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Abstract

This paper describes a new garbage collection scheme for large
persistent object stores that makes efficient use of the disk and
main memory. The heap is divided into partitions that are
collected independently using information about inter-partition
references. We present efficient techniques to maintain this
information stably using auxiliary data structures in memory
and the log. The result is a scheme that truly preserves the
localized and scalable nature of partitioned collection.

Remembering inter-partition references does not collect
garbage cycles that span partitions. We describe a new global
marking scheme that collects such garbage. We believe that it is
the first scheme that piggybacks global marking on partitioned
collection, does not delay the collection of acyclic garbage, and
is guaranteed to terminate correctly in the presence of concur-
rent mutations. Further, it preserves the disk-efficient nature
of our collector.

We have implemented the part of garbage collection respon-
sible for maintaining information about inter-partition refer-
ences. We present a benchmark to evaluate this work and give
performance results to show the advantages of our scheme.

Keywords: garbage collection, partitions, cyclic
garbage, object database

1 Introduction

We present a new technique to collect garbage in large
persistent object stores. Such storage, also known as
a stable heap, is found in many object databases, per-
sistent programming language environments, and dis-
tributed shared memory systems. In these systems, the
heap resides on the disk because it is much larger than
the main memory and must be recoverable after a crash.
Applications access the objects through a memory cache
and log updates for crash recovery.

Schemes that trace the entire heap (e.g., [Bak78,
KW93, ONG93]) do not scale to very large heaps be-
cause the non-local nature of tracing would cause ran-
dom disk accesses. Therefore, some systems partition
the heap into independently collectible areas [Bis77,
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HM92, YNY94, AGF95, MMH96, CKWZ96]. This
is also the approach taken in many distributed system
[LQP92, LL92, ML94, FS96]. Generational collectors
are a variant of partitioned collection that use the ages
of objects to optimize the collection of younger, smaller
partitions [LH83]; however, the age-based heuristics are
not applicable to persistent stores [Bak93].

A major problem with partitioned collection is the ef-
ficient maintenance of information about inter-partition
references, which is needed to trace partitions indepen-
dently. For a large heap with many partitions, and also
for fast crash recovery, the information must reside on
disk, and care is needed in reading and updating it with-
out degrading performance. Increasing the partition size
helps reduce inter-partition references, but tracing very
large partitions slows both the garbage collector and the
applications due to increased contention for the cache
and disk [AGF95].

We present a new partitioned scheme that uses a log
and in-memory data structures to provide the following
benefits:

1. Disk accesses for reading and updating informa-
tion about inter-partition references are deferred and
batched.

2. Reading objects from the disk and evicting them from
the cache do not require processing garbage collec-
tion information or reading it from disk.

3. The in-memory data structures are compact yet avail-
able in an efficient form.

4. The scheme is fault-tolerant; collection information
is recovered quickly after a crash.

The overall effect is that inter-partition references are
handled efficiently, which makes it possible to use par-
titions that fit in a small fraction (say, a tenth) of the
primary memory.

Our work on using the log to maintain inlists and out-
lists builds upon previous work by Ng [Ng96]. One other
scheme, PMOS [MMH96], makes use of a log to defer
and batch processing of information about inter-partition
references. However, PMOS processes garbage collec-
tion information when objects are fetched and evicted,
which would slow down applications.

Partitioned collection does not collect garbage cycles
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that span partitions. We describe a new global marking
scheme that collects such garbage. Our scheme pig-
gybacks marking on partitioned collection such that it
adds little overhead to the base scheme. It also preserves
the localized and disk-efficient nature of our collector,
and does not delay the collection of acyclic garbage.
It can take a long time for a marking phase to ter-
minate, but that is acceptable assuming cyclic garbage
spanning partitions is generated slowly. We prove that
the scheme is correct and that a marking phase is sure
to terminate in the presence of application modifica-
tions. Previous proposals for using global marking on
top of partitioned collection either delay the collection
of acyclic garbage [Hug85], need to run separate traces
for global marking and partitioned collection [JJ92], or
are not guaranteed to terminate in the presence of modi-
fications [LQP92].

We have implemented the part of garbage collection
responsible for maintaining inter-partition references in
the context of Thor [LAC+96]. We present a benchmark
to evaluate the maintenance of inter-partition references,
and we give performance results to show the advantages
of our scheme.

The remainder of the paper is organized as follows.
Section 2 describes the system model. Section 3 de-
scribes partitioned collection, and Section 4 describes
the global marking scheme for collecting cyclic garbage.
Section 5 describes our implementation, benchmark, and
performance results. Related work is discussed in Sec-
tion 6. We close in Section 7 with a summary of our
contributions.

2 The Model

We assume a system with the architecture shown in Fig-
ure 1. The stable heap resides on disk, while applica-
tions access objects in the heap through a main-memory
cache. Modifications to objects are recorded in a write-
ahead log that is forced to stable storage as needed; the
log allows the heap to be recovered in a consistent state
after a crash. We assume that the head of the log is
cached in primary memory even if it has been forced to
disk; it is truncated when it grows too big. Similarly,
when the stable log gets too big, it is truncated after en-
suring that the modifications have been installed into the
stable heap.

Objects are clustered in segments on disk. Like a
page, a segment is stored contiguously on disk and is
the unit of disk access. A segment also provides opaque
references for its objects so that objects can be moved
within their segment without having to update references
to them stored in other objects (as in [AGF95]). Refer-
ences need not be completely opaque; for example, in

Thor, each reference contains the segment number of
the referenced object so that objects can be located effi-
ciently without a global object table. Our scheme could
also be used in systems that do not have opaque names
within segments (e.g., systems that store virtual mem-
ory pointers in objects), but in that case it would not be
possible to compact objects.

Objects in the heap may contain references to other ob-
jects. Applications navigate by starting at some persis-
tent root object and may read or modify the objects they
reach. They may also store references to objects in local
variables. There could be a single application thread
accessing the cache directly, as in persistent program-
ming language environments. Alternatively, there could
be multiple application threads, as in a client-server sys-
tem, where clients access the server cache through a
higher level interface and may have caches of their own.

