this.cache

// Effects: Removes el from this.elements, returning true iff

// el is in to begin with. In some subclasses, eg,

// IntMultiSet, an element may have to be removed multiple

// times before it is completely gone from this.elements.

public IntEnumeration elements();

// Effects: Returns an enumeration of the integers in this.elements.

// This enumeration yields each distinct integer only once, even

// integers that are in this.elements multiple times.

g;

overridable component f

substate �eld cache;

public boolean contains(int el);

// Modifies: this.cache

// Effects: Returns true iff el is in this.elements.

protected void uncache(int el);

// Modifies: this.cache

// Effects: Removes el from this.cache

g;

..other methods elided

g;

Figure 5.3: Informal speci�cation for IntCollection.

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 61

Holder: trait

includes Int, Sequence(Int, IntSequenceSort), StateTrait

introduces

new:Obj!IntHolder

ins:IntHolder,Int! IntHolder

tag:IntHolder!Obj

del:IntHolder,Int! IntHolder

mem:IntHolder,Int! Bool

goodSeq:IntHolder,IntSequenceSort! Bool

measure:IntHolder! Int

asserts

IntHolder generated by new, ins

8 o;o0:Obj; h:IntHolder; s:IntSequenceSort; i; i0:Int

tag(new(o)) = o

tag(ins(h; i)) = tag(h)

:mem(new(o); i)

mem(ins(h; i); i0) = (i = i0 _mem(h; i0))

measure(new(o)) = 0

measure(ins(h; i)) = (mem(h; i) ?measure(h) : 1 +measure(h))

goodSeq(h; s)) (mem(h; i) , i 2s)

end Holder

Figure 5.4: Holder trait.

example, all IntCollections share a general notion of \membership" and of \inserting"

and \removing" members of a collection. At the same time, we want to be able to divide

that space of values into subspaces that have additional properties, where the additional

properties of di�erent subspaces might be contradictory. In our example, we want to carve

up the very general space of \collections" into subspaces for sets, multisets, and other kinds

of collections. For some of these subspaces (set-like collections), insertion is idempotent,

while for others (multiset-like collections), it is not. Similarly, for some subspaces (unordered

collections), insertion is commutative, while for others (ordered collections), it is not. We

need to be able to assert properties on each subspace independently.

For each object subsumed by a speci�cation like IntCollection, our approach is to

create a subspace for the object. That is, each individual IntCollection object has its

own subspace of abstract values it can take on. We de�ne these subspaces by tagging values

with Objs (object identi�ers). The subspace of abstract values that an object o can take

on is the set of values tagged with o. Fig. 5.4 gives a trait for IntHolder, a value space

for the abstract state of IntCollection. The new operation takes an Obj argument o and

returns an empty IntHolder value tagged by o. The axioms for tag (which returns the

object tagging a value) indicate that any IntHolder value generated by inserting integers

into new(o) is also tagged by o. Thus, we see that associated with each Obj is a whole space

62 CHAPTER 5. IMPROVING EXTENSIBILITY

of IntHolder values.

Tagging values gives us the freedom to de�ne properties for both IntHolder as a whole

and also for subspaces of IntHolder. We can de�ne a property on all IntHolder values by

quantifying over all tags. For example, the trait in Fig. 5.4 asserts general properties ofmem

and goodSeq that apply to all IntHolder values. We can de�ne a property on subspaces

of IntHolder by quantifying over the objects for which the property should apply. For

example, the assertion:

8 h:IntHolder; i:Int � InstanceOf(tag(h); IntSet)) ins(h; i) = ins(ins(h; i); i)

says that insertion is idempotent for IntHolder values that are tagged by an instance of

IntSet. (InstanceOf(o; C) is a boolean-valued function returning true when Obj o is a direct

or indirect instance of class C.)

A formal speci�cation for IntCollection is given in Fig. 5.5. This speci�cation uses

IntHolder as its abstract state. The invariant this = tag(this�:h) ensures that the subspace

of IntHolder values associated with object x are used to describe the abstract state of x.

5.2.2 Specializing extensible sorts

To specialize an extensible sort is to assert properties about interesting subspaces of the

sort. \Interesting" subspaces include spaces associated with all the instances of some class

and instances of all classes that inherit a given class component.

Class assertions are used to specialize an extensible sort for all instances of a class. A

class assertion appears in the specialization speci�cation of a class. These assertions can be

quanti�ed over sort expressions of the form \Sort[this]," where Sort is an extensible sort.

Inside the class C, the class assertion \asserts 8x : Sort[this] � P" is interpreted as:

8x : Sort � InstanceOf(tag(x); C)) P

This desugaring generalizes in the expected manner for multiple occurrences of quanti�ca-

tion over sorts of the form Name[this].

Fig. 5.6 shows a class assertion that asserts set-like properties for those IntHolder values

associated with instances of IntSet. The assertion here is interpreted as:

8 h : IntHolder; s:IntSequenceSort; i; i0:Int

InstanceOf(tag(h); IntSet))

(ins(ins(h; i); i0) = ins(ins(h; i0); i)

^ins(h; i) = ins(ins(h; i); i)

^mem(del(h; i); i0) = (i 6= i0 ^mem(h; i0))

^goodSeq(h; s)) len(s) = measure(h))

Note that this asserts properties of the sort IntSet (Fig. 4.2), idempotence and commuta-

tivity, that are missing from IntHolder.

Class assertions constrain both direct instances of a class and also instances of all sub-

classes of the class. Sometimes, constraining all subclasses limits reuse. For example, the

code for IntSet in Fig. 1.2 implements the speci�cation in Fig. 5.6. However, using this

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 63

specialization speci�cation IntCollection f

uses Integer, Set(Int, IntSet), Holder;

state [h:IntHolder, c:IntSet];

invariant this = tag(this�:h) ^ e 2 this
�:c) mem(this

�:h; e);

overridable component f

substate [h:IntHolder];

public void addElement(int el) f

Modi�es this;

Ensures this
post:h = ins(thispre:h; el);

g;

public boolean removeElement(int el) f

Modi�es this;

Ensures this
post:h = del(thispre:h; el) ^ result = mem(thispre:h; el);

g;

public IntEnumeration elements() f

Ensures result:index = 0 ^ goodSeq(thispre:h; result:seq);

g;

g;

overridable component f

substate [c:IntSet];

public boolean contains(int el) f

Modi�es this:c;

Ensures result = mem(thispre:h;el);

g;

protected void uncache(int el) f

Modi�es this:c;

Ensures el 62 this
post:c;

g;

g;

g;

Figure 5.5: Formal specialization speci�cation for IntCollection

64 CHAPTER 5. IMPROVING EXTENSIBILITY

specialization speci�cation IntSetSSpec2 f

uses Integer, Set(Int, IntSet), Holder;

state [h:IntHolder, c:IntSet];

invariant this = tag(this�:h) ^ e 2 this
�:c) mem(this

�:h; e);

asserts

8 h : IntHolder[this]; s:IntSequenceSort; i; i0:Int

ins(ins(h; i); i0) = ins(ins(h; i0); i)

^ ins(h; i) = ins(ins(h; i); i)

^ mem(del(h; i); i0) = (i 6= i0 ^ mem(h; i0))

^ goodSeq(h; s)) len(s) = measure(h);

.. rest of specification is same as for IntCollection

g;

Figure 5.6: Using class assertions to specialize IntHolder

speci�cation for IntSet limits potential reuse. The speci�cation in Fig. 5.6 restricts all sub-

classes to implement sets when in fact IntSet could be used to implement other collection

classes (e.g., multisets).

This is really a variation on the story of Sec. 5.1: di�erent speci�cations are needed

for describing a component and for constraining subclasses that replace a component. For

instances of IntSet and for subclasses that inherit the elements component, we want a

speci�c speci�cation that explains that the elements component is implementing sets in

particular. For subclasses of IntSet that override the elements component, we want a

general speci�cation like the one for IntCollection in Fig. 5.5 that says that elements

must implement some kind of IntHolder|but any kind of IntHolder.

We can handle this dual requirement by associating assertions with components rather

than with classes. For example, another speci�cation of IntSet is given in Fig. 5.7. This

speci�cation is the same as the one in Fig. 5.6 except that the specializing assertion for

IntHolder has been moved into the elements component. Inside a class component G, the

component assertion \asserts 8x : Sort[this] � P" is interpreted as:

8x : Sort � (tag(x) inherits G)) P

In other words, the abstract-value space of all subclasses that inherit the code of G are

subject to the assertion of G. The code for methods in G may assume P . For example,

when IntSet is speci�ed by Fig. 5.7, the implementation of elements can assume that

insertion is idempotent, so the code for addElement (Fig. 1.2) need not add an element if

it is already in elements. Code for methods outside of G may not assume P . For example,

consider the following code for contains:

public overridable boolean contains(int el) f

if (c_valid && c_val == el) return true;

if (this.removeElement(el)) f

c_valid = true; c_val = el;

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 65

specialization speci�cation IntSet f

uses Integer, Set(Int, IntSet), Holder;

state [h:IntHolder, c:IntSet];

invariant this = tag(this�:h) ^ e 2 this
�:c) mem(this

�:h; e);

class component f // ``elements component''

substate is [h:IntHolder]

asserts

8 s:IntSequenceSort; i; i0:Int

ins(ins(this:h; i); i0) = ins(ins(this:h; i0); i)

^ ins(this:h; i) = ins(ins(this:h; i); i)

^ mem(del(this:h; i); i0) = (i 6= i0 ^ mem(this:h; i0))

^ goodSeq(this:h; s)) len(s) = measure(this:h);

.. rest is same as for IntCollection

g;

.. rest same as for IntCollection

g;

Figure 5.7: Using class assertions to specialize IntHolder

this.addElement(el) // Bug! Assumes insertion is commutative

return true;

g else return false;

g;

This code assumes that element insertion is commutative. This assumption would be correct

if IntSet were speci�ed by Fig. 5.6. However, if IntSet is speci�ed by Fig. 5.7, this

assumption is incorrect outside of the elements component.

