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Abstract

This thesis presents the theory, design, and implementation of Cilk (pronounced “silk”) and
Cilk-NOW. Cilk is a C-based language and portable runtime system for programming and
executing multithreaded parallel programs. Cilk-NOW is an implementation of the Cilk
runtime system that transparently manages resources for parallel programs running on a net-
work of workstations.

Cilk is built around a provably efficient algorithm for scheduling the execution of fully
strict multithreaded computations. Based on the technique of work stealing, this algorithm
achieves time, space, and communication bounds that are all within a small constant factor
of optimal. Using these performance guarantees, Cilk provides a simple abstraction of per-
formance that allows programmers to predict accurately how program changes will affect
execution time.

Cilk-NOW provides high-level resource management services so that Cilk programs can
run efficiently on a network of workstations. These services include adaptive parallelism
and fault tolerance. With adaptive parallelism, programs execute on a pool of workstations
that dynamically grows and shrinks in response to both the availability of “idle” machines
and the availability of parallelism within the program. Cilk-NOW also provides transparent
fault tolerance with a fully distributed checkpointing mechanism.
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Chapter 1

Executing multithreaded programs

e�ciently

In writing a parallel application in a multithreaded language, a programmer expresses paral-

lelism by coding instructions in a partial execution order, and the programmer or the com-

piler partitions these instructions into totally ordered sequences called threads. The pro-

grammer need not specify which processors of a parallel computer execute which threads

nor exactly when each thread should be executed. These scheduling decisions are made

automatically by the runtime system’s scheduler, and the program only requires that each

instruction of each thread is executed by some processor at a time consistent with the par-

tial order. Nevertheless, if the programmer is to relinquish control over these scheduling

decisions to the runtime system, then the runtime system must guarantee that it will make

good scheduling decisions to execute the program efficiently and with predictable perfor-

mance. In this thesis, we develop algorithmic foundations for the efficient scheduling of

multithreaded programs, and we build a multithreaded language and runtime system on top

of this foundation. In both algorithmic and empirical work, we show that for a large and

important class of multithreaded programs, a runtime system can deliver efficient and pre-

dictable performance, guaranteed.

1.1 Scheduling multithreaded programs

A multithreaded language provides programmers with a means to create and synchronize

multiple computational threads, and the runtime system for such a language automatically

schedules the execution of these threads on the processors of a parallel computer. To execute

a multithreaded program efficiently, the runtime system’s scheduler must keep the proces-

1



2 Chapter 1. Executing multithreaded programs e�ciently

sors busy doing work in order to realize parallel speedup, and simultaneously, it must main-

tain memory usage to within reasonable limits and avoid interprocessor communication to

the greatest extent possible. In this section, we give an overview of the Cilk (pronounced

“silk”) multithreaded language and runtime system. The Cilk runtime system’s scheduler is

built on an algorithmic foundation and is provably efficient with respect to time, space, and

communication. We shall also overview Cilk-NOW, an implementation of the Cilk runtime

system for networks of workstations. Cilk-NOW leverages properties of Cilk’s scheduling

algorithm in order to run Cilk programs efficiently in the dynamic and potentially faulty

environment of a network of workstations.

Consider a program that uses double recursion to compute the Fibonacci function. The

Fibonacci function fib(n) for n � 0 is defined as

fib(n) =

(
n if n < 2;

fib(n�1)+fib(n�2) otherwise.

Figure 1.1 shows how this function is written in C and in Cilk. While double recursion is a

terrible way to compute Fibonacci numbers, this toy example does illustrate a common pat-

tern occurring in divide-and-conquer applications: recursive calls solve smaller subcases

and then the partial results are merged to produce the final result. Notice that other than the

int Fib (int n)

f if (n<2)

return n;

else

f int x, y;

x = Fib (n-1);

y = Fib (n-2);

return (x+y);

g
g

(a) C function.

cilk int Fib (int n)

f if (n<2)

return n;

else

f int x, y;

x = spawn Fib (n-1);

y = spawn Fib (n-2);

sync;

return (x+y);

g
g

(b) Cilk procedure.

Figure 1.1: A C function and a Cilk procedure to compute the nth Fibonacci number.

cilk keyword which identifies a Cilk procedure, the Cilk version differs from its C coun-

terpart only in its use of spawn and sync. The spawn keywords turn the recursive calls into

recursive spawns. A spawn is the parallel analogue of a procedure call. The instructions ex-

ecuted by Fib form a thread, and a spawn creates a new child thread that may execute con-

currently with its parent. Thus, when Fib performs the two recursive spawns, the spawned
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child threads may execute concurrently. After performing the spawns, Fib does a sync to

synchronize with its children. When Fib gets to the sync statement, it must suspend and

wait until its two spawned children return. Only then may Fib proceed to add the return

values. Thus, the spawns and synchronizations specify a partial execution order on the pro-

gram’s instructions.

The spawned threads must be executed by the processors of a parallel machine in a man-

ner consistent with the program-specified partial order, and in general, the scheduling of

threads to processors must be done at runtime. For many programs, the spawning of threads

depends on the input data, and for these programs the threads cannot even be identified un-

til runtime. Furthermore, even if the threads can be statically identified, determining the

execution time of any given thread may be as difficult as actually running the thread, so

load-balancing considerations may dictate runtime scheduling. For these types of applica-

tions, we must separate the static expression of parallelism in the program from the dynamic

scheduling of threads at runtime. A multithreaded language permits this separation by in-

corporating a thread scheduler in its runtime system.

The Cilk language supports this separation with a set of extensions to the C language

for expressing parallelism and a runtime system that automatically exploits the program’s

parallelism on a parallel computer. Cilk applications coded to date include protein folding,

graphic rendering, backtrack search, and the ?Socrates chess program, which won second

prize in the 1995 ICCA World Computer Chess Championship. The Cilk runtime system

is particularly easy to implement and easily portable. In fact, in several cases, individu-

als unfamiliar with Cilk have ported the runtime system to new machines in under 1 week.

Currently, the Cilk runtime system runs on the Connection Machine CM5 MPP, the Intel

Paragon MPP, the Sun SparcStation SMP, the Silicon Graphics Power Challenge SMP, and

the Cilk-NOW network of workstations, discussed below.

The Cilk runtime system automatically manages the low-level details of thread schedul-

ing, and it does so with a “work-stealing” scheduler that is provably efficient. Writing a

high-performance parallel application in Cilk, the programmer can focus on expressing the

parallelism in the algorithm, insulated from scheduling details and secure in the knowledge

that the runtime system delivers guaranteed efficient performance. Figure 1.2 plots mea-

sured speedup values for a large number of runs of the ?Socrates chess program on the

CM5. Both axes are normalized as we shall explain when we revisit this speedup plot in Sec-

tion 5.2. For now, we think of the normalized machine size as the number P of processors

increasing from left to right, and we think of the normalized speedup simply as speedup—

the ratio of the 1-processor execution time to the P-processor execution time. The 45-degree

line and the horizontal line at 1:0 are upper bounds on the achievable speedup. This plot
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Figure 1.2: Measured speedups for the ?Socrates chess program.

shows that every run achieved near optimal speedup. This performance is not the good for-

tune of a single application. Rather, we prove that for a large and important class of pro-

grams, the Cilk runtime system achieves near optimal performance, guaranteed. Moreover,

Cilk gives the user an algorithmic model of application performance based on the measures

of work—the total number of instructions executed—and critical path length—the length

of a longest path in the partial order of instructions—which can be used to predict the run-

time of a Cilk program accurately. Notice that the measured speedup values in Figure 1.2 all

cluster on a curve. As we shall see in Section 5.2, this curve is defined as a function of only

three parameters: work, critical path length, and the number of processors. Consequently,

a Cilk programmer can tune the performance of his or her application by focusing on the

work and critical path, unworried about machine specific performance details.

In order to execute Cilk programs efficiently on a network of workstations, the Cilk-

NOW runtime system implements “adaptive parallelism” and transparent fault tolerance.

Adaptive parallelism allows a Cilk program to take advantage of otherwise-idle machines

whether or not they are idle when the program starts running and whether or not they will
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remain otherwise idle for the duration of the run. When a given workstation is left idle by its

owner, it automatically joins in and helps out with the execution of a Cilk program. When

the owner returns to work, the machine automatically retreats from the Cilk program. The

criteria to determine when a machine is idle can be customized for each machine. We be-

lieve that maintaining the owner’s sovereignty is essential if we want owners to allow their

machines to be used for parallel computation. With transparent fault tolerance built into

the Cilk-NOW runtime system, Cilk jobs may survive machine crashes or network outages

despite the fact that Cilk programs are fault oblivious, having been coded with no special

provision for handling machine or network failures. If a worker crashes, then other workers

automatically redo any work that was lost in the crash. In the case of a more catastrophic

failure, such as a power outage or a total network failure in which all workers may crash,

Cilk-NOW provides automatic checkpointing, so when service is restored, the Cilk job may

be restarted with minimal lost work.

Recently, we ran a Cilk protein-folding application using Cilk-NOW on a network of

about 50 Sun SparcStations connected by Ethernet to solve a large-scale problem. The pro-

gram ran for 9 days, survived several machine crashes and reboots, utilized 6566 processor-

hours of otherwise-idle cycles, with no administrative effort on our part, while other users

of the network went about their business unaware of the program’s presence. Adaptive par-

allelism and fault tolerance were invaluable. In contrast, running the same experiment on

the CM5 required manually breaking the job into pieces small enough to complete in the

interval of time between repartitionings and failures of the machine and then manually com-

bining results. These pieces were fed to the machine through shell scripts to ensure that the

machine executed these pieces even when we were not around to perform manual feeding.

The efficient and predictable performance of the Cilk runtime system and the adaptive

parallelism and fault tolerant features of Cilk-NOW are possible because Cilk is built on a

theoretically sound foundation. In particular, the Cilk programming model is highly struc-

tured and the Cilk runtime system’s scheduler employs a provably efficient scheduling al-

gorithm.

In establishing an algorithmic foundation for scheduling multithreaded computations,

we have proven a lower bound showing that in general there exist multithreaded compu-

tations for which efficient scheduling is impossible, and we have proven an upper bound

showing that for an important class of computations, efficient scheduling is possible. We

show that in general, there exist multithreaded computations with vast amounts of provably

useless parallelism. For such a computation, any execution schedule attempting to exploit

this parallelism must use an amount of space per processor vastly in excess of that required

by a 1-processor execution. On the other hand, we show that for the class of strict computa-
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tions, all of the parallelism can be exploited. Intuitively, a strict computation is one in which

threads only return values and synchronize with their ancestor threads. Computations, such

as those derived from divide-and-conquer, backtracking search, branch-and-bound, game-

tree search, and many other programs, are naturally strict and have large amounts of paral-

lelism. We show that for any strict computation and any number of processors, there exists

an execution schedule with execution time that is within a factor of 2 of optimal while us-

ing no more space per processor than that required by a 1-processor execution. We give a

simple, though impractical and nonscalable, algorithm to compute such efficient schedules.

For practical and scalable application, we give a simple and fully distributed online algo-

rithm for scheduling the execution of multithreaded computations. This algorithm is based

on the technique of random work stealing in which processors needing work steal threads

from other processors chosen at random. We show that for “fully strict” (well-structured)

computations, this algorithm is simultaneously efficient with respect to time, space, and

communication. In particular, this work-stealing algorithm achieves execution time that is

universally optimal to within a constant factor, execution space that is existentially optimal

to within a constant factor, and communication that is also existentially optimal to within

a constant factor. This communication bound confirms the folk wisdom that work-stealing

algorithms require much less communication than their “work-sharing” counterparts. In our

analysis, we conservatively assume that when multiple processors simultaneously attempt

to access a single data structure, then their accesses are serialized in an order determined by

an adversary. These bounds are the first proven bounds for the case of computations with

synchronization. The Cilk runtime system’s scheduler implements this work-stealing algo-

rithm.

1.2 Previous results and related work

The Cilk runtime system differs from other systems for parallel multithreaded program-

ming primarily in its algorithmic foundation and its ability to deliver performance guaran-

tees. Nevertheless, the algorithmic work builds on earlier work focused on more restrictive

models of multithreaded computation. Likewise, the Cilk programming model and runtime

system—including Cilk-NOW—build on ideas found in earlier systems. In this section, we

look at other theoretical results and systems that address scheduling issues for dynamic par-

allel computation. We shall not look at data-parallel systems [8, 53] nor at systems focused

on infrastructure such as distributed shared memory [4, 6, 29, 39, 59, 60, 66, 73, 87, 92, 93]
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or message passing [43, 96, 104, 105].

Substantial research has been reported in the theoretical literature concerning the sched-

uling of dynamic computations. In contrast to our research on multithreaded computations,

however, other theoretical research has tended to ignore space requirements and communi-

cation costs. Related work in this area includes a randomized work-stealing algorithm for

load balancing independent jobs [89]; algorithms for dynamically embedding trees in fixed-

connection networks [5, 71]; and algorithms for backtrack search and branch-and-bound

[61, 65, 75, 86, 109]. Backtrack search can be viewed as a multithreaded computation with

no synchronization, and in the work just cited, the only algorithm with reasonable space

bounds is the random work-stealing algorithm of Karp and Zhang [65, 109], though they

did not make this observation until the later work of Zhang and Ortynski [108]. Our results

specialize to match theirs.

Likewise, most of the systems-oriented work on multithreading has ignored the space

issue. Notable exceptions include the k-bounded loops of Culler and Arvind [34, 35, 36]

and the throttling mechanism of Ruggiero and Sargeant [90]. These techniques and others

[56, 57] have met with some success, though none have any algorithmic foundation.

In algorithmic work that considers space requirements or communication costs, most

prior work has focused on cases like backtrack search with no synchronization or has fo-

cused on time and space to the exclusion of communication costs. Besides the work of

Karp, Zhang, and Ortynski already mentioned, Wu and Kung [107] proved a lower bound

on communication requirements in parallel divide-and-conquer programs, and Wu [106]

gives a distributed algorithm for scheduling parallel divide-and-conquer programs on fixed-

connection networks. These analyses focus on the tree-growing stage of divide-and-conquer

programs, so they do not consider the case when synchronization is involved. For programs

with nested fine-grained parallelism, Blelloch, Gibbons, and Matias [9] give a scheduling

algorithm and prove that it is efficient with respect to both time and space. Burton [18]

shows how to limit space in certain parallel computations without causing deadlock, and

Burton and Simpson [19] give an offline algorithm that is efficient with respect to time and

space in a very general model of multithreaded computation. In contrast, our work presents

a scheduling algorithm that is distributed and online and is provably efficient with respect to

time, space, and communication for a large class of multithreaded computations. Like the

algorithm of Karp and Zhang, our algorithm uses the technique of random work stealing.

The work-stealing idea is not a new one, but until our results, studies of work stealing

have been based on heuristic notions and the algorithmic work has focused on particularly

simple types of computations, such as the backtrack search already discussed. The work-

stealing idea dates back at least as far as Burton and Sleep’s research [20] on parallel exe-
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cution of functional programs and Halstead’s implementation of Multilisp [51, 52]. These

researchers observed that heuristically, by having each processor work as if it is the only

one (i.e., in serial, depth-first order) and having idle processors steal threads from others,

space requirements and communication requirements should be curbed. Since then, many

researchers have implemented variants on this strategy [41, 42, 44, 50, 67, 70, 77, 81, 84,

94, 103]. Cilk’s work-stealing scheduler is very similar to the schedulers in some of these

other systems, though Cilk’s algorithm uses randomness and is provably efficient.

Many multithreaded programming languages and runtime systems are based on heuristic

scheduling techniques. Though systems such as Charm [91], COOL [27, 28], Id [3, 37, 80],

Olden [22], and others [29, 31, 38, 44, 54, 55, 63, 88, 98] are based on sound heuristics that

seem to perform well in practice and generally have wider applicability than Cilk, none are

able to provide any sort of performance guarantee or accurate machine-independent perfor-

mance model. These systems require that performance-minded programmers become inti-

mate with a collection of scheduling heuristics and, in some cases, machine-specific details.

In contrast, Cilk delivers guaranteed performance and provides a machine-independent per-

formance abstraction based on work and critical path length.

The use of work and critical path length to analyze parallel algorithms and model ap-

plication performance is also not new. Work and critical path have been used in the theory

community for years to analyze parallel algorithms [64]. Blelloch [8] has developed a per-

formance model for data-parallel computations based on these same two abstract measures.

He cites many advantages to such a model over machine-based models. Cilk provides a

similar performance model for the domain of multithreaded computation.

Adaptive parallelism, as implemented in Cilk-NOW, finds earlier incarnations, though

most parallel runtime systems employ static job-scheduling strategies. Massively parallel

supercomputers such as the Cray Research T3D or the Thinking Machines CM5, for ex-

ample, either dedicate themselves to a single user at a time or gang-timeshare within fixed

size partitions [72]. Systems such as Charm [91], the Parform [21], PVM/Hence [96], and

others [29, 42, 44, 97] support parallel computing on a network of workstations. In these

systems, the set of machines on which the program runs is chosen statically by the user.

Distributed operating systems [30, 82, 98, 99] and other systems [32, 40, 68, 74, 79, 110]

provide transparent process placement and (in some cases) migration, but these systems are

geared towards large serial programs or coarse-grain distributed programs. A system that

does provide adaptive parallelism is Piranha [23, 46, 62]. (The creators of Piranha appear to

have coined the term “adaptive parallelism.”) Based on Linda [24], Piranha’s adaptive par-

allelism leverages structure in the Linda programming model much as Cilk-NOW leverages

structure in the Cilk programming model. Adaptive parallelism is also present in the Benev-
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olent Bandit Laboratory (BBL) [40], a PC-based system. The BBL system architecture is

closely related to Cilk-NOW’s. The Prospero resource manager [78] also employs a similar

system architecture. Runtime systems for the programming language COOL [28] running

on symmetric multiprocessors [101, 102] and cache-coherent, distributed, shared-memory

machines [26, 69] use process control to support adaptive parallelism. These systems rely

on special-purpose operating system and hardware support. In contrast, Cilk-NOW sup-

ports adaptive parallelism entirely in user-level software on top of commercial hardware

and operating systems.

We are currently aware of no other runtime system for a multithreaded programming

language that provides transparent fault tolerance.

1.3 Contributions of this thesis

This thesis shows that with a well-structured programming model built on an algorithmic

foundation, multithreaded programs can be executed efficiently with guaranteed and pre-

dictable performance. The principal contributions of this thesis are the following:

� A lower bound that shows that without some kind of structure, it is possible to write

multithreaded programs that are impossible to schedule efficiently for parallel exe-

cution. We give the first proof that parallelism obtained by nonstrict execution order

may be chimerical. In these cases, any attempt to exploit this parallelism requires

vastly more space per processor than required for a 1-processor execution.

� An upper bound that shows that strictness is sufficient structure for efficient parallel

execution of multithreaded programs. We show that any parallelism obtainable with

strict execution order can be exploited without using any more space per processor

than required for a 1-processor execution.

� A provably efficient scheduling algorithm for multithreaded programs. This online

and distributed algorithm is based on the popular technique of work stealing. We

prove that for the case of fully strict computations, this algorithm is simultaneously

efficient with respect to space, time, and communication. This is the first provably

efficient algorithm for scheduling multithreaded computations with synchronization.

� Cilk: a language and runtime system for multithreaded programming. The Cilk lan-

guage is based on C, and the Cilk runtime system uses the provably efficient work-
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stealing scheduler. Using several applications, we show empirically that Cilk’s work-

stealing scheduler is efficient in practice. We further show that the performance of

Cilk applications can be predicted accurately using a simple model based on two ab-

stract measures: work and critical path length.

� Cilk-NOW: an implementation of the Cilk runtime system on a network of worksta-

tions. Cilk-NOW leverages the structure in Cilk’s programming model in order to

implement adaptive parallelism and fault tolerance. These features allow Cilk pro-

grams to run efficiently on a network of workstations. With adaptive parallelism, Cilk

programs can run on a set of workstations that grows and shrinks dynamically. With

fault tolerance, Cilk programs continue to run even if some of the workstations crash.

The remainder of this thesis is organized as follows. In Chapter 2, we present a graph-

theoretic model of multithreaded computation. This model forms the basis for our analysis.

In Chapter 3, we present the lower bound showing that in general, there exist multithreaded

computations for which efficient scheduling is impossible. We defer the proof of this lower

bound to Appendix A. Additionally, in Chapter 3, we define strictness and we show that

strictness is a sufficient structure to guarantee the existence of efficient execution sched-

ules. In Chapter 4, we present and analyze the work-stealing scheduling algorithm. The

essential ideas of this algorithm are implemented in the runtime system for the Cilk multi-

threaded language. In Chapter 5, we present the Cilk language and the implementation of

the Cilk runtime system. We also show both empirically and analytically that the Cilk run-

time system delivers efficient and predictable performance. The analysis builds on the work

of Chapter 4. In Chapter 6, we present the implementation of adaptive parallelism and fault

tolerance in Cilk-NOW. Finally, in Chapter 7, we conclude and discuss current and planed

work to add distributed shared memory to Cilk using “dag consistency” [11]. The reader

interested only in the system-building contributions of this thesis may safely skip ahead to

Chapter 5 and pass over Section 5.3. Information about the current and forthcoming Cilk

software releases can be found in Appendix B.







Chapter 2

A model of multithreaded

computation

The execution of a multithreaded program grows a directed, acyclic graph of “instructions”

and a tree of “threads.” The size and longest path length of the graph provide bounds on

the achievable execution time. The height of the tree provides a bound on the achievable

execution space. In this chapter, we shall introduce our graphical model of multithreaded

computation and then use it to derive simple bounds on execution time and space. Sec-

tion 2.1 presents the model. We then use this model in Section 2.2 to derive time bounds

and in Section 2.3 to derive space bounds. This model and associated bounds equip us with

an algorithmic foundation for analyzing scheduling algorithms (Chapters 3 and 4) and pre-

dicting Cilk application performance (Chapter 5).

2.1 Multithreaded computation

A multithreaded computation models the time and space resource requirements in the exe-

cution of a multithreaded program. This model contains a graph of instructions and a tree of

threads that unfold dynamically during program execution. In this section, we present this

model and define what it means for a parallel computer to execute a multithreaded computa-

tion. In the next two sections we shall quantify and bound the time and space requirements.

A multithreaded computation is composed of a set of threads, each of which is a se-

quential ordering of unit-size instructions. A processor takes one unit of time to execute

one instruction. In the example computation of Figure 2.1, each shaded block is a thread

The research reported in this chapter is joint work with Charles Leiserson of MIT’s Laboratory for Com-
puter Science and was first published in [13].

13



14 Chapter 2. A model of multithreaded computation

Γ1

Γ2

Γ3 Γ4

Γ6

v1 v2 v14 v18 v19 v20

v3 v6 v13 v15 v16

v11v10v8v7v5v4 v12

v17v9

Γ5

Figure 2.1: A multithreaded computation. This computation contains 20 instructions v1;v2; : : : ;v20

and 6 threads Γ1;Γ2; : : : ;Γ6.

with circles representing instructions and the horizontal edges, called continue edges, rep-

resenting the sequential ordering. Thread Γ5 of this example contains 3 instructions: v10,

v11, and v12. The instructions of a thread must execute in this sequential order from the first

(leftmost) instruction to the last (rightmost) instruction. In order to execute a thread, we al-

locate for it a block of memory, called an activation frame, that the instructions of the thread

can use to store the values on which they compute.

An execution schedule for a multithreaded computation determines which processors of

a parallel computer execute which instructions at each step. In any given step of an execu-

tion schedule, each processor either executes a single instruction or sits idle. A 3-processor

execution schedule for our example computation (Figure 2.1) is shown in Figure 2.2. At

step 3 of this example, processors p1 and p2 each execute an instruction while processor

p3 sits idle. An execution schedule depends on the particular multithreaded computation,

since it must observe the sequential ordering of the instructions in each thread. Specifically,

if an instruction has a predecessor—that is, an instruction that connects to it via a continue

edge—in its thread, then no processor may execute that instruction until after the predeces-

sor has been executed.

During the course of its execution, a thread may create, or spawn, other threads. Spawn-

ing a thread is like a subroutine call, except that the spawning thread can operate concur-

rently with the spawned thread. We consider spawned threads to be children of the thread

that did the spawning, and a thread may spawn as many children as it desires. In this way,

the threads are organized into a spawn tree as indicated in Figure 2.1 by the downward-
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processor activity
step living threads p1 p2 p3

1 �1 v1

2 �1 v2

3 �1 �2 v3 v14

4 �1 �2 �3 �6 v4 v6 v15

5 �1 �2 �3 �4 �6 v5 v9 v16

6 �1 �2 �4 �5 �6 v7 v10 v17

7 �1 �2 �4 �5 v8 v18

8 �1 �2 �5 v19 v11

9 �1 �2 �5 v12

10 �1 �2 v13

11 �1 v20

Figure 2.2: A 3-processor execution schedule for the computation of Figure 2.1. This schedule
lists the living threads at the start of each step, and the instruction (if any) executed by each of the 3
processors, p1, p2, and p3, at each step. Living threads that are ready are listed in bold. The other
living threads are stalled.

pointing, shaded edges, called spawn edges, that connect threads to their spawned children.

The spawn tree is the parallel analog of a call tree. In our example computation, the spawn

tree’s root thread Γ1 has two children, Γ2 and Γ6, and thread Γ2 has three children, Γ3, Γ4,

and Γ5. Threads Γ3, Γ4, Γ5, and Γ6, which have no children, are leaf threads.

Each spawn edge goes from a specific instruction—the instruction that actually does the

spawn operation—in the parent thread to the first instruction of the child thread. An exe-

cution schedule must obey this edge in that no processor may execute an instruction in a

spawned child thread until after the spawning instruction in the parent thread has been exe-

cuted. In our example computation (Figure 2.1), due to the spawn edge (v6;v7), instruction

v7 cannot be executed until after the spawning instruction v6. Consistent with our unit-time

model of instructions, a single instruction may spawn at most one child. When the spawn-

ing instruction is executed, we allocate an activation frame for the new child thread. Once

a thread has been spawned and its frame has been allocated, we say the thread is alive or

living. When the last instruction of a thread gets executed, the thread dies and we deallo-

cate its frame. In our 3-processor execution schedule (Figure 2.2), thread Γ5 is spawned at

step 5 and dies at step 9. Therefore, it is living at steps 6, 7, 8, and 9.

Spawns introduce parallelism, but a given execution schedule may or may not exploit

this parallelism. For example, when thread Γ2 spawns children Γ3 and Γ4, these two child

threads may be executed concurrently on different processors. Alternatively, a single pro-

cessor may execute both threads, possibly interleaving their instructions in some way.
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In addition to the continue and spawn edges, a multithreaded computation may also con-

tain dependency edges, as illustrated in Figure 2.1 by the curved edges. Dependency edges

model the data and control dependencies between threads. As an example of a data depen-

dency, consider an instruction that produces a data value consumed by another instruction.

Such a producer/consumer relationship precludes the consuming instruction from executing

until after the producing instruction. A dependency edge from the producing instruction to

the consuming instruction enforces this ordering. An execution schedule must obey this

edge in that no processor may execute the consuming instruction until after the producing

instruction has been executed. For example, due to the dependency edge (v5;v11), instruc-

tion v11 cannot be executed until after v5.

Dependency edges allow threads to synchronize. Consider again the case of a depen-

dency edge that models a producer/consumer data dependency. If the execution of the con-

suming thread arrives at the consuming instruction before the producing instruction has ex-

ecuted, then execution of the consuming thread cannot continue—the thread stalls and must

suspend its execution. Once the producing instruction executes, the dependency is resolved,

thereby enabling the consuming thread to resume with its execution—the thread becomes

ready. Thus, the dependency edge allows the consuming thread to synchronize with the pro-

ducing thread. For example, at step 4 of our 3-processor execution schedule (Figure 2.2),

thread Γ1 is stalled at instruction v18, because instruction v9 has not yet been executed. At

step 5 instruction v9 is executed by processor p2, thereby enabling thread Γ1. At step 6,

thread Γ1 is ready at instruction v18. A multithreaded computation does not model the mech-

anism by which dependencies get resolved or unresolved dependencies get detected. In

Chapter 5 we present Cilk’s implementation of such a mechanism.

An execution schedule must obey the constraints given by the dependency, spawn, and

continue edges of the computation. These edges form a directed graph of instructions, and

no processor may execute an instruction until after all of the instruction’s predecessors in

this graph have been executed. So that execution schedules exist, this graph must be acyclic.

That is, it must be a directed acyclic graph, or dag. At any given step of an execution sched-

ule, an instruction is ready if all of its predecessors in the dag have been executed. Only

ready instructions may be executed.

The notion of an execution schedule is independent of any real machine characteristics.

An execution schedule simply requires that no processor executes more than one instruc-

tion per time step and every instruction is executed at a time step after all of its predecessor

instructions (which connect to it via continue, spawn, or dependency edges) have been ex-

ecuted. A given execution schedule may not be viable for a real machine, since the sched-

ule may not account for properties such as communication latency. For example, in our 3-
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processor execution schedule (Figure 2.2), instruction v11 is executed at step 8 by processor

p3 exactly one step after v8 is executed by processor p1, even though there is a dependency

between them that surely requires some latency to be resolved. In later chapters we will turn

attention to computing execution schedules for real machines.

To summarize, a multithreaded computation can be viewed as a dag of instructions con-

nected by continue, spawn, and dependency edges. The instructions are connected by con-

tinue edges into threads, and the threads form a tree with the spawn edges. When a thread

is spawned, an activation frame is allocated and this frame remains allocated as long as the

thread remains alive. A living thread may be either ready or stalled due to an unresolved

dependency.