The job of the collector is to reclaim storage allocated
to objects that are useless because they are not reachable
from the persistent root or any application variables.

Volatile Cache

Stable Heap Log

read write
Applications

LogMemory

Disk

Figure 1: A generic architecture with large heap.

3 Partitioned Collection

This section describes our scheme. The first few sub-
sections largely ignore fault tolerance; fault tolerance is
discussed in Section 3.5.

The heap is divided into partitions, each of which
can be collected independently. A partition is chosen
to be an efficient unit of tracing. There is a tradeoff
here: Small partitions mean more inter-partition refer-
ences and also more inter-partition cyclic garbage. Big
partitions mean more cache space used by the collector
and possibly disk accesses during tracing. Our scheme
provides mechanisms to handle inter-partition references
so that partitions that fit in a small fraction of primary
memory (say, 10%) may be used efficiently.

Partitions contain several segments, possibly non-
adjacent. Decoupling partitions from segments has im-
portant advantages. First, a partition can be much bigger
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than a segment. For example, a partition could be several
megabytes while segments could be tens of kilobytes.
Segment size is chosen to allow efficient fetching and
caching; to service an application cache miss, only the
required segment is read in. Second, it is possible to con-
figure a partition by selecting a group of segments so as
to minimize inter-partition references—without reclus-
tering objects on disk. Furthermore, partitions can vary
in size, while segments provide a fixed-size unit of disk
access. For example, a partition can represent the set
of objects used by some application, and the size of the
partition can be chosen to match the set.

A reference contained in an object to an object in the
same partition is said to be intra-partition or internal;
others are said be inter-partition or external. We assume
that, given a reference to an object, its partition can be
computed efficiently. We do this by keeping a map from
segments to partitions and vice versa.

3.1 Inlists and Outlists

To collect a partition independently of the rest, the col-
lector remembers the objects in the partition that are
referenced from other partitions, and uses them as roots.
We call this information the inlist for the partition. An
inlist contains a list of references with associated refer-
ence counts. The reference count is the number of other
partitions that contain one or more copies of the refer-
ence. When a reference counts drops to zero, the entry
is removed from the inlist.

To efficiently update inlists as inter-partition refer-
ences are created and deleted, we also maintain an out-
list for each partition. An outlist is a list of external
references contained in the partition. It provides an effi-
cient means of detecting when a new external reference
is created or when one disappears.

The following invariants guarantee that only unreach-
able objects are collected (safety):

1. All external references contained in a partition are
included in the outlist.

2. The count of a reference in an inlist is equal to the
number of outlists containing the reference.

Inlists and outlists are kept on stable storage because
otherwise it would take a long time to recompute them
after a crash. They can be maintained as regular heap
objects, possibly outside the partition’s segments.

When an inter-partition reference is created from par-
tition p to q due to a modification, the outlist for p and the
inlist for q need to be updated to preserve the invariants.
This can be done lazily by scanning modified objects

in the log; the constraints are that the log must be fully
scanned before collecting a partition, and that modified
objects must be scanned before they are truncated from
the cached head of the log. Thus, invariant 1 holds when
the log is fully processed.

Updating inlists and outlists has the problem that ei-
ther these lists must be kept in the cache or they have
to be fetched from the disk and later flushed back. This
is undesirable because both the cache and the disk are
precious resources for application performance. Note
that in a large object store, the aggregate size of in-
lists and outlists may be large. (For example, in a 10
giga-word database, if one out of thousand words is an
inter-partition reference, there would be 10 million inter-
partition references. Assuming that an outlist entry uses
a word and an inlist entry uses two words, the aggregate
size would be 30 mega-words.) Our scheme saves cache
space and defers reading or writing the disk to access
these lists by using small, potential inlists and outlists in
memory.

3.2 Potential Inlists and Outlists

When an object in partition p is scanned, we record any
external references in the potential outlist for p, and we
also update the potential inlists of the target partitions.
Each entry in a potential inlist contains a reference count
that counts the number of potential outlists that contain
the reference. To distinguish inlists and outlists from
their potential counterparts, we refer to the former as
the basic lists. The following revised invariants still
guarantee safety:

1. All external references contained in a partition are
included in the basic or potential outlist (or both).

2. (a) The count of a reference in a basic inlist is equal
to the number of basic outlists containing the
reference.

(b) The count of a reference in a potential inlist is
equal to the number of potential outlists con-
taining the reference.

The potential lists grow slowly because there are ex-
pected to be relatively few inter-partition references in
modified objects. Further, references already present in
the old values need not be added to the potential lists. For
example, in transactional systems old copies of modified
objects are retained in case the transaction aborts; if the
old copy is cached, this information can be used to avoid
unnecessary additions to potential lists. However, there
may still be overlap between the potential and basic out-
lists. When potential lists grow too big, we merge them
into the basic lists.
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3.3 Merging Potential and Basic Lists

We move entries from the potential lists to basic lists
in batches. This is a two step process: we merge the
outlists first and merge the inlists later.

When the total size of the potential outlists grows
beyond a certain limit, we select a few partitions with
the largest potential outlists, and read in their basic out-
lists. References in a potential outlist that are not already
present in the basic outlist are added to the basic outlist.
The potential outlist is then discarded and correspond-
ing potential inlist counts are decremented to maintain
Invariant 2b.

Updating a single basic outlist can require increments
to entries in several different basic inlists. Reading in
these inlists at this point would result in several disk
accesses. Therefore, we record the increments to the
basic inlists in yet another data structure called the delta
inlist.

A delta inlist contains a set of references with asso-
ciated counts. Unlike potential inlists, which contain
potential increments, delta inlists contain definite incre-
ments to the basic inlists. Invariant 2a is then revised to
the following:

(2a) The count of a reference in a basic inlist plus
that in the delta inlist is equal to the number of
basic outlists containing the reference.

