
DO NOT USE THIS PAGE: COMPILED SEPARATELY.

Proving Correctness for Randomized Distributed
Algorithms

by

Alain Isaac Saias

Agr�egation de Math�ematiques, Paris, France (1984)
Ecole Normale Sup�erieure

Submitted to the Department of Mathematics
in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1995

cMassachusetts Institute of Technology

DO NOT USE THIS PAGE: COMPILED SEPARATELY.





DO NOT USE THIS PAGE: COMPILED SEPARATELY.

Proving Correctness for Randomized Distributed Algorithms

by

Alain Isaac Saias

Submitted to the Department of Mathematics
on February 1995, in Partial Ful�llments of the

Requirements for the Degree of
Doctor of Philosophy

Abstract

Thesis Supervisor: Nancy Lynch

Title: Professor of Electrical Engineering and Computer Science

DO NOT USE THIS PAGE: COMPILED SEPARATELY.



Randomness versus Non-Determinism in Distributed Computing

by

Alain Isaac Saias

Submitted to the Department of Mathematics
on February 1995, in Partial Ful�llments of the

Requirements for the Degree of
Doctor of Philosophy

Abstract

In randomized distributed computing, executions encounter branch points resolved
either randomly or non-deterministically. Random decisions and non-deterministic
choices interact and a�ect each other in subtle ways. This thesis is devoted to
the analysis and illustration of the e�ects of the interplay between randomness and
non-determinism in randomized computing.

Using ideas from game theory, we provide a general model for randomized comput-
ing which formalizes the mutual e�ects of randomization and non-determinism. An
advantage of this model over previous models is that it is particularly e�ective for
expressing mathematical proofs of correctness in two di�cult domains in random-
ized computing. The �rst domain is the analysis of randomized algorithms where
non-deterministic choices are made based on a limited knowledge of the execution
history. The second domain concerns the establishment of lower- bounds and proofs
of optimality.

The advantage of this model are described in the context of three problems. First,
we consider the classical randomized algorithm for mutual exclusion [49] of Ra-
bin. This algorithm illustrates perfectly the di�culties encountered when the non-
deterministic choices are resolved based on a limited knowledge of execution history.

We then analyze the Lehmann-Rabin Dining Philosophers algorithm (1981). Our
analysis provides a general method for deriving probabilistic time bounds for ran-
domized executions.

In the last part, we analyze a scheduling problem and give solutions in both the
deterministic and the randomized cases. Lower bounds arguments show these solu-
tions to be optimal. For the randomized case, we take full advantage of the game
theoretic interpretation of our general model. In particular, the proof of optimality
reects Von-Neumann's duality for matrix games.

Thesis Supervisor: Nancy Lynch
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Chapter 1

Introduction

For many distributed problems, it is possible to produce randomized algorithms
that are better than their deterministic counterparts: they may be more e�cient,
have simpler structure, and even achieve correctness properties that deterministic
algorithms cannot. One problem with using randomization is the increased di�culty
in analyzing the resulting algorithms. This thesis is concerned with this issue and
provides formal methods and examples for the analysis of randomized algorithms,
the proof of their correctness, the evaluation of their performance and in some
instance the proof of their optimality.

By de�nition a randomized algorithm is one whose code can contain random choices,
which lead to probabilistic branch points in the tree of executions. In order to
perform these random choices the algorithm is provided at certain points of the
execution with random inputs having known distributions: these random inputs are
often called coin tosses and we accordingly say that the algorithm ips a coin to
make a choice.

A major di�culty in the analysis of a randomized algorithm is that the code of
the algorithm and the value of the random inputs do not always completely char-
acterize the execution: the execution sometimes branches according to some non-
deterministic choices which are not in the control of the algorithm. Typical examples
of such choices are the choices of the inputs of the algorithm (in which case the cor-
responding branch point is at the very beginning of the execution), the scheduling
of the processes (in a distributed environment), the control of the faults (in a faulty
environment) and the changes in topology (in a dynamic environment). For the
sake of modeling we call adversary an entity controlling these choices. In a general
situation an adversary has also access to random sources to make these choices. (In

11



12 Chapter 1. Introduction

this case the adversary decides non-deterministically the probability distribution of
the coin.)

A randomized algorithm therefore typically involves two di�erent types of nonde-
terminism { that arising from the random choices whose probability distributions is
speci�ed in the code, and that arising from an adversary, resolving by de�nition all
the choices for which no explicit randomized mechanism of decision is provided in
the code.

The interaction between these two kinds of nondeterminism complicates signi�cantly
the analysis of randomized algorithms and is at the core of many mistakes. To un-
derstand the issues at stake consider a typical execution of a randomized algorithm.
The execution runs as prescribed by the code of the algorithm until a decision not
in the control of the code has to be resolved. (For instance, in a distributed context,
the adversary decides, among other things, the order in which processes take steps.)
This part of the execution typically involves random choices and therefore, the state
reached by the system when a decision of the adversary is required is also random.
Generally, the decision of the adversary depends on the random value of the state,
s1, reached. Its decision, a1, in turn, characterizes the probabilistic way the execu-
tion proceeds in its second part: the branch of the code then followed is speci�ed by
s1 a1. The execution proceeds along that branch, branching randomly as speci�ed
by the code until a second non-deterministic branch point must be resolved. The
adversary then makes a decision. This decision generally depends on the random
value of the state, s2, reached, and, in turn, characterizes the probabilistic way the
execution proceeds in its third part ... The execution thus proceeds, in a way where
the random inputs used by the algorithm inuence the decisions of the adversary;
decisions which in turn determine the probability distributions of the random inputs
used by the algorithm subsequently.

The analysis and the measure of the performance of randomized algorithms is usually
performed in the worst case setting. An algorithm \performs well" if it does so
against all adversaries. For example, among the correctness properties one often
wishes to prove for randomized algorithms are properties that state that a certain
property of executions has a \high" probability of holding against all adversaries; or
that a certain random variable depending on the executions, (e.g., a running time),
has a \small" expected value for all adversaries.

The proof of such properties often entails signi�cant di�culties the �rst of which is to
make formal sense of the property claimed. Such statements often implicitly assume
the existence of a probability space whose sample space is the set of executions, and
whose probability distribution is induced by the distribution of the random inputs
used by the algorithm. But what is \this" probability space? As we saw, the
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random inputs used during an execution depend on the decisions made previously
in the execution by the adversary. This shows that we do not have one, but instead
a family of probability spaces, one for each adversary. For each �xed adversary,
the coins used by the algorithm are well-de�ned and characterize the probabilistic
nature of the executions.

The analysis of a given randomized algorithm � therefore requires one to model
the set of adversaries to be considered with �: we refer to them as the set of
admissible adversaries. We must then construct (if possible) the probability space
(
A;GA; PA) corresponding to each adversary A. It should be noted that the choice
A of the adversary not only a�ects the distribution PA, if it exists, induced by the
random inputs on the set of executions, but also the set of executions itself. This
remark justi�es that the analysis of a randomized algorithm requires one to consider
a di�erent sample space 
A and a di�erent �-�eld GA for every adversary A.

Most authors, including the pioneers in the area of randomized computing, are aware
that the adversary inuences the probability distribution on the set of executions.
For instance, in an early paper [37] Lehmann and Rabin de�ne a schedule1 A to be

\a function which assigns to every past behavior of the n processes the
process whose turn is next to be active ... Under past behavior we mean
the complete sequence of atomic actions and random draws with their
results, up to that time ... This captures the idea that, for any spe-
ci�c system, what will happen next depends on the whole history of past
successes and failures of the processes ... as well as on what happened
internally within the processes. "

To each such A, the same paper [37] associates a probability distribution on the set
of executions. We quote:

\For a given schedule A and speci�c outcomes of the random draws �,2

we get a particular computation ! = COM(A; �) ... On the space of all
possible outcomes of random draws � we impose the uniform distribution.
The function COM then associates with every schedule A a probability
distribution on the set of all computation, the probability of a set E of
computations being de�ned as the probability of the set of sequences of
random draws � such that COM(A; �) is in E. "

1In [37] a schedule corresponds to what we call an adversary.
2[37] uses the notation S in place of A, D in place of � and C in place of !. We use A; � and !

to be consistent with the rest of our discussion.



14 Chapter 1. Introduction

This approach presents well the direction to be followed in a formal analysis. Nev-
ertheless many of the models and analyses published so far su�er from various
limitations, incompleteness and sometimes mistakes that we summarize now. We
use the fact that most of the existing work on randomized distributed computing
can be classi�ed into one of two classes.

To begin, there is on the one hand a very rich body of work analyzing the semantics
and logics of randomized computing (cf. [2, 18, 19, 23, 28, 29, 32, 38, 47, 51, 55, 58]).
The emphasis in most of these papers is to provide a uni�ed semantics or model of
computation for the description of randomized algorithms; and to recognize some
proof rules, methods and tools allowing the automatic veri�cation of some speci�c
subclasses of algorithms. The results thus obtained are typically limited in the
following three ways. A major limitation is that very little in general can be said
for properties of randomized algorithms that do not hold with probability one: such
properties are usually too speci�c to hold in general situations, and also usually too
hard to be simple consequences of general ergodic theory. For instance, the typical
problem considered by Vardi in [58] is the \probabilistic universality problem",
where one checks whether a formula belonging to some temporal logic holds with
probability one. (This problem can be reformulated in an equivalent way using
!-automata.) To quote [58], these methods

\deal only with qualitative correctness. One has often quantitative cor-
rectness conditions such as bounded waiting time [49] or real-time re-
sponses [52]. Veri�cations of these conditions requires totally di�erent
techniques."

A second limitation of these methods is that they are directed at randomized al-
gorithms whose correctness reects only the asymptotic properties of in�nite ex-
ecutions. A translation of this fact is their relative success in expressing liveness
properties and their failure in expressing the short-term behavior and correctness of
the studied algorithms. A third limitation is that, in their generality these methods
are able to take into account only very marginally the exact numeric distributions
used for the random inputs. These considerations lead the authors of [38] to say
that, in their model,

\only very basic facts about probability theory are required to prove the
properties needed. Essentially one does not need anything more than:
\if I throw a coin an in�nite number of times then it will fall an in�nite
number of times on heads."
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A second big body of work in distributed randomized computing is devoted to the
design and analysis of speci�c randomized algorithms.

These algorithms typically introduce randomness into algorithms for synchroniza-
tion, communication and coordination between concurrent processes (cf. [3, 37, 49,
36, 48, 50, 14, 21, 25]). If correct (!), these algorithms solve problems that have been
proven unsolvable by deterministic algorithms [3, 37, 21, 14]. Others improve on
deterministic algorithms by various measures [49, 36, 50]. The analysis and proof of
correctness of these algorithms is complex as is attested by the fact that subsequent
papers were published providing new proofs of the same claims (cf. [29, 47]).

In spite of successive improvements most of the analyses presented in these papers
su�er from the fact that the proofs and often even the statements are not expressed
formally using the probability distributions PA and that the proofs do not track pre-
cisely how the adversaries can inuence the probabilities. The paper by Aspnes and
Herlihy [3] is one of the few presenting formally the correctness statement claimed.
Nevertheless no explicit use of the measures PA is made during the proof. The
claims and arguments in the papers [14, 37] and [49] similarly lack a truly formal
treatment. As a consequence of this lack of formalism, many proofs are e�ectively
unreliable to readers not willing solely to rely on claims and neither willing to spend
the time to reach an intuitive understanding of the algorithm.

To summarize, the limitations encountered in the papers of the �rst class stem
from the desire to develop automatic methods of veri�cation for a wide class of
randomized algorithms: the wider the class, the less intricate each algorithm can
be. In contrast, from our point of view, the question of generating the proofs of
correctness of randomized algorithms can be left to the ingenuity of each prover.
Instead, our ambition is to derive a probabilistic framework within which most if not
all mathematical analyses and proofs related to speci�c randomized algorithms can
be expressed. This requires two types of construction. First, we need to develop
a general model de�ning algorithms and adversaries and formalizing their interac-
tions. (We call this a general model for randomized computing.) Then, for each
algorithm/adversary structure (described within the general model for randomized
computing), we need to characterize the probability spaces used in the analysis.

To understand better the nature of the work required we describe two situations
that a general model for randomized computing ought to address. We begin with a
situation very rarely addressed in the literature but whose consideration places the
problems encountered in the right perspective.
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Lower bounds, game theory. Most of the work existing on the analysis of dis-
tributed randomized algorithms and quoted above either provides an analysis of one
existing algorithm or provides some tools geared at providing such an analysis. All
these results can be called upper-bound results: they show that a given problem can
be solved at a given level of performance by providing an algorithm having that level
of performance. On the other hand very little work has been done in the direction of
exact lower-bounds of a randomized distributed problem and in establishing the op-
timality of a randomized solution to this problem. The lack of formal development
in this direction is mostly a reection of the complications involved in randomized
lower bounds and of the dearth of published work in this area.3 One exception is
provided by the combined work of Graham, Yao and Karlin [25, 33] who provide
precise lower bounds and a proof of optimality for the randomized (3,1)-Byzantine
Generals Problem: Byzantine broadcast with 3 processes, one of which is faulty.
Also, in [35], Kushilevitz et al. present some asymptotic lower bounds on the size
of the shared random variable for randomized algorithms for mutual exclusion.

A general model for randomized computing ought to provide a solid framework
allowing also the formal analysis of such lower bounds. In contrast with upper
bound proofs, the proofs of lower bounds require a model allowing the analyses
and comparison of a family of algorithms. These algorithms must be evaluated in
relation with a family of adversaries.

As mentioned in [3], page 443, [29], page 367, [46], page 145, the situation is actually
best understood in the language of game theory. The \uni�ed measure of complexity
in probabilistic computations" proposed in 1977 in [61] by Yao also adopts (implic-
itly) this point of view and relies fundamentally on Von Neumann's theorem in game
theory. We will adopt explicitly this point of view in the sequel and let Player(1)
be the entity selecting the algorithm and Player(2) be the entity selecting the ad-
versary. In this language, algorithms and adversaries are strategies of respectively
Player(1) and Player(2).

If Player(1) selects the algorithm � and if Player(2) selects the adversary A, the
game played by the two players consists of the alternative actions of the algorithm
and the adversary: Player(1) takes all the actions as described by � until the �rst

3The extreme di�culty of proving lower bounds for randomized algorithms is reected in the
fact that [33] is one of the most referenced non-published papers!
Note also that lower bounds for on-line algorithms (cf., for instance, [7, 15]) are of a very di�erent

type. These algorithms are not evaluated by their absolute performance but instead by some relative
measure, usually the ratio of their performance and the performance of the best o�-line algorithm.
In such problems the coupling between the adversary and the algorithm is often easily analyzable,
using competitive analysis. By contrast, the coupling between adversary and algorithm is much
harder to analyze in general situations where absolute measures of performance are used.
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point where some choice has to be resolved by the adversary; Player(2) then takes
actions to resolve this choice as described by A and Player(1) resumes action once
the choice has been resolved ... In this game, the two players have conicting
objectives: Player(1) selects its strategy so as to heighten the performance studied
whereas Player(2) selects its own strategy so as to lower it. The performance in
question depends on the problem studied.

For instance, in [49] the performance expresses a measure of fairness among par-
ticipating processes and Player(2) \tries" to be unfair to some process. In [37],
the performance expresses that \progress occurs fast" and Player(2) tries to slow
the occurrence of progress. In [3], the performance is measured by the expected
time to consensus and Player(2) chooses inputs and schedules so as to increase that
expected time. Also, let us mention that adopting a game point of view provides a
unifying description of the complex situation studied in [25] by Graham and Yao.
This paper studies the resiliency of a certain class of algorithms under the failure
of a single process. There, Player(2) ful�lls the manifold following functions. It re-
ceives some information about the algorithm selected, selects both the initial input
and the identity of the faulty process, and then monitors the messages sent by the
faulty process in the course of the execution.

To �nish let us remark that considering the relation between randomized algorithms
and adversaries as a game between Player(1) and Player(2) is also very useful when
a �xed algorithm �0 is analyzed.4 This situation simply corresponds to the case
where Player(1) has by assumption a single strategy �0.

Formalizing the notion of knowledge. It should be intuitively clear that an
optimal adversary is one that will optimize at each of its steps the knowledge it holds
so as to take decisions most detrimental to the performance sought by Player(1).
Similarly, in cases where Player(1) has more then one strategy � to choose from,
(i.e., in cases where more then one algorithm can be considered), the best strategy
is one that takes best advantage of the knowledge available about the past moves of
Player(2) and about the strategy implemented by Player(2).

Establishing the performance of an algorithm is always tantamount to proving that
\the optimal" adversary cannot reduce the performance below the level of perfor-
mance claimed for that algorithm. Equivalently, a proof of correctness must in some
way establish a bound on the usefulness of the knowledge available to Player(2).

This justi�es that a general probabilistic model for randomized computing should
formalize the notion of knowledge available to the players. And that it should

4This was actually the original insight of [3, 29, 46].
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provide an explicit mechanism of communication between the players, formalizing
the update of their knowledge as the execution progresses.

To illustrate this point of view note that in all the formal constructions quoted above
and associated with the analysis of a speci�c algorithm (see for instance [3, 28, 29,
40, 47, 58]) the model proposed for an adversary formalizes that Player(2) makes
its choices knowing the complete past execution: this was indeed the idea of Rabin
in [37] quoted above. Nevertheless the correctness of some published algorithms
depends critically on the fact that Player(2) is allowed only a partial knowledge of
the state of the system and/or has only a �nite memory of the past. The example
of Rabin's randomized algorithm for mutual exclusion [49] is very interesting in this
respect. ([49] is one of the few papers venturing into that area.) Due to the lack
of model, Rabin resorts to intuition to present and establish the main correctness
property. We quote:

\In the context of our study we do not say how the schedule arises, or
whether there is a mechanism that imposes it ... We could have an
adversary scheduler who tries to bring about a deadlock or a lockout
of some process Pi. A special case of this evil scheduler is that some
processes try to cooperate in locking out another process. Our protocol
is su�ciently robust to have the desired property of fairness for every
schedule S.

We have su�ciently explained the notion of protocol to make it unneces-
sary to give a formal de�nition: given a protocol � we now have a natural
notion of a run � = i1X1i2X2 : : :, resulting from computing according to
�. Again we do not spell out the rather straightforward de�nition. Note
that since process i may ip coins, even for a �xed schedule S there may
be many di�erent runs � resulting from computing according to �. "

As mentioned previously, the notion of schedule used in [49] corresponds to our
notion of adversary. Also, the notion of run used in [49] corresponds to what we
call the knowledge held by Player(2). As demonstrated in Chapter 3 of this thesis,
a rigorous proof of the correctness of the algorithm presented in [49] should have
actually required a formal model stating clearly \how the schedule arises" and also
formalizing the interaction between Player(1) and Player(2): after having formal-
ized the setting of [49], we establish that the knowledge at the disposal of Player(2)
is much stronger then what was originally believed, and that the algorithm is not
\su�ciently robust to have the desired property of fairness for every schedule S" as
claimed in [49].

The reason for the failure of the proof given in [49] is that it does not take into
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account the knowledge available to Player(2). Instead it argues solely in terms
of the distribution of the random inputs; i.e., attempts to prove properties of the
executions !(A; �) by simply considering the random inputs �. Again, this means
overlooking the power of Player(2) in inuencing the distribution of !(A; �).

To summarize, we have argued that a general model for randomized computing
should allow the simultaneous consideration of several algorithms: such situations
are typically encountered while proving lower bounds. It is natural to view the sit-
uation as a game between Player(1), the algorithm designer, and Player(2) the ad-
versary designer. The algorithms are the strategies of Player(1) and the adversaries
are the strategies of Player(2). This model should provide an explicit mechanism of
communication between the two players allowing them to update their knowledge
as the execution progresses.

The goal of this thesis is to present such a model and to illustrate its generality on
several examples. We now present the work done in the thesis.

We present in Chapter 2 a general model corresponding to the previous discussion.
The model is simply constructed to formalize that both players take steps in turn
having only a partial knowledge of the state of the system. This knowledge is up-
dated at every move of either player. We then construct carefully the \natural"
probability space (
�;A;G�;A; P�;A) obtained on the set of executions when the algo-
rithm is a given � and when the adversary is a given A. Our construction requires
the technical (but fundamental) hypothesis that all the coins used in the game have
at most countably many outcomes.

To our knowledge, this last probabilistic construction was similarly never conducted
to completion. In [58] and [29] Vardi and Hart et al. present the �-�eld G�;A that
allows to study probabilistically events \depending on �nitely many conditions".
Nevertheless some additional work has to be devoted to justify the existence of a
probability measure P�;A on the set of executions. We prove this existence by a
limiting argument using Kolmogorov's theorem.5

5Aspnes and Herlihy in [3] de�ne formally the measure PA to be the image measure of the
measure on the random inputs under the mapping: �! !(A; �); where � denotes a generic sequence
of random inputs and !(A; �) is the unique execution corresponding to a given adversary A and a
given sequence of random inputs �. Indeed, the �-�elds are de�ned precisely so that the mapping
�! !(A; �) is measurable. But this approach cannot be used in general situations as it presupposes
a well de�ned probability measure on the set of random inputs �. This is trivially the case when
the sequence of inputs is obtained with independent coins, in which case the space of random draws
� is endowed with the product structure. This property holds for many published randomized
algorithms such as those in [3, 37]. Nevertheless this is not the case in [4] which considers a
situation where the weight of the coins used is modulated along the execution. Also, this is not
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An important feature of our model is the symmetry existing between the notions
of algorithm and of adversary. Eventhough this symmetry is rather natural in the
light of the game theory interpretation it nevertheless seems to be rather novel with
respect to the existing work. Most of the models presented so far are concerned with
the analysis of a single algorithm, i.e., when Player(1) has a single strategy. This
very speci�c (eventhough important) situation obscures the natural game theory
structure that we reveal and led various authors to asymmetric models where the
adversaries depend speci�cally on the algorithm considered. As discussed later, our
Chapter 7 provides a striking illustration in favor of a symmetric model.

Our Chapter 3 analyzes Rabin's randomized algorithm for mutual exclusion [49].
This algorithm is one of the few in the literature whose correctness hinges critically
on the limited knowledge available to Player(2).

As mentioned above, the study of such algorithms is rather complex and requires
the exact formalization of the notion of knowledge. In the absence of a formal model
for randomized computing Rabin resorted to intuition in his original paper [49] to
express and establish the intended correctness statement. One year later, in 1983,
as an illustration of their general method, Hart, Sharir and Pnueli provided in [29]
some additional \justi�cations" to the correctness of the algorithm.

As part of our analysis we �rst show how the formal model of Chapter 2 allows
one to formalize accurately the hypotheses. Our analysis then reveals that the
correctness of the algorithm is tainted for two radically di�erent reasons. We �rst
show that the informal statement proposed by Rabin admits no natural \adequate"
formalization. The problem is in essence the following. The statement involves
proving that the probability of a certain event C is \high" against all adversaries
if a certain precondition B holds. One natural way to formalize such a statement
might seem to consider the expression

inf
A
PA[C j B]

Nevertheless we show that this would be tantamount to giving the knowledge of B
to Player(2). But Player(2) would not be able to derive the knowledge of B from
the mere information sent to him in the course of the execution: Player(2) \learns"

the case in the complex paper [25] where a random adversary adapts its moves based on the past
execution. Finally, this is not also the case in the general models in [29, 58], where the i-th coin
used depends on the state si of the system at the time of the i-th ip.
Note nevertheless that the argument of Aspnes and Herlihy in [3] is now valid in the light of our

construction in Chapter 2 which precisely justi�es the existence of a probability distribution on the
sequence of ips even when these ips are not independent.
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some non-trivial fact from the conditioning on B. Not surprisingly Player(2) can
then defeat the algorithm if this measure is used.

This �rst problem is not related to the proof of the correctness statement but
\merely" to its formalization. Our analysis shows that such formalization prob-
lems are general and proposes a partial method to formalize adequately informal
high-probability correctness statements.

We then show that the algorithm su�ers from a \real" aw disproving a weaker but
adequate (in the sense just sketched) correctness measure. The aw revealed by
our analysis is precisely based on the fact that the dynamics of the game between
the two players allow Player(2) to acquire more knowledge then a naive analysis
suggests.

To �nish we establish formally a correctness result satis�ed by Rabin's algorithm.
The method we apply is rather general and proceeds by successive inequalities until
derivation of a probabilistic expression depending solely on the random inputs. Such
an expression is independent of Player(2) and its estimation provides a lower bound.

Our chapter 4 analyzes Lehmann-Rabin's Dining Philosophers algorithm [37]. In
spite of its apparent simplicity this algorithm is not trivial to analyze as it requires,
as usual, to unravel the complex dependencies between the random choices made by
the algorithm and the non-deterministic choices made by Player(2). The original
proof given in [37] does not track explicitly how the probabilities depend on the
adversaryA and is therefore incomplete. In a subsequent paper [47], Pnueli and Zuck
provides a proof of eventual correctness of the algorithm. The method used there
shares the characteristics of most general semantic methods described on page 14: it
establishes that some event eventually happens with probability one. Furthermore it
does not take into account the speci�c probability distribution used for the random
inputs.

We present instead a new method in which one proves auxiliary statements of the
form U

t
�!
p
U 0, which means that whenever the algorithm begins in a state in set U ,

with probability p, it will reach a state in set U 0 within time t. A key theorem about
our method is the composability of these U

t
�!
p

U 0 arrows allowing to use each of

these results as building blocks towards a global proof. (This part was developed
jointly with Roberto Segala.) Our method presents the two following advantages.

It �rst provides a tighter measure of progress then \eventual progress": we provide
a �nite time t and a probability p such that, for all adversaries, progress happens
within time t. This trivially implies the eventual progress with probability-one.
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As mentioned in page 14, eventual probability-one liveness properties are usually
considered not because of their intrinsic relevance but because of the limitations of
the general methods used. Our method uses more speci�c and re�ned tools then
the very very basic facts about probability theory as \if I throw a coin an in�nite
number of times then it will fall an in�nite number of times on heads" mentioned
by Lehmann and Shelah in [38].6 Nevertheless it is still general and simple enough
to apply to a variety of situations and tighten the liveness measures usually derived.

An additional advantage of our method is that it does not require working with
events belonging to the tail �-�eld, an enterprise which can present some subtle
complications. Recall in e�ect that the argument proposed by Lehmann-Rabin
consisted in conditioning on the fact that no progress occurred and then deriving a
contradiction. Our discussion at the beginning of Chapter 3 shows that conditioning
on any event { let alone conditioning on an event from the tail �-�eld { can be
problematic.

Our Chapters 5 and 7 are concerned with a scheduling problem in presence of faults.
Chapter 5 investigates the deterministic case { where algorithms do not use ran-
domization { and Chapter 7 investigates the randomized case. In both situations
we are interested in providing optimal algorithms. Both are rather complex even-
though in very di�erent ways. The solution of Chapter 5 is obtained by translating
the problem into a graph problem. A key tool is Ore's De�ciency Theorem giving a
dual expression of the size of a maximum matching in a bipartite graph.

In Chapter 7 we describe a randomized scheduling algorithm and establish formally
its optimality. To our knowledge, Graham and Yao were before us the only ones
providing the proof of the exact optimality of a randomized algorithm.

The method that we develop to prove optimality is rather general and in particular
encompasses in its scope the speci�c proof strategy used by Graham and Yao in
their paper [25]. This method is presented by itself in Chapter 6. It is in essence
based on an application of a min-max equality reversing the roles of Player(1) and
Player(2) in the scheduling game considered. This min-max method uses critically
the natural symmetric structure between the two players. The success of this point
of view also brings a striking illustration of the relevance of a general symmetric
model for randomized computing as claimed at the beginning of this chapter. In
particular, critical to the proof is the fact that adversaries are randomized and
de�ned independently of any speci�c algorithm, much in the same way as algorithms
are randomized and de�ned independently of any speci�c adversary.

6See page 14 of this chapter for a more complete quote.
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Eventhough the proof of [25] and our proof are both applications of the general
proof method presented in Chapter 6, the two proofs di�er in an essential way. We
comment on this di�erence to give an account of the complexities involved in such
proofs. Critical to the proof of Graham and Yao [25] is the fact that, in their model,
Player(2) knows explicitly the strategy (i.e., the algorithm) used by Player(1): their
proof would not hold without this assumption. On the other hand, in the formal
model that we use, Player(2) is not explicitly provided with the knowledge of the
strategy used by Player(1), and our proof would not hold if it was.

Nevertheless, as is argued in Chapter 6, in both [25] and in our work, the optimal-
ity of an algorithm does not depend on the fact that Player(2) knows or not the
algorithm under use. Such a fact merely a�ects the shape taken by the proof. This
subtle point should make clear, we hope, that formal proofs of optimality are bound
to be very complex.

We describe summarily the content of Chapter 6. This chapter presents a general
proof method to attempt to prove that a given algorithm is optimal. At the core of
the method is the use of the min-max equality

max
�

inf
A
f(�;A) = min

A
sup
�
f(�;A) ;

where f(�;A) is the performance of the algorithm � against the adversary A. Fun-
damental to us are therefore situations where such an equality occurs: in each of
these cases our method yields the possibility to prove the optimality of an algorithm.
We show that this equality occurs in the two following cases. (In the �rst case the
equality is a simple reinterpretation of Von Neumann's theorem.)

1. When the strategies of either player are the convex combinations of a �nite
set called the set of pure strategies (and when f(�;A) is the expected value
E�;A[T ] of some random variable T .)

2. When one player, typically Player(2), \knows" the strategy used by the other
player.

The two settings yield di�erent proof systems. Very interestingly our proof of opti-
mality in Chapter 7 falls in case 1 whereas the proof of optimality [25] of Graham
Yao falls in case 2.

To summarize, we present in this thesis a formal and general model for randomized
computing. Under the assumptions that all the coins have at most countably many
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outcomes we succeed in constructing formally the probability spaces on the set of
executions to be used in the analysis of an algorithm. To our knowledge, our model
is stronger then all models previously constructed in that 1) it accurately allows
to formalize the precise nature of the knowledge held by both players (this is the
critical point in Rabin's randomized algorithm for mutual exclusion); 2) it allows
to conduct formal lower-bound proofs for randomized computing (no formal model
existed so far allowing that7); and 3) it does not require as in the models presented
by Vardi in [58] and Hart et al. in [29] that the algorithms be �nite-state programs.
(Actually our model allows for algorithms having a state space with the cardinality
of the continuum). Our Chapters 3 and 7 illustrate the two �rst points. The last
one is a simple consequence of the fact that our model allows the algorithm to have
an in�nite memory.

In Chapter 3 we present the notion of adequate performance measures for an algo-
rithm: measures that are \naturally" attached to an algorithm and provide mean-
ingful estimations. We illustrate this notion in our analysis of Rabin's algorithm
for mutual exclusion [49]. We furthermore provide a rather general technique for
proving rigorously high-probability statements holding against all adversaries.

In Chapter 4 we provide a rather general technique for proving upper bounds on
time for randomized algorithms. We illustrate this technique in our analysis of
Lehmann-Rabin's Dining Philosopher's algorithm [37].

In Chapter 6 we present a general proof methodology to attempt to prove that a
given algorithm is optimal. We illustrate this method in Chapter 7 with a speci�c
example.

7The model developed by Graham and Yao is an ad-hoc model for the speci�c situation per-
taining to [25].



Chapter 2

A General Model for

Randomized Computing

We argued in Chapter 1 that formal proofs of correctness of randomized algorithms
required a formal model for randomized computing. Such a model should formalize
the notion of algorithm and of adversary, and formalize how these two entities
interact.

We also argued that the game-theory point of view was most appropriate to under-
stand and model these notions. For this, we let Player(1) be the entity selecting
the algorithm and Player(2) be the entity selecting the adversary. In this language,
algorithms and adversaries are strategies of respectively Player(1) and Player(2).
We therefore sometimes call Player(1) the algorithm-designer and Player(2) the
adversary-designer. If Player(1) selects the algorithm � and if Player(2) selects
the adversary A, the game played by the two players consists of the alternative ac-
tions of the algorithm and the adversary: Player(1) takes all the actions as described
by � until the �rst point where some choice has to be resolved by the adversary;
Player(2) then takes actions to resolve this choice as described by A and Player(1)
resumes action once the choice has been resolved ... This means that the two players
play sequentially.

The purpose of this chapter is to construct both 1) such a general model for ran-
domized computing and 2) the associated probability spaces used for the analysis of
randomized algorithms. Our model is presented in Section 2.3. The construction of
the associated probability spaces is presented in Section 2.4. Section 2.1 investigates
the features that a general model should be endowed with. Section 2.2 motivates
the formal presentation given in Section 2.3.

25
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2.1 Which Features should a General Model have?

We argue here that a model for randomized computing should have the following
general features. 1) It should not only allow to analyze the performance of a given
algorithm but the performance of a whole class of algorithms. 2) It should formalize
the notions of both an adversary and of an algorithm: for emphasis, the algorithms
and adversaries thus formalized are called admissible. 3) It should allow the adver-
saries to be randomized. 4) It should allow to formalize that both Player(1) and
Player(2) have in general only a partial knowledge of the state during the execution.
In particular it should provide an explicit mechanism of communication between the
two players allowing them to update their knowledge as the execution progresses.
And 5), an admissible adversary should be characterized independently of the choice
of any speci�c admissible algorithm.

1. & 2. Concurrent analysis of several algorithms; Formalization of the

notion of algorithm. As mentioned in Chapter 1 most of the existing models for
randomized computing (e.g. [3, 28, 29, 47, 54, 58]) are implicitly designed for the
analysis of one algorithm. In contrast we have in mind a general model in which all
proofs and arguments about randomized algorithms could be expressed. Our model
must in particular be suited for the formalization of lower-bound proofs. In that case
the analysis considers not only one, but a whole family � of algorithms. This family
must be characterized much in the same way as the family A of adversaries must be
characterized. Note that characterizing the family � corresponds to modeling the
notion of algorithm. In all the papers cited above and analyzing a �xed algorithm,
the necessity to model an algorithm was not felt: more exactly the description of the
algorithm analyzed was the only modelization required. This situation corresponds
to the case where � is reduced to a singleton f�g.

3. Randomized adversaries. We now turn to the third point and argue that a
general model should allow the adversary to be randomized.

It is often claimed that, in the absence of cryptographic hypotheses, the analysis can
\without loss of generality" consider only non-randomized adversaries. For instance
in [29] the authors say and we quote:

\Note that the schedule's \decisions" are deterministic; that is, at each
tree node a unique process is scheduled. One might also consider more
general schedules allowing the schedule to \draw" the process to be sched-
uled at each node using some probability distribution (which may depend
on the particular tree node). However ... there is no loss of generality
in considering deterministic schedules only."
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The reason is that, whenever making a random choice among a set D, an optimal
Player(2) can instead analyze the outcomes corresponding to all the choices d in
D, (more exactly to all the measurable choices), and choose one that best lowers
the performance of the algorithm. (More exactly, can select one that brings the
performance of the algorithm arbitrarily close to the in�mum \infd2Dperformance
under choice of d".)

The above argument shows that a model allowing the adversaries to be randomized
does not make Player(2) more powerful. Nevertheless we do not share the more
restrictive view expressed in [13]:

\The motivation for models where the adversary is assumed to exhibit
certain probabilistic behavior is that the worst case assumptions are fre-
quently too pessimistic, and phenomena like failures or delays are often
randomly distributed."

Randomization can undoubtedly be useful in a setting where one wants to weaken
the power of Player(2). But, even when considering an \unweakened"Player(2)
allowing Player(2) to use randomization can be of inestimable help in the proof
of optimality of a given (optimal) randomized algorithm �0. Indeed, the proof
methodology { for establishing the optimality of a randomized algorithm { presented
in Chapter 6 of this thesis requires to provide a speci�c adversary and to prove
that this adversary satis�es an optimal property1. (Recall that an adversary is a
strategy of Player(2).) As just mentioned, randomization does not make Player(2)
more powerful and the existence of such an optimal randomized adversary therefore
implies the existence of a deterministic optimal adversary. But, in general, the sole
description of such a deterministic optimal adversary can prove to be a very hard task
(e.g., taking non constant space { even taking exponential space), therefore barring
the possibility to establish the optimality of an algorithm { at least using our proof
methodology. On the other hand, if the adversary is allowed to use randomization,
we can in some instances provide the description of a \simple" optimal randomized
adversary, thus also proving the optimality of the algorithm �0.

An illustration of this phenomenon is given in the proof of optimality given by
Graham and Yao in [25]. A close analysis of the proof of [25] shows that it follows
the general methodology given in our Chapter 6, introduces a speci�c adversary
A0 and proves that it veri�es an optimal property. A fundamental assumption
of the model used in [25] is that the Player(2) \knows" explicitly the algorithm
under use. This knowledge is used critically to de�ne the strategy A0: at every
point of the execution, Player(2) determine its next step by emulating � under

1The desired notion of optimality for the adversary will be clari�ed in Chapter 6.
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certain conditions. As � is randomized, the emulation of � also requires the uses of
randomness and A0 is therefore a randomized adversary.

This discussion justi�es that a general model should allow the adversary to use
randomness. We will provide in Chapter 7 of this work another application of this
fact.

4. Formalization of the notion of knowledge. We now turn to the fourth
point and argue for a model formalizing the notion of knowledge. The model should
also provide an explicit mechanism of communication between the algorithm and
the adversary, allowing them to update their knowledge as the execution progresses.

It should be intuitively clear that an optimal strategy of Player(2) is one where
Player(2) optimizes at each of its steps the knowledge it holds so as to take decisions
most detrimental to the performance sought by Player(1). Similarly, in cases where
Player(1) has more then one strategy � to choose from, (i.e., in cases where more
then one algorithm can be considered), the best strategy is one that takes best
advantage of the knowledge available about the past moves of Player(2) and about
the strategy implemented by Player(2).

Establishing the performance of an algorithm is always tantamount to proving that
Player(2) adopting an optimal strategy cannot reduce the performance below the
level of performance claimed for that algorithm. Equivalently, a proof of correctness
must in some way establish a bound on the usefulness of the knowledge available to
Player(2). Similarly, to establish the optimality of an algorithm one is led to show
that no other admissible algorithm can use more e�ciently the knowledge available
to Player(1).

This justi�es that a general probabilistic model for randomized computing should
formalize the notion of knowledge available to the players. And that it should
provide an explicit mechanism of communication between the players, formalizing
the update of their knowledge as the execution progresses.

5. An adversary can be associated to any algorithm. We now turn to the
�fth point and argue that, in a general model for randomized computing, an ad-
missible adversary should be characterized independently of any speci�c admissible
algorithm. Note �rst that, by de�nition, an algorithm � is de�ned independently of
a given adversary A. On the other hand, an adversary might seem to be de�ned only
in terms of a given algorithm: the adversary is by de�nition the entity that resolves
all choices not in the control of the algorithm considered. We show over an example
that this conception is incorrect and that a correct game theory interpretation yields
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adversaries de�ned independently of the algorithm considered.

A situation where one can encounter several algorithms in the course of a correctness
proof is one where, as in Chapters 3 and 4 of this thesis, a program C is studied
for various initial conditions si; i 2 I . One can then model an algorithm to be a
couple (C; si): we have a di�erent algorithm �i for each di�erent initial condition
si.

2 The code C is considered to \be correct" (with respect to the speci�cations of
the problem considered) if all algorithms behave well against Player(2). Note that,
in this situation, one implicitly assumes that Player(2) \knows" which algorithm
�i is under use. A strategy A for Player(2) (i.e., an adversary) is then accurately
de�ned to be a family (Ai)i2I , one for each algorithm �i. We will say that Ai is
an adversary specially designed for �i.

3 The adversary A = (Ai)i2I is clearly not
associated to a speci�c algorithm �i.

More generally one will de�ne an adversary to be a strategy of Player(2) taking into
account all the information available during the execution. (In the previous example
one assumed that Player(2) was told the algorithm selected by Player(1).) We thus
obtain a symmetric model where algorithms � in � (resp. adversaries A in A) are
de�ned independently of any choice of A (resp. of any choice of �). Because they
are dealing only with the special case where Player(1) has only one strategy, many
of the models published have developed in ways obscuring this natural symmetry
between Player(1) and Player(2), i.e., between adversaries and algorithms. (The
model presented in [40] su�ers of this aw.) This represents more than an esthetical
loss. For, as we show in Chapter 6 of this thesis, the symmetry of the two players is
expressed by a max-min equality and plays a central role in the proof of optimality
of a randomized algorithm.

Note that the properties 1, 2, 3 and 5 claimed for a general model { the possibility
to analyze and compare several algorithms, the necessity to formalize the notion
of an algorithm, the allocation of randomness to the adversary and the possibility
to characterize an admissible adversary independently of any speci�c admissible
algorithm { are useful mostly for lower-bounds. This explains why none of the
models considered so far in the literature included these features.

On the other hand, the fourth claim { that the notion of knowledge is crucial for
proofs of correctness and should be explicitly incorporated in a model { is very rele-
vant to upper-bounds. Proofs that do not approach formally the notion of knowledge
are walking a very slippery path, to use a term �rst coined in [37] and then often

2We will review this case in Section 2.2.
3We will come back in more detail to this notion in Chapter 6.
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quoted. An illustration of this fact is, as we will see, the algorithm for mutual ex-
clusion presented in [49] whose correctness property hinges critically on the limited
knowledge available to Player(1).

2.2 Towards the Model

The previous section outlined the features that a general model for randomized
computing should be endowed with. This section analyzes in a �rst part various
equivalent ways to construct a model and motivates in a second part the formal
de�nition presented in Section 2.3.

2.2.1 Equivalent ways to construct a model

We illustrate here how equivalent models for randomized computing can be obtained
by exchanging properties between the model used for an algorithm and the model
used for an adversary.

A �rst di�culty encountered when modeling the notions of adversary and algorithm
is that these two notions cannot be de�ned independently.4 As a consequence, some
properties can be exchanged between the model used for an algorithm and the model
used for an adversary. This can lead to develop di�erent but equivalent models.

We illustrate this fact with three examples. The �rst example expands on the
example presented in Section 2.1 and shows that equivalent models can be achieved
by allocating to Player(1) or to Player(2) the choice of the initial con�guration. The
second example shows that, when considering timed algorithms, equivalent models
can be achieved by allocating to Player(1) or to Player(2) the control of the time.
The third example shows that, in the case where Player(2) is assumed to know the
past of an execution, equivalent models can be achieved by allocating to Player(1)
or to Player(2) the control of the random inputs to be used next by Player(1).

Consider �rst the case of Lehmann-Rabin's algorithm presented in [37] and studied
in Chapter 4 of this work.

The correctness property of the algorithm expresses that \progress occurs with

4This is not in contradiction with point 5 above stating that \an admissible adversary should
be characterized independently of any speci�c admissible algorithm". We speak here of the way
we de�ne the sets � and A of algorithms and adversaries. We spoke in point 5 of the way a given
element A in A is characterized.
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\high" probability whenever a process is in its Trying section". Let C be the program
described in [37] and recalled in page 101. A possible way to model the situation is
to consider that an algorithm � is de�ned by the conjunction (C; sinit) of C and of
the initial con�guration sinit. We then derive a family of algorithms, one for each
initial con�guration sinit. In this case, an adversary is a strategy guiding the moves
of Player(2) against all such possible algorithms (C; sinit): by assumption Player(2)
learns which algorithm (C; sinit) is selected by Player(1) at the beginning of the
execution. Another possible way to model the situation is to assume the existence
of a single algorithm, namely C, and to let Player(2) select the initial con�guration.

This modeling duality is similarly encountered in the consensus problem studied
in [3], in the mutual exclusion problem studied in [49] and more generally in all
situations where the initial con�guration or input is not a priori determined. In [61]
Yao speci�cally considers this situation.

As a second example we now consider the timed version of the same Lehmann-
Rabin's algorithm [37]. In this situation we restrict our attention only to executions
having the property that \any participating process does not wait more then time
1 between successive steps". The control of the time can be allocated in (at least)
two di�erent ways resulting in two di�erent models. One way is to allocate the
time control to Player(1): each timing policy such that no participating process
waits more then time 1 for a step corresponds to a di�erent admissible algorithm.
Another solution is to assume instead that Player(2) controls the passing of time:
an adversary is admissible if it does not let time pass without allocating a step to a
process having waited time 1. This last solution is the one adopted in Chapter 4 of
this work.

We provide another less trivial example of the possible trade-o� between the notion
of adversary and the notion of algorithm. This example shows that the two models
for randomized concurrent systems of Lynch et al. [40] and Vardi [58], page 334,
are equivalent. We summarize here the model presented in [40]. (See Chapter 4
and [54] for more details.) In this model a randomized algorithm is modeled as a
probabilistic automaton:

De�nition 2.2.1 A probabilistic automaton M consists of four components:

� a set states(M) of states

� a nonempty set start(M) � states(M) of start states

� an action signature sig(M) = (ext(M); int(M)) where ext(M) and int(M) are
disjoint sets of external and internal actions, respectively
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� a transition relation steps(M) � states(M) � acts(M) � Probs(states(M)),
where the set Probs(states(M)) is the set of probability spaces (
;G; P ) such
that 
 � states(M) and G = 2
.

An execution fragment � of a probabilistic automaton M is a (�nite or in�nite)
sequence of alternating states and actions starting with a state and, if the execution
fragment is �nite, ending in a state, � = s0a1s1a2s2 � � �, where for each i there exists
a probability space (
;G; P ) such that (si; ai+1; (
;G; P ))2 steps(M) and si+1 2 
.

An adversary for a probabilistic automaton M is then de�ned to be a function A
taking a �nite execution fragment ofM and giving back either nothing (represented
as ?) or one of the enabled steps of M if there are any.

A quick interpretation of this model is as follows. A step
�
s; a; (
;G; P )

�
in steps(M)

represents a step of the adversary. During an execution, a step
�
s; a; (
;G; P )

�
can be selected by the adversary as its t-th selection only if the state st�1 of the
underlying system is s. (Note that this condition implicitly assumes the existence of
a mechanism allowing Player(2) to \know" precisely what the state of the system
is. Furthermore the de�nition of the adversary as a function of the whole past
execution fragment means that the Player(2) \remembers the past" and chooses
the successive steps based on this knowledge. This precise model therefore does not
apply to cases where, as in [49], Player(2) does not have access to the full knowledge
of the state of the system.) The second �eld a and the third �eld (
;G; P ) of the
step of the adversary characterize the step to be taken next by the algorithm: this
step corresponds to the action a and consists in choosing randomly an element st in

 according to the probability distribution P .

Consider the case where, for every (s; a) in S �A, there is a �xed probability space
(
s;a;Gs;a; Ps;a) such that, for every step in steps(M), if the state is s and the
action is a, then the associated probability space is (
s;a;Gs;a; Ps;a).

5 In this case,
we can change the model of [40] into an equivalent model by making the following
changes. We model a randomized algorithm to be a family

�
(
s;a;Gs;a; Ps;a)

�
(s;a)2S�A

of probability spaces. Following the idea presented in [58], page 334, we rede�ne

5The model presented in [40] does not always assume this fact: this model is a hybrid where the
adversary does decide at each step what is the probability space to be used next by the algorithm,
but where this space might not be uniquely characterized by the action a selected. This means in
essence that the set of actions, sig(M), is not big enough to describe accurately the set of decisions
taken by Player(2). In order to do so we need to re�ne the set of actions. Doing this allows one
to get a one-to-one correspondence (s; a) 2 S �A! (
s;a;Gs;a; Ps;a) and hence reduces the model
of [40] to our situation.
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the notion of adversary by saying that an adversary is a function A taking a �nite
execution fragment s0; a1; s1 : : : of M and giving back either nothing (represented
as ?) or one of the enabled actions of M if there are any. (This action is said to be
\decided" by the adversary.)6 Furthermore, if Player(2) decides action a while the
state is equal to s then the algorithm takes its next step by choosing randomly an
element s in 
s;a according to the probability distribution Ps;a. Hence the family�
(
s;a;Gs;a; Ps;a)

�
(s;a)2S�A

of probability spaces can be interpreted as being the local

dynamics of the algorithm. In this model an algorithm is therefore identi�ed with
its local dynamics. We will expend on this theme later in Section 2.3.

It is easy to convince oneself that this model is equivalent to the one of [40]. This
provides another example of a possible trade-o� in the model of the algorithm and
in the model of the adversary: in essence, the di�erence lies in whether Player(1) or
Player(2) characterize the probability space (
;G; P ) { the local dynamics { to be
used next by the algorithm. In [40] the local dynamics of the algorithm are speci�ed
in the steps taken by the adversary. In the alternative model that we just outlined
these local dynamics are given separately and de�ne the algorithm.

To summarize, the previous discussion illustrates the fact that a model for the anal-
ysis of randomized algorithms requires the simultaneous modeling of an algorithm
and of an adversary; and that various equivalent models can be derived by trading
some properties between the model of an algorithm and the model of an adversary.
Furthermore, in our discussion about the model of [40], we showed how we could
de�ne an algorithm by its local dynamics. We also saw that a limitation of this
model is that it pre-supposes that Player(2) \knows" completely the state of the
system. This does not �t situations as the one encountered in Rabin's algorithm for
mutual exclusion that we study in Chapter 3 of this work, where Player(2) has by
assumption only a partial knowledge of the state of the system.

6The model considered by Vardi in [58] does not have a set of actions but solely a state space: the
evolution of the system is de�ned by a concurrent Markov chain. We show here that our rede�ned
notion of adversary coincides with the notion of scheduler in [58].
In [58], from a given state u, a step of the scheduler determines fully the next state v. This state

determines in turn the probability distribution to be used for the next step.
On the other hand, in our modi�ed version of [40], the adversary determines the next action a.

This, along with the previous state s determines uniquely the probability distribution to be used
next.
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2.2.2 Motivations for Section 2.3

Recall that, if Player(1) selects the algorithm � and if Player(2) selects the ad-
versary A, the game played (i.e., the unfolding of the execution) consists of the
alternative actions of the algorithm and the adversary: Player(1) takes all the ac-
tions as described by � until the �rst point where some choice has to be resolved by
the adversary; Player(2) then takes actions to resolve this choice as described by A
and Player(1) resumes action once the choice has been resolved... This means that
the two players play sequentially, each move being randomized. Consider a player's
random move and let R denote the outcome of this random move: R is a random
variable. Let (
;G) be the space where R takes values and let P be the probability
law L(R) of R.7

Recall also that our goal is not to construct a computational model that would
describe the implementation of randomized algorithms, but, instead, to derive a
probabilistic model allowing their analysis. In this perspective, two di�erent imple-
mentations of a player's move leading to the same probabilistic output are indis-
tinguishable: in probabilistic terms, random values having the same probabilistic
law are indistinguishable. This means that the probability space (
;G; P ) gives all
the probabilistic information about the move of the player and we can for instance
assume that this move consists in drawing a random element of 
 with probability
P .8

By de�nition, a strategy of a player is a description of how the player is to take all
its moves. Each move being described by a probability space (
;G; P ), a strategy
can be modeled as a family (
x;Gx; Px)x2X of probability spaces. The set X is the
set of di�erent views of the system that the player can hold upon taking a move.
This set depends on the assumptions done about the information conveyed to the
player during the course of an execution, and about the memory of the past moves
allowed to this player.