It is important to note the difference between what we are calling a multithreaded com-

putation and a program. A multithreaded computation is the “parallel instruction stream”

resulting from the execution of a multithreaded program with a given set of inputs. Unlike a

serial computation in which the instruction stream is totally ordered, a multithreaded com-

putation only partially orders its instructions. In general, a multithreaded computation is

not a statically determined object, rather the computation unfolds dynamically during exe-

cution as determined by the program and the input data. For example, a program may have

conditionals, and therefore, the order of instructions (or even the set of instructions) exe-

cuted in a thread may not be known until the thread is actually executed. We can think of a

multithreaded computation as encapsulating both the program and the input data. The com-

putation then reveals itself dynamically during execution.

We shall characterize the time and space of an execution of a multithreaded computation

in terms of three fundamental parameters: work, critical path length, and stack depth. We

first introduce work and critical path length, which relate to the execution time, and then we

focus on stack depth, which relates to the storage requirements.

2.2 Execution time

Execution time requirements are captured in two fundamental measures of the multithreaded

computation’s graph of instructions: work and critical path length. In this section, we define

the work and critical path length of a multithreaded computation, and we use these measures

to derive simple bounds on execution time.

If we ignore the shading in Figure 2.1 that organizes instructions into threads, our mul-

tithreaded computation is just a dag of instructions. The dag corresponding to the example
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v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

critical
path

length

Figure 2.3: The dag corresponding to the computation of Figure 2.1. The critical paths, each 10
instructions long, are shown bold.

computation of Figure 2.1 is shown in Figure 2.3. We define the work of the computation to

be the total number of instructions and the critical path length to be the length of a longest

directed path in the dag. In the case of our example, the work is 20 instructions and the

critical path length is 10 instructions.

We quantify and bound the execution time of a computation in terms of the computa-

tion’s work and critical path length. For a given computation, let T(X ) denote the time to

execute the computation using a given P-processor execution schedule X , and let

TP = min
X

T(X )

denote the minimum execution time over all P-processor execution schedules X . Then T1 is

the work of the computation, since a 1-processor computer can only execute one instruction

at each step, and T∞ is the critical path length, since even with arbitrarily many processors,

each instruction on a path must execute serially. In our example dag (Figure 2.3), T1 = 20 (a

single processor can execute the instructions in the order v1;v2; : : : ;v20 since this is a topo-

logical sort of the dag), and T∞ = 10 (an infinite-processor execution schedule that achieves
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processor activity
step living threads p1 p2 p3 p4 p5 p6 � � �

1 �1 v1

2 �1 v2

3 �1 �2 v3 v14

4 �1 �2 �3 �6 v4 v6 v15

5 �1 �2 �3 �4 �6 v5 v7 v9 v16

6 �1 �2 �4 �5 �6 v8 v10 v17 v18

7 �1 �2 �5 v11 v19

8 �1 �2 �5 v12

9 �1 �2 v13

10 �1 v20

Figure 2.4: An infinite-processor execution schedule for the dag of Figure 2.3. The maximum num-
ber of instructions executed at any time step is 4 (steps 5 and 6), and the average number of instruc-
tions executed per time step is 2 (20 total instructions divided by 10 steps).

this time is shown in Figure 2.4).

The work T1 and critical path length T∞ are not intended to denote the execution time on

any real single-processor or infinite-processor machine. These quantities are abstractions

of a computation and are independent of any real machine characteristics such as commu-

nication latency. We can think of T1 and T∞ as execution times on an ideal machine with

no scheduling overhead. Nevertheless, we show in Chapter 5 that despite their abstract na-

ture, with a good scheduling algorithm, work and critical path length have a lot to say about

actual execution time of actual programs on actual machines.

Still viewing the computation as a dag, we borrow some basic results on dag scheduling

to bound TP. A computer with P processors can execute at most P instructions per step,

and since the computation has T1 instructions, we have the lower bound TP � T1=P. And,

of course, we also have the lower bound TP � T∞. Early independent work by Brent [16,

Lemma 2] and Graham [48, 49] yields the upper bound TP � T1=P+ T∞. The following

theorem extends these results minimally to show that this upper bound on TP can be obtained

by any greedy schedule: one in which at each step of the execution, if at least P instructions

are ready, then P instructions execute, and if fewer than P instructions are ready, then all

execute. Both of our example schedules (Figures 2.2 and 2.4) are greedy.

Theorem 2.1 (The greedy-scheduling theorem) For any multithreaded computation

with work T1 and critical path length T∞ and for any number P of processors, any greedy

P-processor execution schedule X achieves T(X )� T1=P+T∞.
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Figure 2.5: Step 6 in the 3-processor execution of our example computation. The faint instructions
have already been executed. The white-on-black instructions are the ones actually executed at this
step. All 3 processors do work at this step.
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Figure 2.6: Step 7 in the 3-processor execution of our example computation. At this step a processor
sits idle. Nevertheless, every instruction with in-degree 0 get executed, and consequently, the length
of the critical path is reduced by 1.
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Proof: Let G = (V;E) denote the underlying dag of the computation. Thus, we have jV j=
T1, and a longest directed path in G has length T∞. Consider a greedy P-processor execution

schedule X , where the set of instructions executed at time step t, for t = 1;2; : : : ;k, is denoted

Vt , with k = T(X ). The Vt form a partition of V .

We shall consider the progression hG0;G1;G2; : : : ;Gki of dags, where G0 = G, and for

t = 1;2; : : : ;k, we have Vt = Vt�1 �Vt and Gt is the subgraph of Gt�1 induced by Vt . In

other words, Gt is obtained from Gt�1 by removing from Gt�1 all the instructions that are

executed by X at step t and all edges incident on these instructions. We shall show that

each step of the execution either decreases the size of the dag or decreases the length of the

longest path in the dag.

We account for each step t according to jVtj. Consider a step t with jVt j = P. (Such

a step of our example 3-processor execution (Figure 2.2) is shown in Figure 2.5.) In this

case, jVt j = jVt�1j � P, so since jV j = T1, there can be at most bT1=Pc such steps. Now

consider a step t with jVt j < P. (Such a step of our 3-processor execution is shown in

Figure 2.6.) In this case, since X is greedy, Vt must contain every vertex of Gt�1 with in-

degree 0. Therefore, the length of a longest path in Gt is one less than the length of a longest

path in Gt�1. Since the length of a longest path in G is T∞, there can be no more than T∞

steps t with jVtj< P.

Consequently, the time it takes the P-processor schedule X to execute the computation

is T(X )� bT1=Pc+T∞ � T1=P+T∞.

The greedy-scheduling theorem (Theorem 2.1) can be interpreted in two important ways.

First, the time bound given by the theorem says that any greedy schedule yields an execution

time that is within a factor of 2 of an optimal schedule, which follows because T1=P+T∞ �
2maxfT1=P;T∞g and TP � maxfT1=P;T∞g. This observation was first made by Graham

[48]. Second, the greedy-scheduling theorem tells us when we can obtain linear speedup,

that is, when we can find a P-processor execution schedule X such that T(X ) = Θ(T1=P).

Specifically, when the number P of processors is no more than T1=T∞, then T1=P � T∞,

which implies that for a greedy schedule X , we have T(X ) � 2T1=P. The ratio T1=T∞ is

called the average parallelism. Looking at the example dag of Figure 2.3, if we think of the

work T1 as the area of the dag and the critical path length T∞ as the height of the dag, then the

average parallelism T1=T∞ is the average width of the dag. Our example has average par-

allelism T1=T∞ = 20=10 = 2. We can also think of the average parallelism as the average

number of instructions executed per step of a greedy, infinite-processor execution schedule

(Figure 2.4). We shall be especially interested in the regime where P = O(T1=T∞) and lin-

ear speedup is possible, since outside this regime, linear speedup is impossible to achieve

because TP � T∞.
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These results on dag scheduling have been known for years. A multithreaded computa-

tion, however, adds further structure to the dag: the partitioning of instructions into a tree

of threads. This additional structure allows us to quantify the space required in executing

a multithreaded computation. Once we have quantified space requirements, we will look

back at the greedy-scheduling theorem and consider whether there exist execution sched-

ules that achieve similar time bounds while also making efficient use of space. Of course,

we will have to quantify a space bound to capture what we mean by “efficient use of space.”

2.3 Execution space

A multithreaded computation models execution space requirements in the spawn tree of

threads. In this section, we shall focus on a single measure of this tree: stack depth. We

use this measure to derive simple bounds on execution space, and then we formalize our

goal to achieve “efficient use of space.”

In our analysis of space requirements, we shall only analyze “stack-like” memory. We

say that memory is stack-like if its allocation and deallocation obey the following rules. No

instruction allocates memory if its thread could possibly have a living child when the in-

struction is executed, and all memory allocated for a thread is deallocated before or when

the thread dies. For now, we shall simplify our notion of stack-like memory by assuming

that all memory for a thread is allocated in an activation frame when the thread is spawned

and deallocated when the thread dies. With this assumption, the space being used at any

time step t is equal to the sum of the sizes of the activation frames of the threads that are

living at step t, and the total space used in executing a computation is the maximum such

value over the course of the execution. For now, we shall also assume that a parent thread re-

mains alive until all its children die. Though these assumptions are not absolutely necessary,

they simplify our analysis of space utilization by giving the execution a natural structure. In

the next chapter, we shall see how these assumptions can be relaxed to account for arbitrary

stack-like memory.

The multithreaded computation’s spawn tree of threads naturally gives rise to a corre-

sponding tree of activation frames. We call this tree the activation tree. The activation tree

corresponding to the example computation of Figure 2.1 is shown in Figure 2.7. Each node

of the activation tree is an activation frame drawn as a block with height equal to the size of

the frame. We define the stack depth of a thread to be the sum of the sizes of the activation

frames of all its ancestors, including itself. The stack depth of a multithreaded computation
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is the maximum stack depth of any thread. In Figure 2.7, each child frame has its top aligned

with its parent’s bottom. Thus, we can view the computation’s stack depth as the depth of

the activation tree.

Γ1

Γ2

Γ3 Γ4 Γ5

Γ6 stack
depth

Figure 2.7: The activation tree corresponding to the computation of Figure 2.1.

We define the spawn subtree at any time step t to be the portion of the spawn tree con-

sisting of just those threads that are alive at step t. Analogously, we define the activation

subtree. The activation subtree at step 7 of our example 3-processor execution (Figure 2.2)

is shown in Figure 2.8. The space used at time step t equals the size of the activation subtree

at step t, and the total space used in executing a computation is the maximum such value over

the course of the execution. In our example 3-processor execution, this maximum space us-

age occurs at step 5 when the activation subtree contains a frame for every thread except Γ5.

Γ1

Γ2

Γ3 Γ4 Γ5

Γ6

Figure 2.8: The activation subtree at step 7 in the 3-processor execution of our example computa-
tion. Threads not currently living are faint.

We shall denote the space required by a P-processor execution schedule X of a multi-

threaded computation by S(X ). Since we can always simulate a P-processor execution with

a 1-processor execution that uses no more space, we have S1 � S(X ), where

S1 = min
X

S(X )
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denotes the minimum space used over all 1-processor execution schedules X .

The following simple theorem shows that the stack depth of a computation is a lower

bound on the space required to execute it.

Theorem 2.2 Let S be the stack depth of a multithreaded computation, and let X be a

P-processor execution schedule of the computation. Then, we have S(X ) � S, and more

specifically, we have S1 � S.

Proof: In any schedule, the leaf thread with greatest stack depth must be alive at some

time step. Since we assume that if a thread is alive, its parent is alive, when the deepest leaf

thread is alive, all its ancestors are alive, and hence, all its ancestors’ frames are allocated.

But, the sum of the sizes of its ancestors’ activation frames is just the stack depth. Since

S(X )� S holds for any P-processor schedule X and all P, it holds for the minimum-space

execution schedule, and hence, we have S1 � S.

Given the lower bound of stack depth on the space used by a P-processor schedule, it is

natural to ask whether the stack depth can be achieved as an upper bound. In general, the

answer is no, since all the threads in a computation may contain a cycle of dependencies that

force all of them to be simultaneously living in any execution schedule. Figure 2.9 illustrates

such a computation. For the class of “depth-first” computations, however, space equal to the

stack depth can be achieved by a 1-processor schedule.

v1 v5 v9 v13

v12v11v10v8v7v6v4v3v2

Figure 2.9: The dependency edges in this computation form cycles through all of the child threads,
though they do not create any cycle of instructions. Any execution schedule must have all 4 of this
computation’s threads simultaneously living at some step. This computation is not depth-first, since
the dependency edges, (v7;v3) and (v11;v7), violate the left-to-right depth-first order, v1;v2; : : : ;v13.

A depth-first multithreaded computation is a multithreaded computation in which the

“left-to-right depth-first” search of instructions in the computation always visits all of any

given instruction’s predecessors in the dag before it visits the given instruction. Specifically,

we define the left-to-right depth-first order of instructions as follows. If we ignore the de-

pendency edges in the dag and just look at the instructions connected by continue and spawn
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edges, we have a binary tree rooted at the first instruction of the root thread. Any instruction

with 2 children in this tree must connect to one child by a spawn edge and the other child by

a continue edge. We consider a child connected to its parent by a spawn edge to be the left

child and a child connected to its parent by a continue edge to be the right child. The left-

to-right depth-first order is then the order of instructions visited by a preorder walk of this

tree [33]. For example, the left-to-right depth-first order for the computation of Figure 2.9 is

v1;v2; : : : ;v13. Now considering the dependency edges again, a multithreaded computation

is depth-first if this left-to-right depth-first order yields a 1-processor execution schedule. In

other words, the computation is depth-first if none of its dependency edges violate its left-

to-right depth-first order. The computation of Figure 2.9 is not depth-first, since the depen-

dency edges, (v7;v3) and (v11;v7), violate the left-to-right depth-first order, v1;v2; : : : ;v13.

On the other hand, our example computation of Figure 2.1 is depth-first: 1 processor exe-

cuting instructions in the order v1;v2; : : : ;v20 is a valid execution schedule.

In fact, for depth-first computations, this left-to-right depth-first order produces a 1-

processor execution schedule which is just the familiar serial stack-based execution. This

execution begins with the root thread and executes its instructions until it either spawns a

child thread or dies. If the thread spawns a child, the parent thread is suspended to be re-

sumed only after the child thread dies; the scheduler then begins work on the child, execut-

ing the child until it either spawns or dies.

Theorem 2.3 For any depth-first multithreaded computation with stack depth S, we have

S1 = S.

Proof: At any time in a serial depth-first execution of the computation, the set of living

threads always forms a path from the root. Therefore, the space required is just the stack

depth of the computation. By Theorem 2.2, we have S1 � S, and thus the space used is the

minimum possible.

For the remainder of this thesis, we shall focus on depth-first multithreaded computa-

tions, and therefore, we shall use S1 to denote stack depth.

We now turn our attention to determining how much space S(X ) a P-processor execution

schedule X can use and still be considered efficient with respect to space usage. Our strategy

is to compare the space used by a P-processor schedule with the space S1 required by an

optimal 1-processor schedule. Of course, we can always ignore P�1 of the processors to

match the single-processor space bounds, and therefore, our goal is to use small space while

obtaining linear speedup. We argue that a P-processor execution schedule X that uses space

S(X ) = O(S1P) is efficient.
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There exist very simple multithreaded computations that require Θ(S1P) space in order

to achieve linear speedup. Consider the following computation. The root thread is a loop

that spawns a child thread for each iteration, and each child thread is a leaf. The computation

has the activation tree shown in Figure 2.10. The root activation frame is negligible in size

compared with the leaves (its children). A single processor executing this computation uses

only the space needed for a single iteration (plus the space used by the root), since upon

completion of an iteration, all the memory can be freed and then reused for the next iteration.

Thus, S1 is slightly larger than the size of a single leaf activation frame. In general, with P

processors, obtaining linear speedup requires executing Θ(P) iterations concurrently. Such

a P-processor execution schedule X has Θ(P) leaf threads living at some step, and therefore,

it uses space S(X ) = Θ(S1P).

Figure 2.10: The activation tree for a multithreaded computation that requires linear expansion of
space in order to achieve linear speedup.

A P-processor execution schedule X for which S(X ) = Θ(S1P) is said to exhibit lin-

ear expansion of space. “Reasonable” example computations such as the one just consid-

ered show that for some computations, obtaining linear speedup requires a linear expansion

of space. For other computations we would like to do better. Nevertheless, a P-processor

schedule X for which S(X ) = O(S1P) is arguably efficient, since on average, each of the P

processors needs no more memory than is used by the optimal 1-processor execution.

Recalling that any greedy execution schedule achieves linear speedup (provided that the

number of processors is at most proportional to the average parallelism), searching for exe-

cution schedules that simultaneously achieve linear speedup and linear expansion of space

appears as a reasonable and maybe even modest endeavor. In the next chapter, however,

we shall show that for some multithreaded computations—even depth-first multithreaded

computations—this search must fail. On the other hand, we also show in the next chapter

that for the class of strict (a subclass of depth-first) multithreaded computations, such effi-

cient execution schedules do exist and they are easy to find.
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Strict multithreaded computations

Does every depth-first multithreaded computation have an execution schedule that is simul-

taneously efficient with respect to time and space? And if not, what necessary and sufficient

conditions can we place on computations to guarantee the existence of such a schedule? In

this chapter, we show that the answer to the first of these questions is no, and we partially

answer the second. In Section 3.1, we present the lower bound that answers the first ques-

tion. Then in Section 3.2, we define a condition called “strictness,” and in Section 3.3, we

show that strictness is a sufficient condition to guarantee the existence of efficient execution

schedules. We leave necessary conditions as an open question. Strictness provides impor-

tant structure to computations that we leverage in a provably efficient scheduling algorithm

(Chapter 4) employed by the Cilk runtime system (Chapter 5) and in the implementation of

adaptive parallelism and fault tolerance on a network of workstations (Chapter 6).

3.1 A lower bound for the general case

In a study of resource requirements for dataflow programs published in 1988, Culler and

Arvind [36] observed applications with parallelism that they conjectured to be “useless.”

Useless parallelism is parallelism that requires excessive amounts of space resource to ex-

ploit. While Culler and Arvind argued convincingly that the observed useless parallelism

is in fact useless, they came short of a proof, and they left open the possibility of a clever

scheduler that might be able to exploit this parallelism without using excessive amounts of

space. With “loop-bounding” [34, 35, 36] techniques, they were able to eliminate the use-

less parallelism with only a small decrease in the average parallelism. Their applications

Some of the research reported in this chapter is joint work with Charles Leiserson of MIT’s Laboratory
for Computer Science and was first published in [13] and [14].

29
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had only small amounts of useless parallelism.

In this section we show that multithreaded computations may contain vast quantities

of provably useless parallelism. In particular, we show that there exist depth-first multi-

threaded computations with large amounts of average parallelism such that any execution

schedule attempting to exploit this parallelism must use excessive amounts of space—that

is, much more space per processor than required by a 1-processor execution. This lower

bound motivates our consideration, in later sections, of computations with more structure,

namely, strict multithreaded computations.

Before going on to a more formal statement of the lower bound, it is worth noting the

difference between useless and “excess” parallelism. If we have a computation with aver-

age parallelism equal to one million and we are executing this computation on a parallel

computer with two processors, then the computation has excess parallelism. Excess paral-

lelism is not necessarily useless. If our computer actually had one million processors, we

might be able to exploit all of the parallelism while using only modest amounts of space per

processor.

For any amount of serial space S1 and any (reasonably large) serial execution time T1,

we can exhibit a depth-first multithreaded computation with work T1 and stack depth S1

but with provably bad time/space tradeoff characteristics. Being depth-first, we know from

Theorem 2.3 (page 25) that our computation can be executed using 1-processor space S1.

Furthermore, we know from the greedy-scheduling theorem (Theorem 2.1, page 19) that

for any number P of processors, any greedy P-processor execution schedule X achieves

T(X )� T1=P+T∞. Our computation has critical path length T∞ �
p

T1, and consequently,

for P = O(
p

T1), a greedy schedule X yields T(X ) = O(T1=P)—linear speedup. We show,

however, that any P-processor execution schedule X achieving T(X ) = O(T1=P) must use

space S(X ) = Ω(
p

T1(P�1)). Of course,
p

T1 may be much larger than S1, and hence, this

space bound is nowhere near linear in its space expansion. A proof of the following theorem

is presented in Appendix A.

Theorem 3.1 For any S1 � 4 and any T1 � 16S2
1, there exists a depth-first multithreaded

computation with work T1, average parallelism T1=T∞ � p
T1=8, and stack depth S1 such

that the following holds. For any number P of processors and any value ρ in the range

1� ρ� 1
8T1=T∞, if X is a P-processor execution schedule that achieves speedup ρ—that is,

T(X )� T1=ρ—then S(X )� 1
4(ρ�1)

p
T1 +S1.

A word about units. Space, S1 and S(X ), is measured in bytes. Time, T1, T∞, and T(X ),

is measured in microseconds. The inequalities relating space to time all carry constants with

appropriate conversion units.
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To see what this theorem is saying, consider two possible values of ρ. Think of the work

T1 as a very large value so that the average parallelism T1=T∞ � T1=(8
p

T1)=Ω(
p

T1) is also

reasonably large. Achieving a speedup of 2 should be easy. But if we plug ρ = 2 into our

bound, we get S(X )� p
T1=4+S1 for any execution schedule X . Thus, with 2 processors

we have the space-per-processor growing proportional to
p

T1 despite the fact the S1 may be

a small constant. And suppose we want to realize speedup out of all of the
p

T1 parallelism.

Plugging ρ = Ω(
p

T1) into our lower bound, we get S(X ) = Ω(T1). With
p

T1 processors,

we again have the space-per-processor growing proportional to
p

T1.

In more recent work, Frigo, using a somewhat more general model of multithreaded

computation coupled with the same technique as used in the proof of Theorem 3.1, has ob-

tained the following stronger result [45].

Theorem 3.2 (Frigo) For any sufficiently large T1 and any ρ � 2, there exists a multi-

threaded computation with work T1 and 1-processor space requirement S1 = O(1) such that

any execution schedule X that achieves speedup ρ must use space S(X ) = Ω(T1).

With Frigo’s construction, just realizing a speedup of 2 requires space-per-processor that

grows linearly with the work.

We prove this lower bound by constructing a depth-first multithreaded computation with

the desired properties and then proving that it has no efficient execution schedule. Though

we defer the proof of Theorem 3.1 to Appendix A, the idea embodied in the constructed

computation is as follows. Each processor working on a thread of the computation spawns

several child threads all of which subsequently stall on unresolved dependencies. In order

to achieve speedup, a scheduler cannot allow all of these processors to sit idle, so some of

them must find other ready threads to work on. Again, these threads spawn several children

and then they all stall. This process repeats. Thus, to realize any speedup, the scheduler

must allow processors to continually spawn new threads even though these newly spawned

threads quickly stall still holding their space resources.

A good scheduler should not allocate resources until it is ready to utilize those resources,

and a multithreaded computation should not be structured in such a way as to force a sched-

uler into such an overcommitted situation in order to achieve speedup.

3.2 The strictness condition

A strict multithreaded computation contains dependency edges that, as we shall see, for-

bid the allocation of resources until those resources can be utilized. Specifically, in a strict
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multithreaded computation, every dependency edge goes from a thread to one of its ancestor

threads. For example, the computation shown in Figure 3.1(a) is nonstrict, since the bold

dependencies, which we refer to as nonstrict dependencies, violate the strictness condition.

But by replacing these nonstrict dependencies with new strict ones, we obtain the strict com-

putation shown in Figure 3.1(b).

This strictness condition has the following interpretation in terms of argument passing

in functional programs. For any thread Γ, we define the subcomputation rooted at Γ as Γ
and all of its descendant threads. See Figure 3.2. We think of the subcomputation as a func-

tion invocation. For any subcomputation, we can think of each edge from a thread outside

the subcomputation to a thread inside the subcomputation as passing arguments to the func-

tion invocation. In the case of a strict computation, each subcomputation has exactly one

such edge—the spawn edge from its parent. Thus, in a strict computation, no function can

be invoked until all of its arguments have been evaluated, although the arguments can be

evaluated in parallel. In other words, a strict computation requires a strict evaluation order

(as opposed to a lenient evaluation order) [100].

In later chapters we will also consider fully strict multithreaded computations. In a fully

strict computation, every dependency goes from a thread to its parent. The strict compu-

tation in Figure 3.1(b) is also fully strict. Fully strict computations are “well-structured”

in that all dependencies from a subcomputation emanate from the subcomputation’s root

thread.

In the remainder of this section, we show that strict computations are depth-first and

that any depth-first computation can be made strict (though possibly at a huge cost in lost

parallelism). We begin by showing that strict computations are depth-first.

Theorem 3.3 Every strict multithreaded computation is a depth-first computation.

Proof: Consider any strict multithreaded computation and let v1;v2; : : : ;vn (with n = T1)

denote the left-to-right, depth-first ordering of the instructions. To prove that the computa-

tion is depth-first, we must show that every dependency edge is consistent with this ordering.

In other words, we must show that for every dependency edge (v j;vk), we have j < k.

Consider such an edge, and let Γ denote the thread containing instruction vk. See Fig-

ure 3.3. The strictness conditions says that the thread containing v j must be a descendant

of Γ, so let vi be the instruction of Γ that spawns the subcomputation containing v j. Observe

that the left-to-right depth-first order numbers every instruction in this subcomputation less

than every instruction to the right of vi in Γ. Thus, since v j is in this subcomputation, we

only need to show that vk is to the right of vi in Γ.
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Γ1

Γ2

Γ3 Γ4

Γ6

v1 v2 v14 v18 v19 v20

v3 v6 v13 v15 v16
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v17v9
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(a) Nonstrict

➠

Γ1

Γ2

Γ3 Γ4

Γ6

v1 v2 v14 v18 v19 v20

v3 v6 v13 v15 v16

v11v10v8v7v5v4 v12

v17v9

Γ5

(b) Strict

Figure 3.1: (a) This multithreaded computation (the same as Figure 2.1 on page 14) is nonstrict
since it has nonstrict dependencies, shown bold, that go to non-ancestor threads. (b) If we replace
the nonstrict dependencies with new strict ones, shown bold, we obtain a strict computation since all
dependencies go from a child thread to an ancestor thread.
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Figure 3.2: The spawn edge (v5;v6) and the dependency edges, (v4;v12) and (v3;v8), pass argu-
ments into the subcomputation rooted at thread Γ3. This computation is not strict.

vi

vj

vk
Γ

Figure 3.3: Every strict computation is depth-first since a strict dependency edge such as (v j;vk)

must go to an instruction after instruction vi in Γ to avoid introducing a cycle.

Now observe that there is a path from every instruction in Γ to the left of (and including)

vi to vk: the path follows continue edges in Γ to vi; then it follows spawn and continue edges

down to v j; and then it follows our dependency edge (v j;vk). Thus, to prevent a cycle, vk

must be to the right of vi.

The transformation, illustrated in Figure 3.1, from a depth-first multithreaded computa-

tion to a strict multithreaded computation is called strictifying, and we say that the resulting

computation is the strictification of the original. For a given computation G, the computa-

tion G0 is the strictification of G if G0 is a strict computation differing from G only in its

dependency edges and for every dependency edge (vi;v j) in G, there is a path from vi to v j

in the dag of G0. This latter condition ensures that G0 is at least as “strong” as G in the sense

that any execution schedule for G0 is also an execution schedule for G. We now show that
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for any depth-first computation G, its strictification G0 exists.

Theorem 3.4 Every depth-first multithreaded computation can be strictified.

Proof: We strictify a depth-first computation by replacing each nonstrict edge with a strict

one. Specifically, let (v j;vl) denote a nonstrict edge. See Figure 3.4. Let Γ be the least-

common ancestor thread of the threads containing v j and vl . Then let vi denote the instruc-

tion of Γ that spawns the subcomputation containing v j, and let vk denote the instruction

of Γ that spawns the subcomputation containing vl . Note that vi and vk must be different

since we only allow a single instruction to perform a single spawn and Γ is defined as the

least-common ancestor of two different threads. To strictify the computation, we replace

dependency edge (v j;vl) with a new dependency edge (v j;vk) and repeat for every such

nonstrict edge. Such a replacement strengthens the dag since there is a path of spawn and

continue edges from vk to vl .

vj

vl

vi vk
Γ

Figure 3.4: Every depth-first computation can be strictified by replacing every nonstrict edge (v j;vl)

with a strict edge (v j;vk).

We must show that this transformation produces a strict computation. After the trans-

formation every dependency edge satisfies the strictness condition: every dependency edge

goes from a thread to one of its ancestors. Thus, we only need to show that each replace-

ment does not introduce any cycles in the dag. In fact, we show the stronger property that

each replacement preserves the depth-first property. Recall that the left-to-right depth-first

order, v1;v2; : : : ;vn, is defined only in terms of the continue and spawn edges, so it does not

change when we replace a dependency edge. When we replace dependency edge (v j;vl)

with (v j;vk), we must show that j < l implies j < k. With j < l, we must have vk (the in-

struction that spawns the subcomputation containing vl) to the right of vi (the instruction

that spawns the subcomputation containing v j) in Γ. And thus, we have j < k.

In some cases, strictification may reduce the parallelism by increasing the critical path

length. For example, the strictified computation of Figure 3.1(b) has a critical path length
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of 12 instructions, whereas our original example (nonstrict) computation has a critical path

length of 10 instructions. On the other hand, many computations, such as those derived

from divide-and-conquer, game-tree search, and many other programs, are naturally strict

and still have very short critical paths. In Chapter 5, when we look at the Cilk language and

runtime system, we shall see programs that give rise to strict computations with more than

ten-thousand-fold parallelism. For now, we focus on exploiting the beneficial structure of

strict computations to compute efficient execution schedules.