When the total size of delta inlists grows beyond a
certain limit, we merge some of them into the basic
inlists. We select a few partitions with a largest delta
inlists, read in their basic inlists, add the counts in the
delta inlists to the basic inlists, and discard the delta
inlists. The generation of the various lists is shown in
Figure 2.

Log

Potential Outlists and InlistsBasic Outlists

Delta Inlists

Basic Inlists

Basic Outlists

Basic Inlists

scan

merge

merge

Figure 2: Data structures to batch disk accesses

3.4 Collecting a Partition

Any policy may be used to select partitions for collection.
(Cook et al. showed that it is desirable to be flexible
in selecting partitions [CWZ94].) To trace a selected
partition, we load all of its segments into the cache and
process the log completely to generate the partition’s full
potential inlist. Since a partition is a fraction (say, 10%)
of the cache, it does not disturb the cache much when
loaded.

The Roots

We include the following in the root set of a partition:

1. The persistent root of the heap.
2. Roots from applications, such as variables.
3. The basic inlist for the partition, which is read in

from the disk. If there is a delta inlist, it is merged
with the basic inlist and discarded.

4. The potential inlist for the partition, if any.

We call the first two global roots; the others are a con-
sequence of partitioned collection. Obtaining applica-
tion roots depends on the specific system model; special
care is needed in systems where applications have caches
of their own, but we ignore this issue in this paper and
assume that application roots are readily available.

Compaction

If the collector compacted storage by moving objects
such that there names changed, it would be necessary
to fix up references to moved objects—including those
that are stored in other partitions and in application vari-
ables. Most generational schemes solve this problem
by remembering the exact objects or locations in other
partitions that refer to a given object [Ung84], but this
is too much information to maintain in a large heap.
Therefore, we compact objects within each segment and
thus preserve object names, as in [AGF95]. Note that
objects that are not referenced from other partitions or
applications (as given by the root set) could indeed be
moved to other segments within the partition.

Our scheme could also be used in systems that do not
have opaque names within segments (e.g., systems that
store virtual memory pointers in objects), but in that case
it would not be possible to do compaction.

Tracing Scheme

Our approach can be used in combination with various
tracing schemes. For example, we could use a replicat-
ing collector like that described in [NOPH92], in which
applications access the old copies of segments while the
collector is generating the new ones with the aid of the
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modification log. Such a scheme requires little syn-
chronization with applications, but needs space for two
partitions in primary memory.

A mark-and-sweep scheme that rescans modified ob-
jects in the log can be used as well. Such an approach
requires less space than copying. No synchronization
is needed during the mark phase. The sweep phase can
compact one segment at a time, either by locking the seg-
ment from applications and sliding objects or by making
a new copy of the segment to replace the old one. No
work is needed for segments with no garbage objects;
this may be a significant advantage over copying collec-
tion in persistent stores where little garbage is created.

Updating the Lists

As the partition is traced, the collector generates a new
basic outlist for it. After collection, it compares the old
and the new outlists, increments the delta inlist entry
for every new reference, and decrements the delta inlist
entry for every missing reference. Thus there may be
negative counts in delta inlists. These steps ensure that
Invariant 2a is maintained.

The new basic outlist then replaces the old outlist. The
potential outlist, if present, is discarded and the corre-
sponding counts in the potential inlists are decremented.

3.5 Fault Tolerance

Crash recovery must preserve the invariants mentioned
above. It would be lots of work to recompute inlists and
outlists after a crash. Therefore, we store basic inlists
and outlists as persistent objects. Their modifications
are logged (e.g., at the end of collection and after merg-
ing lists), and are installed on disk later as with normal
objects.

Potential outlist information for modifications stored
in the log need not be logged separately: this informa-
tion is recovered by reprocessing the log after a crash.
However, when the stable log is truncated, the potential
outlists of the affected partitions must be made stable
to preserve invariant 1. This can be done by logging
the part of each potential outlist that was not logged
before. An efficient way to do this is to divide each
potential outlist into stable and volatile parts. When the
log is truncated, the volatile parts of potential outlists
are logged and marked stable. Potential inlists are never
logged; they can be recomputed from potential outlists
on recovery, thus preserving Invariant 2b.

When a potential outlist is merged with a basic out-
list, any log records for the potential outlist are deleted
(by writing a deletion record). Any updates to the basic
outlist and the delta inlist are logged atomically to pre-
serve Invariant 2a. When a delta inlist is merged with a

basic inlist, the log records for the delta inlist are deleted
and the updates to the basic inlist are logged, which also
preserves Invariant 2a.

The following summarizes the disk accesses involved
in maintaining inlists and outlists stably:

1. Truncating the log:

(a) log parts of potential outlists not logged before.

2. Merging potential outlist:

(a) fetch basic outlist.
(b) log updates to basic outlist and delta inlists,

atomically.
(c) remove potential outlist records from log.

3. Merging delta inlist:

(a) fetch basic inlist.
(b) log updates to basic inlist and remove delta

inlist records, atomically.

Note that the log updates listed above need not be
forced to the disk until the log is truncated. Thus, a
crash might lose unforced updates to delta inlists and
basic lists, but that is acceptable because the potential
outlist information that generated those updates will be
regenerated from the log, which still preserves Invari-
ant 1.

The segments of a garbage-collected partition can be
independently flushed to the disk. Thus all the collection
state that was available before a failure can be quickly
recovered afterwards and the log is used to reduce disk
I/O’s associated with storing the needed information.

3.6 Safety and Liveness

Invariants 1, 2a, and 2b guarantee that objects reachable
from other partitions will not be collected: If there is a
reference r from partition p to q, Invariant 1 implies that
r must be in the basic or potential outlist for p. If r is in
the basic outlist for p, Invariant 2a implies that the sum
of the counts for r in the delta and basic inlists for q is at
least one. If r is in the potential outlist for p, Invariant 2b
implies that the count for r in the potential inlist for q is
at least one. In either case, r will be included in the root
set for q.