66

Chapter 6

Design implications

This chapter looks at the design implications of the previous chapters. It focuses on the de-

sign implications for class libraries, but it also looks at design implications for programming

languages.

The goal of this report is to show how to improve the specialization interfaces of class

libraries. The previous chapters showed a methodology|a unit of modularity with associ-

ated documentation and reasoning techniques|that achieves modularity without sacri�cing

extensibility. However, as suggested in an earlier chapter, a good methodology allows good

designs but does not necessitate them. Good use of the methodology|i.e., good design|

is required as well. This chapter explores some principles of good design implied by the

methodology.

There are two levels in the design of class libraries. One level is the decomposition

of the overall library into type and class hierarchies. The other level is the design of the

interfaces of individual classes. This chapter considers the latter, the design of specialization

interfaces of individual classes. It presents a series of tips for designing these interfaces and

also describes how languages can support these tips.

Sec. 6.1 describes the examples used to illustrate the points of this chapter. Sec. 6.2

describes control abstractions, a building block like class components for designing special-

ization interfaces. This chapter does not discuss control abstractions in detail, but it is im-

portant to understand how control abstractions and class components �t together. Sec. 6.3

discusses the design of specialization interfaces using class components. Our approach is to

concentrate on identifying a good abstract representation and on picking representation cat-

egories for the �elds of the abstract representation. Decomposing this into class components

follows naturally once the abstract representation is designed.

The last section of this chapter looks at the implications of class components on another

area of design: the design of programming languages. It suggests a construct for expressing

overridable class components in one's code. It shows how such a construct can be used to

enforce many of the rules discussed in Chapter 3.

6.1 Design examples

This chapter illustrates its points using three examples. Two of the examples have already

been seen: IntSet and Rd.

67

68 CHAPTER 6. DESIGN IMPLICATIONS

Functionality Openstep ET++

Root class: NSObject Object

Responder: NSResponder EvtHandler

View: NSView VObject

Table 6.1: Class hierarchies of two GUI libraries.

The third example is a new one: \views," a class central to most GUI libraries. A view

is a rectangular region on the screen that programs can draw into and that responds to user

events such as mouse clicks and key strokes. Views are arranged in a view hierarchy, with a

superview containing a number of subviews containing subsubviews and so on. Mouse-click

events are directed to the lowest view in the view hierarchy containing the click; other input

events, such as keystrokes and commands generated by menus, are directed to the view that

currently has the input focus.

We compare and contrast the view classes in two GUI libraries, Openstep [Next94] and

ET++ [Weinand95]. We consider both to be well-designed libraries, an opinion that has

been seconded in the literature (e.g., [Holzle93],[Lewis95]). Openstep and ET++ are similar

in their class hierarchies and in the general functionality of various classes. However, the

details of their specialization speci�cations are di�erent.

The view-related part of the class hierarchies of Openstep and ET++ are shown in Ta-

ble 6.1. In both libraries, the immediate superclass of the view class is a \responder" class

that factors out functionality for processing mouse, keyboard, and other events. The imme-

diate superclass of the responder class is the root class of the library, which provides generic

functionality such as object copying, equality testing, and dynamic type identi�cation.

Table 6.2 lists some of the abstract-state �elds of the view class and their representation

categories in the di�erent libraries. The geometry �eld contains the location and size of

the view. The nextResponder points to the next responder in the program's responder

chain (an event such as a keyboard stroke is passed along the responder chain until a

responder chooses to process it). The superview and subviews �elds contain the view

hierarchy. The observers �eld is unique to the ET++ library. The observers �eld

contains a list of objects registered to receive noti�cation when a VObject changes; it is

motivated by the change-propagation mechanism in the SmallTalk Model-View-Controller

paradigm [LaLonde91].

Field Openstep ET++

geometry �nal, encapsulated �nal, exposed

nextResponder �nal, encapsulated deferred

superview �nal, encapsulated �nal, encapsulated

subviews �nal, encapsulated overridable

observers | overridable

Table 6.2: Abstract-state �elds of two view classes.

6.1. DESIGN EXAMPLES 69

specialization speci�cation ViewSSpec f

state �eld subviews; // Set of Views

state �eld superview; // Single View, or nil

..other fields elided

�nal component f

substate �eld superview;

public View getSuperview();

// Effects: Returns superview.

public void setSuperview(View newSuper);

// Modifies: this

// Effects: Sets superview to newSuper.

g;

overridable component f

substate �eld subviews;

public void addSubview(View newSub) throws BoundsException;

// Modifies: this, newSub

// Override effects: If subviews is full, throws BoundsException,

// otherwise, inserts newSub into subviews and sets

// newSub.superview to this.

// Inherited effects: Always throws BoundsException because the

// default representation of subviews has zero capacity. Subclasses

// that expect to have subviews must override this component.

public void removeSubview(View oldSub)

// Modifies: this, oldSub

// Effects: If oldSub in subviews, removes it and

sets oldSub.superview to null.

public ViewEnumeration subIter();

// Effects: Returns an enumeration that yields the

// subviews of this in turn.

g;

// Not accessors for any state, so outside of any component

public �nal void drawAll();

// Effects: Draws this by calling drawSelf, then

// draws each subview by calling drawAll.

public deferred void drawSelf();

// Effects: draws this.

..other methods elided

g;

Figure 6.1: Partial specialization interface of View.

70 CHAPTER 6. DESIGN IMPLICATIONS

class View f

public void addSubview(View newSub) throws BoundsException

f throw new BoundsException(); g;

public void removeSubview(View oldSub)

f g;

public ViewEnumeration subIter()

f return new EmptyViewEnumeration(); g;

...

g;

Figure 6.2: Representation of subviews in View.

A specialization speci�cation for the class View is given in Fig. 6.1. This speci�cation is

referred to in our design discussions later in this chapter. View is close to the ET++ view

class, but avoids details that are not relevant to our discussion. We consider here only two

abstract-representation �elds of View: superview, containing the superview of a view, and

subviews containing the set of subviews of a view.

The speci�cation in Fig. 6.1 shows two class components of the View class, a �nal com-

ponent that maintains the superview state and an overridable component that maintains

the subviews state. In addition, Fig. 6.1 includes two methods, drawAll and drawSelf,

that are not accessors of any component and thus are outside of any component; these are

discussed further in the next section.

The default representation of subviews, given in Fig. 6.2, holds no subviews: any at-

tempt to add a subview results in a BoundsException being thrown. This makes addSubview

a good candidate for having both an assumed and an particular speci�cation (Sec. 5.1).

The assumed speci�cation of addSubview describes the behavior required of all subclasses:

addSubview adds a new subview to a View, subject to an unspeci�ed bound on the number

of allowable subviews. The particular speci�cation re�nes this general speci�cation, indi-

cating that the default representation of subviews holds no subviews so addSubview will

always throw BoundsException.

6.2 Control abstractions

Class components are one building block that can be used in the design of specialization

interfaces. Control abstractions are another. Control abstractions support extensibility for

behavior. Although control abstractions are beyond the scope of this report, no realistic

discussion of the design of specialization interfaces can completely ignore them. This section

briey describes control abstractions and discusses how they interact with class components.

(A detailed discussion of control abstractions can be found in [Kiczales91].)

A control abstraction is a method whose behavior can be customized by overriding meth-

ods that it calls. Control abstractions are �nal or overridable methods containing algorithms

in which key details are embodied by calls to deferred and overridable methods called spe-

6.3. DESIGNING SPECIALIZATION INTERFACES 71

public �nal void drawAll() f

this.drawSelf();

for(ViewEnumeration e = this.subIter(); e.hasMoreElements();)

e.nextElement().drawAll();

g;

Figure 6.3: Implementation of drawAll.

cializing methods. By overriding these specializing methods, subclasses can customize the

behavior of control abstractions.

The method drawAll (in View) is an archetypical control abstraction. This method is

responsible for drawing the entire view, including graphics handled by the view itself and

any graphics handled by subviews. As shown in Fig. 6.3, drawAll does this by �rst call-

ing drawSelf to draw its own graphical content, and then calling the drawAll method of

each of its subviews. Subclasses specialize drawAll by overriding its specialization methods

drawSelf and subIter (overriding subIter implies overriding the entire subviews com-

ponent). For example, a dialog box is typically implemented as a superview containing a

number of \controls" (e.g., buttons) as subviews. The drawAll behavior of DialogView is

de�ned by overriding drawSelf to draw a background for the dialog and overriding subIter

to yield the controls inside the dialog.

Class components and control abstractions can overlap. An accessor of a class compo-

nent can be a specializing method of a control abstraction. For example, in View, subIter

is a specializing methods of drawAll and also an accessor of the subviews component.

Also, a method can be both an accessor and a control abstraction. For example, in Rd,

getChar is both an accessor of the buffered component and also a control abstraction

whose specializing method is nextChunk.

Sometimes a method is purely a control abstraction (drawAll) or purely a specializ-

ing method (drawSelf) and does not directly access the representation of any state. In

speci�cations, it is convenient to place such methods outside of any component clause.

When reasoning about these methods, we treat them as each belonging to a particularly

simple component, a component having no substate and only one method. Because we

consider these methods as belonging to single-method components, we sometimes call them

singletons.

6.3 Designing specialization interfaces

Choosing a good abstract representation is important to designing the specialization in-

terfaces of classes. We recommend the following, iterative process for designing abstract

representations:

1. Select a preliminary abstract representation and abstract representation invariant.

2. Pick representation categories for �elds of the abstract representation, i.e., categorize

the �elds as �nal, deferred, and overridable.

3. Group overridable �elds into components and pick accessors for each component.

72 CHAPTER 6. DESIGN IMPLICATIONS

Not extensible Extensible

Deferred Overridable

DefaultNo default

Final

Figure 6.4: Decision tree for category selection.

4. Iterate, taking into account the implementations and subclasses enabled and ruled-out

by the current iteration.

The following subsections discuss the �rst three steps in turn.

6.3.1 Selecting a preliminary abstract representation

The �rst step ties the process of designing specialization interfaces into the overall process

for designing the class library. By the time the designer gets around to designing the spe-

cialization interface, the abstract state of the instance interfaces has already been decided.

