
Time-lock puzzles and timed-release Crypto

Ronald L. Rivest�, Adi Shamir��, and David A. Wagner���

Revised March 10, 1996

�MIT Laboratory for Computer Science

545 Technology Square, Cambridge, Mass. 02139

��Weizmann Institute of Science
Applied Mathematics Department

Rehovot, Israel

���Computer Science Department

U.C. Berkeley
Berkeley, California 94720

frivest,shamirg@theory.lcs.mit.edu, daw@cs.berkeley.edu

1 Introduction

Our motivation is the notion of \timed-release crypto," where the goal is to encrypt a message
so that it can not be decrypted by anyone, not even the sender, until a pre-determined amount

of time has passed. The goal is to \send information into the future." This problem was

�rst discussed by Timothy May [6].

What are the applications of \timed-release crypto"? Here are a few possibilities (some

due to May):

� A bidder in an auction wants to seal his bid so that it can only be opened after the
bidding period is closed.

� A homeowner wants to give his mortgage holder a series of encrypted mortgage pay-

ments. These might be encrypted digital cash with di�erent decryption dates, so that

one payment becomes decryptable (and thus usable by the bank) at the beginning of
each successive month.

� An individual wants to encrypt his diaries so that they are only decryptable after �fty

years.



� A key-escrow scheme can be based on timed-release crypto, so that the government

can get the message keys, but only after a �xed period (say one year).

There are presumably many other applications.

There are two natural approaches to implementing timed-release crypto:

� Use \time-lock puzzles"{computational problems that can not be solved without run-

ning a computer continuously for at least a certain amount of time.

� Use trusted agents who promise not to reveal certain information until a speci�ed date.

Using trusted agents has the obvious problem of ensuring that the agents are trustworthy;

secret-sharing approaches can be used to alleviate this concern. Using time-lock puzzles has

the problem that the CPU time required to solve a problem can depend on the amount

and nature of the hardware used to solve the problem, as well as the parallelizability of the
computational problem being solved.

In this note we explore both approaches. (We note that Tim May has suggested an
approach based on the use of trusted agents.)

2 Time-lock puzzles

We �rst explore an approach based on computational complexity: we study the problem of
creating computational puzzles, called \time-lock puzzles," that require a precise amount
of time to solve. The solution to the puzzle reveals a key that can be used to decrypt the
encrypted information. This approach has the obvious problem of trying to make \CPU
time" and \real time" agree as closely as possible, but is nonetheless interesting.

The major di�culty to be overcome, as noted above, is that those with more compu-
tational resources might be able to solve the time-lock puzzle more quickly, by using large
parallel computers, for example. Our goal is thus to design time-lock puzzles that, to the
greatest extent possible, are \instrinsically sequential" in nature, and can not be solved

substantially faster with large investments in hardware. In particular, we want our puzzles
to have the property that putting computers to work together in parallel doesn't speed up

�nding the solution. (Solving the puzzle should be like having a baby: two women can't

have a baby in 4.5 months.) We propose an approach to building puzzles that appears to be
intrisically sequential in the desired manner.

Of course, our approach yields puzzles with a solution time that is only approximately

controllable, since di�erent computers work at di�erent speeds. For example, the underlying
technology may be di�erent: gallium arsenide gates are faster than silicon gates. If precise

timing of the information release is essential, an approach based on the use of trusted agents
is preferable.

We also note that with our approach, the puzzle doesn't automatically become solvable

at a given time; rather, a computer needs work continuously on the puzzle until it is solved.

A ten-year puzzle needs some dedicated workstation working away for ten years to solve

it. If the computing doesn't start until �ve years after the puzzle was made, then the

2



solution won't be found until ten years after that (perhaps a bit less if technology has

improved in the meantime). Our approach therefore requires much more in the way of

computational resources than an approach based on trusted agents, and thus may be best

suited for relatively simple puzzles (with time-to-solution under a month, say). Nonetheless,

we feel that our approach has su�cient utility to merit this exposition.

An unworkable approach

We begin by presenting an approach that doesn't work well. LetM denote the information

to be encrypted for a period of time. Let S denote the speed of a workstation measured in

decryptions per second. Then to encrypt M to be decryptable after T seconds, we choose a

conventional cryptosystem (say RC5 [9]) with a key size of approximately k = lg(2ST ) bits

and encrypt M with a k-bit key. We save the ciphertext and throw away the key. By using

exhaustive search of the key space, a workstation will take about T seconds, on the average,

to �nd the key.

