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Abstract

The main goal of this work is to develop an alternative methodology for acoustic{
phonetic modelling of speech sounds. The approach utilizes a segment{based frame-
work to capture the dynamical behavior and statistical dependencies of the acoustic
attributes used to represent the speech waveform. Temporal behavior is modelled
explicitly by creating dynamic tracks of the acoustic attributes used to represent the
waveform, and by estimating the spatio{temporal correlation structure of the re-
sulting errors. The tracks serve as templates from which synthetic segments of the
acoustic attributes are generated. Scoring of an hypothesized phonetic segment is
then based on the error between the measured acoustic attributes and the synthetic
segments generated for each phonetic model.

Phonetic contextual inuences are accounted for in two ways. First, context{
dependent biphone tracks are created for each phonetic model. These tracks are then
merged as needed to generate triphone tracks. The error statistics are pooled over all
the contexts for each phonetic model. This allows for the creation of a large number of
contextual models (e.g., 2,500) without compromising the robustness of the statistical
parameter estimates. The resulting triphone coverage is over 99.5%.

The second method of accounting for context involves creating tracks of the tran-
sitions between phones. By clustering these tracks, complete models are constructed
of over 200 \canonical" transitions. The transition models help in two ways. First,
the transition scores are incorporated into the scoring framework to help determine
the phonetic identity of the two phones involved. Secondly, they are used to deter-
mine likely segment boundaries within an utterance. This reduces the search space
during phonetic recognition.

Phonetic classi�cation experiments are performed which demonstrate the impor-
tance of the temporal correlation information in the speech signal. A complete pho-
netic recognition system, incorporating all the di�erent model elements, is described.
Both context{independent and context{dependent recognition experiments are per-
formed using the timit acoustic{phonetic corpus. The measured phonetic accuracy
is virtually identical to the best reported result achieved with hidden Markov models,
the most successful speech recognizers developed to this date.
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Glossary of Common Speech Terms as used in the Thesis

TERM MEANING

phoneme An abstract linguistic unit that forms the basis for writing

down a language. Changing a phoneme changes a word.

phone Acoustic realization of a phoneme

allophones The di�erent phonetic variants of a phoneme

frame Output produced by processing a single window of speech

Represented by a vector of acoustic attributes (e.g. spectral or

cepstral coe�cients). In this work, frames are computed every 5 ms.

segment A sequence of consecutive frames of speech treated as a single unit.

token A segment of speech consisting of an acoustic{phonetic unit,

such as a phone.

utterance A sequence of spoken words contained within two #h (silence) symbols.

phonetic A string of phonetic symbols which represent the acoustic{phonetic

transcription units comprising an utterance.

training set The set of utterances used to train the phonetic models.

The speakers, and in some cases the sentences, are distinct

from those used in the test set and the development set.

development A set of utterances used for evaluation purposes.

set By experimenting on this set the system parameters can

be tuned without unfairly \learning" the test set.

test set The set of utterances scored by the trained models

in a phonetic classi�cation or recognition experiment.

phonetic An experiment where the correct phone boundaries are

classi�cation known, but the phonetic identity must be determined.

phonetic An experiment where both the boundaries and the phonetic sequence

recognition must be determined. The output is an hypothesized phonetic

transcription of the input utterance.

context Phonetic models and experiments do not account for phonetic context.

independent

context Phonetic models and experiments account for phonetic context.
dependent

ASR Automatic Speech Recognition



Chapter 1

Introduction

The task of automatic speech recognition (ASR) consists of decoding a word sequence

from a continuous speech signal. In order to achieve reasonable levels of performance,

past ASR systems have constrained the permissible speech input in order to simplify

the decoding task. Typical constraints are training the system for each individ-

ual speaker (speaker{dependent systems), limiting the system vocabulary to a small

number of words, requiring input to be isolated words only, permitting only read

(as opposed to spontaneous) speech, or some combination of the above. Recently

however, state{of{the{art systems have been able to achieve useful performance lev-

els for speaker{independent, continuous/spontaneous speech systems, operating with

vocabularies of greater than �ve thousand words [28, 55, 73].

A block{diagram of the major components of an ASR system is shown in Figure 1-

1. Typically, the samples of the continuous speech signal are �rst processed to form

a discrete sequence of observation vectors. This operation is denoted by the Signal

Processing block in the �gure. The resulting components of the observation vectors are

the acoustic attributes that have been chosen to represent the speech signal. Examples

of commonly chosen attributes are DFT{based spectral coe�cients or auditory model

parameters [51]. Each observation vector is called a \frame" of speech, and the

14
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Speech Signal

Acoustic Models

Search

Lexicon Language Model

Recognized Words
Signal

Processing

Signal
Representation

Figure 1-1: Major Components of an Automatic Speech Recognition (ASR) System

sequence of T frames comprises the Signal Representation, X = f~x1; ~x2; : : : ; ~xTg.