The abstract state of the specialization interface is picked as an abstract representation

of that instance speci�cation. Many times, as in the case of View, the abstract states of

the instance and specialization speci�cations can be the same. Other times, as in Rd and

IntSet, extra state is revealed in the specialization interface.

6.3.2 Picking representation categories

Once a preliminary abstract representation has been selected, representation categories

for each �eld must be picked. In all likelihood, the designer already has a good idea of

what the representation categories will be, but it is worth considering some of the design

considerations that go into this choice.

Fig. 6.4 gives a decision tree for choosing a representation category for a �eld. The

designer must �rst decide whether or not the �eld should be extensible, i.e., whether or

not subclasses should be able to provide their own representations for a �eld. If the �eld is

extensible, the designer must decide if it should be overridable or deferred.

Each of these decisions is discussed below in turn. These discussions illustrate their

points using both Rd and View. The details of Rd and View given here di�er from those in

the class libraries that inspired them, but the discussion in this section applies to the actual

libraries. The representation categories for Rd and View are summarized in Table 6.3.

6.3. DESIGNING SPECIALIZATION INTERFACES 73

Category Rd class View class

Deferred unbuffered |

Final buffered superview

Overridable | subviews

Table 6.3: Examples representation categories.

6.3.2.2 Extensible vs. non-extensible

The �rst step in choosing a representation category for a �eld is to decide whether or

not it should be extensible. The bene�t of extensibility is that it fosters reuse both by

allowing customized functionality and by allowing specialized implementation trade-o�s at

di�erent points in the class hierarchy. The deferred unbuffered �eld of Rd allows customized

functionality. The deferred �eld allows di�erent subclass of Rd to use di�erent devices (e.g.,

disks, network connections) to represent the unbu�ered part of a reader.

The overridable subviews �eld allows customized space trade-o�s. The usage of subviews

shows a pattern that can be exploited: the view class hierarchy has a large number of leaf

classes, i.e., views like buttons whose instances have no subviews, and also a large number

of \�lter" view classes, views like \boardered view" whose instances have only one sub-

view. By making subviews extensible, it can be represented in a space-e�cient manner:

leaf classes can represent subviews without using any space, and �lter classes can represent

subviews with only an instance variable rather than with a heap-allocated collection object

used by more general View classes.

Extensible state can lead to more reuse. ET++ makes extensive use of extensible state

to reducing the default size of a view object, making views lightweight. This encourages

their reuse at a �ne level of granularity, e.g., to represent individual cells in a spreadsheet

program. Openstep, on the other hand, does not use extensible state (it gets extensibility

from control abstractions). In Openstep, views take a lot of space, so programmers avoid

them at a �ne-level of granularity, instead developing their own mechanisms for �ne-grain

drawing and event handling.

Despite the reuse that can come from extensible state, we make the following, conser-

vative recommendation: An abstract representation �eld should be �nal unless there is a

speci�c case for making it extensible. For example, the structure of superview is very

uniform: every View has exactly one parent (except the root), so there is no reason to

make it extensible. There are two reasons for this recommendation. First, with extensible

�elds there are more opportunities for errors in both designs and implementations. Being

conservative about extensibility leads to more reliable software.

Second and more important, being conservative allows designers to put-o� deciding

exactly how a class should be extensible until such time as there are real-world needs

to drive design. It is relatively easy to change a �eld from �nal to overridable without

breaking existing classes. However, it is hard to change a representation strategy that has

been exposed in the specialization interface, especially in third-party libraries, because such

changes can break subclasses. For example, for View, a specializer that �nds a compelling

74 CHAPTER 6. DESIGN IMPLICATIONS

reason for making superview overridable can negotiate to have View changed, and this

change will not break existing View subclasses. By being conservative about exposing

representation strategies, builders of class libraries can wait until their \customers" come

to them with real-world examples of where extensibility is needed. This will lead to better

design decisions.

6.3.2.2 Overridable vs. deferred

If a designer chooses to make an abstract representation �eld extensible, then the designer

must next choose between overridable or deferred. This choice depends on whether or not

there exists a suitable default representation for the �eld. When a �eld is made extensible

for behavior reasons (i.e., to allow for customized functionality), there is often no sensible

default representation. This case applies to unbuffered.

When a �eld is made extensible for performance reasons (i.e., to allow for customized

trade-o�s), there is often a default representation that can be given. This case applies to

subviews. The subviews �eld follows a general pattern for overridable �elds: usually a

low-space representation is chosen as the default, under the assumption that subclasses will

replace it as needed with a higher-space representation that is either faster or provides more

functionality.

6.3.2.2 Final �elds

If a designer chooses to make an abstract representation �eld non-extensible, then the de-

signer must decide whether or not to expose it. We have been assuming that �nal state

is encapsulated. We feel this is the best choice. Encapsulated �elds are represented with

private instance variables. A class cannot access the representation of its superclass's encap-

sulated �nal �elds, but instead must access them indirectly by calling superclass methods.

For performance reasons, �nal abstract representation �elds are sometimes exposed by

using protected instance variables to represent them, allowing subclasses to access them

directly rather than having to call superclass methods. To support direct access, the rep-

resentation of an exposed �eld must be well documented. This means documenting the

instance variables in the �eld's representation, the invariants these variables obey, and the

abstraction function relating these variables to abstract-values of the �eld they represent

([Edwards96]).

In the Modula-3 Rd class (but not in Fig. 2.4), buffered is an exposed �eld. Reading

characters from input streams is often part of the critical path of the kinds of systems

programs Modula-3 is meant to support. The designers of Rd exposed the �eld to minimize

the performance overhead on this critical path.

Final �elds should not be exposed unless there is a really good reason. The trade-o�

between exposing and encapsulating a �nal �eld is the old one between performance on the

one hand and safety and maintainability on the other. By allowing direct manipulation,

exposed �elds allow subclasses to avoid the method-call overhead inherent in indirect ma-

nipulation. However, exposing �elds requires subclasses to maintain invariants and reason

about superclass abstraction functions, potential sources of error. Also, a change to the

representation of an exposed �eld can invalidate code in subclasses, introducing mainte-

nance di�culties. In the long-term, exposing �elds can actually harm performance. Once

6.4. LANGUAGE DESIGN 75

a �eld is exposed, it is basically impossible to change its representation, especially in class

libraries. This makes it impossible to change to a more e�cient representation, and it makes

it impossible to make the �eld overridable, which would let subclasses provide optimized

representations.

6.3.3 Picking accessors for components

Su�ciency of interfaces is an old issue in the design of data abstractions [Kapur88]. A su�-

cient interface is one that provides enough functionality to allow e�ective access to objects;

an insu�cient interface is one whose methods make it hard or impossible to manipulate

objects. Su�ciency is also an issue in the specialization interface, but at a �ner level of

granularity.

Class components are really data abstractions embedded within the specialization in-

terface. The issue of su�ciency applies to each of these embedded data abstractions. For

example, the subviews component of View would not be of much use without the subIter

method to allow code outside the component to access the set of subviews. In general, the

methods of a component should form a su�cient interface to the component's substate.

Making sure that each component has a su�cient interface is an important part of pick-

ing methods for a class, but it is not the only issue involved. Other considerations include

a su�cient interface for instantiators, and also the control abstraction in the specializa-

tion interface. A full methodology for designing method suites is beyond the scope of this

chapter.

6.4 Language design

Class components have implications for the design of programming languages as well as

for the design of classes. The central implication is to add overridable class components

as a checked construct of classes. With such a construct, compilers can check that the

instance variables of overridable components are only accessed by their own code, that

subclasses override components as units, and that subclasses shadow components correctly.

This construct also facilitates a space-saving optimization.

Deferred and �nal components do not suggest any language features. Deferred and �nal

components a�ect the way programmers think about the design and implementation of

classes, but they do not impose restrictions on code the way overridable components do. For

example, the convention for deferred components says that deferred abstract state should

be accessed by calling deferred methods. Deferred abstract state is a speci�cation concept,

so there is no compiler-checkable restriction here. The convention for �nal components

says that any method in a class may access the instance variables representing the class's

�nal abstract state, so again there is no compiler-checkable restriction here. (As mentioned

in Sec. 2.2, the purpose of grouping of methods into �nal components is not to enforce

implementation restrictions but to help break up a class into smaller, more digestible pieces.)

The conventions for overridable components, in contrast, de�ne a number of restrictions

on the implementations of classes, restrictions that can be enforced by compilers. Sec. 6.4.1

below describes what a construct for overridable components might look like. Sec. 6.4.2

describes how such a construct can be used to check the local code of a class. Sec. 6.4.3

76 CHAPTER 6. DESIGN IMPLICATIONS

describes how this construct can be used to ensure that subclasses correctly override and

shadow superclass components. Finally, Sec. 6.4.4 explains how such a construct can be

used for a space-saving optimization.

In the discussion below, we assume that overridable components are supported in the

language's syntax and that checking is done by the compiler. An alternative is to use

comment-embedded annotations to support overridable class components and to do checking

with a tool that works beside the compiler. This alternative approach is taken by LCLint

to support data abstraction in C [Evans96]. Except for the discussion on optimization, the

discussion below applies equally to both approaches.

6.4.1 A construct for overridable components

Support for overridable class component requires just a small amount of syntax. What is

needed is a construct in class de�nitions for grouping declarations of methods and instance

variables. These groups constitute the overridable components of the class.

Fig. 6.5 gives an implementation of IntSet using a class component construct (c.f.

Fig. 1.2). The syntax designating class components is trivial, yet it conveys a lot of in-

formation. This information is useful to programmers because it documents the internal

modules making up the class. And, as shown in the following subsections, this information

is useful for mechanical checking and for optimization.

An overridable method that appears outside of a component construct is a singleton.

From the perspective our methodology, such a method belongs to a class component con-

sisting of only the method itself and no other methods or any abstract-state �elds. As

suggested in Sec. 6.2, singletons are typically pure control abstractions or pure specializing

methods for control abstractions.