Further, our scheme is guaranteed to collect all
garbage. An unnecessary entry in a basic or potential
outlist will be removed when its partition is next col-
lected and the corresponding inlist count will be decre-
mented. This guarantees that objects not reachable from
the roots are collected. From this it can be shown induc-
tively that if the partitions are collected periodically, all
garbage except for inter-partition cyclic garbage will be
collected.
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4 Collecting Cyclic Garbage

We collect inter-partition cyclic garbage using a global
but incremental marking scheme. We mark all objects
reachable from the global roots and then collect un-
marked objects. The marks are propagated incremen-
tally through partition traces. At the beginning of a
marking phase, only the global roots are marked. Each
partition trace propagates marks from the root set of the
partition to the outlist. The marking phase terminates
when marks are known to have propagated fully through
all partitions.

Similar schemes have been used in some distributed
systems [Ali85, Hug85], although these systems rely on
global marking to collect both acyclic and cyclic inter-
partition garbage. Other schemes either propagate global
marks separately from regular partition traces [JJ92], or
are not guaranteed to terminate correctly in the presence
of concurrent mutations [LQP92]. We show that our
scheme is correct and that it terminates in the presence of
mutations. We found that a more sophisticated scheme
is needed to meet these requirements than apparent at
first.

Our scheme collects inter-partition cyclic garbage
with little time and space overhead and does not delay the
collection of other garbage. This is important since inter-
partition cyclic garbage is generated relatively slowly, so
the overheads must not be disproportionately high. As
in partitioned collection, we employ data structures that
use the disk efficiently.

4.1 Data Structures

Each partition has a basic markmap, which contains a
mark bit per object. The markmap is implemented as
a set of bitmaps, one per segment in the partition; each
bitmap contains a bit per potential object name in the seg-
ment. Markmaps may be too large to keep in the cache,
but they are a small overhead on disk. For example, a 1
MByte partition might contain up to 64K objects (allow-
ing an average object size of 16 bytes). Thus we have 8
Kbyte markmap, which represents only 0.8% overhead
on disk. Certain other schemes require mark bits for only
inter-partition references [Hug85, LQP92]; we discuss
the need for a mark bit per object in Section 4.5.

The mark of a basic inlist entry is defined to be the
mark of the object it references, as stored in the basic
markmap. A partition may also have an in-memory delta
markmap, which stores updates to the basic markmap
just as a delta inlist stores updates to the basic inlist. The
delta markmap may be dynamically implemented as a list
or a bitmap depending on the number of references in it.
A delta inlist entry is said to be marked if the reference
is contained in the delta markmap. Furthermore, each

entry in basic outlists has an explicit mark bit.
Each partition also has a mark bit to denote whether

the marks of its objects have been propagated to the out-
list. As described later, tracing a partition causes it to
become marked, but may cause other partitions to be-
come unmarked. Mark bits for partitions are persistent,
but are also cached in memory.

Note that we use the term “marked” for objects
reached by global marking and “traced” for objects
reached while collecting a partition. If partitions are
traced using mark-and-sweep, separate bits would be
needed for global marking and partition traces.

4.2 Invariants

For a marking phase to terminate, all partitions must be
marked. We give the precise conditions for termination
and sketch a proof of safety and liveness in Section 4.6.
Here we give the invariants:

3. In a marked partition, for any external reference that
is locally reachable from a marked object, there exists
a marked basic or potential outlist entry.

4. (a) If a basic outlist entry is marked, the associated
basic or delta inlist entry is also marked.

(b) If a potential outlist entry is marked, the as-
sociated potential inlist entry is also marked.

These invariants ensure that, when marking termi-
nates, all objects reachable from the global roots are
marked. We use the following rules to guarantee termi-
nation:

5. A marked object is never unmarked during a phase.
6. Objects created during the current phase are marked.
7. Every time we unmark a partition, we mark at least

one of its unmarked objects.

4.3 Starting a Phase

At the beginning of a phase, only the global roots are
marked. All partitions referenced by the global roots are
unmarked and the rest are marked. All outlist entries are
unmarked. This satisfies Invariant 3.

We do not accomplish these actions by reading and
writing all markmaps and lists at once. Instead, we per-
form them incrementally. We keep a persistent global
phase counter that is incremented at the end of each
phase. In addition, we store a phase counter with each
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inlist, which tells the phase during which the partition
was last traced. When an inlist is fetched to be traced or
merged, if its phase counter is one less than the global
phase counter, this must be the first access to the inlist
during the current phase, so we initialize the partition’s
outlist and markmap. (In the unlikely event that the par-
tition’s phase counter is even smaller, it was not visited
during the previous phase; therefore the whole partition
is garbage and can be discarded.)

Inlist entries that were unmarked in the previous phase
are known to be garbage. However, we cannot simply
remove these inlist entries because that would break In-
variant 2a and cause incorrect execution. Instead, we
remove all references in the objects pointed by these
entries, as in [RJ96]. This breaks garbage cycles and
ultimately causes associated inlist entries to be removed.

4.4 Tracing a Partition

Global marking is piggybacked on regular tracing of
partitions. We set the mark bit of a partition after tracing
it. The global roots and marked inlist entries are traced
first; objects reached and outlist entries created during
this trace are marked. We call this the marked trace.
Figure 3 shows the effect of this trace.

a b c

d e f

a b c

d e f

inlist

outlist

unmarked
untraced marked tracedLEGEND

(i) Before tracing. (ii) After tracing from a.

Figure 3: Marked trace of a partition.

The unmarked inlist entries are traced next,which con-
stitutes the unmarked trace and is illustrated in Figure 4.
It is possible for this trace to reach marked objects that
were not traced during the marked trace, such as f in the
figure. These are objects that were marked in a previous
collection, but modifications by applications have made
them locally unreachable from the current set of marked
inlist entries; we call them marked orphans. Such ob-
jects pose a problem that has not been considered in
previous schemes: Invariant 3 requires that objects and
outlist entries reachable from marked objects should be
marked. However, marked orphans may point to objects
that have already been traced but were not marked, such
as e in the figure. We could preserve Invariant 3 by

unmarking the marked orphans, but this would violate
Rule 5 needed for termination. Therefore, we need to
trace all unmarked objects reachable from marked or-
phans, even if they have been traced before, and mark
them. This rescanning is the small part of global marking
not piggybacked on regular partition traces.

a b c

d e f

a b c

d e f

(i) After tracing from b. (ii) After tracing from c.