A search is then conducted over the frame sequence, X, to produce hypothesized

word sequences. Acoustic models are used to score the individual frames or multiple

frame sequences, known as segments. Language models which contain information

about allowable sequences of speech units in the lexicon (e.g. phones, words, etc.) are

also incorporated into the scoring process. The representation, models, search, and

scoring procedures are key design components of the system. The search framework

used in this thesis is described in detail in Chapter 8.

As the number of words in the lexicon becomes large, the task of training individ-

ual acoustic models for each word becomes prohibitive. Consequently, an intermediate

level of representation is generally used. A common representation involves describ-

ing the pronunciation of a word in terms of phonemes. A phoneme is an abstract

fundamental unit of a language. By de�nition, changing a phoneme changes the

meaning of a word. For example, if the phoneme /p/ in the word pit is changed to

a /b/, the word becomes bit. A small number of phonemes can be used to describe

all the words in a given language (English consists of roughly forty phonemes). By
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representing word pronunciations as a sequence of phonemes, the number of acoustic

models and the required training data of moderate and large vocabulary systems can

be drastically reduced.

Phonemes can be realized in a variety of acoustically distinct manners depending

on the phonetic context (e.g. syllable position, neighboring phones), the stress, the

speaker, and other factors. The actual acoustic realization of a phoneme is known as

a phone. This distinction is an important one. The di�erent acoustic realizations of

the same phoneme do not a�ect the meaning of a word. An example of this often

occurs in the word butter, where the phoneme /t/ is frequently realized in American

English as the phone [F] (called a \ap"). The acoustic variability that can occur

when realizing the same phoneme is part of what makes the task of identifying a

phoneme so challenging.

The acoustic models are generally trained to recognize some set of phones (the

exact set being a design decision). The task of decoding a phone sequence is known

as phonetic recognition, and the resulting output is a sequence of probabilities from

which phonetic transcriptions are hypothesized. The phonetic probabilities are of

fundamental importance to the ASR task since they are the foundation upon which

the word string search is based. All large vocabulary speech systems utilize phonetic

models as a component in the speech recognition system. It is the purpose of this

thesis to create better acoustic models of the phonetic units, so as to improve the

accuracy achieved during the phonetic recognition task, and hence, the performance

of the entire ASR system.

1.1 Variability of the Speech Signal

Speech is produced by the coordinated manipulation of a set of articulators, including

the tongue, lips, jaw, vocal folds, and velum. The speaker{dependent characteristics

of the articulators and the vocal tract can cause a large amount of acoustic variability
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in the realization of the same phoneme sequence. The speaker's environment, mood,

health, and prosody (pitch and emphasis) can all a�ect the acoustic realization of a

phonemic sequence [79].

In addition to these speaker{dependent e�ects, the phonemic context inuences

the motion of the articulators and the resulting acoustic output. In many contexts,

it is frequently unclear where one phonetic segment ends and the next begins. The

overlapping of phonetic segments stems from overlap in adjacent articulatory ges-

tures. This phenomenon is known as co{articulation, and is a signi�cant factor in

contributing to the variability in the acoustic realization of a phoneme.

An example spectrogram of the utterance \Two plus seven is less than ten" is

shown in Figure 1-2. The spectrogram displays acoustic energy (dark regions) as

a function of frequency (y{axis) and time (x{axis). The dark bands in the vocalic

regions represent acoustic resonances, or poles of the vocal{tract transfer function,

and are known as formants. Predictions of the formant frequencies for the vowels,

as well as the energy distributions for the other sounds, come under the acoustic

theory of speech production [11, 20]. A phonetic transcription and an orthographic

transcription are also shown in the �gure.

The e�ects of co{articulation are apparent when comparing the three segments

labeled /E/. In the �rst segment (located at approximately 0.6 seconds), the second

formant moves downward from left to right, from 1.8 kHz. to 1.5 kHz. In this case,

the second formant is pulled up towards the alveolar locus by the fricative /s/ on the

left, and is pulled downward due to the labial fricative /v/ on the right. The target

position for this formant is most likely represented by its location in the middle of the

/E/ segment. This motion contrasts sharply with the motion in the second occurrence

of /E/ which starts just after t = 1.0 seconds. Here the second resonance is moving up

from left to right, and again contextual factors are the reason. The dominant factor

in this case is the strong downward pull provided by the /l/ in the left position.

The third occurrence of /E/ has a relatively stable second formant, however the �rst
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Figure 1-2: Spectrogram of the sentence: \Two plus seven is less than ten."
Dark areas show regions of high energy. The x{axis represents time (in seconds) and
the y{axis represents frequency (in kHz.) A phonetic transcription and an ortho-
graphic transcription of the utterance appear below the spectrogram.

formant has been broadened and made di�use. This form of co{articulation is known

as nasalization and occurs because the velum has been lowered in anticipation of the

alveolar nasal /n/. A more detailed analysis of this spectrogram can be found in [79].