6.4.2 Overridable components as scoping units

By treating the component construct as a scoping unit, and by treating the declarations

of instance variables and �nal methods that appear inside a component as private to the

component, useful checks can be made on the local code of a class.

One part of the programming conventions for overridable components described in Chap-

ter 2 is that only the methods of a component may access the representation of the state

assigned to the component. With a component construct, this convention can be checked.

Instance variables declared inside a component construct should be visible only to code

inside that component. Attempts to access instance variables from outside the variables'

component should be an error. (Inside a component construct, there is not need to clutter

the declarations of instance variables with private, e.g., compare Fig. 6.5 to Fig. 1.2.)

Another part of the conventions for overridable components is helper methods, which

are private, �nal methods inside an overridable component. The helper methods of a com-

ponent may access the component's instance variables, but they can only be called by other

methods in the component. The component construct allows enforcement of this part of

the convention as well. Any �nal methods declared inside a component should be treated

as helper methods. Such a method should have access to the instance variables of the

component, but it should only be visible to other methods in the component.

6.4. LANGUAGE DESIGN 77

class IntSet f

overridable component f // elements component

IntVector els = new IntVector(); // Elements of IntSet

public void addElement(int el) f

if (! els.contains(el)) els.addElement(el);

g;

public boolean removeElement(int el) f

this.uncache(el); // Maintain cache validity

return els.removeElement(el); // Call remove method of IntVector

g;

public IntEnumeration elements() f

return els.elements();

g;

g;

overridable component f // cache component

int c_val; // Value currently in cache

boolean c_valid = false; // True only if c_val is valid

public boolean contains(int el) f

if (c_valid && c_val == el) return true;

for(IntEnumeration e = this.elements(); e.hasMoreElements();)

if (el == e.nextElement()) f

c_valid = true; c_val = el;

return true;

g;

return false;

g;

protected void uncache(int el) f

if (c_val == el) c_valid = false;

g;

g

.. more methods elided

g;

Figure 6.5: Implementation of IntSet using component construct.

78 CHAPTER 6. DESIGN IMPLICATIONS

Yet another part of the conventions of Chapter 2 is the restriction on binary methods.

This restriction says that the code for methods in overridable component G can only access

the instance variables of G for this and not for other arguments. The component construct

allows compilers to check this restriction.

6.4.3 Overridable components as units of override

Another aspect of the programming conventions for overridable components is restrictions

on how they can be overridden. When a subclass replaces a component, it must replace it

as a unit, replacing all methods of the component and not just some of them. With the

component construct, compilers can enforce this requirement.

Instead of replacing a superclass component, a subclass might shadow it, i.e., it might

replace some of its methods without replacing its representation. We recommend that the

language syntax includes an explicit indication of shadowing; for example, components that

shadow superclass components might have the keyword shadow in front. An explicit indi-

cation of shadowing allows specialized checking of shadowing. Invocations through super

can be restricted to subclass components that shadow superclass components. Further, a

subclass component shadowing superclass component G can be restricted to use super only

when invoking superclass versions of methods in G. The compiler can also check that the

subclass does not regroup a shadowed component. That is, if methods m and n are overrid-

den by the subclass and both belong to the same, shadowed component of the superclass,

then m and n must belong to the same component in the subclass.

6.4.4 Eliminating unused instance variables

When a component is replaced by a subclass, the subclass inherits the old representation

of the component's substate but does not use it. For example, IntSet2 (Fig. 1.3), which

replaces the cache component of IntSet, inherits the instance variables c valid and c val

but does not use them. The class-component construct allows compilers to optimize away

this wasted space. In particular, when a subclass replaces (rather than shadows) a compo-

nent of its superclass, the subclass need not inherit the instance variables declared inside

the method group. That is, at run-time, space need not be allocated in the object for

these variables. Of course, the instance variables of shadowed components should not be

optimized away because they are used by the subclass.

This optimization will require some advances in compiler technology. For example, com-

pilers typically compile accesses to instance variables as �xed o�sets from a base pointer.

If subclasses can remove some instance variables, these o�sets will no longer be �xed. Con-

structors also pose a challenge. Constructors need to be able to access all the instance

variables of a class, even those de�ned inside overridable components. When a constructor

is inherited into a class that optimizes-away some of the instance variables accessed by

the constructor, the constructor code will have to be changed to read and write a tem-

porary variable rather than actual instance variables. We have not pursued solutions to

these problems, so at this point the possibility of optimizing-away instance variables is still

speculative.

Chapter 7

Multiple inheritance

In discussing single inheritance, we started from current practice. We assumed standard lan-

guage mechanisms and were inspired by existing, successful designs. The single-inheritance

results do not imply new approaches to structuring class hierarchies, but rather apply at

the level of specialization interfaces of individual classes. Multiple inheritance is di�erent.

There are few large, successful libraries that make aggressive use of multiple code inheri-

tance. Thus, while for single inheritance we were inspired by today's best designs, there are

no such starting points for multiple inheritance. Also, as discussed in [Snyder87], the mul-

tiple inheritance models of most languages are inherently non-modular. Thus, we cannot

even start with a standard language model.

Rather than start with conventional language and design assumptions, this chapter

starts with the ideas of the previous chapters, ideas on the design, documentation, and

validation of specialization interfaces. Based on these ideas, it suggests a mechanism for

multiple inheritance that solves some problems with single-inheritance designs.

One problem with single inheritance is a lack of coherence. In most object-oriented

libraries, classes perform many functions rather than a single, well-focused purpose as de-

manded by the principle of coherence ([Pressman92, Booch94]). In single-inheritance de-

signs, classes serve two purposes: they are templates from which useful instances can be

instantiated, and they are superclasses from which subclasses can inherit. In addition, the

specialization speci�cation of overridable components serves two purposes: it both describes

the class's own version of components and constrains subclass versions. The result is up

to three di�erent speci�cations for overridable methods, clearly a somewhat complicated

situation.

Another problem with single inheritance is tight the coupling of component implemen-

tations. Single inheritance forces designers to commit to particular combinations of imple-

mentations of di�erent components. For example, previous chapters have shown two imple-

mentations of the elements component and two implementations of the cache component

packaged into three classes. By requiring designers to commit to particular combinations of

component implementations, single inheritance rules out some combinations, limiting the

potential for reuse.

These problems can be solved by turning class components into separate classes. A group

of these smaller classes, each implementing di�erent facets of an object's functionality, can

be combined to form instantiable classes. We call these smaller classes mixins, after the

79

80 CHAPTER 7. MULTIPLE INHERITANCE

EvtHandler

DocManager VObject

BorderItem

RarelyObservedMixinFilterMixin

Figure 7.1: Example type and class hierarchy.

process of \mixing" them together to form larger classes. (\Mixin" was �rst coined in the

Flavors community [Weinreb81], but our use follows [Booch94].)

The �rst section below describes how mixins can be supported in Java with only minimal

language changes. The next section explains how a simpli�ed subset of the speci�cation

and veri�cation techniques of the previous chapters applies directly to mixins. Sec. 7.3

goes into more detail on the advantages of mixin-based designs over designs based on single

inheritance.

7.1 Mixins

A multiple inheritance mechanism suitable for our purposes can be added to Java by adding

a new kind of class called a \mixin." Like Java's existing classes, mixins de�ne a set of

variables and methods that can be inherited into subclasses. Unlike Java's existing classes,

mixins cannot be instantiated, nor do they de�ne types (i.e., the name of a mixin cannot

be used in type expressions). Classes de�ned by Java's existing class module are called

instantiable classes to distinguish them from mixins.

In our modi�ed language, programmers can build instantiable classes by subclassing

from one or more mixins, but they cannot subclass from other instantiable classes. In

this language, the class hierarchy is completely separated from the type hierarchy. The

type hierarchy consists of Java interfaces at the inner nodes and instantiable classes at the

leaves. The class hierarchy consists of mixins at the inner nodes and again instantiable

classes at the leaves. An example hierarchy is given in Fig. 7.1. In this �gure, O's stand

for types, X 's stand for classes. Instantiable classes, which de�ne both object types and

classes, join the two hierarchies at their leaves, so they are represented by an O and X

superimposed. Solid lines stand for subtyping, and dashed lines for subclassing

Mixins can be added to the syntax of Java with only a slight modi�cation of the grammar

in [Javabeta95]:

class declaration ! class modi�ers class identi�er
h
super

i h
interfaces

i
class body

mixin declaration ! mixin identi�er
h
super

i h
interfaces

i
class body

super ! mixins mixin�

mixin ! identi�er j identi�er hide f identi�er list g

Java's existing class declaration non-terminal does not change; it declares instantiable classes.

The new non-terminal mixin declaration declares mixins. Java's existing non-terminal super

is changed to allow multiple supertypes and also to allow hiding of supertype methods (see

below).

7.1. MIXINS 81

The methods in an instantiable class's body must all be �nal. Mixins contain �nal and

deferred methods. We assume here that mixins do not have overridable methods. A real

design would allow overridable methods in mixins. Overridable methods would be used only

as specializing methods of control abstractions (Sec. 6.2), not as accessors for overridable

state. We do not have anything to say about control abstractions in the context of mixins,

so we ignore overridable methods to simplify the discussion.

Fig. 7.2 presents some mixins for building the integer set classes used as examples

throughout the thesis. With mixins, IntSet from Fig. 1.2 could be expressed as simply:

class IntSet mixin IntSetCore, IntSetSmallCache, IntSetExtras

f g

where IntSetExtras is another mixin that includes the operations elided in Fig. 1.2. Notice

the duality between IntSetCore and IntSetSmallCache: what is deferred in one is �nal in

the other, allowing them to be mixed together.

Interface types for mixins

Mixins need to have an interfaces clauses because the code for a mixin sometimes needs to

pass this as an argument. For example, consider FilterMixin, given in Fig. 7.3, a mixin

that might be used to create View classes (see Fig. 7.1). In the code for addSubview, this

is passed to the setSuperview of another View object. The setSuperview method expects

a View as an argument, so for FilterMixin to be correct, all classes inheriting from it

FilterMixin must implement View.