Figure 4: Unmarked trace.

We do not expect a large number of objects to be
retraced because they comprise only unmarked objects
reachable from marked orphans. In the worst case, since
retracing marks unmarked objects, each object can be
retraced at most once over an entire phase of global
marking. In practice, retracing would be even less, since
marked orphans are expected to be relatively uncommon.

At the end of collection, we compare the new and old
basic outlists as before to generate entries in the delta
inlists of target partitions. In addition, if an outlist entry
is now marked and was unmarked or nonexistent earlier,
we mark the reference in the delta markmap to preserve
Invariant 4a.

Note that global marking does not cause any object
to survive that would otherwise be removed by tracing
partitions:

� Marking does not add any reference to any inlist.
� Untraced objects are removed even if they are

marked, for these objects must be garbage.

4.5 Processing the Log and Merging Lists

We preserve Invariant 3 lazily by processing the refer-
ences contained in modified and new objects in the log.

We summarize inter-partition references in potential
outlists as before. We preserve Invariants 3 and 4b by as-
suming that all references in potential outlists and inlists
are implicitly marked.

However, now we need to consider intra-partition (in-
ternal) references as well, since their creation may break
Invariant 3. Specifically, the invariant would break if a
reference is created from a marked object to an unmarked
object. We ignore such references if the containing par-
tition is unmarked. Otherwise, we insert the reference in
the delta markmap. When a delta markmap grows big,
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we merge it with the basic markmap. If this causes any
unmarked object to be marked, we unmark the partition
to reinstate Invariant 3. Thus, Invariant 3 is known to
hold only when the delta markmap has been merged.
Further, note that we unmark a partition only if we dis-
cover an unmarked object that should be marked (Rule 7
needed for termination). This is why we need a mark bit
per object, while some previous schemes used mark bits
in inlists and outlists only [LQP92].

All new objects must be marked; we accomplish this
by storing them in the delta markmap. Note that this
does not imply that these objects cannot be collected
during this phase. As mentioned, untraced objects are
collected even if they are not marked. However, if new
objects form an inter-partition garbage cycle, they will
be collected in the next phase.

When a potential outlist is merged with the basic out-
list, if an entry in the potential outlist was unmarked or
nonexistent in the basic outlist, we mark the entry in
the resultant basic outlist. This preserves Invariant 3.
Further, we mark the reference in the delta markmap to
preserve Invariant 4a.

4.6 Termination

Marking is guaranteed to terminate when the following
conditions hold:

1. All partitions are marked.

2. All references in the log have been processed.

3. All potential lists, delta lists, and delta markmaps
have been merged with their basic counterparts.

4. All application roots point to marked objects.

We use the following policy to test for termination. We
wait until all partitions are marked. Then we process any
unprocessed references in the log by generating entries
in potential lists and delta markmaps, and merge them as
usual. Then we check application roots; if any points to
an unmarked object, we mark it and unmark its partition.

If all partitions are still marked, marking is complete.
Otherwise, we wait until all partitions are marked again
and repeat the procedure. Since we process the complete
log and merge all lists to test termination, the work done
in later tests would be smaller.

Safety

Processing all references in the log ensures that Invari-
ant 3 holds. Therefore, given that all partitions are
marked and all delta markmaps merged, if a partition p
has an inter-partition reference to object x that is reach-
able from a global root or a marked object in p, then

x must have a marked entry in the basic or potential
outlist of p. From Invariant 4 there must be a marked
entry for x in the basic, delta, or potential inlist for its
partition. Since the mark of a basic inlist entry is just
the mark of the referenced object, and since all delta
and potential lists have been merged, x must be marked.
Since all global roots are known to be marked, all objects
reachable from them must be marked at termination.

Liveness

Marking is sure to terminate because a partition can
be unmarked only a finite number of times during a
phase. This is true because every time we unmark a
partition, we mark at least one of its unmarked objects
(Rule 7). Further, such an object must have been created
before the current phase because objects created during
this phase are always marked. Since the partition has a
finite number of objects created before this phase, and
marked objects are never unmarked, the partition can
be unmarked only a finite number of times during the
phase—even if applications are continually creating and
modifying objects.

Termination does require that any unmarked partition
be traced eventually, but the relative frequency of tracing
various partitions can still be governed by an independent
policy.

Although global marking is guaranteed to terminate,
it is difficult to estimate a practical bound on the number
of traces it would take in the presence of concurrent mu-
tations. We can estimate the length of a marking phase
by assuming that applications are quiescent, that is, not
modifying objects. In this case, a partition is unmarked
only as a result of tracing another partition. Suppose that
there are n partitions and the maximum inter-partition
distance of any object from the global roots is l. The
distance of an object is the smallest number of interpar-
tition references in any path from a global root to the
object [ML95]. We make another simplifying assump-
tion that partitions are uniformly selected for tracing, for
example, in round-robin order. Then, marks will propa-
gate fully in l rounds, or n� l partition traces. Note that
this is the worst case bound given the round-robin order.
With a thousand partitions and a maximum distance of
ten, a marking phase would take at most ten thousand
partition traces.

4.7 Crash Recovery

Since global marking takes relatively long to finish, it
is desirable to resume it after a crash instead of restart-
ing it. We maintain basic markmaps stably: they are
updated after tracing a partition and also after merging
delta markmaps. Updates to delta markmaps due to ref-
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erences in the log must be made stable before that part of
the log is truncated; updates since the last log truncation
are conservatively recovered by rescanning the log after
a crash. The mark bits in basic outlists are persistent like
other information in them.

