
MIT/LCS/TR-644

Mechanisms and Interfaces for

Software-Extended Coherent Shared Memory
by

David L. Chaiken

Sc.B., Brown University (1986)
S.M., Massachusetts Institute of Technology (1990)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1994

cMassachusetts Institute of Technology 1994, 1995. All rights reserved.

Author :

Department of Electrical Engineering and Computer Science
September 1, 1994

Certified by :

Anant Agarwal
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by :

Frederic R. Morgenthaler
Chair, Department Committee on Graduate Students

Mechanisms and Interfaces for
Software-Extended Coherent Shared Memory

by
David L. Chaiken

Abstract

Software-extended systems use a combination of hardware and software to imple-
ment shared memory on large-scale multiprocessors. Hardware mechanisms accelerate
common-case accesses, while software handles exceptional events. In order to provide
fast memory access, this design strategy requires appropriate hardware mechanisms in-
cluding caches, location-independent addressing, limited directories, processor access
to the network, and a memory-system interrupt. Software-extended systems benefit
from the flexibility of software, but they require a well-designed interface between their
hardware and software components to do so.

This dissertation proposes, designs, tests, measures, and models the novel software-
extended memory system of Alewife, a large-scale multiprocessor architecture. A
working Alewife machine validates the design, and detailed simulations of the architec-
ture (with up to 256 processors) show the cost versus performance trade-offs involved in
building distributed shared memory. The architecture with a five-pointer LimitLESS di-
rectory achieves between 71% and 100% of full-map directory performance at a constant
cost per processing element.

A worker-set model uses a description of application behavior and architectural
mechanisms to predict the performance of software-extended systems. The model shows
that software-extended systems exhibit little sensitivity to trap latency and memory-
system code efficiency, as long as they implement a minimum of one directory pointer
in hardware. Low-cost, software-only directories with no hardware pointers are very
sensitive to trap latency and code efficiency, even in systems that implement special
optimizations for intranode accesses.

Alewife’s flexible coherence interface facilitates the development of memory-system
software and enables a smart memory system, which uses intelligence to help improve
performance. This type of system uses information about applications’ dynamic use
of shared memory to optimize performance, with and without help from programmers.
An automatic optimization technique transmits information about memory usage from
the runtime system to the compiler. The compiler uses this information to optimize
accesses to widely-shared, read-only data and improves one benchmark’s performance
by 22%. Other smart memory features include human-readable profiles of shared-
memory accesses and protocols that adapt dynamically to memory reference patterns.

Keywords: multiprocessor, parallel processing, shared memory, cache coherence,
computer architecture simulation, worker set, smart memory

Thesis Supervisor: Anant Agarwal
Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

When I entered MIT, Anant Agarwal was a young, enthusiastic professor and I was
a young, naı̈ve graduate student. Six years later, Anant is still a young, enthusiastic
professor. I feel privileged to have been one of his first students at MIT and attribute
much of my success to his guidance.

Frans Kaashoek and Greg Papadopoulos served on my thesis committee, and gave
helpful comments, criticism, and encouragement throughout the process. Their insis-
tence that I understand the design space led me to develop the model in Chapter 7. Frans
has helped me improve my understanding and documentation of the flexible coherence
interface. Greg has voiced the concerns of industry that I attempt to address in this
dissertation.

The members of the Alewife group have been work-mates and friends for the last
six years. John Kubiatowicz and I worked head-to-head on the Alewife architecture for
the majority of that time. Kubi designed and implemented the A-1000 CMMU, which
is the heart of the LimitLESS system. As the compiler guru of the Alewife project,
David Kranz taught me a lot about building the software for a large system. I thoroughly
enjoyed hacking NWO and the Alewife kernel with David. Beng-Hong Lim has shared
an office with me during our entire stay at MIT. He often provided the only calm voice
in Alewife design meetings. I will miss Beng when we part ways. Dan Nussbaum
tried his best to convey his system-building experience to the younger members of the
group, and to restrain our over-enthusiastic ambitions. David, Beng-Hong, and Dan
were responsible for the Sparcle simulator modules of ASIM and NWO.

Kirk Johnson and Chris Metcalf created a stable computation environment for the
entire Computer Architecture Group. Since they provided this essential service, I can
almost forgive them for getting me addicted to netrek. On many occasions, Kirk has
given me helpful insight into designing systems and evaluating their performance.

Ken Mackenzie and Don Yeung designed Alewife’s packaging and built the system’s
hardware. They humored me by allowing me to plug together some components every
now and then. Gino Maa showed me the ropes at MIT and helped me start the early
phases of this research. Anne McCarthy has run the Alewife group for several years. Her
administration allows the rest of the group to concentrate on research rather than logistics.
Ricardo Bianchini has provided useful suggestions from the point of view of Alewife’s
most prolific user. Sramana Mitra motivated me to improve the functionality in NWO
and tested the simulator as she wrote the statistics interface for Alewife. Vijayaraghavan
Soundararajan and Rajeev Barua shared the office with Beng and me: I thank them for
putting up with me!

Kirk Johnson wrote and stabilized the programming environment for NWOP, the
CM-5 version of NWO. Thanks go to Alan Mainwaring, Dave Douglas, and Thinking
Machines Corporation for their generosity and assistance in porting NWO to the CM-5.
Additional thanks to Thinking Machines Corporation (especially the folks who maintain
the in-house machines) for allowing me to use many late-night CM-5 cycles during the
results-generation phase of this research. Project Scout at MIT also provided a platform
for some of the simulations.

A discussion with Johnny Piscitello during the summer of 1993 proved to be instru-

mental in the construction of the flexible coherence interface. Margo Seltzer suggested
the comparison between Mach pmaps and the flexible coherence interface.

The notation for the transition state diagram in Chapter 4 borrows from the doctoral
thesis of James Archibald at the University of Washington, Seattle, and from work done
by Ingmar Vuong-Adlerberg at MIT.

It is no secret within the computer architecture community that similar, high-quality
research is being conducted at Stanford University and the University of Wisconsin–
Madison. The graduate students and professors in the research groups at these univer-
sities have kept me on my toes, reviewed my papers, given me good feedback on my
work, and been fun companions at meals and baseball games.

If there is any text in this document that I did not write, it is in Sections 2.1.3
and 3.2.2. Section 2.1.3 describes the notation for software-extended protocols. Anant
and I agonized over this notation, and he eventually wrote the documentation. This
section is probably the most controversial in the dissertation. One reviewer expressed
concern that “future protocol designers will extend this scheme in bizarre ways to name
new protocols.” However, the notation is the best that we could produce. It is terse,
convenient, and expressive. The ability to extend a language construct in bizarre ways
is possibly a feature, not a bug.

Section 3.2.2 documents the applications used to experiment with Alewife’s software-
extended memory system. Two researchers deserve much credit for making these
benchmarks available: Beng-Hong Lim of MIT gathered and documented the application
suite for Alewife, and J.P. Singh of Stanford compiled the SPLASH benchmark suite.
In addition, Dan Nussbaum wrote TSP; Kirk Johnson wrote AQ; Beng-Hong Lim and
Dan Nussbaum wrote SMGRID; and Anshu Aggarwal wrote EVOLVE.

The workloads used in Chapter 4 came from different sources. Harold Stone and
Kimming So helped obtain the SIMPLE and Weather traces. The post-mortem scheduler
was implemented by Mathews Cherian with Kimming So at IBM. It was extended by
Kiyoshi Kurihara, who found the hot-spot variable in Weather. Gino Maa wrote the
ASIM network simulator. G.N.S. Prasanna wrote and analyzed Matexpr.

Dick Larson invited me to visit MIT in 1987 and deserves credit for attracting me to
the Institute.

Thanks to Digital Equipment Corporation and the members of the Systems Research
Center for giving me a great reason to get on with my life.

Ema and Aba sat me down in front of a key-punch at the age of 4, and I haven’t
stopped hacking since then. I would like to thank them for teaching me the value of an
education and the persistence needed to pursue my goals.

My deepest gratitude to Ora for support, encouragement, friendship, and love.

Praised are You, the Eternal, our God, Ruler of the Universe,
who has graced us with life, sustained us, and allowed us to reach this season.

Machines used for simulations were provided by Digital Equipment Corporation, SUN Microsystems,
and Thinking Machines Corporation. This research has been supported by NSF grant #MIP-9012773,
ARPA grant #N00014-91-J-1698, and a fellowship from the Computer Measurement Group.

Contents

1 Shared Memory Design 14
1.1 Contributions : 16
1.2 Organization : 17

2 Distributed Shared Memory 18
2.1 Cache Coherence Protocols : 19

2.1.1 The Processor Side : 20
2.1.2 The Memory Side : 20
2.1.3 A Spectrum of Protocols : 22

2.2 Flexible and Smart Memory Systems : : : : : : : : : : : : : : : : : : 25
2.3 Understanding Memory System Performance : : : : : : : : : : : : : : 26

3 An Architect’s Workbench 27
3.1 The Alewife Architecture : 29

3.1.1 ASIM: the Preliminary Simulator : : : : : : : : : : : : : : : : 30
3.1.2 A-1000: the Alewife Machine : : : : : : : : : : : : : : : : : : 32
3.1.3 NWO: the Alewife Simulator : : : : : : : : : : : : : : : : : : 33
3.1.4 Comparing the Implementations : : : : : : : : : : : : : : : : : 35

3.2 Applications : 36
3.2.1 WORKER: a Synthetic Workload : : : : : : : : : : : : : : : : 36
3.2.2 NWO/A-1000 Benchmarks : : : : : : : : : : : : : : : : : : : 38

4 Cache Coherence in Alewife 41
4.1 Implementing Directory Protocols : 41

4.1.1 LimitLESS Cache Coherence : : : : : : : : : : : : : : : : : : 42
4.1.2 A Simple Model of the LimitLESS Protocol : : : : : : : : : : : 42
4.1.3 Background: Implementing a Full-Map Directory : : : : : : : : 43
4.1.4 Specification of the LimitLESS Scheme : : : : : : : : : : : : : 45
4.1.5 Second-Order Considerations : : : : : : : : : : : : : : : : : : 48
4.1.6 Evaluation of Secondary Protocol Features : : : : : : : : : : : 50

4.2 Preliminary Evaluation : 50
4.2.1 Results : 51
4.2.2 Conclusion : 54

7

5 Flexible Coherence Interface 55
5.1 Challenges and Solutions : 55

5.1.1 Representations : 57
5.1.2 Atomicity : 59
5.1.3 Livelock and Deadlock : 61

5.2 Experience with the Interface : 63
5.3 The Price of Flexibility : 63

6 Cost, Flexibility, and Performance 65
6.1 Flexibility and Performance : 65
6.2 Worker Sets and Performance : 68
6.3 Application Case Studies : 69
6.4 A-1000 Performance : 75
6.5 Conclusions : 77

7 The Worker-Set Model 78
7.1 Model Inputs and Outputs : 78

7.1.1 Notation : 79
7.1.2 Application Parameters : 79
7.1.3 Architecture Parameters : 84
7.1.4 Performance Metric : 85

7.2 Model Calculations : 86
7.2.1 Calculating Utilization : 87
7.2.2 Counting Events and Cycles : : : : : : : : : : : : : : : : : : : 89
7.2.3 Restrictions and Inaccuracies : : : : : : : : : : : : : : : : : : 91

7.3 Validating the Model : 92
7.3.1 The WORKER Synthetic Workload : : : : : : : : : : : : : : : 92
7.3.2 The Benchmarks : 95

7.4 Model Predictions : 95
7.4.1 Trap Latency : 97
7.4.2 Code Efficiency : 99
7.4.3 Dedicated Memory Processors : : : : : : : : : : : : : : : : : : 99
7.4.4 Network Speed : 101
7.4.5 Protocol Implementation Details : : : : : : : : : : : : : : : : : 103

7.5 Node Architecture : 106
7.5.1 Superscalar Processors : 106
7.5.2 Multiple Processors per Node : : : : : : : : : : : : : : : : : : 109

7.6 The Workload Space : 114
7.7 Conclusions and an Open Question : : : : : : : : : : : : : : : : : : : 117

8 Smart Memory Systems 119
8.1 Challenges : 119
8.2 Adaptive Broadcast Protocols : 120
8.3 The LimitLESS Profiler : 124

8.3.1 The Profiler Interface : 124

8

8.3.2 Example of Use : 126
8.3.3 Implementation : 126

8.4 Profile, Detect, and Optimize : 127
8.4.1 The PRODO Interface : 128
8.4.2 Implementation : 128
8.4.3 A Case Study : 130
8.4.4 Architectural Mechanisms : 131

8.5 Hardware-Accelerated Coherent Shared Memory : : : : : : : : : : : : 132

9 Conclusions 134
9.1 Recommendations for Distributed Shared Memory : : : : : : : : : : : 134
9.2 Future Work : 135

A Experimental Data 137
A.1 Simulation Measurements. : 137
A.2 Model Parameters : 140

9

List of Figures

2-1 Alewife uses a hybrid approach to implement distributed shared memory. 19

3-1 Alewife node, with a DirnH2SNB memory block. : : : : : : : : : : : : : 29
3-2 Diagram of ASIM, the Alewife system simulator. : : : : : : : : : : : : : : 31
3-3 A-1000 node board: 12cm � 22cm : : : : : : : : : : : : : : : : : : : 32
3-4 The hybrid simulation technique. : 34
3-5 The circular worker-set data structure for 8 nodes. : : : : : : : : : : : : 37

4-1 Full-map and limited directory entries. : : : : : : : : : : : : : : : : : : 44
4-2 Directory state transition diagram. : 47
4-3 Limited and full-map directories. : 53
4-4 LimitLESS DirnH4SNB, 25 to 150 cycle emulation latencies. : : : : : : 53
4-5 LimitLESS with 1, 2, and 4 hardware pointers. : : : : : : : : : : : : : 54

5-1 Hardware, interface, and software layers of a memory system. : : : : : 56
5-2 Sample protocol message handler. : 58

6-1 Protocol performance and worker-set size. : : : : : : : : : : : : : : : : 68
6-2 Application speedups over sequential, 64 NWO nodes. : : : : : : : : : 70
6-3 TSP: detailed performance analysis on 64 NWO nodes. : : : : : : : : : 71
6-4 TSP running on 256 NWO nodes. : 72
6-5 Histogram of worker-set sizes for EVOLVE, running on 64 NWO nodes. 74
6-6 EVOLVE performance with and without heap skew. : : : : : : : : : : : 74
6-7 Application speedups over sequential, 16 A-1000 nodes. : : : : : : : : 76

7-1 The worker-set model. : 79
7-2 Read access instantaneous worker-set histograms. : : : : : : : : : : : : 82
7-3 Write access worker-set histograms. : : : : : : : : : : : : : : : : : : : 83
7-4 Model validation: synthetic workload. : : : : : : : : : : : : : : : : : : 93
7-5 Model error in predictions of synthetic workload performance. : : : : : 94
7-6 Model error in predictions of benchmark performance. : : : : : : : : : 94
7-7 Model validation: benchmark applications. : : : : : : : : : : : : : : : 96
7-8 Effect of trap latency. : 98
7-9 Effect of code efficiency. : 100
7-10 Performance of three different architectures. : : : : : : : : : : : : : : : 102
7-11 Effect of network latency. : 104
7-12 Effect of hardware directory reset. : 105

10

7-13 Effect of hardware transmit. : 107
7-14 Effect of one-bit pointer. : 108
7-15 Effect of superscalar processors. : 110
7-16 Effect of multiple processors per node. : : : : : : : : : : : : : : : : : 112
7-17 Latency equivalent for multiple processors per node. : : : : : : : : : : 113
7-18 Effect of worker-set size. : 115
7-19 Effect of modified data. : 116
7-20 Effect of worker-set mix. : 117

8-1 Performance of broadcast protocols. : : : : : : : : : : : : : : : : : : : 122
8-2 LimitLESS profile report. : 125
8-3 Hardware-accelerated coherent shared memory. : : : : : : : : : : : : : 132

11

List of Tables

3.1 Sequential time required to run six benchmarks on NWO and the A-1000. 36
3.2 Characteristics of applications. : 38

4.1 Directory states. : 44
4.2 Annotation of the state transition diagram. : : : : : : : : : : : : : : : : 47
4.3 Cache coherence protocol messages. : : : : : : : : : : : : : : : : : : : 48
4.4 Optional protocol messages. : 48
4.5 Performance for three coherence schemes, in terms of millions of cycles. 52

5.1 Functionality related to FCI. : 59
5.2 FCI operations for manipulating local data state. : : : : : : : : : : : : : 60
5.3 FCI operations for transmitting and receiving packets. : : : : : : : : : : 60
5.4 FCI operations for manipulating hardware directory entries. : : : : : : : 62
5.5 FCI operations for livelock and deadlock avoidance. : : : : : : : : : : : 62

6.1 Software-extension latencies for C and assembly language. : : : : : : : 66
6.2 Breakdown of execution cycles. : 66

7.1 Notation for the analytical model. : 80
7.2 Inputs to the analytical model from applications. : : : : : : : : : : : : 81
7.3 Inputs to the analytical model from protocol measurements. : : : : : : : 85
7.4 Derived parameters of the analytical model. : : : : : : : : : : : : : : : 86
7.5 Summary of error in analytical model. : : : : : : : : : : : : : : : : : : 95

8.1 PRODO macros. : 129
8.2 Performance of different versions of EVOLVE. : : : : : : : : : : : : : 130

A.1 ASIM execution times for Weather. : : : : : : : : : : : : : : : : : : : 137
A.2 NWO: WORKER performance, 16 nodes. : : : : : : : : : : : : : : : : 137
A.3 NWO: Speedup over sequential. : 138
A.4 NWO: Detailed TSP measurements. : : : : : : : : : : : : : : : : : : : 138
A.5 NWO: EVOLVE worker-set sizes. : 138
A.6 NWO: Detailed EVOLVE measurements. : : : : : : : : : : : : : : : : 139
A.7 A-1000: Speedup over sequential. : 139
A.8 NWO: EVOLVE with broadcasts. : 139
A.9 Additional model parameters for the Alewife memory hierarchy. : : : : 140
A.10 Model input parameters for six benchmarks. : : : : : : : : : : : : : : : 141

12

A.11 Read access worker-set histograms: 0 – 31 nodes : : : : : : : : : : : : 142
A.12 Read access worker-set histograms: 32 – 64 nodes : : : : : : : : : : : 143
A.13 Write access worker-set histograms. : : : : : : : : : : : : : : : : : : : 144
A.14 Model synthetic input parameters. : 144

13

Chapter 1

Shared Memory Design

The search for inexpensive parallel computing continues. Computer manufacturers
would like to tell consumers that processing is as easy to add to a system as memory. A
system should be able to start with a single processor and grow arbitrarily large, as its
owner’s need for processing increases. The task of adding processors to a system should
require only commodity components — packaged modularly — and perhaps some extra
floor space in a computer room.

To a certain extent, this goal has already been achieved. Most workstation vendors
market a product line that ranges from single-processor machines to high-end servers
containing up to sixteen processors. The structure, or architecture, of these parallel
systems keeps costs relatively low. Each processor’s packaging looks much the same as
in a standard workstation, and a bus (a set of up to 256 wires) connects the processors
together. This combination of commodity processing elements and an inexpensive
communication substrate keeps costs low.

Many of these multiprocessor systems offer a shared memory programming model
that allows all processors to access the same linearly-addressed memory. Since this
model is close to the one used for single-processor systems, it provides a convenient
abstraction for writing multiprocessor applications: processors can store information for
themselves or communicate information to others using a single mechanism.

Physical limitations restrict the ability of these computer architectures to scale past
a small number of processors. Communication delay and bandwidth are the primary
culprits. If every access to shared memory required interprocessor communication, the
latency caused by reading and writing data would be prohibitive. Given the high rate of
memory accesses required by today’s fast processors, a bus simply can not move enough
data to satisfy the number of requests generated by more than a few processors.

Cache memories solve part of the latency problem, just as they do in single-processor
systems. By storing copies of frequently accessed data physically close to processors,
caches provide fast average memory access times. In multiprocessors, caches also reduce
the bandwidth that processors require from their communication substrate. The memory
accesses that caches handle do not require round-trips on a system’s bus.

Unfortunately, making copies of data causes the cache coherence problem: one
processor’s modifications of the data in shared memory must become visible to others.
Small multiprocessors solve this problem by using the fact that all of the processors on a

14

bus can receive all of the messages transmitted on it. This broadcast capability is at once
liberating and constraining. By watching each other’s transmissions, caches can keep
themselves coherent. On the other hand, physical media that broadcast information have
limited bandwidth. Even with caches, current technology limits inexpensive parallel
computing to less than twenty high-performance processors.

Researchers who work beyond this limit strive instead for cost-effective parallel
computing. A cost-effective system solves a customer’s problem in the least expensive
(and sometimes the only available) way, taking into account programming time, system
cost, and computation time. The definition of a cost-effective system depends on each
customer’s application, but it typically requires a cost-efficient system: a cost-efficient
system’s price grows approximately linearly with the number of processors.

For the reasons discussed above, the decision to abandon a bus when designing
a large, cost-efficient system is mandatory. The other choices involved in building a
larger system are much more difficult. One possibility is to build a system without
shared memory, and let programmers suffer the consequences. This strategy works
for computing applications that consist of many large, independent tasks. Another
possibility is to build a system without caches. This strategy requires an extremely high-
bandwidth and expensive interconnection network, and might work well for applications
that require so much computation that the system can effectively hide the latency of
communication. A final possibility is to implement shared memory and caches without
a broadcast mechanism.

An appropriate combination of hardware and software yields a cost-efficient system
that provides coherent, fast, shared memory access for tens or hundreds of processors.
The following chapters prove this thesis by demonstrating such a system and analyzing
its performance.

There are two challenges involved in building coherent shared memory for a large-
scale multiprocessor. First, the architecture requires an appropriate balance of hardware
and software. The integrated systems approach provides the cost-management strategy
for achieving this goal: implement common case operations in hardware to make them
fast and relegate less common activities to software. Examining the access patterns
of shared memory applications reveals that a typical worker set (the set of processors
that simultaneously access a unit of data) tends to be small. In fact, most blocks of
shared memory are accessed by exactly one processor; other blocks are shared by a few
processors; and a small number of blocks are shared by many (or all) processors.

This observation leads to a family of shared-memory systems that handle small
worker sets in hardware and use software to handle more complex scenarios. Such
software-extended memory systems require a number of architectural mechanisms. The
shared memory hardware must handle as many requests as possible; it must be able
to invoke extension software on the processor; and the processor must have complete
access to the memory and network. The balancing act is tricky, because the architect
must control hardware complexity and cost without sacrificing performance.

The second challenge involves designing the software component of a memory
system. As in any software system, there is a trade-off between abstraction and raw
performance. If the system is to perform well as a whole, the software must execute
efficiently; if the system is to benefit from the flexibility of software, it must facilitate

15

rapid code development. A software-extended system requires an interface between the
memory-system hardware and software that achieves both of these goals.

The ability to extend the hardware provides the opportunity for software to take
an active role in improving system performance. At a minimum, the software can
measure its own performance. Appropriate data collection and information feedback
techniques can allow the software to help programmers understand their applications,
enable compilers to generate better code, and tune the system as it runs. Thus, not
only does the software-extension approach lead to a cost-efficient machine, it enables
the synergy between components of a multiprocessing system that high performance
requires.

A software-extended memory system has been proposed, designed, tested, measured,
and analyzed during the construction of Alewife [2], a shared-memory architecture that
scales to 512 processors. Alewife serves as both a proof-of-concept for the software-
extension approach and as a platform for investigating shared-memory design and pro-
gramming. Since the study has been conducted in the context of a real system, it focuses
on simple solutions to practical problems. This engineering process has resulted in a
multiprocessor that is both scalable and programmable.

Experience with Alewife shows that software-extended memory systems achieve
high performance at a per-processor cost that is close to standard workstations. A
combination of minimal hardware and intelligent software realizes performance compa-
rable to expensive shared memory implementations. By adopting this design strategy,
computer vendors can build truly scalable product lines.

1.1 Contributions

This dissertation:

� Proposes the software-extension approach and develops algorithms for hybrid
hardware/software cache coherence protocols.

� Measures and analyzes the performance of the first software-extended memory
system, using two complete implementations of the Alewife multiprocessor: a
physical machine proves the viability of the design, and a simulation system
allows experimentation with a spectrum of memory systems.

� Describes a flexible coherence interface that expedites development of memory
system software. Detailed performance measurements of the software show the
trade-off between flexibility and performance.

� Constructs and validates an analytical model of software-extended systems. This
model surveys the design space and predicts the performance impact of a variety
of architectural mechanisms.

� Demonstrates examples of smart memory systems that use the flexibility of soft-
ware to help improve system performance. One of these systems implements a
novel technique for optimizing the use of shared memory.

16

1.2 Organization

The next chapter elaborates on the design of large-scale shared memory systems. It
reviews the work related to this dissertation and defines the terms used in the following
chapters. Chapter 3 describes the tools used to perform the study of software-extended
systems: models, simulators, hardware, and applications. Chapter 4 summarizes the
study that shows that large-scale multiprocessors need a software-extended memory
system. The study also specifies the coherence algorithms used by Alewife’s memory
system hardware. Chapter 5 describes the software side of Alewife’s memory system,
including the flexible coherence interface. Chapter 6 presents the results of an empirical
study of Alewife’s software-extended system. The study examines the trade-offs be-
tween cost, flexibility, and performance. Chapter 7 uses the empirical study to validate
a mathematical model of the performance of software-extended systems. The chapter
then uses the model to explore the space of shared memory designs. Chapter 8 describes
the user interfaces, implementations, and benefits of three smart memory systems. Fi-
nally, Chapter 9 concludes by specifying a minimal software-extended shared memory
architecture.

17

Chapter 2

Distributed Shared Memory

Contemporary research on implementing scalable shared memory focuses on distributed
shared memory architectures. Rather than partitioning memory and processors into
separate modules, these architectures distribute memory throughout a machine along
with the system’s processors. A processing element — also called a node — contains a
processor, a bank of memory, and usually a cache. Each processor can access memory
in its own node or transmit a request through the interconnection substrate to access
memory in a remote node. Intranode accesses proceed just as memory accesses do
in a normal single-processor system; internode memory accesses require much more
substantial architectural mechanisms.

A distributed shared memory architecture must service processors’ internode re-
quests for data and maintain the coherence of shared memory. Before the work on
software-extended shared memory, systems used either software or hardware to imple-
ment protocols that perform these functions.

Software distributed shared memory architectures [20, 57, 24, 11, 9, 8, 41] implement
truly inexpensive parallel computing. They provide a shared memory interface for
workstations and networks, using only standard virtual memory and communication
mechanisms. In order to reduce the effects of the overhead of software support and long
communication delays, these systems transfer large blocks of data (typically thousands of
bytes) and amortize the overhead over many memory accesses. Accordingly, applications
achieve good performance if their subtasks share large data objects and communicate
data in bursts.

Recent developments in software distributed shared memory use a combination of
programmer annotations and protocol optimizations to allow systems to transmit kilo-
bytes of data at a time, and only as much data as is needed to maintain coherence. These
techniques use weaker memory consistency models [1] than sequential consistency [52]
(a convenient model of shared memory), but provide synchronization mechanisms that
allow programmers to write correct applications. In addition, some software memory
systems make intelligent choices about data transfer and coherence policies. The latest
software implementations of distributed shared memory exhibit good parallelism for
small systems running large problem sizes.

Hardware implementations of distributed shared memory [55, 33, 45] attempt to
provide cost-effective implementations of larger systems. These systems accommodate

18

Hardware Software

Alewife

Distributed

Shared

Memory

Distributed

Shared

Memory

Figure 2-1: Alewife uses a hybrid approach to implement distributed shared memory.

applications with subtasks that share data in units of tens or hundreds of bytes, and make
use of the high bandwidth and low latency provided by high-performance interconnection
networks. Weak consistency models may also be applied to the design of these systems,
but they are not absolutely essential for good performance: weak consistency is just
one of a number of available latency-tolerance techniques [31]. Existing hardware
implementations of distributed shared memory have expensive and complex memory
systems. They are cost-effective solutions for applications when they are the only
solution.

The software-extension approach, illustrated in Figure 2-1, bridges the gap between
these two design styles [16, 34, 81]. By implementing basic transfer and coherence
functions in hardware, software-extended systems provide efficient access to small units
of data. The software part of these systems helps manage costs by using intelligent
transfer and coherence policies when the hard-wired mechanisms require assistance. For
historical reasons, software-extended systems are viewed as hardware implementations
of distributed shared memory with software support. Section 8.5 examines the design
approach from the opposite viewpoint.

Two parallel architectures [79, 23] combine the hardware and software approaches
in a different way. These hybrid systems use bus-based coherence protocols for small
clusters of processors, and software distributed shared memory techniques to enforce
coherence between clusters. Each individual cluster can handle subtasks that share small
objects and synchronize often; but for these systems to perform well, tasks located in
different clusters must share large data objects and synchronize infrequently.

2.1 Cache Coherence Protocols

There are two logical sides of a shared memory system: the processor (request) side and
the memory (response) side. In distributed systems, each node contains its own part of
both sides of the system. The request side fields memory accesses from a processor,
determines whether each access can be satisfied within the local node, and transmits
messages into the network to initiate internode memory requests. The memory side
receives intranode and internode requests, transmits data to requesting processors, and

19

maintains coherence.
The software-extended approach may be applied to either side of the memory system.

While the processor side and the memory side of a memory system are inextricably
linked in the design of a cache coherence protocol, they may be treated separately when
considering a software-extension methodology. Each side of the protocol has its own,
separate finite-state specification. Exactly which states and transitions happen to be
implemented in software should be decided independently for each machine.

2.1.1 The Processor Side

Each node must provide support for location-independent addressing, which is a fun-
damental requirement of shared memory. Hardware support for location-independent
addressing permits application software to issue an address that refers to an object with-
out knowledge of where it is resident. This hardware support includes an associative
matching mechanism to detect if the object is cached, a mechanism to translate the object
address and identify its location if it is not cached, and a mechanism to issue a message
to fetch the object from a remote location if it is not in local memory.

As nodes are added to a multiprocessor, the total of all of the processor-side structures
in the system grows at most linearly. Curiously, it is possible to argue that the cost of
the processor side might grow sublinearly with the number of nodes: while holding
problem size constant, cache working sets decrease as the number of nodes increases.
Thus, smaller caches might be used in large multiprocessors than in small ones.

Since this research concentrates on the problem of cost management, it does not
address the processor side of cache coherence protocols. It is certainly possible that —
for reasons of flexibility, if not cost — a system designer might choose to implement part
of the processor-side state machine in software. While this decision process may benefit
from the experience described in the following chapters, it will hinge on a different set
of constraints, such as processor cycle time and cache hit rates.

In addition, there are a host of techniques used to tolerate the latency of com-
munication between nodes, including multiple-context support, prefetching, and weak
consistency models. Since these techniques primarily impact the design of the processor
side of the interface, they are not critical in the decision to extend part of the memory-
side state machine into software. Therefore, this dissertation does not study the cost or
performance implications of these mechanisms.

2.1.2 The Memory Side

Implementing memory coherence for a large number of processors requires the system to
keep track of the locations of cached copies of data. A directory is a structure that helps
enforce the coherence of cached data by maintaining pointers to the locations of cached
copies of each memory block. When one node modifies a block of data, the memory
system uses the information stored in the directory to enforce a coherent view of the
data. At least one company has designed a centralized directory for small, bus-based
systems [26]. For larger systems, directories are not monolithic structures: they are
distributed to the processing nodes along with a system’s shared memory.

20

A cache coherence protocol consists of the directory states, the cache states, and the
internode messages that maintain coherence: request messages ask for data; response
messages transmit data; invalidation messages ask caches to destroy (or to return) copies
of data; and acknowledgment messages indicate completed invalidations. Using a
directory to implement cache coherence eliminates the need for a broadcast mechanism,
which becomes a serious performance bottleneck for systems with more than sixteen
processors.

The DASH multiprocessor [55] implements a distributed full-map directory [12, 73,
54], which uses hardware to track up to the maximum number of copies for every block of
data in a system. Such an implementation becomes prohibitively expensive for systems
with more than 64 processors. This strategy implicitly assumes that every block of data
has a home location that contains both the block’s data and an associated directory entry,
which holds the pointers to cached copies.

Hierarchical directories [33, 45] implement the directory as a tree-like structure
that is distributed throughout the system. This implementation strategy eliminates the
need for a home location, and allows application data and directory information to
migrate throughout the machine. This policy is both more intelligent and more complex
than other directory schemes. Recent studies indicate that the increased data locality
afforded by hierarchical directories improves performance marginally over lower-cost
schemes [62, 37].

Another decentralized scheme [36, 7] uses home locations but distributes directory
information to caches along with copies of data. Coherence information is stored in
linked-lists; each link of a chain resides in a different cache. While these chained
directories have reasonable storage requirements, they are relatively complicated and
suffer from long write latencies.

It is also possible to design hardware to implement a cost-efficient limited direc-
tory [5], which only permits a small number of copies of any block of data. However,
the performance of limited directories falls dramatically when many processors attempt
to share a single block of data [14].

The software-extension approach leads to the family of LimitLESS protocols, which
achieve close to the performance of a full-map directory with the hardware of a limited
directory [16]. This scheme, described by Chapter 4 in detail, implements a small number
of pointers in a hardware directory (zero through five in Alewife), so that the hardware
can track a few copies of any memory block. When these pointers are exhausted, the
memory system hardware interrupts a local processor, thereby requesting it to maintain
correct shared memory behavior by extending the hardware directory with software.

Another set of software-extended protocols (termed Dir1SW) were proposed in [34]
and [81]. These protocols use only one hardware pointer, rely on software to broadcast
invalidates, and use hardware to accumulate the acknowledgments. In addition, they
allow the programmer or compiler to insert Check-In/Check-Out (CICO) directives into
programs to minimize the number of software traps.

All software-extended memory systems require a battery of architectural mechanisms
to permit a designer to make the cost versus performance trade-off. First, the shared
memory hardware must be able to invoke extension software on the processor, and the
processor must have complete access to the memory and network hardware [16, 47, 81].

21

Second, the hardware must guarantee forward progress in the face of protocol thrashing
scenarios and high-availability interrupts [48]. The system must also implement the
processor-side support described in the previous section. Since these mechanisms com-
prise the bulk of the complexity of a software-extended system, it is important to note
that the benefits of these mechanisms extend far beyond the implementation of shared
memory [42, 29]: integrating message passing and shared memory promises to be an
active topic of research in the coming years.

Alternative scalable approaches to implementing shared memory proposed in [61,
69, 77] use hardware mechanisms that allocate directory pointers dynamically. These
schemes do not require some of the mechanisms listed above, but they lack the flexibility
of protocol and application software design. Section 8.2 gives an example of how to
incorporate scalable coherence algorithms into a software-extended system.

2.1.3 A Spectrum of Protocols

The number of directory pointers that are implemented in hardware is an important
design decision involved in building a software-extended shared memory system. More
hardware pointers mean fewer situations in which a system must rely on software to
enforce coherence, thereby increasing performance. Having fewer hardware pointers
means a lower implementation cost, at the expense of reduced performance. This trade-
off suggests a whole spectrum of protocols, ranging from zero pointers to n pointers,
where n is the number of nodes in the system.

The n pointer protocol

The full-map protocol uses n pointers for every block of memory in the system and
requires no software extension. Although this protocol permits an efficient implemen-
tation that uses only one bit for each pointer, the sheer number of pointers makes it
extremely expensive for systems with large numbers of nodes. Even though the cost of
the full-map protocol makes it impractical, it serves as a good performance goal for the
software-extended schemes.