1.2 Dynamics and Correlation of Acoustic Spectra

Despite the high degree of variability in the speech signal, there exists much that

is consistent both within a phonetic unit and across an utterance. This consistency

is what makes spoken communication so robust. A given phone generally has a

con�guration of the articulators, or target position [34] associated with it. Whether

or not the target position is reached, there tend to exist intervals of speech which

are predominantly representative of a particular phone. Although di�erences exist

between various speakers' physical characteristics, the existence of the target position
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implies that their articulators may share similar relative motions when realizing the

same phone. This similarity in the dynamics of the articulators should translate into

similar dynamics in the acoustic attributes of the phone.

Therefore, the trajectories of the acoustic attributes should share dynamic char-

acteristics for a given sequence of phones as the articulators move through a sequence

of gestures. The greater the similarity of the phonetic contexts, the greater the simi-

larity of the motion of the acoustic attributes. An example of this similarity is shown

in the spectrogram in Figure 1-3 for the word white /w a¤  t/ spoken by two di�erent

speakers. Although the absolute positions of the formants di�er, there is a similar

motion throughout the phonetic sequence. A methodology that captures the dynam-

ics of the acoustic attributes of a phone should have an advantage in identifying an

unknown phonetic segment of speech. Also note the di�culty in determining precisely

when the phone [w] transitions to the phone [a¤ ].

Statistical models of the phonetic units have historically provided a robust method

for dealing with the variability between speakers [1, 3, 64]. These statistical models

may capture the correlations between the acoustic attributes at a speci�c time, and

over a speci�ed time interval. The temporal correlation information can be utilized

to account for the fact that the same vocal track is producing the entire phonetic

sequence in an utterance. These temporal correlations in the speech signal are not

modelled directly in most ASR systems. The most popular current algorithm, hidden

Markov modelling (HMM), is only able to account for these correlations indirectly.

This work will attempt to demonstrate the importance of the temporal correlations,

and construct models which utilize them e�ectively.

1.3 Scope of the Thesis

This thesis attempts to incorporate dynamical models of the acoustic spectra into

a phonetic recognition scheme. The approach will be to �rst determine a means of
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Figure 1-3: Spectrograms of the word \white".
The word is spoken by two di�erent speakers. Note that although the absolute po-
sitions of the formants are slightly di�erent, the relative motions of the �rst three
formants are very similar. Additional acoustic parameters appear above the spectro-
gram, and the speech waveform appears below it.
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mapping a phone's variable duration tokens onto a �xed length track. A track is

de�ned to be a trajectory, or temporal evolution of the acoustic attributes over a

segment. A track consists of a sequence of M state vectors T = f~t1; : : : ;~tMg which

are used as the basis for generating a synthetic segment:

G = f(T;N) = f~g1; : : : ; ~gNg (1:1)

for any number of frames N , where f() is a generation function. The track serves as

a template and attempts to capture segment-level spectral dynamics.

After a track is computed from the training tokens for a particular phone, the

same tokens are used to generate an error model based on the di�erences between the

track and the training tokens. The objective of the error model is to take advantage

of information residing in the error correlations both between acoustic attributes and

over time.

The track and its associated statistical error model form a baseline model for each

phonetic unit. Although the baseline model provides a robust general characterization

of the phonetic unit it represents, details attributable to phonetic context and speaker

dependencies tend to be \averaged out." That is, since the track represents the

phone in all contexts, it tends not to contain contextual information which is critical

to enhancing model accuracy due to co-articulation. One means of addressing this

problem is to create context{dependent tracks. Another is to speci�cally model the

transition dynamics between phonemes. Both of these approaches will be addressed

in this thesis.

When evaluating a methodology, two types of experiments commonly conducted

are phonetic classi�cation and phonetic recognition. In phonetic classi�cation the

segmentation boundaries in the utterance are known, and the task is to correctly

classify each segment. In phonetic recognition the segment boundaries are not known.

As a result, insertion and deletion errors are possible, along with substitution errors

(misclassi�cation).
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Chapter 2 of this thesis examines the signal processing issues involved in trans-

forming the digitized speech waveform into the acoustic representation used through-

out this thesis, the Mel{frequency cepstral coe�cients. Chapter 2 then describes

the timit acoustic{phonetic corpus, which is the source of all the speech data used

in this work. Chapter 3 begins with a description of the current state{of{the{art

in automatic speech recognition, and then provides details of other commonly used

approaches to the problem.

The development of the statistical trajectory models begins with Chapter 4. This

chapter de�nes the acoustic trajectory models, known as tracks, which are used to

capture the spectral dynamics in a phonetic segment. Chapter 5 describes the statis-

tical component of the algorithm, which is based on an error signal derived from the

dynamic tracks. Chapter 6 contains baseline classi�cation experiments which provide

a preliminary algorithm evaluation and permits some parameter tuning. The statis-

tical trajectory models are initially evaluated on a vowel classi�cation task and then

on a complete set of context independent phonetic classi�cation experiments.