The mark bits of partitions are stable too. After a
partition is traced, its mark bit is stably and atomically
updated along with other information. When the delta
markmap is merged with the basic markmap, the mark
bit of the partition is stably updated.

The global phase counter is stably updated when a
phase terminates. The phase counters of partitions are
stably updated when they are first traced in a new phase.

5 Implementation

We are implementing partitioned garbage collection in
the context of Thor, an object-oriented database. We
have implemented the part that is the focus of this paper:
maintaining information about inter-partition references.
The performance of this part is important because it is
a steady-state activity that must be carried out as ob-
jects are modified—regardless of whether a partition is
being traced. Tracing of individual partitions is largely
orthogonal to our scheme; as mentioned in Section 3.4,
any of several existing techniques for concurrent collec-
tion could be used. Our implementation does not yet
include support for collection of inter-partition cyclic
garbage.

5.1 The Context

Thor is a client-server object-oriented database
[LAC+96]. Servers provide persistent storage for ob-
jects, while applications running on client machines read
and modify objects. Object accesses are grouped into
transactions to tolerate concurrency and failures.

Servers store objects on disk in fixed-sized segments,
currently 32 Kbytes, which are the units of disk ac-
cess. Servers also maintain a cache of recently fetched
segments in memory. Applications fetch objects from
servers into the client cache and access them locally.
At commit, copies of modified objects are sent back to
the servers. The modified objects are stored in an in-
memory log that is intended to be stable through repli-
cation [Ghe95]. However, we simulate delays for log
forces as if it were stored on a logging disk, separate
from the database disk.

Persistence of objects at the servers is governed by
reachability from persistent roots. The task of garbage
collection in Thor is distributed across servers and
clients [ML94, ML95], but this paper pertains to garbage
collection within a single server.

5.2 Partitioned Collection

We perform garbage collection related work in a collec-
tor thread, which is run at low priority to avoid delaying
application requests. The operating system ensures that
the collector is not starved forever. The collector scans
modified and new objects in the log for inter-partition
references. It computes the partition for a reference by
using a map from segments to partitions.

The implementation maintains only potential outlists
since the potential inlist of a partition is needed only
when tracing that partition, at which point it can be com-
puted from the potential outlists. (There is a tradeoff
here: the time cost of generating a potential inlist before
tracing versus the space and time costs of maintaining
all potential inlists. Potential inlists are still useful con-
ceptually to reason about correctness.)

A potential outlist is implemented as a table hashed
on references. When the aggregate size of potential
outlists exceeds a certain threshold, the biggest lists are
merged back until the size drops below a low watermark.
Delta inlists are implemented as hashed tables mapping
references to counts. The hash tables use about 20 bytes
per reference.

Basic lists are stored as regular database objects. A
basic list has an indirect block containing references to
data blocks so that the list may grow or shrink easily
and without external fragmentation. This structure has
another advantage: when updating a basic list, we need
to modify and log only the affected blocks. In our im-
plementation, basic list blocks were 1 Kbyte each. An
outlist data block uses 4 bytes per reference and an in-
list block uses 8 bytes per reference. References are
not stored in any particular order. Modified basic list
blocks are committed using transactions, except that we
bypass the concurrency control mechanism since only
the collector accesses them.

The collector is given a fixed amount of memory to
store potential, delta, and basic lists. We fixed this space
at 2 Mbyte, while the fraction allocated to the various
lists varied. Potential and delta lists are fully memory-
resident structures, while the space for basic lists governs
how many basic list objects can be cached. Table 1
summarizes the parameters employed.

Parameter Value(s)
Segment size 32 Kbyte
Collector Cache 2 Mbyte
Potential lists size 10–80% of cache
Delta lists size 10–80% of cache
Basic lists cache 10–80% of cache
Basic list block 1 Kbyte

Table 1: GC parameters at the server
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We have not yet implemented crash recovery and the
actions needed on truncating the stable log. While these
require care in implementing them correctly, we do not
expect them to introduce a significant performance cost
for the reasons given in Section 3.5.

5.3 Workload

Amsaleg et al. pointed out the lack of a standard bench-
mark for garbage collectors [AFFS95]. They identified
certain metrics to evaluate collectors; these include iso-
lated costs and benefits such as bookkeeping overheads
and the rate of collection, as well as the effect on the
overall application performance. They also identified
certain parameters to control the measurement of these
metrics, e.g., clustering and partition selection policies.
Unfortunately, a standard benchmark for garbage collec-
tion remains elusive today.

We have designed a synthetic benchmark specifically
for evaluating the overhead of tracking inter-partition
references. The benchmark allows us to vary the lo-
cality of references and thus control the frequency of
interpartition references systematically. The benchmark
database consists of a homogenous collection of small
objects, each of which has a single reference and some
data fields. This is similar to the benchmark suggested
by Amsaleg et al., except that the objects are not linked
into a list as in their case. Instead, each object refers
to another object selected randomly using some chosen
probability distribution.

We chose a simple probability distribution: Objects
are numbered sequentially, and object i refers to a ran-
dom object in the range between (i� r) and (i+ r) with
uniform probability. (Object numbers wrap around when
they overflow or underflow the bounds of the database.)
The range of references, r, is a measure of locality. If
each partition contains p objects, the expected fraction
of references that cross partitions is analytically found
to be:

r=2p, for r � p
1� p=2r, for r � p

which is an increasing function of the reference range
over partition size (r=p). Figure 5 shows the percentage
of references scanned by the collector that were found
to cross partitions given a range over partition ratio. The
results match the values expected analytically.

In practice, the range is highly application dependent.
At one extreme, a linked list will have only one external
reference regardless of the partition size. At the other
extreme, a partition storing any n internal nodes of a k-
ary tree will have (k�1)n external references, regardless
of how the internal nodes are packed. In most databases,
we expect the range to be less than a few segments, so
the range over partition ratio is likely to be small.
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Figure 5: Inter-partition references vs. locality

We set the database size to 4K segments. Each seg-
ment contains 1K objects. Each object has a reference
and 5 integers, which uses about 30 bytes in Thor. The
range of references varied from 0 to 8 segments, and the
size of partitions varied from 8 to 32 segments (up to 1
Mbyte). Table 2 summarizes the parameters employed
for the workload.