We note that Merkle [7] was the �rst to suggest this method of designing puzzles, and
was also the �rst to introduce the notion of a \puzzle," in research that ultimately led to

the invention of the concept of public-key cryptography.

There are two problems with this way of building a time-lock puzzle by encrypting M

with a conventional cipher:

� A brute-force key-search is trivially parallelizable, so that N computers make the com-
putation run N times faster.

� The computation time estimate of T seconds is only an expected running time; the
actual running time could be signicantly larger or smaller, depending on the order in
which the keys are examined.

These problems are �xed in the proposal given next.

2.1 Creating a time-lock puzzle

We now show a method for creating time-lock puzzles based on repeated squaring. Our
approach can also be viewed as an application of the \random-access" property of the
Blum-Blum-Shub \x2 mod n" pseudo-random number generator [3]. (We actually propose

a scheme that is a variation on the x2 mod n generator, but the di�erences are nonessential,

and the original scheme could have been used as well here.) An early version of our paper

suggested a di�erent approach based on superencryption in RSA [10, 12, 8, 13, 2]; the current

approach is considerably simpler.

Here is our approach. Suppose Alice has a message M that she wants to encrypt with a
time-lock puzzle for a period of T seconds.

� She generates a composite modulus

n = pq (1)

as the product of two large randomly-chosen secret primes p and q. She also computes

�(n) = (p� 1)(q � 1) : (2)

3



� She computes

t = TS ; (3)

where S is the number of squarings modulo n per second that can be performed by

the solver.

� She generates a random key K for a conventional cryptosystem, such as RC5. This

key is long enough (say 160 bits or more) that searching for it is infeasible, even with

the advances in computing power expected during the lifetime of the puzzle.

� She encrypts M with key K and encryption algorithm RC5, to obtain the ciphertext

CM = RC5(K;M) : (4)

� She picks a random a modulo n (with 1 < a < n), and encrypts K as

CK = K + a2
t

(mod n) : (5)

To do this e�ciently, she �rst computes

e = 2t (mod �(n)) ; (6)

and then computes
b = ae (mod n) : (7)

� She produces as output the time-lock puzzle (n; a; t; CK; CM), and erases any other

variables (such as p, q) created during this computation.

(We add as a technical footnote here the remark that p, q, and a can be chosen carefully,
so that 2 is guaranteed to have a large order modulo �(n), and so that a is guaranteed to have
a large order modulo n. See Blum, Blum, and Shub [3] for some relevant discussion. However,

choosing p, q, and a randomly should give the desired level of di�culty with overwhelming

probability, so that these precautions are not expected to be necessary in practice. Indeed,
in practice choosing a �xed value a = 2 should be safe with high probability. Since there
are other risks in the whole approach (e.g. an adversary could just guess K), aiming for

perfection in the number-theory is probably overkill.)

2.2 Solving the puzzle

By design, searching for the RC5 key K directly is infeasible, so the fastest known approach
to solving the puzzle is to determine

b = a2
t

(mod n) (8)

somehow. Knowing �(n) enables 2t to be reduced e�ciently to e, modulo �(n), so that b

can be computed e�ciently by equation (7). However, computing �(n) from n is provably as

hard as factoring n, so that once Alice publishes the puzzle and throws away the key (throws

4



away the factors p and q), there seems to be no faster way of computing b than to start with

a and perform t squarings sequentially (each time squaring the previous result).

While factoring n is certainly an alternative attack for solving the puzzle, when p and q

are large enough the factoring approach is far less e�cient than repeated squaring.

The number t of squarings required to solve the puzzle can be exactly controlled. Thus,

we can create puzzles of various desired levels of di�culty.

More importantly, repeated squaring seems to be an \intrinsically sequential" process.

We know of no obvious way to parallelize it to any large degree. (A small amount of

parallelization may be possible within each squaring.) Having many computers is no better

than having one. (But having one fast computer is better than one slow one.) The degree

of variation in how long it might take to solve the puzzle depends on the variation in the

speed of single computers, and not on one's total budget. Since the speed of hardware

available to individual consumers is within a small constant factor of what is available to

large intelligence organizations, the di�erence in time to solution is reasonably controllable.

(We admit that more control here might be desirable, but with a complexity-based approach
such as this one there is not much that can be done to compensate for di�erent gate speeds.)