2 $ (n � 1) pointer protocols

There is a range of protocols that use a software-extended coherence scheme to implement
shared memory. It is this range of protocols that allows the designer to balance hardware
cost and system performance. From the point of view of implementation complexity, the
protocols that implement between 2 and n � 1 pointers in hardware are homogeneous.
Of course, the n � 1 pointer protocol would be even more expensive to implement
than the full-map protocol, but it still requires exactly the same hardware and software
mechanisms as the protocols at the other end of the spectrum.

In a load/store architecture, the software for protocol extension needs to service only
two kinds of messages: read and write requests. It handles read requests by allocating
an extended directory entry (if necessary), emptying all of the hardware pointers into the
software structure, and recording a pointer to the node that caused the directory overflow.

22

Subsequent requests may be handled by the hardware until the next overflow occurs. For
all of these protocols, the hardware can return the appropriate data to requesting nodes;
the software only needs to record requests that overflow the hardware directory.

To handle write requests after an overflow, the software transmits invalidation mes-
sages to every node with a pointer in the hardware directory or in the software directory
extension. The software then returns the hardware directory to a mode that collects one
acknowledgment message for each transmitted invalidation.

Zero-pointer protocols

The zero-pointer LimitLESS scheme, termed a software-only directory architecture,
provides an interesting design point between software and hardware distributed shared
memory. It uses hardware to support the processor-side functions, but implements the
entire memory side in software.

Since the software-only directory has no directory memory, it requires substantially
different software than the 2$ (n�1) range of protocols. This software must implement
all coherence protocol state transitions for internode accesses [64].

One-pointer protocols

The one-pointer protocols are a hybrid of the protocols discussed above. Chapter 6
studies the performance of three variations of this class of protocols. All three use the
same software routine to transmit data invalidations sequentially, but they differ in the
way that they collect the messages that acknowledge receipt of the invalidations. The first
variation handles the acknowledgments completely in software, requiring a trap from the
hardware upon the receipt of each message. During the invalidation/acknowledgment
process, the hardware pointer is unused.

The second protocol handles all but the last of a sequence of acknowledgments in
hardware. If a node transmits 64 invalidations for a memory block, then the hardware will
process the first 63 invalidations. This variation uses the hardware pointer to store a count
of the number of acknowledgments that are still outstanding. Upon receiving the 64th

acknowledgment, the hardware invokes the software, which takes care of transmitting
data to the requesting node.

The third protocol handles all acknowledgment messages in hardware. This protocol
requires storage for two hardware pointers: one pointer to store the requesting node’s
identifier and another to count acknowledgments. Although a designer would always
choose to implement a two-pointer protocol over this variation of the one-pointer pro-
tocol, it still provides a useful baseline for measuring the performance of the other two
variations.

A notation for the spectrum

This section introduces a notation that clearly specifies the differences between various
implementations and facilitates a precise cost comparison. The notation is derived from a
nomenclature for directory-based coherence protocols introduced in [5]. In the previous

23

notation, a protocol was represented as DiriX, where i represented the number of explicit
copies tracked, and X was B or NB depending on whether or not the protocol issued
broadcasts. Notice that this nomenclature does not distinguish between the functionality
implemented in the software and in the hardware. The new notation attempts to capture
the spectrum of features of software-extended protocols that have evolved over the past
several years, and previously termed LimitLESS1, LimitLESS4, and others in [16], and
Dir1SW, Dir1SW+, and others in [34, 81].

For both hardware and software, the new notation divides the mechanisms into two
classes: those that dictate directory actions upon receipt of processor requests, and those
that dictate directory actions for acknowledgments. Accordingly, the notation specifies
a protocol as: DiriHXSY;A, where i is the number of explicit pointers recorded by the
system — in hardware or in software — for a given block of data.

The parameter X is the number of pointers recorded in a hardware directory when a
software extension exists. X is NB if the number of hardware pointers is i and no more
than i shared copies are allowed, and is B if the number of hardware pointers is i and
broadcasts are used when more than i shared copies exist. Thus the full-map protocol in
DASH [55] is termed DirnHNBS

�
.

The parameter Y is NB if the hardware-software combination records i explicit
pointers and allows no more than i copies. Y is B if the software resorts to a broadcast
when more than i copies exist.

The A parameter is ACK if a software trap is invoked on every acknowledgment. A
missing A field implies that the hardware keeps an updated count of acknowledgments
received. Finally, the A parameter is LACK if a software trap is invoked only on the last
acknowledgment.

According to this notation, the LimitLESS1 protocol defined in [16] is termed
DirnH1SNB, denoting that it records n pointers, of which only one is in hardware. The
hardware handles all acknowledgments and the software issues invalidations to shared
copies when a write request occurs after an overflow. In the new notation, the three one-
pointer protocols defined above are DirnH1SNB,ACK , DirnH1SNB,LACK , and DirnH1SNB,
respectively.

The set of software-extended protocols introduced in [34] and [81] can also be
expressed in terms of the notation. The Dir1SW protocol maintains one pointer in
hardware, resorts to software broadcasts when more than one copy exists, and counts
acknowledgments in hardware. In addition, the protocol traps into software on the last
acknowledgment [80]. In the notation, this protocol is represented as Dir1H1SB,LACK .
This protocol is different from DirnH1SNB,LACK in that Dir1H1SB,LACK maintains only one
explicit pointer, while DirnH1SNB,LACK maintains one pointer in hardware and extends the
directory to n pointers in software. An important consequence of this difference is that
DirnH1SNB,LACK potentially interrupts processors on read requests, while Dir1H1SB,LACK

does not. Unlike DirnH1SNB,LACK , Dir1H1SB,LACK must issue broadcasts on write requests
to memory blocks that are cached by multiple nodes.

24

2.2 Flexible and Smart Memory Systems

Virtual memory designers know well the benefits of flexible interfaces in memory sys-
tems. The CMU Mach Operating System uses an interface that separates the machine-
dependent and machine-independent parts of a virtual memory implementation [65].
This pmap interface allows the Mach memory system to run efficiently on a wide range
of architectures. Some of the features of this interface are remarkably similar to Alewife’s
flexible coherence interface, which separates the hardware and software components of
the software-extended memory system.

Flexible virtual memory systems can implement a number of mechanisms that are
useful to higher-level software [6]. In fact, software distributed shared memory architec-
tures use such mechanisms to implement smart memory systems, which use intelligence
to optimize memory performance. DUnX [53] uses heuristics to place and to migrate
pages of virtual memory on the BBN GP1000. Munin [11] allows programmers to
annotate code with data types and handles each type of data differently. Orca [8] uses a
compiler to analyze access to data objects statically. Based on the analysis, the compiler
selects an appropriate memory for each object.

Similar optimization techniques work for software-extended implementations of dis-
tributed shared memory. Lilja and Yew demonstrate a compiler annotation scheme
for optimizing the performance of protocols that dynamically allocate directory point-
ers [58]. Hill, Wood, and others propose and evaluate a programmer-directed method for
improving the performance of software-extended shared memory [34, 81]. The studies
show that given appropriate annotations, a large class of applications can perform well on
Dir1H1SB,LACK . Cachier [21] takes this methodology one step further by using dynamic
information about a program’s behavior to produce new annotations, thereby improving
performance. Cachier requires the programmer to label all shared data structures and to
run the program on a simulator.

The profile-detect-optimize technique implemented for Alewife (in Section 8.4) is
similar to Cachier, except that it runs entirely on a real software-extended system and
requires no simulation. This technique was inspired by the Multiflow trace-scheduling
compiler [22].

The LimitLESS profiler in Section 8.3 and Mtool [30] both attempt to provide in-
formation about shared memory usage. The two systems’ implementations are very
different, however. Mtool instruments code on the processor side and presents infor-
mation in terms of memory access overhead in procedures. The LimitLESS profiler
instruments the memory side and reports the worker-set behavior of important data
objects.

FLASH [51] and Typhoon [66] explore alternative methods for building flexible
memory systems. These architectures dedicate processors to implement scalable shared
memory. Section 7.4.3 explores the differences in performance between these architec-
tures and Alewife. Hand-crafted protocols that can optimize access for specific types of
data have been developed for FLASH and Typhoon [18, 66].

25

2.3 Understanding Memory System Performance

A worker set is the set of processors that access a block of memory between subsequent
modifications of the block’s data. The notion of a worker set is loosely based on working
sets, which specify the portions of memory accessed by a single processor over an
interval of time. In the working-set definition, the time interval is artificially defined for
the sake of measurement. Conversely, worker sets specify the processors that access a
block of data over an interval of time. The worker-set time interval is defined implicitly
by the reference pattern of each object.

Denning [27] writes that “...the working set is not a model for programs, but for
a class of procedures that measure the memory demands of a program.” This model
predicts the appropriate amount of memory or cache required by each process using a
virtual memory system. Similarly, the worker-set behavior of shared memory programs
specifies the demands on a software-extended system. The worker-set model predicts
the appropriate mix of hardware and software for running a multiprocessor application.

Measuring access patterns in terms of worker sets is certainly not new. The worker-
set invalidation profiles in Figure 7-3 are virtually identical to the ones studied by
Weber in [78]. Simoni and Horowitz used stochastic models to predict similar in-
validation patterns, cache miss statistics, and transaction latencies for directory-based
protocols [70]. Simoni completed this work with an analysis of scalable hardware di-
rectory schemes [68]. He also presented a simple analysis that translated data sharing
patterns into processor utilization. Tsai and Agarwal derived sharing patterns and cache
miss ratios directly from parallel algorithms [75].

The inputs to the worker-set model in Chapter 7 are similar to the outputs of the pre-
ceding studies: it predicts the performance of software-extended systems from worker-set
behavior and cache access statistics. The model is validated by an empirical study of
Alewife’s software-extended memory system and its performance, which is the subject
of the next four chapters.

26

Chapter 3

An Architect’s Workbench

A primary goal of the research on software-extended shared memory was to build a large,
working multiprocessor system with a convenient programming interface. This chapter
describes the methodology for achieving this goal and the various tools used during the
life-cycle of the Alewife project.

The life-cycle began with initial studies using mathematical models and simple simu-
lation techniques that determined the basic features of the multiprocessor’s architecture.
These studies investigated a wide range of design options, including the programming
model, the practical number of processors, the balance of communication and computa-
tion, cache coherence protocols, and the type of interconnection network.

The tools used during this stage of the project did not model the intricate details of
the architecture, and therefore could be constructed quickly. In practice, the models and
simulators either produced their results instantaneously or simulated long executions in
a relatively short amount of time. Due to the lack of detail, the tools measured quantities
such as component utilization, transaction latency, and system throughput. While these
metrics did not indicate end-to-end performance, they measured the relative benefits of
different design alternatives.

The next stage consisted of a preliminary system design at the functional level. The
Alewife simulator, called ASIM, modeled large system components and their internal
structure at the level of state machines, data repositories, and objects communicated
between components. This simulator took considerable effort to build, because it im-
plemented the cross-product of a wide range of design options, at a more detailed level
than the tools of the previous stage. The additional detail supported the development of
the first software for Alewife, including compilers and task schedulers. It also allowed
performance to be measured directly in terms of the number of cycles required to run a
program, and the speedup when using multiple processors instead of a sequential system.

While ASIM could still measure utilization, latency, and throughput, these quantities
typically were used only to explain behavior observed with the higher-level metrics.
ASIM simulated about 20,000 cycles per second. Given some patience, this speed
permitted the development of small applications and the investigation of design trade-
offs. The preliminary evaluation of software-extended shared memory took place at this
stage of the project.

The first two stages provided the foundation for the next — and longest — phase of

27

development: the implementation of the architecture, dubbed the A-1000. The design of
Alewife’s hardware and software required two complementary simulation systems. One
simulator, provided by LSI Logic, directly executed the gate-level specification of the
hardware implementation. Such a simulation was integral to the hardware fabrication
process, but it modeled the system at such a low level of detail that it barely reached
speeds of one clock cycle per second.

The other simulator, called NWO, modeled the system at a high enough level that
it reached speeds of 3,000 clock cycles per second but could still run all of the same
programs as the A-1000. NWOP, a parallel version of NWO, executed tens of thousands
of cycles per second on the CM-5, a parallel computer built by Thinking Machines. The
dual LSI/NWO simulation approach decoupled Alewife’s hardware and software efforts,
allowing the development of compilers, operating systems, and applications to advance
in parallel with the physical system’s design, test, layout, and fabrication.

During this phase of development, the standard metrics used in previous stages helped
refine the design and fine-tune the performance of the system as a whole. At this stage,
the correct operation of the system was just as important as the projected speed. The
rate that hardware bugs were found (and removed) served as a measure of the stability
of the system and gated the decision to fabricate the components.

The development phase also included the finalization of the hardware-software inter-
face and the design of abstractions within the the software system. A qualitative metric
used during this process was the time required to write code for the system. There were
two types of programmers who had to be satisfied: the application programmer, who
works for the multiprocessor’s end-user; and the operating system programmer, who
works closely with architects and compiler writers. The flexible coherence interface
grew out of the need for a rich environment that reduced the effort required for operating
system programmers to write modules of the memory-system software.

Fabricating the A-1000 culminated the development phase of the project. While the
simulators from the previous stage remained important, the abstract workbench turned
into a physical one with the real tools required to assemble Alewife machines. The
working machines validated the simulation and modeling techniques used to define
the architecture. Hardware running at millions of cycles per second enabled research
using applications with real data sets and operating systems with a full complement of
functionality.

The final stage of the project reexamined the design space in light of the lessons
learned from designing and implementing the architecture. The tools used for the analysis
were the same as those used in the initial studies: mathematical models quantified the
importance of features of the architecture with utilization, latency, and throughput. It
was somewhat satisfying to use the metrics from the preliminary studies of the Alewife
memory system. The analysis with these metrics closed the research life-cycle by using
the specific implementation to help evaluate a wide range of design options.

The next section describes the Alewife architecture, ASIM, and the two implementa-
tions of Alewife: the A-1000 and NWO. This chapter also describes a synthetic workload
and the benchmarks that drive the performance analysis.

28

Cache

DataX:

FPU

Network
Router

Alewife node

Alewife machine

CMMU

Sparcle

Distributed Shared Memory

X: C

Distributed Directory

DataX:

X:

Private Memory

Figure 3-1: Alewife node, with a DirnH2SNB memory block.

3.1 The Alewife Architecture

Alewife provides a proof-of-concept for software-extended memory systems and a plat-
form for experimenting with many aspects of multiprocessor design and programming.
The Alewife architecture scales up to 512 processing elements with distributed shared
memory. It uses caches to implement fast memory access, and a software-extended
memory system to enforce sequential consistency.

Figure 3-1 shows an enlarged view of a node in the Alewife machine. The processor
on each node consists of a Sparcle processor [3], which is based on the 32-bit SPARC
architecture [72], and a floating-point coprocessor. The nodes communicate via messages
through a direct network [67] with a mesh topology. Alewife’s memory system includes
a cache, a bank of private memory, a portion of the globally-shared main memory, and the
corresponding portion of the hardware limited directory. A single-chip communications
and memory management (CMMU) on each node holds the cache tags and implements
the memory coherence protocol by synthesizing messages to other nodes.

The 512 node restriction is primarily a function of Sparcle’s 32-bit address, which
contains enough space for 22 bits (4 Mbytes) of offset, a 9-bit node identifier (512), and
one bit to differentiate shared addresses from private addresses.

In addition to the standard hardware directory pointers, Alewife implements a special
one-bit pointer for the node that is local to the directory. Several simulations show
that this extra pointer improves performance by only about 2%. Its main benefit lies
in reducing the complexity of the protocol hardware and software by eliminating the
possibility that a node will cause its local hardware directory to overflow.

Alewife also includes a mechanism that allows a zero-pointer protocol to be opti-
mized. This optimization may be described as follows1: the zero-pointer protocol uses

1The actual implementation in Alewife is slightly different.

29

one extra bit per memory block to optimize the performance of purely intranode accesses.
The bit indicates whether the associated memory block has been accessed at any time
by a remote node. When the bit is clear (the default value), all memory accesses from
the local processor are serviced without software traps, just as in a uniprocessor. When
an internode request arrives, the bit is set and the extension software flushes the block
from the local cache. Once the bit is set, all subsequent accesses — including intranode
requests — are handled by software extension.

All of the performance results in Chapter 6 measure protocol implementations that
use these one-bit optimizations. Sections 7.4.3 and 7.4.5 use the analytical model to
evaluate the contribution of this architectural mechanism to the performance of the
system.

There are two other features of the Alewife architecture that are relevant to the
memory system, the most important of which is integrated shared memory and message
passing [42, 47]. This mechanism enables software-extended memory by allowing the
processor to transmit and receive any kind of network packet, including the ones that are
part of the cache coherence protocol. Part of this mechanism is a direct-memory-access
facility. As a result, much of the interprocessor communication — especially in the
operating system, the task scheduler, and the synchronization library — uses message-
passing semantics rather than shared memory. This policy improves performance and
relieves the memory system of the burden of handling data accesses that would be
hindered, rather than helped, by caches.

The Sparcle processor uses the SPARC register windows to implement up to four
hardware contexts, each of which holds the state of an independent thread of computation.
This implementation allows the processor to switch quickly between the different threads
of execution, an action which is typically performed upon a remote memory access.
While the context-switching mechanism is intended to help the system tolerate the
latency of remote memory accesses [4, 50, 31], it also accelerates the software-extended
memory system: when the processor receives an interrupt from the CMMU, it can use
the registers in an empty context to process the interrupt, rather than saving and restoring
state. Section 7.4.1 uses the analytical model to determine how this fast trap mechanism
affects performance.

There are currently two implementations of the Alewife architecture: a working
hardware prototype (A-1000) and a deterministic simulator (NWO). Both of these im-
plementations run exactly the same binary code, including all of the operating system2

and application code. In contrast, the simulation system used for preliminary studies
(ASIM) implements a wide range of architectural options but can not run actual Alewife
programs.

3.1.1 ASIM: the Preliminary Simulator

ASIM models each component of the Alewife machine — from the multiprocessor
software to the switches in the interconnection network — at the functional level. This
simulator, which does not represent the final definition of the Alewife architecture,

2NWO does not run a few of the hardware diagnostics.

30

Mul−T program

Network transactions

Memory requests/acknowledgements

Parallel Traces

Cache/Memory Simulator

Dynamic Post−Mortem
Scheduler

Network Simulator

Alewife RuntimeMul−T Compiler

Sparcle Simulator

Sparcle machine language program

Figure 3-2: Diagram of ASIM, the Alewife system simulator.

became operational in 1990. The simulator runs programs that are written in the Mul-
T language [44], optimized by the ORBIT compiler [43], and linked with a runtime
system that implements both static work distribution and dynamic task partitioning
and scheduling. The code generated by this process runs on a simulator consisting of
processor, cache/memory, and network modules.

Although the memory accesses in ASIM are usually derived from applications run-
ning on the Sparcle processor, ASIM can alternatively derive its input from a dynamic
post-mortem trace scheduler, shown on the right side of Figure 3-2. Post-mortem
scheduling is a technique that generates a parallel trace from a uniprocessor execution
trace with embedded synchronization information [19]. The post-mortem scheduler is
coupled with the memory system simulator and incorporates feedback from the network
in issuing trace requests, as described in [50]. The use of this input source is important
because it allows the workload set to include large parallel applications written in a
variety of styles. Section 4.2.1 describes four of the benchmarks simulated by ASIM.

The simulation overhead for large machines forces a trade-off between application
size and simulated system size. Programs with enough parallelism to execute well on
a large machine take an inordinate time to simulate. When ASIM is configured with
its full statistics-gathering capability, it runs at about 5,000 processor cycles per second
on an unloaded SPARCserver 330 and about 20,000 on a SPARCstation 10. At 5,000
processor cycles per second, a 64 processor machine runs approximately 80 cycles per
second. Most of the simulations in Chapter 4 ran for roughly one million cycles (a
fraction of a second on the A-1000), and took 3.5 hours to complete.

To evaluate the potential benefits of a hybrid hardware/software design approach,
ASIM models only an approximation of a software-extended memory system. Sec-
tion 4.2 describes this simulation technique, which justified the effort required to build
the A-1000 and NWO implementations of Alewife.

31

Figure 3-3: A-1000 node board: 12cm � 22cm

3.1.2 A-1000: the Alewife Machine

A-1000, the hardware implementation of the Alewife architecture, ran its first complete
program in May, 1994. As of August, 1994, a sixteen node A-1000 and a few smaller
machines have been built. Larger machines will come on-line as additional parts are
fabricated.

Figure 3-3 shows an A-1000 node, packaged on a 12cm by 22cm printed circuit
board. The large component in the center of the board is the A-1000 CMMU [46].
The chip on the lower left side of the CMMU is the Sparcle processor, and a SPARC-
compatible floating-point unit is on the upper left corner of Sparcle. The connector on
the right side of the board plugs into a back-plane that wires the nodes together. The
Caltech EMRC [28] in the package next to the connector routes messages through a
two-dimensional mesh network.

The two square packages on the right side of the CMMU hold SRAM chips that
implement 64 Kbytes of direct-map cache, which holds both instructions and data.
(Sparcle does not have on-board caches.) The bank of DRAM chips on the top of the
board contains 2 Mbytes of private memory, 2 Mbytes of coherence directory memory,
and 4 Mbytes of the global shared memory space. In addition to the 512 � 4 Mbyte
configuration, the A-1000 also implements an option for 128 nodes with 16 Mbytes
each.

LSI Logic fabricated the CMMU with a hybrid gate-array process. The chip contains
100,000 memory cells (including the cache tags) and a sea of 90,000 gates of logic.
Critical paths in the CMMU limit the system speed. The A-1000 runs reliably at
20 MHz and may be tuned to run close to 30 MHz.

The CMMU was designed using the LSI Logic Concurrent Modular Design Envi-
ronment (CMD-E). One of the outputs of CMD-E is a network file that specifies the
chip’s gates and connections. The LSI simulator uses switch-level models to simulate

32

the network directly. This switch-level simulator accurately models the operation of the
CMMU at about one clock cycle per second on a SPARCstation 10.

In order to provide a platform for shared memory research, the A-1000 supports
dynamic reconfiguration of coherence protocols on a block-by-block basis. During both
intranode and internode memory accesses, the unit of data transferred between a bank of
memory and a cache is 16 bytes. This unit corresponds to the unit of memory coherence,
the cache line size, and the shared-memory block size.

The A-1000 supports DirnH0SNB,ACK , DirnH2SNB through DirnH5SNB, Dir5H5SB, and
a variety of other protocols. The node diagram in Figure 3-1 illustrates a memory
block with two hardware pointers and an associated software-extended directory struc-
ture (DirnH2SNB). The current default boot sequence configures every block of shared
memory with a DirnH5SNB protocol, which uses all of the available hardware pointers.

3.1.3 NWO: the Alewife Simulator

While the machine supports an interesting range of protocols, it does not implement
a full spectrum of software-extended schemes. Only a simulation system can provide
the range of protocols, the deterministic behavior, and the non-intrusive observation
functions that are required for analyzing the spectrum of software-extended protocols.

NWO [15] is a multi-purpose simulator that provides a deterministic debugging and
test environment for the Alewife machine3. It ran its first complete program in the Spring
of 1992. The simulator performs a cycle-by-cycle simulation of all of the components in
Alewife. NWO is binary compatible with the A-1000: programs that run on the A-1000
run on the simulator without recompilation. In addition, NWO supports an entire range
of software-extended protocols, from DirnH0SNB,ACK to DirnHNBS

�
.

Furthermore, NWO can simulate an entire Alewife machine with up to 512 pro-
cessing nodes. This performance — combined with full implementation of the Alewife
architecture — allows NWO to be used to develop the software for Alewife, including
parallel C and Mul-T compilers, the host interface, the runtime system, and benchmark
applications. NWO provides a number of debugging and statistics functions that aid the
analysis of programs and their performance on Alewife.

The first implementation of NWO runs on SPARC and MIPS-based workstations.
The system simulates 3,000 Alewife clock cycles per second on a SPARCstation 10/30
and 4,700 on a SPARCstation 10/51. Each sequential run of the benchmarks in Sec-
tion 3.2.2 took several hours to complete. The raw performance must be divided by
the number of simulated nodes to get the actual number of simulated cycles per second.
Simulating machines with large numbers of nodes (� 64) exceeds the physical memory
on most workstations, and performance slows to a crawl due to paging.

To permit the simulation of large Alewife machines in a reasonable amount of time,
NWO has been ported to Thinking Machine’s CM-5 [74]. Determinism is preserved
in the CM-5 implementation by executing a barrier after every simulated clock cycle.
NWOP, the parallel version of NWO, has proved invaluable, especially for running

3NWO stands for new world order, thereby differentiating it from ASIM, the simulator that NWO
replaces.

33

Switch Level

Switch Level

Network

Functional

Switch Level

Figure 3-4: The hybrid simulation technique.

simulations of 64 and 256 node Alewife systems. The parallel simulator runs at about
15 Kcycles per second on 32 CM-5 nodes, 27 Kcycles on 64 nodes, and 48 Kcycles on
128 nodes. In addition, the large amount of memory in a CM-5 prevents the need for
paging. NWOP generated most of the simulation results in Chapters 6 and 8. Many of
the simulations required less than 90 minutes to run on NWOP.

In addition to its role as a valuable research and development tool,NWO performed an
essential service during the design and test phases of the A-1000 development. Although
NWO’s functional model of the CMMU is not nearly as accurate as the LSI switch-level
model, the architecture of the NWO CMMU is very similar to the architecture of the A-
1000 CMMU. In fact, several finite state machine transition tables that are implemented
in LSI’s synthesis language are automatically compiled so that NWO can execute them
directly. Thus, the internal architecture of NWO is close enough to the hardware so that
the functional simulator may be used to drive the tests of the CMMU chip.

To this end, a UNIX socket interface was developed to connect the NWO and LSI
simulators. This interface allows the functional simulator to model a complete Alewife
machine, except for a small number of nodes, which are modeled by the switch-level
simulator. Figure 3-4 illustrates this hybrid simulation technique: one workstation runs
the functional simulator of the Alewife machine. The socket interface allows the same
workstation or other workstations to simulate some of the Alewife nodes at the switch
level. The LSI simulator can be configured to model just the CMMU or a complete
Alewife node.

This hybrid simulation system allows a programmer to develop an application at
the speed of the functional simulator and then to run the working application on the
switch-level simulator or on the A-1000 itself. NWO remains a useful tool, even though
it runs five orders of magnitude slower than the A-1000. It is still much faster (and far

34

less expensive) to construct NWO nodes than A-1000 nodes. For this reason, a number
of researchers are still using NWO and NWOP to simulate large Alewife systems.
In addition, the deterministic property of the simulator and the ease of examining its
state facilitate low-level code development, debugging, and research on mechanisms not
implemented in the A-1000.

3.1.4 Comparing the Implementations

The NWO implementation of Alewife generated most of the experimental results in
the following chapters. There are several reasons for focusing on the simulator, rather
than the working hardware. First, NWO ran its first program two years before the A-
1000. Running non-trivial applications on the simulator validated the architecture and
stabilized the software environment in parallel with the hardware development. Second,
NWO implements the whole spectrum of hybrid memory systems while the A-1000
does not. Some of the experiments critical to understanding the software-extension
approach could not have been performed on the hardware. Finally, the A-1000 CMMU
was primarily the work of John Kubiatowicz. It is his prerogative to experiment with the
A-1000 and to report on its performance.

Nevertheless, the existence of the A-1000 validates the NWO simulation strategy.
Both systems implement the Alewife architecture, and they share much of the same
functional structure. The bulk of the software developed for Alewife on NWO —
including the entire software-extended memory system — runs error-free on the A-
1000.

There are, however, two significant differences between the Alewife implementa-
tions. First, NWO does not model the Sparcle or floating-point unit pipelines, even
though it does model many of the pipelined data paths within the CMMU. Second,
NWO models communication contention at the CMMU network transmit and receive
queues, but does not model contention within the network switches.

Table 3.1 compares the performance of six benchmarks running on a real A-1000
node and on a simulated NWO node. (Section 3.2.2 describes these multiprocessor
workloads.) The table shows the time required to run the sequential version of each
benchmark, in millions of processor cycles. The NWO simulations were performed
several months before the A-1000 ran its first program, so the program object codes are
slightly different.

The different NWO and A-1000 floating-point implementations cause all of the dif-
ference between the running times of NWO and the A-1000. Two of the benchmarks,
TSP and SMGRID, do not use any floating-point operations. Both implementations of
Alewife exhibit the same running times for these two programs. Floating-point oper-
ations comprise a significant part of the AQ, EVOLVE, MP3D, and Water executions.
These benchmarks run slower on the A-1000 than on NWO (in terms of Alewife cy-
cles), because NWO models one simulated cycle per floating-point operation, while the
hardware requires between two and forty-five cycles to execute floating-point operations.

The experimental error induced by NWO’s single-cycle floating-point operations
biases the results towards a higher communication to computation ratio. Such a bias
lowers estimates of shared memory performance, because the high communication

35

Name NWO Time A-1000 Time
TSP 37 Mcycles 37 Mcycles
AQ 30 Mcycles 53 Mcycles

SMGRID 100 Mcycles 107 Mcycles
EVOLVE 44 Mcycles 63 Mcycles

MP3D 20 Mcycles 26 Mcycles
Water 16 Mcycles 23 Mcycles

Table 3.1: Sequential time required to run six benchmarks on NWO and the A-1000.

ratio increases the demand on the memory system. If anything, NWO’s results for
software-extended shared memory are pessimistic. On the other hand, some of the
functions in Alewife’s mathematics code libraries are extremely inefficient. Since this
inefficiency cancels the benefit of fast floating-point operations, NWO may well represent
the performance of a production version of the architecture with commercial-grade
floating-point code.

Section 6.4 continues this discussion of the differences between NWO and the
A-1000 by presenting performance measurements for the A-1000 software-extended
memory system. To summarize the results of this study and the experience of other
members of the Alewife group, qualitative conclusions derived from NWO agree with
those from the A-1000.

3.2 Applications

Two kinds of workloads drive the performance analysis of software-extended memory
systems. The first workload is a microbenchmark, called WORKER, that generates a
synthetic memory access pattern. The synthetic access pattern allows experimentation
with a cross-product of application behavior and memory-system design.

Six other benchmarks comprise the second type of workload, which is intended to
test a system’s performance on more typical multiprocessor programs. The benchmarks
include two graph search algorithms, two solutions to numerical problems, and two
physical system simulations. Of course, this small set of applications can only represent
a small fraction of parallel applications. The increasing stability, size, and speed of the
A-1000 will allow the small existing set of benchmarks to expand to a more representative
suite of programs.

3.2.1 WORKER: a Synthetic Workload

The synthetic workload generates an arbitrary number of memory accesses that are
typical of a single-program, multiple-data (SPMD) style of parallelism: the processors
all run similar sequences of code, and each block of data is read by its worker set and is
written by exactly one processor.

36

(b) Worker−Set Size = 2(a) Worker−Set Size = 1

1

2

34

5

6

7 0

1

2

34

5

6

7 0

node 0
read pointer

node 0
write pointer

Figure 3-5: The circular worker-set data structure for 8 nodes.

The purpose of the application is to create a deterministic memory access pattern with
a configurable number of processors accessing each memory block. WORKER uses a
worker-set data structure to perform this task. The program consists of an initialization
phase that builds the structure and a number of iterations that perform repeated memory
accesses to it. The properties of the data structure allow a series of experiments with
different worker-set sizes, but a constant number of reads per iteration.

Figure 3-5 illustrates the configuration of this structure when WORKER runs on
a system with eight nodes. The basic unit is a circular set of n slots, where n is the
number of nodes in the system and each slot is the size of exactly one memory block.
WORKER constructs each slot’s address from a single template, varying only the 9-bit
node identifier within the 32-bit address. In the figure, the slots under each number are
physically located in the shared-memory of the node with the corresponding identifier:
node identifiers and slot numbers are synonymous. In order to control the total number
of reads per iteration, the basic unit is replicated b times, so the total number of memory
blocks in the structure is n� b. The depth of the two structures in the figure corresponds
to b.

The processors begin each iteration by reading the appropriate slots in each basic
unit of the worker-set structure. A read offset and a worker-set size (w) determine how
each processor accesses the structure. The read offset determines whether a processor
reads from its local memory or not, by indicating the slot where each processor begins
reading. The worker-set size corresponds to the number of slots that each processor
must read. For example, the read pointers in Figure 3-5 indicate the slots that processor
0 reads. In Figure 3-5(a), the read offset is 7 and the worker-set size is 1; so, processor
0 reads slot 7; processor 1 reads slot 0; etc. In Figure 3-5(b), the read offset is 3 and
the worker-set size is 2; so, processor 0 reads slots 3 and 4; processor 1 reads slots 4
and 5; etc. The important property of the structure is that w corresponds to the number

37

Name Language Size Sequential
TSP Mul-T 10 city tour 1.1 sec
AQ Semi-C see text 0.9 sec

SMGRID Mul-T 129� 129 3.0 sec
EVOLVE Mul-T 12 dimensions 1.3 sec

MP3D C 10,000 particles 0.6 sec
WATER C 64 molecules 2.6 sec

Table 3.2: Characteristics of applications run on NWO. Sequential time assumes a clock
speed of 33 MHz.

of processors that share each memory block. Given this structure, the total number of
reads is n � b � w; thus, the number of reads for both structures (a) and (b) is 64 even
though the worker set sizes of the structures are different.

After the reads, the processors execute a barrier and then each performs a single
write to one slot in every basic unit of the structure. A write offset indicates the slot
that each processor writes, and therefore determines whether or not the write modifies
a local or remote memory block. Both of the worker-set structures in Figure 3-5 have a
write offset of 5; so, processor 0 always writes to blocks in the memory of processor 5.
The total number of writes to the structure during this phase is n � b.

Finally, the processors execute a barrier and continue with the next iteration. Every
read request causes a cache miss and every write request causes the directory protocol
to send exactly one invalidation message to each reader. This memory access pattern
provides a controlled experiment for comparing the performance of different protocols.

3.2.2 NWO/A-1000 Benchmarks

Table 3.2 lists the names and characteristics of the applications in the benchmark suite.
They are written in C, Mul-T [44] (a parallel dialect of LISP), and Semi-C [38] (a
language akin to C with support for fine-grain parallelism). The table specifies the
sequential running time derived from simulation on NWO and scaled to real time using
a hypothetical clock speed of 33 MHz4.

Each application (except MP3D) is studied with a problem size that realizes more than
50% processor utilization on a simulated 64 node machine with a full-map directory. The
problem set sizes chosen for the applications permit the NWO simulations to complete
in a reasonable amount of time, but represent much smaller data sets than would be used
in practice. Since the problem set sizes are relatively small, the following chapters use
only the parallel sections to measure speedups. Now that a 16-node A-1000 exists, work
is underway to increase the number of benchmarks and to run them with more typical
problem sizes.

4The running times for Water in Table 3.2 and Table 3.1 differ, due to a change in the compiler during
the months between the two experiments.

38

Traveling Salesman Problem TSP solves the traveling salesman problem using a
branch-and-bound graph search. The application is written in Mul-T and uses the
future construct to specify parallelism. In order to ensure that the amount of work
performed by the application is deterministic, the experiments seed the best path value
with the optimal path. This program is by no means an optimal implementation of the
traveling salesman problem: the study uses it to represent the memory access pattern of
simple, parallel, graph search algorithms.