Parameter Value(s)
Database size 4K segments
Objects per segment 1K
Reference fields per object 1
Data fields per object 5
Reference range 0–8 segments
Partition size 8–32 segments

Table 2: Workload parameters

We evaluate the collector when the database is being
created, which results in the creation of inter-partition
references. Segments in the database are created in a
random order to simulate the effect of concurrent appli-
cations.

In practice, the collector would fill some idle time
on the server so that only some of its execution time
is visible to the applications. Such idle time may re-
sult from think time in the applications, applications and
server running on different machines, I/O in the server,
etc. However, the overall effect is highly sensitive to the
client-server setup and the mix of applications running.
Therefore, our experiments measure the isolated over-
head of maintaining inlists and outlists. To compute the
overhead correctly, care is needed so that the collector’s
work is not hidden in idle periods such as disk accesses
due to application fetches and commits. We ensured this
by avoiding an external application and generating work
for the collector within the server.
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5.4 Performance Results

We ran experiments on a DEC Alpha 3000/400, 133
MHz, workstation running DEC/OSF1. The database
disk has a bandwidth of 3.3 Mbyte/s and an average
access latency of 15.1 ms. The model for the log disk
has a bandwidth of 5 Mbyte/s and average rotational
latency of 5 ms (we ignore seek time because the log is
written sequentially).

5.4.1 Reference Range and Partition Size

Figure 6 shows the results of running the benchmark
with various partition sizes and reference ranges. Each
curve represents a constant partition size as the reference
range varied. As expected, the overhead increases with
reference range and decreases with partition size. The
figure illustrates the danger of using very small partitions
when the locality of references is poor.
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Figure 6: Effect of varying partition sizes.

Figure 7 shows the breakdown of the overhead for a
partition size of 32 segments. The processor overhead
has been divided into scanning overhead, which is a con-
stant cost due to scanning objects, and list processing,
which is mostly due to building up and merging potential
and delta lists. The disk reads are due to reading in seg-
ments containing basic list objects, and the disk writes
are due to flushing dirty segments back to the disk. The
log forces are due to committing transactions contain-
ing modified basic list objects. The overhead increases
steeply with the number of inter-partition references be-
cause the the database disk becomes an increasing bot-
tleneck: Potential and delta lists are merged more often,
causing increased accesses to the basic lists.

These results may also be used practically to deter-
mine a suitable partition size given the locality of refer-
ences in some part of the database.

5.4.2 Memory Allocation

A major thesis of this paper is that primary memory is
better spent on specific data structures such as potential
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Figure 7: Breakdown of overheads.

and delta lists rather than on caching basic lists. Previ-
ous partitioning schemes can be viewed as the extreme
case where memory is allocated only for caching basic
lists. In this section, we present experiments to deter-
mine the best allocation of memory between the various
data structures.

For these experiments, we fixed the partition size at
32 segments (1 Mbyte) and the reference range at 8 seg-
ments, so that about one-eighth of the references cross
partitions. The collector was given 2 Mbytes of mem-
ory. Figure 8 shows the overheads for different allo-
cation strategies. There are two independent variables:
percentage allocation to the potential lists and percent-
age allocation to the delta lists, the remaining being used
by cached basic lists. Each curve represents a fixed al-
location to potential lists, while the allocation to delta
lists varied. For example, the top curve represents 10%
allocation to potential lists, while the allocation to delta
lists varied from 10 to 80%.
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Figure 8: Memory allocation to various lists.
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These results establish the advantage of using poten-
tial and delta lists over caching basic lists. The figure
shows that the overhead decreases with greater alloca-
tion to potential lists. Further, when the allocation of
potential lists is small (in the top few curves), overheads
first decrease and then increase with greater allocation to
delta lists. This is because a large allocation to delta lists
is ineffective in preventing merges due to small potential
lists. When the allocation of potential lists is large (in
the bottom few curves), overhead decreases with greater
allocation to delta lists. The overhead is minimum with
70% allocation to potential lists and 20% allocation to
delta lists. We used this allocation strategy in the exper-
iments performed in Figure 6.

We approximated the case when potential and delta
lists are not used by allocating them only 0.1%, i.e., 2
Kbytes (not shown in Figure 8). The measured overhead
was 436 seconds; the overhead if potential and delta lists
were absent entirely would be even higher.

Figure 9 illustrates the benefit of allocating some
memory to delta lists. It shows the overheads when
the allocation to basic lists is fixed at 10% and the re-
maining 90% is shared between potential and delta lists.
The overhead increases if the share of the delta lists is
reduced below 20%.
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Figure 9: Memory allocation to potential and delta lists.

6 Related Work

Partitioned collection has much in common with inde-
pendent collection in distributed systems. Therefore, we
relate our work to systems with large heaps as well as
large distributed systems.

Bishop proposed dividing a large address space into
independently collectible partitions in 1977 [Bis77]. He
proposed collecting cyclic garbage by migrating objects
to partitions that reference them. Migration is also used
in some distributed systems because it is fault tolerant
and decentralized [SGP90, ML95]. The cost of migra-
tion is copying objects and patching up the references to
the moved objects. Often, migration also requires inlists

to track the identities of the source partitions for each
incoming reference.

Hughes’s algorithm, also designed for distributed sys-
tems, propagates timestamps from inlists to outlists and
collects objects timestamped below a certain global
threshold. This scheme collects cyclic garbage because
the timestamps of only the global roots are advanced.
(The scheme used timestamps to collect all garbage,
which is slow.) An advantage of using timestamps over
mark bits is that, in effect, multiple marking phases can
proceed concurrently in a staggered manner, each identi-
fying some garbage on termination. It is unclear whether
such a scheme has any advantage over global marking
when partitions are collected sequentially.