3.3 The busy-leaves property

Once a thread Γ has been spawned in a strict computation, a single processor can complete

the execution of the entire subcomputation rooted at Γ even if no other progress is made

on other parts of the computation. In other words, from the time the thread Γ is spawned

until the time Γ dies, there is always at least one thread from the subcomputation rooted

at Γ that is ready. In particular, no leaf thread in a strict multithreaded computation can

stall. As we shall see, this property allows an execution schedule to keep the leaves “busy.”

By combining this “busy-leaves” property with the greedy property, we derive execution

schedules that simultaneously exhibit linear speedup and linear expansion of space.

In this section, we show that for any number P of processors and any strict multithreaded

computation with work T1, critical path length T∞, and stack depth S1, there exists a P-

processor execution schedule X that achieves time T(X )� T1=P+T∞ and space S(X )� S1P

simultaneously. We give a simple online P-processor parallel algorithm—the Busy-Leaves

Algorithm—to compute such a schedule.

The Busy-Leaves Algorithm operates online in the following sense. Before the tth step,

the algorithm has computed and executed the first t � 1 steps of the execution schedule.

At the tth step, the algorithm uses only information from the portion of the computation

revealed so far in the execution to compute and execute the tth step of the schedule. In

particular, it does not use any information from instructions not yet executed or threads not

yet spawned.

The Busy-Leaves Algorithm, maintains all living threads in a single thread pool which

is uniformly available to all P processors. When spawns occur, new threads are added to

this global pool, and when a processor needs work, it removes a ready thread from the pool.

Though we describe the algorithm as a P-processor parallel algorithm, we shall not analyze

it as such. Specifically, in computing the tth step of the schedule, we allow each processor
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to add threads to the thread pool and delete threads from it. Thus, we ignore the effects of

processors contending for access to the pool. In fact, we shall only analyze properties of

the schedule itself and ignore the cost incurred by the algorithm in computing the schedule.

Scheduling overheads come into play in the next chapter.

The Busy-Leaves Algorithm operates as follows. The algorithm begins with the root

thread in the global thread pool and all processors idle. At the beginning of each step, each

processor either is idle or has a thread to work on. Those processors that are idle, begin the

step by attempting to remove any ready thread from the pool. If there are sufficiently many

ready threads in the pool to satisfy all of the idle processors, then every idle processor gets

a ready thread to work on. Otherwise, some processors remain idle. Then each processor

that has a thread to work on executes the next instruction from that thread. In general, once

a processor has a thread, call it Γa, to work on, it executes an instruction from Γa at each

step until the thread either spawns, stalls, or dies, in which case, it performs according to

the following rules.

➊ Spawns: If the thread Γa spawns a child Γb, then the processor finishes the current

step by returning Γa to the thread pool. The processor begins the next step working

on Γb.

➋ Stalls: If the thread Γa stalls, then the processor finishes the current step by returning

Γa to the thread pool. The processor begins the next step idle.

➌ Dies: If the thread Γa dies, then the processor finishes the current step by checking to

see if Γa’s parent thread Γb currently has any living children. If Γb has no live children

and no other processor is working on Γb, then the processor takes Γb from the pool

and begins the next step working on Γb. Otherwise, the processor begins the next step

idle.

Figure 3.5 illustrates these three rules in a 2-processor execution schedule computed by

the Busy-Leaves Algorithm on the strict computation of Figure 3.1(b). Rule ➊: At step 2,

processor p1 working on thread Γ1 executes v2 which spawns the child Γ2, so p1 places

Γ1 back in the pool (to be picked up at the beginning of the next step by the idle p2) and

begins the next step working on Γ2. Rule ➋: At step 11, processor p2 working on thread

Γ1 executes v19 and Γ1 stalls, so p2 returns Γ1 to the pool and begins the next step idle (and

remains idle since the thread pool contains no ready threads). Rule ➌: At step 5, processor

p1 working on Γ3 executes v5 and Γ3 dies, so p1 retrieves the parent Γ2 from the pool and

begins the next step working on Γ2.
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processor activity
step thread pool p1 p2

1 �1: v1

2 v2

3 �2: v3 �1: v14

4 �1 �2 �3: v4 �6: v15

5 �1 �2 v5 v16

6 �1 �2: v6 v17

7 �1 �2 �4: v7

8 �1 �2 v8

9 �1 �2: v9

10 �2 �5: v10 �1: v18

11 �2 v11 v19

12 �1 �2 v12

13 �1 �2: v13

14 �1: v20

Figure 3.5: A 2-processor execution schedule computed by the Busy-Leaves Algorithm for the
strict computation of Figure 3.1(b). This schedule lists the living threads in the global thread pool
at each step just after each idle processor has removed a ready thread. It also lists the ready thread
being worked on and the instruction executed by each of the 2 processors, p1 and p2, at each step.
Living threads in the pool that are ready are listed in bold. The other living threads are stalled.

Besides being greedy, for any strict computation, the schedule computed by the Busy-

Leaves Algorithm maintains the busy-leaves property: at every time step during the exe-

cution, every leaf in the spawn subtree has a processor working on it. In other words, at

every time step, every living thread that has no living descendants has a processor working

on it. We shall now prove this fact and show that it implies linear expansion of space. We

begin by showing that any schedule that maintains the busy-leaves property exhibits linear

expansion of space.

The space bound of the following lemma accounts for any stack-like memory. In partic-

ular, we allow any instruction to allocate memory for its thread provided that the instruction

cannot be executed at a time step when its thread has a living child. We allow any instruction

to deallocate memory for its thread. Additionally, we require that all memory allocated for a

thread is deallocated before the thread dies. At any given time step during the execution, the

amount of memory currently allocated for a given living thread is the net memory allocated

for the thread by all instructions that have been executed. The memory for a thread need not

be allocated in a single contiguous chunk. Nevertheless, we may continue to think of the

memory allocated for a thread as being part of an activation frame, though now the frame

may grow and shrink as the thread executes. The memory is still stack-like, because we
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allow the frame to grow only when the thread cannot have any living children. The stack

depth S1 of a computation is the amount of memory used by the 1-processor left-to-right

depth-first execution.

Lemma 3.5 For any multithreaded computation with stack depth S1, any P-processor ex-

ecution schedule X that maintains the busy-leaves property uses space bounded by S(X )�
S1P.

Proof: The busy-leaves property implies that at all time steps t, the spawn subtree has at

most P leaves. We bound the space in use at time step t by assigning every living thread

to a leaf thread and then showing that the total space currently allocated for all the threads

assigned to a given leaf is at most S1. For each living thread, we assign it to a leaf as follows.

If the thread is a leaf then it is assigned to itself. Otherwise, the thread is assigned to the same

leaf as its rightmost living child (though actually, we can choose any living child). Thus, the

threads assigned to any given leaf are all ancestors of that leaf.

Now, consider any leaf thread Γ and any ancestor thread Γ0 that is assigned to Γ. Let

v denote the instruction of Γ executed at this time step t (recall that Γ is busy), and let v0

denote the instruction of Γ0 that spawned the subcomputation containing Γ. We claim that

the amount of memory currently allocated for Γ0 is no more than the amount of memory

allocated for Γ0 at the time step in the 1-processor left-to-right depth-first execution when

the processor executes instruction v of thread Γ. We verify the claim by observing that ev-

ery instruction in Γ0 to the left of v0 has been executed, and though there may also be some

instructions to the right of v0 that have been executed, none of these latter instructions may

allocate memory, since they must have been executed while Γ0 had a living child. As for

thread Γ itself, the amount of memory currently allocated for it is equal to the amount of

memory allocated for it at the time step in the 1-processor execution when the processor

executes instruction v.

Thus, the total memory currently allocated for all threads assigned to a given leaf is at

most equal to the amount of memory in use by a 1-processor execution when the processor

is executing the given leaf, and this amount of memory is at most S1. With a maximum of

P leaf threads, the total memory currently in use is at most S1P, and this bound holds for

every time step.

The bound S1P for schedules that maintain the busy-leaves property is conservative. By

charging S1 space for each busy leaf, we may be overcharging. For some computations, by

knowing that the schedule preserves the busy-leaves property, we can appeal directly to the

fact that the spawn subtree never has more than P leaves to obtain tight bounds on space

usage [11].
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We finish this chapter by showing that for strict computations, the Busy-Leaves Algo-

rithm computes a schedule that is both greedy and maintains the busy-leaves property. Thus,

we show that every strict computation has execution schedules that are simultaneously ef-

ficient with respect to time and space.

Theorem 3.6 For any number P of processors and any strict multithreaded computation

with work T1, critical path length T∞, and stack depth S1, the Busy-Leaves Algorithm com-

putes a P-processor execution schedule X whose execution time satisfies T(X )� T1=P+T∞

and whose space satisfies S(X )� S1P.

Proof: The time bound follows directly from the greedy-scheduling theorem (Theorem 2.1,

page 19), since the Busy-Leaves Algorithm computes a greedy schedule. The space bound

follows from Lemma 3.5 if we can show that the Busy-Leaves Algorithm maintains the

busy-leaves property. We prove this fact by induction on the number of steps. At the first

step of the algorithm, the spawn subtree contains just the root thread which is a leaf, and

some processor is working on it. We must show that all of the algorithm rules preserve the

busy-leaves property. When a processor has a thread Γa to work on, it executes instructions

from that thread until it either spawns, stalls, or dies. Rule ➊: If Γa spawns a child Γb, then

Γa is not a leaf (even if it was before) and Γb is a leaf. In this case, the processor works on

Γb, so the new leaf is busy. Rule ➋: If Γa stalls, then Γa cannot be a leaf since in a strict

computation, the unresolved dependency must come from a descendant. Rule ➌: If Γa dies,

then its parent thread Γb may turn into a leaf. In this case, the processor works on Γb unless

some other processor already is, so the new leaf is guaranteed to be busy.

We now know that every strict multithreaded computatation has an efficient execution

schedule and we know how to find it. But these facts take us only so far. Execution sched-

ules must be computed efficiently online, and though the Busy-Leaves Algorithm does com-

pute efficient execution schedules and does operate online, it surely does not do so effi-

ciently, except possibly in the case of small-scale symmetric multiprocessors. This lack of

scalability is a consequence of employing a single centralized thread pool at which all pro-

cessors must contend for access. In the next chapter we present a distributed online schedul-

ing algorithm, and we prove that it is both efficient and scalable.







Chapter 4

Work stealing

To execute a multithreaded computation on a parallel computer efficiently, a scheduler must

simultaneously keep the processors busy doing work, maintain memory usage within rea-

sonable limits, and avoid communication to the greatest extent possible. In this chapter,

we give the first provably efficient online scheduling algorithm for multithreaded computa-

tions with dependencies. This algorithm is based on the technique of random “work steal-

ing,” in which processors needing work steal computational threads from other processors

chosen at random. We show analytically that for fully strict computations, this algorithm is

simultaneously efficient with respect to time, space, and communication. In Section 4.1, we

present the randomized work-stealing algorithm, give an important structural lemma, and

bound the space used by the algorithm. In Section 4.2, we give the model that we use to

analyze access contention in the algorithm, and we give a bound on the delay incurred by

random accesses in this model. We use the structural lemma of Section 4.1 and the bound of

Section 4.2 in Section 4.3 to prove analytically that for fully strict multithreaded computa-

tions, this work-stealing algorithm achieves linear speedup with little communication. The

Cilk runtime system (Chapter 5) implements this work-stealing algorithm and empirically

demonstrates its efficiency.

4.1 A randomized work-stealing algorithm

In this section, we present an online, randomized work-stealing algorithm for scheduling

multithreaded computations on a parallel computer. Also, we present an important struc-

tural lemma which is used at the end of this section to show that for fully strict computa-

The research reported in this chapter is joint work with Charles Leiserson of MIT’s Laboratory for Com-
puter Science and was first published in [14].
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tions, this algorithm causes at most a linear expansion of space. This lemma reappears in

Section 4.3 to show that for fully strict computations, this algorithm achieves linear speedup

and generates existentially optimal amounts of communication.

In the Work-Stealing Algorithm, the centralized thread pool of the Busy-Leaves Algo-

rithm is distributed across the processors. Specifically, each processor maintains a ready

deque data structure of threads. The ready deque has two ends: a top and a bottom. Threads

can be inserted on the bottom and removed from either end. A processor treats its ready

deque like a call stack, pushing and popping from the bottom. Threads that are migrated to

other processors are removed from the top.

In general, a processor obtains work by removing the thread at the bottom of its ready

deque. It starts working on the thread, call it Γa, and continues executing Γa’s instructions

until Γa spawns, stalls, dies, or enables a stalled thread, in which case, it performs according

to the following rules.

➊ Spawns: If the thread Γa spawns a child Γb, then Γa is placed on the bottom of the

ready deque, and the processor commences work on Γb.

➋ Stalls: If the thread Γa stalls, its processor checks the ready deque. If the deque con-

tains any threads, then the processor removes and begins work on the bottommost

thread. If the ready deque is empty, however, the processor begins work stealing: it

steals the topmost thread from the ready deque of a randomly chosen processor and

begins work on it. (This work-stealing strategy is elaborated below.)

➌ Dies: If the thread Γa dies, then the processor follows rule ➋ as in the case of Γa

stalling.

➍ Enables: If the thread Γa enables a stalled thread Γb, the now-ready thread Γb is

placed on the bottom of the ready deque of Γa’s processor.

A thread can simultaneously enable a stalled thread and die, in which case we first perform

rule ➍ for enabling and then rule ➌ for dying. Except for rule ➍ for the case when a thread

enables a stalled thread, these rules are analogous to the rules of the Busy-Leaves Algorithm,

and as we shall see, rule ➍ is needed to ensure that the algorithm maintains important struc-

tural properties, including the busy-leaves property.

The Work-Stealing Algorithm begins with all ready deques empty. The root thread of

the multithreaded computation is placed in the ready deque of one processor, while the other

processors start work stealing.

When a processor begins work stealing, it operates as follows. The processor becomes

a thief and attempts to steal work from a victim processor chosen uniformly at random. The
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Γk

Γ2

Γ1

Γ0

currently
executing
thread

ready
deque

Figure 4.1: The structure of a processor’s ready deque. The black instruction in each thread indi-
cates the thread’s currently ready instruction. Only thread Γk may have been worked on since it last
spawned a child. The dashed edges are the “deque edges” introduced in Section 4.3.

thief queries the ready deque of the victim, and if it is nonempty, the thief removes and

begins work on the top thread. If the victim’s ready deque is empty, however, the thief tries

again, picking another victim at random.

We now state and prove an important lemma on the structure of threads in the ready

deque of any processor during the execution of a fully strict computation. This lemma is

used later in this section to analyze execution space and in Section 4.3 to analyze execution

time and communication. Figure 4.1 illustrates the lemma.

Lemma 4.1 In the execution of any fully strict multithreaded computation by the Work-

Stealing Algorithm, consider any processor p and any given time step at which p is working

on a thread. Let Γ0 be the thread that p is working on, let k be the number of threads in

p’s ready deque, and let Γ1;Γ2; : : : ;Γk denote the threads in p’s ready deque ordered from

bottom to top, so that Γ1 is the bottommost and Γk is the topmost. If we have k > 0, then the

threads in p’s ready deque satisfy the following properties:

➀ For i = 1;2; : : : ;k, thread Γi�1 is a child of Γi.

➁ If we have k > 1, then for i = 1;2; : : : ;k�1, thread Γi has not been worked on since

it spawned Γi�1.

Proof: The proof is a straightforward induction on execution time. Execution begins with

the root thread in some processor’s ready deque and all other ready deques empty, so the
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lemma vacuously holds at the outset. Now, consider any step of the algorithm at which

processor p executes an instruction from thread Γ0. Let Γ1;Γ2; : : : ;Γk denote the k threads in

p’s ready deque before the step, and suppose that either k = 0 or both properties hold. Let Γ0
0

denote the thread (if any) being worked on by p after the step, and let Γ0
1;Γ

0
2; : : : ;Γ

0
k0 denote

the k0 threads in p’s ready deque after the step. We now look at the rules of the algorithm

and show that they all preserve the lemma. That is, either k0 = 0 or both properties hold

after the step.

Rule ➊: If Γ0 spawns a child, then p pushes Γ0 onto the bottom of the ready deque

and commences work on the child. Thus, Γ0
0 is the child, we have k0 = k+ 1 > 0, and for

j = 1;2; : : : ;k0, we have Γ0
j = Γ j�1. See Figure 4.2. Now, we can check both properties.

Property ➀: If k0 > 1, then for j = 2;3; : : :;k0, thread Γ0
j�1 is a child of Γ0

j, since before

the spawn we have k > 0, which means that for i = 1;2; : : : ;k, thread Γi�1 is a child of Γi.

Moreover, Γ0
0 is obviously a child of Γ0

1. Property ➁: If k0 > 2, then for j = 2;3; : : : ;k0�1,

thread Γ0
j has not been worked on since it spawned Γ0

j�1, because before the spawn we have

k > 1, which means that for i = 1;2; : : : ;k� 1, thread Γi has not been worked on since it

spawned Γi�1. Finally, thread Γ0
1 has not been worked on since it spawned Γ0

0, because the

spawn only just occurred.

Γk

Γ2

Γ1

Γ0

(a) Before spawn.

➠

Γ′k′

Γ′3

Γ′2

Γ′1

Γ′0

(b) After spawn.

Figure 4.2: The ready deque of a processor before and after the thread Γ0 that it is working on
spawns a child.

Rules ➋ and ➌: If Γ0 stalls or dies, then we have two cases to consider. If k = 0, the

ready deque is empty, so the processor commences work stealing, and when the processor

steals and begins work on a thread, we have k0= 0. If k > 0, the ready deque is not empty, so

the processor pops the bottommost thread off the deque and commences work on it. Thus,
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we have Γ0
0 = Γ1 (the popped thread) and k0 = k�1, and for j = 1;2; : : : ;k0, we have Γ0

j =

Γ j+1. See Figure 4.3. Now, if k0 > 0, we can check both properties. Property ➀: For j =

1;2; : : : ;k0, thread Γ0
j�1 is a child of Γ0

j, since for i = 1;2; : : : ;k, thread Γi�1 is a child of Γi.

Property ➁: If k0> 1, then for j = 1;2; : : : ;k0�1, thread Γ0
j has not been worked on since it

spawned Γ0
j�1, because before the death we have k> 2, which means that for i= 2;3; : : : ;k�

1, thread Γi has not been worked on since it spawned Γi�1.

Γk

Γ2

Γ1

Γ0

(a) Before death.

➠

Γ′k′

Γ′1

Γ′0

(b) After death.

Figure 4.3: The ready deque of a processor before and after the thread Γ0 that it is working on dies.

Rule ➍: If Γ0 enables a stalled thread, then due to the fully strict condition, that pre-

viously stalled thread must be Γ0’s parent. There are two cases to consider. If k > 0, then

the processor’s ready deque is not empty, and this parent thread must be bottommost in the

ready deque. In this case, the processor does nothing. If k = 0, then the ready deque is empty

and the processor places the parent thread on the bottom of the ready deque. In this case,

we have Γ0
0 = Γ0 and k0 = k+1 = 1 with Γ0

1 denoting the newly enabled parent. We only

have to check the first property. Property ➀: Thread Γ0
0 is obviously a child of Γ0

1.

If some other processor steals a thread from processor p, then we must have k > 0, and

after the steal we have k0 = k�1. If k0> 0 holds, then both properties are clearly preserved.

All other actions by processor p—such as work stealing or executing an instruction that does

not invoke any of the above rules—clearly preserve the lemma.

Before moving on, it is worth pointing out how it may happen that thread Γk has been

worked on since it spawned Γk�1, since Property ➁ excludes Γk. This situation arises when

Γk is stolen from processor p and then stalls on its new processor. Later, Γk is reenabled by

Γk�1 and brought back to processor p’s ready deque. The key observation is that when Γk is

reenabled, processor p’s ready deque is empty and p is working on Γk�1. The other threads

Γk�2;Γk�3; : : : ;Γ0 shown in Figure 4.1 were spawned after Γk was reenabled.
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We conclude this section by bounding the space used by the Work-Stealing Algorithm

executing a fully strict computation. This bound accounts for all stack-like memory.

Theorem 4.2 For any fully strict multithreaded computation with stack depth S1, the Work-

Stealing Algorithm run on a computer with P processors uses at most S1P space.

Proof: Like the Busy-Leaves Algorithm, the Work-Stealing Algorithm maintains the busy-

leaves property: at every time step of the execution, every leaf in the current spawn subtree

has a processor working on it. If we can establish this fact, then Lemma 3.5 (page 39) com-

pletes the proof.

That the Work-Stealing Algorithm maintains the busy-leaves property is a simple con-

sequence of Lemma 4.1. At every time step, every leaf in the current spawn subtree must

be ready and therefore must either have a processor working on it or be in the ready deque

of some processor. But Lemma 4.1 guarantees that no leaf thread sits in a processor’s ready

deque while the processor works on some other thread.

With the space bound in hand, we now turn attention to analyzing the time and commu-

nication bounds for the Work-Stealing Algorithm. Before we can proceed with this analysis,

however, we must take care to define a model for coping with the contention that may arise

when multiple thief processors simultaneously attempt to steal from the same victim.

4.2 Atomic messages and the recycling game

This section presents the “atomic-access” model that we use to analyze contention during

the execution of a multithreaded computation by the Work-Stealing Algorithm. We intro-

duce a combinatorial “balls and bins” game, which we use to bound the total amount of

delay incurred by random, asynchronous accesses in this model. We shall use the results of

this section in Section 4.3, where we analyze the Work-Stealing Algorithm.

The atomic-access model is the machine model we use to analyze the Work-Stealing

Algorithm. We assume that the machine is an asynchronous parallel computer with P pro-

cessors, and its memory can be either distributed or shared. Our analysis assumes that con-

current accesses to the same data structure are serially queued by an adversary, as in the

atomic message-passing model of [75]. This assumption is more stringent than that in the

model of Karp and Zhang [65]. They assume that if concurrent steal requests are made to a

deque, in one time step, one request is satisfied and all the others are denied. In the atomic-

access model, we also assume that one request is satisfied, but the others are queued by an
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adversary, rather than being denied. Moreover, from the collection of waiting requests for

a given deque, the adversary gets to choose which is serviced and which continue to wait.

The only constraint on the adversary is that if there is at least one request for a deque, then

the adversary cannot choose that none be serviced.

The main result of this section is to show that if requests are made randomly by P proces-

sors to P deques with each processor allowed at most one outstanding request, then the total

amount of time that the processors spend waiting for their requests to be satisfied is likely to

be proportional to the total number M of requests, no matter which processors make the re-

quests and no matter how the requests are distributed over time. In order to prove this result,

we introduce a “balls and bins” game that models the effects of queueing by the adversary.

The (P;M)-recycling game is a combinatorial game played by the adversary, in which

balls are tossed at random into bins. The parameter P is the number of balls in the game,

which is equal to the number of bins. The parameter M is the total number of ball tosses

executed by the adversary. Initially, all P balls are in a reservoir separate from the P bins.

At each step of the game, the adversary executes the following two operations in sequence:

1. The adversary chooses some of the balls in the reservoir (possibly all and possibly

none), and then for each of these balls, the adversary removes it from the reservoir,

selects one of the P bins uniformly and independently at random, and tosses the ball

into it.

2. The adversary inspects each of the P bins in turn, and for each bin that contains at

least one ball, the adversary removes any one of the balls in the bin and returns it to

the reservoir.

The adversary is permitted to make a total of M ball tosses. The game ends when M ball

tosses have been made and all balls have been removed from the bins and placed back in

the reservoir.

The recycling game models the servicing of steal requests by the Work-Stealing Algo-

rithm. We can view each ball and each bin as being owned by a distinct processor. If a ball

is in the reservoir, it means that the ball’s owner is not making a steal request. If a ball is

in a bin, it means that the ball’s owner has made a steal request to the deque of the bin’s

owner, but that the request has not yet been satisfied. When a ball is removed from a bin

and returned to the reservoir, it means that the request has been serviced.

After each step t of the game, there are some number nt of balls left in the bins, which

correspond to steal requests that have not been satisfied. We shall be interested in the total

delay D = ∑T
t=1 nt , where T is the total number of steps in the game. The goal of the adver-

sary is to make the total delay as large as possible. The next lemma shows that despite the
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choices that the adversary makes about which balls to toss into bins and which to return to

the reservoir, the total delay is unlikely to be large.

Lemma 4.3 For any ε > 0, with probability at least 1� ε, the total delay in the (P;M)-

recycling game is O(M+P lgP+P lg(1=ε)).1The expected total delay is at most M. In other

words, the total delay incurred by M random requests made by P processors in the atomic-

access model is O(M+P lgP+P lg(1=ε)) with probability at least 1� ε, and the expected

total delay is at most M.

Proof: We first make the observation that the strategy by which the adversary chooses a

ball from each bin is immaterial, and thus, we can assume that balls are queued in their bins

in a first-in-first-out (FIFO) order. The adversary removes balls from the front of the queue,

and when the adversary tosses a ball, it is placed on the back of the queue. If several balls

are tossed into the same bin at the same step, they can be placed on the back of the queue in

any order. The reason that assuming a FIFO discipline for queuing balls in a bin does not

affect the total delay is that the number of balls in a given bin at a given step is the same no

matter which ball is removed, and where balls are tossed has nothing to do with which ball

is tossed.

For any given ball and any given step, the step either finishes with the the ball in a bin

or in the reservoir. Define the delay of ball r to be the random variable δr denoting the total

number of steps that finish with ball r in a bin. Then, we have

D =
P

∑
r=1

δr : (4.1)

Define the ith cycle of a ball to be those steps in which the ball remains in a bin from the ith

time it is tossed until it is returned to the reservoir. Define also the ith delay of a ball to be

the number of steps in its ith cycle.

We shall analyze the total delay by focusing, without loss of generality, on the delay

δ = δ1 of ball 1. If we let m denote the number of times that ball 1 is tossed by the adversary,

and for i = 1;2; : : :;m, let di be the random variable denoting the ith delay of ball 1, then we

have δ = ∑m
i=1 di.

We say that the ith cycle of ball 1 is delayed by another ball r if the ith toss of ball 1

places it in some bin k and ball r is removed from bin k during the ith cycle of ball 1. Since

the adversary follows the FIFO rule, it follows that the ith cycle of ball 1 can be delayed

1Greg Plaxton of the University of Texas, Austin has improved this bound to O(M) for the case when 1=ε
is at most polynomial in M and P [85].
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by another ball r either once or not at all. Consequently, we can decompose each random

variable di into a sum di = xi2 + xi3 + � � �+ xim of indicator random variables, where

xir =

(
1 if the ith cycle of ball 1 is delayed by ball r;

0 otherwise.

Thus, we have

δ =
m

∑
i=1

P

∑
r=2

xir : (4.2)

We now prove an important property of these indicator random variables. Consider any

set S of pairs (i;r), each of which corresponds to the event that the ith cycle of ball 1 is

delayed by ball r. For any such set S, we claim that

Pr

8<
:
^

(i;r)2S

(xir = 1)

9=
;� P�jSj : (4.3)

The crux of proving the claim is to show that

Pr

8<
:xir = 1

������
^

(i0;r0)2S0
(xi0r0 = 1)

9=
;� 1=P ; (4.4)

where S0 = S�f(i;r)g, whence the claim (4.3) follows from Bayes’s Theorem.

We can derive Inequality (4.4) from a careful analysis of dependencies. Because the ad-

versary follows the FIFO rule, we have that xir = 1 only if, when the adversary executes the

ith toss of ball 1, it falls into whatever bin contains ball r, if any. A priori, this event happens

with probability either 1=P or 0, and hence, with probability at most 1=P. Conditioning on

any collection of events relating which balls delay this or other cycles of ball 1 cannot in-

crease this probability, as we now argue in two cases. In the first case, the indicator random

variables xi0r0 , where i0 6= i, tell whether other cycles of ball 1 are delayed. This information

tells nothing about where the ith toss of ball 1 goes. Therefore, these random variables are

independent of xir, and thus, the probability 1=P upper bound is not affected. In the sec-

ond case, the indicator random variables xir0 tell whether the ith toss of ball 1 goes to the

bin containing ball r0, but this information tells us nothing about whether it goes to the bin

containing ball r, because the indicator random variables tell us nothing to relate where ball

r and ball r0 are located. Moreover, no “collusion” among the indicator random variables

provides any more information, and thus Inequality (4.4) holds.

Equation (4.2) shows that the delay δ encountered by ball 1 throughout all of its cycles



52 Chapter 4. Work stealing

can be expresses as a sum of m(P�1) indicator random variables. In order for δ to equal

or exceed a given value ∆, there must be some set containing ∆ of these indicator random

variables, each of which must be 1. For any specific such set, Inequality (4.3) says that

the probability is at most P�∆ that all random variables in the set are 1. Since there are�m(P�1)
∆

�� (emP=∆)∆ such sets, we have

Prfδ � ∆g �
�

emP
∆

�∆
P�∆

=
�em

∆

�∆

� ε=P ;

whenever ∆ � maxf2em; lgP+ lg(1=ε)g.