Adaptive Quadrature AQ performs numerical integration of bivariate functions using
adaptive quadrature. The core of the algorithm is a function that integrates the range under
a curve by recursively calling itself to integrate sub-ranges of that range. This application
also uses the future construct to specify parallelism, and it exhibits predominantly
producer-consumer communication between pairs of nodes. The function used for this
study is x4y4, which is integrated over the square ((0; 0); (2; 2)) with an error tolerance
of 0.005.

Static Multigrid SMGRID uses the multigrid method to solve elliptical partial dif-
ferential equations [32]. The algorithm consists of performing a series of Jacobi-style
iterations on multiple grids of varying sizes. Instead of using the default Mul-T task
scheduler, this application specifies its own static task-to-processor mapping.

Genome Evolution EVOLVE is a graph traversal algorithm for simulating the evolu-
tion of genomes, which is reduced to the problem of traversing a hypercube and finding
local and global maxima. The application searches for a path from the initial conditions
to a local fitness maximum. The program is rather small, but the graph traversal causes
it to have an interesting shared-memory access pattern. In order to eliminate startup
effects from the measurements, the algorithm is run twice: speedups are measured only
for the second iteration. Experiments show that speedups for the entire run are only
slightly lower than just for the second iteration.

MP3D The MP3D application is part of the SPLASH parallel benchmark suite. Ac-
cording to the SPLASH documentation [71],

MP3D solves a problem in rarefied fluid flow simulation. Rarefied flow
problems are of interest to aerospace researchers who study the forces ex-
erted on space vehicles as they pass through the upper atmosphere at hyper-
sonic speeds. Such problems also arise in integrated circuit manufacturing
simulation and other situations involving flow at extremely low density.

MP3D is commonly known as a difficult multiprocessor workload. It has a high com-
munication to computation ratio, and achieves only modest speedups on most parallel
architectures. The simulations in Chapter 6 use a problem size of 10,000 particles, turn
the locking option off, and augment the standard p4 macros with Alewife’s parallel C
library [59]. The simulations run five time steps of the application.

39

Water The Water application, also from the SPLASH application suite, is run for one
time step with 64 molecules. The documentation describes Water as follows:

This N-body molecular dynamics application evaluates forces and potentials
in a system of water molecules in the liquid state. The computation is
performed over a user-specified number of time-steps: : : Every time-step
involves setting up and solving the Newtonian equations of motion for water
molecules in a cubical box with periodic boundary conditions: : :

In addition to the p4 macros, this version of Water uses Alewife’s parallel C library with
barriers and reductions, rather than the naı̈ve locks used in the standard version.

40

Chapter 4

Cache Coherence in Alewife

This work on the foundation of the Alewife architecture investigates a range of alterna-
tives for designing cache coherence protocols. The results of this study indicate that no
simple, purely-hardware scheme achieves both scalable performance and cost efficiency.
Consequently, this chapter proposes the software-extension approach for implementing
LimitLESS cache coherence in Alewife. Evaluation of the approach provides the first
evidence that supports the concept of a software-extended coherent shared memory.
ASIM, the Alewife simulator, generates this evidence by approximating the effects of
software-extension without actually implementing the details of the architecture.

4.1 Implementing Directory Protocols

The main thrust of the original memory system experimentation involves the simulation
and measurement of several different directory-based protocols, including full-map,
limited, and chained varieties. This analysis helps determine the relationship between
the implementation of a protocol’s directory structure and the performance of a shared-
memory system.

The most dramatic differences in performance between protocols is caused by the
structure of the directory. For applications that use variables with small worker sets,
all of the protocols perform similarly. On the other hand, applications with variables
that are shared by many processors exhibit behavior that correlates with the type of
directory used by the protocol. Except in anomalous situations, the full-map directory
(DirnHNBS

�
) performs better than any other directory-based protocol. This observation

should not be surprising, since the full-map protocol is also not scalable in terms of
memory overhead. By committing overwhelming resources to cache coherence, it is
always possible to achieve good performance.

Simulations show that limited directory protocols can perform as well as full-map
directory protocols, subject to optimization of the software running on a system [14].
Although this result testifies to the fact that scalable cache coherence is possible, limited
directories are extremely sensitive to the worker sets of a program’s variables. Section 4.2
examines a case-study of a multiprocessor application that — when properly modified
— runs approximately as fast with a limited directory as with a full-map directory.

41

However, when one variable in the program is widely shared, limited directory protocols
cause more than a 100% increase in time needed to finish executing the application.
This sensitivity to worker-set sizes varies with the program running on the system; but
in general, the more variables that are shared among many processors, the worse limited
directories perform.

4.1.1 LimitLESS Cache Coherence

Alewife’s LimitLESS directory protocol uses the software-extension approach to solve
the problem of implementing scalable cache coherence. As do limited directory pro-
tocols, the LimitLESS directory scheme capitalizes on the observation that only a few
shared memory data types are widely shared among processors. Many shared data struc-
tures have a small worker set, which is the set of processors that concurrently read a
memory location. The worker set of a memory block corresponds to the number of active
pointers it would have in a full-map directory entry. When running properly optimized
software, a directory entry overflow is an exceptional condition in the memory system.
The LimitLESS protocol handles such “protocol exceptions” in software. This is the
integrated systems approach — handling common cases in hardware and exceptional
cases in software.

The LimitLESS scheme implements a small number of hardware pointers for each
directory entry. If these pointers are not sufficient to store the locations of all of
the cached copies of a given block of memory, then the state machine that handles
the directory interrupts the local processor. The processor then emulates a full-map
directory (or possibly a more intelligent protocol) for the block of memory that caused
the interrupt. The structure of the Alewife machine supports an efficient implementation
of this memory system extension. Since each processing node in Alewife contains
both a communications and memory management unit (CMMU) and a processor, it is
a reasonable modification of the architecture to couple the responsibilities of these two
units. This scheme is called LimitLESS, to indicate that it employs a Limited directory
that is Locally Extended through Software Support. Figure 3-1, an enlarged view of a
node in the Alewife machine, depicts a set of directory pointers that correspond to shared
data block X, copies of which exist in several caches. In the figure, the software has
extended the directory pointer array (which is shaded) into private memory.

Since Alewife’s Sparcle processor is designed with a fast trap mechanism, the over-
head of the LimitLESS interrupt is not prohibitive. The emulation of a full-map directory
in software prevents the LimitLESS protocol from exhibiting the sensitivity to software
optimization that is exhibited by limited directory schemes. But given current technology,
the delay needed to emulate a full-map directory completely in software is significant.
Consequently, the LimitLESS protocol supports small worker sets of processors in its
limited directory entries, implemented in hardware.

4.1.2 A Simple Model of the LimitLESS Protocol

Before discussing the details of the software-extended coherence scheme, it is instructive
to examine a simple model of the relationship between the performance of a full-map

42

directory and the LimitLESS directory scheme. Let Tr,hw be the average remote memory
access latency for a DirnHNBS

�
(hardware) directory protocol. Tr,hw encapsulates factors

such as the delay in the CMMU, invalidation latencies, and network latency. Given the
hardware protocol latency, Tr,hw, it is possible to estimate the average remote memory
access latency for the LimitLESS protocol with the formula: Tr,hw + sTs, where Ts (the
software latency) is the average delay for the full-map directory emulation interrupt,
and s is the fraction of remote memory accesses that overflow the small set of pointers
implemented in hardware.

For example, ASIM simulations of a Weather Forecasting program running on 64
node system (see Section 4.2) indicate that Tr,hw � 35 cycles. If Ts = 100 cycles, then
remote accesses with the LimitLESS scheme will be 10% slower (on average) than with
the full-map protocol when s � 3%. Since the Weather program is, in fact, optimized
such that 97% of accesses to remote data locations “hit” in the limited directory, the full-
map emulation will cause a 10% delay in servicing requests for data. Chapter 7 elaborates
this model, and uses it to investigate a range of options in designing software-extended
systems.

4.1.3 Background: Implementing a Full-Map Directory

Since the LimitLESS coherence scheme is a hybrid of the full-map and limited direc-
tory protocols, this new cache coherence scheme may be studied in the context of its
predecessors. In the case of a full-map directory, one pointer for every cache in the
multiprocessor is stored, along with the state of the associated memory block, in a single
directory entry. The directory entry, illustrated in Figure 4-1, is physically located in
the same node as the associated data. Since there is a one-to-one mapping between the
caches and the pointers, the full-map protocol optimizes the size of the pointer array by
storing just one bit per cache. A pointer-bit indicates whether or not the corresponding
cache has a copy of the data. The ASIM implementation of the protocol allows a memory
block to be in one of four states, which are listed in Table 4.1.

These states are mirrored by the state of the block in the caches, also listed in
Table 4.1. It is the responsibility of the protocol to keep the states of the memory and
cache blocks coherent. For example, a block in the Read-Only state may be shared by
a number of caches (as indicated by the pointer array). Each of these cached copies are
marked with the Read-Only cache state to indicate that the local processor may only
read the data in the block.

Before any processor modifies a block in an Invalid or Read-Only cache state, it first
requests permission from the CMMU that manages the data. At this point, the CMMU
sends invalidations to each of the cached copies. The caches then invalidate the copy
(change the block’s state from Read-Only to Invalid), and send an acknowledgment
message back to the memory. The CMMU uses the Write-Transaction state to indicate
that a memory location is awaiting acknowledgments, and sets a pointer to designate
the cache that initiated the request. A CMMU mechanism for counting the number
of invalidations sent and the number of acknowledgments received allows invalidations
and acknowledgments to travel through the system’s interconnection network in parallel.
When the CMMU receives the appropriate number of acknowledgments, it changes the

43

Limited Directory Entry

Read−Only

Read−Only

State

12 10 09 15

Full−Map Directory Entry

State 1 2 3 4 N

X X

Node ID Node ID Node ID Node ID

Figure 4-1: Full-map and limited directory entries. The full-map pointer array is
optimized as a bit-vector. The limited directory entry has four pointers.

Component Name Meaning
Memory Read-Only Caches have read-only copies of the data.

Read-Write One cache has a read-write copy of the data.
Read-Transaction Holding read request, update is in progress.
Write-Transaction Holding write request, invalidation is in progress.

Cache Invalid Cache block may not be read or written.
Read-Only Cache block may be read, but not written.
Read-Write Cache block may be read or written.

Table 4.1: Directory states.

state of the block to Read-Write and sends a write permission message to the cache that
originated the transaction. In a sense, the cache “owns” the block until another cache
requests access to the data.

Changing a block from the Read-Write to the Read-Only state involves an analogous
(but slightly simpler) transaction. When a cache requests to read a block that is currently
in the Read-Write state, the CMMU sends an update request to the cache that owns the
data. The CMMU marks a block that is waiting for data with the Read-Transaction state.
As in the Write-Transaction state, a pointer is set to indicate the cache that initiated the
read transaction. When a cache receives an update request, it invalidates its copy of the
data, and replies to memory with an update message that contains the modified data, so
that the original read request can be satisfied.

The protocol might be modified so that a cache changes a block from the Read-Write
to the Read-Only (instead of the Invalid) state upon receiving an update request. Such a
modification assumes that data that is written by one processor and then read by another
will be read by both processors after the write. While this modification optimizes the
protocol for frequently-written and widely-shared variables, it increases the latency of
access to migratory or producer-consumer data types.

The dilemma of choosing between these two types of data raises an important
question: Should a cache coherence protocol optimize for frequently-writtenand widely-
shared data? This type of data requires excessive bandwidth from a multiprocessor’s
interconnection network, whether or not the system employs caches to reduce the average
memory access latency. Since the problems of frequently-writtenand widely-shared data

44

are independent of the coherence scheme, it seems futile to try to optimize accesses to
this type of data, when the accesses to other data types can be expedited. This decision
forces the onus of eliminating the troublesome data type on the multiprocessor software
designer. However, the decision seems reasonable in light of the physical limitations of
communication networks. Thus, Alewife always invalidates data when changing a block
from Read-Write to Read-Only.

Since this study, two independent groups of researchers have found an answer to
the dilemma [63, 25]. Instead of binding either an update or an invalidate policy into
hardware, they propose cache coherence schemes that adapt between invalidate and
update policies. These schemes require extra bits to implement the directory state, and
achieve slightly better performance than either static scheme.

The basic protocol that is described above is somewhat complicated by the associa-
tivity of cache lines. In a cache, more than one memory block can map to a single block
of storage, called a line. Depending on the memory access pattern of its processor, a
cache may need to replace a block of memory with another block of memory that must
be stored in the same cache line. While the protocol must account for the effect of re-
placements to ensure a coherent model of shared memory, in systems with large caches,
replacements are rare events except in pathological memory access patterns. Several
options for handling the replacement problem in various coherence protocols have been
explored.

Simulations show that the differences between these options do not contribute sig-
nificantly to the bottom-line performance of the coherence schemes, so the final choice
of replacement handling for the Alewife machine optimizes for the simplicity of the
protocol (in terms of cache states, memory states, and the number of messages): when
a cache replaces a block in the Read-Only state, it does not notify the block’s home
location; when a cache replaces a block in the Read-Write state, it transmits the dirty
data back to the home node.

4.1.4 Specification of the LimitLESS Scheme

The model in Section 4.1.2 assumes that the hardware latency (Tr,hw) is approximately
equal for the full-map and the LimitLESS directories, because the LimitLESS protocol
has the same state transition diagram as the full-map protocol. The memory side
of this protocol is illustrated in Figure 4-2, which contains the memory states listed
in Table 4.1. Both the full-map and the LimitLESS protocols enforce coherence by
transmitting messages (listed in Table 4.31) between the CMMUs. Every message
contains the address of a memory block, to indicate which directory entry should be
used when processing the message. Table 4.3 also indicates whether a message contains
the data associated with a memory block.

The state transition diagram in Figure 4-2 specifies the states, the composition of
the pointer set (P), and the transitions between the states. This diagram specifies
a simplified version of the protocol implemented in Alewife. For the purposes of

1This table lists (and the rest of this section discusses) the messages in the current Alewife implemen-
tation, rather than in ASIM.

45

describing the implementation of directory protocols, Figure 4-2 includes only the core
of the full-map and LimitLESS protocols. Unessential optimizations and other types
of coherence schemes have been omitted to emphasize the important features of the
coherence schemes. See [46, 49] for more details about Alewife’s protocols.

Each transition in the diagram is labeled with a number that refers to its specification
in Table 4.2. This table annotates the transitions with the following information: 1. The
input message from a cache that initiates the transaction and the identifier of the cache
that sends it. 2. A precondition (if any) for executing the transition. 3. Any directory
entry change that the transition may require. 4. The output message or messages that
are sent in response to the input message. Note that certain transitions require the use
of an acknowledgment counter (AckCtr), which is used to ensure that cached copies are
invalidated before allowing a write transaction to be completed. The Alewife CMMU
stores this counter in the second pointer of the appropriate directory entry.

For example, Transition 2 from the Read-Only state to the Read-Write state is taken
when cache i requests write permission (WREQ) and the pointer set is empty or contains
just cache i (P = fg or P = fig). In this case, the pointer set is modified to contain i
(if necessary) and the CMMU issues a message containing the data of the block to be
written (WDATA).

Following the notation in Section 2.1.3, both full-map and LimitLESS are members
of the DirnHXSY,A class of cache coherence protocols. Therefore, from the point of view
of the protocol specification, the LimitLESS scheme does not differ substantially from
the full-map protocol. In fact, the LimitLESS protocol is also specified by Figure 4-2.
The extra notation on the Read-Only ellipse (S : n > p) indicates that the state is handled
in software when the size of the pointer set (n) exceeds the size of the limited directory
entry (p). In this situation, the transitions with the shaded labels (1, 2, and 3) are executed
by the interrupt handler on the processor that is local to the overflowing directory. When
the protocol changes from a software-handled state to a hardware-handled state, the
processor must modify the directory state so that the CMMU can resume responsibility
for the protocol transitions.

The hardware mechanisms that are required to implement the software-extended
protocols are as follows:

1. A fast interrupt mechanism: A processor must be able to interrupt application
code and switch to software-extension rapidly. This ability makes the overhead of
emulating a full-map directory (Ts) small, and thus makes the LimitLESS scheme
competitive with schemes that are implemented completely in hardware.

2. Processor to network interface: In order to emulate the protocol functions normally
performed by the hardware directory, the processor must be able to send and to
receive messages from the interconnection network.

3. Extra directory state: Each directory entry must hold the extra state necessary to
indicate whether the processor is holding overflow pointers.

In Alewife, none of these mechanisms exist exclusively to support the LimitLESS
protocol. The Sparcle processor uses the same mechanism to execute an interrupt

46

P={i}
Read Transaction

Read−Write
P={i}

P={i}
Write Transaction

k
2

,P={ k
1

, k
n

,... }
Read−Only

S: n > p

5

6

7

8

2

3

9

1

10

4

Figure 4-2: Directory state transition diagram for the full-map and LimitLESS coherence
schemes.

Input Directory Entry Output
Message Precondition Change Message(s)
1 i ! RREQ — P = P [fig RDATA ! i

2 i ! WREQ P = fig — WDATA ! i

i ! WREQ P = fg P = fig WDATA ! i

3 i ! WREQ P = fk1; : : : ; kng ^ i 62 P P = fig, AckCtr = n� 1 8kj INVR ! kj
i ! WREQ P = fk1; : : : ; kng ^ i 2 P P = fig, AckCtr = n� 2 8kj 6= i INVR ! kj

4 j ! WREQ P = fig P = fjg INVW ! i

5 j ! RREQ P = fig P = fjg INVW ! i

6 i ! UPDATE P = fig P = fg —
7 j ! RREQ — — BUSY ! j

j ! WREQ — — BUSY ! j

j ! ACKC AckCtr 6= 0 AckCtr = AckCtr� 1 —
8 j ! ACKC AckCtr = 0, P = fig — WDATA ! i

j ! UPDATE P = fig — WDATA ! i

9 j ! RREQ — — BUSY ! j

j ! WREQ — — BUSY ! j

10 j ! ACKC P = fig — RDATA ! i

j ! UPDATE P = fig — RDATA ! i

Table 4.2: Annotation of the state transition diagram.

47

Type Symbol Name Data?
Cache to Memory RREQ Read Request

WREQ Write Request
UPDATE Update

p

ACKC Acknowledge Invalidate
Memory to Cache RDATA Read Data

p

WDATA Write Data
p

INVR Invalidate Read Data
INVW Invalidate Write Data
BUSY Busy Signal

Table 4.3: Cache coherence protocol messages.

Type Symbol Name Data?
Cache to Memory MREQ Modify Request

REPU Replace Unmodified
Memory to Cache MODG Modify Granted

Table 4.4: Optional protocol messages.

quickly as it uses to provide a fast context-switch. The processor to network interface is
implemented through the interprocessor interrupt (IPI) mechanism, which is designed to
increase Alewife’s I/O performance and to provide a generic message-passing primitive.
A small extension to the extra directory state required for the LimitLESS protocol allows
experimentation with a range of memory systems, including the software-only directories
(DirnH0SNB,ACK) and the smart memory systems in Chapter 8.

4.1.5 Second-Order Considerations

In addition to the protocol features that have a primary impact on the performance of a
cache coherence scheme, there are a number of secondary implementation details that
also contribute to the speed of the memory system. Examples of such details include
several protocol messages that are not essential for ensuring a memory model. While
these features may be interesting from the point of view of protocol design, they have
only a small (but not insignificant) effect on the system as a whole.

The messages that are used by the hardware coherence protocols to keep the cache
and the memory states consistent are listed in Table 4.3. The Data? column indicates
the three messages that contain the data of the shared memory block. Table 4.4 lists
three optional messages that are not essential to ensure cache coherence. Although
the messages have mnemonic names, it is worth explaining their meaning: The RREQ
message is sent when a processor requests to read a block of data that is not contained in
its cache. The RDATA message is the response to RREQ, and contains the data needed
by the processor. The WREQ and WDATA messages are the request/response pair for
processor write requests. Since more than one memory word is stored in a cache line,
the WDATA message contains a copy of the data in memory.

The MREQ and MODG messages are used to service processor write requests when

48

the cache contains a Read-Only copy of the data to be written. In this case, the processor
does not need a copy of the data, so the MODG message does not contain the block of data.
MREQ and MODG are really just an optimization of the WREQ and WDATA message
combination for the limited directory protocol. This message pair is not essential to a
protocol, because it is always correct to send a WDATA instead of a MODG message.

It is not obvious that the extra complications needed to implement the MODG
message are justified by its performance benefits. The modify request and grant message
pair optimizes for data locations that are read by a processor and then immediately
written. This optimization is especially important during cold-start periods when an
application’s working set does not reside in its cache. However, if the protocol needs
to send an invalidation message to a cache before completing the write transaction, it is
necessary for the directory to store a bit of state that indicates whether the initial request
was a WREQ or a MREQ. Due to the complications caused by these messages, they
are not included in the transition state diagram, even though they are implemented in
Alewife.

The INVR and ACKC message combination is used to purge Read-Only copies of
cached data. In the limited directory scheme, when a Read-Only memory block receives
a WREQ message, the CMMU sends one INVR message to each cache with a pointer in
the directory. When a cache receives the INVR message, it invalidates the appropriate
cache line (if the cache tag matches the message’s address), and responds with an ACKC.
In the full-map and limited protocols, the CMMU may send one INVR message on each
cycle, so several INVR messages with the same address may be working their way
through the network at the same time.

The CMMU increments the acknowledgment counter when it transmits an INVR
message and decrements the counter when it receives an ACKC message. Thus, the
counter remembers the total number of ACKC messages that it expects to receive. The
counter waits for the acknowledgment counter to reach zero before responding to the
initial WREQ message to ensure sequential consistency. To limit the amount of state that
must be stored during a write transaction, the CMMU responds with a BUSY signal to
any RREQ or WREQ messages to the memory block while invalidations are in progress
for a memory block. If a CMMU accepts a RREQ or WREQ message, then the protocol
guarantees to satisfy the request eventually. However, if a node receives a BUSY signal,
then it must retry the request.

The INVW and UPDATE messages are used to return modified data to memory.
If a CMMU receives a RREQ message for a data block in the Read-Write state, the
CMMU sends an INVW message to the node that currently has permission to write the
data block. When this node receives the INVW message, it responds with an UPDATE
message containing the modified data, rather than with an ACKC message, because the
cached block is in the Read-Write state. At the same time, the cache invalidates the line
that contains the data.

Since multiple addresses map to each cache line, a cache sometimes needs to replace
one cached block of data with another. If a replaced block is in the Read-Write state, then
the UPDATE message is used to send the modified data back to memory. Otherwise,
the data is unmodified, and the REPU message is used to notify the directory about the
replacement.

49

The REPU message is optional in the limited and full-map protocols. If a cache
replaces a Read-Only copy of data but does not notify the directory, then it may receive a
spurious INVR message for the block at some point in the future. However, the address
in the INVR will not match the tag in the cache, so the node may acknowledge the
spurious invalidation without invalidating the currently cached data. On the other side of
the memory system, if a directory receives a RREQ message from a cache that already
has a pointer, then it responds with a RDATA message. So, the REPU message may save
an INVR message, or it may create unnecessary network traffic. In order to examine the
effects of the REPU message, ASIM has been instrumented with an option that selects
whether or not the current coherence protocol uses the message.

4.1.6 Evaluation of Secondary Protocol Features

None of the protocol features discussed in this section exhibit more than a ten percent
variation in execution time on ASIM. This behavior is expected, because the unessential
components of protocols tend to interact with relatively infrequent events, such as cache
line replacement or cold-start data accesses. Such low performance returns suggest
that issues of complexity and cost can be used to decide whether or not to implement
unessential protocol messages. Certain protocol messages may be rejected out-of-hand.
For example, the replace unmodified (REPU) message sometimes degrades performance
due to an increase in network traffic. Thus, Alewife does not implement REPU, thereby
saving the extra complexity and cost of this message.

On the other hand, the modify request/grant (MREQ/MODG) message pair can
increase performance by over five percent. While this performance gain does not justify
the extra directory state needed to store the modify request during invalidations, it
does imply that a simplified version of the feature would be appropriate. Accordingly,
the Alewife CMMU responds to a MREQ with a MODG only when no invalidations
need to be sent. This simplification eliminates most of the extra cost of the modify
grant optimization, while retaining the benefits of reduced latency for simple memory
transactions that consist of a read request followed by a write request.

4.2 Preliminary Evaluation

This section documents the preliminary evidence that justified the effort required to build
a complete software-extended system. The study demonstrates only the plausibility of
the software-extension approach, leaving the implementation and evaluation of an actual
system for the following chapters.

For the purpose of estimating the performance of LimitLESS directories, an ap-
proximation of the protocol was implemented in ASIM. The technique assumes that
the overhead of the LimitLESS full-map emulation interrupt is approximately the same
for all memory requests that overflow a directory entry’s pointer array. This overhead
is the Ts parameter described in Section 4.1.2. During the simulations, ASIM models
an ordinary full-map protocol (DirnHNBS

�
). When the simulator encounters a pointer

array overflow, it stalls both the CMMU and the processor that would handle the Lim-

50

itLESS interrupt for Ts cycles. While this evaluation technique only approximates the
actual behavior of a fully-operational LimitLESS scheme, it is a reasonable method for
determining whether to expend the greater effort needed to implement the complete
protocol.

For applications that perform as well with a limited directory as with a full-map
directory, the LimitLESS directory causes little degradation in performance. When
limited directories perform significantly worse than a full-map directory, the LimitLESS
scheme tends to perform about as well as full-map, depending on the number of widely-
shared variables. If a program has just one or two widely-shared variables, a LimitLESS
protocol avoids hot-spot contention that tends to destroy the performance of limited
directories. On the other hand, the performance of the LimitLESS protocol degrades
when a program utilizes variables that are both widely-shared and frequently written. But
as discussed in previous sections, these types of variables tend to exhaust the bandwidth
of the interconnection network, no matter what coherence scheme is used by the memory
system.

In general, the ASIM results indicate that the LimitLESS scheme approaches the
performance of a full-mapped directory protocol with the memory efficiency of a limited
directory protocol. The success of this new coherence protocol emphasizes two key
principles: first, the software-extension approach can successfully be applied to the
design of a shared-memory system. Second, the implementation of a protocol’s directory
structure correlates closely with the performance of the memory system as a whole.

4.2.1 Results

Table 4.5 shows the simulated performance of four applications, using a four-pointer
limited protocol (Dir4HNBS

�
), a full-map protocol (DirnHNBS

�
), and a LimitLESS

(DirnH4SNB) scheme with Ts = 50. The table presents the performance of each applica-
tion/protocol combination in terms of the time needed to run the program, in millions of
processor cycles. All of the runs simulate a 64-node Alewife machine.

Multigrid is an early version of the program described in Section 3.2.2, Weather
forecasts the state of the atmosphere given an initial state, SIMPLE simulates the hydro-
dynamic and thermal behavior of fluids, and Matexpr performs several multiplications
and additions of various sized matrices. The computations in Matexpr are partitioned
and scheduled by a compiler. The Weather and SIMPLE applications are measured
using dynamic post-mortem scheduling of traces, while Multigrid and Matexpr are run
on complete-machine simulations.

Since the LimitLESS scheme implements a full-fledged limited directory in hard-
ware, applications that perform well using a limited scheme also perform well using
LimitLESS. Multigrid is such an application. All of the protocols require approximately
the same time to complete the computation phase. This evidence confirms the assump-
tion that for applications with small worker sets, such as Multigrid, the limited (and
therefore the LimitLESS) directory protocols perform almost as well as the full-map
protocol. [14] has more evidence of the general success of limited directory protocols.

The SIMPLE application indicates the performance of LimitLESS under extreme
conditions: this version of the applications uses a barrier synchronization implemented

51

Application Dir4HNBS
�

DirnH4SNB DirnHNBS
�

Multigrid 0.729 0.704 0.665
SIMPLE 3.579 2.902 2.553
Matexpr 1.296 0.317 0.171
Weather 1.356 0.654 0.621

Table 4.5: Performance for three coherence schemes running on 64 ASIM nodes, in
terms of millions of cycles.

using a single lock (rather than a software combining tree). Although the worker sets
in SIMPLE are small for the most part, the globally shared barrier structure causes the
performance of the limited directory protocol to suffer. In contrast, the LimitLESS
scheme performs almost as well as the full-map directory protocol, because LimitLESS
is able to distribute the barrier structure to as many processors as necessary.

The Matexpr application uses several variables that have worker sets of up to 16
processors. Due to these large worker sets, the processing time with the LimitLESS
scheme is almost double that with the full-map protocol. The limited protocol, however,
exhibits a much higher sensitivity to the large worker sets.

Weather provides a case-study of an application that has not been completely opti-
mized for limited directory protocols. Although the simulated application uses software
combining trees to distribute its barrier synchronization variables, Weather has one vari-
able initialized by one processor and then read by all of the other processors. Additional
ASIM simulations show that if this variable is flagged as read-only data, then a limited
directory performs just as well for Weather as a full-map directory.

However, it is easy for a programmer to forget to perform such optimizations, and
there are some situations where it is very difficult to avoid this type of sharing. Figure 4-3
gives the execution times for Weather when this variable is not optimized. The vertical
axis on the graph displays several coherence schemes, and the horizontal axis shows
the program’s total execution time (in millions of cycles). The results show that when
the worker set of a single location in memory is much larger than the size of a limited
directory, the whole system suffers from hot-spot access to this location. So, limited
directory protocols are extremely sensitive to the size of a heavily-shared data block’s
worker set.

The effect of the unoptimized variable in Weather was not evident in the initial
evaluations of directory-based cache coherence for Alewife [14], because the network
model did not account for hot-spot behavior. Since the program can be optimized to
eliminate the hot-spot, the new results do not contradict the conclusion of [14] that
system-level enhancements make large-scale cache-coherent multiprocessors viable.
Nevertheless, the experience with the Weather application reinforces the belief that
complete-machine simulations are necessary to evaluate the implementation of cache
coherence.

As shown in Figure 4-4, the LimitLESS protocol avoids the sensitivity displayed
by limited directories. This figure compares the performance of a full-map directory, a
four-pointer limited directory (Dir4HNBS

�
), and the four-pointer LimitLESS (DirnH4SNB)

protocol with several values for the additional latency required by the LimitLESS proto-

52

|

0.00
|

0.40
|

0.80
|

1.20
|

1.60

 Weather

 Execution Time (Mcycles)

Dir1HNBS-

Dir2HNBS-

Dir4HNBS-

DirnHNBS-

Figure 4-3: Limited and full-map directories, 64 ASIM nodes.

|

0.00
|

0.40
|

0.80
|

1.20
|

1.60

 Weather

 Execution Time (Mcycles)

Dir4HNBS-

Ts = 150

Ts = 100

Ts = 50

Ts = 25

DirnHNBS-

Figure 4-4: LimitLESS DirnH4SNB, 25 to 150 cycle emulation latencies.

col’s software (Ts = 25, 50, 100, and 150). The execution times show that the LimitLESS
protocol performs about as well as the full-map directory protocol, even in a situation
where a limited directory protocol does not perform well. Furthermore, while the Lim-
itLESS protocol’s software should be as efficient as possible, the performance of the
LimitLESS protocol is not strongly dependent on the latency of the full-map directory
emulation.

Section 6.1 shows that a software read request handler implemented with the flexible
coherence interface requires 400 cycles of processing. Amortized over 4 directory
pointers, this processing time (Ts) is 100 cycles per request. A hand-tuned, assembly
language implementation of the software requires about 150 cycles of processing, or less
than 40 cycles per request.

It is interesting to note that the LimitLESS protocol, with a 25 cycle emulation
latency, actually performs better than the full-map directory. This anomalous result is
caused by the participation of the processor in the coherence scheme. By interrupting
and slowing down certain processors, the LimitLESS protocol produces a slight back-off

53

|

0.00
|

0.40
|

0.80
|

1.20
|

1.60

 Weather

 Execution Time (Mcycles)

Dir4HNBS-

DirnH1SNB

DirnH2SNB

DirnH4SNB

DirnHNBS-

Figure 4-5: LimitLESS with 1, 2, and 4 hardware pointers.

effect that reduces contention.
The number of pointers that a LimitLESS protocol implements in hardware interacts

with the worker-set size of data structures. Figure 4-5 compares the performance of
Weather with a full-map directory, a limited directory, and LimitLESS directories with
50 cycle emulation latency and one (DirnH1SNB), two (DirnH2SNB), and four (DirnH4SNB)
hardware pointers. The performance of the LimitLESS protocol degrades gracefully as
the number of hardware pointers is reduced. The one-pointer LimitLESS protocol is
especially bad, because some of Weather’s variables have a worker set that consists of
two processors.

This behavior indicates that multiprocessor software running on a system with a
LimitLESS protocol will require some of the optimizations that would be needed on a
system with a limited directory protocol. However, the LimitLESS protocol is much
less sensitive to programs that are not perfectly optimized. Moreover, the software
optimizations used with a LimitLESS protocol should not be viewed as extra overhead
caused by the protocol itself. Rather, these optimizations might be employed, regardless
of the cache coherence mechanism, since they tend to reduce hot-spot contention and to
increase communication locality.

4.2.2 Conclusion

The preliminary investigation of the Alewife memory system indicates the viability of
the software-extension approach. Although the experiments evaluate only the hardware
side of software-extended shared memory, they demonstrate enough evidence to justify
the time and expense of building an actual machine. The next two chapters complete the
design and evaluation of the Alewife memory system: Chapter 5 describes the design of
the software part of cache coherence protocols, and Chapter 6 evaluates the performance
of the system as a whole.

54

Chapter 5

Flexible Coherence Interface

There are two goals that define flexibility and drive abstraction in a software-extended
memory system. The first goal — the one that motivated the development of the flexible
coherence interface — is the ability to implement a variety of different memory systems
that all work on one hardware base. This ability facilitated the experiments that helped
evaluate the trade-offs involved in designing software-extended shared memory. The
interface also enables the development of smart memory systems, which require dynamic
changes in the mapping between memory blocks and coherence protocols.

The second goal is the ability to write a single set of modules that implement a
memory system for a number of different hardware platforms. This goal motivated
the pmap abstraction in the Mach operating system [65]. pmaps allow Mach’s virtual
memory system to run efficiently on a wide range of different architectures.

Although a good abstraction between the hardware and software parts of a memory
system should achieve both goals, the system designer usually has one or the other in mind
when building a system. The initial version of the flexible coherence interface ignored
the problem of multiple hardware bases, because — at the time that it was developed —
Alewife was the only architecture with a software-extended memory system. The rest of
this section concentrates on the goal of implementing many memory systems on a single
hardware base, leaving speculation about the other side of the interface for Section 8.5.

5.1 Challenges and Solutions

Alewife’s flexible memory system grew out of several previous software-extended sys-
tems that use the raw CMMU interface directly. The software protocol handlers of the
older systems are written in Sparcle assembly code and are carefully tuned to take full
advantage of the features of the Alewife architecture. Such implementations take a long
time to construct: for example, John Piscitello (a graduate student with the Alewife
project) spent most of a semester writing a software-only directory protocol [64].

These systems take a long time to write, because programming the memory hardware
directly is difficult for several reasons:

1. Similar events have different possible representations, depending on whether they
are initiated by local or remote nodes.