To motivate this notion we discuss quickly the case of Rabin's randomized algo-
rithm for mutual exclusion presented in Chapter 3, the case of Lehmann-Rabin's
randomized dining-philosophers algorithm presented in Chapter 4 and the case of
the randomized scheduling problem presented in Chapter 7. The reader might not
be familiar with these problems at this point. Nevertheless, even in a �rst reading,

7See De�nition 8.1.2, Page 198, for a de�nition of the law of a random variable.
8There is a little subtlety here. \Drawing a random element ! of 
 with probability P" does

not imply that, for every ! 2 
, the singleton f!g is measurable, i.e., is a set in G. (For instance,
in the case where ; is the only element of G having zero P -measure, if B is an atom of G (see
De�nition 8.1.1) and if ! is in B, then f!g 2 G only if B = f!g.) Nevertheless this will be the case
in the sequel as we will assume that 
 is countable and that G is the discrete �-�eld P(
).
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the following description provides a good intuition of the issues involved with the
notion of view.

In Lehmann-Rabin's algorithm [37], Player(2) knows at each time the full state
of the system and remembers the past execution fragment. Its set X of views
is therefore the set of execution fragments. (The notion of execution fragment is
formally presented in Chapter 4.) By contrast, in Rabin's randomized algorithm
for mutual exclusion [49], Player(2) does not see the full state of the system, but,
instead, only sees the value of the program-counter pci of each process i: in particular
Player(2) does not see the values of the various program variables.9 Here also it
remembers everything it learns. The set of possible views held by Player(2) upon
making a move is therefore the set of �nite sequences (i1; pci1 ; : : : ; ik; pcik), where
(i1; : : : ; ik) is a sequence of process-id's.

Consider now the case of Player(1) (for the same algorithm [49]). After each of its
moves, Player(1) only remembers the current state s of the program: s is determined
by the values of the program counters and of the program variables. Before each of
its moves it furthermore learns from the adversary which process i is to take a next
step. Its set of views is therefore the set I �S, where I is the set of process-id's and
S is the state space of the system. (We can assume that the �eld i of the view of
Player(1) is erased, i.e., reset to #, after each move of Player(1).)

In the scheduling problem of Chapter 7 the two players play the following game.
At each (discrete) time t, Player(1) selects a set st of n elements from f1; : : : ; ng.
Then Player(2) selects an element ft from st. We assume that Player(2) learns the
choices of Player(1) (and remembers everything). Its set of views is therefore the set
of �nite sequences s1; f1; s2; f2; : : : By contrast, Player(1) learns none of the moves
of Player(2) and its set of views is the set of sequences s1; s2; : : :

The intuition behind the notion of view should be clear: a player with a restricted
knowledge of the state of the system can sometime hold the same view x of two
di�erent states. Being unable to distinguish between these two states the player
therefore uses the same probability space (
x;Gx; Px) to take its next move.

In the sequel we distinguish between the views of the two players: we let X denote
the set of views of Player(1) and Y the set of views of Player(2).

The previous examples illustrate a general principle about the update mechanism
of the views held by the two players: when taking a move a player changes the

9As shown in the quote presented in page 18, in [49] Rabin actually de�nes a schedule to be
a function on the set of �nite runs. Equivalently, the assumption of [49] is that Player(2) knows
the past run of every execution. Nevertheless, a careful analysis of the algorithm shows that this is
equivalent to having Player(2) knowing the values of the program counters of the processes.
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state of the system. Both players in general only learn partially the nature of the
change and update their views as prescribed by the speci�cation of the problem.
Our model will introduce two functions f and g formalizing how the move of either
player modi�es the state of the system and the views held by both players. Let us
emphasize that f and g formalize the acquisition of all information by either player.
This applies in particular to the situation considered by Graham and Yao in [25]
where Player(2) learns the strategy � selected by Player(1).

The previous discussion allows us to present in the next section a general model for
randomized computing.

2.3 A general Model for Randomized Computing

2.3.1 The model

We argued in Chapter 1 and in Section 2.2 that a formal model for randomized
computing should model simultaneously the notion of algorithm and of adversary
and should allow for the consideration of several algorithms; that the notion of
adversary should be modeled independently of the speci�c algorithm chosen; that
the adversary should be randomized (i.e., allowed to use randomization).

We argued also that the situation encountered while modeling algorithms and adver-
saries was best described in terms of game theory: Player(1) is the entity selecting
an (admissible) algorithm. Player(2) is the entity selecting an (admissible) adver-
sary. An algorithm is a strategy of Player(1), whereas an adversary is a strategy of
Player(2). These two players take steps in turn, following their respective strategies.

Using this language of game theory, we argued that a precise mechanism should be
introduced, describing how the state of the system evolves and how the views of the
two players are a�ected when one of the two players takes a move.

This discussion leads to the following de�nition.

De�nition 2.3.1 An algorithm/adversary structure for randomized computing is a
tuple

(S; X; Y; yinit; f; g; �; A)

having the following properties:

� S is a set called the set of states



2.3. A General Model for Randomized Computing 37

� X is a set called the set of views of Player(1). By assumption ? is an element
not in X.

� Y is a set called the set of views of Player(2)

� yinit is the initial view of Player(2). By assumption yinit is not in Y .

� � = f�igi2I is a family of elements called algorithms. Each algorithm �i
is itself a family of probability spaces, one for each view x in X: �i =
(
x;i;Gx;i; Px;i)x2X .

� A = fAjgj2J is a family of elements called adversaries. Each adversary Aj

is itself a family of probability spaces, one for each view y in Y [ fyinitg:
Aj = (
y;j;Gy;j; Py;j)y2Y [fyinitg. By assumption, ? is an element of 
y;j for
all y 2 Y and j 2 J.

� f : S�X�Y �
�S

x2X;i2I 
x;i

�
! S�X�Y is the update function associated

to Player(1).

� g : S�X � (Y [fyinitg)�
�S

y2Y;j2J 
y;j

�
! S�X �Y is the update function

associated to Player(2). The function g is such that, for every s and s0 in S, x
and x0 in X, and a in

S
x2X;i2I 
x;i, we have g(s; x; yinit; a) = g(s0; x0; yinit; a).

For every s; x and y, g(s; x; y;?) = (?;?;?).

Abusing language, we will sometimes �nd it convenient to refer to a (S; X; Y; yinit;
f; g; �; A) structure as simply a �=A-structure. This is very similar to the abuse
of language committed by probabilists when speaking of a probability P without
mentioning the underlying �-�eld.

We now provide further justi�cations and reiterate some comments to the previous
de�nition.

We will describe in Section 2.4 how an algorithm/adversary structure for randomized
computing de�nes a set of executions. In doing so we will assume without loss of
generality that Player(2) takes the �rst move and that its initial view is an element
yinit not in Y : we can assume this without loss of generality because we can always
add some dummy moves at the beginning of the game if necessary. The condition
g(s; x; yinit; a) = g(s0; x0; yinit; a) for every s and s0 in S, x and x0 in X , and a inS
x2X;i2I 
x;i, ensures that the �rst move of Player(2) is independent of the values

the state s and the view xmight originally hold. For convenience we will let g(yinit; a)
the value common to all g(s; x; yinit; a).

Let us emphasize that, eventhough seemingly restrictive, our choice of initial condi-
tions is very general. In particular our model allows to express that \a randomized
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algorithm must behave correctly for a family Init of di�erent initial states". (This is
in particular the case of Lehmann-Rabin's algorithm which we analyze in Chapter 4.)
Indeed we model such a situation by enforcing that the �rst move of Player(2) con-
sists in choosing one of the states s in Init. The subsequent moves then correspond
to the \normal" exchanges between algorithm and adversary for the initial state
s selected by Player(2). Hence, in such a model, the fact an algorithm \performs
well" against all adversaries encompasses that it does so for all initial inputs. This
example illustrates the power of the game theory setting that we adopt.

As discussed in Section 2.2, the purpose we seek in a model for randomized comput-
ing is to analyze randomized algorithms and not to describe them. As a consequence,
eventhough a move of a player could be implemented in a variety of ways and involve
several sequential instructions, we are only interested in the probability distribution
of its output. This explains why we can assimilate a move to a probability space
(
;G; P ) and assume that, in order to take this move, the player draws a random
element of 
 with probability P .

A randomized algorithm is a strategy ofPlayer(1), i.e., a description of how Player(1)
is to take all its moves. Each move being described by a probability space (
;G; P ),
a strategy �i can be modeled as a family (
x;i;Gx;i; Px;i)x2X of probability spaces.
X is the set of views that Player(1) can have of the system: Player(1) can act
di�erently in two moves only if its views are di�erent. This explains why a strategy
�i is associated to a di�erent probability space for each di�erent view x. This
justi�es the de�nition of an algorithm given in De�nition 2.3.1.

As discussed in Section 2.2, an adversary should similarly be randomized and, in
general, similarly allowed to have only a partial view of the state of the system.
This justi�es the de�nition of an adversary Aj as a family of probability spaces
(
y;j;Gy;j; Py;j)y2Y . The randomization of the adversary will be used crucially
in Chapter 7. The restricted view of the adversary is a crucial feature of Rabin's
algorithm for mutual exclusion studied in Chapter 3.

As mentioned in Page 32, the symbol ? is meant to signify that Player(2) de-
lays forever taking its next move and that the execution stops. We check that
our formalism is accurate. Assume that Player(2) selects ?. By assumption
g(s; x; y;?) = (?;?;?) so that the view of Player(1) is overwritten with ?. As ?
is not in X , Player(1) does not take any move and the execution stops.

For emphasis, we sometimes call A the set of admissible adversaries. Similarly � is
the set of admissible algorithms. In the case where we analyze a single algorithm �0
we have � = f�0g. This is the case of Chapter 3 and Chapter 4 of this work. On
the other hand, in Chapter 7, we will prove the optimality of an algorithm within
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an in�nite class � of algorithms.

The function f (resp. g) is the update function expressing how the state and the
views of the two players evolve when Player(1) (resp. Player(2)) takes a move: if
the state is s, if the views of the two players are x and y, and if a move a in 
x;i is
selected by an algorithm �i, then the new state is s0 and the views of the two players
are changed into x0 and y0, where s0; x0 and y0 are de�ned by f(s; x; y; a) = (s0; x0; y0).
Similarly, if the state is s0, if the views of the two players are x0 and y0, and if a
move a0 in 
y;j is selected by an adversary Aj , then the new state is s and the
views of the two players are changed into x and y, where s; x and y are de�ned by
g(s0; x0; y0; a0) = (s; x; y).

Note that we imposed the function f to be de�ned on the cartesian product S�X�
Y �

�S
x2X;i2I 
x;i

�
only for simplicity of the exposition. We could for instance reduce

its domain of de�nition to the subset f(s; x; y; a); s 2 S; x 2 X; y 2 Y; a 2 [i2I
x;ig.
The domain of de�nition of g could similarly be reduced. As we will see in the
next section, these variations do not a�ect the probabilistic structure on the set
of executions derived from the model. Also, we could easily generalize our model
to the case where, for every (s; x; y), a move a would lead to a randomized new
con�guration (s0; x0; y0). This situation would correspond to an environment with
randomized dynamics. For simplicity we consider here only situations where the
environment has deterministic dynamics.

The model of De�nition 2.3.1 expends on the idea presented in Page 33 and de�nes
algorithms and adversaries by providing their local dynamics. Indeed each probabil-
ity space (
x;i;Gx;i; Px;i) describes how the algorithm �i selects its next move when
its view is x. And the function f describes what the state and the views evolve into
after each such move. The adversary is de�ned through symmetric structures.

2.3.2 Special cases

We now mention two special cases which will play an important role in the sequel.

The analysis of a single algorithm �0 corresponds to the case where � is equal to
the singleton f�0g: Player(1) has only one strategy.

A second important case is when the strategies of Player(2) are all determinis-
tic. This corresponds to the situation where every admissible adversary Aj =
(
y;j;Gy;j; Py;j) is such that all the measures Py;j are Dirac measures. In the case
where the �-�elds Gy;j are discrete this means that for all j and y, there exists some
point !y;j in 
y;j such that Py;j[!y;j] = 1.
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As mentioned in Chapter 1, randomization does not make the adversary more pow-
erful and we can without loss of generality assume that all admissible adversaries
are deterministic when a single algorithm is considered. (Or more generally, when
� is �nite.) This fact is largely acknowledged and explains that only determinis-
tic adversaries are considered in the literature interested in the analysis of a given
algorithm. (Hart et al. [29], page 359 and Aspnes-Waarts [4], section 5 mention
explicitly that fact. See also, section 4 of [58] devoted to probabilistic concurrent
programs, where Vardi models schedulers as deterministic entities.)

We are now ready to address the question raised in Section 2.2 and characterize
the global probability space(s) whose sample space is the set executions and whose
probability distribution is induced by the local dynamics of the two players.

2.4 The Probability Schema associated to a �/A-Structure

Consider an algorithm/adversary structure (in short, a �/A-structure) (S; X; Y; yinit;
f; g; �; A) as presented in De�nition 2.3.1.

The purpose of this section is to de�ne for each algorithm � in � and each adversary
A in A a probability space (
�;A;G�;A; P�;A) whose sample space 
�;A is the set of
executions generated by � and A and whose probability measure P�;A is \induced"
by the local dynamics of � and A.

We need �rst to de�ne the sample space 
�;A and the �-�eld G�;A. The precise
sample space 
�;A we have in mind is the set of \maximal" executions, a maximal
execution being either an in�nite execution or a �nite execution such that the last
move of Player(2) is ?.

The �-�eld G�;A we have in mind is the smallest one allowing to measure (in a
probabilistic sense) all the sets of executions \de�ned by �nitely many conditions".

In order to carry out our construction we need to make the following assumption.

Assumption: The probability spaces (
x;i;Gx;i; Px;i) and (
y;j;Gy;j; Py;j) de�ning
the algorithms in � and the adversaries in A have all countable sample spaces. The
associated �-�elds Gx;i and Gy;j are the discrete �-�elds P(
x;i) and P(
y;j).

(Let us mention that the requirement that all the �-�elds are discrete is not restric-
tive: if this were not the case we would adopt an equivalent probabilistic model by
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changing all the sample spaces and taking only one point in every atom.10 Also, we
could relax the hypothesis of countability of the sample spaces by requiring instead
that all the probability measures Px;i and Py;j have countable support.)

Let �i = (
x;i;Gx;i; Px;i)x2X and Aj = (
y;j;Gy;j; Py;j)y2Y be two elements in � and
A respectively. A (�i;Aj)-execution ! is a (�nite or in�nite) sequence of alternating
actions a and triples (s; x; y) of states and views ending, if the execution is �nite,
with the state-view triplet (?;?;?),

! = a1 (s1; x1; y1)| {z }
Player(2)

a2 (s2; x2; y2)| {z }
Player(1)

a3 (s3; x3; y3)| {z }
Player(2)

: : :

and having the following properties:

1. a1 2 
yinit;j and (s1; x1; y1) = g(yinit; a1)
11

2. for every even k; k > 1, ak+1 2 
yk;j and (sk+1; xk+1; yk+1) = g(sk; xk; yk; ak+1)

3. for every odd k; k > 1, ak+1 2 
xk;i and (sk+1; xk+1; yk+1) = f(sk; xk; yk; ak+1).

A (�i;Aj)-execution-fragment is a �nite execution-pre�x terminating with a state-
view triplet. For every (�i;Aj)-execution-fragment !, we de�ne the length j!j
of ! to be the number of actions a present in !. For instance the length of
a1 (s1; x1; y1) a2 (s2; x2; y2) is 2. We de�ne:


�i;Aj
= f! ; ! is a (�i;Aj)-executiong:

We now turn to the formal de�nition of G�i;Aj
. We endow the sets S;X and Y

with the discrete �-�elds P(S), P(X) and P(Y ). We de�ne on 
�i;Aj
the functions

Ak; Sk; Xk; Yk; k � 1, by setting Ak(!) = ak, Sk(!) = sk, Xk(!) = xk and Yk(!) =
yk for every ! = a1 (s1; x1; y1) a2 (s2; x2; y2) : : : of length at least j. We extend the
de�nition and set Ak(!) = Sk(!) = Xk(!) = Yk(!) = ? if j!j < k.

We de�ne G�i;Aj
to be the smallest �-�eld making all the functions Ak; Sk; Xk; Yk; k � 1

measurable:
G�i;Aj

= �
�
Ak; Sk; Xk; Yk; k � 1

�
:

Note that, as for every k the triple Sk; Xk; Yk is de�ned deterministically in terms
of Ak; Sk�1; Xk�1 and Yk�1, we also have that

G�i;Aj
= �

�
Ak; k � 1

�
:

10See the De�nition 8.1.1, page 198, for a de�nition of an atom.
11See the discussion on page 37 for a discussion of the special case y = yinit.
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For the same reason we could have more simply de�ned an execution ! to be the
sequence

! = a1 a2 a3 : : :

in place of the sequence

! = a1 (s1; x1; y1)a2 (s2; x2; y2)a3 (s3; x3; y3) : : :

We will adopt this simpli�ed de�nition in Chapter 7. Our slightly redundant def-
inition has the advantage of making explicit states and views which are important
parameters.

Recall that, by assumption, all the �-�elds Gx;i and Gy;j are the discrete �-�elds
P(
x;i) and P(
y;j). This implies that for every a in 
x;i or 
y;j the singleton
fag is in Gx;i or Gy;j, respectively. Hence, for every sequence (a1; : : : ; ak), the set
fA1 = a1; : : : ; Ak = akg is measurable in G�i;Aj

. This allows us to present the
following equivalent de�nition of G�i;Aj

. For every (�i;Aj)-execution-fragment � we
de�ne the rectangle R� to be the set of (�i;Aj)-executions having � as their initial
pre�x. Then

G�i;Aj
= �

�
R�; � is a (�i;Aj)-execution-fragment

�
:

This formalizes the claim formulated at the beginning of this section that G�i;Aj
is

the �-�eld allowing to measure probabilistically all the sets of executions de�ned
\by �nitely many conditions".

We now turn to the de�nition of the global probability measure P�i;Aj
. We want

this measure, if it exists, to be compatible with the local dynamics de�ning �i
and Aj . This means that, if � = a1 (s1; x1; y1) a2 (s2; x2; y2) : : : ak (sk; xk; yk) is a
(�i;Aj)-execution-fragment, then

P�i;Aj
[R�] = Pyinit;j[a1]Px1;i[a2]Py2;j [a3] : : :Pxk�1;i[ak] ;

where, for the sake of exposition, we assumed that k was even. We now de�ne a
�ltration (Gk)k�1 of (
�i;Aj

;G�i;Aj
), i.e., an increasing sequence of sub-�-�elds of

G�i;Aj
. For every k; k � 1, we set

Gk = �
�
R�; � is a (�i;Aj)-execution-fragment; j�j � k

�
:

The �-�eld Gk should be more appropriately called Gi;j;k. We drop the indices i and
j for simplicity. Then, for every k � 1, setting

Pk[R�] = Pyinit;j[a1]Px1;i[a2]Py2;j [a3] : : :Pxk0�1;i[ak0]
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for every (�i;Aj)-execution-fragment � of even length k0 � k, and similarly setting

Pk[R�] = Pyinit;j[a1]Px1;i[a2]Py2;j [a3] : : :Pyk0�1;j [ak0]

for every (�i;Aj)-execution-fragment � of odd length k0 � k, de�nes a probability
measure Pk on Gk. The probability measures (Pk)k�1 are compatible in the sense
that, if k � l are two integers then Pk[R�] = Pl[R�] for every (�i;Aj)-execution-
fragment � of length at most k. Equivalently, the measures Pk and Pl coincide on
Gk. Therefore, by Kolmogorov's extension theorem, (see for instance [56], page 161{
163), there exists a (unique) probability measure P de�ned on the �-�eld �([kGk).
As �([kGk) = G�i;Aj

we have therefore established the existence of a probability
measure P de�ned on (
�i;Aj

;G�i;Aj
) and compatible with the local dynamics de�n-

ing �i and Aj . This measure P is the measure P�i;Aj
we were after.

This �nishes to characterize the global probability space (
�i;Aj
;G�i;Aj

; P�i;Aj
) com-

patible with the local dynamics attached to an algorithm �i in � and an adversary
Aj in A as de�ned in a �/A structure (S; X; Y; yinit; f; g; �; A). The construction
required that the probability spaces (
x;i;Gx;i; Px;i) and (
y;j;Gy;j; Py;j) de�ning the
algorithm �i and the adversary Aj have all countable sample spaces.

The analysis of a �/A structure requires the simultaneous consideration of all the
probability spaces (
�i;Aj

;G�i;Aj
; P�i;Aj

). Correspondingly, the notion of event has
to be modi�ed to take into account the various choices of strategy made by Player(1)
and Player(2). The next de�nition summarizes these facts.

De�nition 2.4.1 The family (
�;A;G�;A; P�;A)(�;A)2��A is called the probability
schema attached to the algorithm/adversary structure (S; X; Y; yinit; f; g; �; A):
An event schema B is a family B = (B�;A)(�;A)2��A, where B�;A 2 G�;A for every
(�;A) 2 � �A. A variable-schema X is a family X = (X�;A)(�;A)2��A, where, for
every (�;A) 2 �� A, X�;A is a random variable measurable with respect to G�;A.

Traditionally Kolmogorov's theorem is stated for R1 endowed with its Borel �-�eld
B(R1). We therefore explain and justify here our use of Kolmogorov's theorem in
the previous construction. This discussion is technical and not fundamental for the
rest of the work.

Recall that, by assumption, all the sample spaces 
x;i and 
y;j are countable and
endowed with their discrete �-�elds P(
x;i) and P(
y;j). By relabelling we can
therefore take all these spaces to be equal to N endowed with the discrete �-�eld
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P(N). Hence we can take 
�i;Aj
= N � N � : : : endowed with the product �-

�eld P(N) 
 P(N) 
 : : : For each k, the �-�eld Gk then corresponds to the set
fA� N� N� : : : ; A 2 P(Nk)g. For each k the space Nk is a complete (a Cauchy-
sequence in Nk is constant after a certain rank and hence obviously converging)
separable metric space (for the topology induced from R

k). As every point in Nk

is open, the �-�eld P(Nk) is trivially generated by the open sets. Therefore the
extension of Kolmogorov's theorem given in [56], page 163, applies.



Chapter 3

Rabin's Algorithm for Mutual

Exclusion

3.1 Introduction

In this chapter we study the correctness of Rabin's randomized distributed algo-
rithm [49] implementing mutual exclusion for n processes using a read-modify-write
primitive on a shared variable with O(log n) values. As we are concerned with a sin-
gle algorithm, the remarks made in Section 2.3.2 of Chapter 2 allow us to consider
only deterministic adversaries throughout the analysis. Rabin's algorithm di�ers
markedly with most other work in randomized computing in the three following
ways.

1. The correctness statement is expressed in terms of a property holding with
\high" probability for all adversaries. Formally, such a statement is of the
form

inf
A2A0

PA[WA j IA] � � ;

where W and I are event schemas1 and A0 is a subset of the set of admissible
adversaries A. Nevertheless, in contrast with much previous works, \high"
does not mean here \with probability one", i.e., � is not equal to one.

2. This correctness property is relative to the short term behavior of the algo-
rithm and depends critically on the speci�c probability distribution of the
random inputs.

1See De�nition 2.4.1, page 43.
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3. The adversary is assumed to have only a partial knowledge of the past execu-
tion.

We comment here on properties 1{3. Properties 1 and 2 are related. Property 3 is
of another nature.

As discussed in Chapter 1, most correctness statements for randomized algorithms
are either expressed in terms of a high expected performance or in terms of a property
holding with probability one. For instance the algorithms presented in [3] and [4]
are shown to have a low worst case expected running time.2 On the other hand, the
original property claimed in [37] for Lehmann-Rabin's algorithm is that \progress
occurs with probability one".

A reason for considering probability-one statements is that they arise naturally from
considerations of ergodic theory and zero-one laws. In particular, a feature of these
statements is that the events whose probability is claimed to be one belong to the
tail �-�eld of the executions, i.e., depend (only) on the asymptotic properties of the
executions. Also, these properties usually do not depend on the precise numeric
probability values associated to each random input Xn. Instead, they typically
depend only on the asymptotic properties of the sequence (Xn)n.

3

Such a setting has been exploited by authors interested in the logic and semantic
of randomized computing. (See for instance [19, 28, 29, 47, 58].) The methods
presented in these papers are directed at randomized algorithms whose correctness
reects the asymptotic properties of in�nite executions, depends only marginally on
the numeric speci�cations of the random inputs and, is expressed as a probability-
one statement.

These methods therefore do not apply to algorithms as Rabin's algorithm whose
correctness, as we will see, is relative to the short term behavior of the algorithm,
depends critically on the speci�c probability distribution(s) of the random inputs
and is expressed by a non trivial high-probability statement.

2The term \worst case" refers to the adversary. The precise measure used in [4] is the worst
case expected running time per processor.

3The Borel-Cantelli Lemma provides a good example of a classical result of probability theory
which depends only on the tail of the sequence of events considered. This property states that, if
(An)n2N is a sequence of independent events, then in�nitely many events An occur with probability
one if and only if the sum

P
n
P (An) is in�nite. Assume for instance that An = fXn = Hg where

(Xn)n2N is a sequence of ips made with independent coins. (The coins are possibly all di�erent.)
Then Head appears in�nitely often if and only if

P
n
P [Xn = H] = 1. This depends only on

the asymptotic property of the coins and depends on the bias of the coins only through the sumP
n
P [Xn = H].
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These di�culties signi�cantly complicate the analysis of any randomized algorithm.
But one of the most signi�cant challenges encountered in the proof of correctness of
Rabin's algorithm [49] is to account formally for the limited knowledge granted to
the adversary. As mentioned in Chapter 1, to our knowledge, our model of Chapter 2
is the �rst to present a general and formal framework allowing for adversaries with
limited knowledge. In the absence of such a framework, the analyses of non trivial
algorithms as the one presented in [49] have been fraught with mistakes in two rather
incomparable domains.

Mistakes can happen of course in the proof of the property claimed. Such mistakes
are not uncommon, as it is very hard to formally disentangle in a proof the combined
e�ects of randomness and of non-determinism. In particular, recall from Chapter 2
that the formal analysis of a randomized algorithm requires to work within a class
of di�erent probability spaces (
A;GA; PA), one for each admissible adversary A.
A proof is therefore not truly formal unless it explicitly records the presence of the
adversary A in the probabilistic expressions involved.

But the complications in the analysis of a randomized algorithm sometimes begin
with the formalization of the intended correctness property, i.e., even before the
proof itself begins. Indeed, as we will see in Section 3.2, even a simple statement
including a precondition can lead to very delicate problems of formalization. Using
an image one might describe this problem as a Solomon dilemma trying to ascertain
\which of the two players should bear the responsibility of the precondition".

The example of Rabin's randomized algorithm for mutual exclusion illustrates per-
fectly the two types of di�culties and the dangers encountered with arguments not
fully formalized. In [49], Rabin claimed that the algorithm satis�es the following
correctness property: for every adversary, any process competing for entrance to the
critical section succeeds with probability 
(1=m), wherem is the number of compet-
ing processes. In [29], Sharir et al. gave another discussion of the algorithm as an
illustration of their formal Markov chains model and argued about its correctness.

However, both papers did not write formally the correctness property claimed and
did not make explicit in their arguments the inuence of the adversary on the
probability distribution on executions.

We show in this chapter that the correctness of the algorithm is tainted for the
two di�erent reasons described above. We �rst show that the informal correctness
statement claimed by Rabin admits no natural \adequate" formalization.4 We then
show that the inuence of the adversary is much stronger than previously thought,
and in fact, the high probability correctness result claimed in [49] does not hold.

4The notion of \adequate" formalization is discussed in Section 3.2.
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3.2 Formalizing a High-Probability Correctness State-
ment

As mentioned above, the complications in the analysis of a randomized algorithm
sometimes begin with the formalization of the intended correctness property, i.e., even
before the proof itself begins. Consider for instance a correctness property described
informally in the following general format: \for all adversaries, if property B holds
then property C holds with probability at least 1/2". (The probability 1/2 is chosen
only for the sake of illustration.) How can we formalize such a statement? In the
sequel we will refer to C as the target property and to B as the precondition.

Again, as discussed in Chapter 2, we know that the property B is actually formal-
ized to be a family of events (BA)A2A (each BA is an element of the �-�eld GA),
and that, similarly, C is a family of events (CA)A2A. Also, the probability referred
in the informal correctness statement depends on A and corresponds to di�erent
probability distributions PA. In spite of this comment we will conform to the tra-
dition, and write for simplicity B and C instead of BA and CA and emphasize only
when necessary the dependence in A. (The dependence in A will nevertheless be
everywhere implicit.) On the other hand, we will �nd it useful to emphasize the
dependence of the probability PA on the adversary A. This being clari�ed, how do
we formalize the \if B then C" clause of the statement?

Following well-anchored reexes in probability theory we are naturally led to trans-
late this statement into a conditional probability and say that, for every A, we
compute the probability of the event CA conditioned on BA. Indeed, condition-
ing on an event B exactly formalizes that we restrict the probabilistic analysis to
within the set B. (The elementary de�nition of conditioning in terms of Bayes' rule
expresses that we restrict our attention to within B and consider the trace C \ B
of C in B. The denominator P [B] is there to normalize the restricted measure
C ! P [C \ B] into a probability measure.5) We can then formalize the previous
informal correctness statement into

infA2A;PA[B]>0 PA[C j B] � 1=2 :

5A more general de�nition of conditioning is as follows. In that case the \notion of restricting
the analysis" is formalized as an orthogonal projection in an adequate setting.
Let G;G0; G0 � G be two �-�elds, and let (
;G; P ) be a measured space. For every function f

in L2(dP ), we de�ne the conditional expectation E[f j G0] to be the orthogonal projection (in the
L2-sense) of the G-measurable function f onto the subset of L2(dP ) composed of G0-measurable
functions. We recover the elementary de�nition in the case where f is the indicator function of a
set C and G0 = f;; B;B;
g: in that case, the orthogonal projection of f onto G0 is coincides with
the intersection C \B.
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The restriction PA[B] > 0 expresses that we consider only adversaries A for which
the precondition B is of probabilistic relevance.

An example.
We now show that, in some (frequent) cases, the dependence on A of the correct-
ness statement can have far reaching consequences and negate intuitive properties.
Consider for instance the following example proposed in a footnote of [11].

Imagine performing a random walk on a line, but where the adversary
can stop you at any time t � 100. One might like to say that: \if the
adversary allows you to make 100 steps, then with probability at least a
half you will have made 40 steps to the right".

We now formalize this statement. For all adversaries, the sample space can be taken
to be 
 = fH; Tg100. For all adversaries, we also consider the associated discrete
�-�eld 2
. The probability distributions PA are de�ned as follows. Let � be an
execution-fragment (i.e., a sequence of draws). If A does not allow the occurrence
of � (i.e., if there is a strict pre�x �1 of � after which A allocates no steps) then
PA[�] = 0. If A allows the occurrence of � but blocks the execution at � then
PA[�] = 2�j�j+1, where j�j denotes the length of �. If A allows the occurrence of
� and does not block the execution at � then PA[�] = 2�j�j. Hence the support
of the measure PA is exactly the set of maximal executions allowed (with non-zero
probability) by A. We argue that this construction corresponds to an equivalent
form of the general construction given in Chapter 2. In Chapter 2 we (construct and)
consider a di�erent probability space (
A;GA; PA) for every adversary A: 
A is the
set of maximal executions under A. Here we consider instead a measurable space
(
;G) common for all the adversaries. Note that the two measurable structures are
related: (
A;GA) � (
;G) for every A. (This means that 
A � 
 and that GA � G
for every A.) The equivalence between the two models is ensured by the fact that,
in both cases, for every A the support of PA is equal to 
A.

We de�ne B to be the event \the adversary allows you to make 100 steps" and
let C to be \Head comes up at least 40 times in the experiment". Is it true that
PA[C j B] � 1=2 for all adversaries A allowing 100 steps with non-zero probability ?
The answer is no. For instance, let A be the adversary that stops the process as
soon as a Head comes up. This adversary allows 100 steps with some non-zero
probability, namely when all draws are Tail. On the other-hand, for this adversary,
conditioned on B, the number of Heads is at most 1 with probability 1.

But this argument only shows that the correctness property proposed does not �t
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the algorithm, not that the algorithm is \not correct"6: the algorithm must be
evaluated by other means. For instance, as we now show, the algorithm satis�es

infA2A;PA[B]=1 PA[C] � 1=2

and also satis�es
infA2A PA[B ) C] � 1=2 :

In this last statement B ) C denotes the event B [C. (B denotes the complement
of B.) The �rst statement is easily proven, as, by de�nition, \PA[B] = 1" means
that the adversary allocates 100 steps and that, correspondingly, 100 independent
coin tosses are performed:

inf
A; PA[B]=1

PA[C] = Prob[100 independent ips result in at least 40 Heads]

� 1=2 :

The second statement is harder to prove and is actually a consequence of the equality
infA2A PA[B ) C] = infA2A;PA [B]=1 PA[C] ; which we now establish. Let us empha-
size that, as we will later argue, this equality does not hold in general. The idea
of the proof is that an adversary providing less then 100 steps in some executions
yields a higher or equal probability PA[B ) C] then some other adversary always
allocating (at least) 100 steps.

To argue this formally, consider an adversary A for which PA[B ) C] is minimized.
Assume the existence of an execution-fragment � (i.e., a sequence of draws) having
length k for some k less then 100, and such that 1) PA[�] > 0 and 2), A does not
allocate any steps after �. (We will call StopA the set of such execution fragments
�.) Consider the adversary A0 which is equal to A except that A0 always allocates a
total of 100 steps if the execution begins with �. Let D denote the event \the �rst
k draws do not yield �". Note that, by de�nition of D and A, PA[D � B] = 1, and
hence:

PA[B ) C] = PA[B ) C;D] + PA[B ) C;D] = PA[D] + PA[B ) C;D]:

We have:

PA0 [B ) C] = PA0 [B ) C j D]PA0[D] + PA0 [B ) C j D]PA0[D]

6The algorithm considered here is the trivial algorithm associated to the random walk and whose
code is \ip a coin": whenever the adversary allocates a step that unique instruction is performed.
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= PA0 [B ) C j D]PA0[D] + PA[B ) C j D]PA[D] (3.1)

= PA0 [B ) C j D]PA[D] + PA[B ) C;D] (3.2)

� PA[D] + PA[B ) C;D]

= PA[B ) C] :

Equations 3.1 and 3.2 come from the fact that A0 behaves as A in D and during the
execution fragment �: A0 behaves di�erently only if and once � appears, i.e., in D.

We have therefore constructed an adversaryA0 such that jStopA0 j < jStopAj, i.e., which
brings to termination \more" executions then A and which is such that PA0 [B )
C] � PA[B ) C]. By iteration, we can therefore produce an adversary that we
will still denote A0 which allocates always 100 steps, i.e., such that PA0 [B] = 1,
and whose associated probability PA0 [B ) C] is no bigger then PA[B ) C]. This
justi�es the following �rst equality.

inf
A
PA[B ) C] = inf

A; PA[B]=1
PA[B ) C]

= inf
A; PA[B]=1

PA[C]

� 1=2 :

Remark that the proof of the equality infA PA[B ) C] = infA; PA[B]=1 PA[C] was only
possible because of the special nature of the problem considered here. In particular
we found it very useful that all the spaces (
A;GA) were �nite and equal for all
adversaries and that the events B and C were true events (and not only general
event-schemas). Also, the proof uses that, for every adversary A, it is possible to
construct an adversary A0 having the following two properties:

1. The adversary A0 gives probability one to B: PA0 [B] = 1.

2. The adversary A0 \makes the same decisions as the adversary A along the
executions ending in B under the control of A". More formally, the probability
measure PA0 coincides with the probability measure PA on the set f!; ! 2
B and PA[!] > 0g.7

The following modi�cation on our example illustrates the importance of the �rst
previous property. (An example illustrating the importance of the second property
could similarly be constructed.) Assume that the game is changed so that, now,
an execution can also stop with some probability " at each step of the random

7This property was the key for the derivation of Equations 3.1 and 3.2.
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walk. Then, obviously, no adversary can ensure termination with probability one
i.e., for all A, PA[B] < 1. Hence infA2A;PA [B]=1 PA[C] = 1.8 On the other hand
infA2A PA[B ) C] is obviously bounded (by 1!) and hence infA2A PA[B ) C] �
infA2A;PA [B]=1 PA[C]. This inequality is general as the following proposition demon-
strates. (We emphasize there for formality the dependence on A.)

Proposition 3.2.1 Let B = (BA)A2A and C = (CA)A2A be two event schemas.
Assume that fA 2 A; PA[B] > 0g 6= ;. Then

inf
A2A;PA[BA ]>0

PA[CA j BA] � inf
A2A

PA[BA ) CA] � inf
A2A;PA[BA ]=1

PA[CA] :8

Proof. We abuse notations slightly by writing B instead of BA and C instead of
CA. Obviously, A1

def
= fA 2 A; PA[B] = 1g is a subset of A. Also, for every A in A1,

we have PA[B ) C] = PA[C]. This establishes that

inf
A2A

PA[B ) C] � inf
A2A;PA[B]=1

PA[C] :

Let A2 be the set fA 2 A; PA[B] > 0g. If A 2 A�A2 then, by de�nition, PA[B] = 0
and hence PA[B ) C] = 1. As by assumption A2 is not empty, this trivially implies
that infA2A2 PA[C j B] � infA2A�A2 PA[B ) C].8

Consider now an adversary A in A2. We have:

PA[B ) C] = PA[B [ C]

= PA[B [ (C \B)]

= PA[B] + PA[C \B]

= PA[B] + PA[C j B]PA[B]

= (1� PA[C j B])PA[B] + PA[C j B]
�
PA[B] + PA[B]

�
� PA[C j B]

This immediately implies that infA2A2 PA[C j B] � infA2A2
PA[B ) C]. This

inequality along with the one proved above establishes that

inf
A2A2

PA[C j B] � inf
A2A

PA[B ) C] :

�

8Recall that infx2X f(x) = 1 if X is the empty set. This is justi�ed by the fact that, by
de�nition, infx2X f(x) is the biggest lower bound of the set ff(x);x 2 Xg. Hence, if X is empty,
all numbers are lower bounds and the in�mum is therefore in�nite.
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Note also the interesting general probabilistic relation, which is easily derived using
Bayes' rule: P [B ) C] = P [C j B] if and only if P [B \ C0] = P [B]P [C0], where we
let C0 denote the event B ) C. In particular, P [B ) C] = P [C j B] if (B ) C) is
independent of B.9

Which correctness measure is adequate.
The previous discussion shows that \adequately" formalizing the correctness state-
ment of a randomized algorithm is a not trivial problem. We proposed three possible
ways to formalize a correctness statement presented in the format: \for all adver-
saries, if property B holds then property C holds with probability at least "." It
is natural to wonder which of the three is most \adequate" in practice, whether
they have di�erent domains of application and whether some other good or even
better measures exist. The answer to these questions has signi�cant implications
as it determines the benchmark to which randomized algorithms are evaluated and
against which their correctness is decided.

What do we mean by an \adequate measure"? The example discussed in page 49
provides a good illustration of the problem. We showed that, for this game and
the choices B = \100 steps are allocated", C = \At least 40 Heads turn up" the
measure infA2A;PA[B]>0 PA[C j B] is equal to 0. The intuition behind this result
is that the use of this measure provides Player(2) with the implicit knowledge of
B. (See page 207 for a discussion on implicit knowledge.) Using this knowledge,
Player(2) is then able to select a speci�c strategyA so as to annulate the probability
of occurrence of C.

To justify why this measure is not adequate we have to return to our original inten-
tion. We can assume that we are provided with a �/A structure (S; X; Y; yinit; f; g;
�; A) as in De�nition 2.3.1, page 36, formalizing how the game is played between
Player(1) and Player(2). (As we are analyzing a single algorithm �0, � is by de�-
nition equal to the singleton f�0g. Also, as mentioned at the beginning of the chap-
ter, the set A of admissible adversaries contains only deterministic adversaries.)
We would ideally like to play the role of a passive observer, able to analyze the
game without interfering with it. In this perspective, a measure is deemed adequate
if its use does not perturb the experiment, i.e., the game between Player(1) and
Player(2).

It is clear from our discussion that the measure infA2A;PA [B]>0 PA[C j B] greatly
a�ects the game: we arrive at the scene, impose the unnatural condition B and let

9The relation P [B \ C 0] = P [B]P [C 0] does not imply the independence of B and C 0, because
this independence also involves similar relations with the complements of B and C 0.
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Player(2) use it to its fullest. By contrast, an adequate measure would be one that
would derive probabilistic facts about the �/A structure that would hold similarly
if no measure was conducted. (This will constitute our de�nition of adequacy. As in
physics, it is hard to formalize how a measure inuences the ambient structure. The
reason for the di�culty is by essence that we have access to the structure studied
only by measuring it.) With this in mind we can now come back to the analysis of
our three measures.

Probabilistic conditioning. First note that the adversary is restricted in a mini-
mal way by the precondition B when the measure infA2A;PA [B]>0 PA[C j B] is used:
it must just not disallow B probabilistically. Furthermore, as is discussed in Chap-
ter 8, page 207, Player(2) learns implicitly that the execution is restricted to within
the set B. Player(2) can take selective actions (i.e., design some speci�c strategy
A) so as to take advantage of this knowledge.

Conditioning by adversary. By contrast, if the measure infA2A;PA[B]=1 PA[C] is
used, Player(2) is in some sense \fully responsible" to ensure that the precondition
B happens. The only strategies of Player(2) (i.e., the only adversaries) that are
retained are those that ensure with probability one that B happens.

These two measures correspond therefore to two extremes cases. In the setting
imposed by the �rst measure, Player(2) can use without any restriction the infor-
mation that the executions take place in B. In the second setting Player(2) is most
restricted and must select strategies ensuring that the executions happen in B with
probability one.

The third measure infA2A PA[B ) C] does not de�ne so precisely the role played
by Player(2) in bringing the event B or in taking advantage of it. The fact that
an execution falls in (B ) C) is controlled in a mixed fashion by both the ran-
dom choices used by the algorithm and by the choices made by Player(2). As
discussed in the example presented in page 51, this measure corresponds to the
measure infA2A;PA [B]=1 PA[C] only under very speci�c circumstances. On the other
hand neither of the two values infA2A PA[B ) C] and infA2A;PA [B]>0 PA[C j B] is
uniformly bigger than the other.

These considerations show that the �rst measure infA2A;PA [B]>0 PA[C j B] using
probabilistic conditioning is an adequate measure in situations where the \nat-
ural dynamics of the game" (i.e., the dynamics described by the �/A structure
(S; X; Y; yinit; f; g; �; A)) are such that the precondition B is part of the knowl-
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edge of Player(2).10 Indeed, as we just argued, this measure implicitly gives the
knowledge of B to Player(2). The measure is adequate, i.e., passive, exactly when
the dynamics ensure naturally that Player(2) holds that knowledge. A typical ex-
ample of this situation is obtained when B represents a knowledge that Player(2)
can have acquired during an execution.

Similarly, the second measure infA2A;PA[B]=1 PA[C] using conditioning by adversary
is adequate in situations where the dynamics of the �/A structure are such that
the precondition B depends solely of Player(2).11 This was the situation in the
example presented previously in this section: Player(2) was \naturally" the only
entity deciding the schedule. This situation { where B represents a scheduling deci-
sion depending solely of Player(2) { provides a typical example where the measure
infA2A;PA [B]=1 PA[C] is adequate.

On the other hand, as we saw, the fact that an execution falls in (B ) C) is
controlled in a mixed fashion both by the random choices used by the algorithm
and by the choices made by Player(2). Our third measure infA2A PA[B ) C] is
therefore adequate under only very special dynamics. For all practical purposes, we
will deem it inadequate.

The notions of \sole dependence" and \knowledge of player(2)".
We introduced in page 54 the notions of event-schemas that depend solely of Player(2)
and which are part of the knowledge of Player(2). We now formalize these notions.
Both require to use with precision the model of a �/A structure presented in Def-
inition 2.3.1, page 36, and the description of the associated probability schema
(
A;GA; PA)A2A presented in page 41. Recall in particular from the construction
given in page 41 that the random variables A1; A3; A5; : : : are the actions taken by
Player(2) following its strategy A, and that the random variables A2; A4; : : : are the
actions taken by Player(1) following its strategy �.12

De�nition 3.2.1 An event schema B = (BA)A2A is said to depend solely on
Player(2) if, for every A 2 A, conditioned on the �-�eld �(A1; A3; A5; : : :),

13 BA is

10We will formalize this statement later in De�nition 3.2.2.
11We will formalize this statement later in De�nition 3.2.1.
12Eventhough sharing the same notation A, the notion of actions A1;A2; : : : is distinct from

the notion of set of admissible adversaries A = fAjgj2J . Note also that, eventhough there is no
subscript A to emphasize that fact, the random variables Ak; Sk ;Xk; Yk;k � 1 de�ned in page 41
are de�ned with respect to a given adversary A.

13We cannot say \conditioned on the values taken by A1; A2; : : :" because there are in general
in�nitely many Ak and we cannot �x all of them when conditioning. We therefore have to resort
to the more general notion of conditioning with respect to a �-�eld. (See [56], page 211. See also
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independent of the �-�eld �(A2; A4; A4; : : :).

Recall that GA is by de�nition equal to �(Ak; k � 1).14 Hence the previous condition
is equivalent to: \conditioned on �(A1; A3; A5; : : :), BA is independent of GA".

Note also that the independence condition of this de�nition is trivially veri�ed if
BA can be characterized solely in terms of the actions of Player(2) i.e., if BA 2
�(A1; A3; A5; : : :). Indeed, in that case, when conditioned on �(A1; A3; A5; : : :), BA

\is a constant" and hence independent of GA.15 This is a satisfactory fact: we
would expect that events that depend syntactically only on the actions A1; A3; : : :
of Player(2) do also \depend solely on Player(2)" in the sense of De�nition 3.2.1!
Our more complex de�nition takes into account that some events B might not be
expressible uniquely in terms of the random variables A1; A3; : : : but still result
in adequate measures of the type infA2A;PA[B]=1 PA[C] when enforcing B.16 We
therefore provide now some motivations and justi�cations at how our de�nition
captures that fact.

As we just recalled, we introduced the notion of an event B \depending solely
on" Player(2) to justify the adequacy of measures where Player(2) enforces the
precondition B. The conditional independence of B and of the random choices of
the algorithm ensures that, eventhough the de�nition of B might also involve the
choices of the algorithm, A2; A4; : : :, these choices do not inuence whether B occurs
or not. Hence the occurrence of B depends only on the way values are allocated
to A1; A3; : : :, i.e., on the adversary. (Recall that, in De�nition 2.3.1, page 36, we
de�ned an adversary to be a family A = (
y;Gy; Py)y2Y i.e., the family of laws17 of
the random variables A1; A3; : : :) Therefore restricting the analysis to within B (the
precondition of \if B then C") corresponds to considering only adversaries ensuring
that B occurs i.e., such that PA[B] = 1.

This shows that the measure infA2A;PA[B]=1 PA[C] is an adequate formalization of
\the probability of C under condition B" if B depends solely on Player(2).

the footnote 3 above.)
14See page 41.
15A formal proof of this fact is as follows. The formal de�nition of conditional expectations

recalled in footnote 3 expresses that, for every f 2 L2(dP ), the conditional expectation E[f j G0]
is characterized by the property: 8� 2 L2(dP ) \ G0; E[�f ] = E

�
�E[f j G0]

�
. Hence, for every

� 2 L2(dP ) \ G0 and every g 2 L2(dP ), E[�fg] = E
�
�E[fg j G0]

�
. On the other hand, if by

assumption f is in G0 we also have E[�fg] = E
�
�f E[g j G0]

�
. Hence, in that case, 8� 2 L2(dP ) \

G0; E
�
�E[fg j G0]

�
= E

�
�fE[g j G0]

�
. This implies that E[fg j G0] = fE[g j G0] = E[f j G0]E[g j G0]

P -almost surely. As g is arbitrary in L2(dP ) this precisely means that, conditioned on G0, f is
independent of G.

16See our discussion about adequate measures in page 53.
17See De�nition 8.1.2, page 198, for a de�nition of of the notion of law of a random variable.
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We conclude this discussion about events \depending solely" of Player(2) with two
caveats. To begin, note that even if an event-schema depends solely on Player(2),
there might exist no strategy A such that PA[B] = 1. The reason is that the actions
Ak are random variables and hence not in the full control of Player(2).

This brings us to the second point. A special but important case is when, as is
the assumption in this chapter, the strategies of Player(2) are all deterministic. In
that case, each action Ak taken by Player(2) depends deterministically on the view
Yk: Yk represents the knowledge held by Player(2) at level k. Hence, in this case,
the condition presented in De�nition 3.2.1 is equivalent to Y1; Y2; : : : determining
completely B. Nevertheless it is possible that B be not characterized by a single
variable Yk. In that case, there is no point k at which Player(2) knowsB, eventhough
B depends solely on that player. A justi�cation for this apparent paradox is that
the sequence of views of Player(2) characterizes B, but Player(2) lacks at each
single point the possibility to assess more then one value of the sequence (Yk)k2N.
We can encounter such situations { where some B depends solely on the views of
Player(2) but where Player(2) does not \know" it { if, for instance, Player(2) does
not remember completely the past (i.e., if the the past values Y1; : : : ; Yk�1 are not
recorded in the view Yk) or if B depends on in�nitely many views Yk.

De�nition 3.2.2 An event schema (BA)A2A is said to be part of the knowledge of
Player(2) if there exist a (random) step number kA such that BA is measurable with
respect to the view YkA .

By de�nition, BA is measurable with respect to YkA if there is a (deterministic)
function fA such that the indicator of BA is equal to fA(YkA). As mentioned in the
caveat above, the knowledge accessible to Player(2) at each point k is completely
described by the variable Yk. Our de�nition therefore formalizes well that B is part
of the knowledge of Player(2). We allow kA to be random to take into account the
fact that information becomes available to the players at random times.

Composition of adequate correctness-measures.
The two types of measure infA2A;PA [B]>0 PA[C j B] and infA2A;PA [B]=1 PA[C] can
be combined to yield an adequate composite measure 18 in the following situations.
Player(2) holds some speci�c knowledge B1 and uses this knowledge to enforce
a condition B2, which depends solely on him, trying to minimize the probability

18See our discussion about adequate measures in page 53.
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of occurrence of an event C. In this case, the probability of occurrence of C is
adequately18 measured by:

inf
A;PA[B2jB1]=1

PA [B1]>0

PA[CjB1] :

We actually have to be more precise to ensure that this measure is adequate18.
In De�nition 3.2.1, the formalization of \B depends solely of Player(2)" is made
(implicitly) in terms of the probability schema (
A;GA; PA)A2A.

19 In contrast, the
formalization of \B2 depends solely on Player(2)" is made conditioned on B1, i.e., is
made in terms of the probability schema

�
B1;A; GA \B1;A; PA[ � ]=PA[B1;A]

�
A2A0

where B1 = (B1;A)A2A, GA \ B1
def
= fC \ B1;C 2 GAg and where A0 def

= fA 2
A; PA[B1] > 0g.

We now generalize this construction. Our discussion involves a sequence of event-
schemas B1; B2; : : : To justify the validity of our argument we make the following
assumption formalizing that, for every k, Bk happens before Bk+1 in the execution.
(This requirement might possibly be relaxed and the argument generalized.)

Assumption. There exists an increasing sequence of (random) values n1; n2; : : :
such that, for every k, Bk 2 �(Ynk; Ynk+1; : : : ; Ynk+1�1).