For each Java interface I in the mixin's interfaces clause, the variable this can be used

where a Java interface I is expected. The interfaces clause of any subclasses of the mixin

must include a subtype of I .

Access control

Access control is simpler for mixins than for single-inheritance classes. Because classes now

serve only one purpose, they need only two access levels: private and non-private. There

is no need for a protected level of protection. Private members can only be accessed inside

the class de�ning them. If an interface I is in a class's interfaces clause, then none of

I 's methods can be private in that class. Only �nal methods can be private, not deferred

methods.

When non-private members are inherited from mixins, by default they remain non-

private in the subclass. However, this default can be changed in two ways. First, the hides

clause of the mixin production allows subclasses to hide members of superclasses. Hidden

members are treated as if they were private members of superclasses. Only �nal methods

can be hidden. Second, the access control of inherited methods can be changed is with

access declarations. An access declaration declares are subclass declarations that declare

new (stronger) levels of access control for inherited methods (c.f. C++ access declarations,

[Stroustrup91]).

82 CHAPTER 7. MULTIPLE INHERITANCE

mixin IntSetCore f

deferred boolean contains(int el);

deferred void uncache(int el);

private IntVector els = new IntVector();

�nal void addElement(int el)

f if (! els.contains(el)) els.addElement(el); g;

�nal boolean removeElement(int el) f

this.uncache(el); // Maintain cache validity

return els.removeElement(el); // Call remove method of IntVector

g;

�nal IntEnumeration elements() f return els.elements(); g;

g;

mixin IntSetSmallCache f

deferred IntEnumeration elements();

private int c_val; // Value currently in cache

private boolean c_valid = false; // True only if c_val is valid

�nal boolean contains(int el) f

if (c_valid && c_val == el) return true;

for(IntEnumeration e = this.elements(); e.hasMoreElements();)

if (el == e.nextElement()) f c_valid = true; c_val = el; return true; g;

return false;

g;

�nal void uncache(int el) f if (c_val == el) c_valid = false; g;

g;

mixin IntSetBVCache f

deferred IntEnumeration elements();

private long c_bits; // Used as a bitmap; caches 0 - 63 only

private boolean c_test(int el)

f return 0 <= el && el < 64 && c_bits & (1 << el); g

private void c_set(int el, boolean val) f

if (0 <= el && el < 64)

c_bits = (c_bits & ~(1 << el)) | (val ? (1 << el) : 0);

g

�nal boolean contains(int el) f

if (c_test(el)) return true;

for(IntEnumeration e = this.elements(); e.hasMoreElements();) f

c_set(el, true);

if (el == e.nextElement()) return true;

g;

return false;

g;

�nal void uncache(int el) f c_set(el, false); g;

g;

Figure 7.2: Mixins for building IntSet.

7.1. MIXINS 83

mixin FilterMixin implements View f

private View m subview;

�nal void addSubview(View v) throws BoundsException f

if (m subview != null) throw new BoundsException();

m subview = v;

m subview.setSuperview(this);

g;

�nal void removeSubview(View v) f

if (m subview == v) f

m subview.setSuperview(null);

m subview = null;

g;

g;

�nal ViewEnumeration subIter() f

return new SingletonViewEnumeration(m subview);

g;

g;

Figure 7.3: Implementation of FilterMixin.

84 CHAPTER 7. MULTIPLE INHERITANCE

D E

F

C

F

Figure 7.4: Example mixin hierarchy.

Semantics of multiple inheritance

With multiple code inheritance, two questions arise that do not arise in the single inheritance

case. First, what happens when a class inherits the same �eld from two or more mixins?

Second, what happens when a class inherits the same mixin through multiple paths in the

mixin hierarchy?

A class can inherit multiple instance variables with the same name, but at most one of

them can be non-private and the rest must be private. A class can also inherit multiple

methods with the same name, but at most one of them can be non-private and �nal; the rest

must be either private or deferred. (Java supports overloading, so the \names" of methods

include their argument types.)

When a class inherits private methods and instance variables from multiple superclasses,

they are kept distinct in a subclass, even when they have the same name. For example, if

class C inherits from mixins D and E (Fig. 7.4), and D and E both have a private instance

variable i, then C has two instance variables named i, one visible only to the code in D and

the other visible only in E. One can think of this in terms of each class having a distinct

name space for private �elds.

A class cannot inherit non-private instance variables with the same name from multiple

superclasses. When a class inherits non-private methods with the same name from multiple

superclasses, they are merged, becoming a single method in the inheriting class. For ex-

ample, if D and E both have a deferred, non-private method named m, then C also has only

one method named m, and this m is also D and E's m. One can think of this in terms of a

class and all of its superclasses as sharing a single name space for non-private �elds. In the

context of this single name space, declarations of deferred methods \declare" �elds, while

declarations of instance variables and �nal methods \de�ne" �elds. Our rule is this shared

name space can contain at most one de�nition of a �eld, although it may contain multiple

declarations of deferred methods.

C++ does not use this merging semantics. Instead, all methods are kept distinct the

way we keep private �elds distinct. In terms of name spaces, name spaces of sub- and

superclasses are distinct for all members, private and non-private. This makes the multiple-

inheritance semantics of C++ unsuitable to mixin-style programming (although a clever

use of templates ([VanHilst96]) can yield the desired semantics).

When a class inherits the same mixin through multiple paths, the class incorporates

two copies of the mixin. This rule embodies the \tree inheritance" approach of [Snyder87].

In our example (Fig. 7.4), D and E both inherit from mixin F. As a result, C inherits the

7.2. SPECIFICATION AND VERIFICATION 85

methods and instance-variables of F twice. This implies that C, D, and/or E must hide

one copy of each of F's non-private members (except deferred methods) so that C does not

inherit them twice.

7.2 Speci�cation and veri�cation

The documentation and reasoning techniques of the previous chapters apply directly to the

mixin mechanism described above. Mixins are speci�ed with specialization speci�cations.

However, unlike the general speci�cations of Chapter 4, speci�cations of mixins have only

two components, one for deferred methods and another for �nal methods. Instantiable

classes only have instance interfaces, so they can be speci�ed with object speci�cations.

Java interfaces are also speci�ed with object speci�cations. Speci�cations for the mixins

in Fig. 7.2 are given in Fig. 7.5. IntSetElements can be used to specify IntSetCore and

other mixins that provide a representation for the elements of an integer set. IntSetCache

can be used to specify mixins that implement a cache for membership testing, such as

IntSetSmallCache and IntSetBVCache.

Veri�cation of mixins proceeds almost exactly as described in Chapter 4. The spe-

cialization speci�cation of the subclass must be a behavioral subclass of all the superclass

speci�cations. When a mixin has an interfaces clause, each interface speci�cation must

be related to the mixin's specialization speci�cation according to the rules for instance in-

terfaces given in Sec. 3.4. Instance invariants can be used for mixins. However, because

subclasses can add methods that break such invariants, data-type induction cannot be used

to establish instance invariants for mixins. Instead, explicit instance invariants are needed

in their specialization interface as described in Sec. 3.4.1.

Instantiable classes are speci�ed with object speci�cations. However, as explained in

previous chapters, instantiable classes cannot be veri�ed directly against instance speci-

�cations because the code of inherited methods is not available for inspection. Instead,

instantiable classes are veri�ed against specialization speci�cations that are invented by the

veri�er strictly for the purposes of veri�cation. The instance speci�cation is then veri�ed

by comparing it to this intermediate specialization speci�cation using rules for instance

interfaces in Sec. 3.4.

7.3 Program design

Now that the language, speci�cation, and veri�cation mechanisms are de�ned, we can turn

our attention to designing programs using these mechanisms. The impact of mixins on

design is examined by considering our integer collection and GUI library examples from

earlier chapters. No libraries have been designed using the mixin style proposed by this

report, so the comments in this section are speculative.

Multiple inheritance eliminates the need for overridable class components. What would

be overridable components in single-inheritance designs become separate mixins with mul-

tiple inheritance. Eliminating overridable components reduces the chance of errors by sim-

plifying the design, implementation, and use of specialization interfaces.

In single-inheritance designs, class components are packaged together into classes. In

mixin designs, they are separated into their own classes as illustrated by the integer-set

86 CHAPTER 7. MULTIPLE INHERITANCE

specialization speci�cation IntSetElements f

state �eld elements, cache;

invariant cache � elements

�nal component f

substate �eld elements;

void addElement(int el);

// Modifies: this.elements

// Effects: Adds el to this.elements.

boolean removeElement(int el);

// Modifies: this.elements, this.cache

// Effects: Remove el from this.elements; return true iff el in at start.

IntEnumeration elements();

// Effects: Returns an enumeration of the integers in this.elements.

g;

deferred component f

substate �eld cache;

boolean contains(int el);

// Modifies: this.cache

// Effects: Returns true iff el is in this.elements.

void uncache(int el);

// Modifies: this.cache

// Effects: Removes el from this.cache

g;

g;

specialization speci�cation IntSetCache f

state �eld elements, cache;

invariant cache � elements

�nal component f

substate �eld cache;

boolean contains(int el);

// Modifies: this.cache

// Effects: Returns true iff el is in this.elements.

void uncache(int el);

// Modifies: this.cache

// Effects: Removes el from this.cache

g;

deferred component f

substate �eld elements;

IntEnumeration elements();

// Effects: Returns an enumeration of the integers in this.elements.

g;

g;

Figure 7.5: Mixin speci�cations.

7.3. PROGRAM DESIGN 87

IntSet

elements: unsorted array
cache: singleton

IntSet2

elements: unsorted array (inherited)
cache: bit-vector

IntSet4

elements: sorted array
cache: singleton (inherited)

Figure 7.6: Classes implementing integer sets.

Mixins for the elements component

IntSetCore Stores elements in an unordered array

IntSetSortedCore Stores elements in an ordered array

Mixins for the cache component

IntSetSmallCache Caches one membership hit at a time

IntSetBVCache Caches numbers 0-63 using a bit-vector

Table 7.1: Mixins for building integer set.

related mixins given in Fig. 7.2. Looking at this case in more detail, Fig. 7.6 shows how

the integer set classes from previous chapters package two di�erent implementation of each

of the two components elements and cache into three classes. Table 7.1 indicates how a

mixin design would separate these four component implementations into their own class.