55

Hardware

Control

Hardware Software
Handoff

Trap Handlers

Control

Flexible
Coherence

Interface

Hash Tables

Memory Manager

Active Message Interface

Atomicity
Deadlock Solution

Livelock Solution

Local vs. Remote

Software
Protocol

Coherence

Limited Directories

Registers

Network Buffers

void Protocol Header(unsigned MajorOp,
 PACKETHDR PacketHdr,
 PROTADDR ProtAddr,
 DATA_ARG(InData),
 DIR_ARG(InDir),
 PROTADDR LineAddr)
{
 /* template for a protocol handler */
 return;
}

Figure 5-1: Hardware, interface, and software layers of a memory system.

2. The parallelism between hardware and software makes atomic protocol transitions
problematic.

3. The memory system can starve the processor and livelock the system.

4. Limited network buffering can cause the system to deadlock.

The flexible coherence interface relieves the operating system programmer of the
burden of solving these problems and provides a convenient abstraction for writing
software-extended systems. Memory events that are handled in software generate calls
to procedures written in C and linked into the operating system kernel. These event-
handling procedures have message-passing semantics and do not use the shared memory
model. Since the procedures run in supervisor mode, they must be written carefully; but
as long as a handler follows the conventions of the interface, it executes atomically and
does not cause the system to deadlock or livelock.

The interface provides an abstraction for directory entries, protocol messages, and
the chunks of data stored in shared memory. The abstraction attempts to hide Alewife’s
encoding of these structures in order to make the software easier to write and to un-
derstand. Despite this indirection, the interface’s implementation is efficient because
it represents the structures in processor registers with the same encoding used by the
A-1000 CMMU [46].

There are three ways to specify the mapping between an memory event and its
software handler. First, the kernel contains a default set of event handlers and a dispatch
table. When Alewife is booted normally, these handlers process events for all blocks
in shared memory. The default procedures implement DirnH5SNB. Second, the Alewife
host interface has an option that allows the user to choose an alternate default handler.
The alternate handler processes events for all blocks in shared memory instead of the

56

default handlers1, and must accept all memory events, performing its own dispatch if
necessary. This option allows the user to configure the system with a special protocol
such as DirnH0SNB,ACK. Finally, while the system is running, the interface allows the
software to set the handler for any individual memory block. (See Section 5.1.2 for the
syntax and implementation of this call-back functionality.) This feature enables efficient
implementations of protocol state machines and allows each memory block to have its
own semantics.

Figure 5-1 illustrates the hierarchy of the system. The lowest level of the architecture
is the memory-system hardware. Finite-state machines in the hardware control the
operation of this level, and the coherence state is stored in registers, limited directories,
and network buffers. The flexible coherence interface is implemented as a layer of
software on top of the hardware. It consists mostly of assembly-language trap handlers
that field hardware-generated exceptions. The interface trap handlers call the procedures
of the software-extended memory system that implement the cache coherence protocol.
These procedures can then call the interface functions described in the next few sections.
In addition, a library of useful routines that facilitate code development accompanies
the interface. The library implements hash-table manipulation, a free-listing memory
manager, and an active message [76] interface.

5.1.1 Representations

In the Alewife architecture, internode memory accesses invoke software via an asyn-
chronous interrupt, while intranode accesses cause a synchronous trap — an exception
that the processor must handle before a pending load or store can complete. In the
former case, a network packet carries information about the transaction. In the latter
case, information about the transaction is stored in CMMU registers. In order to mask
this complexity, the interface transforms all memory-system events into procedure calls,
with a message-passing abstraction that hides the details of the mechanisms involved in
transmitting and receiving packets.

Figure 5-2 shows an example of a procedure that rides on top of the interface. The
coherence protocol software in the figure handles an event caused by a read request
that exceeds the number hardware directory pointers. All of the information required to
process the associated memory system event — roughly the same information as in a
network protocol packet [46] — is passed as arguments to this procedure. By the time
that the interface calls the procedure, the interface has already disposed of the packet and
freed the space in the appropriate CMMU network buffer. That is, if such a packet ever
existed! Instead, the interface may have gathered the information from various CMMU
registers, thereby simplifying the task of the handler.

The arguments to the procedure have the following meaning: MajorOp corresponds
to the specific type of coherence protocol message. Some software handlers use this
value to dispatch to subroutines. PacketHdr contains additional information about the
memory transaction, including the identifiers of the requesting and responding nodes.

1It would be easy to change this option to configure different handlers for arbitrary subdivisions of
shared memory.

57

void ProtocolHandler(unsigned MajorOp,
PACKETHDR PacketHdr, PKTADDR ProtAddr,
DATA_ARG(InData), DIR_ARG(InDir),
PROTADDR LineAddr)

{
/* Upon Entry, hardware directory is locked and

network packet disposed (if it ever existed!) */

unsigned NumDirPtrs = DIR_PTRS_IN_USE(InDir);
PDIRSTRUCT pDirStruct;

/* set the directory back to hardware-handled state */
DIR_CLR_PTRS_IN_USE(InDir), DIR_WRITEUNLOCK(LineAddr, InDir);

/* put source and directory pointers into the dirstruct */
pDirStruct = (PDIRSTRUCT)HashLookup(LineAddr);
EnterDirPtr(pDirStruct, PKTHDR_SRC(PacketHdr));
EnterDirPtrs(pDirStruct, DIR_VALUE(InDir), NumDirPtrs);

/* normal C function return */
}

Figure 5-2: Sample protocol message handler.

58

Operation Action
HashLookup(PROTADDR) look up an address in a hash table
HashInsert(PROTADDR,POINTER) insert an address into a hash table
HashReplace(PROTADDR,POINTER) replace an address in a hash table
HashDelete(PROTADDR) remove an address from a hash table
local malloc(SIZE) free-listing memory allocation
local free(POINTER) free-listing memory release
kernel do on(NODE,FUNCTION,...) active message
kernel do on dma(NODE,FUNCTION,...) ” with direct memory access

Table 5.1: Functionality related to FCI.

ProtAddr contains the shared memory address plus synchronization information, and
is accessed through the flexible coherence interface. Depending on MajorOp, InData
may contain data associated with the memory event. InDir contains the current state
of the hardware directory. LineAddr is a copy of the shared memory address that can
be used as a key for hash table functions and for accessing hardware state.

Some of the symbols in Figure 5-2 are specific to the protocol, rather than part of
the interface: the EnterDirPtr and EnterDirPtrs subroutines store pointers into
a directory structure of type PDIRSTRUCT. When the handler finishes processing the
memory event, it simply returns, and the interface takes care of returning the processor
back to the application.

The HashLookup function is part of the library that is not formally part of the
interface, but is provided with it. Table 5.1 lists this function and some of the others in
the library: the first four implement hash tables that key off of protocol addresses; the
next two access a free-listing memory manager; and the last two provide active message
functionality.

Table 5.2 lists the operations that provide an abstraction for data. Note that the
coherence protocol software never needs to know the actual size of the unit of data
transfer, nor does the size have to be fixed. The first three macros provide the declarations
required to implement the data abstraction on top of the C compiler’s type system.
WriteBackData and RetrieveData provide access to the DRAM storage for the
data. The last two operations manipulate the state of the data in the local processor’s
cache.

The set of macros in Table 5.3 complete the message-passing abstraction. The first
two sets of operations read and write the PKTHDR and PKTADDR components of a
message. The last three macros in the table allow the software to transmit messages in
response to the original memory event.

5.1.2 Atomicity

The atomicity problem arises from parallelism in the system: since both hardware
and software can process transactions for a single memory block, the software must

59

Operation Action
DATA ARG(LABEL) specifies data as function argument
DATA TYPE(LABEL) definition for data as variable
DATA VALUE(LABEL) specifies data as function call value
WriteBackData(PROTADDR,LABEL) write data to memory
RetrieveData(PROTADDR,LABEL) read data from memory
ProtocolInvalidate(PROTADDR) transmit local invalidation
FlushExclusive(PROTADDR,LABEL) force cached data to memory

Table 5.2: FCI operations for manipulating local data state.

Operation Action
PKTHDR SRC(PKTHDR) get source field of packet header
PKTHDR DST(PKTHDR) get destination field of header
PKTHDR FORMAT(MSG,TO,FROM) format a packet header
ADD PKTHDR DST(PKTHDR,AMOUNT) add amount to destination field
PKTADDR PROTADDR(PKTADDR) get line address field of address
PKTADDR CLR FE(PKTADDR) clear full/empty field of address
PKTADDR SET FE(PKTADDR,NEW FE) set full/empty field of address
PKTADDR FE(PKTADDR) get full/empty field of address
TRANSMITREQUEST(MAJOP,PKTADDR,TO,FROM) transmit protocol request packet
TRANSMITDATA(MAJOP,PKTADDR,TO,FROM) transmit protocol data packet
TRANSMITDOUBLE(PKTHDR,PKTADDR) transmit two-word packet

Table 5.3: FCI operations for transmitting and receiving packets.

60

orchestrate state transitions carefully. Accesses to hardware directory entries provide
an example of this problem. Since both the CMMU hardware and the Sparcle software
may attempt to modify directory entries, the interface needs to provide a mechanism that
permits atomic transitions in directory state.

Table 5.4 lists the relevant macros implemented in the interface. The first three macros
are analogous to the DATAmacros in Table 5.2. DIR READLOCK and DIR WRITEUNLOCK
provide an interface to the CMMU mutual exclusion lock for directory entries, thereby
allowing a software protocol handler to modify directory state atomically. The rest of
the operations in Table 5.4 access and modify fields in the abstract directory entry.

Flexible, directory-based architectures should provide some level of hardware sup-
port for specifying protocols on a block-by-block basis. The two DIR HANDLER macros
in Table 5.4 provide this call-back functionality. In the current version of the flexible
coherence interface, these macros store an entire program counter in a directory entry.
This encoding is convenient, but inefficient. It would be easy to change the software to
use a table lookup, rather than a direct jump to each handler. Such a scheme would use
far fewer bits in each directory entry, enabling low-cost hardware support.

Since typical protocol handlers modify directory state, the interface automatically
locks the appropriate directory entry before calling any handler. Figure 5-2 shows
an atomic state transition: the handler retrieves a field of the directory entry with
DIR PTRS IN USE, clears the same field with DIR CLR PTRS IN USE, and then uses
DIR WRITEUNLOCK to commit the modification and release the mutual exclusion lock.

Directory modification is only a simple instance of an atomicity problem: the in-
terface’s solution consists of little more than convenient macros for using features of
the CMMU. Other atomicity problems pose more serious difficulties. For example,
the CMMU may transmit data in response to a remote (asynchronous) read request, but
relay the message to the processor for additional software handling. Before the memory-
system software fields the associated memory event, a local (synchronous) write to the
memory block might intervene. In order to ensure the atomicity of the read request,
the interface must guarantee the proper order of the actions: the higher-level software
must process the partial asynchronous event before handling the synchronous event.
Again, the coherence protocol sees normal message-passing passing semantics, while
the flexible interface takes care of such details.

5.1.3 Livelock and Deadlock

There are also issues of livelock and deadlock involved in writing the coherence protocol
software. Livelock situations can occur when software-extension interrupts occur so
frequently that user code cannot make forward progress [64]. The framework solves this
problem by using a timer interrupt to implement a watchdog that detects possible livelock,
temporarily shuts off asynchronous events, and allows the user code to run unmolested.
In practice, such conditions happen only for DirnH0SNB,ACK and DirnH1SNB,ACK , when
they handle acknowledgments in software. The timer block network function in
Table 5.5 provides an interface that allows these protocols to invoke the watchdog
directly.

The possibility of deadlock arises from limited buffer space in the interconnection

61

Operation Action
DIR ARG(LABEL) specifies entry as function argument
DIR TYPE(LABEL) definition for entry as variable
DIR VALUE(LABEL) specifies entry as function call value
DIR READLOCK(PROTADDR,LABEL) atomically read and lock directory
DIR WRITEUNLOCK(PROTADDR,LABEL) atomically write and unlock directory
DIR HANDLER(LABEL) get protocol handler
DIR SET HANDLER(LABEL,HANDLER) set protocol handler
DIR SET EMPTY(LABEL) clear directory state
DIR COPY(FROM,TO) copy one directory to another
DIR PTRN(LABEL) get pointer N
DIR SET PTRN(LABEL,NEW PTR) set pointer N
DIR CLR PTRN(LABEL) clear pointer N
DIR SET LOCAL BIT(LABEL) set special local pointer
DIR CLR LOCAL BIT(LABEL) clear special local pointer
DIR PTRS IN USE(LABEL) number of valid pointers
DIR CLR PTRS IN USE(LABEL) set number of valid pointers to zero
DIR SET PTRS IN USE(LABEL,NEW PIU) set number of valid pointers
DIR SET PTRS AVAIL(LABEL,NEW PA) set number of pointers available
DIR STATE(LABEL) get directory state field
DIR CLR STATE(LABEL) clear directory state field
DIR SET STATE(LABEL,NEW STATE) set directory state field
DIR UDB(LABEL) get directory user defined bits
DIR SET UDB(LABEL,NEW UDB) set directory user defined bits
DIR FE(LABEL) get directory full/empty state
DIR CLR FE(LABEL) clear directory full/empty state
DIR SET FE(LABEL,NEW FE) set directory full/empty state

Table 5.4: FCI operations for manipulating hardware directory entries.

Operation Action
timer block network() temporarily block the network
info = launch from trap prologue() set up state for transmit
launch from trap epilogue(info) restore state after transmit

Table 5.5: FCI operations for livelock and deadlock avoidance.

62

network: if two different processors simultaneously attempt to transmit large numbers
of packets, there is a chance that the network buffers between the nodes will fill to
capacity. If both of the processors continue to try to transmit, the buffers will remain
clogged forever. Such scenarios rarely happen during normal Alewife operation, but they
have the potential to lock up the entire system when they occur. The CMMU provides
a mechanism that detects such scenarios and interrupts the local processor when they
occur. Upon receiving the interrupt, the processor empties the packets in the CMMU’s
network buffers and retransmits them when the deadlock subsides.

For performance reasons, the flexible coherence interface normally disables all in-
terrupts, including the one that prevents deadlocks. This policy allows protocol handlers
that do not use the network to run efficiently. The last two operations in Table 5.5
allow the memory system to invoke the deadlock solution: as long as the programmer
places calls to launch from trap prologue and launch from trap epilogue
around portions of code that transmit messages, the interface makes sure that deadlock
does not occur. These semantics allow the interface to save the state of the user code’s
transmissions only when necessary.

5.2 Experience with the Interface

During the course of the research on software-extended memory systems, the flexible
coherence interface proved to be an indispensable tool for rapidly prototyping a complete
spectrum of protocols. A single set of routines use the interface to implement all of the
protocols from DirnH1SNB to DirnHNBS

�
. Other modules linked into the same kernel

support DirnH0SNB,ACK, DirnH1SNB,LACK , and DirnH1SNB,ACK. The smart memory system
software described in Chapter 8 also uses the interface.

Anecdotal evidence supports the claim that the interface accelerates protocol software
development. With the interface, the software-only directory (DirnH0SNB,ACK) required
only about one week to implement, compared to the months of work in the previous
iteration. The DirnH1SNB,ACK protocol reused much of the code written for other protocols
and required less than one day to write and to test on NWO.

Interestingly enough, the CMU paper on virtual memory reports that a staff program-
mer took approximately three weeks to implement a pmap model. Similarly, Donald
Yeung (a graduate student with the Alewife project) recently took about three weeks
to implement a coherence protocol on top of the flexible coherence interface. The two
programming tasks are not directly comparable, because the CMU staff member imple-
mented hardware-dependent code and Don wrote high-level code; however, the analogy
is compelling.

5.3 The Price of Flexibility

Unfortunately, flexibility comes at the price of lower performance. All of the interface’s
mechanisms that protect the memory-system designer from the details of the Alewife
architecture increase the time that it takes to handle protocol requests in software.

63

This observation does not imply that the implementation of the interface is inefficient:
it passes values to protocol handlers in registers, leaves interrupts disabled as often
as possible, usually exports macros instead of functions, and uses assembly code for
critical prologue and epilogue code. Yet, any layer of abstraction that enables flexibility
lowers performance, because handling general-case behavior almost always requires
more computation than handling the behavior of a specific application.

The next chapter investigates the performance of software-extended shared memory
and begins with an assessment of the trade-off between flexibility and performance.
Chapter 7 uses an analytical model to investigate the relationship between the speed of the
software part of a memory system and the end-to-end performance of a multiprocessor.

64

Chapter 6

Cost, Flexibility, and Performance

The implementations of the Alewife architecture provide a proof-of-concept for the
software-extension approach. The following empirical study uses the tools described in
the previous chapter to show that this approach leads to memory systems that achieve
high performance without prohibitive cost. NWO allows the investigation of a wide
range of architectural parameters on large numbers of nodes [13]; the A-1000 demon-
strates a real, working system. While the study does provide detailed measurements of
software-extended systems, it focuses on their most important characteristics by using
two metrics: the size of a system’s hardware directory and the speedup that a parallel
system achieves over a sequential one. The former metric indicates cost and the latter
measures performance.

Rather than advocating a specific machine configuration, this chapter seeks to exam-
ine the performance versus cost trade-offs inherent in implementing software-extended
shared memory. It begins by measuring the performance of two different implementa-
tions of Alewife’s memory system software, in order to evaluate the impact of flexibility
on performance. The study then uses a synthetic workload to investigate the relation-
ship between application behavior and the performance of a software-extended system.
The chapter concludes by presenting six case studies that examine how application
performance varies over the spectrum of software-extended protocols.

6.1 Flexibility and Performance

Flexible and inflexible versions of DirnH5SNB have been written for Alewife. Comparing
the performance of these two implementations demonstrates the price of flexibility in a
software-extended system.

One version of the software is written in the C programming language and uses
the flexible coherence interface. It implements the entire range of protocols from
DirnH0SNB,ACK to DirnHNBS

�
and the smart memory systems in Chapter 8. The other

version of the software is written in Sparcle assembly language and uses the CMMU
interface directly. The code for this optimized version is hand-tuned to keep instruction
counts to a minimum. To reduce memory management time, it uses a special free-list
of extended directory structures that are initialized when the kernel boots the machine.

65

Readers C Assembly C Assembly
Per Read Read Write Write

Block Request Request Request Request
8 436 162 726 375

12 397 141 714 393
16 386 138 797 420

Table 6.1: Average software-extension latencies for C and for assembly language, in
simulated execution cycles.

C Assembly C Assembly
Activity Read Read Write Write

Request Request Request Request
trap dispatch 11 11 9 11
system message dispatch 14 15 14 15
protocol-specific dispatch 10 N/A 10 N/A
decode and modify hardware directory 22 17 52 40
save state for function calls 24 N/A 17 N/A
memory management 60 65 28 11
hash table administration 80 N/A 74 N/A
store pointers into extended directory 235 74 99 45
invalidation lookup and transmit N/A N/A 419 251
support for non-Alewife protocols 10 N/A 6 N/A
trap return 14 11 9 11
total (median latency) 480 193 737 384

Table 6.2: Breakdown of simulated execution cycles measured from median-latency
read and write requests. Each memory block has 8 readers and 1 writer. N/A stands for
not applicable.

The assembly-language version also takes advantage of a feature of Alewife’s directory
that eliminates the need for a hash table lookup. Since this approach requires a large
programming effort, this version only implements DirnH5SNB.

The measurable difference between the performance of the two implementations of
the protocol extension software is the amount of time that it takes to process a protocol
request. Table 6.1 gives the average number of cycles required to process DirnH5SNB read
and write requests for both of the implementations. These software handling latencies
were measured by running the WORKER benchmark (described in Section 3.2.1) on
a simulated 16-node system. The latencies are relatively independent of the number
of nodes that read each memory block. In most cases, the hand-tuned version of the
software reduces the latency of protocol request handlers by about a factor of two or
three.

These latencies may be understood better by analyzing the number of cycles spent on

66

each activity required to extend a protocol in software. Table 6.2 accounts for all of the
cycles spent in read and write requests for both versions of the protocol software. These
counts come from cycle-by-cycle traces of read and write requests with eight readers
and one writer per memory block. The table uses the median request of each type to
investigate the behavior of a representative individual. (Table 6.1 uses the average to
summarize aggregate behavior.)

The dispatch and trap return activities are standard sequences of code that invoke
hardware exception and interrupt handlers and allow them to return to user code, respec-
tively. (The dispatch activity does not include the three cycles that Sparcle takes to flush
its pipeline and to load the first trap instruction.) In the assembly-language version, these
sequences are streamlined to invoke the protocol software as quickly as possible. The C
implementation of the software requires an extra protocol-specific dispatch in order to
set up the C environment and hide the details of the Alewife hardware. For the types of
protocol requests that occur when running the WORKER benchmark, this extra overhead
does not significantly affect performance. The extra code in the C version that branches
to the protocols supported only by NWO also impacted performance minimally.

The assembly code uses the CMMU mechanisms to decode and modify the hardware
directory, while the C code uses the flexible coherence interface operations in Table 5.4.
The C code was generated by Alewife’s normal compiler, so it saves state on the stack
before making function calls; the hand-tuned assembly code uses perfect interprocedural
analysis, thereby avoiding the need to save any state.

The primary difference between the performance of the C and assembly-language
protocol handlers lies in the flexibility of the C interface. The assembly-language version
avoided most of the expense of memory management and hash table administration by
implementing a special-purpose solution to the directory structure allocation and lookup
problem. This solution relies heavily on the format of Alewife’s coherence directory and
is not robust in the context of a system that runs a large number of different applications
over a long period of time. However, it does place a minimum bound on the time required
to perform these tasks. The flexible code uses the more general functions in Table 5.1,
which integrate the memory-system software with the rest of the kernel.

Both the flexible and inflexible versions of the read request code store exactly five
pointers from the hardware directory and one pointer that corresponds to the source of the
request. Thus, read request software processing is amortized over six remote requests.
The assembly code takes only about 12 cycles to store each pointer into the extended
directory, which is close to the minimum possible number on Sparcle. The C code uses
a pointer-storing function. While this function is less efficient by more than a factor
of three, it is a better abstraction: the same function is used by all of the DirnHXSY,A

protocols.
The write request code stores two additional pointers (raising the total to eight, the

worker-set size) before transmitting invalidations. Again, the assembly code performs
these functions much more efficiently than the C code, but the C code uses a better
abstraction for building a number of different protocols. The appropriate balance of
flexibility and performance lies somewhere between the two extremes described above.
As the Alewife system evolves, critical pieces of the protocol extension software will be
hand-tuned to realize the best of both worlds.

67

�

�

�

�

�

	

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 Worker Set Size

 P
er

fo
rm

an
ce

 c
o

m
p

ar
ed

 t
o

 f
u

ll-
m

ap

 DirnHNBS-
 DirnH8SNB
 DirnH5SNB
 DirnH2SNB
 DirnH1SNB
 DirnH1SNB,LACK
 DirnH1SNB,ACK
 DirnH0SNB,ACK

� � � � � � � � �

� � �

� �

� � � �

� �

�

�

� �
� � �

�

�

�

�
�

�
� � �

�

� �
� � � � � �

	
	 	

	 	 	 	 	 	

Figure 6-1: Synthetic workload shows the relationship between protocol performance
and worker-set size on a simulated 16-node machine.

Section 7.4.2 uses an analytical model to translate the information about the relative
performance of protocol handlers into predictions about overall system behavior. The
model indicates that the factors of 2 or 3 in handler running times (as in Table 6.1)
generally do not cause significant differences in aggregate system performance.

6.2 Worker Sets and Performance

Section 2.3 defines a worker set as the set of nodes that access a unit of data between sub-
sequent modifications of the data block. The software-extension approach is predicated
on the observation that, for a large class of applications, most worker sets are relatively
small. Small worker sets are handled in hardware by a limited directory structure. Mem-
ory blocks with large worker sets must be handled in software, at the expense of longer
memory access latency and processor cycles that are spent on protocol handlers rather
than on user code.

This section uses the WORKER synthetic benchmark to investigate the relationship
between an application’s worker sets and the performance of software-extended coher-
ence protocols. Simulations of WORKER running on a range of protocols show the
relationship between worker-set sizes and the performance of software-extended shared
memory. The simulations are restricted to a relatively small system because the bench-
mark is both regular and completely distributed, so the results would not be qualitatively
different for a larger number of nodes.

Figure 6-1 presents the results of a series of 16-node simulations. The horizontal axis
gives the size of the worker sets generated by the benchmark. The vertical axis measures
the ratio of the execution time of a full-map protocol (DirnHNBS

�
) to the execution time

of each protocol running the same benchmark configuration.

68

The solid curves in Figure 6-1 indicate the performance of some of the protocols that
are implemented in the A-1000. As expected, the more hardware pointers, the better
the performance of the software-extended system. The performance of DirnH5SNB is
particularly easy to interpret: its performance is exactly the same as the full-map protocol
up to a worker-set size of 4, because the worker sets fit entirely within the hardware
directory. For small worker-set sizes, software is never invoked. The performance of
DirnH5SNB drops for larger worker sets, due to the expense of handling memory requests
in software.

At the other end of the performance scale, the DirnH0SNB,ACK protocol performs
significantly worse than the other protocols, for all worker-set sizes. Since WORKER
is a shared memory stress test and exaggerates the differences between the protocols,
Figure 6-1 shows the worst possible performance of the software-only directory. The
measurements in the next section, which experiment with more realistic applications,
yield a more optimistic outlook for the zero and one-pointer protocols.

The dashed curves correspond to one-pointer protocols that run only on NWO.
These three protocols differ only in the way that they handle acknowledgment messages
(see Section 2.1.3). For all non-trivial worker-set sizes, the protocol that traps on
every acknowledgment message (DirnH1SNB,ACK) performs significantly worse than the
protocols that can count acknowledgments in hardware. DirnH1SNB, which never traps
on acknowledgment messages, has very similar performance to the DirnH2SNB protocol,
except when running with size 2 worker sets. Since this version of DirnH1SNB requires
the same amount of directory storage as DirnH2SNB, the similarity in performance is not
surprising.

Of the three different one-pointer protocols, the protocol that traps only on the last
acknowledgment message in a sequence (DirnH1SNB,LACK) makes the most cost-efficient
use of the hardware pointers. This efficiency comes at a slight performance cost. For
the WORKER benchmark, this protocol performs between 0% and 50% worse than
DirnH1SNB. When the worker-set size is 4 nodes, DirnH1SNB,LACK performs slightly
better than DirnH1SNB. This anomaly is due to a memory-usage optimization that
attempts to reduce the size of the software-extended directory when handling small
worker sets. The optimization, implemented in the DirnH1SNB,LACK, DirnH1SNB,ACK and
DirnH0SNB,ACK protocols, improves the run-time performance of all three protocols for
worker-set sizes of 4 or less.

6.3 Application Case Studies

This section presents more practical case-studies of several programs and investigates
how the performance of applications depends on memory access patterns, the coherence
protocol, and other machine parameters.

Figure 6-2 presents the basic performance data for the six benchmarks described in
Section 3.2.2, running on 64 simulated nodes. The horizontal axis shows the number of
directory pointers implemented in hardware, thereby measuring the cost of the system.
The vertical axis shows the speedup of the multiprocessor execution over a sequential run
without multiprocessor overhead. The software-only directory is always on the left and

69

||0

|8

|16

|24

|32

|40

|48

|56

|64

 (a) Traveling Salesman Problem (TSP)

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 64
||0

|8

|16

|24

|32

|40

|48

|56

|64

 (b) Adaptive Quadrature (AQ)

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 64

||0

|8

|16

|24

|32

|40

|48

|56

|64

 (c) Static Multigrid (SMGRID)

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 64
||0

|8

|16

|24

|32

|40

|48

|56

|64

 (d) Genome Evolution (EVOLVE)

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 64

||0

|8

|16

|24

|32

|40

|48

|56

|64

 (e) MP3D

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 64
||0

|8

|16

|24

|32

|40

|48

|56

|64

 (f) Water

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 64

Figure 6-2: Application speedups over sequential, running on a simulated 64 node
Alewife machine.

70

 normal ifetch, no victim caching
 normal ifetch, victim caching
 perfect ifetch, no victim caching

||0

|8

|16

|24

|32

|40

|48

|56

|64

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 64

Figure 6-3: TSP: detailed performance analysis on 64 NWO nodes.

the full-map directory on the right. All of the figures in this section show DirnH1SNB,ACK

performance for the one-pointer protocol.
The most important observation is that the performance of DirnH5SNB is always

between 71% and 100% of the performance of DirnHNBS
�

. Thus, the graphs in Figure 6-
2 provide strong evidence that the software-extension approach is a viable alternative
for implementing a shared memory system. The rest of this section seeks to provide a
more detailed understanding of the performance of software-extended systems.

Traveling Salesman Problem Given the characteristics of the application’s memory
access pattern, one would expect TSP to perform well with a software-extended protocol:
the application has very few large worker sets. In fact, most – but not all – of the worker
sets are small sets of nodes that concurrently access partial tours.

Figure 6-3 presents detailed performance data for TSP running on a simulated 64 node
machine. Contrary to initial expectations, TSP suffers severe performance degradation
when running with the software-extended protocols. The gray bars in the figure show
that the five-pointer protocol performs more than three times worse than the full-map
protocol. This performance decrease is due to instruction/data thrashing in Alewife’s
combined, direct-map caches: profiles of the address reference pattern of the application
show that two memory blocks that were shared by every node in the system were
constantly replaced in the cache by commonly run instructions.

A simulator option confirms this observation by allowing one-cycle access to every
instruction, without using the cache. This option, called perfect ifetch, eliminates the
effects of instructions on the memory system. The hashed bars in Figure 6-3 confirm that
instruction/data thrashing was a serious problem in the initial runs. Absent the effects of
instructions, all of the protocols except the software-only directory realize performance

71

||0

|20

|40

|60

|80

|100

|120

|140

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 256

Figure 6-4: TSP running on 256 NWO nodes.

equivalent (within experimental error) to a full-map protocol.
While perfect instruction fetching is not possible in real systems, there are various

methods for relieving instruction/data thrashing by increasing the associativity of the
cache system. Alewife’s approach to the problem is to implement a version of victim
caching [39], which uses the transaction store [48] to provide a small number of buffers
for storing blocks that are evicted from the cache. The black bars in Figures 6-2(a)
and 6-3 show the performance for TSP on a system with victim caching enabled. The
few extra buffers improve the performance of the full-map protocol by 16%, and allow
all of the protocols with hardware pointers to perform about as well as full-map. For this
reason, the studies of all of the other applications in this section enable victim-caching
by default.

It is interesting to note that DirnH0SNB,ACK with victim caching achieves almost 70%
of the performance of DirnHNBS

�
. This low-cost alternative seems viable for applications

with limited amounts of sharing.
Thus far, the simulations have shown the performance of the protocols under an

environment where the full-map protocol achieves close to maximum speedup. On an
application that requires only 1 second to run, the system with victim caching achieves
a speedup of about 55 for the 5 pointer protocol. Running the same problem size on a
simulated 256 node machine indicates the effects of running an application with lower
speedups. Figure 6-4 shows the results of this experiment, which indicate a speedup of
142 for full-map and 134 for five-pointers. These speedups are quite remarkable for this
problem size. In addition, the software-extended system performs only 6% worse than
full-map in this configuration. The difference in performance is due primarily to the
increased contribution of the transient effects over distributing data to 256 nodes at the
beginning of the run.

72

Adaptive Quadrature Since all of the communication in AQ is producer-consumer,
the application should perform equally well for all protocols that implement at least one
directory pointer in hardware. Figure 6-2(b) confirms this expectation by showing the
performance of the application running on 64 simulated nodes. Again, DirnH0SNB,ACK

performs respectably due to the favorable memory access patterns in the application.

Static Multigrid SMGRID’s speedup over sequential is limited by the fact that only a
subset of nodes work during the relaxation on the upper levels of the pyramid of grids.
Furthermore, data is more widely shared in this application than in either TSP or AQ.
The consequences of these two factors appear in Figure 6-2(c): the absolute speedups
are lower than either of the previous applications, even though the sequential time is
three times longer.

The larger worker-set sizes of multigrid cause the performance of the different
protocols to separate. DirnH0SNB,ACK performs more than three times worse than the
full-map protocol. The others range from 25% worse in the case of DirnH1SNB,ACK to
6% worse in the case of DirnH5SNB.

Genome Evolution Of all of the applications in Figure 6-2, EVOLVE causes the five-
pointer protocol (DirnH5SNB) to exhibit the worst performance degradation compared
to DirnHNBS

�
: the worker sets of EVOLVE seriously challenge a software-extended

system. Figure 6-5 shows the number of worker sets of each size at the end of a 64
node run. Note that the vertical axis is logarithmically scaled: there are almost 10,000
one-node worker sets, while there are 25 worker sets of size 64.

The significant number of nontrivial worker sets implies that there should be a
sharp difference between protocols with different numbers of pointers. A more detailed
analysis in Chapter 7 shows that a large number of writes to data with a worker-set
size of six reduces the performance of all protocols with fewer hardware pointers. The
large worker sets impact the 0 and 1 pointer protocols most severely. Thus, EVOLVE
provides a good example of a program that can benefit from a system’s hardware directory
pointers.

In addition to the performance degradation caused by large worker sets, EVOLVE
suffers from severe data/data thrashing in the nodes’ direct-mapped caches. To help
diagnose the cause of the thrashing, the simulator generates a trace of all of the directory
modification events that occur during a run with the full-map protocol. Analysis of the
thrashing addresses in the traces shows that frequently accessed, shared data structures
allocated on different nodes conflict in a number of lines of every node’s cache.

Once diagnosed, the data/data thrashing problem is easy to solve. The pathological
situation is caused by the regularity of the application, and the fact that the memory
allocation heap in each node starts at a position that is aligned to every other node’s
heap. Due to the regularity of this thrashing, a simple change to the operating system
can eliminate it: by skewing the nodes’ heaps before running the program, the conflicting
memory blocks can be shifted into different cache lines.

Figure 6-6 shows the results of the thrashing effect on a 64 node run of the application.
The gray bars show the performance of EVOLVE without skewed heaps; the black bars

73

|

0
|

8
|

16
|

24
|

32
|

40
|

48
|

56
|

64

|1

|10

|100

|1000

|10000

 Worker Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

Figure 6-5: Histogram of worker-set sizes for EVOLVE, running on 64 NWO nodes.

 heaps not skewed
 heaps skewed

||0

|8

|16

|24

|32

|40

|48

|56

|64

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 5 64

Figure 6-6: EVOLVE performance with and without heap skew.

74

show the performance gained by skewing each node’s heap. (The black bars correspond
to the ones in Figure 6-2(d).) When thrashing occurs, the DirnHNBS

�
speedup is almost

45 and DirnH5SNB reaches 27, about 40% slower. In the absence of significant thrashing,
the full-map protocol achieves a speedup of 50, while the five-pointer protocol lags
full-map by about 30%.

MP3D Since MP3D is notorious for exhibiting low speedups [56], the results in
Figure 6-2(e) are encouraging: DirnHNBS

�
achieves a speedup of 24 and DirnH5SNB

realizes a speedup of 20. These speedups are for a relatively small problem size, and
absolute speedups should increase with problem size.

The software-onlydirectory exhibits the worst performance (only 11% of the speedup
of full-map) on MP3D. Thus, MP3D provides another example of an application that
can benefit from at least a small number of hardware directory pointers.

Water The Water application, also from the SPLASH application suite, is run with
64 molecules. This application typically runs well on multiprocessors, and Alewife is
no exception. Figure 6-2(f) shows that all of the software-extended protocols provide
good speedups for this tiny problem size. Once again, the software-only directory offers
almost 70% of the performance of the full-map directory.