Although our analysis was performed for ball 1, it applies to any other ball as well. Con-

sequently, for any given ball r which is tossed mr times, the probability that its delay δr ex-

ceeds maxf2emr; lgP+ lg(1=ε)g is at most ε=P. By Boole’s inequality and Equation (4.1),

it follows that with probability at least 1� ε, the total delay D is at most

D =
P

∑
r=1

maxf2emr; lgP+ lg(1=ε)g

= Θ(M+P lgP+P lg(1=ε)) ;

since M = ∑P
r=1 mr.

The upper bound E [D]�M can be obtained as follows. Recall that each δr is the sum of

(P�1)mr indicator random variables, each of which has expectation at most 1=P. There-

fore, by linearity of expectation, E [δr]�mr. Using Equation (4.1) and again using linearity

of expectation, we obtain E [D]� M.

With this bound on the total delay incurred by M random requests now in hand, we turn

back to the Work-Stealing Algorithm.

4.3 Analysis of the work-stealing algorithm

In this section, we analyze the time and communication cost of executing a fully strict mul-

tithreaded computation with the Work-Stealing Algorithm. For any fully strict computation

with work T1 and critical path length T∞, we show that the expected running time with P pro-

cessors, including scheduling overhead, is O(T1=P+T∞). Moreover, for any ε> 0, the exe-
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cution time on P processors is O(T1=P+T∞+ lgP+ lg(1=ε)), with probability at least 1�ε.

We also show that the expected total communication during the execution of a fully strict

computation is O(PT∞(1+nd)Smax), where nd is the maximum number of dependency edges

from a thread to its parent and Smax is the largest size of any activation frame.

Unlike in the Busy-Leaves Algorithm, the “ready pool” in the Work-Stealing Algorithm

is distributed, and so there is no contention at a centralized data structure. Nevertheless, it

is still possible for contention to arise when several thieves happen to descend on the same

victim simultaneously. In this case, as we have indicated in the previous section, we make

the conservative assumption that an adversary serially queues the work-stealing requests.

To analyze the running time of the Work-Stealing Algorithm executing a fully strict mul-

tithreaded computation with work T1 and critical path length T∞ on a computer with P pro-

cessors, we use an accounting argument. At each step of the algorithm, we collect P dollars,

one from each processor. At each step, each processor places its dollar in one of three buck-

ets according to its actions at that step. If the processor executes an instruction at the step,

then it places its dollar into the WORK bucket. If the processor initiates a steal attempt at

the step, then it places its dollar into the STEAL bucket. And, if the processor merely waits

for a queued steal request at the step, then it places its dollar into the WAIT bucket. We shall

derive the running time bound by bounding the number of dollars in each bucket at the end

of the execution, summing these three bounds, and then dividing by P.

We first bound the total number of dollars in the WORK bucket.

Lemma 4.4 The execution of a fully strict multithreaded computation with work T1 by the

Work-Stealing Algorithm on a computer with P processors terminates with exactly T1 dol-

lars in the WORK bucket.

Proof: A processor places a dollar in the WORK bucket only when it executes an instruc-

tion. Thus, since there are T1 instructions in the computation, the execution ends with ex-

actly T1 dollars in the WORK bucket.

Bounding the total dollars in the STEAL bucket requires a significantly more involved

“delay-sequence” argument. We first introduce the notion of a “round” of work-steal at-

tempts, and we must also define an augmented dag that we then use to define “critical” in-

structions. The idea is as follows. If, during the course of the execution, a large number of

steals are attempted, then we can identify a sequence of instructions—the delay sequence—

in the augmented dag such that each of these steal attempts was initiated while some instruc-

tion from the sequence was critical. We then show that a critical instruction is unlikely to
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remain critical across a modest number of steal attempts. We can then conclude that such a

delay sequence is unlikely to occur, and therefore, an execution is unlikely to suffer a large

number of steal attempts.

A round of work-steal attempts is a set of at least 3P but fewer than 4P consecutive

steal attempts such that if a steal attempt that is initiated at time step t occurs in a particular

round, then all other steal attempts initiated at time step t are also in the same round. We can

partition all the steal attempts that occur during an execution into rounds as follows. The

first round contains all steal attempts initiated at time steps 1;2; : : : ; t1, where t1 is the earliest

time such that at least 3P steal attempts were initiated at or before t1. We say that the first

round starts at time step 1 and ends at time step t1. In general, if the ith round ends at time

step ti, then the (i+ 1)st round begins at time step ti + 1 and ends at the earliest time step

ti+1 > ti + 1 such that at least 3P steal attempts were initiated at time steps between ti + 1

and ti+1, inclusive. These steal attempts belong to round i+ 1. By definition, each round

contains at least 3P consecutive steal attempts, and since at most P� 1 steal attempts can

be initiated in a single time step, each round contains fewer than 4P�1 steal attempts.

The sequence of instructions that make up the delay sequence is defined with respect to

an augmented dag obtained by slightly modifying the original dag. Let G denote the original

dag, that is, the dag consisting of the computation’s instructions as vertices and its continue,

spawn, and dependency edges as edges. The augmented dag G0 is the original dag G together

with some new edges, as follows. For every set of instructions u, v, and w such that (u;v) is a

spawn edge and (u;w) is a continue edge, the deque edge (w;v) is placed in G0. These deque

edges are shown dashed in Figure 4.1. We make the technical assumption that instruction

w has no incoming dependency edges, and so G0 is a dag. (If a cycle is created, a new in-

struction between u and w can be created, which does not affect our asymptotic bounds.) If

T∞ is the length of a longest path in G, then the longest path in G0 has length at most 2T∞. It

is worth pointing out that G0 is only an analytical tool. The deque edges have no effect on

the scheduling and execution of the computation by the Work-Stealing Algorithm.

The deque edges are the key to defining critical instructions. At any time step during

the execution, we say that an instruction v is critical if every instruction that precedes v

(either directly or indirectly) in G0 has been executed, that is, if for every instruction w such

that there is a directed path from w to v in G0, instruction w has been executed. A critical

instruction must be ready, since G0 contains every edge of G, but a ready instruction may

or may not be critical. Intuitively, the structural properties of a ready deque enumerated in

Lemma 4.1 guarantee that if a thread is deep in a ready deque, then it cannot be critical,

because the predecessor of the thread’s current instruction across the deque edge has not

yet been executed.
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We say that a given round of steal attempts occurs while instruction v is critical if each

of the steal attempts that comprise the round is initiated at a time step when v is critical but

is not executed.

We now formalize our definition of a delay sequence.

De�nition 4.5 A delay sequence is a 3-tuple (U;R;Π) satisfying the following conditions:

� U = (u1;u2; : : : ;uL) is a maximal directed path in G0. Specifically, for i= 1;2; : : : ;L�
1, the edge (ui;ui+1) belongs to G0, instruction u1 has no incoming edges in G0 (in-

struction u1 must be the first instruction of the root thread), and instruction uL has no

outgoing edges in G0 (instruction uL must be the last instruction of the root thread).

� R is a positive integer.

� Π = (π1;π2; : : : ;πL) is a partition of the integer R.

The delay sequence (U;R;Π) is said to occur during an execution if for each i = 1;2; : : : ;L,

at least πi steal-attempt rounds occur while instruction ui is critical.

The following lemma states that if a large number of steal attempts take place during an

execution, then a delay sequence with large R must occur.

Lemma 4.6 Consider the execution of a fully strict multithreaded computation with crit-

ical path length T∞ by the Work-Stealing Algorithm on a computer with P processors. If

at least 4P(2T∞ +R) steal attempts occur during the execution, then some (U;R;Π) delay

sequence must occur.

Proof: For a given execution in which at least 4P(2T∞+R) steal attempts take place, we

construct a delay sequence (U;R;Π) and show that it occurs. With at least 4P(2T∞+R) steal

attempts, there must be at least 2T∞+R rounds of steal attempts. We construct the delay se-

quence by identifying a set of instructions on a directed path in G0 such that for every time

step during the execution, one of these instructions is critical. There are at most 2T∞ instruc-

tions on the delay sequence, so at most 2T∞ steal-attempt rounds could overlap a time step

at which one of these instructions gets executed. Therefore, there must be at least R steal-

attempt rounds that occur while an instruction from the delay sequence is critical. To finish

the proof, we need only produce the directed path U = (u1;u2; : : : ;uL) such that for every

time step during the execution, one of the ui is critical. The partition Π = (π1;π2; : : : ;πL)

can be derived by simply letting πi equal the number of steal-attempt rounds that occur while

ui is critical.
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We work backwards from the last instruction of the root thread, which we denote by v1.

Let w1 denote the (not necessarily immediate) predecessor instruction of v1 in G0 with the

latest execution time. Let (vl1; : : : ;v2;v1) denote a directed path from w1 = vl1 to v1 in G0.

We extend this path back to the first instruction of the root thread by iterating this construc-

tion as follows. At the ith iteration we have an instruction vli and a directed path in G0 from

vli to v1. We let wi+1 denote the predecessor of vli in G0 with the latest execution time, and

let (vli+1
; : : : ;vli+1;vli), where vli+1

= wi+1, denote a directed path from wi+1 to vli in G0. We

finish iterating the construction when we get to an iteration k in which vlk is the first instruc-

tion of the root thread. Our desired sequence is then U = (u1;u2; : : : ;uL), where L = lk and

ui = vL�i+1 for i = 1;2; : : : ;L. One can verify that at every time step of the execution, one

of the vli is critical, and therefore, the sequence has the desired property.

We now establish that a critical instruction is unlikely to remain critical across a modest

number of steal-attempt rounds. Specifically, we first show that a critical instruction must

be the ready instruction of a thread that is one of the top 2 in its processor’s ready deque.

We then use this fact to show that after O(1) steal-attempt rounds, a critical instruction is

very likely to be executed.

Lemma 4.7 At every time step during the execution of a fully strict multithreaded compu-

tation by the Work-Stealing Algorithm, each critical instruction must be the ready instruc-

tion of a thread that is one of the top 2 in its processor’s ready deque.

Proof: Consider any time step, and let u0 be the critical instruction of a thread Γ0. Since

u0 is critical, Γ0 must be ready, and therefore, Γ0 must be in the ready deque of some proces-

sor p. If Γ0 is not one of the top 2 threads in p’s ready deque, then Lemma 4.1 guarantees

that each of the at least 2 threads above Γ0 in p’s ready deque is an ancestor of Γ0. Let

Γ1;Γ2; : : : ;Γk denote Γ0’s ancestor threads, where Γ1 is the parent of Γ0 and Γk is the root

thread. Further, for i = 1;2; : : : ;k, let ui denote the instruction of thread Γi that spawned

thread Γi�1, and let wi denote ui’s successor instruction in thread Γi. In the dag G0, we have

deque edges (wi;ui�1) for i= 1;2; : : : ;k. Consequently, since u0 is critical, for i= 1;2; : : : ;k,

each instruction wi must have been executed, since it is a predecessor of u0 in G0. Moreover,

because each wi is the successor of the spawn instruction ui in thread Γi, each thread Γi for

i= 1;2; : : : ;k must have been worked on since the time step at which it spawned thread Γi�1.

But Lemma 4.1 guarantees that only the topmost thread in p’s ready deque can have this

property. Thus, Γ1 is the only thread that can possibly be above Γ0 in p’s ready deque.
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Lemma 4.8 Consider the execution of any fully strict multithreaded computation by the

Work-Stealing Algorithm on a parallel computer with P� 2 processors. For any instruction

v and any number r� 4 of steal-attempt rounds, the probability that r rounds occur while the

instruction is critical is at most the probability that only 0 or 1 of the steal attempts initiated

in the r rounds choose v’s processor, which is at most e�2r.

Proof: Let ta denote the first time step at which instruction v is critical, and let p denote the

processor in whose ready deque v’s thread resides at time step ta. Suppose r steal-attempt

rounds occur while instruction v is critical, and consider the steal attempts that comprise

these rounds, of which there must be at least 3rP. Let tb denote the time step at which the last

of these steal attempts is initiated, which must occur before the time step at which instruction

v is executed. At least 3rP�P = (3r�1)P of these steal attempts must be initiated at a time

step before tb, since fewer than P steal attempts can be initiated at time step tb.

We shall first show that of these (3r�1)P steal attempts initiated while instruction v is

critical and at least 2 time steps before v is executed, at most 1 of them can choose processor

p as its target, for otherwise, v would be executed at or before tb. Recall from Lemma 4.7 that

instruction v is the ready instruction of a thread Γ, which must be among the top 2 threads

in p’s ready deque as long as v is critical.

If Γ is topmost, then another thread cannot become topmost until after instruction v is

executed, since only by processor p executing instructions from Γ can another thread be

placed on the top of its ready deque. Consequently, if a steal attempt targeting processor

p is initiated at some time step t � ta, we are guaranteed that instruction v is executed at a

time step no later than t, either by thread Γ being stolen and executed or by p executing the

thread itself.

Now, suppose Γ is second from the top in p’s ready deque with thread Γ0 on top. In

this case, if a steal attempt targeting processor p is initiated at time step t � ta, then thread

Γ0 gets stolen from p’s ready deque no later than time step t. Suppose further that another

steal attempt targeting processor p is initiated at time step t0, where ta � t � t0< tb. Then, we

know that a second steal will be serviced by p at or before time step t0+1. If this second steal

gets thread Γ, then instruction v must get executed at or before time step t0+1� tb, which is

impossible, since v is executed after time step tb. Consequently, this second steal must get

thread Γ0—the same thread that the first steal got. But this scenario can only occur if in the

intervening time period, thread Γ0 stalls and is subsequently reenabled by the execution of

some instruction from thread Γ, in which case instruction v must be executed before time

step t0+1 � tb, which is once again impossible.

Thus, we must have (3r� 1)P steal attempts, each initiated at a time step t such that

ta � t < tb, and at most 1 of which targets processor p. The probability that either 0 or 1 of
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(3r�1)P steal attempts chooses processor p is

�
1� 1

P

�(3r�1)P

+(3r�1)P

�
1
P

��
1� 1

P

�(3r�1)P�1

�
�

1� 1
P
+3r�1

��
1� 1

P

�(3r�1)P�1

� 3re�3r+3=2

� e�2r

for r � 4.

We now complete the delay-sequence argument and bound the total dollars in the STEAL

bucket.

Lemma 4.9 Consider the execution of any fully strict multithreaded computation with crit-

ical path length T∞ by the Work-Stealing Algorithm on a parallel computer with P proces-

sors. For any ε > 0, with probability at least 1�ε, at most O(P(T∞+ lg(1=ε))) work-steal

attempts occur. The expected number of steal attempts is O(PT∞). In other words, with

probability at least 1�ε, the execution terminates with at most O(P(T∞+ lg(1=ε))) dollars

in the STEAL bucket, and the expected number of dollars in this bucket is O(PT∞).

Proof: From Lemma 4.6, we know that if at least 4P(2T∞ +R) steal attempts occur, then

some delay sequence (U;R;Π) must occur. Consider a particular delay sequence (U;R;Π)

having U = (u1;u2; : : : ;uL) and Π = (π1;π2; : : : ;πL) where π1 +π2 + � � �+πL = R and L�
2T∞. We shall compute the probability that (U;R;Π) occurs.

Such a sequence occurs if, for each i = 1;2; : : : ;L, at least πi steal-attempt rounds occur

while instruction ui is critical. From Lemma 4.8, we know that the probability of at least

πi rounds occurring while a given instruction ui is critical is at most the probability that

only 0 or 1 steal attempts initiated in the πi rounds choose v’s processor, which is at most

e�2πi provided πi � 4. (For those values of i with πi < 4, we use 1 as an upper bound on

this probability.) Moreover, since the targets of the work-steal attempts in the πi rounds are

chosen independently from the targets chosen in other rounds, we can bound the probability

of the particular delay sequence (U;R;Π) occurring as follows:

Prf(U;R;Π) occursg = ∏
1�i�L

Prfπi rounds occur while ui is criticalg

� ∏
1�i�L
πi�4

e�2πi
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To bound the probability of some (U;R;Π) delay sequence occurring, we need to count the

number of such delay sequences and multiply by the probability that a particular such se-

quence occurs. The directed path U in the modified dag G0 starts at the first instruction of the

root thread and ends at the last instruction of the root thread. If the original dag has degree d,

then G0 has degree at most d+1. Consistent with our unit-time assumption for instructions,

we assume that the degree d is a constant. Since the length of a longest path in G0 is at most

2T∞, there are at most (d+1)2T∞ ways of choosing the path U = (u1;u2; : : : ;uL). There are

at most
�L+R

R

�� �2T∞+R
R

�
ways to choose Π, since Π partitions R into L pieces. As we have

just shown, a given delay sequence has at most an e�2(R�3L) � e�2(R�6T∞) chance of oc-

curring. Multiplying these three factors together bounds the probability that any (U;R;Π)

delay sequence occurs by

(d+1)2T∞

�
2T∞ +R

R

�
e�2R+12T∞ ; (4.5)

which is at most ε for R = Θ(T∞ lgd+ lg(1=ε)). Thus, the probability that at least 4P(2T∞+

R) = Θ(P(T∞ lgd+ lg(1=ε))) = Θ(P(T∞+ lg(1=ε))) steal attempts occur is at most ε. The

expectation bound follows, because the tail of the distribution decreases exponentially.

With bounds on the number of dollars in the WORK and STEAL buckets, we now state

the theorem that bounds the total execution time for a fully strict multithreaded computation

by the Work-Stealing Algorithm, and we complete the proof by bounding the number of

dollars in the WAIT bucket.

Theorem 4.10 Consider the execution of any fully strict multithreaded computation with

work T1 and critical path length T∞ by the Work-Stealing Algorithm on a parallel computer

with P processors. The expected running time, including scheduling overhead, is O(T1=P+

T∞). Moreover, for any ε > 0, with probability at least 1� ε, the execution time on P pro-

cessors is O(T1=P+T∞ + lgP+ lg(1=ε)).2
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Proof: Lemmas 4.4 and 4.9 bound the dollars in the WORK and STEAL buckets, so we

now must bound the dollars in the WAIT bucket. This bound is given by Lemma 4.3 which

bounds the total delay—that is, the total dollars in the WAIT bucket—as a function of the

number M of steal attempts—that is, the total dollars in the STEAL bucket. This lemma

says that for any ε > 0, with probability at least 1� ε, the number of dollars in the WAIT

bucket is at most a constant times the number of dollars in the STEAL bucket plus O(P lgP+

P lg(1=ε)), and the expected number of dollars in the WAIT bucket is at most the number in

the STEAL bucket.

We now add up the dollars in the three buckets and divide by P to complete this proof.

The next theorem bounds the total amount of communication that a multithreaded com-

putation executed by the Work-Stealing Algorithm performs in a distributed model. The

analysis makes the assumption that at most a constant number of bytes need be communi-

cated along a dependency edge to resolve the dependency.

Theorem 4.11 Consider the execution of any fully strict multithreaded computation with

critical path length T∞ by the Work-Stealing Algorithm on a parallel computer with P pro-

cessors. Then, the total number of bytes communicated has expectation O(PT∞(1+nd)Smax)

where nd is the maximum number of dependency edges from a thread to its parent and Smax

is the size in bytes of the largest activation frame in the computation. Moreover, for any

ε > 0, the probability is at least 1� ε that the total communication incurred is O(P(T∞ +

lg(1=ε))(1+nd)Smax).

Proof: We prove the bound for the expectation. The high-probability bound is analogous.

By our bucketing argument, the expected number of steal attempts is at most O(PT∞). When

a thread is stolen, the communication incurred is at most Smax. Communication also occurs

whenever a dependency edge enters a parent thread from one of its children and the parent

has been stolen, but since each dependency edge accounts for at most a constant number of

bytes, the communication incurred is at most O(nd) per steal. Finally, we can have com-

munication when a child thread enables its parent and puts the parent into the child’s pro-

cessor’s ready deque. This event can happen at most nd times for each time the parent is

stolen, so the communication incurred is at most ndSmax per steal. Thus, the expected total

communication cost is O(PT∞(1+nd)Smax).

The communication bounds in this theorem are existentially tight, in that there exist fully

strict computations that require Ω(PT∞(1+nd)Smax) total communication for any execution

2With Plaxton’s bound [85] for Lemma 4.3, this bound becomes TP = O(T1=P+T∞), whenever 1=ε is at
most polynomial in M and P.
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schedule that achieves linear speedup. This result follows directly from a theorem of Wu

and Kung [107], who showed that divide-and-conquer computations—a special case of fully

strict computations with nd = 1—require this much communication.

In the case when we have nd = O(1) and the algorithm achieves linear expected speedup

—that is, when P = O(T1=T∞)—the total communication is at most O(T1Smax). Moreover,

if P � T1=T∞, the total communication is much less than T1Smax, which confirms the folk

wisdom that work-stealing algorithms require much less communication than the possibly

Θ(T1Smax) communication of work-sharing algorithms.





Chapter 5

Parallel programming in Cilk

Writing a high-performance parallel application in Cilk, the programmer can focus on ex-

pressing the parallelism in the algorithm, insulated from communication protocols, load bal-

ancing, and other runtime scheduling issues. The Cilk language is an explicitly parallel,

multithreaded extension of the C language. The Cilk runtime system automatically man-

ages the low-level details involved in executing a Cilk program on a parallel machine, and

it does so with a work-stealing scheduler that is efficient in theory as well as in practice.

Moreover, Cilk gives the user an algorithmic model of application performance based on

the measures of “work” and “critical path length” which can be used to predict the runtime

of a Cilk program accurately. Consequently, a Cilk programmer can tune the performance

of his or her application by focusing on the work and critical path, unworried about machine

specific performance details.

In this chapter, we explain the Cilk language and runtime system, and then we demon-

strate the efficiency of Cilk’s scheduler both empirically and analytically. The language and

runtime system are covered in Section 5.1. In Section 5.2 we use several applications to

demonstrate empirically the efficiency of the Cilk runtime system. These applications in-

clude protein folding, graphic rendering, backtrack search, and the ?Socrates chess pro-

gram, which won second prize in the 1995 ICCA World Computer Chess Championship.

We also show in Section 5.2 how work and critical path length can be used to model accu-

rately the parallel runtime of Cilk applications. Analytically, we prove in Section 5.3 that for

“fully strict” (well-structured) programs, Cilk’s work-stealing scheduler uses space, time,

and communication all within a constant factor of optimal. To date, all of the applications

that we have coded are fully strict.

Some of the research reported in this chapter is joint work with members of the Cilk team: Matteo Frigo,
Michael Halbherr, Chris Joerg, Bradley Kuszmaul, Charles Leiserson, Rob Miller, Keith Randall, and Yuli
Zhou all currently or formerly of MIT’s Laboratory for Computer Science. Some of the material in this chapter
was previously published in [12].
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5.1 The Cilk language and runtime system

The Cilk language [10] extends C with primitives to express parallelism, and the Cilk run-

time system maps the expressed parallelism into parallel execution. A Cilk program is pre-

processed to C using the cilk2c translator1 [76] and then compiled and linked with a run-

time library to run on the target platform. Currently supported targets include the Connec-

tion Machine CM5 MPP, the Intel Paragon MPP, the Sun SparcStation SMP, the Silicon

Graphics Power Challenge SMP, and the Cilk-NOW network of workstations (Chapter 6).

In this section, we shall discuss the Cilk language primitives for expressing parallelism as

well as the runtime system mechanisms that implement these primitives. Beginning with

two simple high-level language primitives, “spawn” and “sync,” we shall then dive into the

lower-level primitives, based on “continuation-passing threads,” that are supported directly

by the runtime system. We conclude this section by discussing the work-stealing scheduler

employed by the runtime system to execute a Cilk program in parallel.

5.1.1 Spawns and syncs

A Cilk program contains one or more “Cilk procedures,” and Cilk procedures can “spawn”

children for parallel execution. A Cilk procedure is the parallel equivalent of a C function,

and a spawn is the parallel equivalent of a function call. A spawn differs from a call in that

when a procedure spawns a child, the parent and child may execute concurrently. The Cilk

language provides a mechanism to define Cilk procedures, a primitive that procedures may

use to spawn children, and a primitive that procedures may use to synchronize with their

spawned children.

To illustrate these Cilk constructs, we shall use the double recursive implementation of

the Fibonacci function as a running example. Recall that the Fibonacci function fib(n) for

n � 0 is defined as

fib(n) =

(
n if n < 2;

fib(n�1)+fib(n�2) otherwise.

Figure 5.1 shows how this function is written as a Cilk procedure. This toy example illus-

1The cilk2c translator was written by Rob Miller formerly of MIT’s Laboratory for Computer Science
and now of the School of Computer Science at Carnegie Mellon University. Rob’s implementation builds
on earlier work by Yuli Zhou formerly of MIT’s Laboratory for Computer Science and now of AT&T Bell
Laboratories.
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trates a common pattern occurring in (parallel) divide-and-conquer applications: recursive

calls (spawns) solve smaller subcases and then the partial results are merged to produce the

final result.

cilk int Fib (int n)

f if (n<2)

return n;

else

f int x, y;

x = spawn Fib (n-1);

y = spawn Fib (n-2);

sync;

return (x+y);

g
g

Figure 5.1: A Cilk procedure to compute the nth Fibonacci number.

The keyword cilk identifies a Cilk procedure. The definition of a procedure P includes

a return type, an argument list, and a body just like a C function:

cilk type P (arg-decls ...) f stmts ...g

The actual work in a Cilk procedure is performed by ordinary C code in the body, which is

executed serially. To express parallelism, a procedure may spawn children using the spawn

keyword, and it may contain synchronization points identified by the sync statement. No-

tice that besides the keywords cilk, spawn, and sync, the Cilk procedure Fib is identical

to its C counterpart (Figure 1.1, page 2).

Cilk programs create parallelism at runtime when a procedure spawns children. A Cilk

procedure may spawn a child P as follows:

[var =] spawn P (args ...)

Besides the keyword spawn, this construct is identical to a C function call. Semantically,

the difference is as follows. When a C function calls a child, the parent immediately sus-

pends executing and waits for the child to return before resuming. A C function call is syn-

chronous. On the other hand, when a Cilk procedure spawns a child, the parent need not

immediately wait for its child to return. A spawn is asynchronous. For example, when the

Fib procedure spawns its first child, the parent may continue on to the second spawn while

the child may execute concurrently on some other processor. The programmer specifies nei-

ther where nor exactly when the spawned child will execute. The scheduler makes these

decisions.
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A Cilk procedure cannot use the return values of the children it has spawned until those

children return. For example, the Fib procedure cannot add the return values x and y until

its spawned children have completed computing and returned those values. Therefore, Fib

uses the sync statement after the spawns and before the addition. The sync statement forces

the procedure to suspend executing and wait until all of its spawned children return. Once

all of its children return, the procedure may resume. Thus, the sync statement synchronizes

the parent with all of its children.

Cilk program execution begins at the Cilk procedure cilk main. Like the C main func-

tion, cilk main has the prototype

cilk int cilk main (int argc , char *argv []);

and receives the command-line arguments as its parameters. For example, Figure 5.2 gives

the definition of cilk main for the Fibonacci program. The Cilk procedures cilk main

and Fib together constitute a complete Cilk Fibonacci program.

cilk int cilk main (int argc, char *argv[])

f int n, result;

n = atoi (argv[1]);

result = spawn Fib (n);

sync;

printf ("Fib (%d) = %d.\n", n, result);

return 0;

g

Figure 5.2: The cilk main procedure for the Fibonacci program.

At runtime, a Cilk program grows a spawn tree of procedures that unfolds dynamically

as procedures spawn children. The spawn tree is rooted at cilk main and in general con-

nects procedures to the children they spawn. For example, Figure 5.3 shows the spawn tree

grown by an execution of the Fibonacci program. Notice that we use the term “procedure”

to denote both the static Cilk procedure (identified by the keyword cilk) that is part of a

Cilk program and the dynamic procedure that (as a consequence of a spawn occurring at

runtime) is a node in the spawn tree. The spawn tree is analogous to a conventional call

tree, and it is equivalent to the spawn tree described in Chapter 2 except that in Cilk we

use the term “procedure” instead of “thread.” In Cilk terminology, “thread” has a different

meaning.
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cilk_main

Fib (1)

Fib (0) Fib (1)

Fib (3)

Fib (2)

Figure 5.3: The spawn tree grown by an execution of the Fibonacci program.

5.1.2 Continuation-passing threads

Rather than work with procedures that may suspend waiting to synchronize with their chil-

dren, the Cilk runtime system manipulates and schedules nonsuspending pieces of proce-

dures called Cilk threads. Also, Cilk threads do not interact with each other in spawn/return

style as procedures do. Instead, as we shall explain shortly, Cilk threads interact in the

“continuation-passing style” supported by the runtime system.

To be executed by the Cilk runtime system, each procedure must be partitioned into one

or more threads. The first thread executed as part of a procedure is called the initial thread,

and subsequent threads are called successor threads.

For a Cilk procedure defined with the keyword cilk, the cilk2c translator automati-

cally partitions the procedure into continuation-passing threads using the sync statements

as the dividing points. For example, cilk2c partitions the Fib procedure of Figure 5.1 into

two Cilk threads: the initial thread before the sync statement and the successor thread af-

ter. Currently, cilk2c is able to perform this automatic partitioning only for procedures that

synchronize exclusively via the sync statement which waits for all spawned children.

For procedures that require more complex synchronization, Cilk provides primitives so

that the programmer can explicitly define Cilk threads in continuation-passing style. Fig-

ure 5.4 shows the Fibonacci function written explicitly as two continuation-passing threads,

the initial thread fib and its successor sum. Essentially, cilk2c translates the Fib proce-

dure of Figure 5.1 as if it had been written as in Figure 5.4.