This illustrates how mixins encourage designers to break libraries into a larger number of

smaller, more focused classes than one �nds in single-inheritance hierarchies. Besides being

more more coherent, these more focused mixins can be combined in a exible manner than

class components can be. For example, in the mixin design but not in the single-inheritance

design, one can reuse the existing classes to construct an integer set class with a sorted

elements and a bit-vector cache.

In traditional object-oriented languages, the type and class hierarchies are combined.

In the mixin style, the two hierarchies are separate. One bene�t of separating the type

hierarchy from the class hierarchy is that the class hierarchy can be designed strictly in

terms of behavioral subtyping and no longer need be inuenced by code-sharing relation-

ships. Fig. 7.7 shows both the existing ET++ VObject hierarchy and an alternative hi-

erarchy uninuenced by code sharing concerns. In the existing hierarchy, the abstract

class CompositeVObject exists for code sharing only. In the alternative hierarchy it is not

needed, making the hierarchy simpler. In the existing hierarchy, ScrollBar appears under

Expander. ScollBars are not meant to be used by instantiators as if they were Expanders,

but they are a subtype of Expander because ScrollBar is conveniently implemented by

reusing Expander code. In the alternative hierarchy, ScrollBar appears directly under

VObject where it more logically belongs.

88 CHAPTER 7. MULTIPLE INHERITANCE

EvtHandler

VObject
ImageItem

BorderItem

Box
Form

Expander

HExpander

VExpander
ScrollBar

TextItem
CompositeVObject

EvtHandler (an interface)

VObject (interface)

ImageItem

BorderItem

Box (interface)

Form

Expander (interface)

HExpander

VExpander

ScrollBar

TextItem

(a) Old type hierarchy (b) Alternative hierarchy

Figure 7.7: Restructuring the ET++ type hierarchy.

Another bene�t of separating the type and class hierarchies is that Java's interfaces will

more likely be used. In Java, to get good code reuse, designers put classes high in the type

hierarchy. However, once a Java class is introduced into the type hierarchy, all subtypes

below that type must be de�ned using Java classes. This leads to libraries that do not

use interfaces very aggressively. For example, if the VObject hierarchy was done in Java,

then, for code sharing purposes, EvtHandler would be a Java class, meaning the entire

VObject hierarchy would consist of Java classes. Java's own GUI class library [Gosling96]

uses classes high in the type hierarchy, and as a result it makes very little use of interfaces.

With mixins, interfaces can be pushed deeper in the type hierarchy. For example, in

Fig. 7.7b, EvtHandler and other types with (interface) next to their names would be de�ned

using interfaces. This allows the use of multiple subtyping deeper in the type hierarchy. For

example, a class OLEVObject could be a subtype of both VObject and OLEObject (where

OLEObject would be an interface for a Microsoft OLE-compliant object [Microsoft94]).

As this example indicates, pushing interfaces deeper into type hierarchies may also have

some advantages when it comes to object-oriented, client-server programming standards.

In Microsoft's OLE and OMG's CORBA, programs interact with distributed objects using

\interfaces." Like Java interfaces, these distributed-object interfaces describe the method

suite of an object apart from the object's implementation. In a distributed version of Java,

OLE or CORBA interfaces could be a special kind of Java interface, allowing seamless

interaction of Java code with distributed CORBA objects.

7.4 Summary

A well-designed mechanism for multiple code inheritance allows designers to use separate

\mixin" classes in place of overridable class components. In languages like Java and Theta

7.4. SUMMARY 89

[ThetaWeb95] that have modules for de�ning object types apart from classes, such a multiple

inheritance mechanism is easy to add.

In the mixin style of design, classes become smaller and more focused. Because they

have only two class components|one �nal and one deferred|they are easier to design, code,

verify, and use. Because mixins are focused in their functionality, they can be reused in a

highly exible manner. In the mixin style of design, types and classes are separated, leading

to type hierarchies that are not inuenced by code sharing considerations. In Java, the

mixin style of design would encourage the use of Java interfaces deeper in type hierarchies,

allowing more aggressive use of multiple supertypes and perhaps allowing better integration

with schemes for distributed objects.

90

Chapter 8

Conclusion

8.1 Summary

Classes need two interfaces: instance interfaces that say how to manipulate instances, and

specialization interfaces that say how to build subclasses. The unit of modularity for in-

stance interfaces is the entire class. To support extensibility, the unit of modularity for

specialization interfaces is smaller: the class component.

Class components are a programming convention that support the representation cate-

gories of �nal, deferred, and overridable for the state of classes. This convention consists of

partitioning the class into components consisting of both state and methods. The implemen-

tation of a component must not only be functionally correct but must also be independent

of the implementations of other components. Achieving this independence requires adding

a division of labor to the documentation of specialization interfaces to indicate component

boundaries. It also requires reasoning about each component as an independent unit that

depends only on the speci�cations of other components and not on their implementations.

The abstract representation is the view of a class's state given in its specialization in-

terface. This view is more detail than the view given in the instance interface, revealing

details that describe the interfaces between class components. The specialization interface

also includes the abstract representation invariant, an invariant on the abstract represen-

tation that serves in lieu of inter-component representation invariants. Selecting a good

abstract representation and associated invariant is central to designing a good specializa-

tion interface.

Mixins take the idea of class components a step further by breaking class components

into separate modules. Mixin-style programming separates the type and class hierarchies

and uses Snyder's encapsulated, multiple inheritance for the class hierarchy. Mixin-style

programming leads to smaller, more focused classes that can be reused in more exible

combinations.

8.2 Contributions

This report has focused on improving specialization interfaces. It makes a number of con-

tributions that can have an immediate impact on the design, documentation and implemen-

tation of class libraries. It also makes contributions that, in the longer term, may change

91

92 CHAPTER 8. CONCLUSION

the way class libraries are structured.

A central contribution of our work is to provide guidance on designing class libraries

that are more extensible and easier to reuse. The ideas of abstract representations, abstract

representation invariants, representation categories, and class components give designers a

tool box with which to tackle the designs of specialization interfaces. Until now, represen-

tation categories have been implicit in only a few of the very best libraries. This report

makes them available to all designers, and it helps avoid errors found in even those very best

designs. Also, in our view, even these very best designs do not use overridable �elds aggres-

sively enough. Space-time conicts make it di�cult to design classes that are applicable in

a wide variety of contexts. Overridable �elds help resolve these conicts.

The most immediately useful contribution of this report is a framework for documenting

the specialization interfaces of class libraries. Current documentation is frustratingly bad.

This leads to long learning times for most class libraries and also to incorrect use of classes.

Further, as pointed out in Chapter 1, current documentation does not tell specializers what

they need to know to build subclasses. Recognizing this reality, most vendors ship the

source code of their class libraries [Atkinson92]. When customers look at source code, they

become dependent on implementation details that vendors may want to change, so vendors

become hamstrung when improving implementations, and customers have to worry about

new versions invalidating their code.

The ideas in this report can improve documentation in a number of ways. Our exhorta-

tion to document the abstract-state of classes is an important but neglected saw. Separate

speci�cations for instance and specialization interfaces will lead to better documentation for

both. Class components, abstract representations, and abstract representation invariants

provide the modularity needed to allow specializers to build subclasses without depending

on the implementations of superclasses.

Another immediately applicable contribution is to explain the di�erence between the

validation criterion for classical data abstractions and for classes in the context of subclass-

ing. This can help implementors of classes in two ways: it can help them correctly use

subclassing to build new classes, and it can help them reason about their classes so they

will not break when subclassed. This last is particularly important. There are many pro-

gramming errors that e�ect only subclasses of a class and not instances, e.g., assuming an

invariant that might not hold in all subclasses. It is hard to build test suites of subclasses to

uncover such errors. Thus, in the context of subclassing, testing is even less e�ective than

it is for classical data abstractions, and being rigorous about correctness during coding is

even more important.

This report suggests interesting directions for language design. Our construct for over-

ridable class components involves only a minor extension to languages, like Java, that have

some kind of \interface" or \object type" construct. Such a construct has important bene-

�ts. It increases the extent to which the design of a class's specialization interface is manifest

in its implementation, helping implementors avoid errors. The component construct further

helps implementors avoid errors by supporting a number of compile-time checks, checks that

catch the kinds of errors that a�ect subclasses but not instances. Given the di�culty of

testing specialization interfaces, we hope the class-component construct soon �nds its way

into languages or at least into checking tools.

Mixins are another language construct suggested by this report. The impact of mix-

8.3. RELATED WORK 93

ins will be farther out than that of class components because they entail a more radical

departure from current design practice. However, mixins may have an important place in

the future of programming. We imagine a future of programming in which programs are

(possibly distributed) networks of collaborating objects. Ninety-�ve percent or more of the

objects in these networks will be o�-the-shelf, and the last �ve percent, which will embody

the application-speci�c aspects of programs, will be put together out of object-building

components. These networks of objects will be constructed with the close cooperation of

end-users, perhaps even by the end-users.

The objects in these networks will be glued together using widely-accepted standards for

object \interfaces" like Microsoft's COM. Actually, these \interfaces" are really object types

as de�ned in Sec. 1.1. The objects themselves will be implemented using a wide-variety of

systems, such as Visual Basic, C++, and Java. The mixin style of programming seems a

promising way of implementing objects in this future where object types and implemen-

tations will be completely separated. Although the mixins in Chapter 7 are for building

classes, a similar approach can be taken for building individual objects ([Steyaert95]). This

is important because, in our view, object-based as well as class-based approaches to object

construction will be commonplace. The mixin style has the potential of being simpler than

existing class- and object-based approaches. Instead of giving programmers large, compli-

cated objects or classes with lots of knobs for customization, the mixin style gives them

small, coherent chunks of functionality that can be combined in an easy manner. With

mixins, there is no notion of \replacing" parts of modules, there is only the simpler notion

of �tting parts together.