Assume that the natural dynamics20 of the �/A structure ensure the following.
Player(2) holds the knowledge of B1. Using this knowledge Player(2) decides single-
handedly on B2: by assumption B2 depends solely on Player(2). (As above the
formal translation of this fact requires the use of the probability schema (B1;A;GA\
B1; PA[ � ]=PA[B1;A])A2A0 .) Player(2) then observes B3 and uses this knowledge to
decide on some B4 that depends solely on him ... We symbolically let

B1 j B2 ! B3 j B4 ! : : :

denote such scenarios. To each scenario, we can associate an adequate correctness-
measure by iterating the previous procedure. For instance, an adequate correctness

19The notion of probability schema is presented in De�nition 2.4.1.
20The notion of natural dynamics is presented in page 54.



3.2. Formalizing a Correctness Statement 59

measure associated to a scenario B1 j B2 ! B3 is given by:

inf
A;PA[B3jB1;B2]>0

PA [B2jB1]=1

PA[B1 ]>0

PA[CjB1; B3] :

We thus obtain a whole family of (rather complex) adequate high-probability cor-
rectness measures. A special but important case where we can easily write such
adequate measures is when, for (each) odd index 2i� 1, the precondition B2i�1 is
part of the knowledge of Player(2) and when B2i is described in terms of the action
taken next by Player(2).21 Indeed, in that case, the precondition B2i depends solely
on Player(2) (conditioned on B1; : : : ; B2i�1).

Summary and open questions about adequate measures.
We saw that there are two extremes when formalizing a high-probability statement
of the form \for all adversaries, if property B holds then property C holds with
probability at least "." In one extreme, we restrict the analysis to within B, leaving
Player(2) free to select the most damaging strategy it wishes. This leads to the
measure

inf
A2A

PA[C j B] :

This measure might be \unfair" to Player(1) as it gives to Player(2) some knowledge
that it might not receive otherwise according to the natural dynamics of the �/A
structure considered. The other extreme is to require that the adversary ensures B
with probability one. This leads to the measure

inf
A2A;PA [B]=1

PA[C] :

This measure can be \unfair" to Player(2) as it forces that player to guaranty alone
an event which might depend on both players. Any other high probability measure
M formalizing the statement above must fall between these two measures:

inf
A2A;PA[B]>0

PA[C j B] �M � inf
A2A;PA[B]=1

PA[C] :

21We formalize here this statement. We will use the convenient labeling presented on page 65 to
describe an execution: ! = A1 (S1;X1; Y1)| {z }

Player(2)

A
0
1 (S

0
1;X

0
1; Y

0
1 )| {z }

Player(1)

A2 (S2;X2; Y2)| {z }
Player(2)

: : :. With these conven-

tions a formal translation of our statement is that, for every A in A, there exists a (random) index
kA such that B2i�1;A 2 �(Y 0

kA
) and such that B2i;A 2 �(AkA )
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It would be very interesting to be able to characterize the set of adequate measures
of a given randomized algorithm.

Existence. In particular, an interesting question is whether there always exists an
adequate22 formalization of the expression \the highest probability of C under con-
dition B". If not this would mean that some correctness statements are by nature
ill-formed. In particular, we would like to know whether Rabin's property quoted
in page 61 can be adequately formalized in connection with the �/A structure pre-
sented on page 64.

Completeness. We saw that the set of actions of Player(2) depended solely23 of
her. Combining such actions with events that are part of her knowledge23 allowed us
to derive (in�nitely many) adequate measures associated to a randomized algorithm.
Are all the adequate measures of this type? This would show that the method of
conditioning by adversary and of probabilistic conditioning24 are \basis" for all other
adequate measures.

3.3 Proving Lower Bounds

The previous section was devoted to formalizing adequately a statement informally
stated. We consider in this section the technical problem to provide a lower bound
for an expression already formalized into the form infA2A PA[W j I ]. In general it is
di�cult to estimate directly this expression. Indeed recall that W and I are event
schemas and that we actually have to estimate infA2A PA[WA j IA ].

Let (
;G; P ) be the probability space associated to the random inputs � used by the
algorithm. (Rabin's algorithm is using two independent coins so that this probability
space is easily de�ned in that case.) Our method for proving a high probability cor-
rectness property of the form PA[W jI ] consists of proving successive lower bounds:

PA[W j I ] � PA[W1 j I1 ]

...

� PA[Wr j Ir ];

where all theWi and Ii are event schemas, and where the last two event schemas,Wr

and Ir , are true events in G and do not depend on A. The �nal term, PA[Wr j Ir ],

22See our discussion about adequate measures in page 53.
23See De�nitions 3.2.1 and 3.2.2.
24See page 54
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is then evaluated (or bounded from below) using the distribution P . This method
can be in practice rather di�cult to implement as it involves disentangling the ways
in which the random choices made by the processes a�ect the choices made by the
adversary.

3.4 Rabin's Algorithm

The problem of mutual exclusion [16] involves allocating an indivisible, reusable
resource among n competing processes. A mutual exclusion algorithm is said to
guarantee progress25 if it continues to allocate the resource as long as at least one
process is requesting it. It guarantees no-lockout if every process that requests
the resource eventually receives it. A mutual exclusion algorithm satis�es bounded
waiting if there is a �xed upper bound on the number of times any competing
process can be bypassed by any other process. In conjunction with the progress
property, the bounded waiting property implies the no-lockout property. In 1982,
Burns et al.[12] considered the mutual exclusion algorithm in a distributed setting
where processes communicate through a shared read-modify-write variable. For
this setting, they proved that any deterministic mutual exclusion algorithm that
guarantees progress and bounded waiting requires that the shared variable take
on at least n distinct values. Shortly thereafter, Rabin published a randomized
mutual exclusion algorithm [49] for the same shared memory distributed setting. His
algorithm guarantees progress using a shared variable that takes on only O(log n)
values.

It is quite easy to verify that Rabin's algorithm guarantees mutual exclusion and
progress; in addition, however, Rabin claimed that his algorithm satis�es the fol-
lowing informally-stated strong no-lockout property26.

\If process i participates in a trying round of a run of a computation by
the protocol and compatible with the adversary, together with 0 � m�1 <
n other processes, then the probability that i enters the critical region at
the end of that round is at least c=m; c � 2=3:" (*)

This property says that the algorithm guarantees an approximately equal chance of
success to all processes that compete at the given round. Rabin argued in [49] that

25We give more formal de�nitions of these properties in Section 3.5.
26In the statement of this property, a "trying round" refers to the interval between two successive

allocations of the resource, and the "critical region" refers to the interval during which a particular
process has the resource allocated to it. A "critical region" is also called a "critical section".



62 Chapter 3. Rabin's Algorithm for Mutual Exclusion

a good randomized mutual exclusion algorithm should satisfy this strong no-lockout
property, and in particular, that the probability of each process succeeding should
depend inversely on m, the number of actual competitors at the given round. This
dependence on m was claimed to be an important advantage of this algorithm over
another algorithm developed by Ben-Or (also described in [49]); Ben-Or's algorithm
is claimed to satisfy a weaker no-lockout property in which the probability of success
is approximately c=n, where n is the total number of processes, i.e., the number of
potential competitors.

Rabin's algorithm uses a randomly-chosen round number to conduct a competition
for each round. Within each round, competing processes choose lottery numbers
randomly, according to a truncated geometric distribution. One of the processes
drawing the largest lottery number for the round wins. Thus, randomness is used
in two ways in this algorithm: for choosing the round numbers and choosing the
lottery numbers. The detailed code for this algorithm appears in Figure 3.1.

We begin our analysis by presenting three di�erent formal versions of the no-lockout
property. These three statements are of the form discussed in the introduction and
give lower bounds on the (conditional) probability that a participating process wins
the current round of competition. They di�er by the nature of the events involved
in probabilistic conditioning, those involved in conditioning by adversary and by the
values of the lower bounds.

Described in this formal style, neither of the two forms of conditioning { probabilistic
conditioning and conditioning by adversary { provides an adequate formalization27

of the fact that m processes participate in the round. We show in Theorem 3.6.1
that, if probabilistic conditioning is selected, then the adversary can use this fact in
a simple way to lock out any process during any round.

On the other hand, the weak c=n no-lockout property that was claimed for Ben-Or's
algorithm involves only conditioning over events that describe the knowledge of the
adversary at the end of previous round. We show in Theorems 3.6.2 and 3.6.4 that
the algorithm su�ers from a di�erent aw which bars it from satisfying even this
property.

We discuss here informally the meaning of this result. The idea in the design of
the algorithm was to incorporate a mathematical procedure within a distributed
context. This procedure allows one to select with high probability a unique random
element from any set of at most n elements. It does so in an e�cient way using
a distribution of small support (\small" means here O(log n)) and is very similar
to the approximate counting procedure of [20]. The mutual exclusion problem in a

27\adequate" in the sense of Section 3.2.
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distributed system is also about selecting a unique element: speci�cally the prob-
lem is to select in each trying round a unique process among a set of competing
processes. In order to use the mathematical procedure for this end and select a true
random participating process at each round and for all choices of the adversary, it
is necessary to discard the old values left in the local variables by previous calls of
the procedure. (If not, the adversary could take advantage of the existing values.)
For this, another use of randomness was designed so that, with high probability, at
each new round, all the participating processes would erase their old values when
taking a step.

Our results demonstrate that this use of randomness did not actually ful�ll its
purpose and that the adversary is able in some instances to use old lottery values
and defeat the algorithm.

In Theorem 3.6.6 we show that the two aws revealed by our Theorems 3.6.1 and
3.6.2 are at the center of the problem: if one restricts attention to executions where
program variables are reset, and if we condition by adversary on the number m of
participating processes then the strong bound does hold. Our proof, presented in
Proposition 3.6.7, highlights the general di�culties encountered in our methodology
when attempting to disentangle the probabilities from the inuence of A.

The algorithm of Ben-Or which is presented at the end of [49] is a modi�cation of
Rabin's algorithm that uses a shared variable of constant size. All the methods that
we develop in the analysis of Rabin's algorithm apply to this algorithm and establish
that Ben-Or's algorithm is similarly awed and does not satisfy the 1=2en no-lockout
property claimed for it in [49]. Actually, in this setting, the shared variables can take
only two values, which allows the adversary to lock out processes with probability
one, as we show in Theorem 3.6.9.

In a recent paper [36], Kushilevitz and Rabin use our results to produce a modi-
�cation of the algorithm, solving randomized mutual exclusion with log2

2n values.
They solve the problem revealed by our Theorem 3.6.1 by conducting before round k
the competition that results in the control of Crit by the end of round k. And they
solve the problem revealed by our Theorem 3.6.2 by enforcing in the code that the
program variables are reset to 0.

The remainder of this chapter is organized as follows. Section 3.5 contains a descrip-
tion of the mutual exclusion problem and formal de�nitions of the strong and weak
no-lockout properties. Section 3.6 contains our results about the no-lockout proper-
ties for Rabin's algorithm. It contains Theorems 3.6.1 and 3.6.2 which disprove in
di�erent ways the strong and weak no-lockout properties and Theorem 3.6.6 whose
proof is is a model for our methodology: a careful analysis of this proof reveals ex-
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actly the origin of the aws stated in the two previous theorems. One of the uses of
randomness in the algorithm was to disallow the adversary from knowing the value
of the program variables. Our Theorems 3.6.2 and 3.6.8 express that this objective
is not reached and that the adversary is able to infer (partially) the value of all
the �elds of the shared variable. Theorem 3.6.9 deals about the simpler setting of
Ben-Or's algorithm.

Some mathematical properties needed for the constructions of Section 3.6 are pre-
sented in an appendix (Section 3.7).

3.5 The Mutual Exclusion Problem

The problem of mutual exclusion is that of continually arbitrating the exclusive
ownership of a resource among a set of competing processes. The set of competing
processes is taken from a universe of size n and changes with time. A solution to
this problem is a distributed algorithm described by a program (code) C having the
following properties. All involved processes run the same program C. C is partitioned
into four regions, Try, Crit, Exit, and Rem which are run cyclically in this order
by all processes executing C. A process in Crit is said to hold the resource. The
indivisible property of the resource means that at any point of an execution, at most
one process should be in Crit.

3.5.1 De�nition of Runs, Rounds, and Adversaries

In this subsection, we de�ne the notions of run, round, adversary, and fair adversary
which we will use to de�ne the properties of progress and no-lockout.

A run � of a (partial) execution ! is a sequence of triplets f(p1; old1; new1), (p2; old2;
new2), : : : (pt; oldt; newt) : : :g indicating that process pt takes the tth step in ! and
undergoes the region change oldt ! newt during this step (e.g., oldt = newt = Try
or oldt = Try and newt = Crit). We say that ! is compatible with �.

An adversary for the mutual exclusion problem is a mapping A from the set of
�nite runs to the set f1; : : : ; ng that determines which process takes its next step
as a function of the current partial run. That is, the adversary is only allowed to
see the changes of regions. For every t and for every run � = f(p1; old1; new1),
(p2; old2; new2); : : :g, A[f(p1; old1; new1); : : : ; (pt; oldt; newt)g] = pt+1: We then say
that � and A are compatible.
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The associated �/A-structure. We show how these de�nitions can be formal-
ized into a �/A-structure within the general model presented in De�nition 2.3.1,
page 36. Recall that we consider here only deterministic adversaries, i.e., adversaries
for which, for every k, the kth action of Player(2), Ak, is a deterministic function of
the view Yk.

To simplify the exposition we will slightly change the notations of Chapter 2, page 41,
in the following way. We write here a random execution ! as

! = A1 (S1; X1; Y1)| {z }
Player(2)

A0
1 (S

0
1; X

0
1; Y

0
1)| {z }

Player(1)

A2 (S2; X2; Y2)| {z }
Player(2)

: : :

Ak is the kth action taken by Player(2). Sk, Xk and Yk are respectively the state
of the system, the view of Player(1) and the view of Player(2) resulting after this
action. Similarly we let A0

k, S
0
k, X

0
k and Y

0
k denote the k

th action taken by Player(1),
the state of the system, and the views of the two players resulting after this action.

� The set of states, S, is the set of tuples containing the value of the program
counters pc1; : : : ; pcn, the values of all the local variables and the value of the
shared variable.

� The actions Ak take values in f1; : : : ; ng.

� The actions A0
k are described by the code of the algorithm given in Figure 3.1,

page 74. (We will not make these actions more explicit.)

� The views Xk take value in S � f1; : : : ; ng. (If the view of Player(1) is (s; i),
then i represents the process to take a step next.)

� The views Yk take value in fruns of length (k � 1)g � f1; : : : ; ng. (Yk = (y; i)
means that the previous view of Player(2) was Y 0

k�1 = y and Player(2) just
selected i.)

� The set of views X 0
k is equal to S. (Player(1) just remembers the state of the

system after its step.)

� The views Y 0
k take value in fruns of length kg.

The update functions are described as follows. Assume that (Sk; Xk; Yk) = (s; (x; i);
(y; i)). Then (S0k; X

0
k; Y

0
k) = f(Sk; Xk; Yk; A

0
k) = (s0; s0; (y; i; newi)),

28 where s0 is the
state of the system after the kth move of Player(1) and newi is the region reached by

28For simplicity we do not recall oldi which is recorded in y.
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process i. Similarly assume that (S0k; X
0
k; Y

0
k) = (s; x; y). Then (Sk+1; Xk+1; Yk+1) =

g(s; x; y; i) = (s; (x; i); (y; i)), where i is the process selected by Player(2) for round
k + 1.

This de�nes the �/A-structure associated to Rabin's randomized algorithm for mu-
tual exclusion. The construction given in Chapter 2, page 36, de�nes the associated
probability schema (
A;GA; PA)A2A over which we will conduct the analysis.

In this model Player(1) \forgets" systematically all the past, knows the current
state and learns what the last action of Player(2) is. By contrast, we will consider in
Chapter 7 an example where Player(1) learns nothing about the moves of Player(2),
consequently knows only partially the state, and remembers everything about its
past actions.

For every adversary A, an execution ! in 
A is in FairA if every process i in Try,
Crit, or Exit is eventually provided by A with a step. This condition describes
\normal" executions of the algorithm and says that processes can quit the compe-
tition only in Rem. The number of states, actions and views being �nite we can
express FairA as an expression involving (only) countably many rectangles.29 This
establishes that FairA 2 GA and that the family Fair = (FairA)A2A is an event-
schema. An adversary A is fair if the executions produced under the control of A
are in Fair with probability one, i.e., if PA[FairA] = 1. This de�nition was also given
in Vardi [58], page 334. Player(2) is fair if every A 2 A is fair.30

In this chapter, we choose the set A of admissible adversaries to be the set of fair
adversaries.

A round of an execution is the part between two successive entrances to the critical
section (or before the �rst entrance). More speci�cally, it is a maximal execution
fragment of the given execution, containing one transition Try ! Crit at the end
of this fragment and no other transition Try ! Crit. The round of a run is de�ned

29See page 42 for a de�nition of a rectangle and page 43 for a de�nition of an event-schema.
30The probabilistic notion of fairness allows more exibility in the de�nition of adversaries then

requiring that all executions be in Fair. The following example illustrates that fact. Consider two
processes each running the simple code: \Flip a fair coin". This means that process i (i = 1 or
2) ips a coin whenever allocated a step by Player(2). An execution is in Fair if both processes
take in�nitely many steps. Consider the adversary A de�ned by: \I. Allocate steps repeatedly
to process 1 until Head comes up. Then allocate steps repeatedly to process 2 until Head comes
up. Then go back to I and repeat." This adversary is fair in the probabilistic sense: PA[Fair] = 1.
Nevertheless it produces (with probability zero) some executions that are not in Fair.
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similarly. For every k, we let round(k) denote the kth round. Formally, round(k)
is a variable-schema31 round(k) = (roundA(k))A2A: roundA(k) is the random kth

round of the generic execution obtained when the adversary is A. (For completeness
we write roundA(k) = ? if the execution has less then k rounds.)

A process i participates in a round if i takes a step while being either in its trying
section Try or at rest in its section Rem. Hence, for a participating process oldi 2
Rem, Try and newi 2 Try, Crit.

3.5.2 The Progress and No-Lockout Properties

De�nition 3.5.1 An algorithm C that solves mutual exclusion guarantees progress
if for all fair32 adversaries there is no in�nite execution in which, from some point
on, at least one process is in its Try region (respectively its Exit region) and no
transition Try ! Crit (respectively Exit ! Rem) occurs.

Recall that the notion of fair adversary is probabilistic. But the notion of mutual ex-
clusion is not probabilistic: we require that, for all fair adversaries and all executions
! in FairA, ! have the property enunciated in De�nition 3.5.1.

We now turn towards the no-lockout property. This property is probabilistic. Its
formal de�nition requires the following notation:

For every adversary A, let XA denote any generic quantity whose value changes as
the execution unfolds under the control of A (e.g., the value of a program variable).
We let XA(k) denote the value of XA just prior to the last step (Try ! Crit) of
the kth round of the execution. As a special case of this general notation, we de�ne
the following.

� PA(k) is the set of participating processes in round k. (Set PA(k) = ; if !
has fewer then k rounds.) The notation PA(k) is consistent with the general
notation because the set of processes participating in round k is updated as
round k progresses: in e�ect the de�nition of this set is complete only at the
end of round k. (This fact is at the heart of our Theorem 3.6.1).

� tA(k) is the total number of steps that are taken by all the processes up to
the end of round k.

31See De�nition 2.4.1.
32The mention of the fairness is put here just as a reminder: recall that, in this chapter, all the

admissible adversaries are fair.
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� NA(k) is the set of executions in which all the processes j participating in
round k reinitialize their program variables Bj with a new value �j(k) during
round k. (N stands for New-values.) �j(k); k = 1; 2; : : : ; j = 1; : : : ; n is a
family of iid 33 random variable whose distribution is geometric truncated at
log2n + 4 (see [49]).

� For each i, Wi;A(k) denotes the set of executions in which process i enters the
critical region at the end of round k.

We consistently use the probability theory convention according to which, for any
property SA, the set of executions f! 2 
A : ! has property SAg is denoted as
fSAg. Then:

� For each step number t and each execution ! 2 
A we let �t;A(!) denote the
run compatible with the �rst t steps of !. For any t-steps run �, f�t;A = �g
represents the set of executions compatible with �. (f�t;A = �g = ; if � has
fewer then t steps.) We will use �k;A in place of �t(k);A to simplify notation.

Note that the de�nition of �t;A can be made independently of any adversary
A, justifying the simpler notation �t. We nevertheless keep the subscript A to
emphasize that, for every A, �t;A is de�ned on (
A;GA) which depends on A.

� Similarly, for all m � n, fjPA(k)j = mg represents the set of executions having
m processes participating in round k.

For every A, The quantities NA(k); f�t;A = �g, Wi;A(k), fjPA(k)j = mg, fi 2
PA(k)g are sets of executions. We actually easily check that they are all events in
the �-�eld GA. The care that we showed by keeping the reference to A in �t;A is
justi�ed here by the fact that f�t;A = �g is an event in GA which does depend on
A. These families of events naturally lead to event-schemas N (k); f�t = �g, Wi(k),
fjP(k)j = mg, fi 2 P(k)g. For instance, N (k) = (NA(k))A2A and f�t = �g =
(f�t;A = �g)A2A. The analysis will consider these event schemas in connection with
the probability schema (
A;GA; PA)A2A.

We now present the various no-lockout properties that we want to study. All are
possible formalizations of statement (*) given on page 61. Of great signi�cance to us
is their adequacy34: a measure which is not adequate does not confer valuable infor-
mation about the algorithm studied. To simplify the discussion we will sometimes

33Recall that iid stands for \independent and identically distributed".
34See our discussion about the notion of adequate measures on page 53. We also review that

notion shortly here.
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use the notation C;B1; B2; B3 and B4 in place of Wi(k), fi 2 P(k)g, f�k�1 = �g,
fjP(k)j = mg, and N (k), respectively. As suggested by our notation, we will con-
sider C to be the target property 35 and B1; B2; B3 and B4 to be the preconditions.
The target property can be considered only in conjunction with the precondition
B1. Hence all the measures we will consider will have B1 as a precondition. The
other preconditions can be introduced or omitted, each choice corresponding to a
di�erent measure (actually to two di�erent measures as we now discuss).

We argued at the beginning of this chapter that a measure reects an actual prop-
erty of the �/A-structure only if it does not perturb the dynamics of the game
between Player(1) and Player(2). We then say that the measure is adequate. All
the measures that we will consider formalize the preconditions using either proba-
bilistic conditioning or conditioning by adversary.36 (At this point we know of no
other method to construct adequate measures.) As we will see neither of these two
methods allows to treat adequately the precondition B3. This is unfortunate be-
cause, as is mentioned in [49], a \good" measure of no-lockout should be expressed
in terms of m, the actual number of participating processes in a round. In spite
of this fact we will treat the preconditions in the most adequate way, envisioning
various alternatives when no adequate formulation is available.

We have actually in mind to compute the probability of the targetWi(k) at di�erent
(random) points sk of the execution. The execution-fragment previous to sk is
(obviously) determined at the point sk. The de�nition of Rabin's �/A-structure
implies that Player(2) then knows the run associated to that execution-fragment.
As is explained on page 54, the natural way to account for this situation is to use
probabilistic conditioning on the knowledge held by Player(2) at that point sk. We
will consider two cases, when sk is the beginning of the execution and when it is the
beginning of round k. In the latter case the knowledge held by Player(2)is the past
run �. Hence the adequate formalization of this case is obtained by probabilistically
conditioning on B2 = f�k�1 = �g. In the former case { when sk is the beginning
of the execution { there is no past and the corresponding adequate formalization
consists in simply omitting B2 from the measure.

We now turn to B1 = fi 2 P(k)g. As mentioned above the target C = Wi(k) can
be considered only when this precondition is considered. In this case the situation
is not as clear as for B2: the fact that a process i participates in round k depends
on both the strategy A used by Player(2) and on the random values drawn by the
algorithm during the round. Indeed, on the one hand i can participates only if

35The notions of \target property" and \precondition" are de�ned on page 48.
36These notions are de�ned on page 54.
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Player(2) plans to schedule it. On the other hand, i can also participate only if no
process scheduled before its turn comes does succeed into Crit. This depends (in
part) on the random lottery values drawn by these processes.

There is one process though, for which the situation is unambiguous: the �rst
one scheduled in round k by Player(2). This one depends solely on Player(2) (in
the sense of De�nition 3.2.1). When proving negative results (i.e., disproving the
correctness of the algorithm) we can therefore consider that process: if correct, the
algorithm should in particular ensure a good success rate for this speci�c process.

On the other hand, when proving positive results (i.e., proving that the algorithm
satis�es some correctness-measure) we will, by default of an adequate measure,
give Player(2) more power then it would in any adequate situation. Indeed, the
correctness of the algorithm in that case implies the correctness for any adequate
measure, if any exists. We achieve this by letting Player(2) know the identity of the
process i with respect to which the test is conducted. Formally, this means that we
use probabilistic conditioning on fi 2 P(k)g.

We now turn to B3, the most important character in the cast of B's. (Recall again
that the whole purpose of the algorithm is to achieve a measure of fairness with
respect to the m currently participating processes.) Unfortunately, in that case, we
have no means in our panoply to interpret adequately this precondition ... unless
m = 1, in which case statement (*) of page 61 is vacuously true. Indeed, consider
�rst probabilistically conditioning on B3. This means, as we saw, letting Player(2)
know the number of participating processes and then letting it act as it wishes
(provided that Player(2) allows with non-zero probability that jP(k)j = m). This
gives a de�nite power to Player(2): Player(2) is in fact the main power in the
determination of m. Our Theorem 3.6.1 expresses that fact and shows that the
algorithm is incorrect ... for the inadequate correctness measure considered.

The other possibility at our disposal is to condition by adversary37 on B3. This
does not provide an adequate measure either. As we will show in Lemma 3.6.5 this
constrains in essence Player(2) to give steps to all participating processes when the
critical section is still closed. This implies in particular that Player(2) cannot play
on the order according to which it schedules the processes: that is precisely the
weapon used by Player(2) to defeat the previous measure. This restriction can be
viewed as \unfair" to Player(2): it ties its hands in a way that does not correspond
to the natural dynamics of Rabin's �/A-structure. Nevertheless our Theorem 3.6.2
shows that this over-constrained Player(2) still manages to defeat the algorithm.

37See page 54.
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The measure considered being the most restrictive towards Player(2), any measure
formalizing adequately that jP(k)j = m (if any exists) would similarly yield a defeat
of the algorithm.

This brings us to the last of the B event-schemas: B4 = N (k). This event is
similarly neither part of the knowledge of Player(2)38 at the beginning of round
k nor depending solely on him.39 Thus, as we already saw several times, both
methods of probabilistic conditioning and conditioning by adversary are inadequate.
The most unfavorable to Player(1) is the probabilistic conditioning method. A
correctness result in that case will therefore imply correctness for any other adequate
formalization of N (k), if any exits. This is why probabilistic conditioning is used in
Theorem 3.6.6.

We are now at last in a position to present the various measures. We use the following
notations. The term weak refers to the fact that a 1=n lower bound on the probabil-
ity is sought. The term strong refers to a 1=m lower bound. The terms/notations i,
run, m and renew refer to B1, B2, B3 and B4 respectively. The term knowing refers
to a probabilistic conditioning. For instance (run; i;m and renew)-knowing summa-
rizes that probabilistic conditioning is performed on B1; B2; B3 and B4. The term
imposing refers to a conditioning by adversary. For instance i-imposing summarizes
that conditioning by adversary is performed on B1.

The �rst two de�nitions involve evaluating the probabilities \at the beginning of
round k". The measure infA2A0 PA[Wi(k) j �k�1 = �] used in the �rst de�nition
is adequate (in the sense de�ned on page 53). It corresponds to a probabilistic
measuring obtained for Player(2) sitting at the beginning of round k (and hence
knowing the past (k�1)-run �) and scheduling the �rst step of round k to process i.
As discussed on page 70, this measure is too speci�c to provide a relevant measure
of performance of the algorithm. Nevertheless it is a good measure to establish a
negative result: if correct, the algorithm should in particular ensure a good success
rate for the speci�c process i. The measures used in the other two de�nitions are not
adequate (in the sense de�ned on page 53). We argue this point after the de�nitions.

De�nition 3.5.2 (Weak, Run-knowing, i-imposing, Probabilistic no-lock-

out) A solution to the mutual exclusion problem satis�es weak, run-knowing, i-
imposing probabilistic no-lockout whenever there exists a constant c such that, for

38See De�nition 3.2.2.
39See De�nition 3.2.1.
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every k � 1, every (k � 1)-round run � and every process i,

inf
A;PA

�
i2P(k)

���k�1=� �=1

PA[�k�1=�]>0

PA
�
Wi(k) j �k�1 = �

�
� c=n :

De�nition 3.5.3 (Strong, Run &m-knowing, i-imposing, Probabilistic no-

lockout) The same as in De�nition 3.5.2 except that:

inf
A;PA

�
i2P(k)

���k�1=�; jP(k)j=m
�
=1

PA[�k�1=�; jP(k)j=m]>0

PA
�
Wi(k)

�� �k�1 = �; jP(k)j =m
�
� c=m :

The next de�nition is the transcription of the previous one for the case where the
probability is \computed at the beginning of the execution" (i.e., sk = 0 for all k).

De�nition 3.5.4 (Strong, m-knowing, i-imposing, Probabilistic no-lockout)

The same as in De�nition 3.5.2 except that:

inf
A;PA

�
i2P(k)

�� jP(k)j=m
�
=1

PA[jP(k)j=m]>0

PA
�
Wi(k)

�� m = jP(k)j
�
� c=m :

We argue that the last two de�nitions are not adequate: both involve probabilis-
tically conditioning on the number m of participating processes in round k. As
mentioned above, the two de�nitions correspond to Player(2) sitting either at the
beginning of round k or at the beginning of the execution. In both situations, the
value of jP(k)j is not part of the knowledge40 of Player(2). Therefore probabilistic
conditioning on the value m of jP(k)j yields an inadequate measure of performance.

By integration over � we see that an algorithm having the property of De�nition 3.5.3
is stronger then one having the property of De�nition 3.5.4. Equivalently, an adver-
sary able to falsify Property 3.5.4 is stronger then one able to falsify Property 3.5.3.

3.6 Our Results

Here, we give a little more detail about the operation of Rabin's algorithm than
we gave earlier in the introduction. At each round k a new round number R is

40See De�nition 3.2.2.
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selected at random (uniformly among 100 values). The algorithm ensures that any
process i that has already participated in the current round has Ri = R, and so
passes a test that veri�es this. The variable R acts as an \eraser" of the past:
with high probability, a newly participating process does not pass this test and
consequently chooses a new random number for its lottery value Bi. The distribution
used for this purpose is a geometric distribution that is truncated at b = log2n+ 4:
P
�
�j(k) = l

�
= 2�l for l � b� 1. The �rst process that checks that its lottery value

is the highest obtained so far in the round, at a point when the critical section is
unoccupied, takes possession of the critical section. At this point the shared variable
is reinitialized and a new round begins.

The algorithm has the following two features. First, any participating process i
reinitializes its variable Bi at most once per round. Second, the process winning
the competition takes at most two steps (and at least one) after the point fk of
the round at which the critical section becomes free. Equivalently, a process i that
takes two steps after fk and does not win the competition cannot hold the current
maximal lottery value. (After having taken a step in round k a process i must hold
the current round number i.e., Ri(k) = R(k). On the other hand, the semaphore S
is set to 0 after fk. If i held the highest lottery value at its second step after fk it
would pass all three tests in the code and enter the critical section.) We will take
advantage of this last property in our constructions.

We are now ready to state our results. The �rst result states that the strong m-
knowing correctness property does not hold unless n � 2.

Theorem 3.6.1 The algorithm does not have the strong no-lockout property of De�-
nition (3.5.4) (and hence of De�nition 3.5.3). Indeed, if n � 3, there is an adversary
A such that, for all rounds k, for all m; 2 � m � n,8><

>:
PA
�
W1(k)

�� m = jP(k)j
�
= 0

PA
�
1 2 P(k)

�� m = jP(k)j
�
= 1

PA[m = jP(k)j ]> 0 :

Proof. Assume �rst that 2 � m � n� 1. Consider the following adversary A. A
does not use its knowledge about the past run � (which is granted to Player(2) by the
�/A-dynamics), gives one step to process 1 while the critical section is occupied,
waits for Exit and then adopts the schedule 2; 2; 3; 3; : : : ; n; n; 1. This schedule
brings round k to its end, because of the second property mentioned above (i.e.,
all processes are scheduled for two steps, one of which when the critical section is
empty). This adversary is such that m wins with non zero probability i.e., PA[m =
jP(k)j]> 0. Also 1 is scheduled �rst so that, obviously, PA[1 2 P(k) jm= jP(k)j] =
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Shared variable: V = (S;B;R), where:
S 2 f0; 1g, initially 0
B 2 f0; 1; : : : ; dlogne + 4g, initially 0
R 2 f0; 2; : : : ; 99g, initially random

Code for i:

Local variables:
Bi 2 f0; : : : ; dlogne+ 4g, initially 0
Ri 2 f0; 1; : : : ; 99g, initially ?

Code:
while V 6= (0; Bi; Ri) do

if (V:R 6= Ri) or (V:B < Bi) then
Bi  random
V:B  max(V:B;Bi)
Ri  V:R

unlock; lock;
V  (1; 0; random)
unlock;
** Critical Region **
lock;
V:S  0
Ri  ?
Bi  0
unlock;
** Remainder Region **
lock;

Figure 3.1: Rabin's Algorithm
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1. But, for this adversary, jP(k)j = m happens exactly when process m wins so that
PA[W1(k) jm = jP(k)j] = 0.

Consider now the case where m = n. We consider then the adversary which gives
one step to process 2 while the critical section is occupied, waits for Exit and then
adopts the schedule 1; 1; 3; 3; : : : ; n; n; 2. As above, this schedule brings round k to
its end. Similarly, PA[jP(k)j = n] > 0, namely when 2 holds the highest lottery
value. Also, 1 is scheduled with certainty. We now show that 1 must have a smaller
lottery then 2 and hence cannot win access to Crit. Indeed, otherwise 1 would win
and jP(k)j would be equal to 2. This is a contradiction as we assume that jP(k)j is
n and as, by assumption, n is bigger then 2. �

The previous result is not too surprising in the light of our previous discussion. The
measure

inf
A;PA

�
12P(k)

��m=jP(k)j
�
=1

PA [ jP(k)j=m ]>0

PA
�
W1(k)

�� m = jP(k)j
�

is not adequate and Player(2) punishes us for using it: in \normal times", i.e., under
the dynamics of the �/A structure, Player(2) is provided with only incomplete
information about the past, and de�nitely no information about the future. But
our inadequate measure gives her the future information jP(k)j = m, allowing her
to target a speci�c strategy against any process.

We now give in Theorem 3.6.2 the more damaging result, stating (1) that, in spite
of the randomization introduced in the round number variable R, Player(2) is able
to infer the values held in the local variables and (2) that it is able to use this
knowledge to lock out a process with probability exponentially close to 1. This result
is truly damaging because the measure used is adequate: our result expresses that
the algorithm is \naturally" incapable to withstand the machinations of Player(2).

Theorem 3.6.2 There exists a constant c < 1, an adversary A, a round k and a
k � 1-round run � such that:8><

>:
PA
�
W1(k) j �k�1 = �

�
� e�32 + cn

PA
�
1 2 P(k) j �k�1 = �

�
= 1

PA[�k�1 = �] > 0 :

We need the following de�nition in the proof.

De�nition 3.6.1 Let l be a round. Assume that, during round l, Player(2) adopts
the following strategy. It �rst waits for the critical section to become free, then gives
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one step to process j and then two steps (in any order) to s other processes. (We
will call these test-processes.) Assume that at this point the critical section is still
available (so that round l is not over). We then say that process j is an s-survivor
(at round l).

The idea behind this notion is that, by manufacturing survivors, Player(2)is able
to select processes having high lottery values. We now describe in more detail the
selection of survivors and formalize this last fact.

In the following we will consider an adversary constructing sequentially a family
of s-survivors for the four values s = 2log2n+t; t = �1; : : : ;�5. Whenever the
adversary manages to select a new survivor it stores it, i.e, does not allocates it
any further step until the selection of survivors is completed. (A actually allocates
steps to selected survivors, but only very rarely, to comply with fairness. Rarely
means for instance once every nT 2 steps, where T is the expected time to select
an n=2-survivor.) By doing so, A reduces the pool of test-processes still available.
We assume that, at any point in the selection process, the adversary selects the
test-processes at random among the set of processes still available. (The adversary
could be more sophisticated then random, but this is not needed.) Note that a new
s-survivor can be constructed with probability one whenever the available pool has
size at least s + 1: it su�ces to reiterate the selection process until the selection
completes successfully.

Lemma 3.6.3 There is a constants d such that for any t = �5; : : : ;�1, for any
2log2n+t-survivor j, for any a = 0; : : : ; 5

PA[Bj(l) = logn+ t+ a ] � d:

Proof. Let s denote 2logn+t. Let j be an s-survivor and i1; i2;: : : ; is be the test-
processes used in its selection. Assume also that j drew a new value Bj(l) = �j(l)
(this happens with probability q1 = :99 .) Remark that Bj(l) = Maxf Bi1(l); : : : ;
Bis(l); Bj(l)g: if this were not the case, one of the test-processes would have entered
Crit. As the test processes are selected at random, each of them has with probability
.99 a round number di�erent from R(l) and hence draws a new lottery number �j(l).
Hence, with high probability q2 > 0, 90% of them do so. The other of them keep
their old lottery value Bj(l � 1): this value, being old, has lost in previous rounds
and is therefore stochastically smaller 41 then a new value �j(l). (An application

41A real random variable X is stochastically smaller then another one Y (we write that: X �L Y )
exactly when, for all x 2R; P [X � x ] � P [Y � x ]. Hence, if X � Y in the usual sense, it is also
stochastically smaller.
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of Lemma 8.1.5 formalizes this.) Hence, with probability at least q1q2 we have the
following stochastic inequality:

Maxf�1(l); : : : ; �s�90=100g �L Bj(l) �L Maxf�1(l); : : : ; �s+1(l)g:

Corollary 3.7.4 then shows that, for a = 0; : : : ; 5, with probability at least q1q2,
PA[Bj(l) = log2s + a] � q3 for some constant q3 (q3 is close to 0.01). Hence, with

probability at least d
def
= q1q2q3, Bj(l) is equal to log2s+ a. �

Proof of Theorem 3.6.2. The adversary uses a preparation phase to select and
store some processes having high lottery values. We will, by abuse of language,
identify this phase with the run � which corresponds to it. When this preparation
phase is over, round k begins.

Preparation phase �: For each of the �ve values log2n+t, t = �5; : : : ;�1, A selects in
the preparation phase many (\many" means n=20 for t = �5; : : : ;�2 and 6n=20 for
t = �1) 2log2n+t-survivors. Let S1 denote the set of all the survivors thus selected.
(Note that jS1j = n=2 so that we have enough processes to conduct this selection).
By partitioning the set of 2log2n�1-survivors into six sets of equal size, for each of
the ten values t = �5; : : : ; 4, A has then secured the existence of n=20 processes
whose lottery value is log2n+ t with probability bigger then d. (By Lemma 3.6.3.)

Round k: While the critical section is busy, A gives a step to each of the n=2 processes
from the set S2 that it did not select in phase �. (We can without loss of generality
assume that process 1 is in that set S2: hence PA[i 2 P(k)] = 1 which was to be
veri�ed.) When this is done, with probability at least 1� 2�32 (see Corollary 3.7.2)
the program variable B holds a value bigger or equal then log2n� 5. The adversary
then waits for the critical section to become free and gives steps to the processes
of S1 it selected in phase �. A process in S2 can win access to the critical section
only if the maximum lottery value BS2

def
= Maxj 2 S2

Bj of all the processes in S2 is
strictly less then log2n�5 or if no process of S1 holds both the correct round number
R(k) and the lottery number BS2 . This consideration gives the bound predicted in
Theorem 3.6.2 with c = (1� d=100)1=20. �

The lesson brought by this last proof is that the variable R does not act as an eraser
of the past as it was originally believed and that the adversary can correspondingly
use old values to defeat the algorithm.

Furthermore, our proof demonstrates that there is an adversary that can lock out,
with probability exponentially close to 1, an arbitrary set of n=2 processes during
some round. With a slight improvement we can derive an adversary that will succeed
in locking out (with probability exponentially close to 1) a given set S3 of, for



78 Chapter 3. Rabin's Algorithm for Mutual Exclusion

example, n=100 processes at all rounds: we just need to remark that the adversary
can do without this set S3 during the preparation phase �. The adversary would
then alternate preparation phases �1; �2; : : : with rounds k1; k2; : : : The set S3 of
processes would be given steps only during rounds k1; k2; : : : and would be locked
out at each time with probability exponentially close to 1.

In view of our counterexample we might think that increasing the size of the shared
variable might yield a solution. For instance, if the geometric distribution used by
the algorithm is truncated at the value b = 2 log2n instead of log2n + 4, then the
adversary is not able as before to ensure a lower bound on the probability that an
n=2-survivor holds b as its lottery value. (The probability is given by Theorem 3.7.1
with x = logn.) Then the argument of the previous proof does not hold anymore.
Nevertheless, the next theorem establishes that raising the size of the shared variable
does not help as long as the size stays sub-linear. But this is exactly the theoretical
result the algorithm was supposed to achieve. (Recall the n-lower bound of [12]
in the deterministic case.) Furthermore, the remark made above applies here also:
a set of processes of linear size can be locked out at each time with probability
arbitrarily close to 1.

Theorem 3.6.4 Suppose that we modify the algorithm so that the set of possible
round numbers used has size r and that the set of possible lottery numbers has size
b (log2n + 4 � b � n). Then there exists positive constants c1 and c2, an adversary
A, and a run � such that8><

>:
PA[W1(k) j �k�1 = �; 1 2 P(k) ] � e�32 + e�c1n=r + c2

r
n2

PA[1 2 P(k) j �k�1 = �] = 1
PA[�k�1 = �] > 0 :

Proof. We consider the adversary A described in the proof of theorem 3.6.2: for
t = �5; : : : ;�2, A prepares a set Tt of 2

log2n+t-survivors, each of size n=20, and a
set T�1 of 2log2n�1-survivors; the size of T�1 is 6=20n. (We can as before think of
this set as being partitioned into six di�erent sets.) We let � stand for 6=20 in the
sequel.

Let pl denote the probability that process 1 holds l as its lottery value after having
taken a step in round k. For any process j in S�1 let also ql denote the probability
that process j holds l as its lottery value at the end of the preparation phase �.

The same reasoning as in Theorem 3.6.2 then leads to the inequality:

PA[W1(k) j �k�1 = �; 1 2 P(k) ]

� e�32 + (1� e�32)(1� d=r)n=20+
X

l�log2n+5

pl(1�
ql
r
)�n:
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Write l = log2n + x � 1 = log2(n=2) + x. Then, as is seen in the proof of Corol-
lary 3.7.4, ql = e�21��21�� for some � 2 (x; x+ 1). For l � log2n + 5, x is at least 6
and e�21�� � 1 so that ql � 21�� � 21�x. On the other hand pl = 2�l = 2�x+1=n.

De�ne  (x)
def
= e�21�x�n=r so that  0(x) = e�21�x�n=r21�x�n=r. Then:

X
l�log2+5

pm(1�
qm
r
)�n � 2=n

X
x�6

2�x(1�
21�x

r
)�n

� 2=n
X
x�6

2�xe�( 2
1�x

r �n)

= 1=n
X
x�6

21�xe�( 2
1�x

r �n)

=
r

�n2

X
x�6

 0(x)

�
r

�n2

Z 1

5
 0(x)dx

=
r

�n2
[ ]15

=
r

�n2
[1� e�2�4�n=r]

�
r

�n2
:

�

The next result, Theorem 3.6.6, shows that the two aws exhibited in Theorems 3.6.1
and 3.6.2 are at the core of the problem: the algorithm does have the strong no-
lockout property when we condition by adversary42 on the property fjP(k)j = mg
and when we force the algorithm to draw new values for the modi�ed internal
variables.

Conditioning by adversary speci�cally solves the problem expressed by Theorem 3.6.1:
the measure analyzed in that theorem is inadequate43 and allows too much knowl-
edge to Player(2). On the other hand, forcing the adversary to reset to new values
the internal variables of the participating processes resolves the problem revealed
by (the proof of) Theorem 3.6.2. We will prove these facts in Theorem 3.6.6 for
a slightly modi�ed version of the algorithm. Recall in e�ect that the code given
in Page 74 is optimized by making a participating process i draw a new lottery

42See page 54 for a de�nition of conditioning by adversary.
43See page 53 for a discussion of adequate measures.
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number when it is detected that V:B < Bi. For simplicity, we will consider the
\de-optimized" version of the code in which only the test V:R 6= Ri ? causes of a
new drawing to occur. It is clear that a correctness statement for that de-optimized
algorithm implies a similar result for the original algorithm.

We proved that result before we were fully aware of the notion of adequate measures.
Our original result is presented in Proposition 3.6.7 and is based on the notion of
restricted adversary presented in De�nition 3.6.2. As is shown in Lemma 3.6.5, a
restricted adversary is exactly one that decides with probability one the set of par-
ticipating processes. This result easily establishes the equivalence of Theorem 3.6.6
and Proposition 3.6.7.

De�nition 3.6.2 A step taken after the time at which Crit becomes free in round
k is called a k-real step. We say that an adversary is k-restricted when, in round k,
the set of participating processes is composed exactly of the set of processes scheduled
when Crit is closed, along with the �rst process taking a k-real step. (That process
might have already taken a step when Crit was closed.) An adversary is said to be
restricted when it is k-restricted for every k.

Notation. We will use the notationA0 (as opposed to A) in the following arguments
to emphasize when the adversaries considered are k-restricted.

Lemma 3.6.5 For every process i, for every round k � 1, and for every (k � 1)-
round run �,44

n
A0; A0 is k-restricted and PA0

h
jP(k)j = m; i 2 P(k)

�� N (k); �k�1 = �
i
> 0

o

=
n
A; PA

h
jP(k)j = m; i 2 P(k)

�� N (k); �k�1 = �
i
= 1

o
:

Proof. Note �rst that, as by assumption an adversary is deterministic, random-
ness can a�ect the decisions of Player(2) only through the information Player(2)
receives from Player(1): the strategy of Player(1) { i.e., the algorithm { is indeed
randomized. A moment of thought based on the description of the function f given
on page 65 shows furthermore that, for Player(2), the only visible a�ects of random-
ness are whether a process in Try or Rem enters in Crit when scheduled while the
critical section is free. In particular, in round k Player(2) follows a deterministic
behavior until it learns the region newt (either Try or Crit) reached by the �rst

44Using Convention 8.1.1, page 198, we set P [BjA] = 0 whenever P [A] = 0.
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process i1 scheduled to take a k-real step. We will use this fact in both directions
of the proof.

For a k-restricted adversary, the set P(k) is by de�nition de�ned during that pe-
riod where A behaves deterministically. This implies that, for every k-restricted
adversary A0, we have PA0 [jP(k)j = m; i 2 P(k) j N (k); �k�1 = �] > 0 only if
PA0 [jP(k)j= m; i 2 P(k) j N (k); �k�1 = �] = 1. This establishes thatn
A0; A0 is k-restricted and PA0

h
jP(k)j = m; i 2 P(k)

�� N (k); �k�1 = �
i
> 0

o

�
n
A; PA

h
jP(k)j = m; i 2 P(k)

�� N (k); �k�1 = �
i
= 1

o
:

We now show the converse inclusion. Consider some adversaryA such that PA[jP(k)j-
= m; i 2 P(k) j N (k); �k�1 = �] = 1 for some value m. By the property
mentioned at the beginning of the proof, the adversary follows a deterministic
behavior until the �rst k-real step. Call i1 the process taking that �rst k-real
step. Let l be the number of processes scheduled up to that point (including
i1). Obviously l � m. Remark that (conditioned on N (k) and �k�1 = �) i1 en-
ters Crit with some non-zero probability when taking its �rst k-real step. This
means that PA[jP(k)j = l; i 2 P(k) j N (k); �k�1 = �] > 0. The assumption
PA[jP(k)j = m; i 2 P(k) j N (k); �k�1 = �] = 1 then implies that l = m. This
precisely means that A is k-restricted. �

Theorem 3.6.6 The algorithm satis�es strong, run and renew-knowing, i and m-
imposing probabilistic no-lockout. Equivalently, for every process i, for every round
k � 1, for every m � n and for every (k� 1)-round run � we have:

inf
A;PA

�
jP(k)j=m; i2P(k)

��N (k); �k�1=�
�
=1

PA[N (k); �k�1=� ]>0

PA
�
Wi(k) j N (k); �k�1 = �

�
�

2

3m
:

Proof. This result is a simple consequence of Proposition 3.6.7 whose proof is
presented next. In that proposition one considers the set of k-restricted adversaries
A such that PA

�
N (k); �k�1 = �; i 2 P(k); jP(k)j = m

�
> 0. This condition is

equivalent to the conjunction of the two inequalities PA
�
N (k); �k�1 = �

�
> 0 and

PA
�
i 2 P(k); jP(k)j = m

�� N (k); �k�1 = �
�
> 0. By Lemma 3.6.5 the set of

conditions 8>><
>>:
A restricted adversary

PA
h
i 2 P(k); jP(k)j = m

��� N (k); �k�1 = �
i
> 0

PA
�
N (k); �k�1 = �

�
> 0
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is equivalent to(
PA
h
i 2 P(k); jP(k)j = m

��� N (k); �k�1 = �
i
= 1

PA
�
N (k); �k�1 = �

�
> 0 ;

where no a priori restriction applies here to A. Theorem 3.6.6 is therefore a direct
consequence of Proposition 3.6.7. �

Note that we proved along that if the adversary is m-imposing and renew -knowing
then the distinction between an i-knowing and an i-imposing adversary disappears.
More formally�

A; PA
�
B3 j B1; B2; B4

�
= 1

	
=
�
A; PA

�
B3; B1 j B2; B4

�
= 1

	
:45

This shows that the way the precondition B1 is formalized is inconsequential for
m-imposing and renew-knowing adversaries. On the other hand, as we saw already
several times, the adequate46 formalization of the precondition B2 is obtained by
probabilistic conditioning. This establishes that the measure used in Theorem 3.6.6
is as adequate46 as it can be, provided that the adversary is m-imposing and renew-
knowing. These two restrictions are brought to solve the two problems revealed in
Theorems 3.6.1 and 3.6.2, respectively.

Proposition 3.6.7 Let i be a process, k a round number, and � be a (k� 1)-round
run. For concision of notation we let All denote the event schema fN (k); �k�1 =
�; i 2 P(k); jP(k)j = mg. We have:

inf
PA0 [All ]>0

PA0
h
Wi(k)

�� N (k); �k�1 = �; i 2 P(k); jP(k)j= m
i
�

2

3m
:

Proof. We will make constant use of the notation [n]
def
= f1; 2; : : : ; ng. Also, for

any sequence (aj)j2Nwe will write ai = Umax
j 2 J

aj to mean that i is the only index in

J for which ai = Max
j 2 J

aj .