6.4 A-1000 Performance

In a sense, the results in Figure 6-7 are much more dramatic than those presented in the
rest of this chapter: the graphs show the performance of the six benchmarks on the largest
available A-1000, an Alewife machine with 16 nodes and a 20 MHz processor clock
speed. From the point of view of a system architect, this evidence is exciting because it
confirms that ideas can be transformed into practice. The fact that the same benchmark
and memory-system object code runs on both the A-1000 and the NWO simulator
validates both the software-extended design technique and the simulation technology.

The figure shows the entire range of directory sizes that work on the A-1000 hard-
ware, from DirnH0SNB,ACK to DirnH5SNB, skipping the one-pointer protocols. It is hard
to compare the data in Figure 6-7 directly to Figure 6-2 due to the different number of
processors, a new version of the compiler, and different floating-point speeds. Never-
theless, the qualitative results are the same: as predicted by NWO, DirnH2SNB through
DirnH5SNB all offer similar performance, while DirnH0SNB,ACK achieves acceptable per-
formance only for some of the benchmarks. The usual exception to this rule is EVOLVE,
which benefits from DirnH5SNB’s hardware directory pointers.

As rewarding as it is to build a real system, thus far the A-1000 offers no more insight
into the trade-offs involved in software-extended design than does NWO. The hardware
certainly supports a smaller range of protocols and design options. On the other hand,
the A-1000 allows users to develop real applications and to run data sets that could never
be attempted under simulation. As the number of benchmarks and the machine size
grow, the software-extended memory system must prove itself as the foundation for a
system with a stable user environment.

75

||0

|2

|4

|6

|8

|10

|12

|14

|16

 (a) Traveling Salesman Problem (TSP)

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 3 4 5
||0

|2

|4

|6

|8

|10

|12

|14

|16

 (b) Adaptive Quadrature (AQ)

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 3 4 5

||0

|2

|4

|6

|8

|10

|12

|14

|16

 (c) Static Multigrid (SMGRID)

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 3 4 5
||0

|2

|4

|6

|8

|10

|12

|14

|16

 (d) Genome Evolution (EVOLVE)

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 3 4 5

||0

|2

|4

|6

|8

|10

|12

|14

|16

 (e) MP3D

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 3 4 5
||0

|2

|4

|6

|8

|10

|12

|14

|16

 (f) Water

 Number of Hardware Pointers

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

0 1 2 3 4 5

Figure 6-7: Application speedups over sequential, running on a 16 node A-1000.

76

6.5 Conclusions

The NWO and A-1000 implementations of Alewife prove that the software-extension
approach yields high-performance shared memory. The hardware components of a
software-extended system must be tuned carefully to achieve high performance. Since
the software-extended approach increases the penalty of cache misses, thrashing situa-
tions cause particular concern. Adding extra associativity to the processor side of the
memory system, by implementing victim caches or by building set-associative caches,
can dramatically decrease the effects of thrashing on the system as a whole.

Alewife’s flexible coherence interface enabled the study of the spectrum of software-
extended memory systems by facilitating the rapid development of a number of proto-
cols. However, flexibility comes at the price of extra software processing time. The
next chapter uses an analytical model to show that the extra processing time does not
dramatically reduce end-to-end performance. The following chapter proves the useful-
ness of flexibility by demonstrating memory systems that use intelligence to improve
performance.

77

Chapter 7

The Worker-Set Model

A working system provides copious information about a narrow range of design choices.
In contrast, an analytical model provides a way to explore a design space without the high
overhead of building new systems. This chapter combines these two methods for eval-
uating an architecture: first, the Alewife system validates a mathematical model; then,
the model examines a range of architectural mechanisms used to implement software-
extended shared memory.

Rather than attempting to reproduce the details of operation, the model predicts
the gross behavior of systems by aggregating its input parameters over the complete
execution of programs. The inputs characterize the features of an architecture and the
memory access pattern of an application, including a description of the application’s
worker sets. The model uses these parameters to calculate the frequency and latency of
various memory system events. From these derived quantities, the model estimates the
system’s processor utilization, a metric that encompasses both the frequency of memory
access and the efficiency of a memory system.

This chapter is organized as follows: the next section defines the model inputs and
outputs precisely. Following the definitions, the model is described at both the intuitive
and mathematical levels. Before exploring the design space, comparisons between the
predictions and experimental results validate the model. Once validated, the model is
used to investigate a number of options in memory system design by predicting the six
benchmarks’ performance on a variety of architectures. Then, synthetic workloads help
explore the relationship between application memory access patterns and performance.
The final section enumerates a number of conclusions about the memory system design
space and discusses the problem of modeling cost.

7.1 Model Inputs and Outputs

Figure 7-1 illustrates the function of the worker-set model. The two types of model
inputs come from several sources: a high-level description of the memory system archi-
tecture; measurements from microbenchmarks that determine the latency of important
transactions in a software-extended system; and experimental measurements of each
application’s memory access patterns. For this study, the latter two input sources cor-

78

Worker−Set
Model

Application
Worker−Set
Parameters

Architecture
Parameters

Software−Extended
Memory Performance
(Processor Utilization)

(Memory Access Pattern)

(Memory Access Latency)

Figure 7-1: The worker-set model.

respond to simulations that require up to several hours to generate each data point. In
contrast, given a set of inputs, the model can predict the performance for a whole range
of architectures within a few minutes, if not seconds.

From a distance, the model outputs in the following sections look very much like
the performance graphs in the previous chapter. The horizontal axis measures an ar-
chitectural mechanism (such as the number of hardware pointers in a directory entry)
or a measure of an application’s memory access pattern (such as worker-set size). The
vertical axis gives processor utilization, a measure of the performance of the system as a
whole. Although the performance metrics are different, the model outputs give the same
qualitative information as the studies that use detailed implementations of the Alewife
architecture.

7.1.1 Notation

Table 7.1 lists some basic notation used to describe the model. P stands for the number
of processing nodes in a system and i denotes the number of pointers in each directory
entry of a software-extended system.

The model uses two types of time intervals — or latencies — as parameters. Tx
represents the time required to process x, some sort of memory transaction, in a software-
extended system. Tx,hw is the latency of the same transaction when it can be handled
completely in hardware. In some memory systems, an event x may need to be handled
partially in hardware and partially in software. tx denotes the amount of time delay
induced by the software component of the system. All time intervals are measured in
units of processor cycles.

The model’s metric of system performance is always processor utilization, repre-
sented by U . This symbol is typically subscripted to indicate the model from which it is
derived.

7.1.2 Application Parameters

The worker-set model parameterizes the behavior of a workload as a set of hit ratios
at each level of the memory hierarchy, the latencies of access at each level, and its
worker-set behavior. These inputs to the model may be derived from different sources,
depending on the type of workload. For the benchmark applications, all of the model
inputs come from statistics gathered by simulating each application with a DirnHNBS

�

79

Symbol Meaning
P number of processors in a system
i number of hardware directory pointers
Tx the latency of x, an event in a memory system
Tx,hw latency of x when using a hardware-only directory
tx the additional overhead of handling x due to software extension
UM processor utilization predicted by model M

Table 7.1: Notation for the analytical model.

memory system. In a sense, the model uses a characterization of an application running
on a hardware-only system to predict the performance on the gamut of software-extended
systems.

WORKER, the synthetic workload, requires DirnHNBS
�

simulations to determine its
hit ratios and latencies; its worker-set behavior is completely determined by its structure
and can be specified by examination. For this reason, WORKER was used to develop
the model and to perform the initial model validation.

Other synthetic workloads may be created by specifying a complete set of model
inputs without any data from simulations. Such workloads can not represent the perfor-
mance of the system on real applications, but they are useful for examining the sensitivity
of software-extended systems to an application’s memory access behavior.

Table 7.2 lists all of the model inputs derived from applications or synthetic work-
loads. The first set of variables contains the hit ratios and access latencies. These pa-
rameters are the familiar quantities used to characterize a memory system with caches.
The average memory access time for a hardware-only system (Ta,hw) may be calculated
directly from them:

Ta,hw = hTh + lTl + rTr,hw (7:1)

The access latencies (Tx) are application-dependent, as opposed to constant parameters
of the architecture, because they take contention into account. For example, Th — the
cache hit latency — incorporates cache access delays due to processor versus CMMU
contention for the address/data bus. Similarly, Tl contains contention between local
and remote requests for a node’s DRAM and Tr,hw incorporates contention within the
interconnection network. Appendix A lists the values of model parameters for the six
benchmarks.

Definition A worker set is the set of processors that access a block of memory between
subsequent modifications of the block’s data.

The worker set for a read-only block of memory, which is initialized but never
modified, consists of all of the processors that ever read it. An instantaneous worker set
is the set of processors that access a block of memory between an instant in time and
the previous modification. At the time of a write, the instantaneous worker set is equal
to the worker set.

80

Symbol Meaning
Ni number of instruction fetches
Na number of memory accesses
h cache hit ratio
l local memory access ratio
r remote memory access ratio
Th cache hit latency
Tl local memory access latency
Tr,hw hardware-only remote access latency
Rk number of reads with k processors in instantaneous worker set
Wk number of writes with k processors in worker set

Table 7.2: Inputs to the analytical model from applications.

In order to minimize the amount of record-keeping, the model assumes that the
memory system has a load/store architecture: all memory accesses are either reads or
writes. Consequently, two sequences of parameters specify an application’s worker-set
behavior: the first sequence fRk j 0 � k � Pg indicates the size of the instantaneous
worker set at the time of a each read; the second sequence fWk j 0 � k � Pg indicates
the size of the worker set at the time of writes and dirty reads. A dirty read causes the
Alewife protocols to invalidate a read-write copy of the requested data. This type of
read transaction requires approximately the same amount of time as a write transaction
that invalidates a single read-only copy of data.

The two sequences may be plotted as histograms, with worker-set size on the ordinate
and the number of corresponding accesses on the abscissa. Figures 7-2 and 7-3 show
the histograms for the six benchmarks. These histograms are produced by collecting
traces of directory modification events during simulated runs of the benchmarks with
DirnHNBS

�
. After the end of each simulation, a trace interpreter scans the event traces

and constructs the histograms. The interpreter uses the following operational rules to
construct the worker-set behavior histograms:

1. When a processor reads a data object, the bin with the corresponding instantaneous
worker-set size is incremented once.

2. When a processor writes a data object, the bin with the corresponding worker-set
size is incremented once.

TSP exhibits the type of worker-set behavior that takes advantage of a software-
extended system: the application primarily reads and writes data objects that are shared
by only a few processors. There are also two memory blocks that are widely-shared
and are distributed to all of the nodes in the system. The spike at the right end of
Figure 7-2(a) indicates some residual thrashing of the widely-shared objects, even with
the victim caches enabled. The thrashing causes extra accesses after the instantaneous
worker sets reach the size of the corresponding worker set.

81

||1

|10

|100

|1000

|10000

|100000

 (a) Traveling Salesman Problem (TSP)

 Instantaneous Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64
||1

|10

|100

|1000

|10000

|100000

 (b) Adaptive Quadrature (AQ)

 Instantaneous Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64

||1

|10

|100

|1000

|10000

|100000

 (c) Static Multigrid (SMGRID)

 Instantaneous Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64
||1

|10

|100

|1000

|10000

|100000

 (d) Genome Evolution (EVOLVE)

 Instantaneous Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64

||1

|10

|100

|1000

|10000

|100000

 (e) MP3D

 Instantaneous Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64
||1

|10

|100

|1000

|10000

|100000

 (f) Water

 Instantaneous Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64

Figure 7-2: Read access instantaneous worker-set histograms.

82

||1

|10

|100

|1000

|10000

|100000

 (a) Traveling Salesman Problem (TSP)

 Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64
||1

|10

|100

|1000

|10000

|100000

 (b) Adaptive Quadrature (AQ)

 Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64

||1

|10

|100

|1000

|10000

|100000

 (c) Static Multigrid (SMGRID)

 Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64
||1

|10

|100

|1000

|10000

|100000

 (d) Genome Evolution (EVOLVE)

 Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64

||1

|10

|100

|1000

|10000

|100000

 (e) MP3D

 Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64
||1

|10

|100

|1000

|10000

|100000

 (f) Water

 Worker-Set Size

 N
u

m
b

er
 o

f
M

em
o

ry
 B

lo
ck

s

0 8 16 24 32 40 48 56 64

Figure 7-3: Write access worker-set histograms.

83

The worker-set histograms show that AQ performs more writes than reads. This
behavior makes sense in light of the fact that synchronizing reads are treated as writes
with respect to coherence. Since the application uses producer-consumer communication
— orchestrated by the future construct, almost of the data is communicated through
synchronizing reads and writes.

The other applications show similar worker-set profiles with some amount of widely-
shared, read-only data and read-write data with predominately small worker sets. The
histograms are useful for understanding the way that the benchmarks use shared memory
and for interpreting their performance on shared-memory systems [78].

Software-only directories are particularly sensitive to the values of R0, W0, and W1,
which can be affected by purely intranode accesses. For the sake of completeness, the
graphs in Figures 7-2 and 7-3 contain all intranode and internode accesses. However,
the software-only directory implemented for Alewife (DirnH0SNB,ACK) includes a one-bit
optimization for intranode data (see Section 3.1). For this reason, the model uses the
values of Rk and Wk that do not include purely intranode accesses, unless otherwise
specified.

A similar Alewife feature uses a special one-bit directory pointer reserved for the
local node. Unless otherwise specified, the event trace interpreter assumes the existence
of this pointer, and does not include the local node in the worker set when calculating
Rk and Wk . Section 7.4.5 analyzes the effect of both one-bit optimizations.

7.1.3 Architecture Parameters

Since the analytical model is used primarily to investigate the performance of software-
extended systems, its architectural parameters describe the time required to handle
memory accesses in software. Table 7.3 lists the software-handling latency parame-
ters and their measured values. These values are comparable to the measurements in
Tables 6.1 and 6.2. The numbers are similar because they are also derived from the
statistics gathered from WORKER simulations; they are different because they measure
the average — not the median time — to execute each activity. Furthermore, many of
the values given are the result of simple linear regressions that specify execution time as
a function of the number of directory pointers or of worker-set size.

tr,base and tr,extra are an example of a pair of parameters derived from a linear regres-
sion of WORKER measurements. Together, they specify the time for memory-system
software to process a read request (tr) in an architecture with i hardware directory
pointers:

tr = tr,base + itr,extra

All of the (base,extra) pairs in Table 7.3 are regression parameters. The other variables
in the table are simple average latencies for software-extension processing. Section 7.2.2
explains how each of these parameters contributes to memory system latencies.

Some of the higher-level architectural parameters are incorporated into the model by
modifying these parameters. For instance, Section 7.4.1 investigates the effect of trap
latency (the time to clear the processor pipeline, save state, and switch to supervisor
mode) on the performance of software-extended systems. The model generates extra

84

Symbol Type of Latency Value Trap
tr,prologue read software handler prologue 130

p

tr,base base read software handling 205
p

tr,extra extra read software handling, per pointer 47
tw,base base write software handling 605

p

tw,extra extra write software handling, per copy 12
tw,1,ack 1 pointer, handle acknowledgment 188

p

tw,1,lack 1 pointer, handle last acknowledgment 452
p

tr,0,sm,base 0 pointers (small wss), base read 322
p

tr,0,sm,extra 0 pointers (small wss), extra read, per copy 11
tr,0,lg 0 pointers (large wss), read latency 433

p

tw,0,sm,base 0 pointers, base write latency 388
p

tw,0,sm,extra 0 pointers, extra write latency per copy 41
tw,0,lg,base 0 pointers, base write latency 1138

p

tw,0,lg,extra 0 pointers, extra write latency per pointer 13
tw,0,ack 0 pointers, cost of handling acknowledgment 182

p

tw,0,lack 0 pointers, cost of handling last acknowledgment 283
p

Table 7.3: Inputs to the analytical model from protocol measurements, values are in
processor cycles.

trap latency by increasing the value of the parameters in Table 7.3 with a check-mark
in the “Trap” column. Similarly, the study in Section 7.4.2 modifies code efficiency by
dividing all of the tx parameters by a constant factor.

Other architectural parameters require changes to the model’s equations. These
parameters include the number of directory pointers, special processors dedicated to
memory-system software, and other details of protocol implementation.

7.1.4 Performance Metric

The goal of the model is to produce the same qualitative predictions as the results in
the previous chapter, and then to extend the empirical results by exploring the design
space. For reasons described in [17], the model can not be expected to calculate actual
execution times or speedup. To summarize the discussion in [17], the model aggre-
gates the architectural and application parameters over the entire duration of execution.
This technique ignores actual forward progress in the application and neglects common
multiprocessing phenomena such as network hot-spots and computation bottlenecks.

Nevertheless, the model can predict processor utilization, a measure of the amount
of time that the program spends executing the program, as opposed to waiting for the
memory system. More formally, processor utilization is defined as

U =
1

1 + aTa
; (7:2)

85

Symbol Meaning
Uhw processor utilization, hardware-only directory
Unfb processor utilization, no feedback
Ufb processor utilization, with feedback
Uphases processor utilization, phases model
Nr number of software-handled read requests
Nw number of software-handled write requests
Ns number of software-handled requests
Nd number of requests delayed by software handling
a memory access ratio
Ta access latency
s software handling ratio
Ts software handling access latency
Tr remote access latency
Ti expected residual idle time during memory access
rt remote access ratio, time-average
LTr expected residual life of remote accesses
ts software handling latency
tr read software handling latency
tw write software handling latency

Table 7.4: Derived parameters of the analytical model.

where a = Na=Ni is the memory access ratio and Ta is the average latency of access to
memory.

The aTa term gives the average fraction of time that each processor spends waiting
for the memory system. Thus, the maximum processor utilization is limaTa!0 U = 1
and the minimum processor utilization is limaTa!1 U = 0. Roughly speaking, U = 1
corresponds to a system that achieves perfect speedup over sequential, and U = 0 means
that a system makes no forward progress whatsoever.

Preliminary studies that examined a wide range of options for the Alewife architec-
ture [14] used processor utilization to compare different system configurations. Sub-
sequent phases of the Alewife research determined that qualitative conclusions derived
from this metric were generally correct.

7.2 Model Calculations

Most of the intuition about software-extended memory systems that drives the analytical
model is incorporated into the equations that calculate processor utilization. The rest
of the model requires little more than good accounting in order to count the number of
occurrences and the latency of each type of event in the memory system. Table 7.4 lists
all of the quantities derived as part of the analysis.

86

7.2.1 Calculating Utilization

The model uses equation 7.2 directly to calculate the processor utilization of a DirnHNBS
�

system:

Uhw =
1

1 + aTa,hw

The formula for utilization in software-extended systems must take into account both
the additional memory access latency due to software and the cycles stolen from user
code by the memory system. Substituting Ta (the predicted memory latency) for Ta,hw

accounts for the longer access latency. In order to deduct the stolen cycles from the
system’s performance, the equation requires an additional term:

Unfb =
1

1 + aTa|{z}
request

+ arsts| {z }
response

; (7:3)

where r is the remote access ratio, s is the fraction of remote requests that require
software handling, and ts is the average time that the memory system software requires
to process a request. Thus, each memory request takes, on average, Ta cycles of latency
and steals rsts cycles from some processor on the response side. Section 7.2.2 describes
the model’s calculations of Ta, s, and ts.

This model of processor utilization assumes that every cycle the memory system
steals from a processor could otherwise have been spent performing useful work for the
application. While this assumption might be true for applications that achieve U � 1,
the penalty for stealing cycles in systems with lower utilization is not as extreme. It
is possible that when the memory system needs to steal cycles from a processor, the
processor is waiting for the memory system. Given this situation, there should be no
penalty for stealing cycles, because the processor has no useful work to do.

This scenario leads to an interesting observation: the lower the processor utilization,
the less likely that there will be a penalty for stealing cycles. This property of software-
extended systems is actually a positive feedback loop. When such a system performs
poorly, the extra processing that the system requires does not reduce the performance as
it does when the system performs well.

Equation 7.3 does not take this feedback into account, so it calculates Unfb, the
processor utilization without feedback. (nfb stands for no feedback.) In order to model
positive feedback, the stolen-cycles term changes slightly:

Ufb =
1

1 + aTa + ars(ts � (1� Ufb)Ti)
(7:4)

This term subtracts a number of idle cycles from ts, the average number of stolen
cycles: (1�Ufb) gives the time-average probability that a processor is idle, and Ti is the
expected number of idle cycles remaining at the time that the memory system interrupts
a processor. Solving this equation for Ufb yields a closed form expression for Ufb:

(arsTi)U 2
fb + (1 + aTa + arsts � arsTi)Ufb � 1 = 0

87

The problem of modeling Ti remains. The expected amount of idle time may be
viewed as a stochastic process with time intervals drawn from the distribution of remote
memory access latencies. For the sake of argument, assume that these time intervals are
independent of each other and that the memory system interrupts are independent of the
stochastic process. Then, the stochastic process is a renewal process and

Ti = min(rtLTr ; ts);

where rt is the time-average probability that a processor is making a remote access,
given that it is making any memory access; and LTr is equal to the time-average residual
life of the renewal process, or

LTr =
E[T 2

r]

2E[Tr]
: (7:5)

It is necessary to take the minimum of rtLTr and ts so that the number of idle cycles in
equation 7.4 never exceeds the number of cycles required for software-extension.

While this model of Ti yields some valuable intuition, it does not provide a good
approximation of the behavior of either the synthetic workload or the benchmarks.
Calculations show that the model constantly overestimates the utilization, sometimes by
more than a factor of two. The failure of this model suggests that the remote latency
process is not a renewal process.

Since the renewal process model does not yield accurate results, and since the
calculation of LTr is relatively tedious, the details of the residual life calculation will be
omitted. To summarize the LTr derivation, both the expectation and the variance of each
component of the remote latency (Tr) must be calculated. These values are propagated
through to the residual life equation 7.5.

Some thought about the nature of shared memory accesses in multiprocessor pro-
grams sheds some light on the remote latency process: in many parallel algorithms,
when one processor makes a shared memory access, all of the other processes are also
making similar accesses. Thus, the accesses of requesting and responding nodes should
be highly correlated. Taking this observation to the logical extreme, a model could
assume that:

Phases Hypothesis If one node’s remote memory request coincides with a remote
access on the responding node, then the responding node’s access is exactly the same
type of access.

The name phases hypothesis indicates the assumption that computation proceeds in
phases, during each of which all processors execute similar functions. This intuition
is especially true for single-program multiple-data applications like WORKER, which
synthesizes the same memory access pattern on every processor. The hypothesis leads
to a new value of Ti: (rtts=2) replaces (rtLTr). rt corresponds to the predicate “if one
node’s remote memory request coincides with a remote access on the responding node;”
ts=2 corresponds to the consequent “then the responding node’s access is exactly the
same type of access.” This term is ts=2 rather than ts, because the expected residual life
when entering at a random time into an interval of deterministic length Z is Z=2. Thus,

Uphases = Ufb[Ti = (rtts=2)] (7:6)

88

Section 7.3 compares the validity of the model without feedback and the phases
model. The rest of this section describes the derivation of all of the parameters in the
utilization equations.

7.2.2 Counting Events and Cycles

The parameters in equations 7.3, 7.4, and 7.6 that the model must calculate are Ta, s,
Ts, rt, and ts. Average memory access latency may be stated in terms of the other
parameters:

Ta = hTh + lTl + rTr

= hTh + lTl + r(Tr,hw + sTs)

= Ta,hw + rsTs (7.7)

This equation uses the standard formulation for a memory hierarchy, withTr representing
the average remote access latency in a software-extended system. Note that the formula
for Tr is exactly the same as the simple model used in Section 4.1.2. Given Ta and Tr,
the fraction of memory access time spent processing remote requests may be calculated
as rt = rTr=Ta.

Since the model assumes a load/store memory architecture, the fraction of remote
requests that require software handling (s) and the associated overhead (ts) can be
broken down into their read and write components. Let Ns be the total number of
software-handled requests:

Ns = Nr +Nw;

where Nr and Nw are the number of software-handled read and write requests, respec-
tively. Thus,

s =
Ns

rNa

ts =
Nrtr +Nwtw

Ns

;

where tr and tw are the average latencies for using software to handle read and write
requests.

The memory access latency seen on the processor side (Ts) also has read and write
components, but the breakdown depends on the implementation of the memory system:
the Alewife architecture includes a feature that allows the hardware to transmit read-only
copies of data in parallel with the associated software handling. With this hardware read
transmit capability, read transactions may require software handling, but the software
is not in the critical path from the point of view of the requesting processor. Thus,
the number of requests delayed by software handling (Nd) depends on this architectural
feature:

Nd =

(
Nw with hardware read transmit
Nr +Nw without hardware read transmit

89

Ts also depends on the same feature:

Ts =

8<
:
tw with hardware read transmit
Nrtr,prologue+Nwtw

Nd

without hardware read transmit
;

where tr,prologue is the amount of time required before the software can transmit a block
of data. The components of the above quantities (Nr, Nw , tr, and tw) all depend on the
specific software-extended protocol and on each application’s worker-set behavior. For
example, they are all zero for DirnHNBS

�
. The next few paragraphs detail the derivation

of the parameters for the other protocols.

DirnH1SNB $ DirnHn�1SNB For the directory protocols with two or more hardware
pointers per entry1, calculating the number of software-extended writes (Nw) and their
average latency (tw) is straightforward:

Nw =
PX

k=i+1

Wk

tw = tw,base +

PP
k=i+1(ktw,extra)Wk

Nw

Calculating the number of software-extended reads (Nr) and average latency (tr)
is slightly more complicated, due to an option in the implementation of the extension
software. After the first directory overflow interrupt, the software can choose to handle all
subsequent read requests. The software can also choose to reset the hardware directory
pointers, thereby allowing the hardware to continue processing read requests. Not only
does the pointer reset option allow parallelism between the hardware and software, it
allows every software-handled request to be amortized over the number of hardware
directory pointers. The following equations count the number of events and cycles with
and without this option:

Nr =

8<
: Ri +

P
P

k=i+1
Rk

i+1 with pointer reset optionPP
k=i Rk without pointer reset option

tr =

(
tr,base + itr,extra with pointer reset option
Nr tr,base+iRitr,extra

Nr

without pointer reset option

DirnH1SNB,ACK and DirnH1SNB,LACK All of the event and cycle counts for the single-
pointer protocols are the same as for the multi-pointer protocols, with the exception
of the average software-extended write latency. tw is longer because the one-pointer
protocols must handle one or more acknowledgment messages in order to process write
transactions. For DirnH1SNB,ACK,

tw =

PP
k=2(tw,base + ktw,extra + (k � 1)tw,1,ack + tw,1,lack)Wk

Nw

;

1DirnH1SNB implements enough storage for two pointers.

90

and for DirnH1SNB,LACK ,

tw =

PP
k=2(tw,base + ktw,extra + tw,1,lack)Wk

Nw

The amount of time to handle an acknowledgment message in the middle of a transaction
is tw,1,ack, and tw,1,lack cycles are required to handle the last acknowledgment before
completing the transaction.

DirnH0SNB,ACK The software-only directory architecture is considerably more compli-
cated to model, because it has a much wider range of software-handled transactions.
In addition, the Alewife version of DirnH0SNB,ACK attempts to optimize the time and
memory space required to handle small worker sets. Consequently, the model differen-
tiates between transactions involving small (sm) and larger (lg) worker-set sizes. The
equations used to count events and cycles are otherwise similar to the calculations above:

Nr =
PX
k=0

Rk

Nw =
PX
k=0

Wk

tr =

P3
k=0(tr,0,sm,base + ktr,0,sm,extra)Rk +

PP
k=4 tr,0,lgRk

Nr

tw =

P4
k=0(tw,0,sm,base + ktw,0,sm,extra + (k � 1)tw,0,ack + tw,0,lack)Wk

Nw

+

PP
k=5(tw,0,lg,base + ktw,0,lg,extra + (k � 1)tw,0,ack + tw,0,lack)Wk

Nw

7.2.3 Restrictions and Inaccuracies

As specified in the preceding section, the model calculations are valid only for the
software-extended protocols used in Alewife. However the model is purposely built
with an abstraction for the type of software-extension scheme: four values (Nr, Nw , tr,
and tw) encapsulate the protocol. Given the specification of a protocol not described
above, it would be relatively easy to recalculate values for these four values and to run
the model with these values.

Even though intuition behind multiprocessor algorithms and software-extended sys-
tems drives the model, it is not obvious that the model can produce accurate predictions
of system performance. Certain assumptions of independence are particularly trouble-
some. For example, all of the input parameters (such as access ratios and latencies) are
assumed to be independent of the amount and latency of memory accesses handled by
software. This assumption should prove to be valid given large processor caches and
a high-bandwidth interconnection network, but certainly can not be verified a priori.
The next section proves that despite the simplicity of the model, its results match the
performance of the experimental systems described in Chapter 6.

91

7.3 Validating the Model

Before using the analytical model to make any predictions, it is important to validate
it by comparing its predictions against known experimental values. This section uses
both qualitative and quantitative methods to compare the model’s predictions with the
empirical results from the previous chapter. To summarize the results of this study:

� The model always matches the qualitative results of the experimental data.

� The phases model predicts the behavior of the synthetic WORKER application
better than the model without feedback.

� The no feedback model exhibits slightly less systematic error than the phases
model when trying to predict the performance of the six benchmarks.

7.3.1 The WORKER Synthetic Workload

Using the WORKER synthetic workload together with the NWO simulation system al-
lows experiments with the entire cross-product of worker-set sizes and software-extended
systems. This software provides a good apparatus for developing and training the an-
alytical model. Figure 7-4 illustrates the results of this process by using the phases
model to compare the performance of various software-extended systems to DirnHNBS

�

performance.
The graph in the figure reproduces the one in Figure 6-1 on page 68, which uses

simulation data to make the same comparison. Note that the performance metrics are not
exactly the same in the two figures! Figure 7-4 uses the ratio of processor utilizations,
while Figure 6-1 uses the (inverted) ratio of execution times. Were it not for the small
anomalies in the empirical data, it would be difficult to tell the difference between the
two sets of curves. Qualitatively, they are the same.

The results for DirnH0SNB,ACK require some elaboration. Recall that the worker-set
behavior of WORKER is completely determined by its structure. A synthetic histogram
generator creates the worker-set behavior (Rk and Wk) values required to produce the
results in Figure 7-4. When using the basic outputs of this histogram generator, the
model does not predict the rise in performance at the left end of the DirnH0SNB,ACK curve
(corresponding to small worker-set sizes).

Examination of the detailed statistics generated by NWO reveals a thrashing situation
in each processor’s cache. This thrashing causes one node to send read-write copies of
memory blocks back to memory just before other nodes read the same blocks. This
scenario improves performance by converting dirty reads (similar in latency to writes)
into clean reads that do not require a protocol to send invalidations. Eliminating the
thrashing in the simulated system proves to be a difficult task, but adjusting the synthetic
histogram generator is easy. The DirnH0SNB,ACK curve in Figure 7-4 corresponds to
the data with the corrected worker-set histograms. Although the model underestimates
the software-only directory performance slightly, it does show the same performance
increase at low worker-set sizes.

92

�

�

�

�

�

	

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 Worker Set Size

 P
er

fo
rm

an
ce

 c
o

m
p

ar
ed

 t
o

 f
u

ll-
m

ap

 DirnHNBS-
 DirnH8SNB
 DirnH5SNB
 DirnH2SNB
 DirnH1SNB
 DirnH1SNB,LACK
 DirnH1SNB,ACK
 DirnH0SNB,ACK

� � � � � � � � �

� � �

�

�
�

�
� �

� �

�

�
�

�
�

� �

�

�

�

�
�

�
�

� �

�

�
� � � � � � �

	 	 	
	 	 	 	 	 	

Figure 7-4: Predicted performance of the synthetic workload, used to validate the model.
Compare to Figure 6-1.

Figure 7-5 presents a quantitative comparison of the model and the experimental
data. The scatter plots in the figure show the percent error of the model versus the
number of hardware directory pointers. The error in the model is defined as

error = empirical result�model’s prediction

=
execution cycles for DirnHNBS

�

execution cycles for DirnHXSY,A
� Umodel

Uhw

The percent error is the error divided by the empirical result, multiplied by 100. The
figure shows percent error for both Unfb (a) and Uphases (b).

The dashed line on the plots indicates no error. Following from the definition of
error, positive error (above the line) indicates that the model has underpredicted the
system performance; negative error (below the line) indicates an overprediction. Since
both models ignore contention, they should both overpredict performance: however, the
model without feedback systematically underpredicts the system performance, while
the phases model overpredicts performance. Thus, the feedback modeled in Uphases is
present in the synthetic benchmark and has a second-order effect on performance.

Table 7.5 summarizes the characteristics of the error distribution. It lists the dis-
tributions expectation (E[error]) and standard deviation (�[error]), as well as the 90%
confidence interval as defined in [35]. The low absolute expected error indicates a good
match between the phases model and the synthetic benchmark.

93

�

�

�

||-80

|-60

|-40

|-20

|0

|20

|40

|60

|80

 (a) No Feedback

 Number of Hardware Pointers

 P
er

ce
n

t
E

rr
o

r

0 1 2 5 8

 DirnHXSNB
 DirnH1SNB,LACK
 DirnH1SNB,ACK
 DirnH0SNB,ACK

��

������

�

�

���
��
�

�
�������
�

�

�

�

||-80

|-60

|-40

|-20

|0

|20

|40

|60

|80

 (b) Phases

 Number of Hardware Pointers
 P

er
ce

n
t

E
rr

o
r

0 1 2 5 8

 DirnHXSNB
 DirnH1SNB,LACK
 DirnH1SNB,ACK
 DirnH0SNB,ACK

��

������

�

�

���
��

�

�

�������
�

Figure 7-5: Model error in predictions of synthetic workload performance.

 TSP
� AQ
� SMGRID
� EVOLVE
� MP3D
 Water

||-80

|-60

|-40

|-20

|0

|20
|40

|60

|80

 (a) No Feedback

 Number of Hardware Pointers

 P
er

ce
n

t
E

rr
o

r

0 1 2 5

�

� � �

�

� �

�

�

�

�

�

�

�

�

�

 TSP
� AQ
� SMGRID
� EVOLVE
� MP3D
 Water

||-80

|-60

|-40

|-20

|0

|20

|40

|60

|80

 (b) Phases

 Number of Hardware Pointers

 P
er

ce
n

t
E

rr
o

r

0 1 2 5

�

� � �

�

�
�

�

�

�

�

�

�

�
�

�

Figure 7-6: Model error in predictions of benchmark performance.

94

Workload Model E[error] �[error] 90% Confidence Interval
Synthetic No Feedback 0.0361 0.0186 (0.0317,0.0404)
Synthetic Phases -0.0262 0.0259 (-0.0322,0.0202)

Benchmarks No Feedback -0.0662 0.0600 (-0.0876,-0.0447)
Benchmarks Phases -0.0777 0.0672 (-0.102,-0.0537)

Table 7.5: Summary of error in analytical model.

7.3.2 The Benchmarks

The nfb model’s predictions for the benchmarks, which are graphed in Figure 7-7, also
match the qualitative results of the empirical study. All of the major conclusions derived
from Figure 6-2 on page 70 could be derived equally well from the analytical model.