The Cilk keyword thread identifies a Cilk thread. The definition of a Cilk thread T

includes an argument list and a body similar to a C function definition:

thread T (arg-decls ...) f stmts ...g
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thread fib (cont int k, int n)

f if (n<2)

send argument (k, n);

else

f cont int x, y;

spawn next sum (k, ?x, ?y);

spawn fib (x, n-1);

spawn fib (y, n-2);

g
g

thread sum (cont int k, int x, int y)

f send argument (k, x+y);

g

Figure 5.4: A Cilk procedure, written in explicit continuation-passing style, to compute the nth
Fibonacci number. This procedure contains two threads, fib and its successor sum.

The actual work in a Cilk thread is performed by ordinary C code in the body, which is exe-

cuted serially and without suspending. Threads are not allowed to contain sync statements.

spawn

spawn_
next

send_argument
or

accumulate

successor
thread

child
thread

child
thread

Figure 5.5: A thread spawns child threads to create parallelism and a successor thread to wait for the
values “returned” by the children. The background shading denotes procedures. The child threads
each start a new child procedure, and the successor thread is part of the same procedure as its prede-
cessor.

A Cilk thread generates parallelism at runtime by spawning a child thread that becomes

the initial thread of a child procedure. After spawning one or more children, the parent

thread cannot then wait for its children to return—in Cilk, threads never suspend. Rather,

as illustrated in Figure 5.5, the parent thread must additionally spawn a successor thread to

wait for the values “returned” from the children. The spawned successor is part of the same

procedure as its predecessor. The child procedures return values to the parent procedure by

sending those values to the parent’s waiting successor. Thus, a thread may wait to begin exe-

cuting, but once it begins executing, it cannot suspend. Notice that we use the term “thread”
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to denote both the static Cilk thread (identified by the keyword thread) that is part of a Cilk

program and the dynamically spawned thread that occurs at runtime. Spawning successor

and child threads is done with the spawn next and spawn keywords respectively. Sending

a value to a waiting thread is done with the send argument or accumulate statement. The

Cilk runtime system implements these primitives using two basic data structures, closures

and continuations, as illustrated in Figure 5.6.

waiting closure

T1
1
17

6

a:

ready closure

T2
0
42
a:1

b:

code

continuation

join
counters

arguments

Figure 5.6: Closures and continuations.

Closures are data structures employed by the runtime system to keep track of and sched-

ule the execution of spawned threads. Whenever a thread is spawned, the runtime system

allocates a closure for it from a simple heap. A closure for a thread T consists of a pointer to

the code for T , a slot for each of T ’s specified arguments, and a join counter indicating the

number of missing arguments that need to be supplied before T is ready to run. The closure,

or equivalently the spawned thread, is ready if it has obtained all of its arguments, and it is

waiting if some arguments are missing. Figure 5.7 shows a closure for the fib thread: its

join counter is zero, so the thread is ready, and it contains two arguments, a continuation k

(as explained below) and an integer n. Notice that these two arguments are the formal argu-

ments declared in the definition of the fib thread. To run a ready closure, the Cilk scheduler

invokes the thread using the values in the closure as arguments. When the thread dies, the

closure is freed.

A continuation is a global reference to an empty argument slot of a closure, implemented

as a compound data structure containing a pointer to a closure and an offset that designates

one of the closure’s argument slots (see Figure 5.6). Continuations are typed with the C data

type of the slot in the closure. In the Cilk language, continuations are declared by the type

modifier keyword cont. For example, the fib thread declares two integer continuations, x
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fib
0

n=9
k

Figure 5.7: A closure for the fib thread.

and y.

A thread spawns a successor thread by creating a closure for the successor. The succes-

sor thread is part of the same procedure as its predecessor. Spawning a successor thread T

is specified in the Cilk language as follows:

spawn next T (args ...)

This statement allocates a closure for thread T , fills in all available arguments, and initializes

the join counter to the number of missing arguments. Available arguments are specified as

in C. To specify a missing argument, the user specifies a continuation variable preceded

by a question mark. For example, in the fib thread, the statement spawn next sum (k,

?x, ?y) allocates a closure with sum as the thread and three argument slots as shown in

Figure 5.8. The first slot is initialized with the continuationk and the last two slots are empty.

The continuation variables x and y are initialized to refer to these two empty slots, and the

join counter is set to 2. This closure is waiting. In general, if the closure is ready, then

spawn next causes the closure to be immediately posted to the scheduler for execution. In

typical applications, successor threads are spawned waiting for some missing arguments.

fib
0

9

sum
2

x:
y:

Figure 5.8: When the fib thread spawns its successor sum, it creates a new closure with sum as
the thread and two empty argument slots referred to by the continuations x and y. The background
shading denotes that both threads are part of the same procedure.

A thread spawns a child thread by creating a closure for the child. The child thread is the

initial thread of a newly spawned child procedure. Spawning a child thread T is specified

in the Cilk language as follows:



5.1. The Cilk language and runtime system 71

spawn T (args ...)

This statement is semantically identical to spawn next, but it informs the scheduler that the

new closure should be treated as a child, as opposed to a successor. (This difference will be

explained when we discuss the scheduler.) For example, the fib thread spawns two children

as shown in Figure 5.9. The statement spawn fib (x, n-1) allocates a closure with fib

as the thread and two argument slots. The first slot is initialized with the continuation x

which, as a consequence of the previous statement, refers to a slot in its parent’s successor

closure. The second slot is initialized with the value of n-1. The join counter is set to zero,

so the thread is ready, and it is posted to the scheduler for execution. In typical applications,

child threads are spawned with no missing arguments.

fib
0

9

sum
2

fib
0

7

fib
0

8

Figure 5.9: When the fib thread spawns children, it creates for each child a new closure with fib

as the thread and no empty argument slots. Each child closure has a continuation referring to an
empty slot in the parent’s successor closure. Each child thread is the initial thread of a new child
procedure.

A thread sends a value to a waiting thread by placing the value into an argument slot of

the waiting thread’s closure. Cilk provides the following primitives to send values from one

thread to another:

send argument (k , value )

accumulate (k , op , value )

The send argument statement sends the value value to the empty argument slot of a wait-

ing closure specified by the continuation k . The types of the continuation and the value
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must be compatible. The join counter of the waiting closure is decremented, and if it be-

comes zero, then the closure is ready and is posted to the scheduler. For example, when the

fib thread reaches the boundary case, the statement send argument (k, n) writes the

value of n into an empty argument slot in the parent procedure’s waiting sum closure and

decrements its join counter. When the sum closure’s join counter reaches zero, it is posted

to the scheduler. When the sum thread gets executed, it adds its two arguments, x and y,

and then uses send argument to “return” this result up to its parent procedure’s waiting

sum thread. Cilk also provides a special type of continuation called a signal that can be

used in a send argument without any value . The accumulate statement is the same as

send argument except that it uses the function op to accumulate value into the argument

slot.

This style of linking Cilk threads is called continuation-passing style [2] and contrasts

with the spawn/return style that links procedures. In spawn/return style, a spawned child

always returns to its parent, and the parent, after performing the spawn, can suspend, waiting

for the child to return. That the child should return values and control to its parent is implicit

in the spawn/return style. In continuation-passing style, a spawned child never returns to its

parent. Cilk threads never return, and they never sync. Instead, a spawned child is passed

a continuation as an explicit argument that specifies where values and control should go

when it dies.

At runtime, a Cilk program grows a dag (directed, acyclic graph) of threads that unfolds

dynamically as threads spawn successors and children. For example, Figure 5.10 shows

the dag grown by an execution of the Fibonacci program. The dag contains an edge from

one thread to another if either the first thread spawned the second (with spawn next or

spawn) or the first thread sends a value (or signal) to the second (with send argument or

accumulate). We can think of closures and continuations as the data structures employed

by the runtime system to keep track of the dag as it grows. This dag is analogous to the dag

described in Chapter 2 except that rather than having unit-size instructions as dag nodes,

this dag has arbitrary-size threads. We shall examine the consequences of this difference in

Section 5.3.

To summarize the Fibonacci procedure, it consists of two threads, fib and its successor

sum. Reflecting the explicit continuation passing style, the first argument to each thread is

the continuation specifying where the “return value” should be placed. When the fib thread

is invoked, it first checks to see if the boundary case has been reached, in which case it uses

send argument to send the value of n as an argument to the waiting thread specified by

continuation k. Otherwise, it spawns the successor thread sum, as well as two children to

compute the two subcases. Each of these two children is given a continuation specifying to
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fib sum

fib sumfib

fib fib

Figure 5.10: The dag grown by an execution of the Fibonacci program. Dag edges created by
spawn next are horizontal; dag edges created by spawn are straight, shaded, and point downward;
and dag edges created by send argument are curved and point upwards. The background shading
groups the threads into procedures.

which argument in the sum thread it should send its result. The sum thread simply adds the

two arguments when they arrive and sends this result to the waiting thread designated by k.

Although writing in explicit continuation passing style is somewhat onerous for the pro-

grammer, the decision to break procedures into separate nonsuspending threads with heap-

allocated closures simplifies the Cilk runtime system. Each Cilk thread runs to completion

without suspending and leaves the C runtime stack empty when it dies. A common alter-

native [22, 47, 52, 63, 77, 81] is to directly support spawn/return threads (or procedures)

in the runtime system, possibly with stack-allocated activation frames. In such a system,

threads can suspend waiting for synchronization and leave temporary values on the calling

stack. Consequently, this alternative strategy requires that the runtime system either em-

ploys multiple stacks or a mechanism to save these temporaries in heap-allocated storage.

Another advantage of Cilk’s strategy is that it allows multiple children to be spawned from

a single nonsuspending thread, which saves on context switching. In Cilk, r children can be

spawned and executed with only r+1 context switches, whereas the alternative of suspend-

ing whenever a thread is spawned causes 2r context switches. Since our primary interest is

in understanding how to build runtime systems that efficiently schedule multithreaded pro-

grams, we chose the alternative of burdening the programmer with a requirement which is

perhaps less elegant linguistically, but which yields a simple and portable runtime system
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implementation.

Cilk supports a variety of additional primitives that give the programmer greater control

over runtime performance. For example, when the last action of a thread is to spawn a child,

the programmer can use the keyword call instead of spawn to call the new thread imme-

diately without invoking the scheduler. Additionally, if the called thread is the same as the

callee, then the programmer can use the tail call keyword that produces a “tail call” to

avoid both the scheduler overhead and the C function call overhead. Cilk also allows arrays

and subarrays to be passed as arguments to threads. Other features include various abilities

to override the scheduler’s decisions, including how to pack and unpack data when a closure

is migrated from one processor to another.

5.1.3 The Cilk work-stealing scheduler

Cilk’s scheduler uses the technique of work stealing in which a processor (the thief) who

runs out of work selects another processor (the victim) from whom to steal work, and then

steals the shallowest ready thread in the victim’s spawn tree. Cilk’s strategy is for thieves to

choose victims at random. Essentially, Cilk implements the scheduling algorithm described

and analyzed in Chapter 4. We shall now present Cilk’s implementation of this algorithm.

At runtime, each processor maintains a local ready pool to hold ready closures. Each

closure has an associated level, which corresponds to the thread’s depth in the spawn tree.

The closures for the threads in the cilk main procedure have level 0; the closures for the

threads in cilk main’s child procedures have level 1; and so on. The ready pool is an array,

illustrated in Figure 5.11, in which the Lth element contains a linked list of all ready closures

having level L.

Cilk begins executing the user program by initializing all ready pools to be empty, plac-

ing the initial thread of cilk main into the level-0 list of Processor 0’s pool, and then start-

ing a scheduling loop on each processor.

At each iteration through the scheduling loop, a processor first checks to see whether its

ready pool is empty. If it is, the processor commences work stealing, which will be described

shortly. Otherwise, the processor performs the following steps:

1. Remove the closure at the head of the list of the deepest nonempty level in the ready

pool.

2. Extract the thread from the closure, and invoke it.

As a thread executes, it may spawn or send arguments to other threads. When the thread

dies, control returns to the scheduling loop which advances to the next iteration.
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Figure 5.11: A processor’s ready pool. At each iteration through the scheduling loop, the processor
executes the closure at the head of the deepest nonempty level in the ready pool. If the ready pool
is empty, the processor becomes a thief and steals the closure at the tail of the shallowest nonempty
level in the ready pool of a victim processor chosen uniformly at random.
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When a thread at level L performs a spawn of a child thread T , the processor executes

the following operations:

1. Allocate and initialize a closure for T .

2. Copy the available arguments into the closure, initialize any continuations to point to

missing arguments, and initialize the join counter to the number of missing arguments.

3. Label the closure with level L+1.

4. If there are no missing arguments, post the closure to the ready pool by inserting it at

the head of the level-(L+1) list.

Execution of spawn next is similar, except that the closure is labeled with level L and, if it

is ready, posted to the level-L list.

When a thread performs a send argument (k , value ), the processor executes the

following operations:

1. Find the closure and argument slot referenced by the continuation k .

2. Place value in the argument slot, and decrement the join counter of the closure.

3. If the join counter goes to zero, post the closure to the ready pool at the appropriate

level.

Execution of accumulate is similar, except that the value is accumulated into the argu-

ment slot with a combining function. When the continuation k refers to a closure on a re-

mote processor, network communication ensues. In this case, the processor that initiated

the send argument function sends a message to the remote processor to perform the op-

erations. The only subtlety occurs in step 3. If the closure must be posted, it is posted to

the ready pool of the initiating processor, rather than to that of the remote processor. This

policy is necessary for the scheduler to be provably efficient, but as a practical matter, we

have also had success with posting the closure to the remote processor’s pool.

If a processor begins an iteration of the scheduling loop and finds that its ready pool is

empty, the processor becomes a thief and commences work stealing as follows:

1. Select a victim processor uniformly at random.

2. If the victim’s ready pool is empty, go back to step 1.

3. If the victim’s ready pool is nonempty, extract the closure from the tail of the list in

the shallowest nonempty level of the ready pool, and execute it.
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Work stealing is implemented with a simple request-reply communication protocol between

the thief and victim.

Why steal work from the shallowest level of the ready pool? The reason is two-fold—

one heuristic and one algorithmic. First, to lower communication costs, we would like to

steal large amounts of work, and in a tree-structured computation, shallow threads are likely

to spawn more work than deep ones. This heuristic notion is the justification cited by earlier

researchers [20, 42, 52, 77, 103] who proposed stealing work that is shallow in the spawn

tree. We cannot, however, prove that shallow threads are more likely to spawn work than

deep ones. What we prove in Section 5.3 is the following algorithmic property. The threads

that are on the “critical path” in the dag, are always at the shallowest level of a processor’s

ready pool. Consequently, if processors are idle, the work they steal makes progress along

the critical path.

5.2 Performance of Cilk applications

The Cilk runtime system executes Cilk applications efficiently and with predictable perfor-

mance. Specifically, for dynamic, asynchronous, tree-like applications, Cilk’s work-stealing

scheduler produces near optimal parallel speedup while using small amounts of space and

communication. Furthermore, Cilk application performance can be modeled accurately as a

simple function of “work” and “critical path length.” In this section, we empirically demon-

strate these facts by experimenting with several applications. This section begins with a look

at these applications and then proceeds with a look at the performance of these applications.

We close this section with a look at application performance modeling. The empirical re-

sults of this section confirm the analytical results of the next section.

5.2.1 Cilk applications

We experimented with the Cilk runtime system using several applications, some synthetic

and some real. The applications are described below:

� fib is the same as was presented in Section 5.1, except that the second recursive

spawn is replaced by a tail call that avoids the scheduler. This program is a good

measure of Cilk overhead, because the thread length is so small.

� queens is a backtrack-search program that solves the problem of placing N queens

on a N�N chessboard so that no two queens attack each other. The Cilk program is
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based on serial code by R. Sargent of MIT’s Media Laboratory. Thread length was

enhanced by serializing the bottom 7 levels of the search tree.

� pfold is a protein-folding program that finds hamiltonian paths in a three-dimensional

grid using backtrack search [83]. Written by Chris Joerg of MIT’s Laboratory for

Computer Science and V. Pande of MIT’s Center for Material Sciences and Engineer-

ing, pfold was the first program to enumerate all hamiltonian paths in a 3�4�4 grid.

We timed the enumeration of all paths starting with a certain sequence.

� ray is a parallel program for graphics rendering based on the serial POV-Ray program,

which uses a ray-tracing algorithm. The entire POV-Ray system contains over 20;000

lines of C code, but the core of POV-Ray is a simple doubly nested loop that iterates

over each pixel in a two-dimensional image. For ray we converted the nested loops

into a 4-ary divide-and-conquer control structure using spawns.2 Our measurements

do not include the approximately 2:4 seconds of startup time required to read and pro-

cess the scene description file.

� knary(n,k,r) is a synthetic benchmark whose parameters can be set to produce a

variety of values for work and critical path length. It generates a tree of depth n and

branching factor k in which the first r children at every level are executed serially and

the remainder are executed in parallel. At each node of the tree, the program runs an

empty “for” loop for 400 iterations.

� ?Socrates is a parallel chess program that uses the Jamboree search algorithm [58,

70] to parallelize a minmax tree search. The work of the algorithm varies with the

number of processors, because it does speculative work that may be aborted during

runtime. ?Socrates was written by a team of engineers headed by Charles Leiser-

son of MIT’s Laboratory for Computer Science with Don Dailey formerly of Heuristic

Software and Chris Joerg of MIT’s Laboratory for Computer Science as the lead pro-

grammers.3 ?Socrates won second prize in the 1995 ICCA World Computer Chess

Championship running on the 1824-node Intel Paragon at Sandia National Laborato-

ries.
2Initially, the Cilk ray program was about 5 percent faster than the serial POV-Ray program running on one

processor. The reason was that the divide-and-conquer decomposition performed by the Cilk code provides
better locality than the doubly nested loop of the serial code. Modifying the serial code to imitate the Cilk
decomposition improved its performance. Timings for the improved version are given in Figure 5.13.

3The other members of the ?Socrates team are I.M. Larry Kaufmann formerly of Heuristic Software,
Robert Blumofe of MIT’s Laboratory for Computer Science, Bradley Kuszmaul formerly of MIT’s Laboratory
for Computer Science and now of the Computer Science Department at Yale University, Rolf Riesen of Sandia
National Laboratories, and Yuli Zhou formerly of MIT’s Laboratory for Computer Science and now of AT&T
Bell Laboratories.
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Many of these applications place heavy demands on the runtime system due to their dy-

namic and irregular nature. For example, in the case of queens and pfold, the size and

shape of the backtrack-search tree cannot be determined without actually performing the

search, and the shape of the tree often turns out to be highly irregular. With speculative

work that may be aborted, the ?Socrates minmax tree carries this dynamic and irregular

structure to the extreme. In the case of ray, the amount of time it takes to compute the color

of a pixel in an image is hard to predict and may vary widely from pixel to pixel, as illus-

trated in Figure 5.12. In all of these cases, high performance demands efficient, dynamic

load balancing at runtime.

(a) Ray-traced image. (b) Work at each pixel.

Figure 5.12: (a) An image rendered with the ray program. (b) This image shows the amount of
time ray took to compute each pixel value. The whiter the pixel, the longer ray worked to compute
the corresponding pixel value.

All experiments were run on a CM5 supercomputer. The CM5 is a massively parallel

computer based on 32MHz SPARC processors with a fat-tree interconnection network [72].

The Cilk runtime system on the CM5 performs communication among processors using the

Strata [17] active-message library.

5.2.2 Application performance

By running our applications and measuring a suite of performance parameters, we empiri-

cally answer a number of questions about the effectiveness of the Cilk runtime system. We

focus on the following questions. How efficiently does the runtime system implement the

language primitives? As we add processors, how much faster will the program run? How
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much more space will it require? And how much more communication will it perform?

We show that, for dynamic, asynchronous, tree-like programs, the Cilk runtime system ef-

ficiently implements the language primitives, and is simultaneously efficient with respect

to time, space, and communication. In Section 5.3, we reach the same conclusion by ana-

lytic means, but in this section we focus on empirical data from the execution of our Cilk

programs.

The execution of a Cilk program with a given set of inputs grows a Cilk computation that

consists of a tree of procedures and a dag of threads. These structures were introduced in

the previous section. We benchmark our applications based on two fundamental measures

of the computation: work and critical path length.

The work, denoted by T1, is the time to execute the Cilk computation on one proces-

sor, which corresponds to the sum of the execution times of all the threads in the dag. The

method used to measure T1 depends on whether the program is deterministic. For determin-

istic programs, the computation only depends on the program and its inputs, and hence, it

is independent of the number of processors and runtime scheduling decisions.4 All of our

applications, except ?Socrates, are deterministic. For these deterministic applications, the

work performed by any P-processor run of the program is equal to the work performed by a

1-processor run (with the same input values), so we measure the work T1 directly by timing

the 1-processor run. The ?Socrates program, on the other hand, uses speculative execu-

tion, and therefore, the computation depends on the number of processors and scheduling

decisions made at runtime. In this case, timing a 1-processor run is not a reasonable way to

measure the work performed by a run with more processors. We must realize that the work

T1 of an execution with P processors is defined as the time it takes 1-processor to execute

the same computation, not the same program (with the same inputs). For ?Socrates we

estimate the work of a P-processor run by performing the P-processor run and timing the

execution of every thread and summing. This method yields an underestimate since it does

not include scheduling costs. In either case, a P-processor execution of a Cilk computation

with work T1 must take time at least T1=P.5 A P-processor execution that takes time equal

to this T1=P lower bound is said to achieve perfect linear speedup.

The critical path length, denoted by T∞, is the time to execute the Cilk computation with

infinitely many processors, which corresponds to the largest sum of thread execution times

along any path in the dag. We measure critical path length by timestamping each thread in

the dag with the earliest time at which it could have been executed. Specifically this times-

4Randomized programs are deterministic if we consider the sequence of values generated by the source of
randomness to be inputs to the program.

5In practice, we sometimes beat the T1=P lower bound. Such superlinear speedup is a consequence of the
fact that as we add processors, we also add other physical resources such as registers, cache, and main memory.



fib queens pfold ray knary knary ?Socrates ?Socrates

(33) (15) (3,3,4) (500,500) (10,5,2) (10,4,1) (depth 10) (depth 10)

(32 proc.) (256 proc)
(computation parameters)

Tserial 8.487 252.1 615.15 729.2 288.6 40.993 1665 1665
T1 73.16 254.6 647.8 732.5 314.6 45.43 3644 7023
Tserial=T1 0.116 0.9902 0.9496 0.9955 0.9174 0.9023 0.4569 0.2371
T∞ 0.000326 0.0345 0.04354 0.0415 4.458 0.255 3.134 3.24
T1=T∞ 224417 7380 14879 17650 70.56 178.2 1163 2168
threads 17,108,660 210,740 9,515,098 424,475 5,859,374 873,812 26,151,774 51,685,823
thread length 4.276µs 1208µs 68.08µs 1726µs 53.69µs 51.99µs 139.3µs 135.9µs

(32-processor experiments)
TP 2.298 8.012 20.26 21.68 15.13 1.633 126.1 -
T1=P+T∞ 2.287 7.991 20.29 22.93 14.28 1.675 117.0 -
T1=TP 31.84 31.78 31.97 33.79 20.78 27.81 28.90 -
T1=(P �TP) 0.9951 0.9930 0.9992 1.0558 0.6495 0.8692 0.9030 -
space/proc. 70 95 47 39 41 42 386 -
requests/proc. 185.8 48.0 88.6 218.1 92639 3127 23484 -
steals/proc. 56.63 18.47 26.06 79.25 18031 1034 2395 -

(256-processor experiments)
TP 0.2892 1.045 2.590 2.765 8.590 0.4636 - 34.32
T1=P+T∞ 0.2861 1.029 2.574 2.903 5.687 0.4325 - 30.67
T1=TP 253.0 243.7 250.1 265.0 36.62 98.00 - 204.6
T1=(P �TP) 0.9882 0.9519 0.9771 1.035 0.1431 0.3828 - 0.7993
space/proc. 66 76 47 32 48 40 - 405
requests/proc. 73.66 80.40 97.79 82.75 151803 7527 - 30646
steals/proc. 24.10 21.20 23.05 18.34 6378 550 - 1540

Figure 5.13: Performance of Cilk on various applications. All times are in seconds, except where noted.
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tamp is the maximum of the earliest time that the thread could have been spawned and, for

each argument, the earliest time that the argument could have been sent. These values, in

turn, are computed from the timestamp of the thread that performed the spawn or sent the

argument. In particular, if a thread performs a spawn, then the earliest time that the spawn

could occur is equal to the earliest time at which the thread could have been executed (its

timestamp) plus the amount of time the thread ran for until it performed the spawn. The

same property holds for the earliest time that an argument could be sent. The initial thread

of cilk main is timestamped zero, and the critical path length is then computed as the maxi-

mum over all threads of its timestamp plus the amount of time it executes for. The measured

critical path length does not include scheduling and communication costs. A P-processor

execution of a Cilk computation must take at least as long as the computation’s critical path

length T∞. Thus, if T∞ exceeds T1=P, then perfect linear speedup cannot be achieved.

Figure 5.13 is a table showing typical performance measures for our Cilk applications.

Each column presents data from a single run of a benchmark application. We adopt the fol-

lowing notations. For each application, we have an efficient serial C implementation, com-

piled using gcc -O2, whose measured runtime is denoted Tserial. The Cilk computation’s

work T1 and critical path length T∞ are measured on the CM5 as described above. The mea-

sured execution time of the Cilk program running on P processors of the CM5 is given by TP.

The row labeled “threads” indicates the number of threads executed, and “thread length” is

the average thread length (work divided by the number of threads).

Certain derived parameters are also displayed in the table. The ratio Tserial=T1 is the ef-

ficiency of the Cilk program relative to the C program. The ratio T1=T∞ is the average par-

allelism. The value T1=P+ T∞ is a simple model of the runtime, which will be discussed

later. The speedup is T1=TP, and the parallel efficiency is T1=(P � TP). The row labeled

“space/proc.” indicates the maximum number of closures allocated at any time on any pro-

cessor. The row labeled “requests/proc.” indicates the average number of steal requests

made by a processor during the execution, and “steals/proc.” gives the average number of

closures actually stolen.

The data in Figure 5.13 shows two important relationships: one between efficiency and

thread length, and another between speedup and average parallelism.

Considering the relationship between efficiency Tserial=T1 and thread length, we see that

for programs with moderately long threads, the Cilk runtime system induces little overhead.

The queens, pfold, ray, and knary programs have threads with average length greater

than 50 microseconds and have efficiency greater than 90 percent. On the other hand, the

fib program has low efficiency, because the threads are so short: fib does almost nothing

besides spawn and send argument.
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Despite it’s long threads, the ?Socrates program has low efficiency, because its parallel

Jamboree search algorithm is based on speculatively searching subtrees that are not searched

by a serial algorithm. Consequently, as we increase the number of processors, the program

executes more threads and, hence, does more work. For example, the 256-processor execu-

tion did 7023 seconds of work whereas the 32-processor execution did only 3644 seconds

of work. Both of these executions did considerably more work than the serial program’s

1665 seconds of work. Thus, although we observe low efficiency, it is due to the parallel

algorithm and not to Cilk overhead.

Looking at the speedup T1=TP measured on 32 and 256 processors, we see that when

the average parallelism T1=T∞ is large compared with the number P of processors, Cilk pro-

grams achieve nearly perfect linear speedup, but when the average parallelism is small, the

speedup is much less. The fib, queens, pfold, and ray programs, for example, have in ex-

cess of 7000-fold parallelism and achieve more than 99 percent of perfect linear speedup on

32 processors and more than 95 percent of perfect linear speedup on 256 processors.6 The

?Socrates program exhibits somewhat less parallelism and also somewhat less speedup.

On 32 processors the ?Socrates program has 1163-fold parallelism, yielding 90 percent of

perfect linear speedup, while on 256 processors it has 2168-fold parallelism yielding 80 per-

cent of perfect linear speedup. With even less parallelism, as exhibited in the knary bench-

marks, less speedup is obtained. For example, the knary(10,5,2) benchmark exhibits

only 70-fold parallelism, and it realizes barely more than 20-fold speedup on 32 processors

(less than 65 percent of perfect linear speedup). With 178-fold parallelism, knary(10,4,1)

achieves 27-fold speedup on 32 processors (87 percent of perfect linear speedup), but only

98-fold speedup on 256 processors (38 percent of perfect linear speedup).

Although these speedup measures reflect the Cilk scheduler’s ability to exploit paral-

lelism, to obtain application speedup, we must factor in the efficiency of the Cilk program

compared with the serial C program. Specifically, the application speedup Tserial=TP is the

product of efficiency Tserial=T1 and speedup T1=TP. For example, applications such as fib

and ?Socrates with low efficiency generate correspondingly low application speedup. The

?Socrates program, with efficiency 0:2371 and speedup 204:6 on 256 processors, exhibits

application speedup of 0:2371 �204:6= 48:51. For the purpose of understanding scheduler

performance, we prefer to decouple the efficiency of the application from the efficiency of

the scheduler.

Looking more carefully at the cost of a spawn in Cilk, we find that it takes a fixed over-

head of about 50 cycles to allocate and initialize a closure, plus about 8 cycles for each word

6In fact, the ray program achieves superlinear speedup even when comparing to the efficient serial imple-
mentation. We suspect that cache effects cause this phenomenon.
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argument. In comparison, a C function call on a CM5 SPARC processor takes 2 cycles of

fixed overhead (assuming no register window overflow) plus 1 cycle for each word argu-

ment (assuming all arguments are transferred in registers). Thus, a spawn in Cilk is roughly

an order of magnitude more expensive than a C function call. This Cilk overhead is quite ap-

parent in the fib program, which does almost nothing besides spawn and send argument.