We �rst de�ne the events U(k) and U 0J(k), where J is any subset of f1; : : : ; ng:

U(k)
def
= f9!i 2 P(k) s.t. Bi(k) = Max

j 2 P(k)
Bj(k)g;

U 0J(k)
def
= f9!i 2 J s.t. �i(k) = Max

j 2 J
�j(k)g:

45We never used the fact that we were conditioning on B2 so that the same equality holds without
the mention of B2. As is discussed in page 69, this correspond to analyzing the system at the point
sk equal to the beginning of the execution.

46The term adequate is used in the sense de�ned on page 53.
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The main result established in [49] can formally be restated as:

8m � n; P
h
U 0[m] (k)

i
� 2=3: (3.3)

Following the general proof technique described in the introduction we will prove
that :

PA0
h
U(k)

�� N (k); �k�1 = �; i 2 P(k); jP(k)j= m
i
= P

h
U 0m(k)

i
;

and that:

PA0
h
Wi(k)

�� N (k); �k�1 = �; i 2 P(k); jP(k)j= m;U(k)
i

= P
h
�i(k) = Max

j 2 [m]
�j(k)

�� U 0m(k) i :
The events involved in the LHS of the two inequalities (e.g., Wi(k), U(k), fjP(k)j =
mg, f�k�1 = �g, fi 2 P(k)g) depend on A0 whereas the events involved in the RHS
are pure mathematical events over which A0 has no control.

We begin with some important remarks.

(1) By de�nition, the set P(k) = fi1; i2; : : :g is decided by the restricted adversary
A0 at the beginning of round k: for a given A0 and conditioned on f�k�1 = �g, the
set P(k) is de�ned deterministically. In particular, for any i, PA0 [ i 2 P(k)

��
�k�1 = � ]has value 0 or 1. Similarly, there is one value m for which PA0 [ jP(k)j =
m

�� �k�1 = � ] = 1 . Hence, for a given adversary A0, if the random event
fN (k); �k�1 = �; i 2 P(k); jP(k)j = mg has non zero probability, it is equal to the

random event fN (k); �k�1 = �g
def
= I .

(2) Recall that, in the modi�ed version of the algorithm that we consider here, a
process i draws a new lottery value in round k exactly when Ri(k�1) 6= R(k). Hence,
within I , the event N (k) is equal to fRi1(k�1) 6= R(k); : : : ; Rim(k�1) 6= R(k)g. On
the other hand, by de�nition, the random variables (in short r.v.s) �ij ; ij 2 P(k)
are iid and independent from the r.v. R(k). This proves that, (for a given A0),
conditioned on f�k�1 = �g, the r.v. N (k) is independent from all the r.v.s �ij .
Note that U 0P(k)(k) is de�ned in terms of (i.e., measurable with respect to) the
(�ij ; ij 2 P(k)), so that U

0
P(k)(k) and N (k) are also independent.

(3) More generally, consider any r.v. X de�ned in terms of the (�ij ; ij 2 P(k)):
X = f(�i1 ; : : : ; �im) for some measurable function f . Recall once more that the
number m and the indices i1; : : : ; im are determined by f�k�1 = �g and A0. The
r.v.s �ij being iid, for a �xed A0, X then depends on f�k�1 = �g only through
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the value m of jP(k)j. Formally, this means that, conditioned on jP(k)j, the r.v.s
X and f�k�1 = �g are independent: EA0 [X

�� �k�1 = � ] = EA0 [X
�� jP(k)j =

m] = E[f(�1; : : : ; �m)]. (More precisely, this equality is valid for the value m for
which PA[ �k�1 = � ; jP(k)j = m ] 6= 0.) A special consequence of this fact is that
PA0 [U

0
P(k)(k)

�� �k�1 = �] = P [U 0[m](k)].

Remark that, in U(k), the eventWi(k) is the same as the event fBi(k) = Umax
j 2 P(k)

Bj(k)g.

This justi�es the �rst following equality. The subsequent ones are commented after-
wards. Also, the set I that we consider here is the one having a non zero probability
described in Remark (1) above.

PA0 [Wi(k)
�� U(k); I ]

= PA0 [Bi(k) = Umax
j 2 P(k)

Bj(k)
�� U(k); I ]

= PA0 [ �i(k) = Umax
j 2 P(k)

�j(k)
�� U 0P(k)(k); I; ] (3.4)

= PA0 [ �i(k) = Umax
j 2 P(k)

�j(k)
�� U 0P(k)(k); �k�1 = � ] (3.5)

Equation 3.4 is true because we condition on N (k) and because U(k) \ N (k) =
U 0P(k)(k). Equation 3.5 is true because N (k) is independent from the r.v.s �ij as is
shown in Remark (2) above.

We then notice that the events f�i(k) = Umax
j 2 P(k)

�j(k)g and U
0
P(k)(k) (and hence their

intersection) are de�ned in terms of the r.v.s �ij . From remark (3) above, the value
of Eq. 3.5 depends only on m and is therefore independent of i. Hence, for all i and
j in P(k), PA0 [Wi(k)

�� U(k); I ] = PA0 [Wj(k)
�� U(k); I ].

On the other hand,
P

i2P(k) PA0 [�i(k) = Umax
j 2 P(k)

�j(k)
�� U 0P(k)(k); �k�1 = � ] = 1:

indeed, one of the �ij has to attain the maximum.

These last two facts imply that, 8i 2 P(k),

PA0 [Wi(k)
�� U(k); I ] = 1=m:

We now turn to the evaluation of PA0 [;U(k)
�� I ].

PA0 [U(k)
�� I ] = PA0 [U

0
P(k)(k)

�� I ] (3.6)

= PA0 [U
0
P(k)(k)

�� �k�1 = � ] (3.7)

= P [U 0[m](k) ]

� 2=3 : (3.8)

Equation 3.6 is true because we condition on N (k). Eq. 3.7 is true because U 0P(k)(k)
and N (k) are independent (See Remark (2) above). The equality of Eq. 3.8 stems
from Remark (3) above and the inequality from Eq. 3.3.
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We can now �nish the proof of Proposition 3.6.7.

PA0 [Wi(k)
�� I ]

� PA0 [Wi(k); U(k)
�� I ]

= PA0 [Wi(k)
�� U(k); I ] PA0 [U(k) �� I ]

� 2=3m :

�

We discuss here the lessons brought by our results. (1) Conditioning on N (k) is
equivalent to force the algorithm to refresh all the variables at each round. By
doing this, we took care of the undesirable lingering e�ects of the past, exempli�ed
in Theorems 3.6.2 and 3.6.4. (2) It is not true that:

PA
h
�i(k) = Max

j 2 P(k)
�j(k)

�� U 0P(k)(k); jP(k)j = m
i

= P
h
�i(k) = Max

j 2 [m]
�j(k)

�� U 0[m](k)
i
;

i.e., that the adversary has no control over the event f�i(k) = Max
j 2 P(k)

�j(k)g. (This

was Rabin's statement in [49].) Indeed, the latter probability is equal to 1=m
whereas we proved in Theorem 3.6.1 that there is an adversary for which the former
is 0 when 2 � m � n.

The crucial remark explaining this apparent paradox is that, implicit in the expres-
sion PA[�i(k) = Max

j 2 P(k)
�j(k)

�� : : :], is the fact that the random variables �j(k) (for

j 2 P(k)) are compared to each other in a speci�c way decided by A, before one of
them reveals itself to be the maximum. For instance, in the example constructed
in the proof of Theorem 3.6.1, when j takes a step, �j(k) is compared only to the
�l(k); l � j, and the situation is not symmetric among the processes in P(k).

But, if the adversary is restricted as in our De�nition 3.6.2, or if equivalently, proba-
bilistic conditioning is done on jP(k)j = m, the symmetry is restored and the strong
no-lockout property holds.

Rabin and Kushilevitz used these ideas from our analysis to produce their algo-
rithm [36].

Our Theorems 3.6.1, 3.6.2 and 3.6.4 explored how the adversary can gain and use
knowledge of the lottery values held by the processes. The next theorem states that
the adversary is similarly able to derive some knowledge about the round numbers,
contradicting the claim in [49] that \because the variable R is randomized just
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before the start of the round, we have with probability 0.99 that Ri 6= R." Note
that, expressed in our terms, the previous claim translates into R(k) 6= Ri(k � 1).
Note also that the next measure is adequate, in the sense de�ned in page 53.

Theorem 3.6.8 There exists an adversary A, a round k, a step number t, a run
�t, compatible with A, having t steps and in which round k is under way such that

PA[R(k) 6= R1(k � 1)
�� �t = �t ] < :99 :

Proof. We will write �t = �0� where �0 is a k � 1-round run and � is the run
fragment corresponding to the kth round under way. Assume that �0 indicates that,
before round k, processes 1; 2; 3; 4 participated only in round k�1, and that process
5 never participated before round k. Furthermore, assume that during round k � 1
the following pattern happened: A waited for the critical region to become free,
then allocated one step in turn to processes 2; 1; 1; 3; 3; 4; 4; at this point 4 entered
the critical region. (All this is indicated in �0.) Assume also that the partial run
� into round k indicates that the critical region became free before any competing
process was given a step, and that the adversary then allocated one step in turn to
processes 5; 3; 3, and that, after 3 took its last step, the critical section was still free.
We will establish that, at this point,

PA[R(k) 6= R1(k � 1)
�� �t = �0� ] < :99 :

By assumption k � 1 is the last (and only) round before round k where processes
1; 2; 3 and 4 participated. Hence R1(k � 1) = R2(k � 1) = R3(k � 1) = R(k � 1).
To simplify the notations we will let R0 denote this common value. Similarly we
will write �01; �

0
2; : : : in place of �1(k � 1); �2(k � 1); : : :We will furthermore write

�1; �2; : : : in place of �1(k); �2(k); : : : and B; R in place of B(k); R(k).

Using Bayes rule gives us:

PA[R 6= R0
�� �0; � ] = PA[R 6= R0

�� �0 ] PA[ � �� �0; R 6= R0 ]

PA[ �
�� �0 ] : (3.9)

In the numerator, the �rst term PA[R 6= R0
�� �0 ] is equal to 0:99 because R is

uniformly distributed and independent from R0 and �0. We will use this fact another
time while expressing the value of PA[ �

�� �0 ]:
PA[ �

�� �0 ]
= PA[ �

�� �0; R 6= R0 ] PA[R 6= R0
�� �0 ]
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+ PA[ �
�� �0; R = R0 ] PA[R = R0

�� �0 ]
= 0:99 PA[ �

�� �0; R 6= R0 ] (3.10)

+ 0:01 PA[ �
�� �0; R = R0 ]:

� Consider �rst the case where R 6= R0. Then process 3 gets a YES answer when
going through the test \(V:R 6= R3) or (V:B < B3)", and consequently chooses a
new value B3(k) = �3. Hence

PA[ �
�� �0; R 6= R0 ] = P [ �3 < �5 ]: (3.11)

� Consider now the case R = R0. By hypothesis, process 5 never participated in the
computation before round k and hence draws a new number B5(k) = �5. Hence:

PA[ �
�� �0; R = R0 ] = PA[B3(k) < �5

�� �0; R = R0 ]: (3.12)

As processes 1; : : : ; 4 participated only in round k� 1 up to round k, the knowledge
provided by �0 about process 3 is exactly that, in round k � 1, process 3 lost to
process 2 along with process 1, and that process 2 lost in turn to process 4, i.e., that
�03 < �02; �

0
1 < �02 and �

0
2 < �04. For the sake of notational simplicity, for the rest

of this paragraph we let X denote a random variable whose law is the law of �02
conditioned on f�02 > Maxf�01; �

0
3g; �

0
2 < �04g. This means for instance that, 8x 2 R,

P [X � x ] = P
h
�02 � x

�� �02 > Maxf�01; �
0
3g; �

0
2 < �04

i
:

When 3 takes its �rst step within round k, the program variable V:B holds the value
�5. As a consequence, 3 chooses a new value when and exactly when B3(k�1)(= �03)
is strictly bigger then �5. (The case �

0
3 = �5 would lead 3 to take possession of the

critical section at its �rst step in round k, in contradiction with the de�nition of �;
and the case �03 < �5 leads 3 to keep its \old" lottery value B3(k � 1).) From this
we deduce that:

PA[B3(k) < �5
�� �0; R = R0 ] = P [ �03 < �5

�� �03 < X ]

+ P [ �03 > �5; �3 < �5
�� �03 < X ]: (3.13)

Using Lemma 8.1.5 we derive that:

P [ �03 < �5
�� �03 < X ] � P [ �03 < �5 ]:

On the other hand P [ �03 < �5 ] = P [ �3 < �5 ] because all the random variables
�i(j); i= 1; : : : ; n; j � 1 are iid. Taking into account the fact that the last term of
equation 3.13 is non zero, we have then established that:

PA[B3(k) < �5
�� �0; R = R0 ] > P [ �3 < �5 ]: (3.14)
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Combining Equations 3.11, 3.12 and 3.14 yields:

PA[ �
�� �0; R = R0 ] > PA[ �

�� �0; R 6= R0 ]:

Equation 3.10 then shows that PA[�
�� �0] > PA[�

�� �0; R 6= R0]. Plugging this result
into Equation 3.9 �nishes the proof. �

We �nish with a result showing that all the problems that we encountered in Rabin's
algorithm carry over for Ben-Or's algorithm. Ben-Or's algorithm is cited at the end
of [49]. The code of this algorithm is the same as the one of Rabin with the following
modi�cations. All variables B;R;Bi; Ri; 1 � i � n are boolean variables, initially
0. The distribution of the lottery numbers is also di�erent but this is irrelevant for
our discussion.

We show that Ben-Or's algorithm does not satisfy the weak no-lockout property of
De�nition 3.5.2. The situation is much simpler then in the case of Rabin's algorithm:
here all the variables are boolean so that a simple reasoning can be worked out.

Theorem 3.6.9 (Ben-Or's Alg.) There is an adversary A, a step number t and
a run �t compatible with A such that

PA
h
W2(k)

�� �t = �t; 2 2 P(k)
i
= 0 :

Proof. Assume that we are in the middle of round 3, and that the run �t indicates
that (at time 0 the critical section was free and then that) the schedule 1 2 2 3
3 was followed, that at this point 3 entered in Crit, that it left Crit, that at this
point the schedule 4 1 1 5 5 was followed, that 5 entered and then left Crit, that 6
4 4 then took a step and that at this point Crit is still free.

Without loss of generality assume that the round number R(1) is 0. Then R2(1) = 0,
B1(1) = 1 and B2(1) = 0: if not 2 would have entered in Crit. In round 2 it then
must be the case that R(2) = 1. Indeed if this was not the case then 1 would have
entered the critical section. It must then be the case that B1(2) = 0 and B4(2) = 1.
And then that B6(3) = 1 and R(3) = 0: if this was not the case then 4 would have
entered in Crit in the 3rd round.

But at this point, 2 has no chance to win if scheduled to take a step! �

3.7 Appendix

This section presents some useful mathematical properties of the truncated expo-
nential distribution used in [49]. Theorem 3.7.1 and its corollaries are used in the



3.7. Appendix 89

construction of the adversary in Theorem 3.6.2 and Theorem 3.6.4.

De�nition 3.7.1 For any sequence (ai)i2Nwe denote Maxsai
def
= Maxfa1; a2; : : : ; asg:

In this section the sequence (�i) is a sequence of iid geometric random variables:

P [�i = l] =
1

2l
; l = 1; 2; : : :

The following results are about the distribution of the extremal function Maxs�i.
The same probabilistic results hold for iid random variables (�0i), having the trun-
cated distribution used in [49]: we just need to truncate at log2n + 4 the random
variables �i and the values that they take. This does not a�ect the probabilities
because, by de�nition, P [ �0i(k) = log2n + 4 ] =

P
l�log2n+4

P [ �i = l]. We will need

the following function:
�(x)

def
= 1� e�21�x : (3.15)

Theorem 3.7.1 For all s 2 N and x 2 R such that log2s + x 2 N and such that

(2s)
1�x � 1=2, we have the following approximation:

A
def
= P [Maxs�i � log2s + x ] � 1� e�21�x :

A bound on the error is given by
���A � (1� e�21�x)

��� � e�21�x 41�x

s
:

Proof. We easily see that, 8j 2 N, P [Maxs�i < j ] = (1 � 21�j)s. Setting
j = log2s+ x gives:

P [Maxs�i < log2s+ x ] =
�
1�

2

s

1�x�s
� e�21�x :

The upper bound on the error term is obtained by writing a precise asymptotic

expansion of
�
1� 2

s

1�x
�s
. �

The upper bound on the error shows that this approximation is very tight when s is
big. In the construction of Theorem 3.6.2 we consider the case where where s � n=2
and x = �1=2 logn. The error term is then less then e�n

1=2

. As an illustration of
the theorem we deduce the two following results.

Corollary 3.7.2 Consider s � 1. Then P [Maxs�i � blog2sc � 4 ] � 1� e�32:
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Proof. Write blog2sc = log2s� t with 0 � t < 1. Then

P [Maxs�i = blog2sc � 4 ] � P [Maxs�i � log2s � (4 + t) ]

� 1� e�21+(4+t) � 1� e�32:

�

Corollary 3.7.3 Consider s � 1. Then P [Maxs�i � dlog2se + 8 ] � 0:01 :

Proof. 1� e�21�8 � 2�7 < 0:01 . �

These results express that the maximum of s random variables �i is concentrated
tightly around log2s: Corollary 3.7.2 shows that the maximum is with overwhelming
probability at least as big as blog2sc � 4, whereas Corollary 3.7.3 shows that with
probability 99% this maximum is at most dlog2se + 7.

Corollary 3.7.4 Let s � 1. Then P
h
Maxs�i = dlog2se

i
� 0:17 . For a � 1

P
h
Maxs�i = dlog2se + a

i
� ��0(a+ 2). Hence P

h
Maxs�i = dlog2se + a

i
� 0:005,

for s � 1 and a = 1; : : : ; 5 .

Proof. Let x 2 (0; 1) such that log2s + x = dlog2se. (Recall that the random
variables �i are integer valued.) Then P [Maxs�i = log2s + x ] � �(x) � �(x + 1).
This is equal to ��0(�) = log22 e

�21��21�� for some � 2 (x; x+1) � (0; 2). We check
immediately that �00 is negative on (�1; 1) and positive on (1;1). This allows us
to write that

P
h
Maxs�i = dlog2se

i
� Min(��0(0);��0(2)) � 0:17 :

The same argument gives also that 8a � 1 P
h
Maxs�i = dlog2se + a

i
= ��0(�) for

some � 2 (a; a+ 2). In this interval ��0(�) � ��0(a+ 2). Hence 8a = 1; : : : ; 5,

P
h
Maxs�i = dlog2se+ a

i
� ��0(7) � log2 2 e

�2�72�7 � 0:005:

�



Chapter 4

Proving Time Bounds for

Randomized Distributed

Algorithms

4.1 Introduction

This chapter is devoted to the analysis of the timed version of Lehmann-Rabin's
Dining Philosophers algorithm [37]. We consider the case where, by assumption,
a participating processes cannot wait more then time 1 before taking a step. The
scheduling of the processes, i.e., the order under which the various processes take
steps, is not in the control of the algorithm. According to our general paradigm
(see Chapter 1) we therefore let Player(2) decide the schedules. We will prove that
Lehmann-Rabin's algorithm veri�es a strong correctness property, i.e., a property
holding against Player(2) knowing the whole past execution.

As discussed in page 26 in the section about randomized adversaries, randomization
does not make the adversary more powerful and is not needed to establish the cor-
rectness of a given algorithm. (We argued nevertheless that considering randomized
adversaries was very useful for establishing lower bounds.) We will therefore restrict
ourselves in this chapter to the case of deterministic adversaries.

Furthermore, following the discussion of page 31, we consider the model where
Player(2) controls the passage of time. (We showed in page 31 that we could
equivalently allocate the time control to Player(1).)

We can summarize the previous discussion by saying that the admissible adversaries

91
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are deterministic, know the past execution and do not let a participating process wait
more then time 1 for a step. (This does not mean that these properties characterize
completely the set of admissible adversaries. We will for instance also require that
admissible adversaries let processes exit from their critical section.)

We showed in page 33 that the model for randomized computing presented in [54]
was equivalent to the model presented in De�nition 2.3.1 in the case where 1)
Player(1) knows the complete state of the system and remembers it, and 2), deter-
ministic adversaries are considered. We therefore can and will equivalently develop
the analysis of [37] in the model of [54].

The original correctness property claimed by Lehmann and Rabin in [37] was that for
all admissible adversaries, the probability that the execution is deadlocked is equal
to zero. The authors of [37] did not write a formal transcription of this property.
In particular they never made explicit what was the event-schema1 associated to
the informal description \the execution is deadlocked". (Note that such a property
involves in�nitely many random tosses.) They similarly did not provide a formal
proof of correctness making explicit the probability spaces (
A;GA; PA) described
in our Section 2.4. A more formal proof is therefore needed.

The introduction of time in the proof of correctness presents three advantages. The
�rst one is that it will allow us to work \over a �nite horizon of time" instead of the
whole in�nite execution. This represents a major simpli�cation of the setting within
which the proof is conducted. The second advantage is that the timed results are
interesting in their own right and provide more insight on the rate at which progress
occurs during an execution. (The correctness statement presented in [37] states in
essence that progress eventually occurs with probability one.) Last but not least, to
establish our result we develop a new general method based on progress functions
de�ned on states, for proving upper bounds on time for randomized algorithms.
Our method consists of proving auxiliary statements of the form U

t
�!
p

U 0, which

means that whenever the algorithm begins in a state in set U , with probability p,
it will reach a state in set U 0 within time t. Of course, this method can only be
used for randomized algorithms that include timing assumptions. A key theorem
about our method is the composability of these U

t
�!
p

U 0 arrows, as expressed by

Theorem 4.3.2. This composability result holds even in the case of (many classes
of) non-oblivious adversaries.

We also present two complementary proof rules that help in reasoning about sets
of distinct random choices. Independence arguments about such choices are often
crucial to correctness proofs, yet there are subtle ways in which a non-oblivious ad-

1see page 43 for a de�nition of an event-schema
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versary can introduce dependencies. For example, a non-oblivious adversary has the
power to use the outcome of one random choice to decide whether to schedule an-
other random choice. Our proof rules help to systematize certain kinds of reasoning
about independence.

As mentioned above, we present our proof in the context of the general framework
[54] for describing and reasoning about randomized algorithms. This framework in-
tegrates randomness and nondeterminism into one model, and permits the modeling
of timed as well as untimed systems. The model of [54] is, in turn, based on existing
models for untimed and timed distributed systems [30, 41], and adopts many ideas
from the probabilistic models of [58, 27].

Using this general method we are able to prove that T
13
�!
1=8
C, where T is the set

of states in which some process is in its trying region, while C is the set of states in
which some process is in its critical region. That is, whenever the algorithm is in
a state in which some process is in the trying region, with probability 1=8, within
time 13, it will reach a state in which some process is in its critical region. This
bound depends on the timing assumption that processes never wait more then time
1 between steps. A consequence of this claim is an upper bound (of 63) on the
expected time for some process to reach its critical region.

For comparison, we already mentioned that [37] contains only proof sketches of
the results claimed. The paper [62] contains a proof that Lehmann and Rabin's
algorithm satis�es an eventual progress condition, in the presence of an adversary
with complete knowledge of the past; this proof is carried out as an instance of Zuck
and Pnueli's general method for proving liveness properties. Our results about this
protocol can be regarded as a re�nement of the results of Zuck and Pnueli, in that
we obtain explicit constant time bounds rather than liveness properties.

The rest of the paper is organized as follows. Section 4.2 presents a simpli�ed version
of the model of [54]. Section 4.3 presents our main proof technique based on time-
bound statements. Section 4.4 presents the additional proof rules for independence
of distinct probabilistic choices. Section 4.5 presents the Lehmann-Rabin algorithm.
Section 4.6.2 formalizes the algorithm in terms of the model of Section 4.2, and gives
an overview of our time bound proof. Section 4.7 contains the details of the time
bound proof.

Acknowledgments. Sections 4.2, 4.3 and 4.4 were written by Roberto Segala.
The references in the subsequent proofs to execution automata, and to the event
schemas Unit-Time, first(a; U) and next(a; U) are also his contribution. (The

notation U
t
�!
p
U 0 and Theorem 4.3.2 is part of the work of the author.)
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4.2 The Model

In this section, we present the model that is used to formulate our proof technique.
It is a simpli�ed version of the probabilistic automaton model of [54]. As mentioned
in page 33, this model considers the case where 1) Player(1) knows and remembers
the complete state of the system, and 2), deterministic adversaries are considered.
Under these conditions it is equivalent to the model presented in Chapter 2. Here
we only give the parts of the model that we need to describe our proof method and
its application to the Lehmann-Rabin algorithm; we refer the reader to [54] for more
details.

De�nition 4.2.1 A probabilistic automaton2 M consists of four components:

� a set states(M) of states

� a nonempty set start(M) � states(M) of start states

� an action signature sig(M) = (ext(M); int(M)) where ext(M) and int(M) are
disjoint sets of external and internal actions, respectively

� a transition relation steps(M) � states(M)�acts(M)�Probs(states(states(M))),
where the set Probs(states(states(M))) is the set of probability spaces (
;F ; P )
such that 
 � states(M) and F = 2
. The last requirement is needed for tech-
nical convenience.

A probabilistic automaton is fully probabilistic if it has a unique start state and from
each state there is at most one step enabled.

Thus, a probabilistic automaton is a state machine with a labeled transition relation
such that the state reached during a step is determined by some probability distri-
bution. For example, the process of ipping a coin is represented by a step labeled
with an action flip where the next state contains the outcome of the coin ip and
is determined by a probability distribution over the two possible outcomes. A prob-
abilistic automaton also allows nondeterministic choices over steps. An example of
nondeterminism is the choice of which process takes the next step in a multi-process
system.

An execution fragment � of a probabilistic automaton M is a (�nite or in�nite)
sequence of alternating states and actions starting with a state and, if the execution

2In [54] the probabilistic automata of this de�nition are called simple probabilistic automata.
This is because that paper also includes the case of randomized adversaries.
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fragment is �nite, ending in a state, � = s0a1s1a2s2 � � �, where for each i there exists
a probability space (
;F ; P ) such that (si; ai+1; (
;F ; P ))2 steps(M) and si+1 2 
.
Denote by fstate(�) the �rst state of � and, if � is �nite, denote by lstate(�) the
last state of �. Furthermore, denote by frag�(M) and frag(M) the sets of �nite and
all execution fragments of M , respectively. An execution is an execution fragment
whose �rst state is a start state. Denote by exec�(M) and exec(M) the sets of �nite
and all executions of M , respectively. A state s of M is reachable if there exists
a �nite execution of M that ends in s. Denote by rstates(M) the set of reachable
states of M .

A �nite execution fragment �1 = s0a1s1 � � �ansn of M and an execution fragment
�2 = snan+1sn+1 � � � of M can be concatenated . In this case the concatenation,
written �1 � �2, is the execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. An execution
fragment �1 of M is a pre�x of an execution fragment �2 of M , written �1 � �2, if
either �1 = �2 or �1 is �nite and there exists an execution fragment �01 of M such
that �2 = �1 � �01.

In order to study the probabilistic behavior of a probabilistic automaton, some
mechanism to remove nondeterminism is necessary. To give an idea of why the
nondeterministic behavior should be removed, consider a probabilistic automaton
with three states s0; s1; s2 and with two steps enabled from its start state s0; the
�rst step moves to state s1 with probability 1=2 and to s2 with probability 1=2;
the second step moves to state s1 with probability 1=3 and to s2 with probability
2=3. What is the probability of reaching state s1? The answer depends on how
the nondeterminism between the two steps is resolved. If the �rst step is chosen,
then the probability of reaching state s1 is 1=2; if the second step is chosen, then
the probability of reaching state s1 is 1=3. We call the mechanism that removes
the nondeterminism an adversary, because it is often viewed as trying to thwart the
e�orts of a system to reach its goals. In distributed systems the adversary is often
called the scheduler , because its main job may be to decide which process should
take the next step.

De�nition 4.2.2 An adversary for a probabilistic automaton M is a function A
taking a �nite execution fragment ofM and giving back either nothing (represented
as �) or one of the enabled steps ofM if there are any. Denote the set of adversaries
for M by AdvsM 3.

Once an adversary is chosen, a probabilistic automaton can run under the control
of the chosen adversary. The result of the interaction is called an execution automa-

3In [54] the adversaries of this de�nition are denoted by DAdvsM , where D stands for Determin-
istic. The adversaries of [54] are allowed to use randomness.
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ton. The de�nition of an execution automaton, given below, is rather complicated
because an execution automaton must contain all the information about the di�er-
ent choices of the adversary, and thus the states of an execution automaton must
contain the complete history of a probabilistic automaton. Note that there are no
nondeterministic choices left in an execution automaton.

De�nition 4.2.3 An execution automaton H of a probabilistic automaton M is a
fully probabilistic automaton such that

1. states(H) � frag�(M).

2. for each step (�; a; (
;F ; P )) of H there is a step (lstate(�); a; (
0;F 0; P 0)) of
M , called the corresponding step, such that 
 = f�asjs 2 
0g and P 0[�as] =
P [s] for each s 2 
0.

3. each state of H is reachable, i.e., for each � 2 states(H) there exists an
execution of H leading to state �.

De�nition 4.2.4 Given a probabilistic automaton M , an adversary A 2 AdvsM ,
and an execution fragment � 2 frag�(M), the execution H(M;A; �) of M under
adversary A with starting fragment � is the execution automaton of M whose start
state is � and such that for each step (�0; a; (
;F ; P )) 2 steps(H(M;A; �)), its
corresponding step is the step A(�0).

Given an execution automatonH , an event is expressed by means of a set of maximal
executions of H , where a maximal execution of H is either in�nite, or it is �nite
and its last state does not enable any step in H . For example, the event \eventually
action a occurs" is the set of maximal executions of H where action a does occur.
A more formal de�nition follows. The sample space 
H is the set of maximal
executions of H . The �-algebra FH is the smallest �-algebra that contains the set
of rectangles R�, consisting of the executions of 
H having � as a pre�x4. The
probability measure PH is the unique extension of the probability measure de�ned
on rectangles as follows: PH [R�] is the product of the probabilities of each step of H
generating �. In [54] it is shown that there is a unique probability measure having
the property above, and thus (
H ;FH; PH) is a well de�ned probability space. For
the rest of this abstract we do not need to refer to this formal de�nition any more.

Events of FH are not su�cient for the analysis of a probabilistic automaton. Events
are de�ned over execution automata, but a probabilistic automaton may generate

4Note that a rectangle R� can be used to express the fact that the �nite execution � occurs.
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several execution automata depending on the adversary it interacts with. Thus a
more general notion of event is needed that can deal with all execution automata.
Speci�c examples are given in Section 4.3.

De�nition 4.2.5 An event schema e for a probabilistic automatonM is a function
associating an event of FH with each execution automaton H of M .

We now discuss briey a simple way to handle time within probabilistic automata.
The idea is to add a time component to the states of a probabilistic automaton,
to assume that the time at a start state is 0, to add a special non-visible action
� modeling the passage of time, and to add arbitrary time passage steps to each
state. A time passage step should be non-probabilistic and should change only the
time component of a state. This construction is called the patient construction in
[44, 57, 22]. The reader interested in a more general extension to timed models is
referred to [54].

We close this section with one �nal de�nition. Our time bound property for the
Lehmann-Rabin algorithm states that if some process is in its trying region, then
no matter how the steps of the system are scheduled, some process enters its critical
region within time t with probability at least p. However, this claim can only be
valid if each process has su�ciently frequent chances to perform a step of its local
program. Thus, we need a way to restrict the set of adversaries for a probabilistic
automaton. The following de�nition provides a general way of doing this.

Notation. We let Advs denote a subset of AdvsM .

4.3 The Proof Method

In this section, we introduce our key statement U
t
�!
p

Advs U 0 and the composability

theorem, which is our main theorem about the proof method.

The meaning of the statement U
t
�!
p

Advs U 0 is that, starting from any state of U

and under any adversary A of Advs, the probability of reaching a state of U 0 within
time t is at least p. The su�x Advs is omitted whenever we think it is clear from
the context.

De�nition 4.3.1 Let eU 0;t be the event schema that, applied to an execution au-
tomaton H , returns the set of maximal executions � of H where a state from U 0 is
reached in some state of � within time t. Then U

t
�!
p

Advs U 0 i� for each s 2 U and

each A 2 Advs, PH(M;A;s)[eU 0;t(H(M;A; s))]� p.
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Proposition 4.3.1 Let U; U 0; U 00 be sets of states of a probabilistic automaton M .
If U

t
�!
p
U 0, then U [ U 00 t

�!
p
U 0 [ U 00.

In order to compose time bound statements, we need a restriction for adversary
schemas stating that the power of the adversary schema is not reduced if a pre�x of
the past history of the execution is not known. Most adversary schemas that appear
in the literature satisfy this restriction.

De�nition 4.3.2 An adversary schema Advs for a probabilistic automaton M is
execution closed if, for each A 2 Advs and each �nite execution fragment � 2
frag�(M), there exists an adversaryA0 2 Advs such that for each execution fragment
�0 2 frag�(M) with lstate(�) = fstate(�0), A0(�0) = A(� � �0).

Theorem 4.3.2 Let Advs be an execution closed adversary schema for a probabilis-
tic timed automaton M , and let U; U 0; U 00 be sets of states of M .
If U

t1�!
p1

Advs U 0 and U 0 t2�!
p2

Advs U 00, then U
t1+t2�!
p1p2

Advs U 00.

Sketch of proof: Consider an adversary A 2 Advs that acts on M starting from
a state s of U . The execution automaton H(M;A; s) contains executions where a
state from U 0 is reached within time t1. Consider one of those executions � and
consider the part H of H(M;A; s) after the �rst occurrence of a state from U 0 in
�. The key idea of the proof is to use execution closure of Advs to show that there
is an adversary that generates H , to use U 0 t2�!

p2
Advs U 00 to show that in H a state

from U 00 is reached within time t2 with probability at least p2, and to integrate
this last result in the computation of the probability of reaching a state from U 00 in
H(M;A; s) within time t1 + t2.

4.4 Independence

Example 4.4.1 Consider any distributed algorithm where each process is allowed
to ip fair coins. It is common to say \If the next coin ip of process P yields head
and the next coin ip of process Q yields tail , then some good property � holds."
Can we conclude that the probability for � to hold is 1=4? That is, can we assume
that the coin ips of processes P and Q are independent? The two coin ips are
indeed independent of each other, but the presence of non-oblivious adversaries may
introduce some dependence. An adversary can schedule process P to ip its coin
and then schedule process Q only if the coin ip of process P yielded head . As a
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result, if both P and Q ip a coin, the probability that P yields head and Q yields
tail is 1=2.

Thus, it is necessary to be extremely careful about independence assumptions. It
is also important to pay attention to potential ambiguities of informal arguments.
For example, does � hold if process P ips a coin yielding head and process Q does
not ip any coin? Certainly such an ambiguity can be avoided by expressing each
event in a formal model.

In this section we present two event schemas that play a key role in the detailed
time bound proof for the Lehmann-Rabin algorithm, and we show some partial
independence properties for them. The �rst event schema is a generalization of
the informal statement of Example 4.4.1, where a coin ip is replaced by a generic
action a, and where it is assumed that an event contains all the executions where
a is not scheduled; the second event schema is used to analyze the outcome of the
�rst random draw that occurs among a �xed set of random draws. A consequence
of the partial independence results that we show below is that under any adversary
the property � of Example 4.4.1 holds with probability at least 1=4.

Let (a; U) be a pair consisting of an action of M and a set of states of M . The
event schema first(a; U) is the function that, given an execution automaton H ,
returns the set of maximal executions of H where either action a does not occur, or
action a occurs and the state reached after the �rst occurrence of a is a state of U .
This event schema is used to express properties like \the ith coin yields left". For
example a can be flip and U can be the set of states of M where the result of the
coin ip is left.

Let (a1; U1); : : : ; (an; Un) be a sequence of pairs consisting of an action of M and a
set of states of M such that for each i; j, 1 � i < j � n, ai 6= aj. De�ne the event
schema next((a1; U1); : : : ; (an; Un)) to be the function that applied to an execution
automaton H gives the set of maximal executions of H where either no action from
fa1; : : : ; ang occurs, or at least one action from fa1; : : : ; ang occurs and, if ai is the
�rst action that occurs, the state reached after the �rst occurrence of ai is in Ui.
This kind of event schema is used to express properties like \the �rst coin that is
ipped yields left."

Proposition 4.4.2 Let H be an execution automaton of a probabilistic automaton
M . Furthermore, let (a1; U1); : : : ; (an; Un) be pairs consisting of an action of M and
a set of states of M such that for each i; j, 1 � i < j � n, ai 6= aj. Finally, let
p1; : : : ; pn be real numbers between 0 and 1 such that for each i, 1 � i � n, and each
step (s; a; (
;F ; P )) 2 steps(M) with a = ai, the probability P [Ui \ 
] is greater
than or equal to pi, i.e., P [Ui \ 
] � pi. Then
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1. PH [(first(a1; U1) \ � � � \ first(an; Un))(H)]� p1 � � �pn,

2. PH [next((a1; U1); : : : ; (an; Un))(H)]� min(p1; : : : ; pn).

4.5 The Lehmann-Rabin Algorithm

The Lehmann-Rabin algorithm is a randomized algorithm for the Dining Philoso-
phers problem. This problem involves the allocation of n resources among n com-
peting processes arranged in a ring. The resources are considered to be interspersed
between the processes, and each process requires both its adjacent resources in or-
der to reach its critical section. All processes are identical; the algorithm breaks
symmetry by using randomization. The algorithm ensures the required exclusive
possession of resources, and also ensures that, with probability 1, some process is
always permitted to make progress into its critical region.

Figure 4.1 shows the code for a generic process i. The n resources are represented by
n shared variables Res1; : : : ;Resn, each of which can assume values in ffree; takeng.
Each process i ignores its own name, i, and the names, Resi�1 and Resi, of its
adjacent resources. However, each process i is able to refer to its adjacent resources
by relative names: Res(i;left) is the resource located to the left (clockwise), and
Res(i;right) is the resource to the right (counterclockwise) of i. Each process has a
private variable ui, which can assume a value in fleft; rightg, and is used to keep
track of the �rst resource to be handled. For notational convenience we de�ne an
operator opp that complements the value of its argument, i.e., opp(right) = left

and opp(left) = right.

The atomic actions of the code are individual resource accesses, and they are rep-
resented in the form <atomic-action> in Figure 4.1. We assume that at most one
process has access to the shared resource at each time.

An informal description of the procedure is \choose a side randomly in each iteration.
Wait for the resource on the chosen side, and, after getting it, just check once for
the second resource. If this check succeeds, then proceed to the critical region.
Otherwise, put down the �rst resource and try again with a new random choice."

Each process exchanges messages with an external user. In its idle state, a process
is in its remainder region R. When triggered by a try message from the user, it
enters the competition to get its resources: we say that it enters its trying region T .
When the resources are obtained, it sends a crit message informing the user of the
possession of these resources: we then say that the process is in its critical region
C. When triggered by an exit message from the user, it begins relinquishing its
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Shared variables: Resj 2 ffree; takeng; j = 1; : : : ; n, initially free.

Local variables: ui 2 fleft; rightg; i = 1; : : : ; n

Code for process i:

0. try ** beginning of Trying Section **
1. < ui  random> ** choose left or right with equal probability **
2. < if Res(i;ui) = free then

Res(i;ui) := taken ** pick up �rst resource **
else goto 2. >

3. < if Res(i;opp(ui)) = free then

Res(i;opp(ui)) := taken; ** pick up second resource **
goto 5. >

4. < Res(i;ui) := free; goto 1.> ** put down �rst resource **
5. crit ** end of Trying Section **

** Critical Section **
6. exit ** beginning of Exit Section **
7. < ui  left or right ** nondeterministic choice **

Res(i;opp(ui)) := free > ** put down �rst resources **
8. < Res(i;ui) := free > ** put down second resources **
9. rem ** end of Exit Section **

** Remainder Section **

Figure 4.1: The Lehmann-Rabin algorithm

resources: we then say that the process is in its exit region E. When the resources
are relinquished its sends a rem message to the user and enters its remainder region.

4.6 Overview of the Proof

In this section, we give our high-level overview of the proof. We �rst introduce
some notation, then sketch the proof strategy at a high level. The detailed proof is
presented in Section 4.7.
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4.6.1 Notation

In this section we de�ne a probabilistic automaton M which describes the system
of Section 4.5. We assume that process i + 1 is on the right of process i and that
resource Resi is between processes i and i+ 1. We also identify labels modulo n so
that, for instance, process n+ 1 coincides with process 1.

A state s ofM is a tuple (X1; : : : ; Xn;Res1; : : : ;Resn; t) containing the local state Xi

of each process i, the value of each resource Resi, and the current time t. Each local
state Xi is a pair (pci; ui) consisting of a program counter pci and the local variable
ui. The program counter of each process keeps track of the current instruction in
the code of Figure 4.1. Rather then representing the value of the program counter
with a number, we use a more suggestive notation which is explained in the table
below. Also, the execution of each instruction is represented by an action. Only
actions tryi, criti, remi, exiti below are external actions.

Number pci Action name Informal meaning

0 R tryi Remainder region
1 F flipi Ready to Flip
2 W waiti Waiting for �rst resource
3 S secondi Checking for Second resource
4 D dropi Dropping �rst resource
5 P criti Pre-critical region
6 C exiti Critical region
7 EF dropfi Exit: drop First resource
8 ES dropsi Exit: drop Second resource
9 ER remi Exit: move to Remainder region

The start state of M assigns the value free to all the shared variables Resi, the
value R to each program counter pci, and an arbitrary value to each variable ui.
The transition relation of M is derived directly from Figure 4.1. For example, for
each state where pci = F there is an internal step flipi that changes pci into W
and assigns left to ui with probability 1=2 and right to ui with probability 1=2;
from each state where Xi = (W; left) there is a step waiti that does not change
the state if Res(i;left) = taken, and changes pci into S and Res(i;left) into taken if
Res(i;left) = free; for each state where pci = EF there are two steps with action
dropfi: one step sets ui to right and makes Res(i;left) free, and the other step
sets ui to left makes Res(i;right) free. The two separate steps correspond to a
nondeterministic choice that is left to the adversary. For time passage steps we
assume that at any point an arbitrary amount of time can pass; thus, from each
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state of M and each positive � there is a time passage step that increases the time
component of � and does not a�ect the rest of the state.

The value of each pair Xi can be represented concisely by the value of pci and an
arrow (to the left or to the right) which describes the value of ui. Thus, informally,
a process i is in state S

!
or D
!

(resp. S
 

or D
 
) when i is in state S or D while

holding its right (resp. left) resource; process i is in state W
!

(resp. W
 
) when i

is waiting for its right (resp. left) resource to become free; process i is in state
ES!

(resp. ES 
) when i is in its exit region and it is still holding its right (resp.

left) resource. Sometimes we are interested in sets of pairs; for example, whenever
pci = F the value of ui is irrelevant. With the simple value of pci we denote the set
of the two pairs f(pci; left); (pci; right)g. Finally, with the symbol # we denote
any pair where pci 2 fW;S;Dg. The arrow notation is used as before.

For each state s = (X0; : : : ; Xn�1;Res1; : : : ;Resn�1; t) of M we denote by Xi(s) the
pair Xi and by Resi(s) the value of the shared variable Resi in state s. Also, for any
set S of states of a process i, we denote by Xi 2 S, or alternatively Xi = S the set of
states s of M such that Xi(s) 2 S. Sometimes we abuse notation in the sense that
we write expressions like Xi 2 fF;Dg with the meaning Xi 2 F [D. Finally, we
write Xi = E forXi = fEF ; ES; ERg, and we write Xi = T for Xi 2 fF;W; S;D;Pg.

A �rst basic lemma states that a reachable state of M is uniquely determined by
the local states its processes and the current time. Based on this lemma, our further
speci�cations of state sets will not refer to the shared variables; however, we consider
only reachable states for the analysis. The proof of the lemma is a standard proof
of invariants.

Lemma 4.6.1 For each reachable state s of M and each i, 1 � i � n, Resi = taken

i� Xi(s) 2 fS!
; D
!
; P; C; EF; ES!

g or Xi+1(s) 2 fS 
; D
 
; P; C; EF ; ES 

g. Moreover,

for each reachable state s of M and each i, 1 � i � n, it is not the case that
Xi(s) 2 fS!

; D
!
; P; C; EF ; ES!

g and Xi+1(s) 2 fS 
; D
 
; P; C; EF ; ES 

g, i.e., only one

process at a time can hold one resource. �

4.6.2 Proof Sketch

In this section we show that the RL-algorithm guarantees time bounded progress,
i.e., that from every state where some process is in its trying region, some process
subsequently enters its critical region within an expected constant time bound. We
assume that each process that is ready to perform a step does so within time 1:
process i is ready to perform a step whenever it enables an action di�erent from
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tryi or exiti. Actions tryi and exiti are supposed to be under the control of the
user, and hence, by assumption, under the control of the adversary.

Formally, consider the probabilistic timed automaton M of Section 4.6.1. De�ne
Unit-Time to be the set of adversaries A for M having the properties that, for
every �nite execution fragment � of M and every execution �0 of H(M;A; �), 1)
the time in �0 is not bounded and 2) for every process i and every state of �0

enabling an action of process i di�erent from tryi and exiti, there exists a step in
�0 involving process i within time 1. Then Unit-Time is execution-closed according
to De�nition 4.3.2. An informal justi�cation of this fact is that the constraint that
each ready process is scheduled within time 1 knowing that � ��0 has occurred only
reinforces the constraint that each ready process is scheduled within time 1 knowing
that �0 has occurred. Let

T
4

= fs 2 rstates(M) j 9iXi(s) 2 fTgg

denote the sets of reachable states of M where some process is in its trying region,
and let

C
4

= fs 2 rstates(M) j 9iXi(s) = Cg

denote the sets of reachable states of M where some process is in its critical region.
We show that

T
13
�!
1=8

Unit-Time C;

i.e., that, starting from any reachable state where some process is in its trying
region, for all the adversaries of Unit-Time, with probability at least 1=8, some
process enters its critical region within time 13. Note that this property is trivially
satis�ed if some process is initially in its critical region.

Our proof is divided into several phases, each one concerned with the property of
making a partial time bounded progress toward a \success state", i.e., a state of
C. The sets of states associated with the di�erent phases are expressed in terms of
T ;RT ;F ;G;P; and C. Here,

RT
4

= fs 2 T j 8iXi(s) 2 fER; R; Tgg

is the set of states where at least one process is in its trying region and where no
process is in its critical region or holds resources while being in its exit region.

F
4

= fs 2 RT j 9iXi(s) = Fg

is the set of states of RT where some process is ready to ip a coin.

P
4

= fs 2 rstates(M) j 9iXi(s) = Pg
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is the sets of reachable states of M where some process is in its pre-critical region.
The set G is the most important for the analysis. It parallels the set of \Good
Pairs"in [62] or the set described in Lemma 4 of [37]. To motivate the de�nition, we
de�ne the following notions. We say that a process i is committed if Xi 2 fW;Sg,
and that a process i potentially controls Resi (resp. Resi�1) if Xi 2 fW!

; S
!
; D
!
g

(resp. Xi 2 fW 
; S
 
; D
 
g). Informally said, a state in RT is in G if and only if

there is a committed process whose second resource is not potentially controlled by
another process. Such a process is called a good process. Formally,

G
4

= fs 2 RT j 9i Xi(s) 2 fW 
; S
 
g and Xi+1(s) 2 fER; R; F;#!

g; or

Xi(s) 2 fW!
; S
!
g and Xi�1(s) 2 fER; R; F;# 

gg

Reaching a state of G is a substantial progress toward reaching a state of C. Actually,
the proof of Proposition 4.7.11 establishes that, if i a is good process, then, with
probability 1/4, one of the three processes i� 1; i and i+1 soon succeeds in getting
its two resources. The hard part is to establish that, with constant probability,
within a constant time, G is reached from any state in T . A close inspection of the
proof given in [62] shows that, there, the timed version of the techniques used is
unable to deliver this result. The phases of our proof are formally described below.

T
2
�! RT [ C (Proposition 4.7.3),

RT
3
�! F [ P (Proposition 4.7.15),

F
2
�!
1=2
G [ P (Proposition 4.7.14),

G
5
�!
1=4
P (Proposition 4.7.11),

P
1
�! C (Proposition 4.7.1).

The �rst statement states that, within time 2, every process in its exit region re-
linquishes its resources. By combining the statements above by means of Proposi-
tion 4.3.1 and Theorem 4.3.2 we obtain

T
13
�!
1=8
C;

which is the property that was to be proven. Using the results of the proof summary
above, we can furthermore derive a constant upper bound on the expected time
required to reach a state of C when departing from a state of T . Note that, departing
from a state in RT , with probability at least 1=8, P is reached in time (at most) 10;
with probability at most 1=2, time 5 is spent before failing to reach G [ P (\failure
at the third arrow"); with probability at most 7=8, time 10 is spent before failing
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to reach P (\failure at the fourth arrow"). If failure occurs, then the state is back
into RT . Let V denote a random variable satisfying the following induction

V = 1=8 � 10 + 1=2 (5+ V1) + 3=8 (10+ V2) ;

where V1 and V2 are random variables having the same distribution as V . The
previous discussion shows that the expected time spent from RT to P is at most
E[V ]. By taking expectation in the previous equation, and using that E[V ] =
E[V1] = E[V2], we obtain that E[V ] = 60 is an upper bound on the expected time
spent from RT to P , and that, consequently, the expected time for progress starting
from a state of T is at most 63.

4.7 The Detailed Proof

We prove in this section the �ve relations used in Section 4.6.2. However, for the sake
of clarity, we do not prove the relations in the order they were presented. Through-
out the proof we abuse notation by writing events of the kind first(flipi; left)
meaning the event schema first(flipi; fs 2 states(M) j Xi(s) = W

 
g).

Proposition 4.7.1 If some process is in P , then, within time 1, it enters C, i.e.,

P
1
�!
1
C:

Proof. This step corresponds to the action crit: within time 1, process i informs
the user that the critical region is free. �

Lemma 4.7.2 If some process is in its Exit region then, within time 3, it will enter
R.

Proof. The process needs to take �rst two steps to relinquish its two resources,
and then one step to send a rem message to the user. �

Proposition 4.7.3 T
2
�! RT [ C.

Proof. From Lemma 4.7.2 within time 2 every process that begins in EF or ES

relinquishes its resources. If no process begins in C or enters C in the meantime,
then the state reached at this point is a state of RT ; otherwise, the starting state
or the state reached when the �rst process enters C is a state of C. �
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We now turn to the proof of G
5
�!
1=4
P . The following lemmas form a detailed cases

analysis of the di�erent situations that can arise in states of G. Informally, each
lemma shows that some event of the form of Proposition 4.4.2 is a sub-event of the
properties of reaching some other state.

Lemma 4.7.4

1. Assume that Xi�1 2 fER; R; Fg and Xi = W
 
. If first(flipi�1; left), then,

within time 1, either Xi�1 = P or Xi = S.

2. Assume that Xi�1 = D and Xi = W
 
. If first(flipi�1; left), then, within

time 2, either Xi�1 = P or Xi = S.

3. Assume that Xi�1 = S and Xi = W
 
. If first(flipi�1; left), then, within

time 3, either Xi�1 = P or Xi = S.

4. Assume that Xi�1 = W and Xi = W
 
. If first(flipi�1; left), then, within

time 4, either Xi�1 = P or Xi = S.