However, predicting the performance of applications is by nature more complicated
than modeling a synthetic workload. In fact, the quantitative comparison in Figure 7-6
shows some systematic error in the model. The error in this figure is calculated as

error = empirical result�model’s prediction

=
speedup for DirnHXSY,A

speedup for DirnHNBS
�

� Umodel

Uhw

Figure 7-6 shows that the model without feedback tends to overestimate the system’s
performance, and the phases model makes slightly worse predictions. Table 7.5 quanti-
fies the systematic error. The error is probably caused by the fact that the model ignores
network hot-spots and computation bottlenecks, which are serious factors in real mul-
tiprocessor applications. The error is particularly high for the software-only directory
(DirnH0SNB,ACK), which achieves such low performance that small mispredictions look
relatively large on a percent error graph.

The reader should bear in mind that small differences in processor utilization are not
significant; yet, the larger percent error for DirnH0SNB,ACK usually does not obscure the
qualitative conclusions from the model. Since DirnH0SNB,ACK requires more software
than any of the other software-extended memory systems, the software-only directory
tends to exhibit much more sensitivity to architectural features.

In fact, the model never misorders the performance of different software-extended
schemes. Thus, the model may be used to choose between alternative implementations,
if not to predict their relative performance exactly.

7.4 Model Predictions

The real utility of the analytical model is its ability to extend the exploration of software-
extended memory systems beyond the limits of the Alewife implementations. This
section uses the model to investigate the effect of a number architectural mechanisms
and features, including trap latency, code efficiency, dedicated memory processors,

95

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a) Traveling Salesman Problem (TSP)

 Number of Hardware Pointers

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n

0 1 2 5 64
||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b) Adaptive Quadrature (AQ)

 Number of Hardware Pointers

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n

0 1 2 5 64

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (c) Static Multigrid (SMGRID)

 Number of Hardware Pointers

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n

0 1 2 5 64
||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (d) Genome Evolution (EVOLVE)

 Number of Hardware Pointers

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n

0 1 2 5 64

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (e) MP3D

 Number of Hardware Pointers

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n

0 1 2 5 64
||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (f) Water

 Number of Hardware Pointers

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n

0 1 2 5 64

Figure 7-7: Predicted performance of benchmark applications, used to validate the
model. Compare to Figure 6-2.

96

network speed, and protocol implementation details. The time required to perform this
kind of study by fabricating actual hardware or by building and running a simulation
system would have been prohibitive.

The figures presented below differ slightly from the graphs in previous sections. The
performance metric on the vertical axis is always raw processor utilization, while the
horizontal axis shows the number of hardware directory pointers. All of the figures plot
the model’s predictions for a 64 processor system. In order to provide a reference, every
graph contains a curve marked with unfilled triangles. This curve gives the performance
of the stock Alewife architecture, enhanced only to implement the full range of hardware
pointers.

The units of the x-axis require some explanation: since many of the architectural
features discussed below primarily affect the protocols with small hardware directories,
the graphs emphasize the left end of the scale by using a linear scale. The associated
curve segments are plotted with solid lines. The right end of the scale is approximately
logarithmic, plotting 8, 12, 16, 32, and 64 hardware pointers. Dashed curve segments
indicate this portion of the graph.

7.4.1 Trap Latency

One of the most common questions about the Alewife memory system involves the
relationship between software-extended performance and the trap latency of the system.
Trap latency is defined as the time between the instant that the processor receives an
asynchronous interrupt (or synchronous exception) and the time that it processes the
first instruction of the interrupt handling code. (For the purposes of this discussion, the
prologue instructions that save machine state are not considered part of the handling
code.)

Due to Alewife’s mechanisms for performing a fast context switch, its trap latency is
about 10 cycles (see Table 6.2), plus 3 cycles to flush the processor’s pipeline. This trap
latency is extremely low, especially compared to heavy-weight process switch times,
which can take thousands of cycles in popular operating systems. What happens to the
performance of a software-extended system when trap latency increases?

Figure 7-8 answers this question by showing the model’s predictions for systems
with 10, 100, and 1000-cycle trap latency. The 10 cycle latency indicates the aggressive
Alewife implementation; 100 cycles corresponds to an architecture that does not incor-
porate special features for context-switching; 1000 cycles indicates a reasonable lower
bound on performance.

The figure shows that, within an order of magnitude, trap latency does not signifi-
cantly affect the performance of software-extended systems. Given appropriate hardware
support — in the form of enough directory pointers to contain major application worker
sets — even two orders of magnitude does not cause a dramatic change in performance.
In other words, an architecture similar to Alewife in all respects except trap latency
would not perform significantly different on any of the benchmarks except EVOLVE.
This benchmark would suffer by a factor of about 30% with the long trap latency.

At the other end of the scale, the software-only scheme does show sensitivity to large
changes in trap latency. 1000-cycle trap latency causes DirnH0SNB,ACK performance

97

� 10 cycle traps

 100 cycle traps
� 1000 cycle traps

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(a) Traveling Salesman Problem (TSP)

�

� � � � � � � �� � � � �

�

�
� � � � � � �� � � � �

� 10 cycle traps

 100 cycle traps
� 1000 cycle traps

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(b) Adaptive Quadrature (AQ)

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

� 10 cycle traps

 100 cycle traps
� 1000 cycle traps

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(c) Static Multigrid (SMGRID)

�

�

� � � � � � �� � � � �

�

�

�
� � � � � �� � � � �

� 10 cycle traps

 100 cycle traps
� 1000 cycle traps

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(d) Genome Evolution (EVOLVE)

�

�

� � � �

� � �� � � � �

�

�

�
�

� �

�
� �� � � � �

� 10 cycle traps

 100 cycle traps
� 1000 cycle traps

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(e) MP3D

�

�

� � � � � � �� � � � �

�

�

�
� � � � � �� � � � �

� 10 cycle traps

 100 cycle traps
� 1000 cycle traps

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(f) Water

�

�
� � � � � � �� � � � �

�

�

�
� � � � � �� � �

� �

Figure 7-8: Modeled performance of software-extended schemes with trap latency
increased to 100 cycles and 1000 cycles.

98

to suffer by factors ranging from 36% to 72%. Section 7.4.3 explores a different
implementation of software-only directories that avoids traps entirely.

7.4.2 Code Efficiency

Another factor that affects the performance of software-extended protocols is the qual-
ity of the memory-system software itself. Section 6.1 analyzes the difference between
protocol handlers written with the flexible coherence interface, versus hand-tuned ver-
sions of the same handlers. The investigation shows that hand-coding can increase the
efficiency of the memory system by a factor of 2 or 3.

Figure 7-9 continues this investigation by predicting the increased performance of the
benchmark suite, assuming that protocol code efficiency can be increased by a factor of
2 or 4. The speed of the handlers significantly affects the performance of the software-
only directory, but has no effect on directories that are large enough to contain each
benchmark’s worker sets.

This result suggests a trade-off between cost and flexibility: a flexible interface
generally requires layers of abstraction, and therefore lower code efficiency than a less
flexible system may achieve. Increasing the cost of a system by adding directory pointers
(DRAM chips) essentially buys flexibility, or the ability to add abstraction without
incurring a performance penalty. Unfortunately, experience shows that flexibility is
almost indispensable when writing complex protocols such as DirnH0SNB,ACK. This
point will surface again in the following section.

In any case, gratuitously poor code quality never benefits a system. Over time, both
the Alewife compiler and appropriate portions of the flexible coherence interface will
improve. Faster protocol handlers should have an impact on benchmark performance,
especially if they accelerate the system during bottleneck computations, which are
neglected by the analytical model. For example, Figure 6-4 shows the performance
of TSP running on 256 nodes. In this configuration, the time required to distribute
many copies of data impacts the performance of the software-extended systems. Faster
protocol handlers would help reduce the impact of this type of transient effect.

7.4.3 Dedicated Memory Processors

The sensitivity of DirnH0SNB,ACK to trap latency and code efficiency suggests an alter-
native design approach for multiprocessor memory systems: build two-processor nodes
as in *T [60], and dedicate one of the processors exclusively to handling software for a
memory system. Kuskin [51] and Reinhardt [66] claim that such a methodology results
in flexible, high-performance systems.

Figure 7-10 uses the model to examine these claims. In order to predict the perfor-
mance of dual processor systems, the model uses the processor utilization equation 7.2
(without the software-extension term), but uses equation 7.7 to predict the average mem-
ory access latency. The figure shows the performance of the base software-extended
system (triangles) with one processor and a communications and memory management
unit (CMMU), a two-processor system using the same memory-system software (cir-
cles), and a two-processor system than manages to increase code-efficiency by a heroic

99

� FCI code efficiency X 4

 FCI code efficiency X 2
� FCI code

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(a) Traveling Salesman Problem (TSP)

�
� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

� FCI code efficiency X 4

 FCI code efficiency X 2
� FCI code

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(b) Adaptive Quadrature (AQ)

�
� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

� FCI code efficiency X 4

 FCI code efficiency X 2
� FCI code

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(c) Static Multigrid (SMGRID)

�

�
� � � � � � �� � � � �

�

�

� � � � � � �� � � � �

� FCI code efficiency X 4

 FCI code efficiency X 2
� FCI code

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(d) Genome Evolution (EVOLVE)

�

�

� � � �

� � �� � � � �

�

�

� � � �

� � �� � � � �

� FCI code efficiency X 4

 FCI code efficiency X 2
� FCI code

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(e) MP3D

�

�

� � � � � � �� � � � �

�

�

� � � � � � �� � � � �

� FCI code efficiency X 4

 FCI code efficiency X 2
� FCI code

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(f) Water

�

� � � � � � � �� � � � �

�

�
� � � � � � �� � � � �

Figure 7-9: Modeled performance of software-extended schemes with code efficiency
improved by a factor of 2 and a factor of 4.

100

factor of 10 (squares).
The model predicts that a dedicated processor and limited directories are mutually

exclusive hardware acceleration techniques: the increase in performance achieved by
combining these two features never justifies their combined cost. In fact, EVOLVE
shows the only significant increase in performance generated by a second processor.
Chapter 8 discusses costless changes to the LimitLESS system that produce similar
gains in performance.

It is important to note that simply dedicating a processor to DirnH0SNB,ACK (repre-
sented by the unfilled circle at i = 0) does not produce a system that achieves the same
performance as the Alewife DirnH5SNB (represented by the unfilled triangle at i = 5).
For all of the benchmarks, the code efficiency on the two processor systems must reach
a factor of about 10 in order to achieve comparable performance.

In practice, it is difficult to implement such fast memory-system software without
seriously sacrificing the quality of abstraction, and therefore flexibility. Dual processor
systems require a combination of special processor mechanisms implemented specifi-
cally for memory-system software and either hand-tuned code or a completely new type
of compilation technology.

Up to this point, the analysis of dual processor systems has assumed that all of
the DirnH0SNB,ACK implementations take advantage of Alewife’s optimization for purely
intranode accesses. (See Section 3.1.) The filled triangle, circle, and square on the
graphs in Figure 7-10 show the effect of removing this optimization from each of the
proposed systems. The model predicts that three out of the six benchmarks would
perform significantly worse without this optimization. Thus, dual processor systems are
extremely sensitive to the efficiency of the memory system software, especially when
the software impacts purely intranode accesses.

7.4.4 Network Speed

What range of operating conditions require the acceleration afforded by hardware direc-
tories or by a dual processor architecture? One of the key parameters of a multiprocessor
architecture is the network speed, measured by the latency of internode communication.
In the Alewife system, the network latency is about the same order of magnitude as the
hardware memory access time. Figure 7-11 presents graphs that show the relationship
between network speed and software-extended systems.

The model adjusts network latency by multiplying the average remote access latency
(Tr,hw) by factors of 5, 10, 20, and 100. The top curve in each graph shows the predictions
for the base system, and the key indicates the base value of Tr,hw. High-performance
multiprocessors should have network latencies close to or faster than Alewife’s; com-
munication in networks of workstations is between 20 and 100 times slower than in
Alewife. The new adjustment constitutes a major — and unvalidated — change in the
model! Thus, the graphs certainly do not predict performance accurately, but they do
show the relative importance of different parameters of the model .

For all of the benchmarks, the relative benefit of the hardware directory pointers
decreases as network latency increases. This trend indicates that hardware acceleration
is not useful for systems with slow networks. In fact, the curves in Figure 7-11 indicate

101

� Two Processors, Efficiency X 10

 Two Processors
� Single Processor + CMMU

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(a) Traveling Salesman Problem (TSP)

�

� � � � � � � � �� � � � �

�

�

�

� � � � � � � �� � � � �

� Two Processors, Efficiency X 10

 Two Processors
� Single Processor + CMMU

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(b) Adaptive Quadrature (AQ)

�
� � � � � � � � �� � � � �

�

�

�

� � � � � � � �� � � � �

� Two Processors, Efficiency X 10

 Two Processors
� Single Processor + CMMU

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(c) Static Multigrid (SMGRID)

�

�

� � � � � � � �� � � � �

�

�

�

�

� � � � � � �� � � � �

� Two Processors, Efficiency X 10

 Two Processors
� One Processor + CMMU

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(d) Genome Evolution (EVOLVE)

��
� � � � � � � �� � � � �

�

�
�

�

� � � �

� � �� � � � �

� Two Processors, Efficiency X 10

 Two Processors
� Single Processor + CMMU

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(e) MP3D

��

� � � � � � � �� � � � �

�

��

�

� � � � � � �� � � � �

� Two Processors, Efficiency X 10

 Two Processors
� Single Processor + CMMU

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(f) Water

�� � � � � � � � �� � � � �

�

�
�

�
� � � � � � �� � � � �

Figure 7-10: Modeled performance of software-extended schemes with three different
architectures. Solid symbols show the performance of the zero-pointer scheme without
hardware support for purely intranode accesses.

102

that a software-only directory does not seriously impact performance when remote access
latencies are high.

Of course, the graphs also show that as the network latency increases, performance
decreases to an unacceptable level. However, the model’s predictions about absolute
performance are predicated on a very specific memory hierarchy: namely, one that
performs 16-byte transfers to fetch data into 64 Kbyte caches. Actual systems with
long network latencies must transfer much larger blocks of data in order to amortize the
network latency. If such systems can tolerate long communication delays, they should
also be able to tolerate the extra processing required by software-only directories.

For systems with slow networks, software-only directories (or even completely soft-
ware distributed shared memory) should provide reasonable alternatives for implement-
ing shared memory. This conclusion leads to an interesting scheme for using the flexible
coherence interface to implement a range of memory systems. Section 8.5 describes this
scheme.

7.4.5 Protocol Implementation Details

This section examines the effects of a number of details of coherence protocol implemen-
tation. These details tend to have only a minor impact on the cost and the performance of
software-extended systems. Although the conclusions are not terribly surprising, this in-
vestigation shows that the model is useful for understanding both important architectural
mechanisms and the inner workings of a system.

Pointer reset Alewife’s pointer reset feature allows the software to choose to reset
the hardware directory pointers. This mechanism allows the system to avoid i=(i +
1) interrupts caused by directory overflow events on a memory block, after the first
such event. Figure 7-12 shows the effects of this feature. The curves marked with
unfilled symbols show that when trap latency is low, the pointer reset feature improves
performance only slightly: the 6% improvement for DirnH2SNB running EVOLVE is
the largest in any of the graphs. The curves with filled symbols show that resetting the
directory is more important when trap latency is high. When software handling takes a
long time, it is important to avoid as many interrupts as possible.

Hardware transmit Figure 7-13 shows the performance benefit of Alewife’s feature
that allows the hardware to transmit read-only copies of data in parallel with the associ-
ated software handling. (DirnH0SNB,ACK can not use this feature.) Since this feature is a
prerequisite for pointer reset, the curves marked with circles show the model’s prediction
for systems without either the hardware transmit or the pointer reset mechanism.

Software-extended architectures with longer trap latencies benefit from transmitting
data in hardware, because the feature eliminates the need for many interrupts. The
curves marked with filled symbols show the performance improvement when the trap
latency is 1000 cycles. With the exception of AQ, all of the benchmarks realize improved
performance, sometimes even when the number of hardware pointers is large.

103

� remote latency = 55
� remote latency X 5

 remote latency X 10
� remote latency X 20
� remote latency X 100

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(a) Traveling Salesman Problem (TSP)

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

� � � � � � � � �� � � � �

� remote latency = 59
� remote latency X 5

 remote latency X 10
� remote latency X 20
� remote latency X 100

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(b) Adaptive Quadrature (AQ)

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

�
� � � � � � � �� � � � �

� � � � � � � � �� � � � �

� remote latency = 52
� remote latency X 5

 remote latency X 10
� remote latency X 20
� remote latency X 100

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(c) Static Multigrid (SMGRID)

�

�

� � � � � � �� � � � �

�

�
� � � � � � �� � � � �

�

� � � � � � � �� � � � �

� � � � � � � � �� � � � �

� remote latency = 54
� remote latency X 5

 remote latency X 10
� remote latency X 20
� remote latency X 100

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(d) Genome Evolution (EVOLVE)

�

�

� � � �

� � �� � � � �

�

�

� � � �

� � �� � � � �

�

�
� � � �

� � �� � � � �

� � � � � � � � �� � � � �

� remote latency = 85
� remote latency X 5

 remote latency X 10
� remote latency X 20
� remote latency X 100

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(e) MP3D

�

�

� � � � � � �� � � � �

�

�
� � � � � � �� � � � �

� � � � � � � � �� � � � �
� � � � � � � � �� � � � �

� remote latency = 60
� remote latency X 5

 remote latency X 10
� remote latency X 20
� remote latency X 100

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(f) Water

�

�
� � � � � � �� � � � �

�

�
� � � � � � �� � � � �

�

�
� � � � � � �� � � � �

�
� � � � � � � �� � � � �

Figure 7-11: Modeled performance of software-extended schemes with increasing net-
work latency. The base remote latencies are experimental values from DirnHNBS

�

simulations.

104

� With Pointer Reset, Traps @ 1

 Without Pointer Reset, Traps @ 1
� With Pointer Reset, Traps @ 1000
� Without Pointer Reset, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(a) Traveling Salesman Problem (TSP)

�

� � � � � � � �� � � � �

�

�
� � � � � � �� � � � �

�

�
� � � � � � �� � � � �

� With Pointer Reset, Traps @ 1

 Without Pointer Reset, Traps @ 1
� With Pointer Reset, Traps @ 1000
� Without Pointer Reset, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(b) Adaptive Quadrature (AQ)

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

� With Pointer Reset, Traps @ 1

 Without Pointer Reset, Traps @ 1
� With Pointer Reset, Traps @ 1000
� Without Pointer Reset, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(c) Static Multigrid (SMGRID)

�

�

� � � � � � �� � � � �

�

�

�
� � � � � �� � � � �

�

�

�
�

� � � � �� � � � �

� With Pointer Reset, Traps @ 1

 Without Pointer Reset, Traps @ 1
� With Pointer Reset, Traps @ 1000
� Without Pointer Reset, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(d) Genome Evolution (EVOLVE)

�

�

� � � �

� � �� � � � �

�

�

�
�

� �

�
� �� � � � �

�

�

�
�

�

�

�
� ��

� �
�

�

� With Pointer Reset, Traps @ 1

 Without Pointer Reset, Traps @ 1
� With Pointer Reset, Traps @ 1000
� Without Pointer Reset, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(e) MP3D

�

�

� � � � � � �� � � � �

�

�

�
� � � � � �� � � � �

�

�

�
� � � � � �� � � � �

� With Pointer Reset, Traps @ 1

 Without Pointer Reset, Traps @ 1
� With Pointer Reset, Traps @ 1000
� Without Pointer Reset, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(f) Water

�

�
� � � � � � �� � � � �

�

�

�
� � � � � �� � �

� �

�

�

� � � � � � �� � �

� �

Figure 7-12: Modeled performance of software-extended schemes with and without the
software optimization that resets the hardware directory pointers after storing them in
local memory.

105

The contribution of pointer reset is a little less than half of the total performance
improvement derived from the two mechanisms combined. This observation is true
because the hardware reset feature removes all of the directory-overflow interrupts from
the average memory access time (Ta), while the pointer reset option eliminates the need
for only i=(i+ 1) of the interrupts on responding nodes.

Local bit The local bit feature in Alewife provides an extra one-bit pointer in every
directory entry that is used exclusively for intranode accesses. This feature is useful
primarily because it ensures that directory overflows will never occur on intranode
memory accesses, thereby simplifying the design of the CMMU and the memory-
system software. In addition, this bit corresponds to the amount of mechanism required
for DirnH0SNB,ACK to optimize purely intranode memory accesses.

Figure 7-14 shows that the feature is very important for the software-only directory.
(The DirnH0SNB,ACK circles in the figure correspond to the filled triangles in Figure 7-10.)
The local bit also has a slight performance benefit for the other protocols, because it
provides one additional pointer when local nodes are members of important worker sets.
Thus, the local-bit shifts the SMGRID and EVOLVE performance curves to the left by
one hardware pointer.

7.5 Node Architecture

The previous section used the worker-set model to predict the performance of software-
extended systems as a function of features of the memory system. This section extends
the scope of the investigation by exploring the node architecture in parallel systems.
First, the model predicts the change in performance when using superscalar processors,
as opposed to Alewife’s Sparcle (single-issue RISC) processors. Then, the model shows
the impact of building a machine with several processors per node, rather than a single
processor per node.

7.5.1 Superscalar Processors

Throughout the preceding analysis, all time intervals were measured in units of processor
clock cycles. Since Alewife has a single-issue RISC processor, a clock cycle is equal
to the time required to retire each non-memory, integer instruction. Superscalar proces-
sors with more functional units and higher execution bandwidths suffer from intrinsic
hardware latency in a memory system more than Alewife’s conventional processors.

The worker-set model can estimate the interaction between software-extended shared
memory and superscalar processors by changing time units. Let the processor bandwidth
(b) be equal to the peak number of instructions that can be retired per cycle. Multiplying
the model’s time interval by the inverse of this bandwidth (1=b) approximates processors
that can retire b instructions per cycle. This transformation is equivalent to multiplying
the hardware memory access latencies (Tl and Tr,hw) by the processor bandwidth (b). No
other latencies need to be modified: assuming a well-engineered memory hierarchy, the
effective cache hit latency (Th) would be equal to the new time interval; and assuming

106

� With HW Data Transmit, Traps @ 1

 Without HW Data Transmit, Traps @ 1
� With HW Data Transmit, Traps @ 1000
� Without HW Data Transmit, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(a) Traveling Salesman Problem (TSP)

�

� � � � � � � �� � � � �

�

�
� � � � � � �� � � � �

�

�
�

� �
� � � �� � � �

�

� With HW Data Transmit, Traps @ 1

 Without HW Data Transmit, Traps @ 1
� With HW Data Transmit, Traps @ 1000
� Without HW Data Transmit, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(b) Adaptive Quadrature (AQ)

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

� With HW Data Transmit, Traps @ 1

 Without HW Data Transmit, Traps @ 1
� With HW Data Transmit, Traps @ 1000
� Without HW Data Transmit, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(c) Static Multigrid (SMGRID)

�

�

� � � � � � �� � � � �

�

�

�
� � � � � �� � � � �

�

�

�
�

�
� � � �� � � � �

� With HW Data Transmit, Traps @ 1

 Without HW Data Transmit, Traps @ 1
� With HW Data Transmit, Traps @ 1000
� Without HW Data Transmit, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(d) Genome Evolution (EVOLVE)

�

�

� � � �

� � �� � � � �

�

�

�
�

� �

�
� �� � � � �

�
�

�
�

�

�

�

�
��

� �

�
�

� With HW Data Transmit, Traps @ 1

 Without HW Data Transmit, Traps @ 1
� With HW Data Transmit, Traps @ 1000
� Without HW Data Transmit, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(e) MP3D

�

�

� � � � � � �� � � � �

�

�

�
� � � � � �� � � � �

�

�

�

� � � � � �� � � � �

� With HW Data Transmit, Traps @ 1

 Without HW Data Transmit, Traps @ 1
� With HW Data Transmit, Traps @ 1000
� Without HW Data Transmit, Traps @ 1000

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(f) Water

�

�
� � � � � � �� � � � �

�

�

�
� � � � � �� � �

� �

�

�

� � � � � � ��
�

�

� �

Figure 7-13: Modeled performance of software-extended schemes with and without the
optimization that allows hardware to transmit read-only copies of data before invoking
software handlers.

107

� With Local Bit

 Without Local Bit

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(a) Traveling Salesman Problem (TSP)

�

� � � � � � � �� � � � �

� With Local Bit

 Without Local Bit

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(b) Adaptive Quadrature (AQ)

�

� � � � � � � �� � � � �

� With Local Bit

 Without Local Bit

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(c) Static Multigrid (SMGRID)

�

�

� � � � � � �� � � � �

� With Local Bit

 Without Local Bit

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(d) Genome Evolution (EVOLVE)

�

�

� � � �

� � �� � � � �

� With Local Bit

 Without Local Bit

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(e) MP3D

�

�

� � � � � � �� � � � �

� With Local Bit

 Without Local Bit

||0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

0 2 4 6 8 16 64
Number of Hardware Pointers

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

(f) Water

�

�
� � � � � � �� � � � �

Figure 7-14: Modeled performance of software-extended schemes with and without the
hardware optimization that employs a special one-bit directory pointer for the local node.

108

appropriate compilation technology, protocol software handling (represented by the tx
parameters) would speed up with the processors.

Figure 7-15 shows the predicted behavior of the system with superscalar processors
running the six benchmark applications. As in the previous sections, the horizontal axis
of the graph shows the number of hardware pointers in the software-extended coherence
scheme. The vertical axis shows the instructions per cycle achieved for each node
architecture, calculated as utilization (Unfb) multiplied by the processor bandwidth (b).
This calculation makes the optimistic assumption that the benchmarks exhibit enough
instruction-level parallelism to fill the functional units of any superscalar processor, up
to 8-way instruction issue. Conversely, the model makes the pessimistic assumption that
the memory system is the performance bottleneck. Each line on the graph shows the
performance for a different processor bandwidth value.

The results show that all of the applications (except MP3D) could benefit from
superscalar processors. However, just as single-issue processors will not achieve 100%
utilization, superscalar processors will not achieve their peak instruction issue rate. Due
to the impact of memory latency and bandwidth limitations, doubling the processor
bandwidth never doubles actual performance. Certainly, increasing intranode memory
bandwidth along with processor bandwidth would help ameliorate some of this effect.

In addition, hardware support for shared memory (in the form of limited direc-
tories) proves to be extremely important when a system has superscalar processors.
Even though multiple-issue processors might be able to execute software-extension
code swiftly, the utilization penalty of stealing processor cycles increases with pro-
cessor bandwidth. While the relative performance difference between DirnH0SNB,ACK

and DirnHNBS
�

decreases as processor bandwidth increases, the absolute difference in
performance increases with processor bandwidth.

7.5.2 Multiple Processors per Node

Another parameter in multiprocessor node design involves the number of processors
per node. The nodes of a number of existing parallel architectures consist of several
processors and memory modules connected by a bus [55, 79, 23]. These clustered nodes
communicate over a higher-level interconnection network. From the point of view of the
memory system, implementing multiple processors per node has two beneficial effects
and one detrimental effect. First, the data locality changes: since the amount of memory
in each node increases with the number of processors, a larger percentage of an applica-
tion’s data resides in each node, increasing the ratio of local to remote accesses. Second,
the worker-set profiles collapse: each “worker” corresponds to several processors, so
the worker-set sizes become smaller (assuming proper task and data placement). This
effect reduces the demands for coherence directory pointers. The locality and worker-
set effects decrease the demands on the memory system and interconnection network,
thereby improving performance.

Third, the local and remote memory access times increase. No matter how well a
bus is engineered, physical limitations make a multidrop bus slower than a one-to-one
link between a processor and a local memory module. In addition, contention for shared
memory resources decreases the memory bandwidth available to each processor. The

109

� processor bandwidth = 8

 processor bandwidth = 4
� processor bandwidth = 2
� processor bandwidth = 1

||0

|1

|2

|3

|4

|5

|6

|7

|8

0 2 4 6 8 16 64
Number of Hardware Pointers

In
st

ru
ct

io
n

s
p

er
 C

yc
le

(a) Traveling Salesman Problem (TSP)

�

� � � � � � � �� � � � �

�
� � � � � � � �� � � � �

�
� � � � � � � �� � � � �

� processor bandwidth = 8

 processor bandwidth = 4
� processor bandwidth = 2
� processor bandwidth = 1

||0

|1

|2

|3

|4

|5

|6

|7

|8

0 2 4 6 8 16 64
Number of Hardware Pointers

In
st

ru
ct

io
n

s
p

er
 C

yc
le

(b) Adaptive Quadrature (AQ)

�

� � � � � � � �� � � � �

�
� � � � � � � �� � � � �

� � � � � � � � �� � � � �

� processor bandwidth = 8

 processor bandwidth = 4
� processor bandwidth = 2
� processor bandwidth = 1

||0

|1

|2

|3

|4

|5

|6

|7

|8

0 2 4 6 8 16 64
Number of Hardware Pointers

In
st

ru
ct

io
n

s
p

er
 C

yc
le

(c) Static Multigrid (SMGRID)

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

�

� � � � � � � �� � � � �

� processor bandwidth = 8

 processor bandwidth = 4
� processor bandwidth = 2
� processor bandwidth = 1

||0

|1

|2

|3

|4

|5

|6

|7

|8

0 2 4 6 8 16 64
Number of Hardware Pointers

In
st

ru
ct

io
n

s
p

er
 C

yc
le

(d) Genome Evolution (EVOLVE)

�

�

� � � �

� � �� � � � �

�
�

� � � �
� � �� � � � �

�
�

� � � �
� � �� � � � �

� processor bandwidth = 8

 processor bandwidth = 4
� processor bandwidth = 2
� processor bandwidth = 1

||0

|1

|2

|3

|4

|5

|6

|7

|8

0 2 4 6 8 16 64
Number of Hardware Pointers

In
st

ru
ct

io
n

s
p

er
 C

yc
le

(e) MP3D

�
� � � � � � � �� � � � �

�
�

� � � � � � �� � � � �

�
�

� � � � � � �� � � � �

� processor bandwidth = 8

 processor bandwidth = 4
� processor bandwidth = 2
� processor bandwidth = 1

||0

|1

|2

|3

|4

|5

|6

|7

|8

0 2 4 6 8 16 64
Number of Hardware Pointers

In
st

ru
ct

io
n

s
p

er
 C

yc
le

(f) Water

�

�
� � � � � � �� � � � �

�

� � � � � � � �� � � � �

�
� � � � � � � �� � � � �

Figure 7-15: Modeled performance of software-extended schemes with superscalar
processors. Processor bandwidth indicates the peak number of instructions per cycle.

110

results below show that this effect can cancel any improvements in data locality.
In order to separate the effects of data locality and access time, first consider a

hypothetical system that clusters processors without any additional intranode latency or
contention. This type of architecture can be modeled by accounting for the changes in
locality (modifying l and r) and in worker-set profiles (scaling theRk andWk sequences).

Figure 7-16 shows the predicted performance for each of the six benchmarks, running
on this hypothetical system. The horizontal axis shows the number of processors per
node, and the vertical axis shows processor utilization. The general trend in each graph
is for the performance of all of the schemes (except for DirnH0SNB,ACK) to approach
the performance of DirnHNBS

�
as the number of processors per node increases. This

trend is caused by the collapsing worker-sets. The (very) slight increase in DirnHNBS
�

performance is due to the increase in the local to remote access ratio.
With at least two hardware pointers (DirnH2SNB), the performance benefit of multiple

processors is small, except when running the EVOLVE application. Collapsing the large
worker-sets in EVOLVE dramatically improves the performance of all of the software-
extended schemes. With only two processors per node, DirnH5SNB performs as well as
DirnHNBS

�
. On the other hand, DirnH0SNB,ACK improves only slightly: software-only

directories hamper performance even with multiple processors per node.
While these results make clustered nodes look moderately promising, they do not take

into account the effect of increased memory access time. The worker-set model can help
understand this effect by quantifying how much latency can increase before it cancels
the benefits of multiple processors per node. A good metric for examining the trade-off
is the latency equivalent, the increase in latency that causes a clustered-node architecture
to achieve exactly the same performance as an architecture with single-processor nodes.

For example, Figure 7-16(e) shows that MP3D, running on a system with DirnH5SNB,
will exhibit a processor utilization of 0.36 with one processor per node and 0.38 with eight
processors per node. However, solving the worker set model for the latency equivalent
shows that if the local memory access latency increases by 61% (latency equivalent =
1.61), the system with eight processors per node achieves a processor utilization of 0.36,
the same as the architecture with single-processor nodes. Building a node with eight
processors rather than with one processor would surely increase local memory latency
by more than 61%, so a system with single-processor nodes would run MP3D faster than
a system with clustered nodes.

Figure 7-17 shows the latency equivalents for the benchmarks running on the gamut
of node architectures. The vertical axis of these graphs plots the latency equivalent for
each configuration on a logarithmic scale. Figure 7-17(e) shows the latency equivalent
described above: the triangle at (8; 1:61) indicates that for eight processors per node, a
factor of 1.61 increase in latency negates the benefits of multiple processors per node.

For DirnH2SNB, DirnH5SNB, and DirnHNBS
�

, the latency equivalent remains below
a factor of 2.5 for all of the benchmarks except EVOLVE. This evidence indicates that
clustered nodes would have to be engineered extremely well to beat the performance
of single-processor nodes. Since single-processor nodes are easier to build and permit
more modular packaging than clustered nodes, parallel architectures with DirnH2SNB (or
a higher-performance protocol) should use single-processor nodes.

This conclusion must be weakened when considering applications like EVOLVE.

111

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (a) Traveling Salesman Problem (TSP)

 Processors per Node

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n DirnHNBS-

 DirnH5SNB
 DirnH2SNB
 DirnH1SNB,ACK
 DirnH0SNB,ACK

� � � � � � � �� � � � � � � �

� � � � � � � �

�
� � � � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (b) Adaptive Quadrature (AQ)

 Processors per Node

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n DirnHNBS-

 DirnH5SNB
 DirnH2SNB
 DirnH1SNB,ACK
 DirnH0SNB,ACK

� � � � � � � �� � � � � � � �

� � � � � � � �

�
� � � � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (c) Static Multigrid (SMGRID)

 Processors per Node

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n DirnHNBS-

 DirnH5SNB
 DirnH2SNB
 DirnH1SNB,ACK
 DirnH0SNB,ACK

� � � � � � � �� � � � � � � �

�

� � � � � � �

�

� � � � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (d) Genome Evolution (EVOLVE)

 Processors per Node

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n DirnHNBS-

 DirnH5SNB
 DirnH2SNB
 DirnH1SNB,ACK
 DirnH0SNB,ACK

� � � � � � � �

�

� � � � � � �

�
� �

�
�

� � �

�

� � � � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (e) MP3D

 Processors per Node

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n DirnHNBS-

 DirnH5SNB
 DirnH2SNB
 DirnH1SNB,ACK
 DirnH0SNB,ACK

� � � � � � � �
� � � � � � � �

�

� � � � � � �

� � � � � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0

 (f) Water

 Processors per Node

 P
ro

ce
ss

o
r

U
ti

liz
at

io
n DirnHNBS-

 DirnH5SNB
 DirnH2SNB
 DirnH1SNB,ACK
 DirnH0SNB,ACK

� � � � � � � �� � � � � � � �

�

� � � � � � �

�
� � � � � � �

Figure 7-16: Modeled performance of software-extended schemes with multiple pro-
cessors per node, assuming constant intranode latency and contention.