The incorporation of context{dependent models and some of the signi�cant ad-

vantages of separating the dynamical and statistical model components are explored

in Chapter 7. The statistical trajectory model algorithm is then used to create mod-

els of the phonetic transitions. The chapter describes how the transitions can be

clustered such that models of a reasonable number of \canonical" transitions can be

created. The di�erent elements of the thesis are then brought together into a com-

plete system in Chapter 8. This chapter describes the search problem involved in

phonetic recognition, and discusses the phonetic recognition experiments. Chapter 9

contains conclusions and suggestions for future avenues of research.



Chapter 2

Background

This chapter provides the details of some of the relevant background for the work

conducted in this thesis. A discussion of the signal processing issues involved in

computing acoustic features from the digitized speech waveform is presented �rst.

This is followed by a description of the timit acoustic{phonetic speech corpus, and

a breakdown of the di�erent data sets that will be referenced later in the thesis.

2.1 Signal Processing and Signal Representation

As discussed in the introduction, the continuous speech signal is digitally sampled and

then processed via a temporal and/or spectral analysis into a sequence of observation

frames. The signal processing in this work is typical of most ASR systems. The sig-

nal representation to be generated consists of the Mel{frequency cepstral coe�cients

(MFCC's) [53]. The cepstrum is the inverse Fourier transform of the logarithm of the

power spectrum of a signal [66]. The MFCC's provide a high degree of data reduction

over using values of the power spectral density directly, since the power spectrum at

each frame can be represented with relatively few parameters.

There are several other reasons why the MFCC's were chosen as the acoustic

23
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attributes. The Mel{frequency warping is motivated by the frequency response char-

acteristics of the inner ear, where the critical bandwidths are known to vary with

frequency [21, 72]. The MFCC's are also one of the most common representations

used in modern speech research. Therefore direct comparisons can be made between

the results obtained here and in other work, without the concern that di�erences in the

results are attributable to a speci�c acoustic representation. In addition, the MFCC's

have been shown to achieve good performance, particularly in an environment where

noise is not a critical factor [45, 50, 53].

The key steps involved in producing the MFCC's from the continuous speech

waveform are:

1. The signal is sampled at 16 kHz., pre{emphasized, and multiplied by a Hamming

window of 25.6 ms. which is advanced at a frame rate of 5 ms.

2. A 256 point Discrete Fourier Transform (DFT) is then computed for each frame.

3. The Fourier transform coe�cients are squared, and the resulting squared mag-

nitude spectrum is passed through a set of 40 overlapping Mel{frequency tri-

angular �lter banks. The log energy output of each of these �lters collectively

form the 40 Mel{frequency spectral coe�cients (MFSC), Xj, j = 0,1,2,...,40.

4. A cosine transform of the MFSC's is then used to generate the 15 MFCC which

are the acoustic attributes used in this thesis.

The Mel{frequency �lters consist of 13 triangles spread evenly on a linear fre-

quency scale from 130 Hz to 1 kHz, and 27 triangles evenly distributed on a loga-

rithmic scale from 1 kHz to 6.4 kHz. Since the bandwidths of the triangular �lters

increase with center frequency, the area of each �lter is normalized to avoid ampli-

fying the higher frequency coe�cients, as in [51]. The cosine transform which yields

the MFCC, Ci, i = 0,1,2...,14, from the MFSC is:

Ci =
40X
j=0

Xjcos
�
i(j �

1

2
)
�

40

�
(2:1)
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Note that the lowest cepstral coe�cient, C0, is a summation of the log energy from

each �lter. Therefore, it is related to the amount of energy in a frame.

2.1.1 Cepstral Di�erencing

Cepstral di�erencing involves computing the rate of change of the MFCC's for use

as acoustic attributes [24, 64, 75]. The computation has been widely employed, due

to its positive impact on system performance. The performance improvement results

from the fact that the frames are not independent, and that derivative information is

a means of capturing some of the correlation between frames. The resulting attributes

are called the delta cepstrum, and in some instances delta{delta cepstrum has also

been used [5, 38].

The derivative of the MFCC's at a given frame is approximated by computing a

�rst{order polynomial over a �nite length window, centered about the frame. Specif-

ically, for a given MFCC, Ci, at time t:

�Ci(t; k) =
kX

j=�k

jCi(t+ j) (2:2)

For a given segment, the delta cepstrals near the segment boundary are e�ectively pro-

viding contextual information about the phonetic environment. For this reason, many

implementations utilize only the delta cepstrals computed at the segment bound-

aries [7, 26]. The delta cepstrals will be used as additional acoustic attributes for

many of the classi�cation experiments and all of the recognition experiments per-

formed in this thesis.