Proof. The four proofs start in the same way. Let s be a state of M satisfying the
respective properties of items 1 or 2 or 3 or 4 . Let A be an adversary of Unit-Time,
and let � be the execution of M that corresponds to an execution of H(M;A; fsg)
where the result of the �rst coin ip of process i� 1 is left.

1. By hypothesis, i � 1 does not hold any resource at the beginning of � and
has to obtain Resi�2 (its left resource) before pursuing Resi�1. Within time
1, i takes a step in �. If i � 1 does not hold Resi�1 when i takes this step,
then i progresses into con�guration S. If not, it must be the case that i � 1
succeeded in getting it in the meanwhile. But, in this case, Resi�1 was the
second resource needed by i� 1 and i� 1 therefore entered P .

2. If Xi = S within time 1, then we are done. Otherwise, after one unit of time,
Xi is still equal to W 

, i.e., Xi(s
0) = W

 
for all states s0 reached in time 1.

However, process i � 1 takes also a step within time 1. Let � = �1 � �2 such
that the last action of �1 corresponds to the �rst step taken by process i� 1.
Then Xi�1(fstate(�2)) = F and Xi(fstate(�2)) = W

 
. Since process i� 1 did

not ip any coin during �1, from the execution closure of Unit-Time and item
1 we conclude.
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3. If Xi = S within time 1, then we are done. Otherwise, after one unit of time,
Xi is still equal to W 

, i.e., Xi(s
0) = W

 
for all states s0 reached in time 1.

However, also process i� 1 takes a step within time 1. Let � = �1 � �2 such
that the last action of �1 corresponds to the �rst step taken by process i� 1.
If Xi�1(fstate(�2)) = P then we are also done. Otherwise it must be the case
that Xi�1(fstate(�2)) = D and Xi(fstate(�2)) = W

 
. Since process i � 1 did

not ip any coin during �1, from the execution closure of Unit-Time and item
2 we conclude.

4. If Xi = S within time 1, then we are done. Otherwise, after one unit of
time, Xi is still equal to W 

, i.e., Xi(s
0) = W

 
for all states s0 reached in time

1. However, since within time 1 process i checks its left resource and fails,
process i� 1 gets its right resource within time 1, and hence reaches at least
state S. Let � = �1 ��2 where the last step of �1 is the �rst step of � leading
process i� 1 to state S. Then Xi�1(fstate(�2)) = S and Xi(fstate(�2)) = W

 
.

Since process i� 1 did not ip any coin during �1, from the execution closure
of Unit-Time and item 3 we conclude. �

Lemma 4.7.5 Assume that Xi�1 2 fER; R; Tg and Xi = W
 
. If first(flipi�1; left),

then, within time 4, either Xi�1 = P or Xi = S.

Proof. The lemma follows immediately from Lemma 4.7.4 after observing that
Xi�1 2 fER; R; Tg means Xi�1 2 fER; R; F;W; S;D;Pg. �

The next lemma is a useful tool for the proofs of Lemmas 4.7.7, 4.7.8, and 4.7.9.

Lemma 4.7.6 Assume that Xi 2 fW 
; S
 
g or Xi 2 fER; R; F; D 

g with first(flipi;

left), and assume that Xi+1 2 fW!
; S
!
g or Xi+1 2 fER; R; F; D!

g with first(flipi+1;

right). Then the �rst of the two processes i or i+1 testing its second resource enters
P after having performed this test (if this time ever comes).

Proof. By Lemma 4.6.1 Resi is free. Moreover, Resi is the second resource needed
by both i and i+ 1. Whichever tests for it �rst gets it and enters P . �

Lemma 4.7.7 If Xi = S
 

and Xi+1 2 fW!
; S
!
g then, within time 1, one of the two

processes i or i+1 enters P . The same result holds if Xi 2 fW 
; S
 
g and Xi+1 = S

!
.

Proof. Being in state S, process i tests its second resource within time 1. An
application of Lemma 4.7.6 �nishes the proof. �
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Lemma 4.7.8 Assume that Xi = S
 

and Xi+1 2 fER; R; F; D!
g. If first(flipi+1;

right), then, within time 1, one of the two processes i or i+1 enters P . The same
result holds if Xi 2 fER; R; F;Dg, Xi+1 = S

!
and first(flipi; left).

Proof. Being in state S, process i tests its second resource within time 1. An
application of Lemma 4.7.6 �nishes the proof. �

Lemma 4.7.9 Assume that Xi�1 2 fER; R; Tg,Xi = W
 
, and Xi+1 2 fER; R; F;W!

;

D
!
g. If first(flipi�1; left) and first(flipi+1; right), then within time 5 one of

the three processes i� 1, i or i+ 1 enters P .

Proof. Let s be a state of M such that Xi�1(s) 2 fER; R; Tg, Xi(s) = W
 
, and

Xi+1(s) 2 fER; R; F;W!
; D
!
g. Let A be an adversary of Unit-Time, and let � be

the execution of M that corresponds to an execution of H(M;A; fsg) where the
result of the �rst coin ip of process i � 1 is left and the result of the �rst coin
ip of process i + 1 is right. By Lemma 4.7.5, within time 4 either process i � 1
reaches con�guration P in � or process i reaches con�guration S

 
in �. If i � 1

reaches con�guration P , then we are done. If not, then let � = �1 � �2 such that
lstate(�1) is the �rst state s0 of � with Xi(s0) = S

 
. If i + 1 enters P before the

end of �1, then we are done. Otherwise, Xi+1(fstate(�2)) is either in fW!
; S
!
g or

it is in fER; R; F; D!
g and process i + 1 has not ipped any coin yet in �. From

execution closure of Unit-Time we can then apply Lemma 4.7.6. Within one more
time process i tests its second resource and enters P if process i + 1 did not check
its second resource in the meantime. On the other hand, process i+1 enters P if it
checks its second resource before i does so. �

Lemma 4.7.10 Assume that Xi�1 2 fER; R; F;W 
; D
 
g, Xi = W

!
, and Xi+1 2

fER; R; Tg. If first(flipi�1; left) and first(flipi+1; right), then within time
5 one of the three processes i� 1, i or i+ 1, enters P .

Proof. Analogous to Lemma 4.7.9. �

Proposition 4.7.11 Starting from a global con�guration in G, then, with probabil-
ity at least 1=4 and within time at most 5, some process enters P . Equivalently:

G
5
�!
1=4
P :
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Proof. Lemmas 4.7.7 and 4.7.8 jointly treat the case where Xi = S
 

and Xi+1 2

fER; R; F;#!
g and the symmetric case where Xi�1 2 fER; R; F;# 

g and Xi =

S
!
; Lemmas 4.7.9 and 4.7.10 jointly treat the case where Xi = W

 
and Xi+1 2

fER; R; F;W!
; D
!
g and the symmetric case where Xi�1 2 fER; R; F;W 

; D
 
g and

Xi = W
!
.

Speci�cally, each lemma shows that a compound event of the kind first(flipi; x)
and first(flipj; y) leads to P . Each of the basic events first(flipi; x) has prob-
ability 1=2. From Proposition 4.4.2 each of the compound events has probability at
least 1=4. Thus the probability of reaching P within time 5 is at least 1=4. �

We now turn to F
2
�!
1=2
G [ P . The proof is divided in two parts and constitute the

global argument of the proof of progress.

Lemma 4.7.12 Start with a state s of F . If there exists a process i for which
Xi(s) = F and (Xi�1; Xi+1) 6= (#

!
;#
 
), then, with probability at least 1=2 a state of

G [ P is reached within time 1.

Proof. The conclusion holds trivially if s 2 G. Let s be a state of F�G and let i be
such that Xi(s) = F and (Xi�1; Xi+1) 6= (#

!
;#
 
). Assume without loss of generality

that Xi+1 6= #
 
, i.e., Xi+1 2 fER; R; F;#!

g. (The case for Xi�1 6= #
!

is similar.) We

can furthermore assume that Xi+1 2 fER; R; F; D!
g since if Xi+1 2 fW!

; S
!
g then s

is already in G.

We show that the event next((flipi; left); (flipi+1; right)), which by Proposi-
tion 4.4.2 has probability at least 1=2, leads in time at most 1 to a state of G[P . Let
A be an adversary of Unit-Time, and let � be the execution of M that corresponds
to an execution of H(M;A; fsg) where if process i ips before process i + 1 then
process i ips left, and if process i+ 1 ips before process i then process i+ 1 ips
right.

Within time 1, i takes one step and reaches W . Let j 2 fi; i + 1g be the �rst
of i and i + 1 that reaches W and let s1 be the state reached after the �rst time
process j reaches W . If some process reached P in the meantime, then we are done.
Otherwise there are two cases to consider. If j = i, then, flipi gives left and
Xi(s1) = W

 
whereas Xi+1 is (still) in fER; R; F; D!

g. Therefore, s1 2 G. If j = i+1,

then flipi+1 gives right and Xi+1(s1) = W
!

whereas Xi(s1) is (still) F . Therefore,

s1 2 G. �
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Lemma 4.7.13 Start with a state s of F . Assume that there exists a process i for
which Xi(s) = F and for which (Xi�1(s); Xi+1(s)) = (#

!
;#
 
). Then, with probability

at least 1=2, within time 2, a state of G [ P is reached.

Proof. The hypothesis can be summarized into the form (Xi�1(s); Xi(s); Xi+1(s))
= (#
!
; F;#
 
). Since i � 1 and i + 1 point in di�erent directions, by moving to the

right of i+ 1 there is a process k pointing to the left such that process k+ 1 either
points to the right or is in fER; R; Fg, i.e., Xk(s) 2 fW 

; S
 
; D
 
g and Xk+1(s) 2

fER; R; F;W!
; S
!
; D
!
g. If Xk(s) 2 fW 

; S
 
g then s 2 G and we are done. Thus, we

can restrict our attention to the case where Xk(s) = D
 
.

We show that the event next((flipk; left); (flipk+1; right)), which by Proposi-
tion 4.4.2 has probability at least 1=2, leads in time at most 2 to G [ P . Let A be
an adversary of Unit-Time, and let � be an execution of M that corresponds to an
execution of H(M;A; fsg) where if process k ips before process k+1 then process
k ips left, and if process k + 1 ips before process k then process k + 1 ips right.

Within time 2, process k takes at least two steps and hence goes to con�gurationW .
Let j 2 fk; k+ 1g be the �rst of k and k+ 1 that reaches W and let s1 be the state
reached after the �rst time process j reaches W . If some process reached P in the
meantime, then we are done. Otherwise there are two cases to consider. If j = k,
then, flipk gives left and Xk(s1) = W

 
whereas Xk+1 is (still) in fER; R; F;#!

g.

Therefore, s1 2 G. If j = k + 1, then flipk+1 gives right and Xk+1(s1) = W
!

whereas Xk(s1) is (still) in fD 
; Fg. Therefore, s1 2 G. �

Proposition 4.7.14 Start with a state s of F . Then, with probability at least 1=2,
within time 2, a state of G [ P is reached. Equivalently:

F
2
�!
1=2
G [ P :

Proof. The two di�erent hypotheses of Lemmas 4.7.12 and 4.7.13 form a partition
of F . �

Finally, we prove RT
3
�! F [ P .

Proposition 4.7.15 Starting from a state s of RT , then, within time 3, a state of
F [ P is reached. Equivalently:

RT
3
�! F [ P :
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Proof. Let s be a state of RT . If s 2 F , then we are trivially done: We can
therefore restrict ourselves to the case where in s each process is in fER; R;W; S;Dg
and where there exists at least one process in fW;S;Dg. Furthermore we can restrict
ourselves to the case where no process reaches P in time 3, i.e., where the state stays
in RT . (Else we are done.) Let A be an adversary of Unit-Time, and let � be the
execution of M that corresponds to an execution of H(M;A; fsg).

Within time 1 a process reaches fS;D; Fg. Therefore Within time 2 a process
reaches fD;Fg. Therefore Within time 3 a process reaches fFg. As, by assumption,
the state stays in RT in time 3, we have therefore proven that F is reached in time
3. �



Chapter 5

A Deterministic Scheduling

Protocol

In this chapter we present a scheduling problem, analyze it and provide optimal
deterministic solutions for it. The proof involves re-expressing the problem in graph-
theoretical terms. In particular the main tool used in the proof of optimality is Ore's
De�ciency Theorem [45] giving a dual expression of the size of a maximum matching
in a bipartite graph. We will consider in Chapter 7 the randomized version of this
scheduling problem.

5.1 Introduction

Many control systems are subject to failures that can have dramatic e�ects. One
simple way to deal with this problem is to build in some redundancy so that the
whole system is able to function even if parts of it fail. In a general situation, the
system's manager has access to some observations allowing it to control the system
e�ciently. Such observations bring information about the state of the system that
might consist of partial fault reports. The available controls might include repairs
and/or replacement of faulty processors.

To model the problem, one needs to make assumptions regarding the occurrence
of faults. Typically, they are assumed to occur according to some stochastic pro-
cess. To make the model more tractable, one often considers the process to be
memoryless, i.e. faults occur according to some exponential distribution. However,
to be more realistic, many complications and variations can be introduced in the
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stochastic model, and they complicate the time analysis. Examples are: a processor
might become faulty at any time or only during speci�c operations; the fault rate
might vary according to the work load; faults might occur independently among the
processors or may depend on proximity. The variations seem endless and the results
are rarely general enough so as to carry some information or methodology from one
model to another.

One way to derive general results, independent of the speci�c assumptions about the
time of occurrence of faults, is to adopt a discrete time, that, instead of following
an absolute frame, is incremented only at each occurrence of a fault. Within this
framework, we measure the maximal number of faults to be observed until the
occurrence of a crash instead of the maximal time of survival of a system until the
occurrence of a crash.

As an introduction to this general situation, we make the following assumptions and
simpli�cations:

Redundancy of the system: We assume the existence of a pool N composed of p
identical processors from among which, at every time t, a set st of n processors
is selected to con�gure the system. The system works satisfactorily as long as
at least n �m processors among the n currently in operation are not faulty.
However, the system cannot tolerate more than m faults at any given time: it
stops functioning if m+ 1 processors among these n processors are faulty.

Occurrence of faults, reports and logical time: We consider the situation in
which failures do not occur simultaneously and where, whenever a processor
fails, a report is issued, stating that a failure has occurred, but without spec-
ifying the location of the failure. (Reporting additional information might be
too expensive or time consuming.) Based on these reports, the scheduler might
decide to recon�gure the system whenever such failure is reported. As a result,
we restrict our attention to the discrete model, in which time t corresponds to
the t-th failure in the system.

Repairs: No repair is being performed.

Deterministic Algorithms: We assume that the scheduler does not use random-
ness.

Since the universe consists of only p processors, and one processor fails at each
time, no scheduling policy can guarantee that the system survives beyond time p.
(A better a priori upper bound is p � n + m + 1: at this time, only n � m � 1
processors are still non-faulty. This does not allow for the required quorum of n�m
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non-faulty processors.) But some scheduling policies seem to allow the system to
survive longer than others. An obviously bad policy is to choose n processors once
and for all and never to change them: the system would then collapse at time m+1.
This chapter investigates the problem of determining the best survival time.

This best survival time is de�ned from a worst-case point-of-view: a given scheduler
allows the system to survive (up to a certain time) only if it allows it to survive
against all possible failure patterns in which one processor fails at each time.

Our informal description so far apparently constrains the faults to occur in on-line
fashion: for each t, the t-th fault occurs before the scheduler decides the set st+1 to
be used subsequently. However, since we have assumed that no reports about the
locations of the faults are available, there is no loss of generality in requiring the
sets st to be determined a priori. (Of course, in practice, some more precise fault
information may be available, and each set st would depend on the fault pattern up
to time t.) Also, as we have assumed a deterministic scheduler, we can assume that
the decisions s1; : : : ; sp are revealed before the occurrence of any fault. We express
this by saying that the faults occur in an o�-line fashion.

5.2 The Model

Throughout this chapter, we �x a universal set N of processors, and let p denote
its cardinality. We also �x a positive integer n (n � p) representing the number of
processors that are needed at each time period, and a positive integerm representing
the number of failures that can be tolerated (m < n).

We model the situation described in the introduction as a simple game between two
entities, a scheduler and an adversary. The game consists of only one round, in
which the scheduler plays �rst and the adversary second. The scheduler plays by
selecting a sequence of p sets of processors (the schedule), each set of size n, and the
adversary responds by choosing, from each set selected by the scheduler, a processor
to kill. We consider only sequences of size p because the system must collapse by
time p, since, at each time period, a new processor breaks down.

Formally, a schedule S is de�ned to be a �nite sequence, s1; : : : ; sp, of subsets of N ,
such that jstj = n for all t, 1 � t � p. An adversary A is de�ned to be a function
associating to every schedule S = (s1; : : : ; sp) a sequence A(S) = (f1; : : : ; fp) of
elements of N such that ft 2 st for every t.

Now let S be a schedule, and A an adversary. De�ne the survival time, T (S;A),
to be the largest value of t such that, for all u � t, jff1; : : :fug \ suj � m, (where
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(f1; : : : ; fp) = A(S)). That is, for all time periods u up to and including time period
t, there are no more than m processors in the set su that have failed by time u.

We are interested in the minimum survival time for a particular schedule, with
respect to arbitrary adversaries. Thus, we de�ne the minimum survival time for a
schedule, T (S), to be T (S)

def
= minA T (S;A). An adversary A for which T (S) =

minA T (S;A) is said to be minimal for S. Finally, we are interested in determining
the schedule that guarantees the greatest minimum survival time. Thus, we de�ne
the optimum survival time topt, to be maxS T (S) = maxS minA T (S;A). Also de�ne
a schedule S to be optimum provided that T (S) = topt. Our objectives in this
chapter are to compute topt as a function of p, n and m, to exhibit an optimum
schedule, and to determine a minimal adversary for each schedule.

5.3 The Result

Recall that 1 � m < n � p are three �xed integers. Our main result is stated
in terms of the following function de�ned on the set of positive real numbers (see
Figure 5.1):

hn;m(k)
def
=

�
k

n

�
m+

�
k �

�
k

n

�
n+m� n

�+

;

where (x)+ = max(x; 0). In particular, hn;m(k) =
k
n
m when n divides k.

The main result of this chapter is:

Theorem 5.3.1
topt = hn;m(p):

We will present our proof in two lemmas proving respectively that topt is no smaller
and no bigger than hn;m(p).

Lemma 5.3.2
topt � hn;m(p):

Proof. Consider the schedule Strivial in which the p processors are partitioned into
b p
n
c batches of n processors each and one batch of q = p�

�
p
n

�
n. Each of the �rst

�
p
n

�
batches is usedm time periods and then set aside. Then, the last batch of processors
along with any n�q of the processors set aside is used for (m+q�n)+ time periods.
It is easy to see that no adversary can succeed in killing m+ 1 processors within a
batch before this schedule expires. �
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Figure 5.1: The function hn;m(k)

In order to prove the other direction of Theorem 5.3.1, we need the following result
about the rate of increase of the function hn;m(k).

Lemma 5.3.3 For 0 � k and 0 � l � n we have hn;m(k) � hn;m(k+ l) +n� l�m.

Proof. Notice �rst that hn;m(k) = hn;m(k + n) �m for all k � 0. Moreover, the
function h increases at a sublinear rate (see Figure 5.1) so that, for p; q � 0, we have
hn;m(p+ q) � hn;m(p) + q. Letting p = k + l and q = n � l, we obtain

hn;m(k) = hn;m(k + n)�m � hn;m(k + l) + n� l�m;

which proves the lemma. �

5.4 The Upper Bound

In this section we establish the other direction of the main theorem. We begin with
some general graph theoretical de�nitions.

De�nition 5.4.1

� For every vertex v of a graph G, we let G(v) denote the set of vertices adjacent

to v. We can extend this notation to sets: for all sets C of vertices G(C)
def
=

[v2CG(v).
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� For every bipartite graph G, �(G) denotes the size of a maximum matching
of G.

� For every pair of positive integers L;R, a left totally ordered bipartite graph
of size (L;R) is a bipartite graph with bipartition L;R, where L is a totally
ordered set of size L and R is a set of size R. We label L = fa1; : : : ; aLg so
that, ai < aj for every 1 � i < j � L. For every L0 � L and R0 � R, the
subgraph induced by L0 and R0 is a left totally ordered bipartite graph with
the total order on L inducing the total order on L0.

� Let G be a left totally ordered bipartite graph of size (L;R). For t = 1; : : : ; L,
we let It(G) denote the left totally ordered subgraph of G induced by the
subsets fa1; a2; : : : ; at�1g � L and G(at) � R.

Let us justify quickly the notion of left total order. In this de�nition, we have in mind
that L represents the labels attached to the di�erent times, and that R represents
the labels attached to the available processors. The times are naturally ordered.
The main argument used in the proof is to reduce an existing schedule to a shorter
one. In doing so, we in particular select a subsequence of times. Although these
times are not necessarily consecutive, they are still naturally ordered. The total
order on L is the precise notion formalizing the ordering structure characterizing
time.

Consider a �nite schedule S = s1; : : : ; st. In graph theoretic terms, it can be repre-
sented as a left totally ordered bipartite graph G with bipartition T = f1; 2; : : : ; Tg
and N = f1; 2; : : : ; pg. There is an edge between vertex t 2 T and vertex i 2 N if
the processor i is selected at time t. The fact that, for all t, jstj = n translates into
the fact that vertex t 2 T has degree n. For such a bipartite graph, the game of the
adversary consists in selecting one edge incident to each vertex t 2 T .

Observe that the adversary can kill the schedule at time t if it has already killed,
before time t, m of the n processors used at time t. It then kills another one at time
t and the system collapses. In terms of the graph G, there exists an adversary that
kills the schedule at time t if and only if the subgraph It(G) has a matching of size
m, i.e. �(It(G)) � m. Therefore, the set P that we now de�ne represents the set of
integers L and R for which there exists a schedule that survives at time L, when R
processors are available.

De�nition 5.4.2 Let L and R be two positive integers. (L;R) 2 B i� there exists
a left totally ordered bipartite graph G of size (L;R) with bipartition L and R
satisfying the two following properties:
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1. All vertices in L have degree exactly equal to n,

2. For every t = 1; : : : ; jLj, all matchings in It(G) have size at most equal to
m� 1, i.e. �(It(G)) � f � 1.

The main tool used in the proof of Theorem 5.3.1 is the following duality result for
the maximum bipartite matching problem, known as Ore's De�ciency Theorem [45].
A simple proof of this theorem and related results can be found in [39].

Theorem 5.4.1 Let G be a bipartite graph with bipartition A and B. Then the size
�(G) of a maximum matching is given by the formula:

�(G) = min
C�B

[jB � Cj+ jG(C)j] : (5.1)

The following lemma is crucial for our proof.

Lemma 5.4.2 There are no positive integers L and R such that (L;R) 2 B and
such that L > hn;m(R).

Proof. Working by contradiction, consider two positive integers L and R such
that (L;R) 2 B and L > hn;m(R). We �rst show the existence of two integers L0

and R0 such that L0 < L, (L0; R0) 2 B and L0 > hn;m(R0).

Let L = fa1; a2; : : : ; aLg and R = fb1; b2; : : : ; bRg be the bipartition of the graph G
whose existence is ensured by the hypothesis (L;R) 2 B.

We apply Theorem 5.4.1 to the graph IL(G) where we set A = fa1; a2; : : : ; aL�1g and
B = G(aL). Let C denote a subset of B for which the minimum in (5.1) is attained.

(C is possibly empty.) De�ne L0
def
= L� (faLg[IL(G)(C)) and R

0 def
= R�C and let

L0 and R0 denote the cardinalities of L0 and R0. Hence, L0 = L� 1� jIL(G)(C)j so
that L0 < L. Consider the bipartite subgraph G0 of G induced by the set of vertices
L0[R0. In other words, in order to construct G0 from G, we remove the set C[faLg
of vertices and all vertices adjacent to some vertex in C. We have illustrated this
construction in Figure 5.2. In that speci�c example, n = 4, m = 3, L = 6 and
R = 7, while h4;3(7) = 5. One can show that C = fb5; b6; b7g and as a result G0 is
the graph induced by the vertices fa1; a2; a3; a4; b1; b2; b3; b4g. The graph G0 has size
(L0; R0) = (4; 4).

We �rst show that (L0; R0) 2 B. Since the vertices in L0 correspond to the vertices
of L�faLg not connected to C, their degree in G0 is also n. Furthermore, G0, being
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Figure 5.2: An example of the construction of G0 from G. The vertices in C are
darkened.
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a subgraph of G, inherits property 2 of De�nition 5.4.2. Indeed, assume that there
is a vertex at0 in G

0 such that It0(G
0) has a matching of size m. Let t be the label of

the corresponding vertex in graph G. Since the total order on L0 is induced by the
total order on L, It0(G0) is a subgraph of It(G). Therefore, It(G) would also have a
matching of size m, a contradiction.

Let us show that L0 > hn;m(R
0). The assumption (L;R) 2 B implies that m � 1 �

�(IL(G)). Using Theorem 5.4.1 and the fact that B = G(L) has cardinality n, this
can be rewritten as

f � 1 � �(IL(G)) = jB � Cj+ jIL(G)(C)j

= n� jCj+ jIL(G)(C)j: (5.2)

Since C � B � R, we have that 0 � jCj � n � R and, thus, the hypotheses of
Lemma 5.3.3 are satis�ed for k = R � jCj and l = jCj. Therefore, we derive from
the lemma that

hn;m(R
0) = hn;m(R� jCj) � hn;m(R) + n� jCj � f:

Using (5.2), this implies that

hn;m(R
0) � hn;m(R)� jIL(G)(C)j � 1:

By assumption, L is strictly greater than hn;m(R), implying

hn;m(R
0) < L� 1� jIL(G)(C)j:

But the right-hand-side of this inequality is precisely L0, implying that L0 > hn;m(R
0).

We have therefore established that for all integers L and R such that (L;R) 2 B
and L > hn;m(R), there exists two integers L

0 and R0 such that L0 < L, (L0; R0) 2 B
and L0 > hn;m(R0). Among all such pairs (L;R), we select the pair for which L is
minimum. By the result that we just established, we obtain a pair (L0; R0) such that
(L0; R0) 2 B and L0 < L. This contradicts the minimality of L.

�

Lemma 5.4.3

topt � hn;m(p):

Proof. By assumption, (topt; N) 2 B. Hence this result is a direct consequence of
Lemma 5.4.2 .

�
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This Lemma along with Lemma 5.3.2 proves Theorem 5.3.1.

In the process of proving Lemma 5.3.2 we proved that Strivial is an optimum sched-
ule. On the other hand, the interpretation of the problem as a graph problem also
demonstrates that the adversary has a polynomial time algorithm for �nding an op-
timum killing sequence for each schedule S. When provided with S, the adversary
needs only to compute a polynomial number (actually fewer than p) of maximum bi-
partite matchings, for which well known polynomial algorithms exist (for the fastest
known, see [31]).

5.5 Extensions

The problem solved in this chapter is a �rst step towards modeling complex resilient
systems and there are many interesting extensions. We mention only a few.

An interesting extension is to consider the case of a system built up of processors
of di�erent types. For instance consider the case of a system built up of a total of
n processors, that is recon�gured at each time period and that needs at least g1
non-faulty processors of type 1 and at least g2 non-faulty processors of type 2 in
order to function satisfactorily. Assume also that these processors are drawn from
a pool N1 of p1 processors of type 1 and a pool N2 of p2 processors of type 2, that
N1 \ N2 = ;, that that there are no repairs. It is easy to see that the optimum
survival time topt is at least the survival time of every strategy for which the number
of processors of type 1 and type 2 is kept constant throughout. Hence:

topt � max
f(n1;n2);n1+n2=ng

min (hn1;n1�g1(p1); hn2;n2�g2(p2)):

It would be an interesting question whether topt is exactly equal to this value or very
close to it.

Extend the de�nition of a scheduler to represent a randomized scheduling protocol.
(Phrased in this context, the result presented in this chapter is only about deter-
ministic scheduling protocols.) A scheduler is called adversary-oblivious if it decides
the schedule independently of the choices f1; f2; : : : made by the adversary. An o�-
line adversary is an adversary that has access to the knowledge of the full schedule
s1; s2; : : : before deciding the full sequence s1; s2; : : :Note that, by de�nition, o�-line
adversaries make sense only with adversary-oblivious schedulers. By comparison, an
on-line adversary decides for each time t which processor ft to kill, without knowing
the future schedule: at each time t the adversary decides ft based on the sole knowl-
edge of s1; : : : ; st and of f1; : : : ; ft�1. In this more general framework, the quantity
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we want to determine is

topt
def
= max

S
min
A
E [T (S;A)] : (5.3)

For an adversary-oblivious, randomized scheduler, one can consider two cases based
on whether the adversary is on-line or o�-line. As is easily seen, if the adversary is
o�-line, randomness does not help in the design of optimal schedulers: introducing
randomness in the schedules cannot increase the survival time if the adversary gets
full knowledge of the schedule before committing to any of its choices. As a result,
the o�-line version corresponds to the situation investigated in this chapter.

It is of interest to study the online version of Problem 5.3. On-line adversaries model
somewhat more accurately practical situations: faults naturally occur in an on-line
fashion and the role of the program designer is then to design a scheduler whose ex-
pected performance is optimum. We study this question form = 1 in Chapter 7 and
provide in this case a characterization of the set of optimal randomized scheduling
policies.
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Chapter 6

Establishing the Optimality of a

Randomized Algorithm

Proving the precise optimality of a randomized algorithm solving a given problem
P is always a very di�cult and technical enterprise and only very few such proofs
exist (see [25, 61]).

A �rst di�culty is to de�ne an adequate probabilistic model for the analysis of
the randomized algorithms solving P . This model must take into account that, in
general, some choices are not in the control of the algorithm considered but, instead,
controlled by the adversary. It must also reckon with the fact that each randomized
algorithm uses di�erent random coins and hence carries a di�erent probabilistic
structure; nevertheless a common probabilistic structure has to be de�ned allowing
for the comparison of all the algorithms solving P . The few papers published so
far and dealing with lower bounds [25, 35, 33, 61] rarely address this issue. ([25]
introduces an ad-hoc model for the proof presented there.) The model presented in
Chapter 2 is, to our knowledge, the �rst to allow formal proofs of lower-bounds for
general randomized algorithms.

A second di�culty is that, for a given problem P , the set of randomized algorithms
is in�nite in general and hence looking for an optimal randomized algorithm involves
doing a maximization over an in�nite set.

We let f(�;A) denote the performance of a given randomized algorithm � when used
in conjunction with an adversary A. Examples of typical performances f(�;A) are
the expected running time or the probability of \good termination" when the al-
gorithm � is used in conjunction with the adversary A. By changing changing if
necessary f(�;A) into �f(�;A) we can always assume that the algorithms � are
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chosen so as to maximize the value f(�;A). The worst case performance of an algo-
rithm � is given by infA f(�;A), and therefore the optimal worst case performance
is given by sup� infA f(�;A).

As discussed in Chapter 2, the problem of analyzing an algorithm { and proving its
optimality { is best described in the language of game theory. (See also Section 8.3
for a presentation of the main notions of Game Theory.) We let Player(1) be the
entity selecting the algorithm (in short, the algorithm designer) and Player(2) be
the entity selecting the adversary (in short, the adversary designer). If Player(1)
selects the algorithm � and if Player(2) selects the adversary A, the game played
consists of the alternative actions of the algorithm and the adversary: Player(1)
takes all the actions as described by � until the �rst point where some choice has to
be resolved by the adversary; Player(2) then takes actions to resolve this choice as
described by A and Player(1) resumes action once the choice has been resolved...

Note that, by de�nition, an algorithm � is de�ned independently of a given adversary
A. On the other hand, an adversary might seem to be de�ned only in terms of a given
algorithm: the adversary is by de�nition the entity that resolves all choices not in
the control of the algorithm considered. If the model allowed for such an asymmetry
between the notions of algorithm and adversary we could not speak of an adversary
independently of the algorithm it would be associated to. For reasons that will soon
be explained, it is critical for our method to model adversaries independently of any
speci�c algorithm. In this case the algorithm designer and the adversary designer
are two well de�ned players playing a zero sum non-cooperative game. The set of
strategies � and A are respectively the algorithms � and the adversaries A. The
rules governing the interaction of the two players during an execution of the game
are set by the description of the problem P .

A very delicate matter is the nature of the information about the system held by
either player when taking a step, and the formal way this information is taken into
account in the model. Generally, some information about the moves of either player
is conveyed onto the other player during the execution (i.e., during the game). A
player having a more precise knowledge of the state of the system is more capable to
act optimally toward its goal (maximizing or minimizing the performance function
f(�;A)). The proof of optimality of a player is therefore tantamount to proving
that, at each round, the player uses optimally the information available in order to
take its next move. This is in general a very di�cult task for which no clear general
approach seems to exist. Nevertheless, using the concept of saddle point in game
theory allows us to derive a general proof strategy for proving the optimality of an
algorithm. We now present and discuss this methodology.
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If adversaries are each de�ned independently of any speci�c algorithm �, for every
adversary A we can consider the family

�
f(�;A)

�
�
obtained by letting � range over

the whole set of algorithms. Therefore, in this case, for every adversary A, the
quantity sup� f(�;A) is well-de�ned.

By Lemma 8.2.2, for every algorithm �0 and every adversaryA0 we have infA f(�0;A)
� sup� f(�;A0). Furthermore, this inequality is an equality only if �0 is an optimal
algorithm. This simple fact provides us with the following general proof methodol-
ogy to attempt to prove that a given algorithm �0 is optimal.

1. Construct a �/A-structure modeling the interaction between Player(1)
and Player(2). (This means in particular that an adversary is de�ned
independently of the choice of any speci�c algorithm.)

2. Provide an adversary A0 such that infA f(�0;A) = sup� f(�;A0).

By Proposition 8.2.3, the existence of a pair (�0;A0) realizing the equality infA f(�0;
A) = sup� f(�;A0) occurs if and only if max� infA f(�;A) = minA sup� f(�;A):

(This equality succinctly expresses the three following facts. 1) sup� infA f(�;A) =
infA sup� f(�;A). 2) A protocol � achieves the sup in sup� infA f(�;A) i.e., sup� infA
f(�;A) = max� infA f(�;A). And 3) an adversary A achieves similarly the inf in
minA sup� f(�;A) i.e., infA sup� f(�;A) = minA sup� f(�;A).)

To �nd an algorithm and prove its optimality using the previous methodology, we
are therefore led to model algorithms and adversaries in such a way that the equal-
ity sup� infA f(�;A) = infA sup� f(�;A) holds. There exists two cases where this
happens:

Von Neumann: We assume that the set � of strategies of Player(1) is the set
of probability distributions on a given �nite set I and that, similarly, the set
A of strategies of Player(2) is the set of probability distributions on a given
�nite set J . When saying this, we actually abuse language and identify a
probability distribution with the procedure consisting in drawing an element
at random according to this probability distribution. Hence, by convention,



128 Chapter 6. Proving the Optimality of an Algorithm

for every � 2 �, the strategy � consists in drawing an element i of I at
random and according to the distribution �. Similarly, for every A 2 A, the
strategy A consists in drawing an element j of J at random and according
to the distribution A. For every (i; j) 2 I � J and every strategies � and A
resulting in the selection of i and j, a predetermined cost T (i; j) is incurred.
The performance f(�;A) is by assumption the expected cost E�;A[T ] obtained
under the strategies � and A.

The game just described can be encoded as a matrix game: I and J are the
sets of pure strategies whereas � and A are the sets of mixed strategies of the
game. By Von Neumann's theorem, (see Theorem 8.3.2), max�minA f(�;A) =
minAmax� f(�;A): Recall once more that the �niteness of both I and J is
critical for this result.

Strong Byzantine: Assume that the rules of the game played between Player(1)
and Player(2) specify that, in every execution, Player(2) �rst learns explicitly
the strategy � chosen by Player(1) before having to commit itself to any action.
(We could picture this by saying that, by convention, an execution begins with
Player(1) \sending a message" to Player(2) disclosing the strategy � under
use.) Hence, in this situation, a strategy A for Player(2) is actually a family
A = (A�)� of strategies A� , one for every strategy � of Player(1). We say
that A� is an adversary specially designed for �. Assume furthermore that the
performance function is such that, for every adversaries A and A0, for every
algorithm �, if A� = A0� then f(�;A) = f(�;A0). This last property allows
us to extend the de�nition of f : for every algorithm � and every strategy a
specially designed for �, we set f(�; a) = f(�;A) where A is any adversary
such that A� = a. Assume also that A is stable under reshu�ing in the
following sense. Let

�
a(�)

�
�
be a family of specially designed adversaries, one

for every � 2 �. (Hence, by de�nition, for every � and �0 in �, there exists
an adversary A and an adversary A0 such that A� = a(�) and A0�0 = a(�0).
The adversaries A and A0 are a priori di�erent.) Then

�
a(�)

�
�
is itself an

admissible adversary, i.e., an element of A.

The de�nition A = (A�)� immediately shows that an adversary A does not
depend on the choice of a speci�c algorithm. Hence the Strong Byzantine
setting veri�es point 1 of our general methodology.

We now show that, in this setting, sup� infA f(�;A) = infA sup� f(�;A) and
that, therefore, an algorithm �0 is optimal if and only if there exists an ad-
versary A0 such that infA f(�0;A) = sup� f(�;A0). This will show that the
Strong Byzantine setting is well suited for an implementation of our general
methodology.
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For every " > 0 and every � in � { the set of strategies of Player(1) { let
A�(") be an adversary specially designed for � and such that

f
�
�;A�(")

�
� inf

A
f(�;A) + " :

The set A of adversaries being stable under reshu�ing we can de�ne an ad-
versary A(") by A(") =

�
A�(")

�
�
. We have:

inf
A
sup
�
f(�;A) � sup

�
f
�
�;A(")

�
= sup

�
f
�
�;A�(")

�
� sup

�
inf
A
f(�;A) + " :

The parameter " being arbitrary, this shows that infA sup� f(�;A) � sup� infA
f(�;A). By Lemma 8.2.1 the converse inequality sup� infA f(�;A) � infA sup�-
f(�;A) holds trivially. Hence sup� infA f(�;A) = infA sup� f(�;A) which
concludes the proof.

We present here an intuitive interpretation of this result.

Recall �rst that, as discussed in Page 207, in the expression sup� infA f(�;A),
Player(2) can be assumed to learn implicitly the strategy � chosen by Player(1).
Symmetrically, in the expression infA sup� f(�;A), Player(1) learns implicitly
the strategy A chosen by Player(2). Furthermore, as discussed after Equa-
tion 8.4, Page 206, the strict inequality sup� infA f(�;A) < infA sup� f(�;A)
means precisely that the outcome of the game is di�erent according to which
of the two players can thus learn its opponent's strategy.

If, by construction, Player(2) is informed explicitly of the strategy used by
Player(1), its knowledge is evidently una�ected by whether it furthermore
learns this fact implicitly (as in the expression sup� infA f(�;A)) or not (as
in the expression infA sup� f(�;A)). Let A0 be the strategy for Player(2)
informally described by \Wait for the disclosure of the strategy � selected
by Player(1). Then select an optimal strategy to be adopted for the rest of
the game." It is clear that A0 is an optimal strategy for Player(2). Assume
that Player(2) plays optimally and adopts this strategy and consider the case
where Player(1) learns implicitly that Player(2) uses strategy A0. We easily
see that this knowledge does not confer any advantage to Player(1): Player(1)
can only derive from it that, for every strategy � it elects, Player(2) chooses
a corresponding optimal strategy.
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This establishes that, when Player(2) is informed explicitly of the strategy
used by Player(1), Player(2) gains no additional advantage in learning im-
plicitly the strategy � used by Player(1); and that, in this case, Player(1)
gains similarly no advantage in being guaranteed that Player(2) uses its (op-
timal) strategy A0. This shows that, when Player(2) is informed explicitly
of the strategy used by Player(1), the outcome of the game is not a�ected
when one or the other player learns implicitly its opponent's strategy. As ar-
gued at the beginning of this discussion, this means that sup� infA f(�;A) =
infA sup� f(�;A) for every Strong Byzantine game.

As a short aside and to illustrate the generality of our proof methodology we show
that the complicated proof of given in [25] falls in the framework of the Strong
Byzantine case of the methodology. (In [25], Graham and Yao consider the Byzan-
tine Generals problem with 3 processes, one of which is faulty.)

By assumption Player(2) knows the algorithm � selected by Player(1). (This point
is never stated explicitly in [25]: the authors of [25] just mention that they \have
incorporated the capability for faulty processes to collude, to spy on all commu-
nication lines and to wait for messages transmitted by non-faulty processes in the
current round to arrive before making decisions on their own messages." Neverthe-
less the strategies �A; �B and �C of Player(2) are described in terms of �.) Hence,
as discussed in page 128, a strategy A of Player(2) is actually a family (A�)� and
does not depend on the choice of a speci�c �.

The performance function is de�ned to be

f(�;A)
def
= P�;A�

[good termination] ;

where P�;A�
is the probability on the set of executions induced by the algorithm

� and the adversary A� specially designed for � and associated to A. The event
good termination is a special event de�ned in terms of the game studied in [25].
The de�nition of f(�;A) shows immediately that f(�;A) = f(�;A0) if A� = A0�.
Furthermore, the set A of adversaries considered in [25] is by assumption stable
under reshu�ing. We are therefore in the Strong Byzantine setting of the general
methodology. We now summarize the proof presented in [25] and show that it follows
precisely our general methodology.

The proof of [25] is organized as follows. A speci�c algorithm �0 is �rst given

for which the quantity performance(�0)
def
= infA f(�0;A) is easily derived.1 A spe-

ci�c (but very complex) strategy A0 for Player(2) is then described. In order to

1This algorithm is actually called A 0 in [25]. We use �0 to be consistent with the rest of our
discussion.
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implement strategy A0,
2 Player(2) uses critically its knowledge of the strategy �

used by Player(1): at every point of the game (i.e., of the execution) Player(2)
selects its next move by emulating � under certain conditions. Working by in-
duction on the number of rounds of the algorithm � selected by Player(1), [25]
then shows that, for every �, f(�;A0) � performance(�0). This implies that

sup� f(�;A0) � performance(�0)
def
= infA f(�0;A). By Lemma 8.2.2, the converse

inequality sup� f(�;A0) � infA f(�0;A) is trivially true. Hence

sup
�
f(�;A0) = inf

A
f(�0;A);

which establishes the second point of our general proof methodology and therefore
proves that �0 is optimal.

A natural question is whether the two previous settings, although di�erent in form,
are truly di�erent. In slightly more precise terms, the question is whether the
existence of a proof of optimality of a given algorithm �0 in one of the two settings
implies the existence of a proof of optimality of �0 in the other setting.

The following argument tends to suggest a similarity between the two settings. (At
least when the performance function f(�;A) is equal to the expected value E�;A[T ] of
a random variable T : recall that the Von Neumann setting requires this condition.)

Let (G;�; A) be a game3 between Player(1) and Player(2) with a performance
function f . Consider all the possible modi�cations of this game obtained by provid-
ing Player(2) during the execution of the game with some information about the
strategy � followed by Player(1). All these di�erent games yield the same value
sup� infA f(�;A), because, as discussed in Page 207, Player(2) can be assumed
to learn implicitly the complete strategy � in the expression sup� infA f(�;A): re-
ceiving some complementary explicit information about � does not then raise its
knowledge. This shows that there is a whole spectrum of models for the adver-
sary and that to all of them is attached the same class of optimal algorithms. The
two settings presented above, the \Von Neumann setting" and the \Strong Byzan-
tine setting", correspond to two extreme situations where Player(2) receives only a
bounded number of bits of information about � in the course of an execution, and
where it receives the complete description of � at the very beginning of the game.
The argument above seems to suggest that the two settings are equally good to
establish the optimality of a randomized algorithm.

2More precisely, in order to implement A0;�, the adversary associated to A0 and specially de-
signed for �.

3See page 205 for a discussion on game theory.
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We now discuss two examples, the algorithm of [25], (again), and the scheduling
algorithm presented in Chapter 7. These examples reveal that the choice of the
setting actually inuences greatly the proof of optimality of a randomized algorithm.

Consider �rst the scheduling problem considered in Chapter 7. The performance
function f(�;A) considered is the expected value E�;A[T ] of a random variable T
called the survival-time. In this game, Player(2) does not know a priori the strategy
selected by Player(1). This is formally seen in the model presented in Section 7.2:
at each time t, the view of Player(2) contains the schedule s1; : : : ; st previously
selected by Player(1) but contains no additional information about the algorithm
� that generated that schedule. We prove that all the algorithms in the set Prog0
de�ned in page 151 are optimal. Our discussion above therefore shows that these
algorithms would similarly be optimal if Player(2) was endowed with the spying
capability and learned the strategy selected by Player(1) at the beginning of the
execution. Nevertheless, the proof that we present uses critically that Player(2)
does not have this capability: if Player(2) was modeled as knowing the algorithm
�, our Lemma 7.3.2 would not be true and all the results of Section 7.6 would not
hold anymore.

We consider now the Byzantine Generals problem of [25] and show that, in contrast
to the previous example, both the Strong Byzantine setting and the Von Neumann
setting can be used to formalize the proof given by Graham and Yao.

The performance function f(�;A) considered in [25] is the probability of termination
with agreement on a correct value when Player(1) selects selects the algorithm �

and Player(2) plays according to the strategy A. A probability being a special
case of an expected value, the performance function f(�;A) is the expected value
E�;A[T ] of some variable schema4 T .

We argued on page 130 that Graham and Yao use the strong byzantine setting in
their proof: their Player(2) uses as a black box the algorithm � chosen by Player(1)
in order to generate its own outputs in the course of the execution. Nevertheless an
even more careful reading of their proof reveals that Player(2) does not need the
full knowledge of � but just needs to have access to �nitely many values produced
by �. Hence we could consider a setting where, by convention, Player(1) would
provide Player(2) with those values: in that case Player(2) would need no additional
knowledge about �. As argued above on page 131, in this modi�ed game { where
Player(1) gives some partial information about its strategy { the algorithm �0 of [25]
is still optimal. But we are now in the Von Neumann setting (when analyzing
algorithms terminating in �nitely many rounds).

4The de�nition of a variable schema is given in De�nition 2.4.1.
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We have thus argued that, by reducing the information transmitted to Player(2)
from the complete description of � to only �nitely many bits of information we
could adapt the proof of [25] given in the Byzantine setting into one given in the
Von Neumann setting. We could go further and consider the case where Player(1)
does not cooperate with Player(2) and provides Player(2) with no information about
its strategy (except for what can be \naturally" deduced from an execution). The
discussion given above on page 130 shows as before that the algorithm �0 of [25] is
still optimal. Nevertheless, in this case, the proof of [25] does not apply and it is
not clear at all how a direct proof would then proceed.

These two examples show that the choice of setting is far from innocent and inu-
ences greatly the proof of optimality of a randomized algorithm. We present in the
next theorem a result establishing formally that the two settings are in some cases
incompatible.

Theorem 6.0.1 Let P be a problem, let � be the set of randomized algorithms
solving P and A be the set of adversaries. Assume that � contains more then
one element. Assume also the interaction between the two players modeled to allow
Player(2) to know the algorithm � under use. Then the Von Neumann setting cannot
be used to model the interaction between Player(1) and Player(2).

Proof. Note �rst that the Von Neumann setting applies only if the sets � and
A of strategies contain all the convex combinations of their elements: for every
strategies �1 and �2 in �, for every non-negative numbers �1 and �2 summing to
one, �1�1+�2�2 is also in �. (Recall that, by de�nition, in the Von Neumann setting,
the strategies �1 and �2 are probability distributions so that the linear combinations
�1�1 + �2�2 are well de�ned.) Hence, in the case where the Von Neumann setting
applies, the set � is either a singleton or an in�nite set. (The case where � is
a singleton is a degenerate case where Player(1) has only one strategy, which is
trivially optimal.5)

Also, in the case where the Von Neumann setting applies, a single probability space
(
;G) can be used to analyze the probabilistic behavior of all the pairs (�;A) of
algorithm and adversary. This probability space can be chosen to be the product
space 
 = I�J endowed with its complete �-�eld G = 2
: 
 and G are both �nite.

In the general case, we saw in Chapter 2 that the construction of an adequate
probabilistic structure is more complicated and yields a possibly di�erent space
(
�;A;G�;A) for every pair (�;A). Consider the case, where, as when the Von Neu-
mann setting applies, a single space (
;G) is used for all the pairs (�;A). The sample

5Remember that all this discussion is geared at �nding an optimal algorithm!
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space 
 must contain a di�erent element ! for each possible execution i.e., for each
sequence of actions (act1; act2; act3; : : :) arising from the game played by Player(1)
and Player(2).

Assume the interaction between Player(1) and Player(2) modeled to allow Player(2)
to know the algorithm � under use. Therefore, by assumption, in every execu-
tion, there must be a move (or a sequence of moves), speci�c to �, undertaken by
Player(1), and informing Player(2) of the strategy � chosen.

Working by contradiction, assume that we could use the Von Neumann setting to
model the game between Player(1) and Player(2). This means that the set � can
be represented as a set of probability distributions on a given �nite set I , and that,
similarly, the set A can be represented as a set of probability distributions on a
given �nite set J (and that the performance f(�;A) is the expected value E�;A[T ]
of a random variable T ). In that case the sample space 
 is equal to I � J and is
therefore �nite.

On the other hand, as discussed above, in that case, the set � must be in�nite.
As in each execution Player(1) informs Player(2) of its strategy �, the set of dif-
ferent executions must therefore also be in�nite. This implies that 
 is in�nite, a
contradiction. �



Chapter 7

An Optimal Randomized

Algorithm

In this chapter we consider the scheduling problem studied in Chapter 5 but al-
low algorithms to use randomness. The terms protocol and algorithm are synony-
mous but for notational emphasis we favor here the use of protocol: the notations
�; �; P�;Pgenerating will refer to protocols whereas the notations A;A; PA, Agen-
erating will refer to adversaries.

Using the general model presented in Chapter 2 we construct a �/A-structure as-
sociated to the scheduling problem. This allows us to characterize very precisely
the optimization problem. We provide a speci�c randomized protocol and give a
completely formal proof of its optimality.

This proof is to our knowledge the �rst completely formal proof of optimality of
a randomized algorithm.1 This chapter should therefore illuminate the power and
relevance of the model presented in Chapter 2.

7.1 The Scheduling Problem

7.1.1 Description of the problem

We recall quickly here the setting of the problem. m;n and p are three non-negative
integers such that 1 � m < n � p.

1The proof given by Graham and Yao in [25] still needs some �ne tuning...
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� p is the total number of processors available.

� n is the number of processors that are necessary to con�gure the system: at
each time n processors are in operation.

� We assume that a processor can become faulty only when in operation and
that faults occur one at a time. We also assume that no repairs are available.
m is the resiliency parameter of the system: the system functions as long as
the set of n processors selected does not include more thenm faulty processors.
The system crashes as soon as the set of n processors currently in use includes
at least m+ 1 faulty processors.

We de�ne the discrete time t of an execution to be the execution point at which the
t-th fault occurs. In the sequel, we write time instead of discrete time.