8.3 Related work

The idea of documenting data abstractions in terms of abstract- rather than concrete state

has a long history going back at least to [Hoare72]. This existing work forms the foundation

of the speci�cation techniques presented in Chapters 2 and 4, but it does not address the

issues that arise in the context of subclassing.

There are a number of object-oriented speci�cation languages [Lano93]. These languages

are \object-oriented" in the sense of adding object-oriented features like subtyping and

speci�cation inheritance to speci�cation languages like Z [Spivey92]. However, they do

not address the problems raised in trying to specify specialization interfaces. Related to

this work is work on speci�cations and behavioral subtype relations for type hierarchies

[Leavens89, America91, Liskov94]. We borrowed heavily from this work, especially the

work of Liskov and Wing [Liskov94]. But again, none of this work addresses specialization

interfaces, including Leavens' more recent work on Larch/C++ [Cheon94].

An active area of work is on kernel languages. This work aims at �nding the lambda-

calculus of object-oriented programming, i.e., a tiny language kernel that embodies the

essence of object-oriented programming. Currently, there are four major approaches (a

survey of three can be found in [Wadler94], and the fourth is presented in [Castagna95]).

The focus of this work has been on type systems that eliminate \message not understood"

errors without giving up too much of the exibility of untyped object systems. This pursuit

has lead to the recognition that \[code] inheritance is not subtyping" [Cook90], and that

exible subclassing requires special consideration (see, e.g., [Abadi95] and [Fisher95]).

94 CHAPTER 8. CONCLUSION

An important connection between our work and work on kernel languages is the sep-

aration of subtyping and subclassing. This separation, central to our own work, was �rst

fully developed in the context of kernel languages. Our work provides additional reason

to separate subtyping and subclassing: even when a subclass is a subtype in the non-

behavioral sense of subtyping, its instance speci�cation may not be a behavioral subtype of

its superclass's instance speci�cation (Sec. 3.4).

Little work has been done on veri�cation of specialization interfaces. Our own work is

based on the traditional approach to verifying data abstractions, which goes back again to

[Hoare72]. Leaven's work on veri�cation [Leavens89] considers veri�cation of programs in

the presense of behavioral subtyping, but it does not consider veri�cation of specialization

interfaces.

Rustan Leino's report [Leino95], which presents modular veri�cation techniques for

object-oriented programs, does consider veri�cation in the presence of subclassing. [Leino95]

is more formal than our work and includes a soundness proof for a restricted veri�cation

problem. This extra formality has proven useful for generating veri�cation conditions in

the Extended Static Checker [Detlefs96].

Our work is more general than [Leino95]. The generality of our work is compatible

with Leino's work and could inform extensions to that work. [Leino95] considers a lan-

guage model in which subtyping and subclassing are combined, where we consider a more

general language model. [Leino95] supports only �nal and deferred abstract-state �elds,

while we consider overridable �elds as well. [Leino95] allows only one speci�cation per

method, i.e., subclasses inheriting a method also inherit a speci�cation for that method.

This restriction makes it harder for subclasses to re�ne the behavior of methods (although

[Leino95] does allow indirect re�nement by allowing re�nement of the abstraction functions

that de�ne abstract-state �elds). This restriction makes it hard to hide specialization details

from instantiators, and it rules-out having separate assumed and particular speci�cations

for overridable methods. [Leino95] is more general in that it supports arbitrary numbers

of interfaces to classes while we support only two (instance and specialization interfaces).

However, [Leino95] does not recognize as we do that specializers need di�erent kinds of in-

formation (e.g., representation categories for abstract-state �elds, both assumed and actual

speci�cations for overridable methods).

Many text books cover object-oriented design (e.g., [Rumbaugh91], [Booch94]). How-

ever, none consider the design of specialization interfaces. [Kiczales91] and [Kiczales92]

present principles and advice for designing specialization interfaces, but they concentrate

on layered control abstractions and do not discuss class components, abstract representa-

tions or representation categories. Control abstractions go back to Simula, where they are

part of the programming lore (see, e.g., [Pooley87]). [Lamping93] presents static checking

for control abstractions. [Lamping93] anticipates the idea of class components, but it fails to

distinguish them from control abstractions. Lamping's later paper on checking specializa-

tion interfaces [Lamping94] deals purely with control abstractions. The Standard Template

Library of C++ [Musser96] makes extensive use of control abstractions; interestingly, in

the STL, extensibility is provided by parametric polymorphism rather than by subtype

polymorphic.

The term \mixin" was �rst coined in the Flavors community [Weinreb81]. It has been

used in a number of contexts; see, e.g., [Keene88], [Bracha90], [Booch94], [Taligent94],

8.4. FUTURE WORK 95

[VanHilst96]. In the context of multiple-inheritance languages like C++, a mixin is a partial

class that implements a small part of the functionality of a larger class (see [Booch94]). A

mixin is distinguished from other partial classes by the intent of its designers. A typical,

partial class is like a mostly completed puzzle, with deferred methods representing a few

missing pieces. A mixin is like a single puzzle piece, with �nal methods representing the

tabs on a puzzle piece and deferred methods representing the indentations into which tabs

of other pieces �t.

8.4 Future work

The ideas of this report suggest a number of software-development tools. At one extreme is

commenting conventions from which printed documentation can be extracted; at the other

extreme is full, formal veri�cation of classes. In between, this report suggest annotations to

support static checks. A valuable property of the ideas in this report is that they suggest

tools along this entire spectrum of formality, allowing the level of formality to be dictated

by the needs of a project rather than by the tools.

The veri�cation procedure presented by this report is based on the traditional simulation

techniques for data abstractions. There are still open issues regarding these traditional

techniques, even for classical data abstractions without subtyping or subclassing. One of

the thorniest issues is modular reasoning about changes to abstract values of objects in

the presence of shared, mutable objects. Typical of the kinds of hard questions raised in

this context is the following: If an object of type T is in the representation of objects

of type S and an object of type T is modi�ed, which (if any) objects of type S are also

modi�ed? Although some progress has been made in this area ([Scha�ert81, Leino95]),

practical solutions have not yet been found.

An area that needs further work is speci�cations for control abstractions. As suggested

in [Kiczales92], formal speci�cations of control abstractions may require a more operational

avor than the speci�cations used in this report, e.g., speci�cations that explain the behavior

of a method in terms of invocations of other methods. It remains to be seen whether

true, operational speci�cations are needed, or whether declarative speci�cations with an

operational avor will work (see, e.g., the use of \actions" in [Birrell91]).

As mentioned above, a number of books describe full methodologies for object-oriented

programming, but none of these methodologies pay as close attention designing specializa-

tion interfaces as we have. Thus, an obvious next step is to use the ideas in this report to

improve the treatment of specialization interfaces.

Perhaps the most important area of future work will be to get more experience in

applying the ideas of this report to real-world projects. The design study in Chapter 6 as

well as examples in other chapters suggest that we are headed in the right direction. But

this experience-base is inadequate, and future experience will surely lead to improvements.

An important question we would like to explore is whether or not our approach is too

restrictive: does it rule out good designs we don't want to rule out? Also, we would like

to have a better assessment of the practical value of extensible speci�cations described in

Sec. 5.2.

Practical experience is even more important for the more speculative work on multiple

inheritance in Chapter 7. For single inheritance, our ideas are inspired by successful class

96 CHAPTER 8. CONCLUSION

library, but this is not the case for multiple inheritance. Thus, for multiple inheritance,

the goal of more experience is not further re�nement but rather to test basic utility. One

possible experiment would be to use the ideas in Chapter 6 to design a single-inheritance,

GUI application framework, and then use the ideas in Chapter 7 to convert it into a mixin

design. Two versions of a number of sample applications could be built using the two

frameworks, providing a basis for comparison and evaluation.

8.5 Conclusion

We have shown that modularity in the presence of subclassing is indeed possible. We feel

the aspect of our work most responsible for its success is our focus on abstract state. In

concluding, we would like to draw attention to this aspect of our approach and explain why

it is so important.

Objects are state plus behavior. In object-oriented languages (and for data abstraction

in general), abstraction for behavior is supported more directly than it is for state. The act of

invoking methods encourages a decoupling of clients from the implementations of methods,

providing a natural abstraction boundary. Although clients can depend on aspects of a

method's implementation they should not depend on, such dependence is not a necessary

part of method invocation and if anything is discouraged by it. The act of accessing instance

variables is fundamentally di�erent: it strongly couples clients to the implementation of

state.

We do not believe there is a linguistic solution to this asymmetry. For example, we do not

believe there is any way of adding \abstract-state �elds" as a language construct. Instead,

the asymmetry needs to be addressed via programming methodologies. Mechanically, this

means encapsulating access to instance variables so that clients no longer interact directly

with the implementation of the state of objects but instead call methods. More importantly,

this means that programmers need to learn to design using abstract-state �elds, to base

documentation on them, and to think in terms of them.

When new mechanisms for data abstraction are introduced, research in software engi-

neering must �nd the right way of thinking about abstract state in the context of those new

mechanisms. In essence, this report does just that: it �gures out how to think about abstract

state in the context of subclassing. As other approaches to data abstraction are introduced,

e.g., object-based [Ungar91], role-based [VanHilst96], and subject-oriented [Harrison93] pro-

gramming, the issue of abstract state will have to be revisited again.

Bibliography

[Abadi95] M. Abadi and L. Cardelli. On subtyping and matching. ECOOP '95 Proceedings

(Aarhus, Denmark, Aug. 1995). Published as LNCS 952, pages 145{67. Springer

Verlag, Berlin, Aug., 1995.

[America91] P. America. Designing an object-oriented programming language with be-

havioural subtyping. Foundations of Obj.-Orien. Lang. (Noordwijkerhout, The Nether-

lands, May/June 1990). Published as LNCS 489, pages 60{90. Springer-Verlag, 1991.

[Atkinson92] B. Atkinson. Panel: reuse|truth or �ction. OOPSLA '92 Conf. Proceedings

(Vancouver, Oct. 1992). Published as SIGPLAN Notices, 27(10):41{2. ACM, Oct.

1992.