3 Using trusted agents

A natural approach is to use a trusted agent to store the message M until its desired release

time t. As an extension of this idea, the message M could be shared among several agents
(using standard secret-sharing techniques, such as the one proposed by Shamir [11]) who all
agree to release their shares at time t. The messageM can then be reconstructed from those
shares. As a further re�nement, the agents can be asked to store shares of a cryptographic
key K instead of shares of M . This reduces the storage demands on the agents. Then the

encryption C = E(K;M) of M with key K can be kept in some publicly available location.
At time t, the key K can be reconstructed and C decrypted to yield M . These ideas are
discussed briey by May. Related work on time-lock puzzles and \veri�able partial-key
escrow" has been developed by Bellare and Goldwasser [4, 1].

We suggest here an alternative, but related, approach that has the following properties

and implementation:

� The agents are not \escrow agents" as they are in May's proposal: they do not have
to store any information that is given to them by the user. The amount of storage
required for an agent is �xed and bounded, independent of the number of timed-release

user secrets that he has been asked to help out with.

� The main task of an agent is to periodically (say at the beginning of each hour) publish

a previously secret value. We let sit denote the secret published by agent i at time t.
The agent will digitally sign all secrets sit he publishes, using some standard digital

signature scheme.

� The only other task that an agent must perform is to respond to requests of the form:

\Here are values for y and t; please return E(sit; y), the encryption of y under the secret

5



key sit that you will reveal at future time t." The agent will only perform encryptions

(never decryptions). It is assumed that the encryption algorithm is secure against

chosen-message attacks, so that an adversary can obtain many encryptions of various

y's with some future sit and will not be able to thereby deduce sit. Having received

the request, the agent will return an encrypted digitally signed copy of the message

(i; t; t0; E(sit; y))

where i is the index of the agent, t is the future time requested, t0 is the current

time (by the agent's clock), and E(sit; y) is the requested ciphertext. The message is

encrypted with the public key of the requestor and then signed with the agent's private

key. The agent need not require that t > t0, although this will be the normal case.

� Anyone can set himself up in business as a trusted agent, without requiring coordination

between himself and other agents. More precisely, the sequence of secrets published
by one agent is independent of the sequence of secrets published by any other agent.

� The sequence of secrets published by each agent has the property that from sit one can
easily compute sit0 for all t

0 � t. The secret the agent reveals at time t can be used to
compute all of his previously published secrets. Thus, it su�ces to ask an agent for
his latest secret in order to learn all of his previously published secrets. This can be

easily implemented by having the secrets satisfy a recurrence such as:

si(t�1) = f(sit) (9)

for some suitable (but otherwise arbitrary) one-way function f . Because f is one-way,

publishing sit does not reveal any future secrets sit00 for t
00 > t. (The agent might

precompute his sequence of secrets, beginning with a randomly chosen secret for some
point in the distant future and working backwards, or he might chose f as a trap-door
one-way function, so that only he can compute sit from si(t�1).)

� The message M to be released at time t is encrypted with a randomly chosen key K

and a conventional encryption algorithm, to yield a ciphertext C = E(K;M). The

user picks some number d of agents i1, i2, : : : , id, and publishes

(C; i1; i2; : : : ; id; r1; r2; : : : ; rd) (10)

where r1, r2, : : : , rd are d \timed-release shares" of the key K that will allow K to be

reconstructed once time t is reached and the agents publish their secrets for time t.

� The user may pick a threshold � (where 0 < � � d) such that one can reconstruct K

given � or more time-release shares and the corresponding agents' secrets for time t.
To accomplish this, the user splits K into d shares

y1; y2; : : : ; yd (11)

according some standard secret-sharing scheme with threshold �, and then asks agent
ij (for 1 � j � d) to produce the value

rj = E(sijt; yj) ; (12)

6



the encryption of share yj of K with the secret sijt of agent ij that will be revealed

at time t. This request should be encrypted with the public key of the agent, and the

reply should be encrypted and signed as described earlier.

The agents in this scheme are extremely simple: they only need

� to produce an unpredictable sequence of secrets satisfying equation (9)),

� to decrypt a message of the form (y; t; (e; n)) encrypted with the public key of the

agent,

� to encrypt values y under the secret sit to be revealed by the agent at time t,

� to return the resulting ciphertext, signed by the agent and then encrypted with the

public key (e; n) of the requestor, and

� to publish a signed version of sit at time t.

Since such a simple agent could be built into a small tamper-proof device quite easily, one

can produce implementations of such agents that are highly secure.