Based on fib’s measured efficiency of 0:116, we can conclude that the aggregate average

cost of a spawn/send argument in Cilk is between 8 and 9 times the cost of a function

call/return in C.

Efficient execution of programs with short threads requires a low-overhead spawn op-

eration. As can be observed from Figure 5.13, the vast majority of threads execute on the

same processor on which they are spawned. For example, the fib program executed over

17 million threads but migrated only 6170 (24:10 per processor) when run with 256 pro-

cessors. Taking advantage of this property, other researchers [47, 63, 77] have developed

techniques for implementing spawns such that when the child thread executes on the same

processor as its parent, the cost of the spawn operation is roughly equal the cost of a function

call. We hope to incorporate such techniques into future implementations of Cilk.

Finally, we make two observations concerning the space and communication measures

in Figure 5.13.

Looking at the “space/proc.” rows, we observe that the space per processor is generally

quite small and does not grow with the number of processors. For example, ?Socrates on

32 processors executes over 26 million threads, yet no processor ever has more than 386

allocated closures. On 256 processors, the number of executed threads nearly doubles to

over 51 million, but the space per processor barely changes. In Section 5.3 we show for-

mally that for an important class of Cilk programs, the space per processor does not grow

as we add processors.

Looking at the “requests/proc.” and “steals/proc.” rows in Figure 5.13, we observe that

the amount of communication grows with the critical path length but does not grow with

the work. For example, fib, queens, pfold, and ray all have critical path lengths under

a tenth of a second long and perform fewer than 220 requests and 80 steals per processor,

whereas knary(10,5,2) and ?Socrates have critical path lengths more than 3 seconds

long and perform more than 20;000 requests and 1500 steals per processor. The table does

not show any clear correlation between work and either requests or steals. For example,

ray does more than twice as much work as knary(10,5,2), yet it performs two orders of

magnitude fewer requests. In Section 5.3, we show that for a class of Cilk programs, the

communication per processor grows at most linearly with the critical path length and does

not grow as a function of the work.
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5.2.3 Performance modeling

We further document the effectiveness of the Cilk scheduler by showing empirically that

Cilk application performance can be modeled accurately with a simple function of work T1

and critical path length T∞. Specifically, we use the knary synthetic benchmark to show

that the runtime of an application on P processors can be modeled as TP � T1=P+ c∞T∞,

where c∞ is a small constant (about 1:5 for knary) determined by curve fitting. This result

shows that we obtain nearly perfect linear speedup when the critical path is short compared

with the average amount of work per processor. We also show that a model of this kind is

accurate even for ?Socrates, which is our most complex application programmed to date.

We would like our scheduler to execute a Cilk computation with T1 work in T1=P time on

P processors. Such perfect linear speedup cannot be obtained whenever the computation’s

critical path length T∞ exceeds T1=P, since we always have TP � T∞ or more generally, TP �
maxfT1=P;T∞g. The critical path length T∞ is the stronger lower bound on TP whenever P

exceeds the average parallelism T1=T∞, and T1=P is the stronger bound otherwise. A good

scheduler should meet each of these bounds as closely as possible.

In order to investigate how well the Cilk scheduler meets these two lower bounds, we

used our synthetic knary benchmark, which can grow computations that exhibit a range of

values for work and critical path length.

Figure 5.14 shows the outcome from many experiments of running knary with various

input values (n, k, and r) on various numbers of processors. The figure plots the measured

speedup T1=TP for each run against the machine size P for that run. In order to compare

the outcomes for runs with different input values, we have normalized the plotted value for

each run as follows. In addition to the speedup, we measure for each run the work T1 and the

critical path length T∞, as previously described. We then normalize the machine size and the

speedup by dividing these values by the average parallelism T1=T∞. For each run, the hor-

izontal position of the plotted datum is P=(T1=T∞), and the vertical position of the plotted

datum is (T1=TP)=(T1=T∞) = T∞=TP. Consequently, on the horizontal axis, the normalized

machine-size is 1:0 when the average parallelism is equal to the number of processors. On

the vertical axis, the normalized speedup is 1:0 when the runtime equals the critical path

length. We can draw the two lower bounds on time as upper bounds on speedup. The hori-

zontal line at 1:0 is the upper bound on speedup obtained from the critical path, TP � T∞, and

the 45-degree line is the linear speedup bound, TP � T1=P. As can be seen from the figure,

on the knary runs for which the average parallelism exceeds the number of processors (nor-

malized machine size less than 1), the Cilk scheduler obtains nearly perfect linear speedup.

In the region where the number of processors is large compared to the average parallelism

(normalized machine size greater than 1), the data is more scattered, but the speedup is al-
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Figure 5.14: Normalized speedups for the knary synthetic benchmark using from 1 to 256 proces-
sors. The horizontal axis is the number P of processors and the vertical axis is the speedup T1=TP,
but each data point has been normalized by dividing by T1=T∞.

ways within a factor of 4 of the critical-path upper bound.

The theoretical results from Section 5.3 show that the expected running time of a Cilk

computation on P processors is TP = O(T1=P+T∞). Thus, it makes sense to try to fit the

knary data to a curve of the form TP = c1(T1=P)+ c∞(T∞). A least-squares fit to the data

to minimize the relative error yields c1 = 0:9543� 0:1775 and c∞ = 1:54� 0:3888 with

95 percent confidence. The R2 correlation coefficient of the fit is 0:989101, and the mean

relative error is 13:07 percent. The curve fit is shown in Figure 5.14, which also plots the

simpler curves TP = T1=P + T∞ and TP = T1=P+ 2 � T∞ for comparison. As can be seen

from the figure, little is lost in the linear speedup range of the curve by assuming that the

coefficient c1 on the T1=P term equals 1. Indeed, a fit to TP = T1=P+ c∞(T∞) yields c∞ =

1:509�0:3727 with R2 = 0:983592 and a mean relative error of 4:04 percent, which is in

some ways better than the fit that includes a c1 term. (The R2 measure is a little worse, but

the mean relative error is much better.)

It makes sense that the data points become more scattered when P is close to or exceeds

the average parallelism. In this range, the amount of time spent in work stealing becomes
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Figure 5.15: Normalized speedups for the ?Socrates chess program.

a significant fraction of the overall execution time. The real measure of the quality of a

scheduler is how much larger than P the average parallelism T1=T∞ must be before TP shows

substantial influence from the critical path. One can see from Figure 5.14 that if the average

parallelism exceeds P by a factor of 10, the critical path has almost no impact on the running

time.

To confirm our simple model of the Cilk scheduler’s performance on a real application,

we ran ?Socrates on a variety of chess positions using various numbers of processors.

Figure 5.15 shows the results of our study, which confirm the results from the knary syn-

thetic benchmark. The best fit to TP = c1(T1=P)+ c∞(T∞) yields c1 = 1:067�0:0141 and

c∞ = 1:042�0:0467 with 95 percent confidence. The R2 correlation coefficient of the fit is

0:9994, and the mean relative error is 4:05 percent.

By using work and critical path length to model the performance of an application un-

der development, we can avoid being trapped by the following interesting anomaly. After

making an “improvement” to the program, we find that, in test runs on a small-scale par-

allel machine, the program runs faster. Lacking any other information, we may conclude
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original program “improved” program

T1 = 2048 seconds

T∞ = 1 second

T1 = 1024 seconds

T∞ = 8 seconds

T32 = T1=32+T∞

T32 = 2048=32+1

= 65 seconds

T32 = 1024=32+8

= 40 seconds

T512 = T1=512+T∞

T512 = 2048=512+1

= 5 seconds

T512 = 1024=512+8

= 10 seconds

Figure 5.16: A speedup anomaly. We use the simple model TP = T1=P+T∞. On 32 processors,
the “improved” program runs 38 percent faster than the original, taking 40 seconds compared to the
original’s 65 seconds. But it does so with less work at the cost of a longer critical path, and on 512
processors, the “improved” program is actually twice as slow as the original.

that the “improved” program is indeed superior to the original. But by measuring work and

critical path length, we model our program’s performance and predict that, on a large-scale

machine, the “improved” program is actually slower than the original. Of course, we then

confirm this prediction by performing a test on the large machine.

This speedup anomaly occurs because the “improved” program does less work at the

cost of a longer critical path. Figure 5.16 illustrates this phenomenon with synthetic num-

bers. In this example, the “improved” program runs 38 percent faster than the original (40

seconds versus 65 seconds) on 32 processors. But on 512 processors, the “improved” pro-

gram is actually twice as slow as the original.

Indeed, as some of us were developing and tuning heuristics to increase the performance

of ?Socrates, we used work and critical path length as our measures of progress. At that

time, our platform for competition was the entire 512-node CM5 in dedicated mode at the

National Center for Supercomputing Applications (NCSA) at the University of Illinois at

Urbana-Champaign. Unable to use this machine in our day-to-day work, we did develop-

ment and testing on a 32-node time-shared partition of a CM5 that we have in house. More

than once, by using work and critical path measurements taken from our 32-processor runs

to predict the runtime of our program on the 512-processor machine, we avoided falling into

the trap of the speedup anomaly just described.
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5.3 A theoretical analysis of the Cilk scheduler

Cilk’s work-stealing scheduler executes any “fully strict” Cilk program using space, time,

and communication all within a constant factor of optimal. In previous chapters, we proved

analogous results using a model of multithreaded computation that is somewhat simpler than

Cilk’s model. Rather than use the more complex Cilk model in these previous proofs, we

chose to use the simpler model in order to make the proofs more tractable and keep from

obscuring the essential ideas. In this section, we show how these proofs must be modified

to account for the Cilk model.

Recall that a Cilk computation models the execution of a Cilk program as a tree of proce-

dures and a dag of threads that unfold dynamically during program execution. For analysis,

we refine the dag of threads into a dag of unit-size instructions as follows. Each thread is

broken into instructions connected by continue edges into a linear sequence from the first in-

struction of the thread to the last. In the example Cilk computation illustrated in Figure 5.17,

thread τ2 contains 3 instructions: v5, v6, and v7. If a thread τ spawns a child τ0 with the

spawn primitive, then the dag has a spawn edge from the appropriate instruction of τ to the

first instruction of τ0. Recall that the child thread τ0 is the initial thread of a child procedure.

In our example computation, thread τ1 spawns the child thread τ2 (the initial thread of pro-

cedure Γ2) as represented by the spawn edge (v4;v5). If τ spawns a successor τ0 with the

spawn next primitive, then the dag has a spawn-next edge from the appropriate instruction

of τ to the first instruction of τ0. Recall that the successor thread τ0 is in the same procedure

as τ. In our example computation, thread τ1 spawns the successor thread τ9 as represented

by the spawn-next edge (v2;v22). Procedure Γ1 contains 3 threads: τ1, τ9, and τ10. In gen-

eral, the instructions are formed into threads by continue edges; the threads are formed into

procedures by spawn-next edges; and the procedures are formed into a spawn tree by the

spawn edges. In our example computation, the root procedure Γ1 has 2 children, Γ2 and Γ6,

and procedure Γ2 has 3 children: Γ3, Γ4, and Γ5. Procedures Γ3, Γ4, Γ5, and Γ6, which have

no children, are leaf procedures. If a thread τ sends a value (or signal) to another thread τ0

with the send argument or accumulate statement, then the dag has a dependency edge

from the appropriate instruction of τ to the first instruction of τ0. In our example computa-

tion, thread τ3 sends a value (or signal) to τ5 as represented by the dependency edge (v9;v12).

Notice that only an instruction that is the first instruction of its thread can have an incoming

Some of the research reported in this section is joint work with Charles Leiserson and Keith Randall both
of MIT’s Laboratory for Computer Science. The material in this section generalizes results previously pub-
lished in [12].
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τ1

τ2

τ3 τ4

τ5

τ6

τ7 τ8

τ9 τ10

v22 v24

v6 v7

v9v8 v16v15

v19 v20

Γ4

Γ1
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Γ3 Γ5

Γ6

v1 v2

v12v5 v13 v18

v17

v14

v4

v21

v3 v23

v10 v11

Figure 5.17: A Cilk computation. This computation contains 24 instructions v1;v2; : : : ;v24 repre-
sented by the circles, and 10 threads τ1;τ2; : : : ;τ10 represented by the dark-shaded rectangles, and
6 procedures Γ1;Γ2; : : : ;Γ6 represented by the light-shaded rounded rectangles. The continue edges
are horizontal within a thread; the spawn-next edges are dark shaded within a procedure; the spawn
edges are light shaded between procedures; and the dependency edges are curved between proce-
dures. The spawn edges emerging from a thread cross each other so that the 1-processor execution
order v1;v2; : : : ;v24 proceeds from left to right. This figure does not show the “ghosts” required for
the analysis.

edge that is not a continue edge. Consistent with our unit-time model of instructions, we

assume that the out-degree of each instruction is at most some constant. The work T1 is the

number of instructions in the dag, and the critical path length T∞ is the length of a longest

path in the dag. In our example computation, we have T1 = 24 and T∞ = 17.

Notice the difference between the 1-processor execution order v1;v2; : : : ;v24 of our ex-

ample Cilk computation (Figure 5.17) and the 1-processor left-to-right depth-first execution

order v1;v2; : : : ;v20 of the similar multithreaded computation shown in Figure 3.1 (page 33).

In order to discuss the execution of Cilk computations, we borrow and adapt some of

the terminology developed in Chapter 2. When a thread is spawned, we allocate a closure

for it, and we say the thread is alive or living. At any given time step during the execu-

tion, an instruction is ready if all of its predecessors in the dag have been executed, and a

living thread is ready if its first instruction is ready. Ready threads can be executed by the

scheduler. When the last instruction of a thread is executed, the thread dies, and we free its

closure. When the initial thread of a procedure is spawned, we say the procedure is alive or

living, and when the procedure no longer has any living threads, then the procedure dies.

A Cilk computation is fully strict if every dependency edge goes from a procedure to
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either itself or its parent procedure. Our example computation (Figure 5.17) is fully strict.

Specifically, the fully strict condition requires that for every dependency edge (v;v0) where v

is an instruction in thread τ in procedure Γ and v0 is an instruction in thread τ0 in procedure Γ0,

we have either Γ0=Γ—so τ0 is a successor of τ—or Γ0 is the parent of Γ—so τ0 is a successor

of the thread that spawned τ as a child. In other words, in a fully strict Cilk computation,

threads only send values (or signals) to their successors or their parent thread’s successors.

For any fully strict Cilk computation with work T1 and critical path length T∞, and for

any number P of processors, we shall prove the following bounds on execution space, time,

and communication.

� Space: The space used to execute the computation is at most S1P where S1 is the

space used by a 1-processor execution of the Cilk computation.

� Time: The expected time to execute the computation is O(T1=P+ nlT∞) where nl is

the maximum number of threads that any procedure can have simultaneously living

in the computation.

� Communication: The expected number of bytes communicated during the execu-

tion is O(PnlT∞(nd +Smax)) where nd is the maximum number of dependency edges

between any pair of threads and Smax is the size of the largest closure in the computa-

tion.

The expected bounds on both time and communication can be converted to high-probability

bounds with the addition of some small extra terms. The reader interested in the proofs of

these bounds should be familiar with the proofs in Chapter 4 before proceeding.

The cornerstone in proving these results is a structural lemma (analogous to Lemma 4.1,

page 45) that characterizes the procedures in the ready pool of any processor at any time.

In Cilk, the ready pool actually contains threads, not procedures, but each thread belongs to

a procedure, and we use the procedures to characterize the structure of the ready pool. In

order to state and prove this structural lemma, we first need two technical assumptions and

some new terminology.

Our first technical assumption, illustrated in Figure 5.18, is that any thread τ that spawns

children also, as the last thing it does before dying, spawns a ready successor thread τ�. We

call τ� a ghost thread. A ghost thread contains only a single ghost instruction that takes

no time to execute, so it is purely a technical convenience. Nevertheless, in our analysis,

we shall assume that τ� is handled by the scheduler just like any other thread. This ready

successor thread simplifies the structural lemma. (The example computation of Figure 5.17

does not show the required ghost threads.)
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τ τ∗

Γ*
1 Γ*

2 Γ*
3Γ2 Γ3Γ1

Figure 5.18: For each thread τ that spawns children, we augment the computation as follows.
Thread τ spawns a successor ghost thread τ� as the last thing it does. Each time τ spawns a child
procedure Γ, it also spawns a ghost child Γ�. The children are ordered from youngest to oldest go-
ing from left to right. The child procedures are linked by “pool edges” shown curved and gray.

Two procedures, Γ1 and Γ2 are tuplets if, in addition to having the same parent proce-

dure, they also have the same parent thread. Since the instructions in a thread are totally

ordered, the tuplet procedures can be ordered by age: the first child spawned is considered

to be older than the second, and so on. In our example Cilk computation (Figure 5.17), the

procedures Γ3 and Γ4 are tuplets with Γ4 being the older of the two.

Our second technical assumption, illustrated in Figure 5.18, is that whenever a thread

τ spawns a child procedure Γ, it also spawns a second child procedure Γ�, called a ghost

procedure. A ghost procedure contains only a ghost thread, and therefore, takes no time to

execute. We think of the parent thread τ as spawning children in pairs (Γ;Γ�), with each pair

having one ghost procedure. The scheduler treats Γ� (or rather its ghost thread) as having

been spawned just before Γ, and therefore, the ghost is considered to be the older of the pair.

Ghost procedures are purely a technical mechanism to facilitate our analysis. (The example

computation of Figure 5.17 does not show the required ghost procedures.)

At any given time step during the execution and for any processor p, we define the

list of procedures at level L as follows. We start with the list of threads at level L. Let

hτ1;τ2; : : : ;τni be the list of threads in the level L list of p’s ready pool, ordered from τ1

at the head of the list to τn at the tail. If processor p is not executing a thread at level L,

then the list of threads at level L is hτ1;τ2; : : : ;τni. If processor p is executing a thread τ at

level L, then the list of threads at level L is hτ;τ1;τ2; : : : ;τni. The list of procedures at level

L is the list hΓ1;Γ2; : : : ;Γki of procedures derived from the list of threads by replacing each

thread with its procedure and collapsing adjacent equal entries into one entry. We say that

there are k procedures at level L. As shorthand, we shall use the notation hΓii to denote the
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Γ0,1 Γ0,2 Γ0,3

Γ1,1

Γ2,1

Γ1,2

Γ3,1

Γ−1,1 Γ−1,2

level L

level L+1

level L−1

level L−2

level L−3

Figure 5.19: The structure of procedures in a processor’s ready pool. The processor p is executing
a thread of procedure Γ0;1 at level L. In this example, we have l = 3, so for each i = 0;1;2;3, the
procedures hΓi�1; ji are tuplet children of Γi;1. The procedures Γ0;3 and Γ

�1;2 must be ghost proce-
dures.

list hΓ1;Γ2; : : : ;Γki, and when we use double subscripts, we shall use the notation hΓi; ji to

denote the list hΓi;1;Γi;2; : : : ;Γi;ki
i for a given value of i.

We now state and prove the lemma characterizing the structure of procedures in the

ready pool of any processor during the execution of a fully strict Cilk computation. This

lemma is the Cilk analog of the structural lemma (Lemma 4.1, page 45) in Chapter 4 which

applied to our simpler call-return model of multithreaded computation. Figure 5.19 illus-

trates the lemma.

Lemma 5.1 During the execution of any fully strict Cilk computation, consider any pro-

cessor p and any given time step at which p executes an instruction of a thread τ. Let Γ0;1

be τ’s procedure, and let L be τ’s level. For any i, let hΓi;1;Γi;2; : : : ;Γi;ki
i denote the list of

procedures at level L� i where ki is the number of procedures at level L� i. Let l be the

largest integer such that kl > 0 holds. Then these lists of procedures satisfy the following

four properties:

➀ For i = 0;1; : : : ; l, we have ki > 0; for i = �1, we have ki � 0; and for i < �1, we

have ki = 0.

➁ For every i, the procedures hΓi; ji are tuplets ordered from youngest to oldest. For

i = 0;1; : : : ; l, the procedures hΓi�1; ji are children of Γi;1, and the procedures hΓ�1; ji
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are children of thread τ.

➂ For every i, if we have ki > 1, then for j = 2;3; : : : ;ki, procedure Γi; j has never been

worked on, and if we have k�1 > 0, then Γ�1;1 also has never been worked on.

➃ If l > 1 holds, then for i =�1;0; : : : ; l�3, we have ki 6= 1 and if ki 6= 0, then Γi;ki
is a

ghost.

Proof: The proof is a straightforward induction on execution time. Execution begins with

the initial thread of the root procedure in some processor’s ready pool and all other ready

pools empty, so the lemma vacuously holds at the outset. Now, consider any step of the

execution at which processor p executes an instruction from thread τ in procedure Γ0;1 at

level L. Let hΓi;1;Γi;2; : : : ;Γi;ki
i denote the list of procedures at level L� i; let l be the largest

integer such that kl > 0 holds; and assume that all four properties hold. Let τ0 denote the

thread (if any) being worked on by p after the step; let Γ0
0;1 be its procedure and L0 its level;

let hΓ0
i;1;Γ

0
i;2; : : : ;Γ

0
i;k0i
i denote the list of procedures at level L0� i after the step; and let l0 be

the largest integer such that after the step, k0l0 > 0 holds. The proof consists of looking at the

actions of the Cilk scheduler and showing that all four properties hold after the step.

Before looking at the Cilk scheduler’s actions, we first review the things that a thread in

a fully strict computation may do that cause scheduler action. Thread τ may spawn a child

with Cilk’s spawn primitive. (Recall that when a thread spawns a child, we also spawn a

ghost, so spawns occur in pairs.) Thread τ may enable a successor thread by either per-

forming a spawn next with no missing arguments or by performing a send argument or

accumulate to a previously spawned successor and having the successor’s join counter

decrement to zero. Thread τ may enable a thread in its parent procedure by performing a

send argument or accumulate as just described. For fully strict computations, a thread τ
may only enable threads in its own procedure or its parent procedure. These enabling ac-

tivities all cause the scheduler to post a ready thread to the ready pool. Thread τ dies when

it executes its last instruction, and this event causes the scheduler to start another iteration

of its loop. We now examine these scheduler actions individually and show that they each

preserve the four properties of the lemma.

If the thread τ spawns a pair of children, then p posts the children at the head of the ready

pool’s level L+1 list. In this case, only the list of procedures at level L+1 changes. Specif-

ically, we have k0�1 = k�1+2 with Γ0
�1;1 and Γ0

�1;2 being the new child procedures. Proce-

dure Γ0
�1;2 is the ghost and is considered to be older than Γ0

�1;1. Also, if k0�1 > 2 holds, then

we have Γ0
�1; j = Γ�1; j�2 for j = 3;4; : : : ;k0�1. Now we can check that the four properties

still hold. The first property does not apply to the level L+1 list, so we only check the other

three. Property ➁: The procedures hΓ0
�1; ji must be tuplet children, ordered from youngest
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to oldest, of thread τ in procedure Γ0
0;1 = Γ0;1, because before the spawn, the procedures

hΓ�1; ji are tuplet children of τ ordered from youngest to oldest. Property ➂: None of the

procedures hΓ0
�1; ji have ever been worked on. Property ➃: We have k0�1 > 1 because τ just

spawned 2 children. Moreover, if l0 > 1 holds, then Γ0
�1;k0

�1
is a ghost, because before the

spawn we have l > 1 which means that if k�1 6= 0 holds, then Γ�1;k�1
is a ghost. In this case,

Γ0
�1;k0

�1
= Γ�1;k�1

is a ghost. Otherwise, we have k0�1 = k�1 +2 = 2, so Γ0
�1;k0

�1
= Γ0

�1;2 is

the newly spawned ghost.

If the thread τ enables a successor thread, then p posts the successor at the head of the

ready pool’s level L list. In this case, the list of procedures at level L does not change, be-

cause the successor thread is part of the same procedure Γ0;1 as τ, and this procedure is al-

ready at the head of the list. With no change in any of the lists of procedures, all properties

continue to hold.

If the thread τ enables a thread in its parent procedure, then p posts this newly enabled

thread at the head of the ready pool’s level L� 1 list. If we have l � 1, then the parent

procedure Γ1;1 is already at the head of the level L�1 list, and therefore, none of the lists of

procedures change. On the other hand, if we have l = 0, then we update l0 = l+1 = 1 with

k01 = 1, and the list of procedures at level L� 1 is the list hΓ0
1;1i containing only the parent

procedure of Γ0
0;1 = Γ0;1. In this case, the properties are easily checked. Property ➀: We

have k01 = 1 > 0. Property ➁: The procedures hΓ0
0; ji are children of Γ0

1;1, because Γ0
0;1 is a

child of Γ0
1;1 and the procedures hΓ0

0; ji= hΓ0; ji are tuplets. Property ➂: This property does

not apply to the level L�1 list, because we have k01 = 1. Property ➃: Again, this property

does not apply, because we have l0 = 1.

If the thread τ dies, then p starts another iteration of the scheduling loop. If the ready

pool is empty, then it commences work stealing, and the properties hold vacuously. Oth-

erwise, it removes and executes the thread at the bottommost nonempty level of the ready

pool. We consider two cases depending on whether the level L+1 list is nonempty.

If the level L+1 list is nonempty (k�1 > 0), then p removes and executes the thread at

the head of the ready pool’s level L+1 list. Recall that because thread τ of procedure Γ0;1

spawned children, it also spawns a ready successor thread τ� as the last thing it does before

dying. Therefore, the ready pool’s list at level L must have a thread of Γ0;1 at its head when

τ dies. We have L0 = L+1 and l0 = l +1. We also have k0�1 = 0, and for i = 0;1; : : : l0, we

have k0i = ki�1 with Γ0
i; j = Γi�1; j for j = 1;2; : : : ;k0i. We now check that the properties still

hold. Properties ➀ and ➁: We haven’t actually changed any of the lists of procedures, only

renamed them. Property ➂: No procedure Γ0
i; j with j > 1 has ever been worked on. Also,

we have k0�1 = 0. Property ➃: This property only applies to the level L0 list if we have l0> 2.

If l0> 2 holds, then we have k00 > 1 and Γ0
0;k00

is a ghost, because before this step l > 1 holds,
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which means that we have k�1 > 1 and Γ�1;k�1
is a ghost.

Now, suppose that the level L+ 1 list is empty when thread τ dies. We further break

this situation down into two cases depending on whether the ready pool’s level L list is

nonempty. If the level L list is nonempty, then p removes and executes the thread at the

head of this list. If this thread is in procedure Γ0;1, then no list of procedures changes and the

properties continue to hold. Otherwise, we must have k0 > 1, and we now have k00 = k0�1

and Γ0
0; j = Γ0; j+1 for j = 1;2; : : : ;k00. If Γ0

0;1 is a ghost, then we execute it immediately and

advance to the next iteration of the scheduling loop. Therefore, we only need to check that

the properties still hold in the case that Γ0
0;1 is not a ghost. The first three properties are eas-

ily checked and they continue to hold. Property ➃: This property only applies to the level

L0 = L list if we have l0 = l > 2. If l0 > 2 holds, then we have k00 > 1 and Γ0
0;k00

is a ghost,

because before this step we have l > 2 and Γ0;k0
is a ghost, which means that we must have

k0 > 2 or else Γ0
0;1 = Γ0;2 would be a ghost.

If the level L list is empty but the ready pool as a whole is nonempty, then the ready

pool’s level L�1 list must be nonempty, because otherwise we would violate Property ➀.

In this case, p removes and executes the thread at the head of the level L� 1 list. We now

have L0= L�1 and l0= l�1. We also have k0�1 = 0, and for i= 0;1; : : : ; l0 we have k0i = ki+1

with Γ0
i; j = Γi+1; j for j = 1;2; : : : ;k0i. In this case, all four properties are easily checked and

they continue to hold.

Finally, if some other processor steals a thread from processor p, then it removes the

thread from the tail of the topmost nonempty list of p’s ready pool. Suppose that we have

l > 0. In this case, the stolen thread is in procedure Γl;kl
, and the list of procedures at level

L� l may be shortened by one. If so, then we have k0l = kl �1, and if we also have k0l = 0,

then we update l0= l�1. In these cases, the properties are easily checked and they continue

to hold. Now, suppose that we have l = 0. If k0 > 1 also holds, then the stolen thread is in

procedure Γ0;k0
and the properties continue to hold as before. On the other hand, if we have

k0 = 1, then the level L list of procedures contains only Γ0;1 and there are two possibilities

to consider. If the ready pool’s level L list is nonempty, then the stolen thread is a thread

of procedure Γ0;1. In this case, the list of procedures at level L does not change, and the

properties continue to hold. On the other hand, if the ready pool’s level L list is empty, then

the stolen thread will be a thread from procedure Γ�1;k�1
. In this case, the list of procedures

at level L+1 shortens, but again, the properties continue to hold.

All other activity by processor p—such as work stealing or executing an instruction that

does not invoke any of the above actions—clearly preserve the lemma.

Our bound on space accounts for any stack-like memory. Specifically, we allow any in-

struction to allocate memory for its procedure provided that the instruction is totally ordered
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with respect to every other instruction in its procedure and provided that the instruction can-

not be executed at a time step when its procedure has a living child. We allow any instruction

to deallocate memory for its procedure provided that the instruction is totally ordered with

respect to every other instruction in its procedure. Additionally, we require that all memory

allocated for a procedure is deallocated before the procedure dies. At any given time step

during the execution, the amount of memory currently allocated for a given living procedure

is the net memory allocated for the procedure by all instructions that have been executed.