We consider the blind situation where, during an execution, the scheduler is informed
of the occurrence of a fault whenever one occurs, but does not get any additional
information about the location of this fault. Upon noti�cation of a fault the sched-
uler recon�gures the system. We let s1 denote the set of n elements selected for
the �rst time and, for t � 2, we let st denote the set of n elements selected after
report of fault t � 1 (i.e., after time t � 1). We also let f1, (f1 2 s1), denote the
location of the �rst fault and generally we let ft, (ft 2 st), denote the location
of the t-th fault. For the sake of modeling we say that the sequence f1; f2; : : : ; is
decided by an entity called the adversary. The purpose of this work is to �nd a
scheduling protocol guarantying the best expected survival time against worst case,
on-line adversaries. This means that, when selecting the t-th location of fault ft,
the adversary \knows" the whole past s1; f1; s2; f2; : : : ; st. We can equivalently say
that, for each t, the adversary \receives the information" of what the choice st of the
scheduling protocol is before deciding what the next fault is. Note that, by contrast,
expressed in this language of on-line information, the assumption that the protocol
is blind means that, for each t, the scheduling protocol \receives no information"
about the choices previously made by the adversary before deciding itself what the
set st is. We will provide in Section 7.2 a formal setting allowing to interpret these
notions of knowledge.

7.1.2 Interpretation using game theory

The purpose of this section is to present some intuition for the formal model pre-
sented in Section 7.2. Some notions as the notion of actions, internal and external,
that we introduce in the course of the discussion are not presented formally but
should be clear from the context.
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Following the methodology outlined in Chapters 2 and 6 we describe the scheduling
problem presented in Section 7.1.1 as a game played between two players Player(1)
and Player(2). We will refer to this game as the \scheduling game". In this setting,
a protocol is a strategy of Player(1) and an adversary is a strategy of Player(2):
Player(1) is called the protocol-designer and Player(2) is called the adversary-
designer. The game played by the two players follows the rules of the scheduling
problem described in Section 7.1.1: Player(1) plays �rst, chooses s1 and informs
Player(2) of its decision. Player(2) then plays and selects f1 in s1. No informa-
tion is conveyed from Player(2) to Player(1). More generally, in the t-th round,
Player(1) selects a set st and informs Player(2) of its choice; Player(2) then plays
and selects an element ft in st. We adopt the model where Player(2) does not know
explicitly the strategy � followed by Player(1). 2 (In the model where Player(2)
knows explicitly the strategy � followed by Player(1), Player(1) \sends a message"
informing Player(2) of the strategy selected by Player(1).)

As discussed in Chapter 6, Page 134, for every protocol � and for every adver-
sary A the sample space 
 must contain a di�erent ! for each possible execution
i.e., for each sequence of actions (act1; act2; act3; : : :) undertaken in the game played
by Player(1) and Player(2) when following the rules of the scheduling game. Some
care has to be devoted to characterize the actions that we here consider. A speci�c
protocol (or adversary) can be implemented in various ways, each of them having
speci�c internal actions. Nevertheless, internal actions are irrelevant for the per-
formance analysis of a protocol: the performance analysis of a protocol is solely
measured in terms of its external actions, i.e., the speci�c actions it undertakes as
prescribed by the rules of the game. In a �gurative sense, we treat a protocol (resp.
an adversary) as a black box and only analyze its external actions.

In our scheduling game and in the model where Player(2) does not know the strategy
� followed by Player(1), the external actions undertaken by Player(1) are the suc-
cessive choices of a set st and communications to Player(2) of the choice last made.
To simplify the discussion we will omit explicit reference of the communication be-
tween Player(1) and Player(2) and implicitly assume that this communication is
systematically (and instantaneously) performed at each selection of a set st. Simi-
larly, the external actions undertaken by Player(2) are the successive choices of an
element ft in the set st last selected by Player(1). To simplify further the discus-
sion we will abuse language and speak of the actions st and ft in place of \choice
of st" and \choice of ft". The assumption m < p clearly implies that the system
cannot survive more then p faults. We can therefore restrict our analysis to the

2See Section 8.3 and Chapter 6 for a presentation of the notions of explicit/implicit knowledge.
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times t = 1; : : : ; p. From this discussion we deduce that the sample space



def
=
�
(s1; f1; : : : ; sp; fp); st 2 Pn(p); ft 2 st; 1 � t � p

	
is big enough for the probabilistic analysis.

This de�nition is in conformity with the general construction given on page 41 of of
Chapter 2. For every protocol � and every adversary A we de�ned there


�;A = f! ; ! is a (�;A)-executiong;

where
! = a1 (s1; x1; y1)| {z }

Player(2)

a2 (s2; x2; y2)| {z }
Player(1)

a3 (s3; x3; y3)| {z }
Player(2)

: : :

The discussion given on page 42 shows that, for every t, (st; xt; yt) is a deterministic
function of a1; : : : ; at so that, from a probabilistic point of view, an execution can
equivalently be de�ned to be the sequence a1; a2; : : : This is the de�nition adopted
in this chapter.

We have so far informally de�ned protocols and adversaries to be the strategies of
Player(1) and Player(2), respectively. We now discuss how these notions can be
formalized, beginning with the notion of adversary. Our construction is a direct
application of the general construction given in Chapter 2.

We de�ne an adversary to be a family of probability distributions (Qv)v2V , one
for each v in V : V is the set of all the possible views that Player(2) can have of
the system at any time of the game i.e., at any time of the execution. (We will
make this more explicit in Section 7.2.) For every element f , the quantity Qv(f)
represents the probability that Player(2) chooses f if its view of the system is v.
Note that, according to the general presentation made in Chapter 2, we should de�ne
an adversary to be a family of probability spaces (
v;Gv; Pv)v2V . Nevertheless we
can take all the measurable spaces (
v;Gv) to be equal to (f1; : : : ; Ng; 2f1;:::;Ng).
This allows us to omit mentioning (
v;Gv) in the de�nition of the adversary.

Note that a family (fv)v2V , i.e., the choice of an element fv for each view v in V ,
corresponds to a decision tree of Player(2).3 As the number of rounds of a game is
bounded and as, at each round, the number of di�erent actions of both players is
also bounded, the number of decision trees of Player(2) is similarly bounded. In this
case it is easy to see that the set of strategies of Player(2), i.e., the set of families

3Actually a decision tree corresponds to a \weeded out" family (fv)v2V 0 , where V
0 is a maximal

subset of V having the property that each view v in V 0 is compatible with the choices fw made
previously by the player. Nevertheless, the extension to the set of all views is inconsequential and
we adopt for simpli�cation this characterization of a decision tree.
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(Qv)v2V , is in one-to-one correspondence with the set of probability distributions
on decision trees.

We could therefore equivalently de�ne an adversary to be a probability distribution
on the set of decision trees (of Player(2)). We say that the de�nition in terms of a
family (Qv)v2V adopts the local point of view whereas the de�nition in terms of a
decision tree adopts the global point of view. Let us emphasize that the equivalence
of these two points of view depends on the �niteness of the number of decision trees.4

Following the same model for Player(1) we could de�ne a protocol to be a family
(Pu)u2U of probability distributions, one for each possible view u that Player(1) can
have of the system at any time of the game.5 Nevertheless, as by assumption the
protocol receives no information from the adversary, we �nd it easier to adapt the
global point of view: in this case a decision tree (of Player(1)) is simply a sequence
(s1; : : : ; sp) in Pn(p). We therefore de�ne a protocol to be a probability distribution
on Pn(p).

Note that the distinction between protocol and protocol-designer (resp. between
adversary and adversary-designer) is often not kept and we refer to properties of
the protocol (resp. the adversary) that should be more properly attributed to the
protocol-designer (resp. the adversary-designer). A case where both points of views
are equally valid is when we refer to the decisions done by the protocol or by the
protocol-designer: the protocol is the strategy used by the protocol-designer for its
decision making. By contrast, when speaking of \the knowledge held by the adver-
sary" or of \the information received by the adversary" we should more correctly
speak of the knowledge held by the adversary-designer: by de�nition, an adversary
A is a family (Qv)v of probability distributions which receives no information. On
the other hand, Player(2), the adversary-designer, does receive some information
during an execution and uses this information as prescribed by its strategy A.

4This duality is well known, but not everyone realizes the caveat about �niteness. For instance
Hart et al. say in [29] and we quote: \There are two main ways of introducing randomizations ...
The �rst consists of a random choice of the next process at each node of the execution tree ... The
second way consists of taking a probability distribution over the set of deterministic [executions]
(i.e., make all the random decisions a priori.) ... It is easy to see that the �rst case (independent
randomization at each decision node) is a special case of the second one (by doing all randomizations
at the start!)" Note though that, in the case of in�nite executions, it is not trivial to convert \the
�rst way" into \the second way". This is actually the heart of the problem in the construction of
the probability distribution PA given on page 41.

5As previously for the adversary, note that, according to the general presentation made in
Chapter 2, we should actually de�ne a protocol to be a family of probability spaces (
u;Gu; Pu)u2U .
Nevertheless we can take all the measurable spaces (
u;Gu) to be equal to (Pn(p); 2

Pn(p)g). This
allows us to omit mentioning (
u;Gu) in the de�nition of the adversary.
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As is established in Chapter 2, a given strategy � of Player(1) and a given strategyA
of Player(2) de�ne a unique probability distribution P�;A on the set 
 of executions.
We will give a precise characterization of P�;A in Section 7.2. We will also de�ne
there formally the random variable T representing the survival time. With these
notions, the optimal expected survival time achievable against every adversary is

sup
�

inf
A
E�;A[T ] :

Note that we adopt here the Von Neumann setting described in Chapter 6: for each
of the two players the set of pure strategies is the �nite set of decision trees of that
player. Hence, by Von Neumann's theorem, (see Theorem 8.3.2),

sup
�

inf
A
E�;A[T ] = inf

A
sup
�
E�;A[T ] ;

and the general proof methodology described in Chapter 6, Page 127, applies. Our
proof will follow this methodology.

The rest of the chapter is organized as follows. In Section 7.2 we formalize the
previous discussion and construct the probabilistic model used in the subsequent
sections. In Section 7.3 we de�ne for every � and A two pseudo-probability dis-
tributions P� and PA which play a crucial role in the proof. (The denomination
\pseudo-probability distribution" refers to the fact that P� and PA are not prob-
ability distributions but that, as is asserted in Lemma 7.3.4, some \conditional"
variants of them are well de�ned probability distributions.) Section 7.4 describes
a class Prot (Prog0) of protocols �0 and an adversary A0. The main result of this
chapter which is presented in Theorem 7.4.6 asserts that �0 and A0 verify point 2 of
the methodology given in Page 127, and hence that every protocol �0 2 Prot (Prog0)
is optimal:

sup
�
E�;A0 [T ] = E�0;A0 [T ] = inf

A
E�0;A[T ] :

The proof of this theorem is the object of the rest of the chapter. Section 7.5 presents
some random variables that are fundamental for the proof. Section 7.6 establishes
that sup� E�;A0 [T ] = E�0;A0 [T ]. Similarly, Section 7.7 establishes in essence that
infAE�0;A[T ] = E�0;A0 [T ].
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7.2 The Probabilistic Model

We formalize here 1) the notions of protocol and adversary and 2) the probability
spaces that will be used in the subsequent analyses. Recall that a protocol is a
strategy of Player(1) and that, similarly, an adversary is a strategy of Player(2).

For every t; 1 � t � p , a sequence � = (s1; s2; : : : ; st) in Pn(p)
t
is called a t-schedule

and a sequence � = (f1; : : : ; fp) of elements of [p] is called a t-fault-sequence. A
t-fault-sequence � is adapted to a schedule � if fj 2 sj for all j; 1 � j � t, and if, for
all j, the condition sj 6� ff1; : : : ; fj�1g implies that fj 2 sj � ff1; : : : ; fj�1g.

A t-execution is an alternating sequence ! = (s1; f1; s2; f2; : : : ; st; ft) obtained from
a t-schedule (s1; : : : ; st) and a t-fault-sequence (f1; : : : ; ft) adapted to (s1; : : : ; st). A
t-odd execution is a sequence ! = (s1; f1; s2; f2; : : : ; st) obtained from a t-schedule
(s1; : : : ; st) and a t � 1-fault-sequence (f1; : : : ; ft�1) adapted to (s1; : : : ; st�1). For
simplicity, we use the term execution in place of p-execution.

We de�ne the sample space 
 to be the set of all executions: 

def
= f!; ! executiong:

We endow 
 with its discrete �-�eld G
def
= 2
:

We now de�ne various random variable on (
;G). Throughout, random variables
are denoted by upper-case and their realizations by lower-case. For all t; 1 �
t � p, St and Ft are de�ned by St(!) = st, and Ft(!) = ft: This allows us to
de�ne the derived random variables St = (S1; : : : ; St), Ft = (F1; : : : ; Ft) and Et =
(S1; F1; : : : ; Ft�1; St). St, Ft, and Et are respectively the random t-schedule, the
random t-fault sequence and the random t-odd-execution produced up to time t.

We also let Gt
def
= �

�
S1; F1; : : : ; St; Ft

�
and G0t

def
= �

�
S1; F1; : : : ; St+1

�
be the �-�elds

of events \happening no later" then the selection of ft and st+1, respectively.

We now de�ne protocols and adversaries. As recalled in the previous section, the
protocols and the adversaries are the strategies of Player(1) and Player(2) taking
random steps in turn and sending information to the other player at the end of each
step. The probability distribution used for this step depends on the view of the
system held by the player. In our speci�c problem, Player(2) is informed of all the
moves of Player(1), (but nothing else about the protocol � selected by Player(1)),
whereas Player(1) learns nothing from and about Player(2). We adopt the local
point of view to describe an adversary and the global point of view to describe a
protocol.6

Hence, an adversary A is a family of probability distributions (Qv)v2V on [p], one
for each t; 1 � t � p and each t-odd-execution v = (s1; f1; : : : ; ft�1; st) and such

6See page 139 for a de�nition of the local and of the global point of views.
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that, with Qv-probability one, (f1; : : : ; ft) is adapted to (s1; : : : ; st).

A scheduling protocol � is a probability distribution on Pn(p)
p
.

As is established in Section 2.4, there is a unique and well de�ned probability dis-
tribution P�;A induced on the set of executions by a given protocol � and a given
adversary A. For the sake of illustration, we give an explicit characterization of P�;A
in the next proposition.

Proposition 7.2.1 Let � and A = (Qv)v2V be a protocol and an adversary as
de�ned above. Then there is a unique and well de�ned probability distribution P�;A
on (
;G) satisfying the following two properties:

i P�;A
h
Sp = �

i
= �.

ii For every t; 1 � t � p, every t-execution v = (s1; f1; : : : ; ft�1; st), and every
(p�t)-schedule (st+1; : : : ; sp) such that �(s1; : : : ; sp) > 0 and Qs1(f1)Qs1f1s2(f2)
Qs1f1s2:::st�1(ft�1) > 0, we have:

P�;A
h
Ft = � j Et = v; (St+1; : : : ; Sp) = (st+1; : : : ; sp)

i
= Qv :

Property i formalizes the fact that the protocol receives no on-line information
and makes its decisions in isolation. Property ii formalizes the fact that the ad-
versary is on-line and selects Ft based on the sole knowledge of the past odd-
execution Et, independently of the schedule (St+1; : : : ; Sp) selected for subsequent
times. Using Convention 8.1.1 we extend the de�nition of the conditional probabil-

ity in ii and set P�;A
h
Ft = �

��� Et = v; (St+1; : : : ; Sp) = (st+1; : : : ; sp)
i
= 0 whenever

Qs1(f1)Qs1f1s2(f2)Qs1f1s2:::st�1(ft�1) = 0.

Proof. Let ! = (s1; f1; s2; f2; : : : ; sp; fp) be a generic execution in 
 and, for
every t, let !t = (s1; f1; : : : ; st) be the associated t-odd-execution. By successive
conditioning we can write

P�;A(!) = P�;A
h
Sp = (s1; : : : ; sp)

i
P�;A

h
F1 = f1 j E1 = !1;S2;p = (s2; : : : ; sp)

i
: : :

: : :P�;A
h
Fp�1 = fp�1 j Ep�1 = !p�1; Sp = sp

i
P�;A

h
Fp = fp

��� Ep = !p
i
;

so that we see that the conditions i and ii imply that, if it exists, P�;A(!) must be
equal to

P�;A(!) = �[(s1; : : : ; sp)]
pY
t=1

Q!t(ft) :
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We easily check that P�;A thus de�ned is additive and that P�;A(
) = 1. As G is
�nite, the �-additivity of P�;A holds trivially. Hence P�;A is a well de�ned probability
measure. �

We have therefore de�ned the family of probability distributions (P�;A)�;A on the
same space (
;G). In situations di�erent from our scheduling problem, such a
modeling is in general not possible and a di�erent probability space (
�;A;G�;A)
must be associated to each couple (�;A). Also, in the case of in�nite executions,
the construction of a measure P�;A is a non-trivial probability problem requiring the
use of an extension theorem (e.g., Kolmogorov's extension theorem). We presented
the general construction in Section 2.4 of Chapter 2 when the the coins of both
players have at most countably many outcomes.

We can now set up formally the optimization problem presented in Section 7.1.
The survival time is de�ned to be the random variable T = maxft; 8u � t; jSu \
fF1; : : : ; Fugj �mg: For every protocol �, let t(�) = infAE�;A[T ] be the worst case
performance of �. We let

topt = sup
�
t(�) = sup

�
inf
A
E�;A[T ] :
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7.3 Some Speci�c Probability Results

7.3.1 A formal interpretation of the on-line knowledge of the ad-
versary

We begin this section by presenting a lemma expressing that, for every protocol and
every adversary, conditioned on the past, the selection Ft made by the adversary at
time t is independent of the choices St+1; : : : ; Sp made for ensuing times by the pro-
tocol. This shows that the de�nitions of a protocol and of an adversary given in the
previous section formalize accurately the on-line nature of the information received
by the adversary: eventhough a protocol decides the whole schedule s1; : : : ; sp at
the beginning of the execution, the adversary does not get to see each decision st
before time t. (As mentioned in Section 7.1.2, Page 139, a more correct statement
is \the adversary-designer does not get to see each decision st before time t".)

Lemma 7.3.1 Let � be a protocol, A be an adversary, t; t � p� 1, be a time and v
be a t-odd-execution such that P�;A[Et = v] > 0. Then the random variables Ft and
St+1;p are independent with respect to the measure P�;A when conditioned on Et = v.

Proof. This is a direct consequence of Proposition 7.2.1: by Condition bf ii, for
every p�(t+ 1)-schedule �, for all v and �,

P�;A
h
Ft = � j Et = v; St+1;p = �

i
= P�;A

h
Ft = � j Et = v

i
:

This expresses exactly the independence of Ft and St+1;p conditioned on Et = v. �

7.3.2 The Notations P� and PA

The next two de�nitions De�nition 7.3.1 and De�nition 7.3.2 introduce the family
of protocols that select with non-zero probability a given t-schedule, and the family
of adversaries that select with non-zero probability a given t-fault sequence. The as-
sociated lemmas, Lemma 7.3.2 and Lemma 7.3.3 introduce and justify the notations
P� and PA. These two lemmas will be fundamental in our proofs for the following
reasons. We will introduce one (family of) algorithm �0 and an adversary A0. In
one part of the proof we will establish that �0 is optimal against A0. Throughout
this part we will consider only the adversary A0. Lemma 7.3.2 will allow us to
consider the unique expression PA0 instead of the family (P�;A0)�2�. This will make
the analysis much simpler as the optimization over � will not involve the probability
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measure. Symmetrically, in the second part of the proof we will in essence estab-
lish that A0 is optimal against �0. In this part we will need to consider only the
expression P�0 instead of the family (P�0;A)A2A.

De�nition 7.3.1 Let (s1; : : : ; st) be some t-schedule. Then

Pgenerating (s1; : : : ; st)
def
=
n
�; 9(st+1; : : : ; sp); �[(s1; : : : ; sp)] > 0

o
:

As just mentioned, the next Lemma provides the fundamental technical tool that will
allow us to handle conveniently all the probabilistic expressions required in the proof
of Lemma 7.4.7 { the proof that �0 is optimal against A0.

7 Similarly, Lemma 7.3.3
will provide the probabilistic tool required in the proof of Lemma 7.4.8 { the proof
that A0 is optimal against �0.

Lemma 7.3.2 Let t, 1 � t � N and let � = (s1; : : : ; st) be a t-schedule. Let � 2 Gt.
Then, for every adversary A,

P�;A [� j St = �]

is independent of the protocol � 2 Pgenerating (�). We let

PA [� j St = �]

denote this common value.

Following Convention 8.1.1, P�;A [� j St = �] is set to zero if � 62 Pgenerating (�).

Proof. Let � be any protocol in Pgenerating (�) and let A = (Qv)v2V be a given
adversary. Recall that, by de�nition, (see page 141), Gt = �(S1; F1; : : : ; St; Ft):
Thus, an event � is in Gt if and only if there exists a boolean random variable �
depending on ! only through the random variables (S1; F1; : : : ; St; Ft), (i.e., �(!) =
 (S1(!); : : : ; Ft(!)) for some real random variable  ), such that � =

�
! ; �(!) = 1

	
.

We have:

P�;A
h
� j St = �

i
= E�;A

h
� j St = �

i
7Both �0 and A0 are de�ned in Section 7.4.
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=

�X
f1

P�;A
h
F1 = f1 j St = �

i X
f2

P�;A
h
F2 = f2 j St = �; F1 = f1

i
: : :

: : :
X
ft

P�;A
h
Ft = ft j St = �; F1 = f1; : : : ; Ft�1 = ft�1

i�
 (s1; f1; : : : ; st; ft)

=
X
f1

Qs1

�
f1
� X

f2

Qs1;f1 ;s2

�
f2
�
: : :

X
ft

Qs1;f1;:::;st

�
ft
�
 (s1; f1; : : : ; st; ft) :

This last expression is independent of the protocol �, as needed. �

The following de�nition describes the set of adversaries that generate with non zero
probability a given fault sequence. Note that, by Lemma 7.3.2, PA[Ft = � j St = �]
is itself well-de�ned.

De�nition 7.3.2 Let � be a t-schedule, and � a t-fault sequence adapted to �. Then

Agenerating �(�)
def
=
n
A; PA

�
Ft = �

�� St = �
�
> 0

o
:

Lemma 7.3.3 Let t, 1 � t � p, let � be a t-schedule, � be a t-fault sequence adapted
to � and Let � be an event in G0t. Then, for every protocol � 2 Pgenerating (�), the
expression

P�;A [� j St = �;Ft = �]

is independent of the adversary A 2 Agenerating �(�). We let P� [� j St = �;Ft = �]
denote this common value.

Proof. The proof closely follows that of Lemma 7.3.2. We write � = (s1; : : : ; st)
and � = (f1; : : : ; ft). By assumption, there exists a boolean random variable � de-
pending on ! only through the random variables (S1; F1; : : : ; St; Ft; St+1), (i.e., �(!) =
 (S1; F1; : : : ; St; Ft; St+1)(!)) for some real random variable  ), such that � =
f! ; �(!) = 1g. Let � be a protocol in Pgenerating (�) and A = (Qv)v2V be
an adversary in Agenerating �(�). We let P�

�
St+1 = st+1 j St = �

�
denote the con-

ditional probability (
P

� �[(�t; st+1; �)])=(
P

�0 �[(�t; �
0)]) where the �rst summation

is over all p� (t+ 1)-schedules � and the second over all p� t-schedules �0. Then:

P�;A
�
� j St = �;Ft = �

�
= E�;A

�
� j St = �;Ft = �

�
=

X
st+1

P�
�
St+1 = st+1 j St = �

�
 (s1; f1; : : : ; st; ft; st+1) :

This last expression is independent of the adversary A used and this concludes the
proof. �
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Lemma 7.3.4 Let t be a time, 1 � t � p. Let � be a t-schedule and A be an adver-
sary. Then PA[ � j St = �] is a probability distribution on (
;Gt). Similarly, if � is
a t-schedule, � a t-fault sequence adapted to � and � a protocol in Pgenerating (�),
then P� [ � j St = �; Ft = �] is a probability distribution on (
;G0t).

Proof. PA[ � j St = �] is de�ned on (
;Gt) to be equal to P�;A[ � j St = �] for
any � 2 Pgenerating (�) and is therefore a well de�ned probability distribution (on
(
;Gt)). Similarly, P�[ � j St = �; Ft = �] is de�ned on (
;G0t) to be equal to
P�;A[ � j St = �; Ft = �] for any A 2 Agenerating �(�) and hence is a well de�ned
probability distribution on (
;G0t). �

Note: In spite of its apparent simplicity, Lemma 7.3.2 answers a subtle point il-
lustrating the di�erence between implicit and explicit knowledge that we quickly
recall.8

In order to compute the optimal survival time topt = sup� infAE�;A[T ] we are led
to consider the performance values t(�) = infAE�;A[T ] associated to all protocols
�. In the previous formula the in�mum is taken over all adversaries for a given
�. A common interpretation of this fact is that the optimal adversary \knows"
the protocol: this consideration entitled us to assume an o�-line adversary in the
deterministic case. Hence, such an adversary is provided with:

� the on-line information of the past schedule. At every time t, we can picture
that an explicit message is relayed to the adversary to inform it of the set st
last selected by the protocol.

� the o�-line information of the protocol � that A is associated with: this infor-
mation is implicitly provided to an optimal adversary.

These two notions of knowledge are very di�erent, and Lemma 7.3.2 would not hold
if we assumed that the adversary was provided with the explicit knowledge of �
and was able to use this information in the selection of the elements F1; : : : ; Fp.
For instance, consider the case where p = 3; n = 2 and m = 1. Consider a greedy
adversaryA, selecting at each time t a processor Ft so as to maximize the probability
that Ft is in St+1. Assume that s1 = f1; 2g. Consider two di�erent protocols �1 and
�2. Assume that protocol �1 always selects s2 = f1; 3g whereas �2 always selects
s2 = f2; 3g. If A knows the protocol it is associated with, A selects F1 = 1 with
probability one when associated with �1, and selects F1 = 2 with probability one

8These notions are presented in Page 207.
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when associated with �2. Hence, in this case, the probability

P�;A [F1 = 1 j S1 = f1; 2g]

is not independent of the protocol � considered, even though the event fF1 = 1g is
clearly in the �-�eld G1.

Hence Lemma 7.3.2 would not be true, had we assumed, as in [25], that the ad-
versary \knew" the protocol. Recall that, as is argued in Page 131, this change of
model only a�ects the way the adversary is de�ned and interacts with the proto-
col. In particular, it does not a�ect the class of optimal protocols. Nevertheless, as
Lemma 7.3.2 is crucial for the proofs given in Section 7.6, our proof of optimality
would not carry over in the Strong Byzantine setting.

7.3.3 Applications of the de�nition of PA and of P�

Lemma 7.3.5 For all j and t, j � t, all t-schedules � and all adversaries A,
PA
�
Fj 2 �

�� St = �
�
and PA

�
T � t

�� St = �
�
are well de�ned probabilities.

Similarly, if � is a t-schedule in Nt, � a t-fault-sequence adapted to � and � a
protocol in Pgenerating (�), then P�

�
T � t + 1

�� St = �; Ft = �
�
is a well de�ned

probability.

Proof. The random variable Fj is clearly Gt-measurable for all j; 1 � j � t (by
de�nition of Gt!). Hence the �rst result is a simple application of Lemma 7.3.2. On
the other hand we can write

fT � tg =
t\

j=1

n
jSj \ fF1; : : : ; Fjgj � m

o

=
t\

j=1

n
jSj \ fF1; : : : ; Fj�1gj � m� 1

o
:

For all j, the event
�
jSj \ fF1; : : : ; Fj�1gj � m� 1

	
is clearly in G0j�1 � G

0
t�1 � Gt.

Hence fT � tg is also in Gt and Lemma 7.3.2 again shows that PA
�
T � t

�� St = �
�

is a well de�ned probability. Similarly fT � t+1g is in G0t so that, by Lemma 7.3.3,
P�
�
T � t + 1

�� St = �; Ft = �
�
is a well de�ned probability. �

The following lemma expresses that, conditioned on St�1 = �, the events St = s

and T � t� 1 are independent with respect to the measure PA (i.e. with respect to
any measure P�;A).
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Lemma 7.3.6 For every t; 2 � t � N , every t� 1-schedule � and every s 2 Pn(p),

PA
�
T � t� 1

�� St = (�; s)
�
= PA

�
T � t� 1

�� St�1 = �
�
:

Proof. Note �rst that, by Lemma 7.3.5, the quantities involved in the previous
equality are well de�ned.

PA
h
T � t� 1

��� St�1 = �; St = s
i

= PA
h t�1\
u=1

n
Su \ fF1; : : : ; Fu�1g = ;

o ��� St�1 = �; St = s
i

= PA
h t�1\
u=1

n
su \ fF1; : : : ; Fu�1g = ;

o ��� St�1 = �; St = s
i
:

By Lemma 7.3.1, conditioned on St�1 = �, the random variables (F1; : : : ; Ft�1)
and St are independent. Hence, conditioned on St�1 = �, the events \t�1

u=1

�
su \

fF1; : : : ; Fu�1g = ;
	
and fSt = sg are similarly independent so that

PA
h t�1\
u=1

n
su \ fF1; : : : ; Fu�1g = ;

o ��� St�1 = �; St = s
i

= PA
h t�1\
u=1

n
su \ fF1; : : : ; Fu�1g = ;

o ��� St�1 = �
i
:

This establishes our claim. �

The following de�nition characterizes the schedules � which allow the system to
survive with non-zero probability.

De�nition 7.3.3 Let � be a t-schedule such that sup� P�;A
h
St = �; T � t

i
> 0: We

then say that � is an A-feasible t-schedule and we denote this by:

� 2 FeasA:

Remarks:

1. Using Convention 8.1.1 we see that � 2 FeasA if and only if sup� P�;A[T � t j
St = �] > 0 i.e., if PA[T � t j St = �] > 0 :

2. We will provide in Corollary (7.6.2) a pure combinatorial characterization of
FeasA0 for the adversary A0 de�ned in De�nition 7.4.1, page 163.



150 Chapter 7. An Optimal Randomized Algorithm

7.4 Description of a Randomized Scheduling Algorithm

For the rest of this chapter we restrict ourselves to the case m = 1, i.e., when the
system can sustain one fault but crashes as soon as at least two of the n processes
are faulty. We provide a family of protocols and prove their optimality.

7.4.1 Description of the program

We formally de�ned a protocol to be a probability distribution on Pn(p)
p
. In place of

a single protocol �0 we present here a family Prog0 of programs not only outputting
random schedules (S1; : : : ; Sp) in Pn(p)

p but making also other, internal, random
draws. For the sake of clarity we distinguish between a program and the protocol
associated to it, i.e., between a program and the probability distribution of the
random schedule (S1; : : : ; Sp) that it generates. For every program prog in Prog0 we
let �prog denote the associated protocol. We also let Prot (Prog0) denote the family
of protocols derived from Prog0:

Prot (Prog0) = f�prog; prog 2 Prog0g:

In the code describing Prog0 we use statements of the kind X := uniform(a;A) and
X := arbitrary(a;A). We call these statements randomized invocations. For
every set A and integer a; a � jAj, the statement X := uniform(a;A) means that
the set X is chosen uniformly at random from Pa(A) i.e., from among all subsets of
A of size a. Similarly, for every set A and integer a; a � jAj, the statement X :=
arbitrary(a;A) means that the set X is chosen at random { but not necessarily
uniformly { from Pa(A). The probability distribution used for this random selection
is arbitrary and depends on the values returned on the past previous randomized
invocations done by the program. This means that, for every t, the probability
distribution used for the t+ 1-st invocation can be written Pr1 ;:::;rt , where r1; : : : ; rt
are the t values returned by the �rst t randomized invocations.

Prog0 represents a family of programs, one for each choice of the probability distribu-
tions Pr1 ;:::;rt used at all the randomized invocations. (Recall though, by de�nition,
if the t + 1-st randomized invocation is X := uniform(a;A) then Pr1;:::;rt � UPa(A)
for all r1; : : : ; rt.) We will not make these choices explicit and will show that all
programs prog in Prog0 are optimal.

We present the code describing Prog0 in the next �gure and provide explanations
after it.
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Prog0

Variables:

C0 � [p]; initially [p]
Cj � [p]; j = 1; : : : ; p; initially arbitrary
Sj 2 Pn(p); j = 1; : : : ; p; initially arbitrary
S 2 Pn(p); initially arbitrary
I; I 0; J � [p]; initially arbitrary
K 2 [p]; initially arbitrary
� 2 N; initially n

Code:

01. for t = 1; : : : ; bp=nc do :
02. St := arbitrary(n;C0)
03. C0 := C0 � St
04. Ct := St

05. for t = bp=nc + 1; : : : ; p� n + 1 do :
06. if t = bp=nc+ 1 then :
07. St := C0

08. C0 := ;
09. else St := ;

10. if bp�n
t�1
c < � then :

11. � := bp�n
t�1 c

12. I := arbitrary(p� n � bp�n
t�1
c(t� 1); [t� 1])

13. J := I ; I 0 := [t� 1]� I
14. while I 6= ; do :
15. K := arbitrary(1; I)
16. S := uniform(�+ 1;CK)
17. St := St [ (CK � S)
18. CK := S
19. I := I � fKg
20. while I 0 6= ; do :
21. K := arbitrary(1; I 0)
22. S := uniform(�;CK)
23. St := St [ (CK � S)
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24. CK := S
25. I 0 := I 0 � fKg
26. Ct := St

27. if bp�n
t�1 c = � then :

28. S := uniform(�+ 1;Ct�1)
29. St := Ct�1 � S
30. Ct�1 := S
31. I 0 := arbitrary(�+ 1; J [ ft� 1g)
32. J := (J [ ft� 1g)� I 0

33. while I 0 6= ; do :
34. K := arbitrary(1; I 0)
35. S := uniform(�;CK)
36. St := St [ (CK � S)
37. CK := S

38. I 0 := I 0 � fKg
39. Ct := St

7.4.2 A presentation of the ideas underlying Prog0

We begin by presenting the purpose of the program variables used in Prog0. At the
end of each round t:

1. St is the set of n elements selected by the protocol for round t.

2. C0 represents the set of elements of [p] that have not been used in the �rst t
rounds.

3. For every j; 1 � j � t, Cj is the set of elements selected at time j { i.e., elements
in Sj { and which have never been used in later rounds j + 1; j + 2; : : : ; t {
i.e., which are in the complement (Sj+1 [ : : :[ St)

c of Sj+1 [ : : :[ St.

For reasons presented below, at the end of each round t; t � b p
n
c+ 1; and for every

j; 1 � j � t � 1, Cj is either of size b
p�n
t�1
c or of size bp�n

t�1
c + 1. To achieve this, at

each round t; t � b p
n
c+1; the program variable � is re-initialized to this value bp�n

t�1
c.

The program variables I , I 0 and J are used to distinguish and manipulate the two
sets fj 2 [1; t� 1]; jCjj = �g and fj 2 [1; t� 1]; jCjj = �+1g. The program variable
K is used to make some non-deterministic choices in the course of the execution.
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The following explanations will explain the code and bring some intuition behind
the choice of these numbers.

The idea of the code is to select for each round t the set St in a greedy fashion so
as to optimize the probability of surviving one more round, if faulty processors are
selected uniformly at random. For each t � b p

n
c, the set C0 of fresh elements has

size at least n at the beginning of round t and it is therefore possible to select St
as a subset of C0. This is accomplished in lines 01 through 04 of the code. As only
so far unselected elements are selected at each round t, we have Cj = Sj for every
1 � j � t � b p

n
c.

In round b p
n
c+1 the set C0 is possibly non-empty at the beginning of the round, but

holds less then n elements. We select all its elements and allocate them to Sb p
n
c+1.

This is done in lines 06 through 08 of the code. From that point on, i.e., for the
completion of the selection of the set Sb pn c+1 as well as for the selection of later sets
St, we have to select elements that have been selected previously at least once. We
adopt the following simple strategy: we select elements from the sets Cj; 1 � j � t,
that have the biggest size until n elements have been selected. For every j; 1 � j � t,
by de�nition of Cj { as the set of elements selected in round j but never selected
afterwards { every element of Cj selected in round t must be removed from Cj during
this same round. Hence the strategy consists in transferring into St n elements from
the sets Cj that have the biggest size. Once this transfer is accomplished St is of
size n and we initialize Ct to be equal to St.

At the point in round b p
n
c+1 when C0 becomes �nally empty, (in line 08), and when

the transfer strategy begins to be implemented, the sets C1; : : : ; Cb pn c are all of size
n. We can picture transferring elements away from sets Cj of biggest size as the
selective ow of resources away from big reservoirs: by doing so we maintain to parity
the level of all the reservoirs. In our case, as we are transferring discrete elements in
place of a uid, the transfer strategy keeps the size of the sets Cj di�erent by at most
one. Another consequence of the fact that elements are transferred from the sets Cj

into St is that, at the end of each round t; t � b p
n
c+1, the sets C1; : : : ; Ct�1; St are a

partition of the set [p] of all elements. Hence we are in a situation where p elements
are partitioned into t sets: on the one hand, a set St of n elements and, on the other
hand, t� 1 sets whose size di�er by at most one. A computation (see Lemma 7.4.3)
shows that these sets must be either of size bp�n

t�1
c or of size bp�n

t�1
c+ 1 and that the

number of sets of size bp�n
t�1
c+1 is p�n�bp�n

t�1
c(t�1). The idea in the code is to use

these numbers and modify for every round t the sets C1; : : : ; Ct�2; St�1 determined
at the end of each round t � 1 to produce the partition C1; : : : ; Ct�1; St that must
result in round t.
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By our previous argument, at the end of each round t� 1, the sets C1; : : : ; Ct�2 are
all of size at least bp�n

t�2
c and St�1 = Ct�1 is of size n. At the end of each round t,

these t� 1 sets must be modi�ed and reduced to size bp�n
t�1
c or bp�n

t�1
c+ 1. We need

to distinguish two cases according to whether bp�n
t�1
c is less or equal to bp�n

t�2
c. In

the �rst case the code branches according to line 10, and lines 11 through 26 are
followed. In the second case the code branches according to line 27, and lines 28
through 39 are followed.

Consider the case where bp�n
t�1 c < b

p�n
t�2 c. In this case, every set Cj; 1 � j � t � 1;

existing at the end of round t�1 is of size at least bp�n
t�2 c � b

p�n
t�1 c+1 and hence is big

enough to be reduced to either one of the two allowable sizes (bp�n
t�1
c or bp�n

t�1
c + 1)

at the end of round t. Consider now the case where bp�n
t�1
c = bp�n

t�2
c. In this case the

sets Cj; 1 � j � t� 1; which are of the smaller size bp�n
t�2
c at the end of round t� 1

cannot be reduced to the size bp�n
t�1
c+ 1 (= bp�n

t�2
c+ 1) in the next round: only sets

being of the bigger size bp�n
t�2
c + 1 at the end of round t � 1 can give rise to sets of

the bigger size bp�n
t�1
c+ 1 at the end of round t.

In the �rst case, we branch according to line 10 and select in line 12 an arbitrary
subset I of f1; : : : ; t � 1g of size p � n � bp�n

t�1
c(t � 1): this set is the set of indices

describing which of the sets C1; : : : ; Ct�1 will be the bigger sets at the end of round
t. We keep in the variable J a record of this selection (see line 13). Then, in lines 15
through 19 and 21 through 25 we transfer elements from the sets Cj into St, leaving
the sets Cj; 1 � j � t � 1; in their pre-decided size. We �nally initialize Ct to the
value St once the selection of St is �nished (see line 26). Let us emphasize that, at
the end of the round, J records the identity of the bigger sets Cj.

In the second case we branch according to line 27. In this case, at the beginning of
round t, the sets C1; : : : ; Ct�2 are all of one of the two sizes b

p�n
t�1
c+1 and bp�n

t�1
c, and

J records the identity of the bigger sets Cj; 1 � j � t � 2. Also, at this point, Ct�1

is of size n. As all the sets C1; : : : ; Ct�1 must be reduced to size at most bp�n
t�1
c+ 1,

we �rst transfer n� (bp�n
t�1
c+1) elements from Ct�1 to St (see lines 28 through 30).

We �nish the selection of St by selecting one element from each of bp�n
t�1
c + 1 sets

arbitrarily selected from J [ ft � 1g. (The selection of the bp�n
t�1 c + 1 sets is done

in line 31. The transfer of the elements is done in lines 34 through 38.) As in the
previous case, we update J so as to record the identity of the bigger sets Cj at the
end of the round (see line 32) and initialize Ct with the value St (see line 39).
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We quickly discuss the choice of the probability distributions used in Prog0. As
mentioned at the very beginning of our explanations, the idea of the code is to select
for each round t the set St in a greedy fashion so as to optimize the probability of
surviving one more round, if faulty processors are selected uniformly at random.
Let us call random adversary the adversary that selects the faulty processors in
this fashion. The main idea of the proof will be to prove that any � in Prog0 is
optimal against the random adversary and then to prove that, against any such
�, no adversary can do better then the random adversary. As we will see, we
could replace all the uniform randomized invocations by arbitrary randomized
invocations and still obtain optimal protocols against the random adversary. The
reason is, (as we will see), that for every time t, the fact that the system is still
alive after the occurrence of the t-th fault means exactly that, for every j; j � t� 1,
the j-th fault is in the set Cj. (This is where the condition m = 1 plays its role.)
Furthermore, if the system is still alive after the occurrence of the t-th fault and if
the adversary is the random adversary, all the elements of Cj are equally likely to be
faulty. This is due to the nature of the random adversary which, by de�nition, makes
its selections irrespectively of the identity of the elements chosen by the protocol.
Hence, for every N , if in round t + 1 the protocol is to select a given number N of
elements from one of the sets Cj, all the

�jCj j
N

�
choices are equally as good, as any

N elements of Cj have the same probability of all being not faulty.

But this does not hold for a general adversary. In e�ect, a general adversary can
di�erentiate between di�erent elements of a given Cj when the protocol uses arbi-
trary distributions to make such selections. We show that the strategy according
to which, whenever selecting elements from a given set Cj, the protocol always uses
the uniform distribution, disallows the adversary such capabilities of di�erentiation.
This means that the use of uniform randomized invocations reduces the power of
any adversary to the one of the random adversary.

We use arbitrary randomized invocations to emphasize that for the other random-
ized invocations made by the protocol, the choice of the distribution is irrelevant
for the e�ectiveness of the protocol. For the simplicity of the exposition we let the
protocol make these choices. But we could easily extend our results and prove that
the programs in Prog0 would perform equally well if these choices were made by the
adversary.
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7.4.3 Invariants

For t = 1; : : : ; bp=nc and for every execution of a program in Prog0, we de�ne round
t to be the part of the execution corresponding to the t-th loop, between line 02
and line 04 of the program. Similarly, for t = bp=nc; : : : ; p � n + 1 and for every
execution of a program in Prog0, we de�ne round t to be the part of the execution
corresponding to the t-th loop, between line 06 and line 39 of the program.

Lemma 7.4.1 Prog0 satis�es the following invariants and properties valid at the
end of every round t; 1 � t � n� p+ 1.

a. All invocations in round t of the commands arbitrary or uniform are licit,
i.e., a � jAj for every invocation of arbitrary(a;A) and of uniform(a;A).

b. � is equal to n if t � b p
n
c and equal to bp�n

t�1 c if b
p
n
c+ 1 � t � p� n + 1.

c. jStj = n.

d. For every j; 1 � j � t, Cj = Sj \ (Sj+1 [ : : :[ St)
c. In particular Ct = St.

e. C0 = ([tj=1Sj)
c = ([tj=1Cj)

c.

f. C0; C1; : : : ; Ct form a partition of [p].

g. If 1 � t � b p
n
c then jC1j = : : := jCtj = n.

h. If b p
n
c+ 1 � t � p� n + 1 then

1. C0 = ;

2-i. For every j, 1 � j � t� 1, jCjj is equal to b
p�n
t�1
c or bp�n

t�1
c + 1

2-ii. There exists j, 1 � j � t � 1, such that jCjj = b
p�n
t�1 c.

3. jCtj is equal to n.

i. If b p
n
c + 1 � t � p � n + 1 then J = fi 2 [t � 1]; jCij = � + 1g and jJ j =

p� n� bp�n
t�1
c(t� 1).

Proof. For every program variable X , we let X(t) denote the value held by X
at the end of round t. We extend this de�nition to t = 0 and let X(0) denote the
initial value of any program variable X .

We easily see that, for every t, the program variable St is changed only in round t.
Hence St(t) = St(t+ 1) = : : := St(n� p+1) so that we can abuse language and let
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St also denote the value St(t) held by the program variable St at the end of round t.
(We will make explicit when St refers to the program variable and not to the value
St(t).)

Invariant b. For every round t; 1 � t � bp=nc, the program variable � is left
unchanged: �(t) = �(0) = n. For every t; bp=nc+ 1 � t � p � n + 1, the program
variable � is left unchanged if equal to bp�n

t�1
c and reset to this value otherwise. (See

lines 10, 11 and 27). Hence �(t) = bp�n
t�1
c. This establishes invariant b. We prove

the other invariants by induction on the round number t.

Case A. Consider �rst the case 0 � t � b p
n
c. In this case we furthermore establish

that S1; : : : ; St are all disjoint, that Cj(t) = Sj for every j; 1 � j � t � b
p
n
c and that

C0(t) is a set of size p� tn. This is true for t = 0 as C0(0) = [p] and as, in this case,
the family S1; : : : ; St is empty. Assume that all the invariants are true for some round
t � 1, 0 � t � 1 < b p

n
c. Consider round t. In line 02 of the program, C0 has value

C0(t�1), which is of size p� (t�1)n, by induction. As t�1 < b p
n
c, p� (t�1)n � n

and hence the invocation St := arbitrary(n;C0) is licit: invariant a is satis�ed
for round t. Hence St is a well-de�ned set of size n and invariant c is satis�ed for
round t. As St is a subset of C0(t), invariant e (for t � 1) shows that St is disjoint
from [t�1

i Si so that S1; : : : ; St are all disjoint. In lines 02{04 the program variables
Cj; 1 � j � t� 1 are not changed. Hence Cj(t) = Cj(t� 1) = Sj , 1 � j � t� 1. On
the other hand, by line 04, Ct(t) = St, and by line 03, C0(t� 1) is the disjoint union
of C0(t) and of St. Hence jC0(t)j = jC0(t � 1)j � jStj = (p� (t � 1)n)� n = p� tn.
From these properties we easily check that the invariants d, e, f and g are true for
t.

Case B. We now turn to the case bp=nc+1 � t � p�n+1. Assume that t is such
an integer and such that all the invariants are true for t� 1.

Case B-I. Assume bp�n
t�1 c < � in line 10 is true.

We �rst establish that t = bp=nc + 1 falls in case B-I. We just proved that all the
invariants a, : : :, g hold for t � 1 = bp=nc. By Lemma 7.4.2, bp�n

t�1
c < n. On the

other hand, in line 10, the program variable � has value �(t�1) = �(0) = n. Hence
the precondition bp�n

t�1
c < � in line 12 is true for t = bp=nc+ 1.

Invariant a. We easily check that for every t, 0 � p � n � bp�n
t�1
c(t � 1) < t � 1.

(For every numbers x and y, x � bx=ycy is the rest of the Euclidean division of x



158 Chapter 7. An Optimal Randomized Algorithm

by y.) Hence the invocation I := arbitrary(p� n� bp�n
t�1 c(t� 1); [t� 1]) of line 12

is always licit (for t = bp=nc + 1; : : : ; p� n + 1).

In line 17 and in line 23 the program variable CK has value CK(t� 1), a set of size
�(t� 1) or �(t� 1)+ 1 by invariant b and h for t� 1. Recall that, by assumption,
the precondition of line 10 is true: �(t) < �(t � 1) i.e., �(t) + 1 � �(t � 1). This
implies that the invocations S := uniform(� + 1;CK) and S := uniform(�;CK) of
respectively lines 16 and 22 are licit. This shows that the invariant a is true for t.

Invariant h-1. The variable C0 is set to ; in round bp=nc + 1 and never altered
afterwards so that C0(t) = ; for t = bp=nc + 1; : : : ; p � n + 1. This establishes
invariant h-1.

Invariants d, e and f. By assumption, (invariant f for t�1), C0(t�1); : : : ; Ct�1(t�1)
is a partition of [p]. The set St is obtained by �rst taking all the elements of C0(t�1),
(which is non-empty only if t = bp=nc + 1), and then, in lines 16, 17, 18 and 22,
23, 24, transferring some subsets of C0(t � 1); : : : ; Ct�1(t � 1) into St. Hence, by
construction, the sets C1(t); : : : ; Ct�1(t) and St are a partition of [p] i.e., invariant
f is true. This implies also that Cj(t) = Cj(t � 1) � St = Cj(t � 1) \ Sct for every
j; 1 � j � t� 1. By invariant d for t� 1, we have Cj(t� 1) = Sj \ (S1[ : : :[St�1)c.
Hence Cj(t) = Sj \ (S1 [ : : :[ St)

c for every j; 1 � j � t � 1. Furthermore, by line
26, Ct(t) is equal to St. Hence invariant d holds for t. We also easily deduce e.

Invariants i and h-2. By lines 16, 18 and 22, 24, for every j; 1 � j � t � 1, the
quantity jCj(t)j is equal to �(t) or �(t) + 1. This along with invariant b already
proven shows that invariant i is true for t. Furthermore, the set of indices j; 1 �
j � t � 1, such that Cj(t) is of size �(t) + 1 is the set I determined in line 12.
(See lines 12 through 19 of the protocol.) This set is equal to the value allocated
to J in line 13. As J is not further changed in round t this value is J(t). This
establishes invariant h-2-i. As mentioned in the proof of invariant a, for every t,
p � n � bp�n

t�1 c(t � 1) < t � 1. Hence the value allocated to I in line 12 is not the
whole set [t � 1]. Consequently, at the end of line 13 I 0 is not equal to ; and for
every k 2 I 0 the while loop from line 20 to 25 produces a set Ck(t) of size �(t),
i.e., by invariant b, a set of size bp�n

t�1
c. This establishes invariant h-2-ii.

Invariants c and h-3. Let b denote p�n�bp�n
t�1 c(t� 1) and let a denote t� 1� b.

Note that a > 0. We just established that the family C1(t); : : : ; Ct�1(t); St is a par-
tition of [p]. Therefore, C1(t); : : : ; Ct�1(t) is a partition of [p] � St. By invariants
h and i this partition is composed of b elements of size �(t) + 1 and of a elements
of size �(t). Hence p � jStj = q = a�(t) + b(�(t) + 1). On the other hand, by
Lemma 7.4.3, p� n = a�(t) + b(�(t) + 1). This shows that jStj = n and hence, by
line 26, that jCt(t)j = n.
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Case B-II. Assume bp�n
t�1
c < � in line 10 is false (i.e., bp�n

t�1
c = � in line 27 is true).

Invariant a. In line 28, the value of the program variable Ct�1 is Ct�1(t� 1) which
is of size n by invariant c and d for t � 1. As t � bp=nc + 1, by Lemma 7.4.2,
bp�n
t�1 c+ 1 � n which shows that the invocation S := uniform(�+ 1;Ct�1) is licit.

Note that, in line 27, � has value �(t� 1) so that the condition bp�n
t�1
c = � of line 27

exactly means that bp�n
t�1
c = �(t� 1). By invariant b, �(t� 1) is either n or bp�n

t�2
c.