The fact that the scheme is based on secret-sharing with a threshold gives robustness,
both against the possible corruption of one or more agents (who might sell future values of
their secrets) or the death or disappearance of one or more agents. As long as � agents are

still around at time t, the message M will be reconstructable at time t (and at any later
time). As long as fewer than � agents have been corrupted, the message M will not be
revealed before time t.

This scheme is not \veri�able" in the sense that an observer who sees the published
material of equation (10) can not verify that it is the proper encryption of anything particular.
Only when the secrets of time t are published can he decrypt the shares rj to obtain the
corresponding yj values that allow him to reconstruct K, and thus obtain M . Standard
\veri�able" secret-sharing techniques aren't particularly applicable here, since the message

M could be junk, even if K was veri�ably shared. (We note that in principle, it is possible,
albeit di�cult, to prove certain properties of M to a veri�er without having to reveal K
or M .)

Because the agent includes the current time t0 in his signed reply to an encryption

request, he acts as a simple \time-stamping" service (e.g. [5]). A user can give the agent the
cryptographic hash value h(M) of some message M , and ask the agent to sign and encrypt

it with sit for some value of t. The signed hash value becomes decryptable at time t, thus
proving (assuming that the agent is trustworthy) that the document M existed at time t0.

Normally one might have t = t0, but a user might choose t > t0 in some cases. For example,

in an auction it may be required that the bids be submitted before some time t0, and that
they be opened at time t00. The user would submit (the encryption key K for) his bid at
time t0 < t0, and ask for it to be encrypted with sit where t = t00.

3.1 An o�-line version

The previous protocol can be converted to an o�ine protocol, as follows. Each trusted

agent constructs a public/private keypair Ei;t;Di;t for each future time t. The public key

7



Ei;t is published immediately, and the private key Di;t is published at time t. (Of course, a

trusted agent always digitally signs the published E's and D's under his master public key,

to eliminate would-be imposters.)

The E's and D's directly replace the s's: now the user can perform the encryption of

the y's himself, without needing to invoke the trusted agent. The trusted agent can now be

entirely o�ine, except for the periodic publication of the D's.

On the other hand, in this o�ine formulation, it seems hard to encode any structure into

the agent's keys, so it seems to require more storage to store the list of public keys for the

future and the private keys revealed for the past. At 200 bytes per key, storing one key for

each day of the next �fty years requires about 3.6 megabytes.

Another disadvantage of this o�-line approach is that the agents are no longer usable or

available as \time-stamping" agents.

4 Conclusions

We have suggested a way to create \time-lock puzzles," which require (approximately) a
certain amount of time (real time, not total CPU time) to solve. We have also discussed a
way to use trusted agents to e�ciently enable timed-release crypto.

References

[1] Mihir Bellare and Sha� Goldwasser. Veri�able partial key escrow. Technical Report
CS95-447, Dept. of Computer Science and Engineering, U.C. San Diego, October 1995.

[2] Shimshon Berkovits. Factoring via superencryption. Cryptologia, 6(3):229{237, July

1982.

[3] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. SIAM J. Computing, 15(2):364{383, May 1986.

[4] Sha� Goldwasser, 1996. Personal communication.

[5] S. Haber and W.S. Stornetta. How to time-stamp a digital document. Journal of

Cryptology, 3:99{111, 1991.

[6] Timothy C. May. Timed-release crypto, February 1993.
http://www.hks.net/cpunks/cpunks-0/1460.html.

[7] R. C. Merkle. Secure communications over insecure channels. Communications of the

ACM, 21:294{299, April 1978.

[8] Ronald L. Rivest. Remarks on a proposed cryptanalytic attack of the M.I.T. public-key

cryptosystem. Cryptologia, 2(1):62{65, January 1978.

8



[9] Ronald L. Rivest. The RC5 encryption algorithm. In Bart Preneel, editor, Fast Software

Encryption, pages 86{96. Springer, 1995. (Proceedings Second International Workshop,

Dec. 1994, Leuven, Belgium).

[10] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2):120{126,

1978.

[11] A. Shamir. How to share a secret. Communications of the ACM, 22:612{613, November

1979.

[12] Gustavus J. Simmons and Michael J. Norris. Preliminary comments on the MIT public-

key cryptosystem. Cryptologia, 1(4):406{414, October 1977.

[13] H. C. Williams and B. Schmid. Some remarks concerning the MIT public-key cryp-
tosystem. BIT, 19:525{538, 1979.

9