2.2 TIMIT

The timit acoustic{phonetic speech corpus [36] is used for all training, development,

and performance evaluation experiments. This corpus is widely used throughout
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the world and provides a standard that permits direct comparison of experimental

results obtained by di�erent methodologies. The entire corpus consists of 10 sentences

recorded from each of 630 speakers of American English. Two of the sentences (sa)

are identical for all the speakers. Five of the sentences (sx) for each speaker were

drawn from a set of 450 phonetically compact sentences hand{designed at MIT. The

emphasis behind these sentences was on covering a wide range of phonetic pairs.

The 450 (sx) sentences are each spoken by seven di�erent speakers. The �nal three

sentences (si) for each speaker were chosen at random from the Brown Corpus [23]

and are unique for all the speakers. The speakers in the corpus are comprised of males

and females (at a ratio of roughly two to one) from eight prede�ned dialect regions

of the United States.

Generally, the (sa) sentences are not utilized since the phonetic contexts used in

these sentences would be over{represented. This has the e�ect of favorably skewing

the performance results. Counting only the (sx) and (si) utterances, the entire corpus

consists of 194,591 phonetic tokens. A list of the timit phone set and their equivalent

International Phonetic Association (IPA) symbols are shown in Table 2.1.

Some typical sx sentences from the corpus are:

\Ambidextrous pickpockets accomplish more."

\The bungalow was pleasantly situated near the shore."

\A big goat idly ambled through the farmyard."

\Eating spinach nightly increases strength miraculously."

\At twilight on the twelfth day we'll have Chablis."

For all experiments, the data is divided into distinct units known as the training

set and the test set. The training set is used to estimate the parameters for each of

the phonetic models to be used in the experiments. The test set consists of the actual

test data for the classi�cation or recognition performance evaluation. Since it is often

important to run experiments to determine parameter settings, a third data set is

often used. This data set is called a development set, and it serves the purpose of
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allowing algorithms to be re�ned without inadvertently \tuning" them to a particular

test set, which would result in arti�cially inated performance.

Regardless of the particular experiment in this thesis, speakers from the training

and development/test sets never overlap. This is important to ensure fair experimen-

tal conditions. Both sets are generally chosen to reect a well balanced representation

of the speakers in the corpus. Most of the training and test sets utilized in this work

were selected speci�cally because they are identical to training and test sets used in

other work. Therefore, the results can be directly compared to those obtained else-

where and reported in the literature. The di�erent data sets used in this thesis are

listed along with some of their statistics in Table 2.2.
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IPA TIMIT EXAMPLE IPA TIMIT EXAMPLE
a aa father 4Í eng Washington
@ ae bat f f fief
^ ah but v v very
O ao bought T th thief
a⁄  aw about D dh they
{ ax about s s sis
{‡  ax{h aspirated schwa z z zoo
} axr diner S sh shoe
a¤  ay bite Z zh measure
E eh bet p p pop
5 er bird b b bob
e ey bait t t tot
I ih bit d d dad
| ix roses k k kick
i iy beat g g gag
o ow boat p› pcl p closure
O¤  oy boy b› bcl b closure
U uh book t› tcl t closure
u uw boot d› dcl d closure
uÚ ux beauty k› kcl k closure
w w wet g› gcl g closure
y y yet C ch church
r r red J jh judge
l l led F dx butter
lÍ el bottle FÊ nx funny
m m mom h hh hay
n n no H hv Leheigh
4 ng sing ∑ epi epinthetic silence
mÍ em bottom √ pau pause
nÍ en button ? q glottal stop

h# Utterance initial and �nal silence

Table 2.1: List of the IPA phone symbols, the equivalent timit symbols, and exam-
ples.
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Data Set Name # Speakers Utterances Tokens
HM Train (Vowels) 499 (357 m/142 f) 2,495 sx 20,528
HM Sub{Train (Vowels) 450 (318 m/132 f) 2,250 sx 18,450
HM Augment{Train (Vowels) 499 (357 m/142 f) 3,992 sx, si 34,576
HM Development (Vowels) 49 (39 m/10 f) 245 sx 2,078
MIT Train 567 (397 m/170 f) 4,536 sx, si 175,101
MIT Test{V (Vowels) 50 (33 m/17 f) 250 sx 1,879
MIT Test 50 (33 m/17 f) 250 sx 8,922
MIT Augment{Test 50 (33 m/17 f) 250 sx, si 15,027
NIST Train 462 (326 m/136 f) 3,696 sx, si 142,910
BG{Dev1 16 (16 m/0 f) 128 sx, si 4,810
Dev1 50 (34 m/16 f) 400 sx, si 15,334
NIST Core 24 (16 m/8 f) 192 sx, si 7,333
BU Train 426 (426 m/0 f) 3,408 sx, si 130,906
BU Test 12 (12 m/0 f) 96 sx, si 3,731
KFL Train 610 (424 m/186 f) 4,880 sx, si 188,435
KFL Test 20 (14 m/6 f) 160 sx, si 6,156

Table 2.2: The timit data sets used for training, development, and experimentation.
The data sets designated (Vowels) only include tokens of the 16 unreduced vowels of
American English. NIST refers to the National Institute of Standards and Technology.