[Birrell91] A. D. Birrell, J. V. Guttag, J. J. Horning, and R. Levin. Thread synchronization:

a formal speci�cation. In Systems Programming with Modula-3, pages 119{29. Prentice

Hall, 1991.

[Booch94] G. Booch. Object-Oriented Analysis and Design, with Applications, 2nd ed.

Addison-Wesley, Reading, MA and London, UK, 1994.

[Borland94] Borland ObjectWindows Programmer's Guide, version 2.5. Borland, Inc.,

Scotts Valley, CA, 1994.

[Bracha90] G. Bracha and W. Cook. Mixin-based inheritance. ECOOP/OOPSLA '90

Conf. Proceedings (Ottawa, Canada, Oct. 1990). Published as SIGPLAN Notices,

25(10):303{11. ACM, Oct. 1990.

[Brown91] M. R. Brown and G. Nelson. I/O streams: abstract types, real programs. In

Systems Programming with Modula-3, pages 130{69. Prentice Hall, 1991.

[Bruce96] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. Leavens, and

B. Pierce. On binary methods. Theory and Practice of Obj. Sys., 1996. (To appear.).

[Castagna95] G. Castagna and G. T. Leavens. Foundations of object-oriented languages:

2nd workshop report. ACM SIGPLAN Notices, 30(2):5{11. ACM Press, Feb. 1995.

[Cheon94] Y. Cheon and G. T. Leavens. A quick overview of Larch/C++. JOOP., 7(6):39{

49. SIGS, Oct. 1994.

[Cook90] W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. Proc.

17th POPL (San Francisco, CA, Jan. 1990), pages 125{35. ACM, Jan. 1990.

97

98 BIBLIOGRAPHY

[Dahl92] O.-J. Dahl. Veri�able Programming. Prentice-Hall, Englewood Cli�s, NJ, 1992.

[Day95] M. Day, R. Gruber, B. Liskov, and A. Myers. Subtypes vs. where clauses: con-

straining parametric polymorphism. OOPSLA '95 Conf. Proceedings (Austin, TX).

Published as ACM SIGPLAN Notices, 30(10):156{68. ACM, Oct. 1995.

[Detlefs96] D. L. Detlefs. An overview of the extended static checking system. Proc. the

Workshop on Formal Methods in Softw. Practice (San Diego, CA). Published as SIG-

SOFT. ACM, Jan. 1996. To appear.

[Edwards96] S. H. Edwards. Representation inheritance: a safe form of \white box" code

inheritance. Proc. the Fourth Intl Conf. on Softw. Reuse (Washingtond, DC., Apr.,

1996), pages 195{204. IEEE Comp. Soc. Press, Apr. 1996. (To appear.).

[Evans96] D. Evans. Static detection of dynamic memory errors. ACM SIGPLAN 1996

PLDI (Philadelphia, PA., May 1996), page ACM., May 1996.

[Fisher95] K. Fisher and J. C. Mitchell. A delegation-based object calculus with subtyp-

ing. Fundamentals of Computation Theory: Proc. 10th Intl Conf., FCT '95 (Dresden,

Germany, Aug. 1995). Published as LNCS 965, pages 42{61. Springer Verlag, Berlin,

Aug. 1995.

[Goldberg89] A. Goldberg and D. Robinson. Smalltalk-80: The Language. Addison-Wesley,

Reading, MA and London, UK, 1989.

[Gosling96] J. Gosling and F. Yellin. The Java Application Programming Interface Volume

2: Window Toolkit and Applets. Addison-Wesley, Reading, MA and London, UK, May,

1996. (To appear.).

[Guttag93] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Speci-

�cation. Springer-Verlag, 1993.

[Harrison93] W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure

objects). OOPSLA '93 Conf. Proceedings (Washington, DC, Oct. 1993). Published as

ACM SIGPLAN Notices, 28(10):411{27. ACM, Oct. 1993.

[Hoare72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,

1(4):273{81. Springer-Verlag, 1972.

[Holzle93] U. H�olzle. Integrating independently-developed components in object-oriented

languages. ECOOP '93 Proceedings (Kaiserslautern, Germany, July 1993). Published

as LNCS 707, pages 36{56. Springer-Verlag, 1993.

[Javabeta95] Sun Microsystems, Inc. The Java Language Speci�cation (1.0 Beta), 30 Oct.

1995.

[Kapur88] D. Kapur and M. Srivas. Computability and implementability issues in abstract

data types. Sci. of Comp. Prog., 10(1):33{63. North-Holland, Amsterdam, Feb. 1988.

[Keene88] S. E. Keene. Object-Oriented Programming in Common Lisp: A Programmer's

Guide to CLOS. Addison-Wesley, Reading, MA and London, UK, 1988.

BIBLIOGRAPHY 99

[Kiczales91] G. Kiczales, J. des Rivi�eres, and D. G. Bobrow. The Art of the Metaobject

Protocol. The MIT Press, Cambridge, MA, 1991.

[Kiczales92] G. Kiczales and J. Lamping. Issues in the design and speci�cation of class

libraries. OOPSLA '92 Conf. Proceedings (Vancouver, Oct. 1992). Published as SIG-

PLAN Notices, 27(10):435{51. ACM, Oct. 1992.

[LaLonde91] W. R. LaLonde and J. R. Pugh. Inside Smalltalk, Volume II. Prentice-Hall,

Englewood Cli�s, NJ, 1991.

[Lamping93] J. Lamping. Typing the specialization interface. OOPSLA '93 Conf. Proceed-

ings (Washington, DC. Oct. 1993). Published as SIGPLAN Notices, 28(10):201{14.

ACM, Oct. 1993.

[Lamping94] J. Lamping and M. Abadi. Methods as assertions. ECOOP '94 Proceedings

(Bologna, Italy, July 1994). Published as LNCS 821, pages 60{80. Springer-Verlag,

1994.

[Lano93] K. Lano and H. Haughton, editors. Object-Oriented Speci�cation Case Studies.

Prentice Hall, New York, 1993.

[Leavens89] G. T. Leavens. Verifying Object-Oriented Programs that use Subtypes. PhD

thesis, published as Technical report MIT{LCS{TR{439. Lab. for Comp. Science, MIT,

Feb. 1989.

[Leino95] K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, published as

Technical report CS{TR{95{03. California Inst. of Techn., Pasadena, CA, Jan. 1995.

[Lewis95] T. Lewis. Object-Oriented Application Frameworks. Manning Publications, Co.,

Greenwich, CT, 1995.

[Liskov86] B. Liskov and J. Guttag. Abstraction and speci�cation in program development.

MIT Press/McGraw-Hill Book Co., 1977.

[Liskov93] B. Liskov. A history of Clu. 2nd History of Prog. Lang. Conf. (preprints)

(Cambridge, MA. Apr. 1993). Published as SIGPLAN Notices, 28(3):133{47. ACM,

Mar. 1993.

[Liskov94] B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. on

Prog. Lang. and Sys., 16(6):1811{41. ACM, Nov. 1994.

[Microsoft94] Microsoft Visual C++ Volume Two: Programming with MFC and Win32,

version 2.0. Microsoft Press, Redmond, WA, 1994.

[Musser96] D. R. Musser and A. Saini. STL Tutorial and Reference Guide: C++ Program-

ming with the Standard Template Library. Addison-Wesley, Reading, MA and London,

UK, 1996.

[Next94] Next Computer, Inc. Openstep Speci�cation, Oct., 1994. Available via anonymous

FTP at ftp.next.com in pub/OpenStepSpec.

100 BIBLIOGRAPHY

[Pooley87] R. J. Pooley. An Introduction to Programming in SIMULA. Blackwell Scienti�c

Publications, Oxford, 1987.

[Pressman92] R. S. Pressman. Software Engineering: a Practitioner's Approach, 3rd edi-

tion. McGraw Hill, Inc., 1992.

[Rumbaugh91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modeling and Design. Prentice-Hall, Englewood Cli�s, NJ, 1991.

[Scha�ert81] J. C. Scha�ert. Speci�cation and Veri�cation of Programs using Data Abstrac-

tion and Sharing. PhD thesis. MIT, 1981.

[Snyder87] A. Snyder. Inheritance and the development of encapsulated software compo-

nents. In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented

Programming, pages 163{88. MIT Press, 1987.

[Spivey92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, Englewood

Cli�s, NJ, 1992.

[Steyaert95] P. Steyaert and W. De Meuter. A marriage of class- and object-based inheri-

tance without unwanted children. ECOOP '95 Proceedings (July 1995), pages 127{43.

Springer Verlag, Berlin, 1995.

[Stroustrup91] B. Stroustrup. The C++ Programming Language, 2nd edition. Addison-

Wesley, 1991.

[Taligent94] Taligent. Taligent's Guide to Designing Programs: Well-Mannered Object-

Oriented Design in C++, The Taligent Reference Library. Addison-Wesley, Reading,

MA and London, UK, 1994.

[ThetaWeb95] B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson,

and A. Myers. Theta reference manual. MIT LCS, PMG memo 88, Feb. 1995.

http://www.pmg.lcs.mit.edu/Theta.html.

[Ungar91] D. Ungar and R. B. Smith. Self: the power of simplicity. Lisp and Symbolic

Computation, 4(3):187{205. Kluwer Academic Publishers, July 1991.

[VanHilst96] M. VanHilst and D. Notkin. Using C++ templates to implement role-based

designs. Intl Symp. on Object Technologies for Advanced Softw. '96 (Kanazawa, Japan,

Mar. 1996), Mar. 1996. (To appear.).

[Wadler94] P. Wadler (ed.). Type systems for object-oriented programming: special issue

of Journal of Functional Programming. J. of Func. Prog., 4(2):125{283. Cambridge

Univ. Press, Apr. 1994.

[Weinand95] A. Weinand and E. Gamma. ET++: a portable, homogeneous class library

and application framework. In Object-Oriented Application Frameworks, pages 154{94.

Manning Publications, Co., Greenwhich, CT., 1995.

[Weinreb81] D. Weinreb and D. Moon. Lisp Machine Manual, 4th Ed. Symbolics, Inc./MIT

AI. Lab., 1981.