The space bound follows from the “busy-leaves” property which characterizes the liv-

ing procedures at all time steps during the execution. At any given time step during the

execution, we say that a procedure is a leaf if it has no living children, and we say that a leaf

procedure is a primary leaf if, in addition, either it has no younger tuplets living or it has

been worked on by some processor. The busy-leaves property states that every primary leaf

procedure has a processor either working on it or working on its parent thread. To prove the

space bound, we show that Cilk’s scheduler maintains the busy-leaves property, and then

we show that the busy-leaves property implies the space bound.

Theorem 5.2 For any fully strict Cilk computation, if S1 is the space used to execute the

computation on 1 processor, then with any number P of processors, Cilk’s work-stealing

scheduler uses at most S1P space.

Proof: We first show that Cilk’s work-stealing scheduler maintains the busy-leaves prop-

erty, and then we show that the busy-leaves property implies the space bound.

To see that Cilk’s scheduler maintains the busy-leaves property, consider any time step

during the execution and any primary leaf procedure Γ. Since Γ is a leaf and the computation

is strict, there must be some thread in Γ that is ready. Therefore, Γ is in the list of procedures

at some level of some processor p’s ready pool. Suppose processor p is executing a thread

τ at level L, and let hΓi; ji denote the list of procedures at level L� i. From Lemma 5.1, we

know that among all of these procedures, the only one that can be a primary leaf is either

Γ0;1 (if we have k�1 = 0) or Γ�1;1 (otherwise). In the former case, we have Γ = Γ0;1, and

p is executing a thread of Γ. In the latter case, we have Γ = Γ�1;1, and p is executing the

thread that spawned Γ. In either case, procedure Γ is busy.

The P-processor space bound, S1P, is obtained by showing that at all time steps t during

the execution, every living procedure can be associated with a primary leaf procedure and

that the total space currently allocated for all procedures assigned to a given primary leaf is

at most S1. We assign a procedure to a primary leaf as follows. If the procedure is a primary

leaf, then we assign it to itself. If the procedure is a leaf but it is not a primary leaf, then we

assign it to the same primary leaf as its youngest tuplet. If the procedure is not a leaf, then we
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assign it to the same primary leaf as any one of its living children. The procedures assigned

to any given primary leaf Γ are Γ’s ancestors and older tuplets of Γ’s ancestors.

Now, consider any primary leaf procedure Γ. Since Γ is busy, there must be a processor

p that is executing either a thread of Γ or the thread that spawned Γ. Let τ denote the thread

that p is executing, and let v denote the instruction that p executes at this time step. For any

other procedure Γ0 assigned to Γ, we claim that the amount of memory currently allocated

for Γ0 in our P-processor execution is no more than the amount of memory allocated for

Γ0 at the time step in the 1-processor execution when the processor executes instruction v.

To verify this claim, consider the two possible relationships that Γ0 may have with Γ. Sup-

pose Γ0 is an ancestor of Γ. Consider the set of allocating or deallocating instructions in

Γ0 that have been executed in our P-processor execution. This set must be a superset of

the instructions in Γ0 that have been executed in the 1-processor case, because the allocat-

ing and deallocating instructions are totally ordered with respect to every other instruction

in the procedure. Moreover, those allocating or deallocating instructions (if any) that have

been executed in our P-processor case that haven’t been executed in the 1-processor case

must, in fact, be deallocating instructions, since they must have been executed while Γ0 had

a living child. Thus the memory allocated for Γ0 in our P-processor case is no more than

the memory allocated for Γ0 in the 1-processor case. Now, suppose Γ0 is the older tuplet of

one of Γ’s ancestors. In this case, since Γ0 is a leaf, we know that Γ0 has never been worked

on. Likewise, in the 1-processor case, Γ0 must be alive but never worked on. Finally, con-

sider Γ itself. The set of allocating or deallocating instructions in Γ that have been executed

in our P-processor execution must be the same as those executed in the 1-processor case.

Thus, for every procedure assigned to Γ, the amount of memory currently allocated for it

in our P-processor execution is no more than the amount of memory allocated for it in the

1-processor case. Thus, the total space assigned to Γ is at most S1.

Since Cilk’s scheduler keeps all primary leaves busy, with P processors we are guaran-

teed that at every time step during the execution, at most P primary-leaf procedures can be

living. Every living procedure is assigned to one of these P primary leaves, and the total

space of the procedures assigned to a given primary leaf is at most S1. Therefore, the total

space of all living procedures is at most S1P.

In bounding execution time, we assume that the machine is an asynchronous parallel

computer with P processors, and its memory can be either distributed or shared. We further

assume that concurrent accesses to the same data structure are serially queued by an adver-

sary as in the atomic-access model of Section 4.2. Specifically, if a processor attempts to

steal a closure from a victim processor and no other thief is attempting to steal from the same

victim, then the steal attempt—successful or not—takes one unit of time. If multiple thieves
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simultaneously attempt to steal from the same victim, then their requests are handled one

per time step, in an order determined by an adversary.

In our analysis of execution time, we follow the same accounting argument as in Sec-

tion 4.3. At each time step, we collect P dollars, one per processor. At each time step, each

processor places its dollar in one of three buckets according to its actions at that step. If the

processor executes an instruction at the step, then it places its dollar into the WORK bucket.

If the processor initiates a steal attempt at the step, then it places its dollar into the STEAL

bucket. And, if the processor merely waits for a queued steal request at the step, then it

places its dollar into the WAIT bucket. We shall derive the running time bound by bound-

ing the number of dollars in each bucket at the end of the execution, summing these three

bounds, and then dividing by P.

The bounds on the dollars in the WORK and WAIT buckets are exactly as in Section 4.3.

Execution ends with T1 dollars in the WORK bucket, since there are T1 instructions in the

computation (Lemma 4.4, page 53). Lemma 4.3 (page 50) bounds the number of dollars

in the WAIT bucket as a function of the number of dollars in the STEAL bucket. With high

probability, the number of dollars in the WAIT bucket is at most a constant times the number

of dollars in the STEAL bucket.

To bound the dollars in the STEAL bucket, we use a delay-sequence argument very sim-

ilar the one we used in Section 4.3, but we must modify this argument slightly to account for

the Cilk model of multithreaded computation. As in Section 4.3, the work-steal attempts are

partitioned into rounds of at least 3P but fewer than 4P consecutive steal attempts. Also as

in Section 4.3, the delay sequence is defined in terms of an augmented dag G0 of instructions,

obtained from the original dag G by adding some new edges. For a Cilk computation, these

new edges are called pool edges, and for each thread τ that spawns children, we add pool

edges as follows. Let Γ1;Γ2; : : : ;Γn denote the spawned child procedures, and recall that,

we must have n > 1, since we require the spawns to occur in pairs with ghost procedures.

Then, as illustrated in Figure 5.18, for each i = 2;3; : : :;n, we add a pool edge from the first

instruction of Γi to the first instruction of Γi�1. If T∞ is the length of a longest path in G,

then the longest path in the augmented dag G0 has length at most 2T∞. At any given time step

during the execution, an instruction is critical if all of its predecessors in G0 have been exe-

cuted. If, during the course of the execution, a large number of steals are attempted, then we

can identify a sequence of instructions—the delay sequence—in this augmented dag such

that a large number of rounds of steal attempts were initiated while an instruction from the

sequence was critical. We show that such delay sequences are unlikely to occur, because

a critical instruction is unlikely to remain critical across a modest number of steal-attempt

rounds.
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The delay sequence is defined exactly as in Definition 4.5 (page 55). We repeat the def-

inition here.

De�nition 5.3 A delay sequence is a 3-tuple (U;R;Π) satisfying the following conditions:

� U = (u1;u2; : : : ;uL) is a maximal directed path in G0. Specifically, for i= 1;2; : : : ;L�
1, the edge (ui;ui+1) belongs to G0, instruction u1 has no incoming edges in G0 (in-

struction u1 must be the first instruction of the initial thread of the root procedure),

and instruction uL has no outgoing edges in G0.

� R is a positive integer.

� Π = (π1;π2; : : : ;πL) is a partition of the integer R.

The delay sequence (U;R;Π) is said to occur during an execution if for each i = 1;2; : : : ;L,

at least πi steal-attempt rounds occur while instruction ui is critical.

The following lemma states that if a large number of steal attempts take place during

an execution, then a delay sequence with large R must occur. This lemma and its proof are

identical to Lemma 4.6 (page 55).

Lemma 5.4 Consider the execution of a fully strict Cilk computation with critical path

length T∞ on a computer with P processors. If at least 4P(2T∞ +R) steal attempts occur

during the execution, then some (U;R;Π) delay sequence must occur.

We now establish that a critical instruction is unlikely to remain critical across a modest

number of steal-attempt rounds. Specifically, we first show that if no procedure can ever

have more than nl simultaneously living threads, then after O(nl) steal-attempt rounds, a

critical instruction is very likely to be executed. The following lemma establishes facts anal-

ogous to those established in Lemma 4.7 (page 56) and Lemma 4.8 (page 56).

Lemma 5.5 Consider the execution of any fully strict Cilk computation on a parallel com-

puter with P� 2 processors. If no procedure of the computation can ever have more than nl

simultaneously living threads, then for any instruction v and any number r � 12nl of steal-

attempt rounds, the probability that r rounds occur while v is critical is at most e�r.

Proof: We first use our structural lemma, Lemma 5.1, to show that if instruction v is critical

at some time step, then it must be the ready instruction of a thread that either is currently

being executed or is at the tail of a list near the top of some processor’s ready pool. We then

use this fact to establish the probabilistic bound.



5.3. A theoretical analysis of the Cilk scheduler 101

Consider any time step at which instruction v is critical. If some processor is executing

v’s thread, then v will be executed at this time step, and the lemma holds. Therefore, suppose

that v is the first instruction of a thread τ in procedure Γ, and τ is in the ready pool of a

processor p. Since v is critical, every one of Γ’s older tuplets must have been worked on at

some earlier time step, so by Property ➂ of Lemma 5.1, procedure Γ must be at the tail of the

list of procedures at some level. By the same reasoning, every nonempty list of procedures

above this level must contain only one procedure. Then, Property ➃ of Lemma 5.1 ensures

that this level is at most 3 from the top. Thus, since each procedure can have at most nl

simultaneously living threads, once processor p has satisfied 3nl work-steal requests, we

are guaranteed that v has been executed.

Mimicking the proof of Lemma 4.8, we observe that if instruction v remains critical

across r steal-attempt rounds, then of the at least (3r�(3nl�1))P steal attempts initiated at

least 3nl time steps before v is executed, fewer than 3nl of them choose a particular proces-

sor p as the victim. Letting the random variable X denote the number of these steal attempts

that do choose processor p, we bound the probability that X is less than 3nl by using a Cher-

noff bound [1] on the lower tail of a binomial distribution with mean µ:

PrfX < µ�ag � ea2=2µ

for any a > 0. In our case, we have µ = 3r�3nl +1, and to bound PrfX < 3nlg, we have

a= µ�3nl = 3r�6nl+1. Thus, the probability that v remains critical across r steal-attempt

rounds is at most

PrfX < 3nlg � exp
h
(3r�6nl +1)2=2(3r�3nl +1)

i
� e�r

for r � 12nl.

We now complete the delay-sequence argument and bound the total dollars in the STEAL

bucket. The proof of the following lemma is nearly identical to the proof of Lemma 4.9

(page 58). The only change is that we use the probabilistic bound of Lemma 5.5 instead of

the bound given by Lemma 4.8.

Lemma 5.6 Consider the execution of any fully strict Cilk computation with critical path

length T∞ on a parallel computer with P processors. If no procedure ever has more than nl

simultaneously living threads, then for any ε > 0, with probability at least 1� ε, the exe-

cution terminates with at most O(P(nlT∞ + lg(1=ε))) dollars in the STEAL bucket, and the
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expected number of dollars in this bucket is O(PnlT∞).

With bounds on all three buckets, we now state and prove the theorem that bounds the

total execution time for a fully strict Cilk computation.

Theorem 5.7 Consider any fully strict Cilk computation with work T1 and critical path

length T∞ such that no procedure can ever have more than nl simultaneously living threads.

With any number P of processors, Cilk’s work-stealing scheduler runs the computation in

expected time O(T1=P+nlT∞). Moreover, for any ε > 0, with probability at least 1�ε, the

execution time on P processors is O(T1=P+nlT∞ + lgP+ lg(1=ε)).

Proof: Add up the dollars in the three buckets and divide by P.

The next theorem bounds the total amount of communication that a Cilk computation

performs in a distributed model. The analysis assumes that at most a constant number of

bytes need to be communicated to perform a send argument or accumulate in the case

when the join counter does not go to zero. In the case when the join counter does go to

zero, then an entire closure may need to be communicated.

Theorem 5.8 Consider any fully strict Cilk computation with work T1 and critical path

length T∞ such that no procedure ever has more than nl simultaneously living threads. With

any number P of processors, the total number of bytes communicated by Cilk’s work-stealing

scheduler has expectation O(PnlT∞(nd+Smax)), where nd is the maximum number of depen-

dency edges between any pair of threads and Smax is the size in bytes of the largest closure

in the computation. Moreover, for any ε > 0, the probability is at least 1� ε that the total

communication incurred is O(P(nlT∞ + lg(1=ε))(nd +Smax)).

Proof: We prove the bound for the expectation. The high-probability bound is analogous.

By our bucketing argument, the expected number of steal attempts is at most O(PnlT∞).

When a thread is stolen, the communication incurred is at most Smax. We also have commu-

nication when a processor executing a thread performs a send argument or accumulate to

a thread whose closure is on another processor. If the join counter does not go to zero, then

the amount of communication is O(1), and this event can occur at most nd times per steal.

If the join counter does go to zero, then the amount of communication is at most Smax, and

this event can occur at most once per steal. Thus, the expected total communication cost is

O(PnlT∞(nd +Smax)).







Chapter 6

Cilk on a network of workstations

In order to execute Cilk programs efficiently on a network of workstations, the Cilk-NOW

runtime system implements “adaptive parallelism” and transparent fault tolerance. Adap-

tive parallelism allows a Cilk application to run on a set of workstations that may grow and

shrink dynamically during program execution. When a given workstation is not being used

by its owner, the workstation automatically joins in and helps out with the execution of a

Cilk program. When the owner returns to work, the machine automatically retreats from the

Cilk program. Fault tolerance allows a Cilk application to continue execution even in the

face of individual workstation crashes or reboots. Applications may take advantage of this

feature despite being fault oblivious. The application is written as an ordinary Cilk program

with no special provision for handling faults. Recently, we ran the Cilk protein-folding ap-

plication pfold (see page 78) using Cilk-NOW on a network of about 50 Sun SparcStations

connected by Ethernet to solve a large-scale protein-folding problem. The program ran for

9 days, surviving several machine crashes and reboots, utilizing 6566 processor-hours of

otherwise-idle cycles, with no administrative effort on our part (besides typing pfold at

the command-line to begin execution), while other users of the network went about their

business unaware of the program’s presence. In this chapter, we show how the Cilk-NOW

runtime system leverages the structure in Cilk’s programming model to implement adaptive

parallelism and fault tolerance. In Section 6.1, we present the architecture of Cilk-NOW.

Then in Sections 6.2 and 6.3, we present the implementation of adaptive parallelism and

fault tolerance.

Some of the research reported in this chapter is joint work with David Park formerly of MIT’s Laboratory
for Computer Science and now of McKinsey & Company and Phil Lisiecki of MIT’s Laboratory for Computer
Science. Some of the material in this chapter was previously published in [15]. At that time, Cilk-NOW was
in the prototype stage and was called Phish.
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6.1 System architecture

The Cilk-NOW runtime system consists of several component programs that work together

recruiting idle machines in the network to work on the execution of Cilk programs, schedul-

ing these idle machines among all the Cilk programs that are running, and managing the ex-

ecution of each individual Cilk program. In this section, we shall cover the architecture of

the Cilk-NOW runtime system, explaining the operation of each component program and

their interactions.

In Cilk-NOW terminology, we refer to an executing Cilk program as a Cilk job. Since

Cilk programs are parallel programs, a Cilk job consists of several processes running on

several machines. One process, called the clearinghouse, in each Cilk job runs a program

called CilkChouse. CilkChouse is a system-supplied program that is responsible for keep-

ing track of all the other processes that comprise a given job. These other processes are

called workers. A worker is a process running the actual executable of a Cilk program such

as ray or pfold. Since Cilk jobs are adaptively parallel, the set of workers is dynamic. At

any given time during the execution of a job, a new worker may join the job or an existing

worker may leave. Thus, each Cilk job consists of one or more workers and a clearinghouse

to keep track of them.

The Cilk-NOW runtime system contains two additional components to keep track of

the Cilk jobs and the individual workstations in the network. The job broker is a processes

running a system-supplied program called CilkJobBroker. The job broker runs on a single

machine in the network and keeps track of the set of Cilk jobs running in the network. A

node manager is a process running a system-supplied program called CilkNodeManager. A

node manager runs as a background daemon on every machine in the network. It continually

monitors its machine to determine when the machine is idle and when it is busy. When the

node manager finds that its machine is idle, it contacts the job broker to find a running Cilk

job that the machine can work on.

To see how all of these components work together in managing the execution of Cilk

jobs, we shall run though an example. Suppose that the job broker is running on a machine

called Vulture, and a user sits down at a machine called Penguin to run the pfold program.

In our example, the user types

pfold 3 7

at the shell, thereby launching a Cilk job to enumerate all protein foldings using 3 initial

folding sequences and starting with the 7th one.
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The new Cilk job begins execution as illustrated in Figure 6.1. The new process running

the pfold executable is the first worker and begins execution by forking a clearinghouse

with the command line

CilkChouse -- pfold 3 7.

Thus, the clearinghouse knows that it is in charge of a job whose workers are running “pfold

3 7.” The clearinghouse begins execution by sending a job description to the job broker.

The job description is a record containing several fields. Among these fields is the name

of the Cilk program executable—in this case pfold—and the clearinghouse’s network ad-

dress. The clearinghouse also sends its network address through a pipe back to the first

worker, the worker that forked the clearinghouse. The clearinghouse then goes into a service

loop waiting for messages from its workers. After receiving the clearinghouse’s address

from the pipe, the first worker registers with the clearinghouse by sending the clearinghouse

a message containing its own network address. Now the clearinghouse knows about one

worker, and it responds to that worker by assigning it a unique name. Workers are named

with numbers, starting with number 0. The first worker to register is named with number 0,

the second worker to register is named with number 1, and so on. Having registered, worker

0 begins executing the Cilk program as described in the previous chapter. We now have a

running Cilk job with one worker.

A second worker joins the Cilk job when some other workstation in the network be-

comes idle, as illustrated in Figure 6.2. Suppose the node manager on a machine named

Sparrow detects that the machine is idle. The node manager sends a message to the job

broker, informing the job broker of the idle machine. The job broker responds with the job

description of a Cilk job for the machine to work on. In this case, the job description speci-

fies our pfold job by giving the name of the executable—pfold—and the network address

of the clearinghouse. The node manager then uses this information to fork a new worker as

a child with the command line

pfold -NoChouse -Address=clearinghouse-address --.

The -NoChouse flag on the command line tells the worker that it is to be an additional worker

in an already existing Cilk job. (Without this flag, the worker would fork a new clearing-

house and start a new Cilk job.) The -Address field on the command line tells the worker

where in the network to find the clearinghouse. The worker uses this address to send a reg-

istration message, containing its own network address, to the clearinghouse. The clearing-

house responds with the worker’s assigned name—in this case, number 1—and the job’s

command-line arguments—in this case, “pfold 3 7.” Additionally, the clearinghouse re-

sponds with a list of the network addresses of all other registered workers. Now the new
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Worker

Penguin

Job broker

Vulture

Clearinghouse

First worker forks a 
clearinghouse and 
then registers.

1

2 Clearinghouse 
submits job to 
job broker.

Figure 6.1: A Cilk job starts. The first worker forks a clearinghouse, and then the clearinghouse
submits the job to the job broker.

worker knows the addresses of the other workers, so it can commence execution of the Cilk

program and steal work as described in the previous chapter. We now have a running Cilk

job with two workers.

Now, suppose that someone touches the keyboard on Sparrow. In this case, the node

manager detects that the machine is busy, and the machine leaves the Cilk job as illustrated

in Figure 6.3. After detecting that the machine is busy, the node manager sends a kill signal

to its child worker. The worker catches this signal and prepares to leave the job. First, the

worker offloads all of its closures to other workers as explained in more detail in the next

section. Next, the worker sends a message to the clearinghouse to unregister. Finally, the

worker terminates. When the node manager detects that its child worker has terminated, it

notifies the job broker, so that the job broker can keep track of the number of workers in

each Cilk job.

When a Cilk job is running, each worker checks in with the clearinghouse once every

2 seconds. Specifically, each worker, every 2 seconds, sends a message to the clearing-

house. The clearinghouse responds with an update message informing the worker of any

other workers that have left the job and any new workers that have joined the job. For

each new worker that has joined, the clearinghouse also provides the network address. If
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Figure 6.2: An idle machine joins a Cilk job. When the node manager detects that its machine
is idle, it obtains a job from the job broker and then forks a worker. The worker registers with the
clearinghouse and then begins work stealing.

the clearinghouse does not receive any messages from a given worker for over 30 seconds,

then the clearinghouse determines that the worker has crashed. In later update messages, the

clearinghouse informs the other workers of the crash, and the other workers take appropriate

remedial action as described in Section 6.3. If the clearinghouse incorrectly determines that

a worker has crashed and then receives a message from that worker, then the clearinghouse

refuses to reply with update messages. A worker that receives no update messages from

the clearinghouse for over 30 seconds commits suicide. Thus, a worker incorrectly deter-

mined to be crashed will eventually crash, and the communication protocols ensure correct

operation in this event. With each worker communicating with the clearinghouse once to

register, once to unregister, and once every 2 seconds for an update, we expect that a clear-

inghouse can service up to 1000 workers. Beyond this level and in a wide-area network, we

may require multiple clearinghouses configured in a hierarchy.

All of the communication between workers and between workers and the clearinghouse

is implemented with UDP/IP [95]. UDP/IP is an unreliable datagram protocol built on top of

the internet protocol [25]. The protocols implemented in the Cilk-NOW runtime system all

use UDP/IP to perform split-phase communication, so except in the case of work stealing, a

worker never sits idle waiting for a reply or an acknowledgment. Knowing that UDP data-
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Figure 6.3: A no-longer-idle machine leaves a Cilk job. When the node manager detects that its
machine is no-longer idle, it sends a kill signal to the worker. The worker catches this signal, offloads
its work to other workers, unregisters with the clearinghouse, and then terminates.

grams are unreliable, the Cilk-NOW protocols incorporate appropriate mechanisms, such as

acknowledgments, retries, and timeouts, to ensure correct operation when messages get lost.

We shall not discuss these mechanisms in any detail, and in order to simplify our exposition

of Cilk-NOW, we shall often speak—and indeed we already have spoken—of messages be-

ing sent and received as if they are reliable. What we will say about these mechanisms is

that they are not built on top of UDP in any effort to create a reliable message-passing layer.

Rather these mechanisms are built directly into the runtime system’s split-phase protocols,

so in the common case when a message does get through, Cilk-NOW pays no overhead to

make the message reliable.

We chose to build Cilk-NOW’s communication protocols using an unreliable message-

passing layer instead of a reliable one for two reasons. First, reliable layers such as TCP/IP

[95], PVM [96], and MPI [43] all perform implicit acknowledgments and retries to achieve

reliability. Therefore, such layers either preclude the use of split-phase communication or

require extra buffering and copying. A layer such as UDP which provides minimal service

guarantees can be implemented with considerably less software overhead than a layer with

more service features. In the common case when the additional service is not needed, the

minimal layer can easily outperform its fully-featured counterpart. Second, in an environ-
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ment where machines can crash and networks can break, the notion of a “reliable” message-

passing layer is somewhat suspect. A runtime system operating in an inherently unreliable

environment cannot expect the message-passing layer to make the environment reliable.

Rather, the runtime system must incorporate appropriate mechanisms into its protocols to

take action when a communication endpoint or link fails. For these reasons, we chose to

build the Cilk-NOW runtime system on top of a minimal layer of message-passing service

and incorporate mechanisms directly into the runtime system’s protocols in order to handle

issues of reliability. The downside to this approach is complexity. The protocols imple-

mented in the Cilk-NOW runtime system are complex: the code for these protocols takes

almost 20 percent of the total runtime system code, and the programming effort was prob-

ably near half of the total. Nevertheless, this was a one-time effort that we expect will reap

performance rewards for a long time to come.

The job broker, CilkJobBroker, and node manager, CilkNodeManager, are imple-

mented using remote procedure calls (RPC) [7] in the standard client/server configuration

with the job broker as the server. When the node manager on a machine finds that its ma-

chine is idle, it makes a remote procedure call to the job broker to obtain a Cilk job descrip-

tion. We shall finish this section by explaining the operation of the node manager and the

job broker in their current incarnations.

Each machine in the network runs a node manager in the background. In general, when

the machine is being used, the node manager wakes up every 5 seconds to determine if

the machine has gone idle. It looks at how much time has elapsed since the keyboard and

mouse have been touched, the number of users logged in, and the processor load averages.

The node manager then passes these values through a predicate to decide if the machine is

idle. This predicate can be customized for each machine. A typical predicate might require

that the keyboard and mouse have not been touched for at least 2 minutes and the 1-minute

processor load average is below 0:3. Alternatively, the owner of a machine might set the

predicate to require that no users are logged in. We believe that maintaining the owner’s

sovereignty is essential if we want owners to allow their machines to be used for parallel

computation. When the predicate is satisfied, the machine is idle, and the node manager

obtains a Cilk job description from the job broker and forks a worker. The node manager

then monitors the worker and continues to monitor the machine. With a worker running, the

node manager wakes up once every second to determine if the machine is still idle (adding

1:0 to any processor load-average threshold). If the machine is no longer idle, then the node

manager sends a kill signal to the worker as previously described. When the worker process

dies for any reason, the node manager takes one of two possible actions. If the machine is

still idle, then it goes back to the job broker for another job to work on. If the machine is no
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longer idle, then it returns to monitoring the machine once every 5 seconds.

The job broker determines which idle machines work on which Cilk jobs. In its current

implementation, the job broker uses a simple nonpreemptive, round-robin scheduling pol-

icy. This policy is extremely unfair in that it allows a single job to hold all the idle machines

to the exclusion of all other jobs. For example, if one job is running and using all the idle

machines, then when a second job starts, it will get none. Not until some machines leave

the first job and then later get reassigned by the job broker, will machines join the second

job. We are currently analyzing and experimenting with a simple probabilistic scheme based

on random preemptive reassignments in order to obtain “fair” scheduling. Our proposed

scheme uses the work-steal rates of individual workers to govern the reassignment proba-

bilities. Each job should get its fair share of the idle machines, but no job should get more

machines than it can efficiently utilize. In this proposed scheme, the functionality of the job

broker is implemented in a totally distributed manner instead of in the current client/server

manner.

6.2 Adaptive parallelism

Adaptive parallelism allows a Cilk job to take advantage of idle machines whether or not

they are idle when the job starts and whether or not they will remain idle for the duration

of the job. In order to efficiently utilize machines that may join and leave a running job,

the overhead of supporting this feature must not excessively slow down the work of any

worker at a time when it is not joining or leaving. As we saw in the previous section, a new

worker joins a job easily enough by stealing a closure. A worker leaves a job by migrating

all of its closures to other workers, and here the danger lies. When we migrate a waiting clo-

sure, other closures with continuations that refer to this closure must somehow update these

continuations so they can find the waiting closure at its new location. (Without adaptive par-

allelism, waiting closures never move.) Naively, each migrated waiting closure would have

to inform every other closure of its new location. In this section, we show how we can take

advantage of strictness and the work-stealing scheduler to make this migration extremely

simple and efficient.

Our approach is to impose additional structure on the organization of closures and con-

tinuations, such that the structure is cheap to maintain while simplifying the migration of

closures. Specifically, we maintain closures in “subcomputations” that migrate en masse,

and every continuation in a closure refers to a closure in the same subcomputation. In order
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to send a value from a closure in one subcomputation to a closure in another, we forward

the value through intermediate “result closures,” and give each result closure the ability to

send the value to precisely one other closure in one other subcomputation. With this struc-

ture and these mechanisms, all of the overhead associated with adaptive parallelism (other

than the actual migration of closures) occurs only when closures are stolen, and as we saw

in Chapter 5, the number of steals grows at most linearly with the critical path of the com-

putation but is not a function of the work. The bulk of this section’s exposition concerns the

organization of closures in subcomputations and the implementation of continuations. After

covering these topics, the mechanism by which closures are migrated to facilitate adaptive

parallelism is quite straightforward.

In Cilk-NOW, every closure is maintained in one of three pools associated with a data

structure called a subcomputation. A subcomputation is a record containing (among other

things) three pools of closures. The ready pool is the leveled lists of ready closures de-

scribed in Section 5.1. The waiting pool is a list of waiting closures. The assigned pool

is a list of ready closures that have been stolen away. Program execution begins with one

subcomputation—the root subcomputation—allocated by worker 0 and containing a single

closure—the initial thread of cilk main—in the ready pool. In general, a subcomputation

with any closures in its ready pool is said to be ready, and ready subcomputations can be

executed by the scheduler as described in Section 5.1 with the additional provision that each

waiting closure is kept in the waiting pool and then moved to the ready pool when its join

counter decrements to zero. The assigned pool is used in work stealing as we shall now see.