Chapter 3

Current ASR Approaches

Speech recognition approaches tend to fall into two categories, frame based and seg-

ment based. Frame based approaches are currently utilized in most ASR systems.

In a frame based system, each observation frame in the sequence O = f~o1; : : : ; ~oTg

receives a score for each phonetic model. There is no pre{segmentation of the signal

into larger units. Rather, the segmentation comes about implicitly as a consequence

of the frame{by{frame scoring. In a segment based system, start and end times of

larger units are hypothesized within the signal as a distinct step in the scoring process.

These larger units generally represent individual phonetic units of speech.

Segment based systems o�er the potential advantage of being able to accurately

capture segment level dynamics, as well as directly modelling temporal correlations

within the segment. Also, segment level features, such as segment duration, can be

easily incorporated into the system. An advantage of a frame based system is that

each frame receives its own score. This permits the scores for di�erent transcription

candidates to be directly compared since each alternative transcription has an identi-

cal number of scores. The alternative transcriptions share the same probability space,

of dimension proportional to the number of frames in the utterance. In a segment

based framework it can be di�cult to compare utterance likelihoods which hypoth-

30
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esize di�erent numbers of segments since the dimension of the probability space is a

function of the number of segments. Finally, a frame based system tends to have a

computational advantage since the segmentation step does not have to be explicitly

performed.

This chapter presents a brief review of the major approaches used to perform the

speech recognition task. The frame based approaches are discussed �rst, starting with

dynamic time{warping (DTW). DTW is a template based approach which achieved

some success in smaller vocabulary speaker{dependent tasks, and later some simple

speaker{independent tasks [78]. A di�culty with the DTW approach is its inability to

generalize, which caused di�culties in speaker{independent systems. DTW has gen-

erally been supplanted by approaches which incorporate statistical methods. HMM

is the most common technology used in speech recognition systems at this time [78].

HMM is a statistical frame based approach which are able to account for many of the

uncertainties in the speech signal, including the temporal variability of phonetic units

and speaker variability. More recently, connectionist approaches have been applied to

the speech recognition problem [44, 46, 67]. The section on frame based approaches

concludes with a discussion of the most successful of these approaches which utilizes

a recurrent error propagation neural network (REPN) [67].

This chapter next reviews several segment based approaches. These approaches

all generally involve an explicit segmentation of the signal into phonetic units. The

section focuses on approaches which attempt to incorporate dynamical information

into the segment models, since these approaches are most relevant to the work dis-

cussed in this thesis. The �nal section provides a summary of the current applicable

performance levels achieved by these systems.
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3.1 Frame Based Approaches

Frame based systems are characterized by approaches which assume some degree of

independence between frames, and, do not rely on an explicit segmentation of the

speech signal. In general these approaches produce a probability or likelihood score

for each observation frame.

3.1.1 Dynamic Time Warping

Dynamic time{warping (DTW) involves the creation of reference templates for each

unit to be recognized [31, 65]. Historically, the units used were words or connected

words. The key idea is to account for di�erences in speaking rate while determining

which reference pattern is, by some measure, \closest" to the test pattern. Hence,

the algorithm involves an alignment component and a distance metric component.

The problem is reduced to �nding the best path through a �nite grid, subject to

constraints imposed by physical limitations (the speaking rate cannot undergo arbi-

trary variations). The best path is taken to be one which minimizes an accumulated

distance metric. This path uses an algorithm known as a Viterbi [22] search which

utilizes dynamic programming to �nd the optimal path. A wide variety of metrics

have been used, but the most common [65] are the Euclidean metric and the linear

predictor coe�cient (LPC) distance metric of Itakura [31]. A major advantage of

DTW is that by creating templates at the word level, the variations in the realiza-

tion of the phones which arise due to context are inherently accounted for. However,

regardless of the implementation, statistics on the errors were not generally utilized

in the DTW approach. The frame{to{frame errors are considered to be statistically

independent.

A major drawback of this method is the lack of any statistical mechanism to

account for di�erences between speakers. This makes it very di�cult to generalize

from multi{speaker to speaker{independent speech recognition systems. Addition-
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ally, DTW does not scale up easily to moderate and large sized speech recognition

vocabularies. Once the number of words to be recognized gets into the hundreds,

template training becomes di�cult due to a lack of training data, and the match-

ing process becomes computationally expensive. If DTW is applied at the phonetic

level, its advantages become weakened. The variability of phones due to context is

no longer automatically accounted for, and the lack of a statistical mechanism for

dealing with this variability is a serious drawback. Also, the machinery which ac-

counts for variations in speaking rate is less powerful at the phonetic level, where the

rate is more likely to be constant throughout the duration of a single phone. There-

fore, for larger scale speaker{independent tasks, speech recognition systems began to

adopt approaches which combine the dynamic programming advantage of DTW with

stochastically based techniques.