Juul and Jul designed a distributed collector with both
partition traces and global marking [JJ92]. Inlist entries
do not contain reference counts and are removed only
by global marking. Thus, the system relies on global
marking to collect both cyclic and acyclic inter-partition
garbage. Global marking uses a mark bit per object; it
is not piggybacked on partition traces and is conducted
separately.

Lang et al. proposed marking within a selected group
of partitions to collect inter-partition cyclic garbage con-
tained in the group [LQP92]. Marking is piggybacked
on partition traces as in our scheme and comprises a
marked trace followed by an unmarked trace. Only in-
list and outlist entries need mark bits. However, the
scheme does not elaborate on concurrent execution with
the mutator, and we believe that it would fail to terminate
correctly in the presence of concurrent mutations.

Kolodner proposed recoverable collection of a large
heap using unpartitioned but incremental copying
[KW93]. Like other unpartitioned schemes, this col-
lector must make random accesses in the old space.

O’Toole et al. proposed concurrent copying of a per-
sistent heap by letting applications access the old space
while the collector copies it to new space [NOPH92,
ONG93]. The collector picks up the modifications made
by the applications by using an update log. The scheme
was designed for an unpartitioned heap that fit in the
main memory.

Yong et al. compared unpartitioned incremental copy-
ing, reference counting, and partitioned collection in a
client-server object store and found partitioned collec-
tion to perform the best [YNY94].

Ruffin pointed out similarities between log com-
paction and garbage collection [Ruf95]. In particular,
cleaning log segments, as in Sprite LFS, is similar to par-
titioned collection. However, inter-segment references
need not be tracked because the liveness of a log record
can be verified quickly given the file system structure.

Amsaleg et al. designed a partitioned collector for
a transactional, client-server database [AGF95]. The
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work focuses on supporting transactional mechanisms
such as rollback. The collector uses the log to pick up
updates, and the authors point out the need for efficient
maintenance of stable inlists.

Maheshwari and Liskov proposed migrating objects
suspected to be cyclic garbage [ML95]. Suspects are
found using the distance heuristic: The distance of an
object is the minimum number of inter-partition refer-
ences on any path from a global root to that object. An
object with a large distance is highly likely to be cyclic
garbage. Although this reduces migration to the bare
minimum, it still requires patching up references to the
moved objects.

Rodrigues and Jones collect cyclic garbage in a
distributed system using a heuristic to group parti-
tions [RJ96]. A group comprises partitions reached
transitively from objects suspected to be cyclic garbage.
Multiple sites on the same cycle may initiate separate
groups simultaneously, which would fail to collect the
cycle. Conversely, a group may include many more par-
titions than necessary because garbage objects can point
to live objects.

Ferreira and Shapiro designed garbage collection
for a distributed shared memory system with persis-
tence [FS96]. Segments may be cached at multiple sites
and collectors may work on them concurrently. The
work focuses on avoiding costly synchronization be-
tween the collectors. Each segment has an inlist, but
segments cached at a site can be dynamically grouped
to form a partition that is traced as a unit. This collects
inter-segment cycles contained in the cache. However,
note that if an object occurs in multiple garbage cycles
(as in a doubly linked list or a tree whose leaves point
back to the root), all of those cycles must be cached for
any to be collected.

None of the above works addresses efficient mainte-
nance of inter-partition references. The only previous
work that addresses this issue is PMOS by Moss et al.
[HM92, MMH96]. PMOS collects one segment at a
time, which is the unit of both fetching and tracing. Each
segment contains an inlist that identifies the source seg-
ments for incoming references. Outlists are not stored on
disk; instead, whenever a segment is read into the cache,
it is scanned to compute its outlist. When a modified
segment is evicted, it is scanned again to compute dif-
ferences from the old outlist; the differences are stored
in an object equivalent to our delta inlists to avoid disk
access. Our use of basic and potential outlists avoids
scanning segments when they are fetched or evicted.

PMOS compacts objects across segments. This pro-
vides better compaction, but it changes the names of
moved objects. Segments containing references to a
moved object are scanned and updated. (Cached seg-
ments are updated immediately, while those on disk are

updated when fetched.)
PMOS collects inter-segment cyclic garbage by

grouping segments into trains. Reachable objects in
a train are gradually migrated to other trains such that
the train contains only cyclic garbage at the end and
can be discarded. While collecting a segment, objects
are moved to the newest segments in the trains that re-
fer to them. Thus, collecting a segment might involve
accessing multiple target segments.

Our work on using the log to maintain inlists and
outlists builds upon previous work by Ng [Ng96]. His
scheme scanned modified objects when they are trun-
cated from the log, and put inter-partition references
back into the log. The log was scanned before tracing
any partition to find new roots, but that information was
not summarized, so the log may be scanned multiple
times on different traces.

7 Conclusion

This paper describes a garbage collection scheme for
large persistent object stores that makes efficient use of
the disk and main memory. The heap is divided into
partitions that are collected independently using inlists
and outlists, which are maintained stably for fast crash
recovery. We use novel techniques to maintain these lists
using auxiliary data structures that store conservative
updates. The disk is accessed occasionally to reconcile
these data structures with the basic inlists and outlists.
These techniques also use less memory than caching
basic inlists and outlists.

Tracking inter-partition references does not eliminate
garbage cycles that span partitions and therefore we aug-
ment it with a new global marking scheme. A mark-
ing phase propagates marks from the global roots to
all reachable objects; at the end of the phase all inter-
partition garbage cycles are unmarked and can be col-
lected. Our scheme piggybacks global marking on parti-
tioned collection, does not delay the collection of acyclic
garbage, and is guaranteed to terminate correctly in the
presence of concurrent mutations. It can take a long time
for a phase to terminate, but that is acceptable assuming
cyclic garbage spanning partitions is generated slowly.

We have implemented the maintenance of inlists and
outlists. We designed a benchmark to evaluate this work
that allows to control the crucial parameters determining
performance. We presented performance results that
show the advantage of using our techniques to avoid
disk accesses.
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