112

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|20

|30

 (a) Traveling Salesman Problem (TSP)

 Processors per Node

 L
at

en
cy

 E
q

u
iv

al
en

t

 DirnH0SNB,ACK
 DirnH1SNB,ACK
 DirnH2SNB
 DirnH5SNB
 DirnHNBS-

�

� � � � � � �

�
� � � � � � �

� � � � � � � �� � � � � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|20

|30

 (b) Adaptive Quadrature (AQ)

 Processors per Node

 L
at

en
cy

 E
q

u
iv

al
en

t

 DirnH0SNB,ACK
 DirnH1SNB,ACK
 DirnH2SNB
 DirnH5SNB
 DirnHNBS-

�

� � � � � � �

� � � � � � � �

� � � � � � � �
� � � � � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|20

|30

 (c) Static Multigrid (SMGRID)

 Processors per Node

 L
at

en
cy

 E
q

u
iv

al
en

t

 DirnH0SNB,ACK
 DirnH1SNB,ACK
 DirnH2SNB
 DirnH5SNB
 DirnHNBS-

�

�

� � � � � �

�

� � � � � � �

�
� � � � � � �

� � � � � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|20

|30

 (d) Genome Evolution (EVOLVE)

 Processors per Node

 L
at

en
cy

 E
q

u
iv

al
en

t

 DirnH0SNB,ACK
 DirnH1SNB,ACK
 DirnH2SNB
 DirnH5SNB
 DirnHNBS-

�

�
�

� � � �
�

�

�

�

�
�

� � �

�

� � � � � � �

� � � � � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|20

|30

 (e) MP3D

 Processors per Node

 L
at

en
cy

 E
q

u
iv

al
en

t

 DirnH0SNB,ACK
 DirnH1SNB,ACK
 DirnH2SNB
 DirnH5SNB
 DirnHNBS-

�

� � � � � � �

�

� � � � � � �

�
�

�
� � � � �

�
�

�
� � � � �

�

�

�

�

|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|20

|30

 (f) Water

 Processors per Node

 L
at

en
cy

 E
q

u
iv

al
en

t

 DirnH0SNB,ACK
 DirnH1SNB,ACK
 DirnH2SNB
 DirnH5SNB
 DirnHNBS-

�

�
� � � � � �

�

�
�

� � � � �

�
� � � �

�
� �

� � � � � � � �

Figure 7-17: Latency equivalent, the increase in latency that causes a system with
multiple processors per node to perform the same as a system with single-processor
nodes.

113

Figure 7-17(d) shows that the performance improvements for EVOLVE promised by
Figure 7-16(d) can be realized with ordinary engineering techniques. The high latency
equivalents indicate that it would be easy to build a clustered-node system that outper-
forms a single-node system. If EVOLVE is a typical application, then architectures could
improve performance by implementing multiple processors per node, thereby collapsing
worker sets.

DirnH0SNB,ACK and DirnH1SNB,ACK could also benefit from clustered nodes. However,
an architect would need strong motivation to implement one of these inexpensive proto-
cols, yet increase the system cost by implementing multiple processors per node. One
such design might use DirnH0SNB,ACK to connect preexisting bus-based multiprocessors
into a larger system.

7.6 The Workload Space

This section drives the model with completely synthetic inputs in order to investigate
the relationship between an application’s worker-set behavior and the performance of
software-extended systems. This study is intended to give some insight into the behavior
of shared memory, rather than making any specific predictions.

The synthetic inputs are primarily a composite of the six benchmark applications.
The hit ratios and access latencies in the input set are held constant at values that are
similar to those found in the benchmarks. The worker-set inputs simulate a bimodal
distribution of data objects: one type of data object has a small worker-set size, and the
other type of data object is shared by every node in the system. Since the workload is
completely synthetic, it is easy to model 256 processors, rather than 64.

Three variables in the worker-set inputs are changed. First, the size of the smaller
worker sets ranges from one node to P . The default worker-set size is 5. Second, the
percentage of data objects with the small worker-set size varies from 0% to 100%. The
default percentage of small worker sets is 50%. Third, the percentage of data objects that
are modified (as opposed to read-only) varies from 0% to 100%. The default percentage
of written objects is 50%.

The data access model requires a bit of explanation. If a data object is written and
its worker-set size is S, then the worker-set histograms contain exactly S reads and one
write for that object. Consider two classes of data objects, one with worker-set size Sl
and the other with worker-set size Sb, where Sl < Sb. If both of these classes have the
same percentage of modified objects, then the class with worker-set size Sl will have a
higher write:read ratio than the class with worker-set size Sb.

This effect is visible in Figure 7-18. The figure projects a three-dimensional plot
with the number of hardware pointers and the size of the smaller worker set on the
horizontal axes, and processor utilization on the vertical axis. The axis with the number
of pointers has a similar scale to the two-dimensional plots in the previous sections. Low
numbers of hardware pointers are plotted on a linear scale; high numbers are plotted
on a logarithmic scale. The line on the upper right-hand side of this graph (and of the
other two graphs in this section) shows the DirnHNBS

�
performance for the synthetic

workload. All of the points on this line correspond to a processor utilization of 0.58.

114

 0
 2

 4
 6

 8
 16

 64
256

256
 64

 16
 8

 6
 4

 2
 0

0

0.2

0.4

0.6

0.8

1

Number of PointersWorker-Set Size

P
ro

ce
ss

or
 U

til
iz

at
io

n

Figure 7-18: Dependence of performance on worker-set size and hardware directory
size.

There are two plateaus in the graph: the lower plateau in the foreground of the plot
corresponds to the performance of software-extended systems that implement at least
two directory pointers in hardware. The cliff in front of this plateau indicates the lower
performance of DirnH0SNB,ACK and DirnH1SNB,ACK . The second plateau corresponds to
the protocols that implement enough hardware pointers to contain the small worker
sets. A more complicated worker-set profile would create one plateau for every different
worker-set size.

The cliff at the far end of the higher plateau indicates the jump in performance
between the software-extended systems and DirnHNBS

�
. This cliff is caused by the data

objects that are shared by every processor in the system. The cliff between the two
plateaus indicates the increase in performance achieved by processing all of the small
worker sets in hardware. The height of this cliff depends on the write:read ratio. Thus,
the cliff is higher on the left side of the graph where worker sets are small than on the
right side of the graph.

Figure 7-19 shows the effect of the write:read ratio more effectively, because it
holds all worker-set variables constant, except the percentage of modified data objects
(measured by the left axis). The cliff between the two plateaus is now parallel to the
y-axis, because the worker set is fixed at 5. For the same reason, the 50% curve in this
figure is exactly the same as the curve in Figure 7-18 with a worker-set size equal to 5.

Both DirnH0SNB,ACK and DirnH1SNB,ACK improve with lower percentages of modified
data, because these protocols handle the invalidation process entirely in software. The
DirnH1SNB,ACK curve is particularly dramatic: at 0% data objects modified, the protocol
performs almost as well as DirnH2SNB. On this side of the plot, the only difference

115

 0
 2

 4
 6

 8
 16

 64
256

 0%

 20%

 40%

 60%

 80%

100%
0

0.2

0.4

0.6

0.8

1

Number of Pointers% Data Blocks Modified

P
ro

ce
ss

or
 U

til
iz

at
io

n

Figure 7-19: Dependence of performance on percentage of modified data and hardware
directory size.

between the two schemes is the extra hardware directory pointer. At 100% data objects
modified, DirnH1SNB,ACK performs approximately the same as DirnH0SNB,ACK , because
processing invalidations becomes the protocols’ dominant activity.

Figure 7-20 shows the effect of the balance of the two worker-set sizes. The left
axis now shows the percent of the data objects that are shared by all of the nodes in the
system, as opposed to the data objects shared by only 5 nodes. Again, the 50% curve in
this graph is the same as the curve in Figure 7-18 with worker-set size equal to 5, and
the same as the 50% curve in Figure 7-19.

The figure shows that when few data objects are widely-shared, there is a steep cliff
between the software-extended systems with too few pointers and the ones with enough
pointers to hold the smaller worker set. The cliff is steep, because the second plateau
reaches the performance of DirnHNBS

�
.

The height of the cliff seems to belie the claim that software-extended systems
offer a graceful degradation in performance. This claim remains true for most real
workloads, which have a more complicated range of worker-set sizes compared to the
simple bimodal distribution used to generate this plot. Even with a bimodal distribution,
the performance of the DirnHXSNB protocols should still be higher than the corresponding
limited directories (DiriHNBS

�
), because the software-extended directories do not suffer

from pointer thrashing.
When most data objects are widely-shared, the cliff disappears and the two plateaus

merge together at a relatively low processor utilization. Given this type of worker-set
behavior, none of the software-extended protocols perform well compared to DirnHNBS

�
.

The next chapter describes three techniques that use the flexibility of the software-

116

 0
 2

 4
 6

 8
 16

 64
256

100%

 80%

 60%

 40%

 20%

 0%
0

0.2

0.4

0.6

0.8

1

Number of Pointers% Data Shared by All Nodes

P
ro

ce
ss

or
 U

til
iz

at
io

n

Figure 7-20: Dependence of performance on mix of worker-set sizes and hardware
directory size.

extended design to help eliminate the problems caused by widely-shared data.

7.7 Conclusions and an Open Question

The model answers a number of questions about the sensitivity of software-extended
systems to architectural mechanisms and to application workloads. If desired, this
analytical tool may be expanded to incorporate a wider range of software-extended
systems. The conclusions may be divided roughly into those that are valid for software-
extended systems that incorporate a limited hardware directory, and those that are valid
for the software-only directory architecture.

Given an appropriate number of hardware pointers, software-extended systems are
not sensitive to an order of magnitude difference in trap latency, but do require a better
implementation of interrupts than is provided by most popular operating systems. Adding
hardware directories to a system buys insensitivity to memory-system code efficiency,
thereby encouraging flexibility. Adding an inexpensive mechanism that streamlines
intranode accesses is useful, but not essential. Hardware directories and dedicated
memory-system processors are mutually exclusive: having one obviates the need for the
other. Finally, hardware directories are useless in systems with extremely slow networks.

Implementing software-only directories is more problematic, even when the system
dedicates processors for the exclusive use of the memory system. The performance
of such systems depends strongly on the efficiency of the memory-system software
and on mechanisms that streamline intranode accesses. This sensitivity stems from the

117

fact that these systems expend hardware on all memory accesses, instead of accelerating
common case accesses. Contrary to the conventional wisdom, the sensitivity of software-
only schemes may result in fewer abstractions, and therefore less flexibility in actual
implementations. Without the development of a new compilation strategy, protocols for
software-only directories will have to be painstakingly hand-coded.

One important metric neglected by the analytical model is the cost of software-
extended systems, in terms of both component price and design time: is the cost of
DirnHXSNB close to a standard processor/MMU combination, or do software-extended
systems cost about the same as a dual-processor system? There are arguments for both
comparisons. Certainly, a typical virtual memory system requires a unit with associative
memory, extra memory for page tables, and a processor interface. On the other hand,
the first iteration of the A-1000 CMMU required more design time and gates than did
Sparcle, the A-1000 processor. An evaluation of the costs involved in building each type
of shared-memory system will play a critical role in determining the implementation
(and even the existence) of large-scale, shared memory systems.

118

Chapter 8

Smart Memory Systems

The philosophy of shared memory is to make the application programmer’s job as easy as
possible. Given this goal, the memory systems described in the previous chapters achieve
only partial success. Although the basic DirnHXSY,A protocols do provide a convenient
programming model at reasonable cost, they do nothing to help the programmer make
the most efficient use of a multiprocessor.

Implementing part of a memory system in software presents an opportunity for
the system designer to do much more for application programmers. Incorporating
intelligence into the software can allow the system to improve application performance
with and without the help of the programmer. This chapter presents three methods for
building this kind of smart memory system: adaptive broadcast protocols; LimitLESS
profiling; and a profile-detect-optimize scheme. The following research is not intended
to be a definitive work on the topic of software-enhanced memory systems; rather, it
attempts to indicate directions and to provide motivation for future investigation.

8.1 Challenges

Two interwoven challenges emerge when trying to build a smart memory system: collec-
tion of performance data and information feedback. Data collection refers to the ability
of a system to measure its own performance. If a measurement technique is to become
part of the permanent, everyday operation of a system, it must have low overhead in
terms of both computation and memory usage. That is, it must be simple. Expensive
and complicated measurements also have a place in the system, but they tend to be used
during the development phase of applications rather than as part of production versions.
In any case, the more overhead required by a measurement technique, the less it will be
used in practice.

Information feedback involves transforming measurements into performance im-
provement. By far, the most convenient time for providing feedback (for both the system
designer and the programmer) is on-line, during the actual operation of the system. In the
best scenario, a system can adapt to various memory access patterns while a program is
running. The better the performance improvement, the more complicated the measure-
ment, feedback, and optimization can be. However in most cases, memory systems with

119

latencies on the order of a microsecond require this kind of dynamic feedback mecha-
nism to be extraordinarily simple. Section 8.2 describes one technique for allowing a
software-extended memory system to adapt dynamically to program behavior.

Due to the short lengths of time involved, more complicated feedback must take
place during the development of an application. The general methodology requires the
programmer to put the system into a special state before running a program. While the
system runs the program, it profiles the execution, measuring and recording performance
data. At some point, the programmer requests the system to produce a report that
summarizes the gathered information. Typically, the production versions of applications
do not make use of a system’s profiling capability.

Unfortunately, this static feedback technique requires mechanisms to convert mea-
surements of the dynamic operation of the system into information about the program
itself. This conversion process requires cooperation between the compiler and the smart
memory system. Such cooperation is made difficult by dynamic data allocation and by
the aliasing problem.

Most programs use some form of dynamic data allocation, which prevents a compiler
(even in combination with a linker and loader) from knowing the actual memory addresses
of data objects. Thus, while a memory system can easily collect information that relates
memory addresses to data object behavior, it must feed the compiler information that
maps instructions (or program counters) to behavior. Section 8.3 describes a scheme
for Alewife that produces such a mapping. The compiler can then correlate instructions
with positions in a program’s source code, thereby completing the feedback loop.

When presented in an appropriate human-readable format, this type of information
is often helpful to the programmer. Information about the how a program uses shared
memory often indicates ways for a programmer to optimize the performance. Even so,
it is much more convenient for the programmer when the compiler and memory system
can combine to optimize performance automatically.

When a solution to the challenge of dynamic data allocation exists, the aliasing
problem still makes automatic feedback difficult: given a variable, it is usually not
possible for a compiler to track all of the accesses to the variable throughout a program.
Conversely, given an instruction that accesses memory, it is often impossible to determine
all of the variables that correspond to that access. Any completely automatic optimization
scheme must function in the absence of complete information about the mapping between
variables and program counters. Section 8.4 describes a system that addresses this
challenge by asking the programmer for just enough information to solve the aliasing
problem. After profiling and feedback steps, the system automatically performs safe
optimizations on the program. Such optimizations generally improve performance, and
never cause a program to produce the wrong results.

8.2 Adaptive Broadcast Protocols

The premise underlying the LimitLESS protocols states that most, but not all, data
objects are accessed by small worker sets. Consequently, the family of software-extended
memory systems provides graceful degradation in performance as the amount of widely-

120

shared data increases.
But how graceful? When transforming a memory block from Read-Only to Read-

Write state, both the DirnHNBS
�

and its naı̈ve DirnHXSNB extensions transmit one
invalidation and receive one acknowledgment message for every member of the worker
set. Thus, the time and communication bandwidth required for this transition grows
linearly with worker-set size. Although the constant factors are relatively low, especially
for the unscalable DirnHNBS

�
protocol, the invalidation process becomes a bottleneck

in systems with a large number of processors.
Software-extended systems provide an efficient alternative to this inherently se-

quential process. If the size of a memory block’s worker set exceeds a predetermined
threshold, then the software can choose to broadcast invalidation messages to every node
in the system (or to some appropriate subset of nodes). Such a policy caps the maximum
latency and bandwidth for the invalidation process. Furthermore, this adaptation to
widely-shared data is simple enough that it adds very little to memory access latency.

This strategy is very similar to the DiriHBS
�

protocols, except that the software
broadcast has far more available options. For example, the extension software can
choose a broadcast threshold that is significantly higher than the number of pointers
implemented in hardware. The software can also choose a broadcast algorithm that is
optimized for the exact size and topology of the a given system. A flexible choice of
threshold and algorithm should prove especially useful in multiprocessors that may be
logically partitioned into smaller virtual machines.

A broadcast protocol has an additional benefit to the DirnHXSNB protocols. If the
software decides to use a broadcast invalidation strategy for a memory block, then it
can conserve significant time and memory: subsequent interrupts caused by overflowing
the block’s directory entry may safely be ignored. No additional pointers need to be
recorded, because the next write will cause the data to be removed from every cache in
the system. In fact, if the directory hardware allows the software to disable the directory
overflow interrupt for a particular memory block (but not the associated trap-on-write),
the extension software can eliminate all of the overhead from subsequent directory
overflows.

Figure 8-1 shows the difference in performance between various protocol options
discussed above. The graph shows the performance of EVOLVE, with the broadcast
threshold on the ordinate and speedup on the abscissa. Since the DirnHNBS

�
protocol

has no broadcast threshold, its performance is shown as a horizontal line at the top of
the plot. Similarly, the line for the DirnH5SNB protocol appears at the bottom. Of the six
benchmark applications, EVOLVE provides the best case study due to the difference in
performance between DirnHNBS

�
and DirnH5SNB

1.
Due to its low constant factor in transmitting messages, Dir5HBS

�
(shown as a

horizontal, dotted line) achieves higher performance than any of the software-extended
schemes. This protocol performs worse than DirnHNBS

�
, because it uses a sequential

broadcast and transmits many more invalidations than necessary. Dir5H5SB, which
corresponds to the horizontal line just above DirnH5SNB, uses the same type of naı̈ve

1The values are slightly different than in Figure 6-2 due to several months of changes in the Alewife
kernel and compiler.

121

�

�

|

4
|

8
|

16
|

32
|

64

|0

|8

|16

|24

|32

|40

|48

|56

|64

 Broadcast Threshold (t)

 S
p

ee
d

u
p

 o
ve

r
S

eq
u

en
ti

al

 DirnHNBS-
 Dir5HBS-
 Dir5H5SBscale
 DirtH5SBscale,trap-off
 DirtH5SBscale
 Dir5H5SB
 DirnH5SNB

�

� �

�
��

�
�

�
�

Figure 8-1: Performance of EVOLVE, running on 64 simulated nodes with various
broadcast protocols.

broadcast, but implements it in software.
The dashed lines in the figure show the performance of the software-extended system

with a scalable broadcast scheme. This scheme uses active messages and a hierarchi-
cal algorithm to distribute invalidations to every cache in the system. The hardware
acknowledgment counter mechanism then tallies the corresponding acknowledgments
sequentially. When running on 64 NWO nodes, this strategy provides better performance
than several other software broadcast schemes that have been implemented. The hori-
zontal, dashed line shows the performance for a protocol called Dir5H5SBscale, a protocol
that performs a broadcast for all memory blocks that overflow their hardware directory
entry. This protocol is a software-extended version of Dir5HBS

�
, and allows EVOLVE to

perform better than with DirnH5SNB. In order to investigate a realistic implementation of
Dir5H5SBscale, the simulator is configured so that the processor never receives a directory
overflow trap. This option is not available on the A-1000.

The DirtH5SBscale protocol is similar to Dir5H5SBscale, except that DirtH5SBscale uses
a broadcast to transmit invalidations only for memory blocks with worker-set sizes
greater than a certain threshold (t). Each circle on the plot indicates the performance for
one experimental threshold, with all other experimental factors constant. DirtH5SBscale

achieves its best performance with a threshold set to 8, which is slightly larger than one of
the dominant worker-set sizes in EVOLVE shown in Figure 7-3(d). At this threshold, the
protocol — which can run on the A-1000 without modification — achieves performance
close to the unsupported Dir5H5SBscale protocol.

DirtH5SBscale,trap-off is exactly the same as DirtH5SBscale, except that this protocol
takes advantage of a hardware directory feature that allows the software to disable the
directory overflow interrupt. Like Dir5H5SBscale, DirtH5SBscale,trap-off can avoid excessive
interrupts; like DirtH5SBscale, DirtH5SBscale,trap-off only broadcasts to worker sets over a

122

threshold size. The performance of this hybrid protocol also peaks at a threshold of
eight, and exceeds the performance of both of the other scalable broadcasts. Again,
the A-1000 does not implement the feature that allows the software to disable directory
overflow interrupts; however, changing exactly one line of source code in the CMMU
specification would enable this feature. Given the potential gain in performance, this
change seems worthwhile.

It is important to interpret Figure 8-1 in light of the 64-node system size and the
EVOLVE benchmark. For example, while Dir5HBS

�
performs admirably well on a 64

node machine, it outperforms DirtH5SBscale,trap-off by only a small factor. On slightly larger
machines and on bandwidth-limitedapplications, the scalable broadcast protocols should
be even more beneficial. Given the asymptotic bandwidth and latency requirements of
the sequential and scalable broadcasts, it is certainly possible that DirtH5SBscale,trap-off and
DirtH5SBscale would be able to outperform DirnHNBS

�
for machines within the 512 node

A-1000 limit.
While EVOLVE certainly provides the best available workload for studying broad-

casts, its simple structure and corresponding worker-set behavior do not have a great
dynamic range. Figures 7-2(d) and 7-3(d) show the application’s behavior for the second
iteration of the genome evolution algorithm. EVOLVE exhibits slightly more interesting
behavior — in the form of larger worker sets — over the entire length of a run. The
large worker sets do not produce a significant effect in the model, because the model
does not consider the impact of hot-spots and bottlenecks; however, they do affect the
speedups in Figure 8-1. A bandwidth-hungry application with more widely-shared data
than EVOLVE would show more significant differences between the various protocols.

The preceding case-study suggests a question that needs to be answered before
incorporating DirtH5SBscale into a production system: given an application and a system
configuration, what is the appropriate setting for the broadcast threshold? The answer is
determined by the relative performance of the sequential and the broadcast schemes, as
well as the requirements of the application.

For sufficiently large systems, there must be a worker-set size such that the latency of
broadcasting invalidations is equal to the latency of a sequential scheme. Similarly, there
must be a worker-set size such that the bandwidth of a broadcast is equal to the bandwidth
of sequential invalidations. If the latency-equivalence point is equal to the bandwidth-
equivalence point, the broadcast threshold should always be set to the worker-set size
corresponding to this mutual equivalence point. Then, the adaptive protocol would
always select the optimal strategy.

Due to the small constant factor of the sequential invalidation scheme, the bandwidth-
equivalence point should be lower than the latency-equivalence point. In this case, the ap-
propriate choice of threshold would depend on the requirements of each application. For
bandwidth-limited applications, the threshold should be set to the bandwidth-equivalence
point; the opposite is true for latency-limited applications. Most real programs would
probably fall somewhere in between. In practice, it might be difficult to calculate the
equivalence points a priori. Instead, calibration techniques such as the one used with
Strata [10] would be appropriate for determining the protocol balance thresholds.

Despite the remaining questions involved in the implementation and configuration
of adaptive broadcast protocols, the case study shows that they can be implemented

123

and promise to improve the performance of large systems. This class of protocols also
serves as a good example of a (necessarily simple) scheme that uses on-line feedback to
improve the performance of the system as a whole.

8.3 The LimitLESS Profiler

While on-line adaptive techniques might be able to ameliorate the effects of certain
classes of data, it is the programmer who has the knowledge required to make real
improvements in the performance of an application. The LimitLESS profiler is a mea-
surement and feedback mechanism that uses Alewife’s software-extended system to
give programmers information about the way that applications use shared memory. This
section describes the implementation and the interface of this optimization tool.

8.3.1 The Profiler Interface

The LimitLESS profiler is a working part of the Alewife programming tool set. In order
to use it, a programmer sets a single variable in the runtime environment. Subsequently,
when the programmer runs a program, the memory system gathers information whenever
it invokes software to handle a memory request.

The overhead of the profiling mechanism depends on the operating characteristics of
the application. For applications that run for many seconds and cause little communica-
tion between processors, the overhead is small. For example, when running the Water
benchmark (216 molecules, 10 iterations) on a 16 node A-1000, the time required to
execute the application increases by only 1% with LimitLESS profiling enabled. Appli-
cations that run for only a fraction of a second and make constant use of shared memory
incur a higher overhead. MP3D (10000 particles, 5 iterations) requires 45% more time
to run with the profiler than without it.

After the application finishes running or at any time during its execution, the pro-
grammer can request the system to dump the information gathered by the profiler. This
information may be stored on disk for subsequent, off-line examination. Having dumped
the information, the programmer can request a report of memory usage. Although many
possible formats for presenting the data are possible, only one has been released to
programmers thus far.

Figure 8-2 shows a sample LimitLESS profiler report, which displays information
about the MP3D application. The figure shows a window containing an Emacs (text
editor) display. The lower half of the screen displays records in the report; the first record
gives information for hexadecimal program counter 101618, which corresponds to the
function boundary, line 49, in the MP3D source file adv.c. Specifically, the program
counter indicates the first remote memory access to the structure slot BCond->bc A.

During the course of execution, the instruction at this program counter caused the
first remote access to 13 different memory blocks (termed cache lines in the report).
After the first remote reference to these 13 memory blocks, their worker sets grew to
a maximum size of between 6 and 15, with a median size of 8. Furthermore, MP3D
accesses Bcond->bc A as read-only data. That is, none of the memory blocks required

124

Figure 8-2: Sample report with LimitLESS profile information for MP3D.

125

the LimitLESS software to process a write request by sending invalidation messages.
Section 8.4 describes the importance of the read-only designation.

The programmer can use the next-error command, shown at the bottom of the
display, to scroll through each record in the report. This command causes Emacs to
move the subsequent record to the first line of the bottom window, load the appropriate
source file, and position the cursor on the relevant line of code. In Figure 8-2, the top
half of the screen displays adv.c, with the cursor on line 49.

8.3.2 Example of Use

The LimitLESS profiler proved its usefulness almost as soon as it became available.
When displaying information about a program named gauss, the profiler displayed this
record:

--
#x1004A0: gauss.c:134: in threadproc

for (i = myid; i < N; i += Globl->nprocs)
ˆ

1 LimitLESS cache line
worker set size is 15, 29 writes in LimitLESS mode

--

The 29 writes to the nprocs slot of Globl were completely unexpected. Upon
examining the program, Ricardo Bianchini (a graduate student visiting the Alewife
group from the University of Rochester) found the following lines of code:

typedef struct
{

element a[N][N];
int nprocs;
p4_lock_t pivot_done[N];

} GlobalData;

GlobalData *Globl;

This structure definition caused nprocs, a read-only slot with a large worker set, to
be stored in the same memory block as pivot done, a synchronization object accessed
by a small worker set with read-write semantics. Ricardo realized that by adding
some padding into the structure, the accesses to the two conflicting data types could be
decoupled, thereby improving performance.

8.3.3 Implementation

There are four components of the LimitLESS profiler: configuration, on-line profiling,
information dump, and report generation. Configuration allows the programmer to
enable the profiler; on-line profiling gathers information about program counters and
associated memory addresses while running the program; information dump transfers
the profile data from the Alewife machine to the programmer’s workstation, and report

126

generation matches program counters with memory blocks and formats the reports. The
last two components correspond to the feedback portion of the smart memory system.

From the point of view of this study, the on-line profiling component is the most
interesting, because it is built on top of the flexible coherence interface. The memory
protocol used to gather information about program counters and memory blocks is a
hybrid of DirnH0SNB,ACK and DirnHXSNB, where X � 2.

Each memory block starts out in the initial state of DirnH0SNB,ACK, which allows all
intranode accesses to complete without software intervention, but generates an interrupt
upon the first remote access to a memory block. When the software detects the first
remote access, it performs two actions: first, it changes the state of the memory block
to the appropriate state in DirnHXSNB. Then, the protocol uses an active message,
rather than a normal protocol message, to transmit the memory block’s data back to the
requesting node. Upon receiving this active message, the requesting node records the
current program counter and memory block address in a special buffer. This information
is used to map program counters and memory blocks, thereby solving the dynamic
data allocation problem in the feedback step. Since this extra processing happens only
upon the first remote access to data, programs that run for long periods of time without
allocating new memory blocks tend to have lower overhead than programs that run for
short amounts of time or allocate many blocks.

The rest of the information about shared memory usage comes from the normal
DirnHXSNB operation. In order to gather data, the profiler splices into the hash table
functions listed in Table 5.1. During execution, the profiler spoofs the operation of the
hash table and saves information about worker-set sizes and the number of each type of
access. This component of the profiler only gathers information for memory blocks that
require LimitLESS software handling. Thus, MP3D incurs more overhead than Water
because it requires more LimitLESS software processing.

By selecting a protocol with fewer hardware pointers than 5 (the default), the pro-
grammer can observe the behavior of smaller worker sets at the expense of more profiling
overhead. In general, higher profiler overhead indicates more useful information for the
programmer. Since the profiler uses a non-trivial amount of storage for every shared
memory block, the programmer usually can not profile an application running on its
maximum data set size. However, experience shows that small data sets capture much
of the information about the behavior of many applications.

8.4 Profile, Detect, and Optimize

While it is useful for a system to be able to provide information directly to the program-
mer, a truly smart memory system should require little, if any, input from the programmer
to improve performance. This section describes a method that allows the compiler and
the memory system to cooperate and automatically optimize the performance of widely-
shared, read-only data. This method has three stages. First, the runtime system profiles
an application’s execution. Second, an analysis routine uses the profile information to
detect read-only memory blocks. Third, the compiler generates code that causes the
runtime system to optimize accesses to the detected blocks. Hence, this method is called

127

PRODO for profile, detect, and optimize.
A PRODO system has been implemented for Alewife programs written in Mul-

T. This section describes the system and some initial experience, including the user
interface, the implementation, and a case study using the EVOLVE benchmark. The
description concludes by examining some relevant architectural features in the Alewife
machine.

8.4.1 The PRODO Interface

Although the PRODO system detects and optimizes memory accesses automatically, it
requires some direction on the part of the programmer. Most of the programmer’s tasks
involve specifying interesting data objects and providing information that helps the sys-
tem work around dynamic memory allocation and aliasing problems. The programmer
must annotate an application, compile it in a special environment, run the LimitLESS
profiler, and then instruct the compiler to perform its optimizations.

Table 8.1 shows the three program annotations, which are all easy to use. When
prodo is used to call a primitive allocation function (e.g. make-vector), it causes
the compiler to apply the PRODO method to the data object returned by the function.
The define-alloc and call-alloc macros are used to define and to call allocation
functions that either call other allocation functions or contain prodo declarations. For
example, the following line of code creates a high-level function that always makes a
vector with five elements:

(define-alloc (make-5-vector) (prodo make-vector 5))

A corresponding line of code might allocate a top-level instance of this type of vector:

(define *my-5-vector* (call-alloc make-5-vector))

Given this code, *my-5-vector* would be a global variable that points to a 5-
element vector. The PRODO system would automatically profile *my-5-vector* and
optimize it, if possible.

After annotating a program, running the PRODO system is almost trivial. At present,
the actions required to run PRODO include the normal compilation commands, the
LimitLESS profiler commands, and three other commands. For a production version of
the system, the entire process could easily be automated completely: the programmer
would only need to provide a list of the source files and arguments to be used when
running the program with the profiler.

8.4.2 Implementation

The PRODO system consists of a heuristic for detecting read-only data and an optimiza-
tion that uses a broadcast protocol to ensure safety. The heuristic attempts to match
allocated data objects with the behavior of memory blocks. It assumes that there is a
one-to-one mapping between each unique type of data object and the procedure call tree
when it is allocated. The macros listed in Table 8.1 help the PRODO system keep track

128

Macro Purpose
(prodo prim-alloc . args) call prim-alloc with args

and PRODO the result
(define-alloc (alloc-fun . args) define an allocation function

. body) define an allocation function
(call-alloc alloc-fun . args) call alloc-fun with args

Table 8.1: PRODO macros.

of important call sequences. In a sense, the programmer uses the macros to specify the
branches of the call tree that are important to track.

During the compilation phase that takes place before profiling, each instance of the
prodo and call-alloc macros generates a unique identifier. The define-alloc

macro declares an additional argument for the corresponding function. This argument
is used to pass through the identifier generated by call-alloc. During the profiling
phase, each call-alloc within a function labeled with define-alloc creates a two-
word cell that is used to chain the procedure call information into an actual call-tree data
structure. As the program runs, the macros generate enough information to trace the call
tree down to the allocation of every object labeled with the prodo macro. In addition,
the PRODO system stores a record of the address and size of every prodo object.

After the profiling phase, the PRODO system combines the information about call
trees and data object sizes with the information gathered by the LimitLESS profiler. The
system first matches all data objects with their call trees. Then, the analyzer does a
brute-force search that attempts to correlate the location of read-only data within each
object. More formally, it attempts to find (base,stride) pairs in each object such that

8x[((y = base + x� stride) ^ (y 2 object))) y 2 read-only];

where base is a constant integer offset from the address of each object, stride is a multiple
of the memory block size, object is the set of all memory blocks contained within a
unique type of object, and read-only is the set of all read-only memory blocks. The
search algorithm checks all possible (base,stride) pairs and runs in time O(n2), where n
is the total number of memory blocks in the profiled data objects.

Having identified all of the (base,stride) pairs that correspond to read-only data, the
PRODO system is ready to optimize the program in a final compilation phase. During
this phase, the system simplifies the call-tree identification code and inserts a safe
optimization for each (base,stride) pair. The code simplification replaces instructions
that dynamically construct the call-tree data structure with instructions that pass just
enough information between functions to indicate when an optimization should take
place. This information is much more concise than the call-tree data structure, because
only a few leaves of the call-tree correspond to read-only data. While the profiled
application allocates cells dynamically and chains them together, the optimized program
uses shift-and-add sequences and passes integers down through the call tree.

The safe optimization for each (base,stride) pair is a system call that sets the appro-
priate directory entries into a special read-only state. When the program runs, allocating

129

EVOLVE version Memory System Speedup
Base DirnH5SNB 29.8
PRODO DirnH5SNB 36.4
PRODO DirnH5SNB,trap-off 37.2
Base DirnHNBS

�
49.0

Table 8.2: Performance of different versions of EVOLVE.

read-only structures takes slightly longer due to this extra work. During the operation
of the program, the memory system treats this read-only data as if it had exceeded
the threshold of a broadcast protocol. The memory system software never extends the
directory entry, thereby avoiding most of the overhead associated with read-only data.
In a memory system that allows the software to disable directory overflow traps, the
optimization would avoid all of the overhead.

This optimization is safe, because the protocol can use a broadcast to invalidate
cached copies should the program ever attempt to write the data. At the end of the
broadcast, the memory block reverts back to the normal DirnH5SNB protocol, thereby
cancelling the incorrect optimization.

8.4.3 A Case Study

In order to determine the efficacy of this type of smart memory system, the EVOLVE
benchmark was annotated with the appropriate macros and optimized with the PRODO
system. The annotations required modifying only 3 out of the 117 lines of code in the
benchmark, and 40 out of 394 lines in a code library. The profiling phase took place on
a 16 node A-1000 with a ten dimensional problem set, and the entire PRODO process
took less than a minute.

Table 8.2 compares the performance of the base (unoptimized) version and the
PRODO (optimized) versions of EVOLVE. The measurements use both a larger system
size (64 simulated nodes) and a larger problem size (12 dimensions). The first row of the
table shows the base performance of the application with the DirnH5SNB protocol, and
the last row shows the performance with DirnHNBS

�
. The middle two lines show the

increase in performance due to the PRODO optimizations. Although the table specifies
the DirnH5SNB protocol, the protocol would have transmitted broadcasts if it detected any
incorrect optimizations. Instrumentation in NWO shows that no such events occurred
during the simulations of the optimized version of EVOLVE.