3.1.2 Hidden Markov Models

Hidden Markov modelling [42, 64] (HMM) is currently the most popular technique for

performing phonetic recognition and is utilized in a vast majority of modern speech

recognition systems. HMM is a statistical frame based approach consisting of a set

of states connected to each other via transition probabilities. While occupying a

state, observations are generated randomly from a probability density function (pdf).

The transition probabilities and output distributions together constitute an HMM

model. The key assumption inherent in an HMM is the Markovian assumption that

the observations are independent, given the state sequence up to the current time. In

practice, the majority of HMM systems are modelled as �rst{order Markov processes.

Therefore, the observation likelihood depends only on the current state of the system.

A typical topology of an HMM designed to model a phone is depicted in Figure 3-

1. This HMM is called a \left{to{right" HMM because state transitions are only

permitted in one direction. The state is forced to either stay the same or increase

with time. Loosely speaking, the three states are said to model the start, middle,
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STATE 1 STATE 2 STATE 3

GAUSSIAN

PDF

Figure 3-1: A typical left{to-right HMM topology.
Each state contains a pdf (depicted here as Gaussian), from which observations are
drawn at random. Given the state sequence, the observations are independent.

and end of a phone. Since the observations, in this case frames of speech, are always

moving forward in time, the vast majority of phonetic models contain the left{to{right

feature. The output distributions shown are continuous Gaussian densities, although

mixtures of densities are more common. The output distribution can also be modelled

as discrete observations. The Markov models are called hidden because the \true"

state of the system is unknown.

Since each state has a di�erent output distribution, an HMM is equipped to han-

dle the non{stationarity inherent in the speech signal. HMM also manages certain

temporal aspects of the speech problem in an elegant manner. The variability of

durations over a phone training set is handled automatically by the fact that an in-

dividual state can be occupied for a variable length of time. Another advantage of

the HMM approach is that it does not require an explicit temporal{alignment, or

segmentation, of the speech signal. Since each frame in an utterance receives its own

score, the likelihood scores for alternative segmentations can be directly compared to

each other. The alignment which results in the best score for the entire utterance is

then chosen. Finally, an e�cient algorithm, the Baum{Welch reestimation algorithm,
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exists for training HMM [4].

A disadvantage of HMM is that temporal correlations are not modeled explicitly.

Instead, the correlations are represented implicitly through the state transition proba-

bilities. However, it has been shown that the state transition probabilities have much

less impact on the observation likelihoods than the output distributions connected

to the states [52]. As the dimension of the output distribution increases, this e�ect

becomes more pronounced. The summation over di�erent possible state sequences to

compute the observation likelihoods is often not performed. Instead, a Viterbi search

determines the most likely state sequence and only this score is used to determine the

likelihood of each model [52, 64]. The implication is that the temporal correlation

information is not being used e�ciently, or that it is not important.

However, it has been demonstrated that signi�cant temporal correlations do ex-

ist [15, 26]. Evidence of these correlations will be presented in Chapter 5. Incorpo-

ration of this information into an appropriate structure should translate into perfor-

mance bene�ts.

There have been attempts to explicitly model the dynamics of the acoustic at-

tributes within an HMM framework. Generally this has been done, with some success,

by incorporating �rst (and possibly second) order di�erences of the acoustic param-

eters in the observation vector. Other approaches are segmental HMM, proposed by

Russell [71] and also by Marcus [48], and state{conditioned trend functions used by

Deng [12]. None of these approaches have gained general acceptance within the com-

munity, nor have they been shown to generate results superior to more traditional

HMM techniques.

3.1.3 Recurrent Error Propagation Networks

Currently, the phonetic recognition system which has produced the best performance

on the timit data base, utilizes a recurrent error propagation network (REPN) to

distinguish the phonetic units. A complete description of this system, developed
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by Robinson and Fallside, along with subsequent improvements, can be found by

consulting [67, 68, 69].

The network uses a recurrent multi{layer perceptron architecture, where part of

the output is fed back to the input after a time delay of one frame. The network is

trained by propagation of the error gradient backwards in time. The network inputs

consist of a representation of the power spectrum, additional features such as zero{

crossing rate or voicing information, and the previous system output (i.e. feedback).

The network outputs are the probabilities that a given frame is part of a segment

labeled with a speci�c phonetic symbol. The network has been constructed so as

to function as a component of a hybrid connectionist{HMM system, with the neural

net computing the phonetic probabilities and the HMM using these probabilities to

recognize words [69].