We prove that only the latter form arises in the equality bp�n
t�1 c = �(t � 1). Recall

the two following facts established in the proof of invariant b given in page 157. 1)
b p�n
bp=ncc < n. 2) �(bp=nc) = n. From these two facts we deduce that the equality

bp�n
t�1
c = �(t� 1) does not hold for t = bp=nc+ 1 as b p�n

bp=nc
c < n = �(bp=nc). Hence

equality in line 27 can occur only for t > bp=nc+1. By Lemma 7.4.2, t > bp=nc+1
implies that bp�n

t�1
c < n and hence that �(t � 1) = bp�n

t�2
c. To summarize: equality

holds in line 27 only for t > bp=nc+ 1 and then implies that bp�n
t�1 c = b

p�n
t�2 c.

In line 31, the value of the program variable J is J(t�1). By induction, (invariant i
for t�1), J(t�1) is a subset of [t�2] which is of size jJ(t�1)j = p�n�bp�n

t�2
c(t�2):

The element t�1 is not in J(t�1) (see invariant i for t�1) so that jJ(t�1)[ft�1gj=
jJ(t�1)j+1. Recall that in line 31, the program variable � is equal to �(t) = bp�n

t�1
c.

We have:

�(t) + 1 = bp�n
t�1
c+ 1

� p� n � bp�n
t�2 c(t� 2) + 1 (by Lemma 7.4.4)

= jJ(t� 1)j+ 1

= jJ(t� 1)[ ft� 1gj :

This shows that the invocation I 0 := arbitrary(�+1; J [ft� 1g) of line 31 is licit.

Line 34 is within the while-loop originated in line 33. Each of the invocation
K := arbitrary(1; J) of line 34 is licit as occurring while J is non-empty.

In line 35, CK is of size �(t� 1)+ 1 because, by lines 31 and 34, K is an element of
J(t�1)[ft�1g and because, by invariant i, K 2 J(t�1) implies that jCK(t�1)j =
�(t� 1)+1 which is �(t)+1 by line 27 { if K = t� 1, lines 28 and 30 show directly
that jCKj = � + 1. This shows that the invocation S := uniform(�;CK) in line 35
is licit.
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This �nishes to establish that invariant a is true for t.

Invariants c and h-3. In lines 28, 29, jCt�1j � (�(t� 1) + 1) = n � (�(t � 1) + 1)
elements are allocated to St. Let I

0
init denote the value held by I 0 at the end of line

31. In the while-loop (line 33 to 38), �(t� 1)+ 1 additional elements are allocated
to St. (�(t� 1) + 1 is the size of I 0init .) Hence a total of n elements are allocated to
St in round t. This shows that jStj = n and hence, by line 39, that jCt(t)j = n.

Invariants d, e, f, and h-1. As in the Case I, Cj(t) = Cj(t � 1) � St for every
j; 1 � j � t�1, and C1; : : : ; Ct�1(t); St is a partition of [p]. As in Case I, this implies
that invariants d, e and f hold for t. The proof for invariant h-1 is also the same
as in Case I.

Invariant i and h-2. By invariant h-2 for t� 1, for t� 1, all the sets CJ(t� 2); 1 �
j � t� 2, are of one of the two sizes �(t � 1) and �(t � 1) + 1, i.e., (recall that the
condition of line 27 is true), of size �(t) or �(t) + 1. Also, by invariant i for t � 1,
J(t� 1) is the set of indices i; 1 � i � t� 2 for which Ci(t� 1) is of size �(t� 1)+ 1
i.e., of size �(t)+1. At the end of line 30, the set of indices i; 1 � i � t�1 for which
the value of Ci is of size �(t)+1 is the set J(t�1)[ft�1g. Let I 0init denote the value
held by I 0 at the end of line 31. In the while-loop of line 33, (�nishing in line 38),
for every index k in I 0init, an element is transferred from Ck to St. Hence, at the end
of the while-loop all the sets Ci; 1 � i � t�1 are of size �(t) or �(t)+1. This proves
invariant h-2 for t. Furthermore, in the while-loop of line 33, the set of indices i
for which the value of Ci is of size �(t)+1 is reduced to J(t�1)[ft�1g�I 0init. The
value J(t�1)[ft�1g� I 0init is the value J(t) given to J in line 32. (J is not altered
further in round t and hence the value allocated to J on line 32 is the value J(t).)
This establishes the �rst part of invariant i: J(t) = fi 2 [t� 1]; jCi(t)j = �(t) + 1g.

We compute jJ(t)j.

jJ(t)j = jJ(t� 1)j+ 1� jI 0initj

= jJ(t� 1)j+ 1� (�(t) + 1)

= p� n � bp�n
t�2
c(t� 2)� �(t) (by invariant i for t� 1)

= p� n � bp�n
t�1
c(t� 2)� �(t) (because �(t) = bp�n

t�1
c = bp�n

t�2
c )

= p� n � bp�n
t�1
c(t� 1) :

This �nishes the proof of invariant i for t. �

Lemma 7.4.2 Let t be a positive integer. Then bp�n
t
c < n if and only if t � bp=nc.
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Proof. Write p = an+ b with 0 � b < n. Assume that t � bp=nc. Then

�
p�n
t

�
�
j
p�n
bp=nc

k
= (an+ b� n)=a = n + (b� n)=a < n :

We now prove that [1 � t � bp=nc � 1])
�
p�n
t

�
� n. If bp=nc = 1 the implication

is trivially true. Assume that bp=nc > 1. We have:

�
p�n
t

�
�
j

p�n
bp=nc�1

k
= (an+ b� n)=(a� 1) = n+ b=(a� 1) � n :

�

Lemma 7.4.3 For every integers q and t the system of equations8><
>:
q = a�+ b(�+ 1)
a+ b = t

a > 0; b � 0

has exactly one integer-valued system of solutions: � = b q
t
c, b = q � b q

t
ct and

a = t� b.

Proof. Uniqueness: The equation q=t = (a=t)� + (b=t)(� + 1) shows that q=t
is a convex combination of � and � + 1. Hence � must be equal to b q

t
c. Also, the

equation q = (a+ b)�+ b = t� + b shows that b must be equal to q � tb q
t
c.

Existence: Write q=t as the convex combination of � = b q
t
c and of �+1 = b q

t
c+1:

q=t = u�+ v(�+ 1) with u+ v = 1. We have q=t = (u+ v)�+ v = �+ v = b q
t
c+ v.

This shows that v is equal to q=t � b q
t
c and that u = 1� v = 1� q=t+ b q

t
c. Hence

we can chose b = vt = q � b q
t
ct and a = ut = (1� v)t = t � b. �

Lemma 7.4.4 Let n, p and t be three positive integers such that n � p. Assume
that bp�n

t�1 c = b
p�n
t�2 c. Then b

p�n
t�1 c � p� n� b

p�n
t�2 c(t � 2).

Proof. Obviously, 0 � p�n�bp�n
t�1
c(t�1) so that bp�n

t�1
c � p�n�bp�n

t�1
c(t�1)+

bp�n
t�1
c. By assumption, bp�n

t�1
c = bp�n

t�2
c and hence bp�n

t�1
c � p� n � bp�n

t�2
c(t� 2). �

We now establish that, for every t, the quantity
Qt�1

j=1 jCj(t)j is deterministic i.e., does
not depend on the successive values returned by the randomized invocations arbitrary
and uniform. This means in particular that, for every t, the quantity

Qt�1
j=1 jCj(t)j

is the same for all prog in Prog0 and does not depend on the values taken by the
random variables St; J1; J2; : : :
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Lemma 7.4.5 For every prog 2 Prog0, for every t; 1 � t � p � n + 1, the prod-
uct

Qt�1
j=1 jCj(t)j is uniquely determined as follows. (For conciseness we let a =

p� n � bp�n
t�1 c(t� 1) and b = t� 1� a = t� 1� p+ n + bp�n

t�1 c(t� 1).)Qt�1
j=1 jCj(t)j = nt�1 if t � b p

n
c;

= (bp�n
t�1
c+ 1)a bp�n

t�1
cb if b p

n
c+ 1 � t � p� n+ 1 :

Proof. If t � b p
n
c the result is an immediate consequence of invariant g. If

b p
n
c+ 1 � t � p� n + 1 the result is a consequence of invariants h and i. �

7.4.4 The probability space associated to Prog0

By de�nition, a program prog in Prog0 has randomized invocations. The output val-
ues of prog are the �nal values of S1; : : : ; Sp. The randomized invocations are internal
actions. For each prog in Prog0 we can construct a probability space (
0;G0; Pprog)
allowing to measure (in a probabilistic sense) not only the output { the schedules
S1; : : : ; Sp { but also all the randomized invocations made by prog.

We will need in Section 7.7 to analyze programs in Prog0 and to manipulate some
events from (
0;G0; Pprog). We therefore describe informally the construction of this
probability space. The sample space 
0 contains the sequences of values produced
by randomized invocations during executions of Prog0, i.e., the realizations of the
sequence (randomized-invocation1; randomized-invocation2; : : :). The �-�eld G0 is
the power set of 
0. The measure Pprog is the measure characterized by the relations

Pprog

h
� j past randomized invocations are r1; : : : ; rt

i
= Pr1;:::;rt ;

one for each sequence r1; : : : ; rt. By integration this means that, for every sequence
r1; : : : ; rt, the probability Pprog[(r1; : : : ; rt)] is given by Pe[r1]Pr1 [r2] � � �Pr1;:::;rt�1 [rt],
where we let Pe denote the the probability attached to the empty sequence e.

In contrast, recall that in Section 7.2 we constructed the sample space associated to
protocols � to contain the sequences of values taken by random schedules i.e., the
realizations of the sequence (S1; S2; : : :). As each set St outputted by prog can be
constructed from the sequence

(randomized-invocation1; randomized-invocation2; : : :);
we see that the �-�eld G0 is bigger then the one considered for protocols. For every
prog in Prog0, the measure Pprog extends the measure �prog de�ned on the set of
schedules produced by prog onto this bigger space (
0;G0).

Recall that, for every t, every t-schedule � and every t-fault sequence adapted to �,
the conditional probability �[ � j St = �] is well de�ned whereas �[ � j St = �; Ft = �]
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is not. This is because the event fFt = �g is not expressible in terms of the schedule
S1; S2; : : : and hence is not in the �-�eld over which the probability distribution �
is de�ned. In Lemma 7.3.3 we formally made sense of this conditional probability
for events in G0t, i.e., for events describable in terms of the set St+1 and in terms of
the decisions � and � taken up to round t by both the protocol and the adversary.
We let P� [ � j St = �;Ft = �] denote this extension.

We can make a similar extension with Pprog so as to compute the probability of
events depending on the randomized invocations done by prog up to round t + 1 {
the current round { and of past decisions (i.e., up to round t), conditioned on the
past decisions taken by both the protocol and the adversary. To simplify we use
also Pprog to denote this extension. For instance, in the proof of Lemma 7.7.4 we
will consider the expression

Pprog

h
T � t+ 1

��� St = �; Ft = �; T � t; J(t + 1) = J
i
:

7.4.5 The optimality property

The optimization problem sup� infAE�;A[T ] is called the primal problem. We let topt
denote its value. Similarly the optimization problem infA sup� E�;A[T ] is called the
dual problem and we let t0opt denotes its value. A protocol �opt solves the primal prob-
lem if topt = t(�opt).

9 The existence of such a protocol implies in particular that the
sup is attained in the primal problem and that max� infAE�;A[T ] = infAE�0;A[T ]:

An adversary Aopt solves the dual problem if t0opt = t0(Aopt)
def
= sup� E�;Aopt [T ]. The

existence of such an adversary implies in particular that the inf is attained in the
dual problem and that minA sup� E�;A[T ] = sup� E�;Aopt [T ]:

The following adversary A0 plays a fundamental role in the understanding and the
analysis of protocols in Prot (Prog0).

De�nition 7.4.1 We let A0 denote the adversary that selects at each round t an
element chosen uniformly at random from st�ff1; : : : ; ft�1g if this set is not empty,
and selects an arbitrary element from st otherwise.

This formally means that A0 = (Qv)v2V where V is the family of t-odd-executions
and where, for every v = (s1; f1; : : : ; st), Qv is equal to Ust�ff1;:::;ft�1g when st �
ff1; : : : ; ft�1g 6= ; { and Qv arbitrary when st � ff1; : : : ; ft�1g = ;.

Our main result is described in the next theorem.
9We presented in Page 143 the de�nition of of t(�) for a protocol �: t(�) = infAE�;A[T ]. For

an adversary A, t0(A) is de�ned symmetrically by t0(A) = sup� E�;A[T ].



164 Chapter 7. An Optimal Randomized Algorithm

Theorem 7.4.6 Every protocol �0 in Prot (Prog0) solves the primal problem while
the adversary A0 solves the dual problem. These two problems have the same value,
equal to E�0;A0 [T ].

The two following lemmas are the crucial ingredients to the proof of Theorem 7.4.6.
We defer their proof after the one of Theorem 7.4.6. The �rst lemma expresses that
the protocols in Prot (Prog0) are optimal against adversary A0.

Lemma 7.4.7 Let �0 be a protocol in Prot (Prog0). Thenmax� E�;A0 [T ] = E�0;A0[T ]:

The next lemma expresses that, when a protocol �0 in Prot (Prog0) is used, the
expected time of survival of the system is independent of the adversary A used
in conjunction with �0. This implies in particular that A0 is optimal against the
protocol �0.

Lemma 7.4.8 Let �0 be a protocol in Prot (Prog0). Then E�0;A[T ] is independent
of A.

We are now ready to prove our main result.

Proof of Theorem 7.4.6:
Let �0 be a protocol in Prot (Prog0). Then

sup� E�;A0[T ] = E�0;A0 [T ] (by Lemma 7.4.7)
= infAE�0;A[T ] (by Lemma 7.4.8):

By Lemma 8.2.2, sup� infAE�;A[T ] = infAE�0;A[T ] i.e., �0 solves the primal prob-
lem, and similarly A0 solves the dual problem. Furthermore these two problems
have the same value, equal to E�0;A0

[T ]. �

Note: As discussed in Section 7.1.2, the equality of the values of the primal and
the dual problem is a direct consequence of Von-Neumann's theorem.
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7.5 The Random Variables Cj(t) and Li(t)

In Section 7.4, for every program prog in Prog0, for every t and j, 1 � j � t � p, we
de�ned Cj(t) to be the value held by the program variable Cj at the end of round t
of prog. In this section we de�ne the values Cj(t) to be random variables expressed
in terms of the schedule St. This de�nition is valid for arbitrary protocols and is
compatible with the de�nition given in Section 7.4 in the special case of protocols
in Prot (Prog0). (See invariant d of Lemma 7.4.1.)

For each j and t, 1 � j � t, Cj(t) is the set of elements selected at time j and which
are not used in ulterior rounds j + 1; j + 2; : : : ; t. C0(t) is the set of elements of [p]
that are not used in the �rst t rounds. We also introduce the random variables Li(t)
counting the number of sets Cj(t); 1 � j � t � 1, which are of size i.

An indication of the relevance of these random variables is indicated by Lemma 7.4.5
which expresses that every prog in Prog0 is such that for every t; 1 � t � bp=nc,
Ln(t) = t � 1 and Li(t) = 0 if i 6= n; and such that for every t; t � bp=nc + 1,
Li(t) = p� n� bp�n

t�1 c(t � 1) if i = bp�n
t�1 c + 1, Li(t) = t � 1� p+ n + bp�n

t�1 c(t� 1)

if i = bp�n
t�1
c and Li(t) = 0 for any other value of i. We will see that these properties

do in fact characterize optimal schedules. The following de�nition formalizes these
notions. For a set � in f1; : : : ; pg, we use the notation �c to denote the complement
of � in f1; : : : ; pg.

De�nition 7.5.1 For every integers j and t, 1 � j � t � p and every k; 0 � k � n
we de�ne the following random variables:

C1(t) = S1 \
�
S2 [ : : :[ St

�c
C2(t) = S2 \

�
S3 [ : : :[ St

�c
:::

Cj(t) = Sj \
�
Sj+1 [ : : :[ St

�c
:::

Ct(t) = St:

We extend the de�nition of Cj(t) to j = 0 and set

C0(t) =
�
[tj=1Cj(t)

�c
:

We say that (C0(t); : : : ; Ct(t)) is the c-sequence derived from the schedule (S1; : : : ; St).
For 1 � t � p and 0 � i � n, we let Li(t) denote the number of sets Cj(t); 1 � j �
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t � 1, which are of size i:

Li(t)
def
=
���nCj(t); 1 � j � t � 1; jCj(t)j = i

o��� :
We extend the de�nition of Li(t) to i = n + 1 and set

Ln+1(t)
def
= jC0(t)j :

As usual, we use lower case letters and write for instance c0(t); c1(t); : : : ; ct(t) to de-
note the realizations of the random variables C0(t); C1(t); : : : ; Ct(t) and l0(t); : : : ; ln+1(t)
to denote the realizations of the random variables L0(t); : : : ; Ln+1(t).

The next properties are simple but fundamental. Property 3 means that the system
is still alive by time t if and only if for every j; j � t� 1, the j-th fault is in the set
Cj. Let us emphasize that this property would not hold for m � 2.

Lemma 7.5.1 Let t; 1 � t � p be arbitrary. Then:

1. The family (Cj(t))0�j�t forms a partition of [p].

2.
Pn

i=0 Li(t) = t � 1:

3. fT � tg =
Tt�1
j=1fFj 2 Cj(t)g

�
=
Tt
u=1

�
Su \ fF1; : : : ; Fu�1g = ;

	�
.

Proof. We easily check that the family (Cj(t))0�j�t is a partition of [p]. The
condition

Pn
i=0 Li(t) = t � 1 just expresses that the t � 1 sets C1(t); : : : ; Ct�1(t)

are di�erent and of cardinality between 0 and n. As expressed by the formula
fT � tg = \tu=1

�
Su \ fF1; : : : ; Fu�1g = ;

	
that we recall for completeness, the

survival time T is at least t if and only if, for every time u; 2 � u � t, Su does
not contain any of F1; : : : ; Fu�1. (Note that this fact uses the hypothesis m = 1.)
Equivalently, T � t if and only if, for every j; 1 � j � t�1, Fj is not contained in any
of Sj+1; : : : ; St, i.e., if Fj 2 (Sj+1[: : :[St)c:On the other hand, by de�nition, Fj 2 Sj
for every j. Therefore T � t if and only if Fj 2 Cj(t) for every j; 1 � j � t � 1. �

De�nition (7.5.1) establishes how a c-sequence (cj(t))j can be derived from a given
schedule (s1; : : : ; st). The following lemma conversely characterizes the sequences
(j)j that can be realized as a c-sequence from some schedule (s1; : : : ; st). This
result will be used in Lemma 7.6.11 to characterize the optimal schedules.



7.5. The random variables Cj(t) and Li(t) 167

Lemma 7.5.2 Let 1; : : : ; t�1 be integers in the interval [0; n]. Then the condition

n � N � (1 + : : :+ t�1)

is a necessary and su�cient condition for the existence of a schedule (s1; : : : ; st)
satisfying jcj(t)j = j for all j; 1 � j � t � 1.

Proof. We �rst establish the necessity of the condition. By Lemma 7.5.1, for all
schedules (s1; : : : ; st), the family (cj(t))0�j�t forms a partition of [p]. This clearly
implies that

Pt
0 jcj(t)j = p and hence that

Pt
1 jcj(t)j � p.

Conversely, we prove by induction on t that, for every sequence 1; : : : ; t�1 of
integers in [0; n] such that n � p � (1 + : : : + t�1), there exists a schedule
(s1; : : : ; st) whose associated c-sequence is given by cj(t) = j; 1 � j � t � 1 and
c0(t) = p� (1 + : : :+ t�1)� n.

� The property is trivially true for t = 1: in this case the family of conditions
jcj(t)j = j; 1 � j � t� 1 is empty, and the set c0(1) of processors not used has size
p� js1j = p� n.

� Assume the property veri�ed for t, and consider a sequence 1; : : : ; t of integers
in [0; n] such that n � p � (1 + : : : + t). This condition trivially implies that
n � p � (1 + : : :+ t�1). Therefore, the result at the induction level t being true,
there exists a schedule (s1; : : : ; st) for which cj(t) = j; 1 � j � t � 1 and such that
the number of processors still unused at time t is

jc0(t)j = p� (1 + : : :+ t�1)� n :

We then construct a set st+1 of n processors by taking any n�t elements from the
set st and any t elements from the set c0(t) of unused processors. This construction
is possible exactly when t � jc0(t)j i.e., when

t � p� (1 + : : :+ t�1)� n ;

which is true: this is the induction hypothesis. Note that, by construction, the sets
cj(t); 1 � j � t � 1 are una�ected by the selection of the set st+1 and hence:

jcj(t+ 1)j = jcj(t)j = j; 1 � j � t � 1 :

On the other hand,

jct(t + 1)j = jstj � (n� t)

= t :
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To �nish the induction from t to t + 1, we note that

jc0(t + 1)j = jc0(t)j � t

= p� (1 + : : :+ t�1 + t)� n :

�

The schedules in normal form that we now de�ne will be shown in the sequel to be
the schedules maximizing the expected survival time. In essence, a t-schedule � is in
normal form if the sizes of the sets cj(t); 1 � j � t� 1, (of the c-sequence associated
to �), di�er by at most one, and if c0(t) is not empty only if every cj(t); 1 � j � t�1
is of size n. Formally:

De�nition 7.5.2 Let t � 1 be a time. We say that a t-schedule � is in normal
form and write

� 2 Nt

if there exists �t; 0 � �t � n; s.t.,(
8j; 1 � j � t� 1; jcj(t)j = �t or jcj(t)j = �t + 1 ;
jc0(t)j > 0) �t = n :

We then also say that (c0(t); : : : ; ct�1(t)) is in normal form.

Invariants g and h of Lemma 7.4.1 express that the programs in Prog0 all produce
schedules in normal form. We next show that a t-schedule � is in normal form if and
only if the associated sequence (l0(t); : : : ; ln+1(t)) has at most two non-zero terms,
which are consecutive.

Lemma 7.5.3 A t-schedule � is in normal form if and only if there exists �t; 0 �
�t � n+ 1 such that the associated sequence (l0(t); : : : ; ln+1(t)) satis�es the equality�

l0(t); : : : ; ln+1(t)
�
=
�
0; : : : ; 0; l�t(t); l�t+1(t); 0; : : : ; 0

�
:

Proof. Simple consequence of De�nitions 7.5.1 and 7.5.2. �

The next lemma shows that, for every t, t-schedules in normal form have a unique
associated sequence (l0(t); : : : ; ln+1(t)) and that, conversely, this value characterizes
t-schedules in normal form. We will use this property in Lemma 7.6.11 to show that
a property is speci�c to schedules in normal form.
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Lemma 7.5.4 1. Let 1 � t � bp=nc. Then a t-schedule � is in Nt if and only
if the only non zero terms of the sequence (l0(t); : : : ; ln+1(t)) are ln(t) = t � 1 and
ln+1(t) = p� tn. (And hence, �t = n.)

2. Let t > bp=nc. Then a t-schedule � is in Nt if and only if the only non zero
terms of the sequence (l0(t); : : : ; ln+1(t)) are

l�t(t) =
�
p�n
t�1

�
(t� 1) + t+ n� p� 1

and, if p� n is not a multiple of t � 1,

l�t+1(t) = p� n�
�
p�n
t�1

�
(t� 1) ;

where
�t

def
=
�
p�n
t�1

�
:

Proof. � If t � bp=nc then tn � p. Working by contradiction, assume that
there exists i < n such that li(t) > 0, i.e., that there exists a set cj0(t) such that
jcj0(t)j < n. Then

j
t[

j=1

cj(t)j �
tX

j=1

jcj(t)j

=
X
j 6=j0

jcj(t)j+ jcj0(t)j

< tn � p :

As the family
�
cj(t)

�
; 0 � j � t, is a partition of [p], c0(t) must be not empty which,

by the normality property, implies that all the sets cj(t); 1 � j � t � 1, must have
size n. Hence

ln(t)
def
=

���cj(t); 1 � j � t� 1; jcj(t)j = n
	��

= t � 1 :

This in turn implies that

ln+1(t)
def
= jc0(t)j = p� j

t[
j=1

cj(t)j

= p� nt :

� Consider now the case t > bp=nc. Working by contradiction, assume that ln+1(t) >
0. Then, by the normality condition, all the sets cj(t); 1 � j � t�1 must have size n.
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We have:

j
t[

j=1

cj(t)j =
tX

j=1

jcj(t)j (since the sets cj(t) are disjoint)

= tn

� (bp=nc+ 1)n

> p ;

a contradiction. Hence ln+1(t) = 0, i.e., c0(t) = ;. Hence the t�1 sets c1(t); : : : ; ct�1(t)
must divide p�jstj = p�n elements among themselves. Lemma 7.4.3 (where we re-

place q by p�n and t by t�1) shows that �t
def
=
�
p�n
t�1

�
, l�t(t) =

�
p�n
t�1

�
(t�1)+t+n�p�1

and l�t+1(t) = p� n �
�
p�n
t�1

�
(t� 1): �



7.6. �0 is optimal against A0 171

7.6 �0 is optimal against A0

This section is devoted to the proof of Lemma 7.4.7.

7.6.1 Sketch of the proof and intuitions

For a given adversary A, an optimal protocol is one that, at each time t+1, exploits
to its fullest all the information available so as to optimize the choice of St+1. There-
fore to construct an optimal protocol, we �rst analyze the notion of \information
available to the protocol". We distinguish between the explicit information, for-
mally described in the model, and the implicit information that an optimal protocol
is able to deduce. Consider for instance the case of the identity of the adversary
A. In Section 7.2, when modeling protocols and adversaries, we did not provide a
mechanism allowing a protocol to be informed of the identity of the adversary that
it plays against. This means that the protocol does not know explicitly the identity
of the adversary. Nevertheless, for a given adversary A, there is one protocol that
always assumes that the adversary is A and takes optimal decisions based on this
assumption. This protocol is by construction optimal if the adversary is A. We
then say that the optimal protocol knows implicitly the identity of the adversary.

In Section 7.2 we modeled a protocol to be an entity deciding the whole schedule
(S1; : : : ; Sp) ahead of time, i.e., in an o�-line fashion. S1 is the �rst selected set,
and for every t, t � 1, St+1 is the set selected to be used after the occurrence of the
t-th fault. In this model the adversary \sees" the sets St only when they come in
operation.

Alternatively, we could have modeled a protocol to be an entity interacting in an
on-line fashion with the adversary: in this model, at each occurrence of a fault, the
adversary informs the protocol of the occurrence of a fault and whether the system
is still alive at this point. If the system is still alive the protocol then selects the set
St+1 to be used next and communicates its choice to the adversary.

It might seem that in our model { the o�-line model { the protocol is weaker then
in the on-line model, as, for every t, it has to select the set St+1 without knowing
whether the system is alive after the t-th fault. Nevertheless we easily see that, in
the o�-line model, the protocol can assume without loss of generality that T � t,
i.e., that the system is alive after the t-th fault, while selecting the set St+1 for time
t + 1. Indeed, if this happens not to be the case and the system dies before time
t + 1, all the decisions and assumptions made by the protocol for time t + 1 are
irrelevant.
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This discussion shows that the o�-line and the on-line model of a protocol are
equivalent so that we can adopt the on-line model in this informal presentation.
From the on-line description, it is clear that, for every t, the information about the
past execution available to the protocol upon selecting the set St+1 consists of its
own past decisions, i.e., of St = �, and of the fact that the system is still alive at
this point, i.e., of T � t. Note that the information T � t is given explicitly to the
protocol in the on-line model and only given implicitly in the o�-line model that we
chose in Section 7.2.

For every t, upon selecting a new set St+1, an optimal protocol can use all the
information available and guess �rst what are the locations F1; : : : ; Ft of the faults
already committed by the adversary. To \guess" the protocol uses the probability
distribution

PA[(F1; : : : ; Ft) = � j T � t; St = �] ;

i.e., the probability of the value allocated to (F1; : : : ; Ft) by the adversary A, con-
ditioned on the knowledge of the past execution held by the protocol.

By Lemma 7.5.1, the system is alive at time t, i.e., T � t, exactly if Fj is in Cj(t) for
every j; 1 � j � t � 1. (This is not true for m � 2.) Hence the previous probability
can be rewritten PA[(F1; : : : ; Ft) = � j \tj=1fFj 2 cj(t)g; St = �], which shows
the relevance to the analysis of the sets Cj(t). In this section the adversary is the
random adversary A0 de�ned in De�nition 7.4.1. In this case, by de�nition, at each
time t, a fault occurs uniformly at random in St and we can then further establish
in Section 7.6.2 that PA0 [(F1; : : : ; Ft) = � j T � t; St = �] =

Nt
j=1 Ucj (t) :

This result fully elucidates the notion of \information available to the protocol" and
we can say that a protocol optimal against A0 is one that, for each t, uses most
e�ciently the probabilistic guess PA0 [(F1; : : : ; Ft) = � j T � t; St = �] in order to
chose a \most appropriate" set St+1 for time t+ 1. The next challenge towards the
construction of optimal protocols is to understand how, for every t, such a \most
appropriate" set St+1 is selected. For this we use the general equality

E�;A0[T ] =
X
t�1

P�;A0 [T � t] ;

established in Lemma 8.1.2. A natural idea is to try the following greedy strategy.
Select a set s maximizing the quantity PA0 [T � 1 j S1 = s]. Then select a set s
maximizing the quantity PA0 [T � 2 j T � 1; S2 = (s1; s)]. Generally, assuming that
the schedule St = (s1; : : : ; st) has already been chosen and assuming that the system
is still alive at time t, i.e., that T � t, we select a set s maximizing the probability

PA0 [T � t + 1 j T � t; St+1 = (s1; : : : ; st; s)]
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of being alive one more time. If the protocol � de�ned by this procedure maximizes
P�;A0

[T � t] for every t, it also maximizes the sum
P

t�1 P�;A0
[T � t] and hence is

a protocol optimal against A0. As is discussed in Section 7.6.4, this is true if the
schedule � = (s1; : : : ; st) greedily chosen as described above maximizes the quantity
PA0 [T � t j St = �].

We therefore compute this quantity PA0
[T � t j St = �] for every � and show that it

is equal to
Qt�1

j=1
jcj (t)j
n

, where the values cj(t), 1 � j � t are uniquely derived from �.
This computation uses critically the relation PA0

[(F1; : : : ; Ft) = � j T � t; St = �] =Nt
j=1 Ucj (t) discussed above. We establish that the schedules maximizing this value

are the schedules for which all the associated terms jcj(t)j; 1 � j � t�1, di�er by at
most one, i.e., the schedules in normal form. (See De�nition 7.5.2.) By invariants
g and h of Lemma 7.4.1, all protocols in Prot (Prog0) produce such schedules and
hence are optimal against A0. This is formally established in Section 7.6.5.

The results established in Section 7.6.4 also show that the schedules produced by
the greedy procedure previously described are in normal form, and hence that the
greedy procedure is optimal against A0. Actually, the protocols produced by the
greedy procedure are exactly those in Prot (Prog0).

7.6.2 Analysis of the distribution of the random variables Fj

Let t and j such that 0 � t � p � 1, and 1 � j � t. Assume that the adversary
is the random adversary A0 de�ned in De�nition 7.4.1. The next lemma says that,
conditioned on the past schedule and on the fact that the system is still alive at
time t,

� each random variable Fj has a uniform distribution on the set cj(t),

� the random variables (Fj)1�j�t are independent.

This lemma will be a crucial tool for the estimation of the probability PA0 [T �
tjSt = �] done in Lemma 7.6.10.

Lemma 7.6.1 Let 1 � t � p and � 2 FeasA0.
10 Then, for every family (�1; : : : ;�t)

of subsets of [p],

PA0

h
(F1; : : : ; Ft) 2 (�1; : : : ;�t)

��� T � t;St = �
i
=

tY
j=1

Ucj (t)
h
�j

i
;

10See Page 149 for the de�nition of FeasA0 .
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where cj(t); 1 � j � t, are the values of Cj(t); 1 � j � t, uniquely determined by the
condition St = �.

Lemma 7.3.5, page 148, justi�es the well-formedness of this statement.

Proof. De�ne (
1;G1; P1) to be the probability space (
;G; PA0
). Using the no-

tions recalled in De�nition 8.1.2 we can reformulate the statement of Lemma 7.6.1
into the concise form: for all t, 0 � t � p� 1 and all t-schedule � in FeasA0

,

L
�
(F1; : : : ; Ft)

��� T � t;St = �
�

=
tO

j=1

L
�
Fi

��� T � t;St = �
�

=
tO

j=1

Ucj (t): (7.1)

Equation 7.1 holds vacuously for t = 0: the family (Fi)1�i�t is empty and there
is nothing to prove. We now work by induction on t; 0 � t < p � 1: assume that
Equation (7.1) has been established for time t. To progress from t to t+ 1, we �rst
prove that, for every t-schedule � and and every s 2 Pn(p) such that (�; s) is in
FeasA0 , for every j; 1 � j � t+ 1,

L
�
Fj

��� T � t+ 1;St+1 = (�; s)
�
= Ucj(t+1): (7.2)

� Consider the case j = t + 1. This case corresponds to the processor Ft+1 selected

at time t+ 1 by the adversary. We want to prove that, L
�
Ft+1

��� T � t+ 1;St+1 =

(�; s)
�
= Uct+1(t+1): Conditioning on T � t + 1 ensures that the adversary did not

select a processor of s at a time prior to t + 1. Hence, at the end of time t+ 1,
there is exactly one faulty processor, Ft+1, amongst the set s. As A0 is the random

adversary, Ft+1 is uniformly distributed in s, i.e., has a law equal to Us
def
= Uct+1(t+1):

� Let j be any integer, 1 � j � t. We let F 0
j denote the random variable

�
Fj

��� T �
t;St = �

�
. Then

L
�
Fj
���T � t + 1;St+1 = (�; s)

�
= PA0

h
Fj 2 �

���T � t;St = �; F1 62 s; : : : ; Ft 62 s
i

(7.3)

= PA0

h
Fj 2 �

���T � t;St = �; Fj 62 s
i

(7.4)
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= PA0

h
F 0
j 2 �

��� F 0
j 62 s

i
(7.5)

= Ucj (t)
h
�
��� F 0

j 62 s
i

(7.6)

= Ucj (t)\sct+1

h
�
i

(7.7)

= Ucj (t+1) : (7.8)

Equality 7.3 comes from the fact that, conditioned on the schedule St = � and the
fact that the system has survived up to time t, the system survives at time t + 1
exactly when the set s selected at time t + 1 contains no processor broken at a
previous time. Equality 7.4 comes from the fact that, by our induction hypothesis

at level t,
�
Fj

��� T � t;St = �
�
is independent from

�
Fi

��� T � t;St = �
�
; 1 � i �

t; i 6= j: Equality 7.5 comes from the fact that, conditioned on fT � t;St = �g, the
condition Fj 62 s is equivalent to F

0
j 62 s. Equality 7.6 comes from the fact that, by

our induction hypothesis at level t,

PA0 [F
0
j 2 � ] = Ucj (t)[ � ] :

Equality 7.7 is a simple application of Lemma 8.1.3: again, remember that Ucj (t) is
the law of F 0

j . Equality 7.8 comes from the de�nition of cj(t+ 1). This �nishes to
establish that Equation 7.2 holds for every j; 1 � j � t + 1.

A consequence of Equation 7.2 is that, for every j; 1 � j � t, the support of�
Fj

��� T � t;St = �
�
is equal to cj(t). By Lemma 7.5.1 the sets cj(t) are all disjoint.

This trivially implies the independence of the random variables and concludes the
proof by induction of Formula 7.1. �

The proof of the next result can be omitted in �rst reading. It will be used in the
next section and in Lemma 7.6.11 where optimal schedules are characterized.

Corollary 7.6.2 Let � be a schedule and let (l0(t); : : : ; ln+1(t)) be the associated
sequence as described in De�nition 7.5.1. Then � is in FeasA0 if and only if l0(t) = 0.

Proof.

� Assume that � 2 FeasA0 . Then, by Equation 7.1,

L
�
(F1; : : : ; Ft)

��� T � t;St = �
�
=

tO
i=1

Ucj(t):
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The uniform distributions Ucj (t) are well de�ned probability distributions only if
cj(t) 6= ; for j; 1 � j � t � 1, i.e., if l0(t) = 0.

�We now prove the converse and assume that (s1; : : : ; st) is a schedule which is not
in FeasA0 . We want to establish that l0(t) > 0.

Note �rst that every set s1 of size n is clearly in FeasA0
. (Consider the protocol

� such that St = s1 for all t. Then P�;A0 [T � 1; S1 = s1] = P�;A0 [T � 1] = 1;
because m = 1.) This establishes that t > 1. Let v; 1 < v � t be the smallest
u such that (s1; : : : ; su) 62 FeasA0 . Using the formulation given in Remark 1 after
De�nition 7.3.3, page 149, and using Lemma 7.3.2 we obtain

PA0

h
T � v

��� Sv = (s1; : : : ; sv)
i
= 0

whereas
PA0

h
T � v � 1

��� Sv�1 = (s1; : : : ; sv�1)
i
> 0 : (7.9)

Therefore:

0 = PA0

h
T � v

��� Sv = (s1; : : : ; sv)
i

= PA0

h
T � v; T � v � 1

��� Sv = (s1; : : : ; sv)
i

= PA0

h
T � v

��� T � v � 1;Sv = (s1; : : : ; sv)
i
� PA0

h
T � v � 1

��� Sv = (s1; : : : ; sv)
i

= PA0

h
T � v

��� T � v � 1;Sv = (s1; : : : ; sv)
i
� PA0

h
T � v � 1

��� Sv�1 = (s1; : : : ; sv�1)
i
;(7.10)

where the last equality is a consequence of Lemma 7.3.6.

Using Equations 7.9 and 7.10 allows us to derive the �rst next equality.

0 = PA0

h
T � v

��� T � v � 1;Sv = (s1; : : : ; sv)
i

= PA0

h
sv \ fF1; : : : ; Fv�1g = ;

��� T � v � 1; Sv = (s1; : : : ; sv)
i

= PA0

h
sv \ fF1; : : : ; Fv�1g = ;

��� T � v � 1; Sv�1 = (s1; : : : ; sv�1)
i
(7.11)

= PA0

h v�1\
j=1

fFj 2 s
c
vg
��� T � v � 1; Sv�1 = (s1; : : : ; sv�1)

i

=
v�1Y
j=1

Ucj(v�1)[s
c
v] ; (7.12)

where Equation 7.11 comes from Lemma 7.3.6 and Equation 7.12 from Lemma 7.6.1.
The nullity of the product in 7.12 implies that there exists j; 1 � j � v � 1, such
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that

Ucj (v�1)[s
c
v] = 0

i.e., scv \ cj(v � 1) = ;

i.e., cj(v) = ; ;

and this implies that l0(v) > 0: To �nish, note that the sequence (l0(u))u is a non-
decreasing sequence so that l0(v) > 0 implies that l0(t) > 0, which was to be proven.
�

7.6.3 A max-min equality for the maximal survival times

Our �nal proofs will rely on the equality E�;A[T ] =
P

t�1P�;A[T � t] and will
entail an analysis of each of the non-zero terms of this summation. This section is
concerned with �nding which of these terms are non-zero.

Following the de�nitions given in Lemma 8.2.4 we de�ne tmax(A)
def
= maxf t; sup�-

P�;A[T � t] > 0 g and tmin(�)
def
= maxf t; infA P�;A[T � t] > 0 g. (Note that, for every

A and every �, P�;A[T � t] = 0 if t > p. This justi�es that supf t; sup� P�;A[T �
t] > 0 g = maxf t; sup� P�;A[T � t] > 0 g. We similarly show that the supremum is
achieved in tmin(�).)

We easily see that, for a given adversary A, we can limit the range of summation of
the series

P
t�1 P�;A[T � t] to within the �rst tmax(A) terms. For a given protocol �,

the interpretation of tmin(�) is in general a bit more complicated: if infA P�;A[T �
tmin(�)+ 1] = minA P�;A[T � tmin(�)+ 1](= 0), then there exists an adversary A for
which only tmin(�) terms of the series

P
t�1 P�;A[T � t] are non-zero.

Note that all the values tmax(A) are a priori bounded by p. Hence Lemma 8.2.4
shows that the quantities tmax(A) and tmin(�) satisfy the max-min equality

max
�

tmin(�) � min
A
tmax(A) :

In this section we show that we can strengthen this inequality into an equality in
the special case where m = 1. (See Corollary 7.6.9.) Lemma 7.6.8 will also be useful
in the sequel of this work.

Let t; t � p be a time, � be a t-schedule and � be a t-sequence of faults adapted to
�. We let t�;� be the survival time of schedule � used in conjunction with �. By
de�nition, t�;� is less then equal to t.

Lemma 7.6.3 Let t; t � p be a time, � be a t-schedule and � be a t-sequence of
faults adapted to � such that t�;� = t. Then A0 2 Agenerating �(�).
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Proof. This a direct consequence of the de�nition of A0. At each time, A0 selects
with non zero probability every element non already selected. Hence A0 selects �
with non-zero probability. �

Lemma 7.6.4 Let t; t � p be a time, � be a t-schedule and � be a t-sequence of
faults adapted to �. Then P�;A[T � t;St = �;Ft = � ] > 0 if and only if t�;� � t,
� 2 Pgenerating (�) and A 2 Agenerating �(�).

Proof. This is a direct consequence of the fact that, conditioned on St = � and
Ft = �, T � t is equivalent to t�;� � t. �

Lemma 7.6.5 For every t > p � n + 1 there is no t-schedule � and no t-fault
sequence � such that t�;� � t.

Proof. Working by contradiction, consider t > p�n+1 and assume the existence
of such a schedule � and of such a fault sequence �. Consider the point just after the
selection of the t-th fault ft by the adversary. The hypothesis t�;� � t implies that,
at this point, st contains n�1 non-faulty elements. On the other hand the t elements
f1; : : : ; ft are faulty. Hence we must have p � t+ n� 1 which is a contradiction. �

Lemma 7.6.6 Let t be a time and � a protocol. Then P�;A[T � t] > 0 only if
P�;A0 [T � t] > 0.

Proof. The condition P�;A[T � t] > 0 implies that there must exist a t-schedule
� and a t-sequence of faults �, adapted to �, such that P�;A[T � t;St = �;Ft =
� ] > 0. By the only if part of Lemma 7.6.4, it must then be the case that t�;� � t,
that � 2 Pgenerating (�) and that A 2 Agenerating �(�). By Lemma 7.6.3, A0 2
Agenerating �(�). By the if part of Lemma 7.6.4, P�;A0 [T � t;St = �;Ft = � ] > 0
and hence P�;A0 [T � t ] > 0. �

In the following lemma, l0(t) is the value related to � as de�ned in De�nition 7.5.1.

Lemma 7.6.7 Let t; t � p be a time and � a protocol. Then t � tmin(�) if and only
if there exists a t-schedule � such that l0(t) = 0 and such that P� [St = � ] > 0.

Proof. If part.

P�;A0 [T � t ] � P�;A0 [T � t;St = � ]
= PA0 [T � t j St = � ]P�[St = � ]:
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By assumption, the term P� [St = � ] is positive. On the other hand, by Corol-
lary 7.6.2, the assumption l0(t) = 0 implies that � 2 FeasA0

i.e., that PA0
[T � t j

St = � ] > 0. Hence

inf
A
P�;A[T � t ] � P�;A0

[T � t ] > 0 :

This inequality, along with the de�nition of tmin(�) shows that t � tmin(�).

Only if part. By de�nition of tmin(�), there exists an adversary A such that
P�;A[T � t ] > 0. By Lemma 7.6.6, this implies that P�;A0 [T � t ] > 0. Hence
there must exist a t-schedule � such that P�;A0 [T � t;St = � ] > 0. This implies
that P�;A0

[St = � ] > 0 and that � 2 FeasA0
i.e., by Corollary 7.6.2, that l0(t) = 0.

�

Lemma 7.6.8 For all A, for all �0 in Prot (Prog0), tmin(�0) = tmax(A) = p�n+ 1:

Proof. For every adversary A and every protocol �, the inequality tmin(�) �
tmax(A) is true for any m � 1 and stems from the general result of Lemma 8.2.4 We
prove that the converse inequality holds in the special case where m = 1 and where
the protocol is in Prot (Prog0).

Let t � p�n+1 and let �0 2 Prot (Prog0). Every t-schedule � selected by �0 is such
that l0(t) = 0: by invariants g and h of Lemma 7.4.1, for every j; 1 � j � t� 1, the
set cj(t) has size at least min(n; b

p�n
t�1
c) � 1: This fact together with Lemma 7.6.7

implies that tmin(�0) � p � n + 1. On the other hand, Lemmas 7.6.5 and 7.6.4
imply that P�;A[T > p � n + 1 ] = 0 for every protocol � and every adversary
A. This fact implies that tmin(�) � p � n + 1 and that tmax(A) � p � n + 1 for
every � and A. Hence, for every A, tmax(A) � p � n + 1 = tmin(�0). This, along
with the inequality tmin(�0) � tmax(A) previously established implies the equality
tmin(�0) = tmax(A) = p� n+ 1, valid for every A. �

Corollary 7.6.9 max� tmin(�) = minA tmax(A).

Proof. By Lemma 8.2.4, max� tmin(�) � minA tmax(A). Conversely, let �0 be any
protocol in Prot (Prog0). We have:

min
A
tmax(A) = tmin(�0) (by Lemma 7.6.8)

� max
�
tmin(�) :

It follows that max� tmin(�) = minA tmax(A). �
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7.6.4 Schedules in normal form are most e�cient against A0

The next lemma is crucial to evaluate the performance of a schedule. In essence,
for a given schedule �, it allows to compute for each time t the probability that
the system survives one more time when following the schedule �, provided that
the system survived thus far and that the adversary is A0. It will allow us in
Lemma 7.6.11 to characterize the schedules that perform best against A0.

Lemma 7.6.10 For every t � 1 and every t-schedule � the two following equalities
hold:

PA0

h
T � t

���St = �; T � t� 1
i
=

t�1Y
j=1

jcj(t)j

jcj(t � 1)j
(7.13)

PA0

h
T � t

���St = �
i
=

t�1Y
j=1

jcj(t)j

n
=

nY
i=0

ili(t)

n
; (7.14)

where cj(u), 1 � j � u � t are uniquely derived from � and where, by convention,
we set 00 to be equal to 1 and 0=0 to be equal to 0.

Corollary 7.3.5, page 148, justi�es the well-foundedness of the probabilities com-
puted in Lemma 7.6.10.

Proof. Consider �rst the case where � 62 FeasA0 . By Remark 1 on page 149, the
left-hand side PA0 [T � t j St = �] of Equation 7.14 is equal to 0. As

PA0

h
T � t

���T � t � 1;St = �
i
=

PA0 [T � t; St = �]

PA0 [T � t � 1; St = �]
;

the left hand side of Equation 7.13 is also 0. (Note that, by Convention 8.1.1,
the left-hand side PA0 [T � t j St = �; T � t � 1] is automatically set to 0 in the
special case where PA0 [T � t � 1; St = �] = 0. On the other hand, in this case,
the convention 0=0 = 0 also gives 0 to the right-hand side.) On the other hand,
by Corollary 7.6.2, the condition � 62 FeasA0 implies that l0(t) > 0, i.e., that there
exists j; 1 � j � t � 1 such that jcj(t)j = 0 and hence that

Qt�1
j=1 jcj(t)j = 0. This

implies that the right hand side of both Equations 7.13 and 7.14 is equal to zero.

We can therefore restrict ourselves in the sequel to the case where � = (s1; : : : ; st) 2
FeasA0 .
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a. We begin with the proof of Equation 7.13.

PA0

h
T � t

���St = �; T � t � 1
i

= PA0

h
\t�1
j=1fFj 2 s

c
tg
���St�1 = (s1; : : : ; st�1); T � t � 1

i
(7.15)

=
t�1Y
j=1

Ucj (t�1)[s
c
t ] (7.16)

=
t�1Y
j=1

jsct \ cj(t � 1)j

jcj(t� 1)j
(7.17)

=
t�1Y
j=1

jcj(t)j

jcj(t� 1)j
: (7.18)

Equation 7.15 is a consequence of Lemma 7.3.6. Equation 7.16 is a simple application
of Lemma 7.6.1. Equation 7.17 is a simple application of the fact that Ucj (t�1) is the
uniform distribution on cj(t� 1). Equation 7.18 comes from the de�nition of cj(t).
This �nishes to establish Equation 7.13.

b. We now turn to the proof of Equation 7.14.

PA0

h
T � t j St = (s1; : : : ; st)

i
= PA0

h
T � t; T � t� 1; : : : ; T � 1 j St = (s1; : : : ; st)

i
(7.19)

= PA0

h
T � t j T � t� 1; St = (s1; : : : ; st)

i
�PA0

h
T � t� 1 j T � t� 2; St = (s1; : : : ; st)

i
(7.20)

: : : PA0

h
T � 2 j T � 1; St = (s1; : : : ; st)

i
� PA0

h
T � 1 j St = (s1; : : : ; st)

i
= PA0

h
T � t j T � t� 1; St = (s1; : : : ; st)

i
�PA0

h
T � t� 1 j T � t� 2; St�1 = (s1; : : : ; st�1)

i
: : : PA0

h
T � 2 j T � 1;S2 = (s1; s2)

i
� PA0

h
T � 1 j S1 = s1

i
(7.21)

=
tY

u=2

u�1Y
j=1

jcj(u)j

jcj(u� 1)j
(7.22)

=
t�1Y
j=1

tY
u=j+1

jcj(u)j

jcj(u� 1)j
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=
t�1Y
j=1

jcj(t)j=jcj(j)j

=
t�1Y
j=1

jcj(t)j=n :

Equation 7.19 is justi�ed by the equality fT � tg = fT � t; T � t� 1; : : : ; T � 1g :
Equation 7.20 is obtained by successive conditioning. Equation 7.21 is a consequence
of Lemma 7.3.6. Equation 7.22 is a consequence of Equation 7.13 and of the simple
property PA0 [T � 1 j S1 = s1] = 1. �

The following lemma establishes that, for every time t; 1 � t � tmax(A0), the set of
t-schedules � maximizing the probability PA0

�
T � t

��St = �
�
is equal to the set Nt

of t-schedules � in normal form.

Lemma 7.6.11 For any t; 1 � t � tmax(A0), the value PA0

�
T � t

��St = �
�
is the

same for all t-schedules � in Nt. We let PA0

�
T � t

��St 2 Nt

�
denote this common

value. Furthermore, let �0 be a t-schedule. We have:
1. If �0 2 Nt, then

PA0

�
T � t

��St = �0
�

= max
�
PA0

�
T � t

��St = �
�
: (7.23)

2. Conversely, if �0 62 Nt, then

PA0

�
T � t

��St = �0
�
< max

�
PA0

�
T � t

��St = �
�
: (7.24)

Proof. By Lemma 7.6.10, that, for every t-schedule �,

PA0

�
T � t

��St = �
�
=

t�1Y
j=1

jcj(t)j

n
=

nY
i=0

ili(t)

n
:

A �rst consequence of this fact is that the value PA0 [T � t j St = �] depends on �
only through the values (l0(t); : : : ; ln(t)). By Lemma 7.5.4, there is a unique and
well de�ned sequence (l0(t); : : : ; ln(t)) to which all schedules in Nt are associated.
This implies that the probability PA0 [T � t j St = �] takes only one value when �
varies in Nt. This fact justi�es the notation

PA0

�
T � t

��St 2 Nt

�
= PA0

�
T � t

��St = �0
�
;
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for any arbitrary schedule �0 in Nt.