When a ready closure is stolen from the ready pool of a victim worker’s subcomputa-

tion, the closure is moved to the assigned pool, and assigned to a thief subcomputation newly

allocated by the thief worker. The assignment is recorded by giving the thief subcomputa-

tion a unique name and storing that name in a record of assignment information attached

to the assigned closure, as illustrated in Figure 6.4. The subcomputation’s name is formed

by concatenating the worker’s name and a number unique to that worker. The first subcom-

putation allocated by a worker r is named r:1, the second is named r:2, and so on. The

root subcomputation is named 0:1. The thief subcomputation stores its own name and the

name of its victim worker. The victim’s assigned closure stores the name of the thief worker

and the name of the thief subcomputation in its assignment information. We refer to the as-

signed closure as the thief subcomputation’s victim closure. Thus, the victim closure and

thief subcomputation can refer to each other via the thief subcomputation’s name which is

stored both in the victim closure’s assignment information and in the thief subcomputation.

This link between a victim closure and a thief subcomputation is created during work

stealing as follows. If a worker needs to steal work, then before sending a steal request to a
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Figure 6.4: A victim closure stolen from the subcomputation s:i of victim worker s is assigned to
the thief subcomputation r:j. The victim closure is placed in the assigned pool and augmented with
assignment information that records the name of the thief worker and the name of the thief subcom-
putation. The thief subcomputation records its own name and the name of the victim worker. Thus,
the victim closure and thief subcomputation can refer to each other via the thief subcomputation’s
name.

victim, it allocates a new thief subcomputation from a simple runtime heap. The thief sub-

computation’s name is contained in the steal request message. When the victim worker gets

the request message, if it has any ready subcomputations, then it chooses a ready subcompu-

tation in round-robin fashion, removes the closure at the tail of the topmost nonempty level

in the subcomputation’s ready pool, and places this victim closure in the assigned pool. The

victim worker then assigns the closure to the thief subcomputation by adding to the closure

an assignment information record allocated from a simple runtime heap, and then storing

the name of the thief worker and the name of the thief subcomputation (as contained in the

steal request message) in the assignment information. Finally, the victim worker sends a

copy of the closure to the thief. When the thief receives the stolen closure, it records the

name of the victim worker in its thief subcomputation, and it places the closure in the sub-

computation’s ready pool. Now the thief subcomputation is ready, and the thief worker may

commence executing it.

When a worker finishes executing a thief subcomputation, the link between the thief sub-
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computation and its victim closure is destroyed. Specifically, when a subcomputation has

no closures in any of its three pools, then the subcomputation is finished. A worker with a

finished thief subcomputation sends a message containing the subcomputation’s name to the

subcomputation’s victim worker. Using this name, the victim worker finds the victim clo-

sure. This closure is removed from its subcomputation’s assigned pool and then the closure

and its assignment information are freed. The victim worker then acknowledges the mes-

sage, and when the thief worker receives the acknowledgment, it frees the subcomputation.

When the root subcomputation is finished, the entire Cilk job is finished.

In addition to allocating a new subcomputation, whenever a worker steals a closure, it

alters any continuations in the closure so that they all refer to closures within the same sub-

computation. Consider a thief stealing a closure, and suppose the victim closure contains

a continuation referring to a closure that we call the target. The victim and target closures

must be in the same subcomputation in the victim worker. Continuations are implemented as

the address of the target closure concatenated with the index of an argument slot in the target

closure. Therefore, the continuation in the victim closure contains the address of the target

closure, and this address is only meaningful to the victim worker. When the thief worker

receives the stolen closure, it replaces the continuation with a new continuation referring

to a new “result” closure, as follows. First, the thief must locate the continuation with the

aid of a thread signature. For each thread in the program, the cilk2c translator creates a

signature which specifies the thread address (a pointer to the thread’s code) and the type of

each argument to the thread. All of the thread signatures are stored in a table. To find the

continuations in a closure, the worker uses the closure’s thread to lookup the signature in

the table. Then the worker uses the signature to locate which arguments are continuations.

Having located the continuation in the stolen closure, the thief allocates a new result clo-

sure and replaces the continuation with a new continuation referring to a slot in the result

closure, as illustrated in Figure 6.5. The result closure’s thread is a special system thread

whose operation we shall explain shortly. This thread takes two arguments: a continuation

index and a result value. The continuation index is supplied as the continuation’s argument

slot number in the stolen closure. The result value is missing, and the continuation in the

stolen closure is set to refer to this argument slot. The result closure is waiting and its join

counter is 1. In general, the thief allocates a result closure and performs this alteration for

each continuation in the stolen closure. The stolen and result closures are part of the same

subcomputation.

Using continuations to send values from one thread to another operates as described

in Section 5.1, but when a value is sent to a result closure, communication between dif-

ferent subcomputations occurs. When a result closure receives its result value, it becomes
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Figure 6.5: When the thief worker r steals a closure a which contains a continuation in its argument
slot 0, the thief replaces this continuation with a new continuation referring to an empty slot in a
newly allocated result closure b. Additionally, the thief stores the continuation’s slot number 0 in an
argument slot of the result closure.

ready, and when its thread executes, it forwards the result value to another closure in another

subcomputation as follows. When a worker executing a subcomputation executes a result

closure’s thread, it sends a message to the subcomputation’s victim worker. This message

contains the subcomputation’s name as well as the continuation index and result value that

are the thread’s arguments. When the victim worker receives this message, it uses the sub-

computation name to find the victim closure. Then it uses the continuation index to find a

continuation in the victim closure. Finally, it uses this continuation to send the result value

to the target.

To summarize, each subcomputation contains a collection of closures and every continu-

ation in a closure refers to another closure in the same subcomputation. To send a value from

a closure in one subcomputation to a closure in another, the value must be forwarded through

intermediate result closures passing from subcomputation to subcomputation by way of the

links between thief subcomputations and victim closures. All relations between different

subcomputations are confined to these links.

With this structure, migrating a subcomputation from one worker x to another worker

y is fairly straightforward. First, all of the subcomputation’s closures are swizzled in order

to replace addresses with values that have meaning independent of any particular worker’s

address space as follows. The thread field in each closure is translated from an address to an

index in the table of thread signatures, and each closure is assigned a unique index. Then,

using the thread signatures again, for each continuation in each closure, the pointer portion

of the continuation is replaced with the target closure’s index. Having swizzled all of its clo-
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sures, the subcomputation and the closures are sent in messages from worker x to worker y.

The subcomputation keeps its name. When the entire subcomputation and all of its closures

have been migrated to worker y, the closures are unswizzled to replace the thread and closure

indices with actual addresses. Finally, worker y sends a message to the subcomputation’s

victim worker to inform the victim closure of its thief subcomputation’s new thief worker.

Additionally, for each of the subcomputation’s assigned closures, it sends a message to the

thief worker to inform the thief subcomputation of its victim closure’s new victim worker.

Thus, all of the links between victim closures and thief subcomputations are preserved.

Adaptive parallelism proved extremely valuable in the protein-folding experiment de-

scribed at the top of this chapter. Figure 6.6 plots the number of machines that were idle at

each point in time over the course of a typical week for our network of 50 SparcStations.1

As can be seen from this plot, though many more machines are idle at night, a significant

number of machines are idle at various times throughout the day. Therefore, by adaptively

using idle machines both day and night, we can take advantage of significantly more ma-

chine resources than if we run our parallel jobs as batch jobs during the night. During the

day, however, a given machine is less likely to remain idle for an extended period of time.

Thus, in order to efficiently use machines adaptively during the day, the runtime system

must be able to utilize potentially short intervals of idle time.

To document the efficiency with which Cilk-NOW can utilize short periods of idle time,

we ran the following experiment. We used 8 SparcStation 1+ workstations connected by

Ethernet, and we ran the knary(11,6,2) program (see page 78) several times with varying

degrees of adaptiveness. We controlled the amount of adaptiveness by killing each worker

and then starting a new worker at fixed intervals on each machine. Figure 6.7 shows the

results of this experiment. The horizontal position of each plotted datum is the amount of

adaptiveness in the run as measured by the average execution time for each worker. For ex-

ample, a datum plotted at a horizontal position of 50 seconds represents a run in which the

average worker running on each of the 8 machines worked for 50 seconds before leaving the

job. The knary(11,6,2) program performs approximately 2600 seconds of work, so such

a run involves at least 2600=50 = 52 total workers. The vertical position of each plotted

datum is the efficiency of the run as measured by taking the ratio of the work in the compu-

tation (or execution time with one worker and no adaptiveness) to the sum of the execution

times of each worker in the run. If the efficiency is 1:0, then the total worker execution time

equals the work of the computation and every worker is utilized with perfect efficiency. This

1The node manager’s idleness predicate on all 50 machines was conservatively set to require that the key-
board and mouse have not been touched for 15 minutes and the 1, 5, and 15 minute processor load averages
are below 0:35, 0:30, and 0:25 respectively.
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Figure 6.6: This plot shows the number of machines, out of the 50 machines in our network, that
are idle over the course of one typical week in March, 1995.

plot shows that even when the average worker stays with the job for only 5 seconds, the ef-

ficiency is still over 85 percent, and if the average worker stays with the job for 1 minute,

then the efficiency is generally over 95 percent.

6.3 Fault tolerance

With transparent fault tolerance built into the Cilk-NOW runtime system, Cilk jobs may

survive machine crashes or network outages despite the fact that Cilk programs are fault

oblivious, having been coded with no special provision for handling machine or network

failures. If a worker crashes, then other workers automatically redo any work that was lost in

the crash. In the case of a more catastrophic failure, such as a power outage, a total network

failure, or a crash of the file server, then all workers may crash. For this case, Cilk-NOW

provides automatic checkpointing, so when service is restored, the Cilk job may be restarted

with minimal lost work. In this section, we show how the structure used to support adaptive

parallelism—which leverages strictness and the work-stealing scheduler—may be further

leveraged to build these fault tolerant capabilities in Cilk-NOW.

Given adaptive parallelism, fault tolerance is only a short step away. With adaptive par-
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Figure 6.7: This plot shows the efficiency of 8-processor executions of the knary(11,6,2) pro-
gram as a function of the amount of adaptiveness. The adaptiveness is measured as the average
amount of time each worker participated in the job. The efficiency is measured as the ratio of the
work in the computation to the total worker execution time.

allelism, a worker may leave a Cilk job, but before doing so, it first migrates all of its sub-

computations to other workers. In contrast, when a worker crashes, all of its subcomputa-

tions are lost. To support fault tolerance, we add a mechanism that allows surviving workers

to redo any work that was done by the lost subcomputations. Such a mechanism must ad-

dress two fundamental issues. First, not all work is necessarily idempotent, so redoing work

may present problems. We address this issue by ensuring that the work done by any given

subcomputation does not affect the state of any other subcomputations until the given sub-

computation finishes. Thus, from the point-of-view of any other subcomputation, the work

of a subcomputation appears as a transaction: either the subcomputation finishes and com-

mits its work by making it visible to other subcomputations, or the subcomputation never

happened. Second, the lost subcomputations may have done a large amount of work, and we

would like to minimize the amount of work that needs to be redone. We address this issue by

incorporating a transparent and fully distributed checkpointing facility. This checkpointing

facility also allows a Cilk job to be restarted in the case of a total system failure in which

every worker crashes.

To make the work of a subcomputation appear from the outside as a transaction, we mod-

ify the behavior of the subcomputation’s result closures by delaying their execution until the
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subcomputation finishes. Rather than set the join counter in each result closure to 1, we set

the join counter to 2, so the result closure will never be ready and always wait. Additionally,

rather than keep the result closures in the subcomputation’s waiting pool, we keep them in

a special result pool. When the subcomputation’s ready, waiting, and assigned pools are all

empty, then the subcomputation is finished, and the result closures may be executed. The

thread executed by each of these closures sends a message to the subcomputation’s victim

worker. Also, the fact that the subcomputation is finished warrants a message to the vic-

tim worker. We bundle all of these messages into a single larger message sent to the victim

worker. When the victim worker receives this message, it commits all of the thief subcom-

putation’s work by sending the appropriate result values from the victim closure, freeing the

victim closure, and sending an acknowledgment back to the thief worker.

By delaying the execution of the result closures, we have a very simple technique for

making the work of a subcomputation appear as a transaction, but on the negative side, this

delaying technique may result in a longer critical path. So far, none of our applications suf-

fer from this effect, because all of our applications are fully strict and each procedure sends

a value to its parent only as the last thing it does. Should the need arise, we may allow sub-

computations to perform commits before they finish by tying these commits to checkpoints.

With subcomputations having this transactional nature, a Cilk job can tolerate individ-

ual worker crashes as follows. Suppose a worker crashes. Eventually, the clearinghouse

will detect the crash, and the other living workers will learn of the crash at the next update

from the clearinghouse. When a worker learns of a crash, it goes through all of its subcom-

putations, checking each assigned closure to see if it is assigned to the crashed worker. Each

such closure is moved from the assigned pool back to the ready pool (and its assignment in-

formation is freed). Thus, all of the work done by the closure’s thief subcomputation which

has been lost in the crash will eventually be redone. Additionally, when a worker learns of

a crash, it goes through all of its subcomputations to see if it has any that record the crashed

worker as the subcomputation’s victim. For each such subcomputation, the worker aborts

it as follows. The worker goes through all of the subcomputation’s assigned closures send-

ing to each thief worker an abort message specifying the name of the thief subcomputation.

Then the worker frees the subcomputation and all of its closures. When a worker receives

an abort message, it finds the thief subcomputation named in the message and recursively

aborts it. All of the work done by these aborted subcomputations must eventually be redone.

In order to avoid aborting all of these subcomputations (which may comprise the entire job

in the case when the root subcomputation is lost) and redoing potentially vast amounts of

work, and in order to allow restarting when the entire job is lost, we need checkpointing.

Cilk-NOW performs automatic checkpointing without any synchronization among dif-
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ferent workers and without any notion of global state. Specifically, each subcomputation

is periodically checkpointed to a file named with the subcomputation’s name. For exam-

ple, a subcomputation named r:i would be checkpointed to a file named scomp r i. We

assume that all workers in the job have access to a common file system (through NFS or

AFS, for example), and all checkpoint files are written to a common checkpoint directory.2

To write a checkpoint file for a subcomputation r:i, the worker first opens a file named

scomp r i.temp. Then it swizzles all of the subcomputation’s closures, as described in

the previous section; writes the subcomputation record and all of the closures—including

the assignment information for the assigned closures—into the file; and unswizzles the clo-

sures. Finally, it atomically renames the file scomp r i.temp to scomp r i, overwriting

any previous checkpoint file. A checkpoint file can be read to recover the subcomputa-

tion by simply unswizzling the closures, as described in the previous section. On writing

a checkpoint file, the worker additionally prunes any no-longer-needed checkpoint files as

follows. Suppose that when the previous checkpoint file was written, the subcomputation

had a closure assigned to a thief subcomputation s:j, but since then, the thief subcompu-

tation has finished and the assigned closure has been freed. In this case, as soon as the new

checkpoint file scomp r i is written, the checkpoint file scomp s j is no longer needed.

The worker deletes the checkpoint file scomp s j as follows. It first reads the file, and for

each of the subcomputation’s assigned closures, it recursively deletes the thief subcompu-

tation’s checkpoint file, as this checkpoint file is also no longer needed. Finally, the worker

actually removes the file.

If workers crash, the lost subcomputations can be recovered from checkpoint files. In

the case of a single worker crash, the lost subcomputations can be recovered automatically.

When a surviving worker finds that it has a subcomputation with a closure assigned to the

crashed worker, then it can recover the thief subcomputation by reading the checkpoint file.

It is possible that the checkpoint file may not exist, but in this case, the thief subcomputation,

having not written a checkpoint file, cannot have done very much work, so little is lost by

redoing the work as previously described. In the case of a large-scale failure in which every

worker crashes, the Cilk job can be restarted from checkpoint files by setting the -Recover

flag on the command line. Recovery begins with the root subcomputation whose checkpoint

file is scomp 0 1. After recovering the root subcomputation, then every other subcompu-

tation can be recovered by recursively recovering the thief subcomputation for each of the

root subcomputation’s assigned closures.

Without checkpointing, we could not have completed the protein-folding experiment

2We have not yet implemented any sort of distributed file system. In the current implementation, workers
implicitly synchronize when they write checkpoint files, since they all access a common file system.
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described at the top of this chapter. In addition to several single-machine crashes (mostly

due to power cycling), we experienced a total system failure when our network’s NFS server

was down for maintenance. When the server came back on line, we were able to restart the

program from where it left off.







Chapter 7

Conclusions

Though this thesis has established an algorithmic foundation on which to build parallel mul-

tithreaded systems, much work remains to be done. We have shown that strictness is a suf-

ficient condition for efficient scheduling, though surely it is not a necessary condition. If

we can identify useful forms of nonstrictness and develop provably efficient scheduling al-

gorithms for these cases, then we can generalize the applicability of Cilk. Some forms of

nonstrictness, for example, might allow Cilk to efficiently execute more synchronous types

of applications.

Our current work is focused on incorporating in Cilk a distributed shared memory using

dag consistency [11]. A distributed shared memory provides a global virtual address space,

so an instruction may load from or store to a virtual address that has meaning independent

of which processor executes the instruction. With deterministic dag consistency, we spec-

ify the value returned when an instruction performs a load as follows. All of the stores to

any given virtual address must be totally ordered with respect to each other in the compu-

tation’s dag of instructions. Additionally, each individual load from a virtual address must

be totally ordered with respect to all of the stores to that address. Then, the value returned

by a load instruction is the value stored by the immediately preceding store instruction in

this total order. Dag consistency can be generalized to the case when no such total order

exists by introducing nondeterministic execution. Dag consistency builds upon our algo-

rithmic foundations, and for the case of fully strict computations, we can prove bounds on

the number of page (or object) faults. We have recently implemented dag consistency and

a simple “cactus-stack” memory allocator on the CM5, and we have coded several divide-

and-conquer applications including blocked matrix multiply, Strassen’s matrix multiply, and

a Barnes-Hut N-body simulation. Cilk together with dag consistency makes coding these

applications particularly simple. Strassen’s algorithm was coded in one evening. Prelimi-

nary results with these applications is extremely encouraging, though we do not have num-
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bers to report here. We further plan to add dag consistent shared memory to Cilk-NOW.

We have proven that dag consistency can be maintained using a simple and efficient check-

out/commit algorithm, and the nature of this algorithm dovetails perfectly into Cilk-NOW’s

implementation of adaptive parallelism and fault tolerance.

This thesis has shown that by building a multithreaded language and runtime system on

top of an algorithmic foundation, programmers can focus on expressing the parallelism in

their algorithm and leave the runtime system’s scheduler to manage the low-level details

of scheduling, secure and confident in the scheduler’s ability to deliver performance. Cilk

is just such a language and runtime system. In Cilk we can delineate a specific class of

programs—fully strict programs—and for this class, we can guarantee efficient execution

and performance that is predictable with a simple model based on work and critical path

length. Thus, besides the programming abstractions provided by the language, Cilk pro-

vides a performance abstraction. We argue that rather than think about machine-specific

quantities such as execution time and communication costs, the performance-minded pro-

grammer should instead think about program abstractions such as work and critical path

length and then rely on the runtime system’s performance model to translate these abstract

quantities into real quantities. The value of Cilk’s performance abstraction is intimately

linked to its provable efficiency. Abstraction requires guarantees.
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Proof of lower bound

Theorem 3.1 For any S1 � 4 and any T1 � 16S2
1, there exists a depth-first multithreaded

computation with work T1, average parallelism T1=T∞ � p
T1=8, and stack depth S1 such

that the following holds. For any number P of processors and any value ρ in the range

1� ρ� 1
8T1=T∞, if X is a P-processor execution schedule that achieves speedup ρ—that is,

T(X )� T1=ρ—then S(X )� 1
4(ρ�1)

p
T1 +S1.

Proof: To exhibit the desired depth-first multithreaded computation with work T1, criti-

cal path length T∞, and stack depth S1, we first ignore the partitioning of instructions into

threads and consider just the dag structure of the computation. Minus a few instructions and

dependencies, the dag appears as in Figure A.1(a). The instructions are organized into

m =
p

T1=8

separate components C0;C1; : : : ;Cm�1 that we call chains.1 Each chain begins with

λ =
p

T1=S1

instructions that we call headers (vertical hashed in Figure A.1(a)). After the headers, each

chain contains

ν = 6
p

T1

instructions (plain white in Figure A.1(a)) that form the trunk. At the end of each chain,

there are λ blockers (horizontal hashed in Figure A.1(a)). Each chain, therefore, consists

of 2λ+ ν = 2(
p

T1=S1)+ 6
p

T1 instructions. Since there are m =
p

T1=8 chains, the total

1In what follows, we refer to a number x of objects (such as instructions) when x may not be integral.
Rounding these quantities to integers does not affect the correctness of the proof. For ease of exposition, we
shall not consider the issue.
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number of instructions accounted for by the m chains is (2
p

T1=S1+6
p

T1)
p

T1=8 = 3
4T1+

1
4T1=S1, and this number is no more than 13

16T1 since S1 � 4. The remaining (at least) 3
16T1

instructions form the parts of the computation not shown in Figure A.1(a).

There are no dependencies between different chains so the average parallelism T1=T∞ is

at least m =
p

T1=8 and the critical path length T∞ is no more than 8
p

T1 as promised.

Now consider the partitioning of the instructions from each chain into the actual threads.

As alluded to in Figure A.1(b), the root thread has m� 1 child threads, each of which is

the root of a subcomputation that we call an outer iteration. (The outer iterations contain

inner iterations that will be discussed later.) Each of these outer iterations contains
p

T1=2

threads. As indicated by the shading in Figure A.1, the ith outer iteration for i= 1;2; : : : ;m�
1 contains both the header instructions of chain Ci and the blocker instructions of chain Ci�1.

These instructions are organized into the threads of the outer iteration so as to ensure that

chain Ci cannot begin executing its trunk instructions until all
p

T1=2 of the outer iteration’s

threads have been spawned, and none of these threads can die until chain Ci�1 begins ex-

ecuting its blocker instructions. (We will exhibit this organization later.) Thus, if chain Ci

begins executing its trunk instructions before chain Ci�1 finishes its, then the execution will

require at least
p

T1=2 space.

For any number P of processors, consider any valid P-processor execution schedule X .

For each chain Ci, let t(s)i denote the time step at which X executes the first trunk instruction

of Ci, and let t(f)i denote the first time step at which X executes a blocker instruction of Ci.

Since the trunk has length ν and no blocker instruction of Ci can execute until after the last

trunk instruction of Ci, we have t(f)i � t(s)i � ν.

Now consider two chains, Ci and Ci�1, and suppose t(s)i < t(f)i�1; this is the scenario we

described as using at least
p

T1=2 space. In this case, we consider the time interval from

t(s)i (inclusive) to t(f)i�1 (exclusive) during which we say that chain Ci is exposed, and we let

τi = t(f)i�1� t(s)i denote the amount of time chain Ci is exposed. See Figure A.2. If t(s)i � t(f)i�1

then chain Ci is never exposed and we let τi = 0. As we have seen, over the time interval

during which a chain is exposed, it uses at least
p

T1=2 space. We will show that in order for

an execution schedule X to achieve speedup ρ—that is T(X )� T1=ρ—there must be some

time step during the execution at which at least
�3

4ρ
��1 chains are exposed.

If schedule X is such that T(X )� T1=ρ, then we must have t(f)m�1� t(s)0 � T1=ρ. We can

expand this inequality to yield

T1=ρ � t(f)m�1� t(s)0

=
m�1

∑
i=0

(t(f)i � t(s)i )�
m�1

∑
i=1

(t(f)i�1� t(s)i ) : (A.1)
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Figure A.1: Constructing a computation with no efficient execution schedule. The header instruc-
tions of chain Ci and the blocker instructions of chain Ci�1 are both placed in the threads of the ith
outer iteration.
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Figure A.2: Scheduling the execution of the chains. A solid vertical interval from t(s)i to t(f)i indicates

the time during which the trunk of chain Ci is being executed. When t(s)i < t(f)i�1, we can define an

interval, shown dashed, of length τi = t(f)i�1 � t(s)i , during which chain Ci is exposed.

Considering the first sum, we recall that t(f)i � t(s)i � ν, hence,

m�1

∑
i=0

(t(f)i � t(s)i )� mν : (A.2)

Considering the second sum of Inequality (A.1), when t(f)i�1 > t(s)i (so Ci is exposed), we have

τi = t(f)i�1� t(s)i , and otherwise, τi = 0 � t(f)i�1� t(s)i . Therefore,

m�1

∑
i=1

(t(f)i�1� t(s)i )�
m�1

∑
i=1

τi : (A.3)

Substituting Inequality (A.2) and Inequality (A.3) back into Inequality (A.1), we obtain

m�1

∑
i=1

τi � mν�T1=ρ :
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Figure A.3: Laying out the chains into the threads of a multithreaded computation. As before, the header instructions are vertical hashed, and the
blocker instructions are horizontal hashed. In this example, each activation frame has unit size so S = 6. Also, in this example λ = 2, ν = 5, and only
the first 2 out of the m instructions in the root thread are shown. Each instruction of the root thread spawns a child (an outer iteration), and each child
thread contains λ+1 = 3 instructions; the first λ of these spawn a child thread which is the root of an inner iteration with stack depth S �2 = 4, and
the last one spawns a leaf thread with the ν = 5 trunk instructions of a single chain.
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Let exposed(t) denote the number of chains exposed at time step t, and observe that

T1=ρ

∑
t=1

exposed(t) =
m�1

∑
i=i

τi :

Then the average number of exposed chains per time step is

1
T1=ρ

T1=ρ

∑
t=1

exposed(t) =
1

T1=ρ

m�1

∑
i=1

τi

� 1
T1=ρ

(mν�T1=ρ)

=
3
4

ρ�1

since, m =
p

T1=8 and ν = 6
p

T1. There must be some time step t� for which exposed(t�)

is at least the average, and consequently,

exposed(t�)�
�

3
4

ρ
�
�1 :

Now, recalling that each exposed chain uses space
p

T1=2, we have

S(X ) �
��

3
4

ρ
�
�1

�
1
2

p
T1

� 1
4
(ρ�1)

p
T1 +S1

for S1 �
p

T1=4 (which is true since T1 � 16S2
1).

All that remains is exhibiting the organization of the instructions of each chain into a

depth-first multithreaded computation with work T1, critical path length T∞ � 8
p

T1, and

stack depth S = S1 in such a way that each exposed chain uses
p

T1=2 space. There are

actually many ways of creating such a computation. One such way, that uses unit size acti-

vation frames for each thread, is shown in Figure A.3.

For the multithreaded computation of Figure A.3, the root thread contains m instructions,

each of which spawns a child thread (an outer iteration). Each child thread contains λ+ 1

instructions; the first λ of these spawn a child thread which is the root of a subcomputation

that we call an inner iteration. Each inner iteration has stack depth S1 � 2 � S1=2 (since

S1 � 4), and the last one spawns a leaf thread with the ν trunk instructions of a single chain.

Each of these inner iterations contains a single header from one chain and a single blocker

from the previous chain (except in the case of the first group of λ) as shown in Figure A.3.
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The header and blocker in an inner iteration are organized such that in order to execute the

header, all S1�2 of the threads in the inner iteration must be spawned, and none of them can

die until the blocker executes. Thus, when a chain is exposed, all λ of these inner iterations

have all of their threads living, thereby using space λ(S1�2)� (
p

T1=S1)(S1=2) =
p

T1=2.

We can verify from Figure A.3 and from the given values of m, λ, and ν that this con-

struction actually has work slightly less than T1; in order to make the work equal to T1 we

can just add the extra instructions evenly among the threads that contain the trunk of each

chain (thereby increasing ν by a bit). Also, we can verify that T∞ � 8
p

T1. Finally, looking

at Figure A.3 we can see that this computation is indeed depth-first.

The construction of a multithreaded computation with provably bad time/space char-

acteristics as just described can be modified in various ways to accommodate various re-

strictions to the model while still obtaining the same result. For example, some real multi-

threaded systems require limits on the number of instructions in a thread, dependencies that

only go to the first instruction of a thread, limited fan-in for dependencies, or a limit on the

number of children a thread can have. Simple changes to the construction just described can

produce multithreaded computations that accommodate any or all of these restrictions and

still have the same provably bad time/space tradeoff. Thus, the lower bound of Theorem 3.1

holds even for multithreaded computations with any or all of these restrictions.





Appendix B

Cilk project status

Up to date Cilk information, papers, and software releases are available on the World Wide

Web (WWW) at the following two locations:

☞ http://theory.lcs.mit.edu/~cilk

☞ http://www.cs.utexas.edu/users/cilk

The Cilk team can be contacted by electronic mail at the following location:

✉ cilk-developers@theory.lcs.mit.edu

Contact the team to get on the cilk-users mailing list.

The current software release is version 2:0. This release is essentially as described in

Chapter 5. The Cilk 2:0 release includes the Cilk-to-C translator cilk2c, a collection of

example programs, a reference manual, and runtime system support for two multiprocessor

platforms—the Thinking Machines CM5 and the Sun SparcStation SMP—and uniprocessor

platforms running SunOS or Linux. Cilk has also been ported to PVM, the Intel Paragon

MPP, and the Silicon Graphics Power Challenge SMP, but these ports are not included in

the current release. For ports to other machines, the Cilk Reference Manual includes an

Implementor’s Guide. Contact the Cilk team for help porting Cilk to a new platform.

The next major release, Cilk 3:0, will include distributed shared memory.

A release of the Cilk-NOW runtime system is planned for the near future. This release

will support Cilk 2:0. A release supporting Cilk 3:0 will come sometime later. Watch the

web pages or get on the cilk-users mailing list to keep abreast of forthcoming software

releases.

August, 1995
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