The second line of the table indicates that the PRODO optimizations resulted in a
22% improvement in performance with DirnH5SNB. DirnH5SNB,trap-off, which allows the
software to disable directory overflow traps, permits the optimized program to achieve
a 25% performance improvement. The trap-off feature would be enabled by the same
one-line change to the CMMU source code mentioned in Section 8.2.

The improvement shown by the PRODO system should encourage more work on this
type of method for performance enhancement. From the point of view of the programmer,

130

the memory system is truly “smart,” because it can increase an application’s performance
with very little external help.

8.4.4 Architectural Mechanisms

Having implemented a smart memory system that automatically takes advantage of the
semantics of read-only data, it is worth reexamining the original proposal for such a
system. Even the early work on the Alewife protocols recognized the importance of
optimizing the memory accesses for this important type of data [14]. As a result, the
Alewife instruction set architecture includes a software-coherent load, which causes the
memory system to fetch a read-only copy of data without allocating a directory pointer.
When using this instruction, the application software (written by the programmer or
generated by the compiler) assumes the responsibility for guaranteeing coherence.

Such an instruction may be used by the compiler to improve the performance of
accesses to read-only data. In fact, the Alewife compiler has used the instruction for a
few data objects, including instructions and procedure closures. However in the present
system, instructions are stored in each node’s private memory, so the software-coherent
load is rarely used.

It would also be possible to follow the lead of other systems (e.g. [11]) that allow the
programmer to designate data as read-only. The compiler would merely translate read-
only data accesses into software-coherent loads. While it is useful to provide this feature
in shared-memory systems, all of the responsibility for the correctness and the success of
this approach lies with the programmer: if a variable is mislabeled, the program returns
the wrong answer; if the programmer forgets to add a label, performance suffers; if a
generic function is used to manipulate many types of data, its memory accesses can not
be optimized using the software-coherent load.

Nevertheless, the original proposal for the PRODO scheme assumed that the mem-
ory system could give the compiler enough information to use this instruction suc-
cessfully. Automatic optimization could relieve the programmer of the burden of la-
beling data throughout the program! There are two reasons why this hypothesis is
wrong: first, the aliasing problem makes it impossible to map all instructions to data
objects or vice versa. In general, information from the memory system about one
(instruction,data-object) pair indicates nothing about other data objects ac-
cessed by the instruction or about other instructions that access the data-object.
Without a general method for propagating information from instruction to instruction or
from object to object, the requisite analysis becomes very difficult.

Second, the software-coherent load is an unsafe optimization. When it is used, the
system assumes that application software will ensure the coherence of the data. Since
the programmer ostensibly has total knowledge about the application, it is reasonable
to provide an opportunity for improved performance at the risk of incorrect behavior.
Neither the same knowledge nor the same options are appropriate for an automatic
optimization system. Since the information provided by the profiler is at best statistically
valid, any optimization has a chance of being incorrect. Given the choice between correct
behavior and improved performance, almost every (sane) programmer would choose the
former. Thus, the safe memory-side optimization implemented for Alewife serves as a

131

Broadcast
Mechanism

Automatic
Request

Limited
Directory

Transaction
Buffers

Fast
Trap

Flexible Coherence Interface

TLBs

Smart Memory System

Shared Memory Application

Figure 8-3: A flexible coherence interface serves as a basis for hardware-accelerated
coherent shared memory.

much more stable foundation for the PRODO system.

8.5 Hardware-Accelerated Coherent Shared Memory

By balancing the time required to collect data with the benefits that the information pro-
vides, a software-extended memory system can use intelligence to augment the shared-
memory model and to improve multiprocessor performance. The adaptive broadcast
protocols, the LimitLESS profiler, and the PRODO system achieve this balance in dif-
ferent ways. Yet, they are all implemented on top of a single hardware base with the
flexible coherence interface.

Reversing the software-extended approach leads to a top-down methodology for
building a distributed shared memory architecture. Instead of extending limited hard-
ware with software, the goal is to use hardware to accelerate slow software. Figure 8-3
illustrates an architecture that follows this hardware-acceleration approach. The foun-
dation of the architecture is a flexible coherence interface that provides an abstraction
between shared memory software and hardware. In addition to expediting software
development, the interface allows multiprocessor applications and smart memory sys-
tems to run on a variety of different hardware platforms with varying support for shared
memory.

The support takes the form of hardware mechanisms that accelerate functions in the
memory-system software. Functions that hardware does not accelerate must be emulated
completely in software. For example, Alewife’s hardware mechanisms include limited
directories, fast traps, automatic remote data requests, and transaction buffers. Alewife
must emulate broadcasts and page tables in software, because the architecture lacks a
broadcast network and translation-lookaside buffers.

In fact, several independent conclusions derived from the work on software-extended

132

memory systems support this approach to shared-memory design. First, the budding suc-
cess of smart and flexible memory systems indicates an increasing number of techniques
for using intelligence to improve multiprocessor efficiency. For these techniques to be-
come generally useful, they need to be portable. Only a software library with a flexible
and standard interface will achieve this goal.

Second, the analytical model indicates that different operating regimes demand dif-
ferent hardware acceleration techniques. While limited directories benefit a system
with Alewife’s low-latency network, they would not be appropriate for a system with
much higher latencies. Since computer markets demand a range of cost versus perfor-
mance trade-offs, any portable system must be able to accommodate a range of hardware
options.

Finally, Alewife’s flexible coherence interface already supports partial hardware
independence: the interface hides the binary format of directories, the details of message
transmission, and the size of the unit of data coherence. Using this abstraction, it would
not be hard to port Alewife’s adaptive broadcast protocols to a software-only directory
architecture. The port would require an emulation of the underlying LimitLESS directory
scheme, a task that is certainly easier than writing an entire DirnH0SNB,ACK protocol from
scratch. For performance reasons, a software-only directory architecture with high
network latency would need to use a larger unit of coherence than Alewife. Since the
flexible interface hides the memory block size, not a single line of code in the higher-level
adaptive protocol would need to change. The same sort of methodology could be used
to abstract all of the mechanisms illustrated in Figure 8-3.

Software extension and its dual, hardware acceleration, provide an architecture for
building a range of cost-efficient implementations of shared memory. Low-cost, mod-
erate performance systems can use software-only directories; more expensive, high
performance systems can implement the hardware structures required to sustain low la-
tency memory access. With a flexible coherence interface, this range of implementations
would support a common set of applications, running on top of a single smart memory
system. Packaged as a line of products, this architecture would solve the ultimate goal
of cost-effectivity: customers could choose price/performance combinations according
to their own needs for computational power.

133

Chapter 9

Conclusions

The software extension approach offers a cost-efficient method for building scalable,
coherent, high-performance shared memory. Two implementations of the Alewife ar-
chitecture testify to this conclusion: the A-1000 proves that the approach works in
practice, and the NWO experiments demonstrate a range of performance versus cost
alternatives.

An analytical model — validated by the empirical study — surveys the design
space. Architectural features such as trap latency and code efficiency do not seriously
impact the performance of software-extended systems, as long as they implement at least
one hardware directory pointer. Specific hardware optimizations for features of cache
coherence protocols can enhance performance slightly, but they are not essential.

Alewife’s flexible coherence interface facilitates the rapid development of new
software-extended protocols. This interface hides hardware implementation details and
provides a convenient message-based programming abstraction. Anecdotal evidence
suggests that the abstraction is well worth a small decrease in performance; however,
production software-extended systems will blend hand-tuned optimizations and higher-
level code.

The software-extended approach, combined with a flexible coherence interface, en-
ables a class of smart memory systems. These systems use dynamic and static feedback
techniques to boost multiprocessor performance, with and without the help of appli-
cation programmers. Experience with three such techniques on Alewife indicates that
incorporating software into a memory system has far greater benefits than mere cost-
management.

9.1 Recommendations for Distributed Shared Memory

In order to achieve high performance with a large number of processors, a cost-efficient
shared memory architecture requires a LimitLESS hardware directory and a flexible
coherence interface. The minimal architecture, called 1dir (pronounced “wonder”),
includes:

� Associative processor caches. The associativity may take the form of victim
caches.

134

� One pointer per directory entry (DirnH1SNB,LACK) that stores an arbitrary node
identifier and serves as an acknowledgment counter. The directory entry should
also implement a one-bit pointer for the local node. This configuration optimizes
for producer-consumer communication.

� One processor and memory module per node, with streamlined intranode accesses.

� A fast interface between processors and the interconnection network. Transmitting
or receiving a message should take on the order of ten instructions.

� A processor interrupt mechanism. Processors should execute no more than 100
instructions between an asynchronous event and the beginning of its handler.

� Intelligent software that rides on top of a flexible coherence interface. Smart mem-
ory systems maximize performance by generating synergy between programmers,
compilers, and runtime environments.

This recommendation agrees with the findings of Hill, Wood, et. al.: suitably tuned
one-pointer protocols yield performance comparable to more expensive architectures.

The software-extension approach leads to the 1dir architecture and enables a cost
versus performance trade-off in shared memory design. Designers can add additional
directory pointers to the architecture, spending DRAM for increased performance and
flexibility. Extra pointers improve performance by capturing more complicated commu-
nication patterns than producer-consumer in hardware. The corresponding reduction in
software-extension events decreases a system’s sensitivity to software processing time,
thereby increasing flexibility.

Distributed shared memory designers might also choose to eliminate the hardware
directory entirely. Such software-only directory architectures lie at the inexpensive end
of the spectrum of software-extended systems and are a deceptively low-cost imple-
mentation of shared memory. While such systems do avoid the cost of the control and
state required to implement a hardware directory, they are extremely sensitive to the
quality of memory-system software. The designers of these systems will be faced with
the choice of reducing network speed and amortizing communication delay over large
blocks of data, or implementing hardware mechanisms — such as dedicated processors
— to speed up the software.

The performance of 1dir depends, in part, on the quality of its memory system
software. The architecture will benefit from a library of smart memory techniques
that optimize the way that programs use shared memory. The future of research on
multiprocessors lies not in new methods for implementing distributed shared memory,
but in finding ways to integrate the hardware and software components of multiprocessors
into a coherent whole.

9.2 Future Work

Unfortunately, it is hard to extrapolate from a single data point. Since Alewife is the only
working multiprocessor with a software-extended memory system, conclusions about

135

the entire design space are tentative at best. Fortunately, the research area is an active
one and new machines will add additional data points to the design space.

In the near term, the Alewife project will continue progress towards building a pro-
duction version of software-extended shared memory. The addition of more applications
and microbenchmarks to the machine’s repertoire will drive a phase of performance and
reliability tuning. Performance tuning will result in improvements in many parts of
the software system, including the flexible coherence interface. Reliability tuning will
involve adding features that allow the system to run for long periods of time.

The long term will see new systems that investigate the design and cost of various
hardware mechanisms for accelerating multiprocessor performance. In an effort to
provide a convenient and efficient abstraction to application programmers, these systems
will attempt to consolidate shared memory, message passing, and a virtual machine
model. Ultimately, the market will base decisions about parallel architectures on cost-
effectiveness, convenience, and politics. I hope that elegance survives the frenzy.

136

Appendix A

Experimental Data

A.1 Simulation Measurements.

Coherence Scheme Protocol Options Execution Time
DirnHNBS

�
None. 620874

Dir4HNBS
�

None. 1356447
Dir2HNBS

�
None. 1527552

Dir1HNBS
�

None. 1575031
DirnH4SNB 25 cycle latency 594716

50 cycle latency 654444
100 cycle latency 689113
150 cycle latency 703801

DirnH3SNB 50 cycle latency 614585
DirnH2SNB 50 cycle latency 669784
DirnH1SNB 50 cycle latency 920283

Table A.1: ASIM: Execution times for Weather. (Figures 4-3, 4-4, and 4-5.)

Dirn Worker-Set Size
Protocol 1 2 4 6 8 10 12 14 16

H8SNB 1 1 1 1 1 0.350 0.348 0.369 0.360
H5SNB 1 1 1 0.316 0.306 0.339 0.348 0.358 0.357
H2SNB 1 1 0.215 0.257 0.291 0.297 0.312 0.323 0.324
H1SNB 1 0.157 0.207 0.248 0.264 0.279 0.290 0.298 0.300
H1SNB,LACK 1 0.161 0.207 0.166 0.184 0.198 0.210 0.216 0.219
H1SNB,ACK 1 0.136 0.136 0.118 0.119 0.121 0.126 0.125 0.126
H0SNB,ACK 0.150 0.130 0.122 0.0987 0.0986 0.0994 0.0979 0.0993 0.0967

Table A.2: NWO: WORKER performance compared to full-map. (Figure 6-1.)

137

Pointers TSP AQ SMGRID EVOLVE MP3D Water
0 39.6 39.3 11.4 11.5 2.6 28.4
1 53.4 52.3 30.9 21.1 10.2 37.4
2 53.3 51.6 36.0 30.8 17.0 40.1
5 54.7 51.6 38.9 35.2 20.4 41.0

64 55.8 51.6 41.4 49.8 24.0 42.1

Table A.3: NWO: Speedup over sequential, 64 nodes. (Figure 6-2.)

normal ifetch normal ifetch perfect ifetch 256
Pointers no victim victim no victim nodes

0 2.7 39.6 44.4 57.6
1 5.2 53.4 56.8 113.1
2 9.0 53.3 57.8 122.0
5 15.3 54.7 59.8 134.3

64 47.9 55.8 59.4 141.9

Table A.4: NWO: Detailed TSP measurements. (Figures 6-3 and 6-4.)

WSS Number
1 9646
2 1391
3 316
4 708
7 1308
8 942

11 168
14 2
15 1
16 38
18 8
19 1
20 6
24 1
28 1
32 16
33 4
57 1
64 25

Table A.5: NWO: EVOLVE worker-set sizes. (Figure 6-5.)

138

Pointers not skewed skewed
0 6.3 11.5
1 12.1 21.1
2 18.8 30.8
5 27.5 35.2

64 44.6 49.8

Table A.6: NWO: Detailed EVOLVE measurements. (Figure 6-6.)

Pointers TSP AQ SMGRID EVOLVE MP3D Water
0 14.0 14.2 7.00 3.54 0.60 5.46
1 15.4 14.9 15.2 9.69 7.64 10.8
2 15.4 14.9 15.3 10.9 7.91 11.0
5 15.5 14.9 15.4 12.6 7.91 11.1

64 15.5 14.9 15.4 12.9 7.96 11.1

Table A.7: A-1000: Speedup over sequential, 16 nodes. (Figure 6-7.)

Protocol Threshold Speedup
DirnHNBS

�
49.0

Dir5HBS
�

42.7
Dir5H5SBscale 35.3
DirtH5SBscale,trap-off 4 29.9

8 38.5
16 38.3
32 31.5
64 30.2

DirtH5SBscale 4 29.9
8 34.7

16 33.9
32 30.8
64 29.6

Dir5H5SB 30.7
DirnH5SNB 29.9

Table A.8: NWO: EVOLVE with broadcasts. (Figure 8-1.) The values are slightly
different than in Table A.6 due to several months of changes in the Alewife kernel and
compiler.

139

A.2 Model Parameters

Table A.9 lists extra model parameters that are needed to model the Alewife memory
hierarchy. These parameters, which were omitted from the discussion in Chapter 7 to
eliminate gratuitous detail, are used as follows:

h = hcache + htxnbuf

Th =
hcacheTh,cache + htxnbufTh,txnbuf

h
l = lnonet + lnet

Tl =
lnonetTl,nonet + lnetTl,net

l

The values of all of these parameters are listed in Table A.10, along with the other model
inputs.

Symbol Meaning
hcache cache hit ratio
htxnbuf transaction buffer hit ratio
Th,cache cache hit latency
Th,txnbuf transaction buffer hit latency
lnonet ratio of local accesses that require no network messages
lnet ratio of local accesses that require network messages

Tl,nonet latency of local accesses that require no network messages
Tl,net latency of local accesses that require network messages

Table A.9: Additional model parameters for the Alewife memory hierarchy.

140

Symbol TSP AQ SMGRID EVOLVE MP3D Water
Ni 28186444 17933534 98117235 19056262 19669795 110747983
Na 5892391 7447602 11409727 4317830 3860909 20077454
h 0.96 0.988 0.91 0.984 0.894 0.99
l 0.0339 0.00861 0.0472 0.0058 0.0176 0.00806
r 0.00568 0.00334 0.0432 0.00997 0.0885 0.00227
Th 1.32 2.03 1.31 1.38 1.35 1.86
Tl 13.4 13.4 16.7 28.7 16.5 13.9
Tr,hw 55.2 59.5 52.5 54.4 85.4 60.0
hcache 0.95 0.988 0.899 0.983 0.892 0.989
htxnbuf 0.0101 0.000291 0.011 0.00167 0.00159 0.000420
Th,cache 1.27 2.03 1.24 1.37 1.34 1.86
Th,txnbuf 6.02 7.01 6.76 7.56 8.18 10.1
lnonet 0.0338 0.00856 0.0417 0.00455 0.0163 0.00776
lnet 0.0000996 0.0000467 0.00543 0.00124 0.00132 0.000299

Tl,nonet 13.2 13.1 13.0 12.8 12.1 10.7
Tl,net 68.0 69.6 44.6 86.6 70.9 96.0

Table A.10: Model input parameters for six benchmarks.

141

Nodes TSP AQ SMGRID EVOLVE MP3D Water
0 0 0 0 175 2120 90
1 1362 62 47997 7042 19054 2409
2 645 0 16856 6675 2169 1420
3 362 0 4414 6250 790 1259
4 478 0 3444 5961 1199 1087
5 95 0 4007 5962 167 900
6 42 0 3214 5953 145 859
7 11 0 1058 2824 68 800
8 5 0 854 432 69 799
9 4 0 3458 222 54 798
10 4 0 356 221 62 792
11 2 0 96 92 69 781
12 2 0 85 66 82 791
13 2 0 109 63 62 779
14 2 0 44 61 59 779
15 2 0 44 60 53 777
16 2 0 41 40 38 782
17 2 0 41 42 28 770
18 2 0 29 50 32 775
19 2 0 25 34 28 769
20 2 0 25 31 28 771
21 2 0 20 29 27 768
22 2 0 20 29 28 768
23 2 0 20 28 26 768
24 2 0 23 28 25 770
25 2 0 73 28 27 768
26 2 0 16 28 22 770
27 2 0 18 28 22 769
28 2 0 19 28 22 768
29 2 0 20 28 22 768
30 2 0 20 28 22 773
31 2 0 19 28 22 769

Table A.11: Read access worker-set histograms: 0 – 31 nodes. (Figure 7-2.)

142

WSS TSP AQ SMGRID EVOLVE MP3D Water
32 2 0 75 448 22 211
33 2 0 13 16 22 19
34 2 0 12 17 22 0
35 2 0 11 17 22 0
36 2 0 14 16 22 0
37 2 0 13 16 22 0
38 2 0 13 17 22 0
39 2 0 11 16 22 0
40 2 0 12 15 22 0
41 2 0 11 17 22 0
42 2 0 23 14 22 0
43 2 0 15 14 22 0
44 2 0 16 13 22 0
45 2 0 31 13 22 0
46 2 0 23 13 22 0
47 2 0 15 13 22 0
48 2 0 15 13 22 0
49 2 0 9 13 22 0
50 2 0 11 13 23 0
51 2 0 10 13 22 0
52 2 0 11 13 23 0
53 2 0 8 13 22 0
54 2 0 8 13 21 0
55 2 0 16 13 20 0
56 2 0 8 13 21 0
57 2 0 9 12 20 0
58 2 0 10 12 21 0
59 2 0 8 11 20 0
60 2 0 12 11 19 0
61 2 0 10 11 19 0
62 2 0 8 11 20 0
63 2 0 8 11 20 0
64 491 0 227 174 22 0

Table A.12: Read access worker-set histograms: 32 – 64 nodes. (Figure 7-2.)

143

WSS TSP AQ SMGRID EVOLVE MP3D Water
0 0 0 38 0 2054 210
1 5491 6102 101071 5916 306494 27298
2 7 35 32009 0 14872 902
3 0 0 6591 0 1241 183
4 0 0 363 0 405 233
5 0 0 220 0 15 0
6 0 0 77 0 18 10
7 0 0 8 4095 77 60
8 0 0 9 0 4 0
9 0 0 111 0 0 0
12 0 0 0 0 1 0
16 0 0 0 0 1 0
17 0 0 0 0 1 0
24 0 0 0 0 1 0
26 0 0 1 0 0 0
32 0 0 0 0 0 288
33 0 0 0 0 0 96
60 0 0 0 0 1 0
64 0 0 0 0 13 0

Table A.13: Write access worker-set histograms. (Figure 7-3.)

Symbol Value
Ni 100000000
Na 20000000
h 0.95
l 0.00
r 0.05
Th 1.2
Tl —
Tr,hw 50

Table A.14: Model synthetic input parameters. (Figures 7-18, 7-19, and 7-20.)

144

Bibliography

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering - A New Definition. In Proceedings
of the 17th Annual International Symposium on Computer Architecture, pages 2–
14. IEEE, June 1990.

[2] Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk Johnson, David Kranz,
John Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum,
Mike Parkin, and Donald Yeung. The MIT Alewife Machine: A Large-Scale
Distributed-Memory Multiprocessor. In Proceedings of the Workshop on Scalable
Shared Memory Multiprocessors. Kluwer Academic Publishers, 1991. Available
as MIT/LCS/TM-454.

[3] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung,
Godfrey D’Souza, and Mike Parkin. Sparcle: An Evolutionary Processor Design
for Multiprocessors. IEEE Micro, 13(3):48–61, June 1993.

[4] Anant Agarwal, Beng-Hong Lim, David A. Kranz, and John Kubiatowicz. APRIL:
A Processor Architecture for Multiprocessing. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, pages 104–114. IEEE, June
1990.

[5] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An Evalua-
tion of Directory Schemes for Cache Coherence. In Proceedings of the 15th Annual
International Symposium on Computer Architecture, pages 280–289. IEEE, June
1988.

[6] Andrew W. Appel and Kai Li. Virtual Memory Primitives for User Programs.
In Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 96–107. ACM, April
1991.

[7] ANSI/IEEE Std 1596-1992 Scalable Coherent Interface, 1992.

[8] Henri E. Bal and M. Frans Kaashoek. Object Distribution in Orca using Compile-
Time and Run-Time Techniques. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, September 1993.

[9] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The Midway
Distributed Shared Memory System. In Proceedings of the 38th IEEE Computer
Society International Conference, pages 528–537. IEEE, February 1993.

145

[10] Eric A. Brewer. Portable High-Performance Supercomputing: High-Level
Platform-Dependent Optimization. PhD thesis, MIT, Department of Electrical
Engineering and Computer Science, September 1994.

[11] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and
Performance of MUNIN. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles, pages 152–164, October 1991.

[12] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems
in Multicache Systems. IEEE Transactions on Computers, C-27(12):1112–1118,
December 1978.

[13] David Chaiken and Anant Agarwal. Software-Extended Coherent Shared Memory:
Performance and Cost. In Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 314–324. IEEE, April 1994.

[14] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-
Based Cache-Coherence in Large-Scale Multiprocessors. IEEE Computer,
23(6):41–58, June 1990.

[15] David Chaiken and Kirk Johnson. NWO User’s Manual. ALEWIFE Memo No.
36, Laboratory for Computer Science, Massachusetts Institute of Technology, June
1993.

[16] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories:
A Scalable Cache Coherence Scheme. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 224–234. ACM, April 1991.

[17] David Lars Chaiken. Cache Coherence Protocols for Large-Scale Multiproces-
sors. Technical Report MIT/LCS/TR-489, Massachusetts Institute of Technology,
September 1990.

[18] Rohit Chandra, Kourosh Gharachorloo, Vijayaraghavan Soundararajan, and Anoop
Gupta. Performance evaluation of hybrid hardware and software distributed shared
memory protocols. In Proceedings of the 1994 International Conference on Super-
computing, pages 274–288, July 1994.

[19] Mathews Cherian. A study of backoff barrier synchronization in shared-memory
multiprocessors. Technical Report MIT/LCS/TR-452, Massachusetts Institute of
Technology, May 1989.

[20] David R. Cheriton, Gert A. Slavenberg, and Patrick D. Boyle. Software-Controlled
Caches in the VMP Multiprocessor. In Proceedings of the 13th Annual Symposium
on Computer Architecture, pages 367–374. IEEE, June 1986.

[21] Trishul M. Chilimbi and James R. Larus. Cachier: A Tool for Automatically
Inserting CICO Annotations. In Proceedings of the 23nd International Conference
on Parallel Processing. IEEE, August 1994.

146

[22] Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Papworth, and
Paul K. Rodman. A VLIW Architecture for a Trace Scheduling Compiler. IEEE
Transactions on Computers, C-37(8), August 1988.

[23] Alan Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakrishnan Raja-
mony, and Willy Zwaenepoel. Software Versus Hardware Shared-Memory Im-
plementation: A Case Study. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 106–117. IEEE, April 1994.

[24] Alan Cox and Robert Fowler. The Implementation of a Coherent Memory Abstrac-
tion on a NUMA Multiprocessor: Experiences with PLATINUM. In Proceedings
of the 12th ACM Symposium on Operating Systems Principles, pages 32–44, De-
cember 1989.

[25] Alan L. Cox and Robert J. Fowler. Adaptive Cache Coherence for Detecting
Migratory Shared Data. In Proceedings of the 20th Annual Symposium on Computer
Architecture, pages 98–108. IEEE, May 1993.

[26] CS9239 M/PAX Multi-Processor Platform Technical Overview, 1990. CHIPS and
Technologies, Inc.

[27] Peter J. Denning. Working Sets Past and Present. IEEE Transactions on Software
Engineering, SE-6(1):64–84, January 1980.

[28] Charles M. Flaig. VLSI Mesh Routing Systems. Technical Report 5241:TR:87,
California Institute of Technology, May 1987.

[29] Matthew J. Frank and Mary K. Vernon. A Hybrid Shared Memory/Message Passing
Parallel Machine. In Proceedings of the 22nd International Conference on Parallel
Processing. IEEE, August 1993.

[30] Aaron J. Goldberg and John L. Hennessy. Mtool: An Integrated System for Per-
formance Debugging Shared Memory Multiprocessor Applications. IEEE Trans-
actions on Parallel and Distributed Systems, 4(1):28–40, January 1993.

[31] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and Wolf-
Dietrich Weber. Comparative evaluation of latency reducing and tolerating tech-
niques. In Proceedings of the 18th International Conference on Computer Archi-
tecture, pages 254–263. IEEE, May 1991.

[32] W. Hackbusch, editor. Multigrid Methods and Applications. Springer-Verlag,
Berlin, 1985.

[33] Erik Hagersten, Anders Landin, and Seif Haridi. DDM – A Cache-Only Memory
Architecture. IEEE Computer, 25(9):44–54, September 1992.

[34] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A. Wood. Coopera-
tive Shared Memory: Software and Hardware for Scalable Multiprocessors. In Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 262–273. ACM, October 1992.

147

[35] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
Inc., New York, New York, 1991.

[36] David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi.
Distributed-Directory Scheme: Scalable Coherent Interface. IEEE Computer,
23(6):74–77, June 1990.

[37] Truman Joe and John L. Hennessy. Evaluating the Memory Overhead Required for
COMA Architectures. In Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 82–93. IEEE, April 1994.

[38] Kirk Johnson. Semi-C Reference Manual. ALEWIFE Memo No. 20, Laboratory
for Computer Science, Massachusetts Institute of Technology, August 1991.

[39] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition
of a Small Fully-Associative Cache and Prefetch Buffers. In Proceedings of the
17th Annual International Symposium on Computer Architecture, pages 364–373.
IEEE, June 1990.

[40] Herbert I. Kavet. Computers. Ivory Tower Publishing Company, Inc., Watertown,
Massachusetts, 1992.

[41] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel. Treadmarks:
Distributed shared memory on standard workstations and operating systems. In
Proceedings of the 1994 Winter Usenix Conference, pages 115–131, January 1994.

[42] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong
Lim. Integrating Message-Passing and Shared-Memory; Early Experience. In
Proceedings of the Practice and Principles of Parallel Programming, pages 54–63.
ACM, May 1993.

[43] David A. Kranz. ORBIT: An Optimizing Compiler for Scheme. Technical Report
YALEU/DCS/RR-632, Yale University, February 1988.

[44] David A. Kranz, Robert Halstead, and Eric Mohr. Mul-T: A High-Performance
Parallel Lisp. In Proceedings of the Symposium on Programming Languages Design
and Implementation. ACM SIGPLAN, June 1989.

[45] KSR-1 Technical Summary, 1992. Kendall Square Research, Waltham, Mas-
sachusetts.

[46] John Kubiatowicz. User’s Manual for the A-1000 Communications and Memory
Management Unit. ALEWIFE Memo No. 19, Laboratory for Computer Science,
Massachusetts Institute of Technology, January 1991.

[47] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife
Multiprocessor. In Proceedings of the International Supercomputing Conference.
IEEE, July 1993.

148

[48] John Kubiatowicz, David Chaiken, and Anant Agarwal. Closing the Window of
Vulnerability in Multiphase Memory Transactions. In Proceedings of the Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 274–284. ACM, October 1992.

[49] John D. Kubiatowicz. Closing the Window of Vulnerability in Multiphase Memory
Transactions: The Alewife Transaction Store. Technical Report MIT/LCS/TR-594,
Massachusetts Institute of Technology, November 1994.

[50] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency Tolerance through
Multithreading in Large-Scale Multiprocessors. In Proceedings of the International
Symposium on Shared Memory Multiprocessing. IPS Press, April 1991.

[51] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz,
Anoop Gupta, Mendel Rosenblum, and John Hennessy. The Stanford FLASH
Multiprocessor. In Proceedings of the 21st Annual International Symposium on
Computer Architecture, pages 302–313. IEEE, April 1994.

[52] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9), September
1979.

[53] Richard P. LaRowe Jr., Carla Schlatter Ellis, and Laurence S. Kaplan. The Robust-
ness of NUMA Memory Management. In Proceedings of the 13th ACM Symposium
on Operating Systems Principles, pages 137–151, October 1991.

[54] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John
Hennessy. The Directory-Based Cache Coherence Protocol for the DASH Multipro-
cessor. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 148–159. IEEE, June 1990.

[55] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber,
Anoop Gupta, John Hennessy, Mark Horowitz, and Monica Lam. The Stanford
Dash Multiprocessor. IEEE Computer, 25(3):63–79, March 1992.

[56] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop
Gupta, and John Hennessy. The DASH Prototype: Logic Overhead and Per-
formance. IEEE Transactions on Parallel and Distributed Systems, 4(1):41–60,
January 1993.

[57] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems.
ACM Transactions on Computer Systems, 7(4):321–359, November 1989.

[58] David J. Lilja and Pen-Chung Yew. Improving Memory Utilization in Cache
Coherence Directories. IEEE Transactions on Parallel and Distributed Systems,
4(10):1130–1146, October 1993.

149

[59] Beng-Hong Lim. Parallel C Functions for the Alewife System. ALEWIFE Memo
No. 37, Laboratory for Computer Science, Massachusetts Institute of Technology,
September 1993.

[60] Rishiyur S. Nikhil, Gregory M. Papadopoulos, and Arvind. *T: A Multithreaded
Massively Parallel Architecture. In Proceedings of the 19th International Sympo-
sium on Computer Architecture, pages 156–167. IEEE, May 1992.

[61] Brian W. O’Krafka and A. Richard Newton. An Empirical Evaluation of Two
Memory-Efficient Directory Methods. In Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, pages 138–147. IEEE, June 1990.

[62] Per Stenström and Truman Joe and Anoop Gupta. Comparative Performance
Evaluation of Cache-Coherent NUMA and COMA Architectures. In Proceedings
of the 19th Annual International Symposium on Computer Architecture, pages
80–91. IEEE, May 1992.

[63] Per Stenström, Mats Brorsson, and Lars Sandberg. An Adaptive Cache Coherence
Protocol Optimized for Migratory Sharing. In Proceedings of the 20th Annual
Symposium on Computer Architecture. IEEE, May 1993.

[64] John D. Piscitello. A Software Cache Coherence Protocol for Alewife. Master’s
thesis, MIT, Department of Electrical Engineering and Computer Science, May
1993.

[65] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron,
David Black, William Bolosky, and Jonathan Chew. Machine-Independent Virtual
Memory Management for Paged Uniprocessor and Multiprocessor Architectures.
In Proceedings of the Second International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 31–39. ACM, October
1987.

[66] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon:
User-Level Shared Memory. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 325–336. IEEE, April 1994.

[67] Charles L. Seitz. Concurrent VLSI Architectures. IEEE Transactions on Comput-
ers, C-33(12):1247–1265, December 1984.

[68] Richard Simoni. Cache Coherence Directories for Scalable Multiprocessors. Tech-
nical Report CSL-TR-92-550, Stanford University, October 1992.

[69] Richard Simoni and Mark Horowitz. Dynamic Pointer Allocation for Scalable
Cache Coherence Directories. In Proceedings of the International Symposium on
Shared Memory Multiprocessing. IPS Press, April 1991.

[70] Richard Simoni and Mark Horowitz. Modeling the Performance of Limited Pointers
Directories for Cache Coherence. In Proceedings of the 18th Annual International
Symposium on Computer Architecture, pages 309–318. IEEE, May 1991.

150

[71] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stan-
ford Parallel Applications for Shared-Memory. Technical Report CSL-TR-92-526,
Stanford University, June 1992.

[72] SPARC Architecture Manual, 1988. SUN Microsystems, Mountain View, Califor-
nia.

[73] C. K. Tang. Cache Design in the Tightly Coupled Multiprocessor System. In
AFIPS Conference Proceedings, National Computer Conference, pages 749–753,
June 1976.

[74] The Connection Machine CM-5 Technical Summary, 1992. Thinking Machines
Corporation, Cambridge, Massachusetts.

[75] Jory Tsai and Anant Agarwal. Analyzing Multiprocessor Cache Behavior Through
Data Reference Modeling. In Proceedings of the Conference on Measurement and
Modeling of Computer Systems, pages 236–247. ACM SIGMETRICS, May 1993.

[76] Thorsten von Eicken, David Culler, Seth Goldstein, and Klaus Schauser. Active
messages: A mechanism for integrated communication and computation. In Pro-
ceedings of the 19th International Symposium on Computer Architecture. IEEE,
May 1992.

[77] Wolf-Dietrich Weber. Scalable Directories for Cache-Coherent Shared-Memory
Multiprocessors. Technical report, Stanford University, January 1993. CSL-TR-
93-557.

[78] Wolf-Dietrich Weber and Anoop Gupta. Analysis of cache invalidation patterns
in multiprocessors. In Proceedings of the Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
243–256. ACM, April 1989.

[79] Andrew W. Wilson Jr. and Richard P. LaRowe Jr. Hiding shared memory reference
latency on the galatica net distributed shared memory architecture. Journal of
Parallel and Distributed Computing, 15(4):351–367, 1992.

[80] David A. Wood, October 1993. Private Communication.

[81] David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill, James R. Larus,
Alvin R. Lebeck, James C. Lewis, Shubhendu S. Mukherjee, Subbarao Palacharla,
and Steven K. Reinhardt. Mechanisms for Cooperative Shared Memory. In Pro-
ceedings of the 20th Annual International Symposium on Computer Architecture,
pages 156–167. IEEE, May 1993.

151