Taking into account that all schedules �0 2 Nt give rise to the same value PA0

�
T �

t
��St = �0

�
, we see that Equation 7.23 is a consequence of Equation 7.24 that we

now set out to prove. By de�nition of tmax(A0), the condition t � tmax(A0) implies
that 0 < sup� P�;A0 [T � t ] ; so that, by Lemmas 8.1.4 and 7.3.2

0 < sup
�
P�;A0

[T � t ]

� sup
�

max
�

P�;A0

�
T � t

��St = �
�

= max
�

sup
�
P�;A0

�
T � t

��St = �
�

= max
�
PA0

�
T � t

��St = �
�
: (7.25)

Working by contradiction, assume that there exists a t-schedule � not in normal
form but which maximizes the probability PA0

�
T � t

��St = �
�
: The non-normality

of � implies that

a. either there exists j1 and j2 in f1; : : : ; t� 1g such that jcj1(t)j � jcj2(t)j � 2,

b. or c0(t) 6= ; and there exists j in f1; : : : ; t� 1g such that jcj(t)j � n� 1.

We �rst consider case a. In this case:

PA0

�
T � t

��St = �
�

=
t�1Y
j=1

jcj(t)j

n

=
Y

j2f1;:::;t�1g;j 6=j1;j2

jcj(t)j

n
�
jcj1(t)j

n
�
jcj2(t)j

n
:

De�ne the sequence (1; : : : ; t�1) derived from the sequence (jc1(t)j; : : : ; jct�1(t)j)
by replacing jcj1(t)j by jcj1(t)j+ 1 and jcj2(t)j by jcj2(t)j � 1. Note that

t�1X
j=1

j =
t�1X
j=1

jcj(t)j : (7.26)

By the only-if direction of Lemma 7.5.2 we have that n � p�(jc1(t)j+ : : :+ jct�1(t)j).
By Equation 7.26 we therefore also have n � p�(1+ : : :+t�1). By the if direction
of Lemma 7.5.2 there exists a schedule �0 = (s01; : : : ; s

0
t) whose associated c-sequence

(c01(t); : : : ; c
0
t�1(t)) satis�es jc

0
j(t)j = j; 1 � j � t� 1. We compute:

(jcj1(t)j+ 1) � (jcj2(t)j � 1) = jcj1(t)j � jcj2(t)j+ jcj2(t)j � jcj1(t)j � 1

� jcj1(t)j � jcj2(t)j+ 1 ;
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because, by assumption, jcj1(t)j � jcj2(t)j � 2.

Then

PA0

�
T � t

��St = �0
�

=
t�1Y
j=1

jc0j(t)j

n

=
Y

j2f1;:::;t�1g;j 6=j1;j2

jcj(t)j

n
�
jcj1(t) + 1j)

n
�
jcj2(t)� 1j)

n

>
Y

j2f1;:::;t�1g;j 6=j1;j2

jcj(t)j

n
�
jcj1(t)j

n
�
jcj2(t)j

n
(7.27)

= PA0

�
T � t

��St = �
�
:

In Equation 7.27, the inequality is strict because, by Equation 7.25 and the fact
that

PA0

�
T � t

��St = �
�
=

t�1Y
j=1

jcj(t)j

n
;

(see Equation 7.14), all the terms jcj(t)j, 1 � j � t � 1 must be non-zero.

But this contradicts the fact that, by assumption, the schedule � maximizes the
probability PA0

�
T � t

��St = �
�
: This concludes the analysis of case a.

Case b is similar but easier. We could proceed as in a and use Lemma 7.5.2 to
prove non-constructively the existence of an improving schedule. Just for the sake
of enjoyment, we adopt another another proof technique and provide an explicit
modi�cation of the schedule �.

By assumption c0(t) 6= ; and there exists j0 in f1; : : : ; t � 1g such that jcj0(t)j �
n � 1. Note that the sequence (cj0(u))u�j0 is a non-increasing sequence of sets

such that jcj0(j0)j
def
= js(j0)j = n. Hence there must exist a time j1; j0 < j1 � t

such that jcj0(j1)j < jcj0(j1)j � 1: Consider the smallest such j1. By the de�nition
of the set cj0(j1), (see De�nition 7.5.1), this implies the existence of an element
x 2 s(j0) \ s(j1). Let y be any element in c0(t). De�ne

s0(j1)
def
= (s(j1)� fxg)[ fyg ;

and s0(j) = s(j) for all j 6= j1. Let c
0
1(t); : : : ; c

0
t�1(t) be its associated c-sequence. We

easily check that jc0j0(t)j = jcj0(t)j+1 and that c
0
j(t) = cj(t) for all j; 1 � j � t; j 6= j0.
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Hence

PA0

�
T � t

��St = (s01; : : : ; s
0
t)
�

=
t�1Y
j=1

jc0j(t)j

n

=
Y

j2f1;:::;t�1g;j 6=j0

jcj(t)j

n
�
jcj0(t)j+ 1

n

>
t�1Y
j=1

jcj(t)j

n

= PA0

�
T � t

��St = �
�
:

As in case a, this contradicts the assumption that the schedule � maximizes the
probability PA0

�
T � t

��St = �
�
: This concludes the analysis of case b. �

7.6.5 Protocols in Prot (Prog0) are optimal against A0

Recall that the notation PA0

�
T � t

��St 2 Nt

�
was introduced and de�ned in

Lemma 7.6.11.

Lemma 7.6.12 For every t, sup� P�;A0 [T � t
�
= PA0

�
T � t

��St 2 Nt

�
. Further-

more, for t � tmax(A0), a protocol � maximizes the probability P�;A0 [T � t
�
if and

only if P�
�
St 2 Nt

�
= 1.

Proof.

� Let �0 be some schedule in Nt. Let �0 be a protocol such that P�0
�
St = �0

�
= 1.

Then

sup
�
P�;A0 [T � t ] � P�0;A0 [T � t ]

= P�0;A0

�
T � t

�� St = �0
�

= PA0

�
T � t

�� St = �0
�

= PA0

�
T � t

��St 2 Nt

�
;

where the last equality is a consequence of lemma 7.6.11.

� Conversely, let � be any protocol. The beginning of the following argument repeats
the proof of Lemma 8.1.4.

P�;A0 [T � t
�

=
X
�

P�;A0

�
T � t

�� St = �
�
� P�;A0

�
St = �

�
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=
X
�

PA0

�
T � t

�� St = �
�
� P�

�
St = �

�
� max

�
PA0

�
T � t

�� St = �
�
�
X
�

P�
�
St = �

�
(7.28)

= max
�
PA0

�
T � t

�� St = �
�

= PA0

�
T � t

�� St 2 Nt

�
;

where here also the last equality is a consequence of lemma 7.6.11. Hence

sup
�
P�;A0

�
T � t

�
� PA0

�
T � t

��St 2 Nt

�
which �nishes to establish the �rst part of the lemma. Furthermore, note that the
inequality 7.28 is an equality exactly when

P�
h
St 2

n
� ; � maximizes PA0 [T � t j St = � ]

oi
= 1 :

By Lemma 7.6.11, for t � tmax(A0), this happens exactly when P� [St 2 Nt] = 1. �

Lemma 7.6.13 For every �0 2 Prot (Prog0), for every t; t � tmax(A0), P�0 [St 2
Nt] = 1.

Proof. Let �0 2 Prot (Prog0). By Lemma 7.6.8, tmax(A0) = tmin(�0) = p� n + 1:
Invariants g and h of Lemma 7.4.1 show that for every t; t � p � n + 1, �0 only
selects t-schedules in normal form. �

The next result expresses that, for all t, the protocols in Prot (Prog0) maximize the
probability of survival up to time t when the adversary is the random adversary A0.

Corollary 7.6.14 For every �0 2 Prot (Prog0), for every t, max� P�;A0 [T � t] =
P�0;A0 [T � t] :

Proof. The equality is trivially true if t > tmax(A0): in this case both terms of
the equation are equal to 0. On the other hand, if t � tmax(A0), the equality is a
direct consequence of Lemmas 7.6.12 and 7.6.13. �

We can �nally provide the proof of Lemma 7.4.7, stating that �0 is optimal against
adversary A0.
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Corollary 7.6.15 For every �0 2 Prot (Prog0), max� E�;A0 [T ] = E�0;A0[T ].

Proof. Let �0 be an arbitrary protocol in Prot (Prog0). By Lemma 8.1.2, for every
protocol �, E�;A0 [T ] =

P
t�1 P�;A0 [T � t]. Hence,

sup
�
E�;A0

[T ] = sup
�

X
t�1

P�;A0
[T � t]

�
X
t�1

sup
�
P�;A0 [T � t]

=
X
t�1

P�0;A0 [T � t] (7.29)

= E�0;A0 [T ] :

Equality 7.29 is a consequence of Corollary 7.6.14. �
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7.7 A0 is optimal against �0

This section is devoted to the proof of Lemma (7.4.8). It uses in detail the code
describing Prog0 given in Page 151 to which the reader is referred.

Notations: We use the convention established in page 156 and for each program
variable X let X(t) denote the value held by X at the end of round t. Hence J(t)
is the value held by the program variable J at the end of round t. Recall also that
St(t) = St(t + 1) = : : : = St(n � p + 1) so that we abuse language and let St also
denote the value St(t) held by the program variable St at the end of round t.

For every t; 1 � t < p � n + 1 and every k; 1 � k � t, we let �k(t + 1) denote the
value jCk(t)j � jCk(t + 1)j. As usual, we use lower-case to denote realizations of a
random variable and write �k(t+ 1) for a realization of �k(t+ 1).

By invariants g, h and i given in Lemma 7.4.1, for every program prog in Prog0,
the value �k(t + 1) of �k(t+ 1) is uniquely determined for given values of J(t) and
J(t + 1), and hence for given values of St and J(t + 1).

Remember also that UP�k(t)(ck(t)) denotes the uniform distribution on the set P�k(t)(ck(t))
of subsets of ck(t) which are of size �k(t).

The next two lemmas, 7.7.1 and 7.7.2, characterize what is at each time t the
probability distribution induced on Pn(p) by the choice St+1 made for round t + 1
by a program in Prog0. This distribution depends on the t-schedule � selected by
the program in the �rst t rounds and on the value allocated to J(t + 1).

As discussed in Section 7.4.4, J(t + 1) is an internal variable of the program and
is not measurable in the probability space (
;G) presented in Section 7.2. (In this
space, only events describable in terms of the schedule S1; : : : ; Sp and in terms of the
fault sequence F1; : : : ; Fp are measurable.) To be able to measure probabilistically
the values allocated to this variable we therefore need to use the probability space
(
0;G0; Pprog) de�ned in Section 7.4.4. In a �gurative sense, programs in Prog0 appear
as black boxes when analyzed in the probability space (
;G): this probability space
allows only to measure the output (S1; : : : ; Sp) of the programs. In contrast, the
probability space (
0;G 0) allows to look inside each program prog in Prot (Prog0)
and to analyze the internal actions it undertakes.

Lemma 7.7.1 Let t; bp=nc � t < p� n + 1; be arbitrary, let prog 2 Prog0, let � be
a t-schedule and J ;J � [t] such that Pprog[St = �; J(t + 1) = J ] > 0. Then the



7.7. A0 is optimal against �0 189

random variables St+1 \ ck(t); 1 � k � t are independent and such that

Pprog

h
St+1 \ ck(t) = �

��� St = �; J(t + 1) = J
i
= UP�k(t+1)(ck(t))

h
�
i
;

where �k(t+ 1) and ck(t) are the values of �k(t+ 1) and Ck(t) uniquely determined
by the conditions St = � and J(t + 1) = J .

Proof. Consider round t + 1, and let � denote the t-schedule St selected up to
this point.
Conditioned on St = �, for every k; 0 � k � t, the program variable Ck is
determined and equal to ck(t) { by de�nition of ck(t). Hence, in the randomized
invocations S := uniform(�; cK) or S := uniform(� + 1; cK) of lines 16, 22 and 35
of the code of Prog0, the variable CK is equal to cK(t). Note also that no further
change is brought in round t to a variable CK once one of the lines 18, 24 or 37 is
executed. Hence the value allocated to S in these invocations is equal to CK(t+1).
These two facts imply that the randomized invocation of line 16 can be rewritten
CK(t + 1) := uniform(�; cK(t)), and that the randomized invocations of lines 22
and 35 can be rewritten CK(t+ 1) := uniform(�+ 1; cK(t)).

By invariant g of Lemma 7.4.1, the sets ck(t); 0 � k � t form a partition of [p] and
hence are disjoint. Hence the random draws associated to the various randomized
invocations CK(t+ 1) := uniform(�; cK(t)) and CK(t+1) := uniform(�+1; cK(t))
are independent and uniformly distributed. Therefore the random variables ck(t)�
Ck(t+ 1), 0 � k � t, are also independent of each other.

The value J of J(t + 1) determines precisely what are the values of k; 1 � k � t
for which jCK(t + 1)j = � + 1 and what are the values of k; 1 � k � t for which
jCK(t + 1)j = �. After further conditioning on J(t + 1) = J , each random
variable ck(t)�Ck(t+ 1), is drawn uniformly from the set P�k(t+1)(ck(t)) of subsets
of ck(t) which are of size �k(t + 1). (Recall that the value �k(t + 1) of �k(t+ 1) is
uniquely determined for the values � of St and J of J(t + 1).) Hence, conditioned
on fSt = �; J(t + 1) = Jg, the family (c0(t) � C0(t + 1); : : : ; ct(t) � Ct(t + 1)) is
distributed according to the product distribution

tO
k=0

UP�k(t+1)(ck(t)) :

On the one hand, by invariant f of Lemma 7.4.1, the random set St+1 is equal to
the disjoint union [tk=0(ck(t) \ St+1). On the other hand, by construction, (see the
code in Page 151), it is equal to the disjoint union [tk=0(ck(t)� Ck(t + 1)). Hence,



190 Chapter 7. An Optimal Randomized Algorithm

for all k; 0 � k � t, ck(t)\ St+1 is equal to ck(t)�Ck(t+ 1). This (trivially) implies
that the random variables ck(t) \ St+1; 0 � k � t, are independent and that, for
every k; 0 � k � t, ck(t) \ St+1 has the same distribution as ck(t) � Ck(t + 1). In
particular, for every k; 0 � k � t,

Pprog

h
ck(t) \ St+1 = �

��� St = �; J(t+ 1) = J
i
= UP�k(t+1)(ck(t))

h
�
i
:

�

Lemma 7.7.2 Let t; bp=nc � t < p� n + 1; be arbitrary, let prog 2 Prog0, let � be
a t-schedule and J ;J � [t] such that Pprog[St = �; J(t+ 1) = J ] > 0. Then

Pprog

h
St+1 = �

��� St = �; J(t + 1) = J
i
=

tY
k=0

UP�k(t+1)(ck(t))
h
ck(t) \ �

i
;

where �k(t+ 1) and ck(t) are the values of �k(t+ 1) and Ck(t) uniquely determined
by the conditions St = � and J(t + 1) = J .

Proof.

Pprog

h
St+1 = �

��� St = �; J(t + 1) = J
i

= Pprog

h
[tk=0(ck(t) \ St+1) = [

t
k=0(ck(t) \ � )

��� St = �; J(t+ 1) = J
i

=
tY

k=0

Pprog

h
ck(t) \ St+1 = (ck(t) \ � )

��� St = �; J(t+ 1) = J
i

(7.30)

=
tY

k=0

UP�k(t+1)(ck(t))
h
ck(t) \ �

i
: (7.31)

Equation 7.30 comes from the fact that the random variables ck(t) \ St+1 are inde-
pendent. Equation 7.31 is a direct consequence of Lemma 7.7.1. �

The next lemma is a simple consequence of the preceding ones and expresses what
is the probability that the set next selected by a protocol in Prot (Prog0) does not
contain an element already faulty.

Lemma 7.7.3 Let t; bp=nc � t < p�n+1 and j; 1 � j � t be arbitrary. Let prog 2
Prog0, let � be a t-schedule and J ;J � [t] such that Pprog[St = �; J(t+1) = J ] > 0.
Let fj 2 cj(t) be an arbitrary element. Then

Pprog

h
St+1 63 fj

��� St = �; J(t + 1) = J
i
= UP�j(t+1)(cj (t))

h
� 63 fj

i
:
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Proof. Recall that for every k, �k(t+1) and ck(t) are the values of �k(t+1) and
Ck(t) uniquely determined by the conditions St = � and J(t + 1) = J .

By invariant f of Lemma 7.4.1, St+1 is equal to the disjoint union St+1 = [k(St+1 \
ck(t)). By assumption, fj is in cj(t). Hence fj is in St+1 if and only if it is in
St+1 \ cj(t). This justi�es the �rst following equality. The second one is a direct
consequence of Lemma 7.7.1. Hence

Pprog

h
St+1 63 fj

��� St = �; J(t + 1) = J
i

= Pprog

h
(St+1 \ cj(t)) 63 fj

��� St = �; J(t + 1) = J
i

= UP�j(t+1)(cj(t))
h
� 63 fj

i
:

�

The following lemma is the crux of this section and reveals the role played by the
uniform probability distributions used in the design of Prog0. Particularly revelatory
is the computation allowing to pass from Equation 7.36 to Equation 7.37.

Lemma 7.7.4 Let t; 1 � t < p� n + 1. Then the value of the probability

P�0

h
T � t + 1

��� T � t; St = �;Ft = �
i

is the same for all protocols �0 2 Prot (Prog0)
11, for all t-schedules � 2 Nt and for

all t-fault-sequences � adapted to � such that P�0

h
T � t; St = �;Ft = �

i
> 0:

Proof. Throughout the proof we consider �0; � and � such that P�0 [T � t;St =
�;Ft = �] > 0 and we let prog be an element in Prog0 such that �0 = �prog.

Recall that we let f1; : : : ; ft denote the realizations of F1; : : : ; Ft. Hence the con-
dition Ft = � means that (F1; : : : ; Ft) is determined and equal to (f1; : : : ; ft) = �.
Similarly, St = � means that the t-schedule (S1; : : : ; St) is determined and equal
to (s1; : : : ; st) = �. The random sets Cj(u), 1 � j � u � t are then also uniquely
determined and we let cj(u) denote their realizations. Recall that, by Lemma 7.5.1,
fT � tg = \tk=1fFk 2 Ck(t)g: Hence, by conditioning on fT � t;St = �;Ft = �g,
we restrict ourselves to the case where fk is in ck(t) for every k; 1 � k � t. This
fact, along with the fact that the family (ck(t))1�k�t is a partition of [p] implies that
for every S; S � [p], and every k; 1 � k � t, the condition fk 2 S is equivalent to
fk 2 (S \ ck(t)).

11See Page 150 for a de�nition of Prot (Prog0).
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Case I. Assume that t < bp=nc. Then P�0
h
T � t + 1

��� T � t; St = �;Ft = �
i
= 1

and hence the result holds trivially.

Case II. Assume that t � bp=nc. We have:

P�0

h
T � t+ 1

��� T � t; St = �;Ft = �
i

= P�0

h
St+1 63 F1; : : : ; St+1 63 Ft

��� T � t; St = �; Ft = �
i

= P�0

h
St+1 63 f1; : : : ; St+1 63 ft

��� T � t; St = �; Ft = �
i

= P�0

h �
St+1 \ c1(t)

�
63 f1; : : : ;

�
St+1 \ ct(t)

�
63 ft

��� T � t; St = �; Ft = �
i

(7.32)

= P�0

h �
St+1 \ c1(t)

�
63 f1; : : : ;

�
St+1 \ ct(t)

�
63 ft

��� St = �
i

(7.33)

=
X
J

Pprog

h �
St+1 \ c1(t)

�
63 f1; : : : ;

�
St+1 \ ct(t)

�
63 ft

��� St = �; J(t + 1) = J
i

� Pprog

h
J(t+ 1) = J j St = �

i
(7.34)

=
X
J

tY
k=1

Pprog

h �
St+1 \ ck(t)

�
63 fk

��� St = �; J(t + 1) = J
i

� Pprog

h
J(t+ 1) = J j St = �

i
(7.35)

=
X
J

tY
k=1

UP�k(t+1)(ck(t))
h
� 63 fk

i
Pprog

h
J(t + 1) = J j St = �

i
(7.36)

=
X
J

tY
k=1

jck(t+ 1)j

jck(t)j
Pprog

h
J(t + 1) = J j St = �

i
(7.37)

=

Qt
k=1 jck(t+ 1)jQt

k=1 jck(t)j
�
X
J

Pprog

h
J(t + 1) = J j St = �

i
(7.38)

=

Qt
k=1 jck(t+ 1)jQt

k=1 jck(t)j
:

Equation 7.32 stems from the fact that, as we saw at the beginning of this proof,
for every k; 1 � k � t, fk is an element of ck(t) and hence the condition St+1 63 fk is
equivalent to (St+1 \ ck(t)) 63 fk.

We used in the beginning of the proof the formula fT � tg = \tk=1fFk 2 Ck(t)g.
We now �nd it convenient to use the alternate expression fT � tg = \tu=1

�
Su \

fF1; : : : ; Fu�1g = ;
	
. (Both expressions are presented in Lemma 7.5.1). The event

fFt = �; T � tg is equal to the event
�
Ft = �;

Tt
u=1

�
Su \ ff1; : : : ; fu�1g = ;
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which,when conditioned on St = �, is itself equal to the event
�
Ft = �;

Tt
u=1

�
su \

ff1; : : : ; fu�1g = ;
		
. Note that the relation

Tt
u=1

�
su \ ff1; : : : ; fu�1g = ;

	
only

expresses a relation between the deterministic quantities s1; f1; : : : ; st. Hence the
probabilistic event

�
Ft = �;

Tt
u=1

�
su \ ff1; : : : ; fu�1g = ;

		
is actually equal to

fFt = �g. As, by Lemma 7.3.1, conditioned on St = �, the random variables Ft and
St+1 are independent, we therefore similarly have that, conditioned on St = �, the
random variable St+1 is independent from the event

�
Ft = �; T � t

	
. This justi�es

Equation 7.33.

In Equation 7.34, we condition on the value taken by J(t+ 1), i.e., on the outcome
of an internal action of the program prog associated to �0. As discussed at the
beginning of this section, the random variable J(t + 1) is not measurable in the
�-�eld associated to protocols, and we must therefore consider the probability space
(
0;G0; Pprog) allowing to measure the randomized invocations made by prog. This
explains why we consider Pprog in place of P�0 .

By Lemma 7.7.1 the random variables St+1 \ ck(t); 1 � k � t are independent. This
justi�es Equation 7.35. Using Lemma 7.7.3 along with the fact that St+1 63 fk is
equivalent to (St+1 \ ck(t)) 63 fk justi�es Equation 7.36.

Note that we replaced in Equation 7.32 the conditions St+1 63 fk by the conditions
(St+1 \ ck(t)) 63 fk and that we replaced back each condition (St+1 \ ck(t)) 63 fk by
St+1 63 fk while establishing Equation 7.36. The reason for the introduction of the
sets ck(t) is to be able to use the (conditional) independence of the random variables
St+1 \ ck(t) and to obtain the product introduced in Equation 7.35.

Recall that we de�ned �k(t+ 1) to be equal to the value jck(t)j � jck(t+ 1)j. Hence
UP�

k
(t+1)(ck(t))[ fk 62 � ] is equal to UPjc

k
(t+1)j(ck(t))[ fk 2 � ] which is equal to jck(t +

1)j=jck(t)j. This establishes Equation 7.37. Note that, for each k, the value ck(t+1)
does depend on the values � and J taken by St and J(t + 1). Nevertheless, by
Lemma 7.4.5, the product

Qt
k=1 jck(t + 1)j (resp.

Qt
k=1 jck(t)j) is the same for all

programs prog 2 Prog0 and all values �, J and � taken by St, J(t + 1) and Ft.
We can therefore factor the term

Qt
k=1 jck(t+ 1)j=

Qt
k=1 jck(t)j out of the summation

over J . This justi�es Equation 7.38.

This establishes that P�0 [T � t + 1 j T � t; St = �; Ft = � ] is the same for
all protocols �0 2 Prot (Prog0), all t-schedules � 2 Nt and all t-fault-sequences �
adapted to �. �

Note that if k � bp=nc then ck(u) = Sk for all times u; k � u � bp=nc. Therefore
jck(t+ 1)j=jck(t)j = 1 for all t and k, 1 � k � t < bp=nc.

Assume now that t � p � n + 1. Let � be a t-schedule and let s 2 Pn(p) be such
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that (�; s) is a t+1-schedule. Let �0 be a protocol in Prot (Prog0)\Pgenerating (�).
By Lemma 7.6.8, tmax(A0) = p � n + 1. By de�nition of tmax(A0) this implies that
PA0 [T � t + 1 j St+1 = (�; s)] = 0 and by consequence that (�; s) 62 FeasA0. Hence,
as is established at the beginning of the proof of Lemma 7.6.10,

Qt
j=1 jcj(t + 1)j =

0. Using the convention 0=0 = 0 (see Convention 8.1.1, page 198) we see that
(
Qt

k=1 jck(t+ 1)j)=(
Qt

k=1 jck(t)j) = 0. On the other hand, again by Lemma 7.6.8 and
Convention 8.1.1, P�0 [T � t+ 1 j T � t; St = �; Ft = � ] = 0 if t > p� n + 1.

This shows that the equality

P�0

h
T � t+ 1

��� T � t; St = �; Ft = �
i
=

Qt
k=1 jck(t+ 1)jQt

k=1 jck(t)j

holds for every t; t � 1.

This result, along with Formula 7.13 in Lemma 7.6.10 establishes the following
remarkable fact:12

For every t; t � 1, every t + 1-schedule (�; s) 2 Nt+1, every t-fault-sequence �
adapted to � and every protocol �0 2 Prot (Prog0) \ Pgenerating (�):

PA0

h
T � t + 1 j T � t; St+1 = (�; s)

i

=
tY

j=1

jcj(t + 1)j

jcj(t)j

= P�0

h
T � t + 1 j T � t; St = �; Ft = �

i

where the values cj(t); 1 � j � t; and cj(t+1); 1 � j � t, are the c-values related to
the (t+ 1)-schedule (�; s).

This result constitutes the core technical result of this chapter, whose consequences
ultimately lead to the fundamental equality

sup
�
E�;A0 [T ] = E�0;A0 [T ] = inf

A
E�0;A[T ] ;

establishing Theorem 7.4.6.

Lemma 7.7.5 Let t; 1 � t < p � n + 1. Then, for every �0 2 Prot (Prog0), the
probability P�0;A[T � t + 1 j T � t ] is independent of the adversary A.

12Recall that, by convention, we set 0=0 = 0.
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Proof.

P�0;A
h
T � t + 1

��� T � t
i

=
X
�;�

P�0

h
T � t+ 1

��� T � t; St = �; Ft = �
i
P�0;A

h
St = �;Ft = �

i

= P�0

h
T � t+ 1

��� T � t; St = �; Ft = �
i X

�;�

P�0 ;A
h
St = �;Ft = �

i
(7.39)

= P�0

h
T � t+ 1

��� T � t; St = �; Ft = �
i
:

Equation 7.39 holds because, by Lemma 7.7.4, the value P�0
�
T � t+ 1

�� T �
t; St = �; Ft = �

�
is the same for all � and � (adapted to �). Furthermore, the

fact that the value P�0
�
T � t + 1

�� T � t; St = �; Ft = �
�
does not depend on

� immediately implies that it similarly does not depend on A, which concludes the
proof. �

Lemma 7.7.6 Let t; 1 � t � p � n + 1. Then, for every �0 2 Prot (Prog0), the
probability P�0;A[T � t ] is independent of the adversary A.

Proof. P�0;A[T � t] = P�0;A[T � t j T � t�1] : : :P�0;A[T � 2 j T � 1]: The result
then follows from Lemma 7.7.5. �

We are now �nally able to prove Lemma (7.4.8).

Corollary 7.7.7 For every �0 2 Prot (Prog0), the expectation E�0;A[T ] is indepen-
dent of the adversary A.

Proof.

E�0;A[T ] =
X
t�1

P�0;A[T � t] (7.40)

=
tmax(A)X
t=1

P�0;A[T � t] (7.41)

=
tmin(�0)X
t=1

P�0 ;A[T � t] (7.42)

Equality 7.40 is justi�ed by Lemma 8.1.2. Equality 7.41 by the fact that P�0;A[T �
t] = 0 if t > tmax(A). By Lemma 7.6.8, for all A, tmax(A) = tmin(�0) = p�n+1. This
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justi�es Equality 7.42. By Lemma 7.7.6, for every t; 1 � t � tmin(�0), each of the
terms P�0;A[T � t] is independent of A. Hence the whole sum

Ptmin(�0)
t=1 P�0 ;A[T � t]

is independent of A. �



Chapter 8

General Mathematical Results

8.1 Some Useful Notions in Probability Theory

Notation: 1) For every �nite set �;� 6= ;, we let U� denote the uniform distribution
of the set �. We will �nd it convenient to extend this de�nition to � = ; and let
U;(A) be identically equal to 0 for every set A. (Hence U; is not a probability
distribution.)
2) For every set X we let P(X) denote the power set of X . For every integer � we
let P�(X) denote the set of subsets of X of size �:

P�(X)
def
= fY � X ; jY j = �g:

Hence, P0(X) = f;g and P�(X) = ; for all � > jX j. To simplify the notations we
write Pn(p) in place of Pn([N ]).
3) For every integers k and l, k � l, we let [l] denote the set f1; : : : ; lg and let

Pk(l)
def
= fs; s � [l]; jsj= kg:

We can mix the two previous de�nitions and consider UP�(X), the uniform distribu-
tion on P�(X). The following lemma investigates some special cases associated to
this situation.

Lemma 8.1.1 1) UP�(X) � 0 if � > jX j. 2) UP0(X) = �;, the Dirac measure on ;.
Equivalently, UP0(X) is the probability measure selecting the empty set with probability
1.

Proof. Assume that � > jX j. Then, for every set A, UP�(X)(A) = U;(A) = 0: On
the other hand, UP0(X) = Uf;g is the uniform distribution on the singleton set f;g,
i.e., the distribution selecting ; with probability one. �

197
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Convention 8.1.1 Let (
;G; P ) be some probability space. For all A and B in G
we set P [BjA] = 0 whenever P [A] = 0. We accordingly set to 0 the ratio 0=0.

De�nition 8.1.1 Let (
;G; P ) be a probability space. For every sets A and B in
G we say that A and B are P -equivalent if P [A�B] = 0, where A�B denotes the
symmetric di�erence of A and B. An element A of G is called a P -atom if, for
every B in G, B is a subset of A only if B is P -equivalent to A or to ;.

De�nition 8.1.2 Let (
1;G1; P1) be some probability space and letX : (
1;G1; P1)!
(
2;G2) be a random variable. Then the law of X is the probability distribution on
(
2;G2) de�ned by:

8B 2 G2; P2[B]
def
= P1[X 2 B]:

We write
L(X) = P2:

For A 2 G1, P [A] 6= 0, the random variable X jA is by de�nition a random variable
X 0 whose law P3 is given by:

8B 2 G2; P3[B] = P1[X 0 2 B]
def
= P1[X 2 B j A]:

Following Convention 8.1.1, we set X jA � 0 if P [A] = 0.

Lemma 8.1.2 Let T be any non-negative random variable de�ned on some proba-
bility space (
;G; P ). Then

E[T ] =
Z 1

0
P [T > t] dt :

If T is integer valued, the preceding translates into

E[T ] =
1X
t=1

P [T � t] :

Proof. For every interval [0; T [ we let �[0;T [ denote the function equal to 1 on
[0; T [ and 0 elsewhere. Also, for simplicity of notation, we think of the expectation
E as being an operator and let Ef denote E[f ].

ET = E

Z T

0
dt (8.1)
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= E

Z 1

0
�[0;T [(t) dt

=
Z
dP (x)

Z 1

0
�[0;T (x)[(t) dt (8.2)

=

Z 1

0
dt

Z
dP (x)�[0;T (x)[(t) (8.3)

=
Z 1

0
P [T > t] dt :

Equation 8.1 comes from the simple observation that T =
R T
0 dt. Equation 8.2 is

a particular case of the general formula E[f ] =
R
f(x)dP (x): Equation 8.3 is an

application of Fubini's theorem. In the case where T is integer valued,

E[T ] =
Z 1

0
P [T > t] dt

=
X
n=1

Z n

n�1
P [T > t] dt

=
X
n=1

P [T � n] :

�

The following lemma states a well-known property of the uniform distribution.

Lemma 8.1.3 Let A be a �nite set and let B be a non empty subset of A. Then
UA[ � j B] = UA\B :

Lemma 8.1.4 Let (
;G; P ) be some probability space, let S : (
;G)! (E;P(E))
be a random variable de�ned on 
. Then for every B 2 G,

P [B] � max
s2E

P [B j S = s]:

Proof. P(E) being the �-�eld attached to E the set fS = sg is measurable for
every s in E. Hence P [B j S = s] is well-de�ned if P [S = s] 6= 0. On the other
hand, by Convention 8.1.1, P [B j S = s] is set to 0 when P [S = s] = 0. Hence
P [B j S = s] is well-de�ned for all s in E.

P [B] =
X
s2E

P [B j S = s]P [S = s]

� max
s2E

P [B j S = s]
X
s2E

P [S = s]

= max
s2E

P [B j S = s]:

�
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Lemma 8.1.5 Let B and A be any real-valued random variables. Then

8x 2 R; P [B � x
�� B � A ] � P [B � x ]: 1

Proof. The result is obvious if P [B � A ] = 0. We can therefore restrict ourselves
to the case P [B � A ] > 0. Assume �rst that A is a constant a.

If a < x the result is trivially true, so we assume that a � x. Set � = P [B > a] and
� = P [B � x]. Then:

P [B � x
�� B � a ] = P [ x�B�a ]

P [B�a]

= � � �
1� �

def
= ��(�):

For � 2 [0; 1], The function �� is not increasing on [0; 1). Hence:

P [B � x
�� B � a ] � ��(0)

= P [B � x ]:

We then turn to the case where A is a general random variable.2 We will let dPA
denote the distribution of A so that, for any measurable set U , dPA[U ] = P [A 2 U ].
Then:

P [A � B � x ] =
Z
a

P [ a � B � x ] dPA(a)

=
Z
a

P [B � x
�� B � a ] P [B � a] dPA(a)

�
Z
a
P [B � x] P [B � a] dPA(a)

(We use here the result valid for A = a constant)

= P [B � x]
Z
a

P [B � a] dPA(a)

= P [B � x] P [B � A] :

Then we just need to divide by P [B � A] to get the result we are after. �

1Recall that, using Convention 8.1.1, we set 0=0 = 0 whenever this quantity arises in the com-
putation of conditional probabilities.

2Note that we cannot simply extend the previous proof in this case: A can sometimes be less
then x and then it is not true anymore that fB > Ag � fx � Bg. We used this when saying that
P [x � B � a ] = P [x � B]� P [B > a].
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If A is a discrete variable, its distribution is absolutely continuous with respect to
the counting measure, so that the expression

R
a P [a � B � x]dPA(a) reduces toP

a P [a � B � x]P [A = a].

We recall in the following de�nition the notion of stochastic (partial) ordering: this
ordering is de�ned within the set of real random variables.

De�nition 8.1.3 Let X and Y be two real random variables. Then the following
conditions are equivalent:

1. For all x 2 R; P [X � x] � P [Y � x].

2. For all continuous and bounded function f ,

Z
f(x)dPX(x) �

Z
f(x)dPY (x)

(i.e., dPX � dPY ).

We then say that the X is stochastically smaller then Y (or alternatively smaller in
law) and we write that: X �L Y .

Note that if X � Y in the usual sense (i.e., almost surely), then X is also stochasti-
cally smaller then Y . Actually, among all the usual orders that are usually consid-
ered on the set of random variables (e.g., almost surely, for some Lp-norm, for the
essential norm L1) the stochastic ordering is the weakest.

Formulated in this language, Lemma 8.1.5 just says that

(B
�� B � A) �L B:

The result of Lemma 8.1.5 can be generalized into:

Lemma 8.1.6 Let A1 , A2 and B be any real-valued random variables. 3 Assume
that A1 �L A2. Then

(B
�� B � A1) �L (B

�� B � A2):

Proof. The proof is similar to the one of Lemma 8.1.5. (Lemma 8.1.5 corresponds
to the case A2 � 1.) �

Lemma 8.1.7 Let A, B and C be any real-valued random variables. Then

P [B � C
�� B � A ] � P [B � C]:

3As is customary in measure theory, we allow the random variables to take the 1 value.
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Proof. We integrate the inequality of Lemma 8.1.5:

P [B � C
�� B � A ] =

Z
P [B � x

�� B � A ] dPC(x)

�
Z
P [B � x] dPC(x) = P [B � C]:

�

Lemma 8.1.8 Let A1 , A2 and B be any real-valued random variables. Assume
that A1 �L A2. Then

P [A1 � B] � P [A2 � B]:

Proof. P [A1 � B] =

Z
P [A1 � x] dPB(x) �

Z
P [A2 � x] dPB(x) = P [A2 � B].

�

8.2 Max-Min Inequalities

Lemma 8.2.1 Let f(x; y) be a reel function of two variables de�ned over a domain
X � Y . Then

sup
x2X

inf
y2Y

f(x; y) � inf
y2Y

sup
x2X

f(x; y):

Proof. Let x0 and y0 be two arbitrary elements in X and Y respectively. Obvi-
ously, f(x0; y0) � supx f(x; y0): This inequality is true for every y0 so that infy f(x0; y)
� infy supx f(x; y): Note that infy supx f(x; y) is a constant. The last inequality is
true for every x0 so that supx infy f(x0; y) � infy supx f(x; y): �

Lemma 8.2.2 Let f(x; y) be a reel function of two variables de�ned over a domain
X � Y . For every x0 2 X and y0 2 Y we have infy2Y f(x0; y) � supx2X f(x; y0).
Furthermore, the previous inequality is an equality only if

max
x2X

inf
y2Y

f(x; y) = min
y2Y

sup
x2X

f(x; y) = f(x0; y0):

Proof.

inf
y2Y

f(x0; y) � sup
x2X

inf
y2Y

f(x; y)

� inf
y2Y

sup
x2X

f(x; y) (by Lemma 8.2.1)

� sup
x2X

f(x; y0):
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If infy2Y f(x0; y) = supx2X f(x; y0) the previous inequalities are equalities so that
infy2Y f(x0; y) = supx2X infy2Y f(x; y). This shows that the previous sup is achieved
(for x = x0) and hence that supx2X infy2Y f(x; y) = maxx2X infy2Y f(x; y): Simi-
larly infy2Y supx2X f(x; y) = miny2Y supx2X f(x; y): To �nish, note that, obviously,
infy2Y f(x0; y) � f(x0; y0) � supx2X f(x; y0): Hence the equality infy2Y f(x0; y) =
supx2X f(x; y0) occurs only if maxx2X infy2Y f(x; y) = miny2Y supx2X f(x; y) =
f(x0; y0): �

The following result strengthens the preceding one.

Proposition 8.2.3 Let f(x; y) be a reel function of two variables de�ned over a
domain X � Y . De�ne O1 = fx0 2 X ; infy2Y f(x

0; y) = supx2X infy2Y f(x; y)g and
similarly O2 = fy0 2 Y ; supx2X f(x; y0) = infy2Y supx2X f(x; y)g. Then there exists
x0 2 X and y0 2 Y such that

inf
y2Y

f(x0; y) = sup
x2X

f(x; y0)

if and only if
max
x2X

inf
y2Y

f(x; y) = min
y2Y

sup
x2X

f(x; y):

Furthermore, if this condition is satis�ed, O1 and O2 are both non-empty and for
every x0 2 O1 and every y0 2 O2 we have

inf
y
f(x0; y) = sup

x
f(x; y0) = f(x0; y0) = max

x2X
inf
y2Y

f(x; y) = min
y2Y

sup
x2X

f(x; y) :

Proof. By Lemma 8.2.2, there exists x0 2 X and y0 2 Y such that

inf
y2Y

f(x0; y) = sup
x2X

f(x; y0)

only if maxx2X infy2Y f(x; y) = miny2Y supx2X f(x; y): Conversely assume that
maxx2X infy2Y f(x; y) = miny2Y supx2X f(x; y): Part of the assumption is that
supx2X infy2Y f(x; y) = maxx2X infy2Y f(x; y) which means that O1 is non-empty.
Symmetrically, O2 is non-empty. Let x0 and y0 be any two elements of O1 and O2

respectively. By de�nition, infy f(x0; y) = maxx2X infy2Y f(x; y) and supx f(x; y0) =
miny2Y supx2X f(x; y). By assumption these two values are equal so that infy f(x0; y)
= supx f(x; y0). By Lemma 8.2.2, this common value is equal to f(x0; y0). �

Lemma 8.2.4 Let X and Y be two sets such that for every (x; y) 2 X � Y ,�
ax;y(t)

�
t2N

is a sequence of non-negative numbers. For every x 2 X we de�ne

tmin(x)
def
= sup

�
t; inf

y
ax;y(t) > 0

	
:
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Similarly, for every y 2 Y we de�ne

tmax(y)
def
= sup

�
t; sup

x
ax;y(t) > 0

	
:

Then
sup
x
tmin(x) � inf

y
tmax(y) :

Proof. De�ne Y 0 to be the set Y 0 def= fy 2 Y ; tmax(y) <1g: The result is obvious if
tmax(y) =1 for every y 2 Y . We therefore consider the case where tmax(y) <1 for
some y in Y , i.e., when Y 0 is non empty. Furthermore, the equality infy2Y tmax(y) =
infy2Y 0 tmax(y) shows that we can restrict our analysis to within Y

0 in place of Y . Let
x1 and y1 be two arbitrary elements from X and Y 0 respectively. The de�nition of
tmax(y1) implies that ax1;y1

�
tmax(y1)+1

�
= 0 and hence that infy ax1;y

�
tmax(y1)+1

�
=

0: By de�nition of tmin(x1) this implies that tmin(x1) � tmax(y1): The elements x1 and
y1 being arbitrary, we obtain that

sup
x
tmin(x) � inf

y
tmax(y) :

By assumption, all the numbers ax;y(t) are non-negative and infy tmax(y) < 1 so
that 0 � supx tmin(x) � infy tmax(y) < 1. The inequality supx tmin(x) < 1 shows
that supx tmin(x) = maxx tmin(x). Similarly, the inequality 0 < infy tmax(y) implies
that infy tmax(y) = miny tmax(y). Therefore, in the case where tmax(y) < 1, the
max-min inequality can be strengthened into

max
x

tmin(x) � min
y

tmax(y) :

�

8.3 Some Elements of Game Theory

Recall that, for all column vectorX ,XT denotes the transpose ofX . For any integer
k we let Tk denote the k-dimensional fundamental simplex and T 0

k denote the set of
extreme points of this simplex:

Tk
def
=
n
(�1; : : : ; �n) 2 [0; 1]n ;

X
i

�i = 1
o
:

T 0
k

def
=
n
(1; 0; : : : ; 0); (0; 1; : : : ; 0); : : : ; (0; 0; : : : ; 1)

o
:

The following theorem is the celebrated result of Von Neumann which initiated the
�eld of game theory.
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Theorem 8.3.1 (Von Neumann) For any k � l real matrix M = (Mij)ij, the
equality

max
X2Tk

min
Y2Tl

XTMY = min
Y2Tl

max
X2Tk

XTMY

is valid. Furthermore, this common value is equal to:

max
X2Tk

min
Y2T 0

l

XTMY and min
Y2Tl

max
X2T 0

k

XTMY:

Note that, (X; Y ) ! XTMY is continuous on the compact Tk � Tl. Hence for
every X we can �nd an element YX in Tl such that infY2Tk X

TMY = XTMYX .
Furthermore we easily check that we we can select YX in such a way that X ! YX
de�nes a continuous function on Tk. This immediately implies that

sup
X2Tk

inf
Y2Tl

XTMY = sup
X2Tk

XTMYX

= max
X2Tk

XTMYX

= max
X2T

k

min
Y2Tl

XTMY :

We similarly easily establish that inf
Y2Tl

sup
X2T

k

XTMY = minY2Tl
maxX2Tk

XTMY:

Note also that the inequality supX infY X
TMY � infY supX XTMY is a direct

consequence of Lemma 8.2.1. A proof of the converse can easily be derived with the
use of the duality result in Linear Programming.

The game theory interpretation of this result is as follows. Consider two players
Player(1) and Player(2) involved in a game (G;�; A) with a performance function
f . G is the set of rules of the game describing how the game is played between the
two players, which actions (and in which order) are to be undertaken by the players
and in particular which information is traded between the two players during the
execution of a game. � is the set of allowable strategies of Player(1), A is the set of
allowable strategies of Player(2): � (resp. A) is a subset of the set of strategies of
Player(1) (resp. Player(2)) compatible with the rules of the game G. Note that, by
de�nition, a strategy of either player is de�ned independently of the strategy chosen
by the other player. f : ��A ! R is a performance function measuring \how well"
a given strategy � of Player(1) does when implemented again a given strategy A
of Player(2). We assume that the game is a zero-sum noncooperative game which
means that one of the two players, say Player(1), wants to chose its strategy so as
to maximize the performance f(�;A) and that the other player, Player(2), wants
to chose its strategy so as to minimize the performance.

We consider the sequential case where one player chooses �rst a strategy and where
the other player then chooses his. Hence, if Player(1) plays �rst, for every " > 0,
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the two competing players can choose their respective strategies � and A so as to
bring f(�;A) to within " of sup� infA f(�;A). Conversely, if Player(2) plays �rst,
for every " > 0, the two competing players can choose their respective strategies �
and A so as to bring f(�;A) to within " of infA sup� f(�;A). By Lemma 8.2.1,

sup
�

inf
A
f(�;A) � inf

A
sup
�
f(�;A); (8.4)

which expresses that, for either player, selecting its strategy last can only be bene�-
cial. Generally, the inequality is strict, i.e., there is a de�nite advantage in choosing
its strategy last.

An interpretation of this inequality is that, eventhough no explicit exchange of in-
formation is performed between the two players when they select their respective
strategies, the player selecting its strategy last can be assumed to know the strat-
egy selected by the player selecting its strategy �rst. The reason for it is that, for
every given choice � made by Player(1), there is a Player(2) that \always assumes"
that Player(1) chooses � and that makes an optimized decision A based on this
assumption. Such a Player(2) is by construction optimal if Player(1) does chose �.
Based on this remark we say that an optimal Player(2) knows implicitly the iden-
tity of Player(1) in the expression sup� infA f(�;A). Symmetrically, we say that
an optimal Player(1) knows implicitly the identity of Player(2) in the expression
infA sup� f(�;A).

In this setting, the strict inequality in Equation 8.4 expresses precisely that allocat-
ing to one or the other player the possibility of spying on the competitor's strategy
a�ects the performance of the game. This interpretation of Inequality 8.4 will be
very useful in the rest of the discussion.

Consider now the case where Player(1) is provided with a set I of size k and
Player(2) is provided with a set J of size l. Assume that to each pair (i; j) in I � J
is associated a costMi;j in R. Let

�
(G;�; A); f

�
be a game with a performance func-

tion where � = I , A = J , f(i; j) =Mi;j and where the rules are the trivial rules: \do
nothing". In the case where Player(1) and Player(2) both choose their strategies
optimally and where Player(1) chooses �rst, the performance associated to the game
is maximinjMi;j . Conversely, if Player(2) plays �rst, the performance associated
to the game is minj maxiMi;j. As discussed above, maximinjMi;j � minj maxiMi;j

and, generally, the inequality is strict, i.e., there is a de�nite advantage in making
its choice last.

We consider now the case where the players are allowed to make random choices.
The following theorem formalizes the fact that, in a game of cards played by two
players, knowing the opponent's strategy confers no advantage for winning any single
hand, provided that the hand �nishes in a bounded number of transactions.
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We abuse language and identify a probability distribution with the procedure con-
sisting of drawing an element at random according to this probability distribution.

Theorem 8.3.2 Consider a two-players game (G;�; A) having the property that
there exists two �nite sets I and J such that � is the set of probability distributions
on I and such that A is the set of probability distributions on J. Let T be a function
on I � J. (T is often called the cost function.) For every � in � and every A in
A we let E�;A[T ] denote the expected value of T when Player(1) selects an element
in I according to the distribution � and when Player(2) selects an element in J

according to the distribution A. Then

max
�2�

min
A2A

E�;A[T ] = min
A2A

max
�2�

E�;A[T ] :

The sets I and J are often called the set of pure strategies. The sets � and A are
often called the set of mixed strategies.

Proof. A probability distribution on I is represented by a k-tuple (�1; : : : ; �k) of
non-negative numbers summing up to one. Equivalently, Tk is the set of probability
distributions on I and similarly Tl is the set of probability distributions on J . By
assumption � can be identi�ed to Tk and a strategy � in � can be represented by
element X in Tk. Similarly, A can be identi�ed to Tl and a strategy A in A can be
represented by element Y in Tl. For every (i; j) 2 I � J we write Mi;j = T (i; j) and
we let M represent the associated matrix: by construction M is symmetric. Using
these associations, consider the case where Player(1) chooses the strategy X 2 Tk
and where Player(2) chooses the strategy Y 2 Tl. The quantity X

TMY represents
the expected value of the cost T obtained under these strategies. Theorem 8.3.2 is
therefore a direct application of Theorem 8.3.1. �

A game as one described in Theorem 8.3.2 is is often called a matrix game.

Explicit/Implicit knowledge. In the course of the previous discussion we intro-
duced the notion of implicit knowledge. We present here an abstract summarizing
this concept.

We say that a player, say Player(2), receives explicitly some information x during
the course of an execution when the rules of the game (i.e., when considering al-
gorithms, the �/A-structure) specify that that Player(2) be informed of x. We
can say �guratively that Player(2) \receives a message" carrying the information x.
Note that, in this situation, Player(2) receives the information x independently of
the strategy that it follows.
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Consider now a function of two variables f(x;A); (x;A) 2 X � A and consider the
expression infA f(x;A). We can consider this situation as a game parameterized
by x played by Player(2): Player(2) tries to decide A so as to minimize f(x;A).
Eventhough there might be no mechanism letting Player(2) explicitly know what
the parameter x is, when considering the expression infA f(x;A) we can assume
that an optimal (and lucky) Player(2) selects non-deterministically an A bringing
the function f(x;A) arbitrarily close to infA f(x;A): we then say that an optimal
Player(2) knows implicitly the parameter x selected. This knowledge is not a real
knowledge and is of course nothing more then a heuristic meaning that some choice
of A corresponds (\by chance") to the choice that some informed Player(2) would
make. Note that, in contrast to the case of explicit knowledge, Player(2) is said to
\have the implicit knowledge" when it chooses a \good" strategy A.

We provide two examples of this situation. When considering the formula

sup
�2�

inf
A2A

f(�;A)

we will say that Player(2) knows implicitly the value �. Also when considering the
formula

inf
A
PA[C j B]

we will say that Player(2) knows implicitly that the sample space is restricted to
within B.
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Von Neumann, see Von Neumann
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mutual exclusion, 67

N (k), 67
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P : problem, 125, 126, 133, 135, 136
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schedule, 141
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t-schedule, 141
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event, 43, 52
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Strong Byzantine, 128, 148
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0
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time
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tmax(A), 177, 182, 186, 195

tmin, 204
tmin(�), 177, 195

topt, 143



Index 217

t(�), 143
t�;�, 177

uniform
uniform, see randomized invoca-

tion
U , 197

update function, see structure

view, see structure
Von Neumann, 127, 133, 140, 164, 205

Wi(k), 67