A key advantage of the connectionist approach is the capability to utilize feedback

to potentially incorporate contextual information. While this feedback essentially gen-

erates left{context (past) information, a delay in the propagation from input to output

allows for right{context (future) information to be incorporated. This feedback also

permits the network to indirectly estimate temporal correlations over arbitrarily long

time intervals. As stated above, this system has produced the best performance in

phonetic recognition on the timit corpus. However, when applied to word recog-

nition, the results thus far have been well below the results achieved by standard

HMM based systems [69]. This result is consistent with previous work using hybrid

connectionist{HMM systems [54]. Robinson speculates that there are two main fac-

tors responsible for poor word level performance: a smaller system parameter size,

and an unsophisticated word model (e.g. the system in [69] permitted only a single

pronunciation for each word). However, at the time of this writing, no connectionist

based system has been able to exceed the performance of the best HMM's at the word

level.
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3.2 Segment Based Approaches

Recently, there have been a number of segment based approaches to the phonetic

recognition problem. This includes MIT's SUMMIT system [60, 80, 81, 82] and the

Stochastic Segment Model (SSM) approach of Ostendorf and Roucos [56, 57, 70]. The

SSM incorporates segment level dynamics in the modelling process. Other approaches

that explicitly attempt to capture segment level dynamics are the dynamical state{

space models of Digilakis [14, 15, 16] and �tting acoustic attributes with second order

polynomials by Gish and Ng [25]. These approaches will now be described in some

detail, since thesis also proposes a segment based dynamic approach. This section

will focus on the aspects of these approaches which incorporate dynamic information.

3.2.1 The MIT SUMMIT System

SUMMIT is a speaker{independent, continuous{speech recognition system developed

at MIT. SUMMIT explicitly hypothesizes a segmentation structure based on acoustic

landmarks in the speech signal. Scoring for classi�cation and recognition is then based

on a set of segmental measurements which are determined automatically by a set of

generalized algorithms [61]. The set of generalized algorithms and the free parameters

associated with them form a search space from which the segmental measurements of

the acoustic attributes can be optimized. The idea is to extract a set of measurements

which will maximize the discriminating power of the system.

The segment level measurements can easily be used to capture di�erent aspects

of the dynamics of the acoustic attributes. An example of a measurement which

does this is the average change in a spectral peak in a given frequency range, or the

average values of an attribute over di�erent time intervals. Statistical models are then

created based on mixtures of diagonal Gaussians [60]. More recently, the system has

also successfully employed measurements based on the phonetic transitions [62]. The

creation and use of statistical trajectory models for these highly dynamic regions will
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be explored in detail in Chapters 7 and 8 respectively.

3.2.2 Stochastic Segment Model

The description that follows pertains to the more recent SSM implementation as de-

scribed in [57]. SSM assumes that speech segments are described by a �xed{length

sequence of locally time{invariant regions. A deterministic mapping is used to assign

each observation vector in a segment to a region. The algorithm theoretically allows

for modelling the entire space{time structure of the acoustic attributes, by creating

a pdf that accounts for the inter{region correlations (corresponding to the temporal

correlations). However, this would result in very high-dimensional pdfs (140 dimen-

sions in [56, 70] and 112 dimensions in [57]), which can not be estimated robustly.

As a compromise, the regions are modeled as independent, which is equivalent to

assuming that the frames in a segment are conditionally independent given the seg-

mentation. Therefore, separate Gaussian probability density functions are estimated

for each region.

This implementation of the SSM is identical to a hidden Markov model with a

constrained state sequence. The SSM generally has more regions (eight or ten) than

most HMM's used for phonetic recognition (which often use three). In [70] experimen-

tal results are reported for implementations which utilize only the spatial correlations

(the implementation described above), or alternatively, only the temporal correla-

tions for each acoustic attribute (which assumes independence between attributes).

As a baseline, an additional implementation assumed complete independence (diago-

nal Gaussians for each region). The results for the spatial correlation implementation

were signi�cantly superior to the other two experimental conditions. In fact, the im-

plementation utilizing only the temporal correlations performed slightly worse than

the complete independence condition. These results provide an interesting contrast

to results achieved using the algorithm proposed for this thesis under the same three

assumptions.
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3.2.3 Dynamic System Model

This work by Digilakis utilizes a traditional state{space dynamical system formalism

with standard recursive estimation techniques to create dynamical models of the

acoustic attributes. The acoustic attributes are estimated by propagating them over

a sequence of stochastic dynamical systems. Each system represents a region of local

linearity and stationarity that is assumed to exist in the phone's acoustic trajectory.

The regions are considered to be independent of each other. Hence, the trajectory

has been assumed to be piecewise linear and stationary. The number of regions for

each phone is chosen based on the average duration of the phone over the training

set, but in practice was no greater than �ve. A drawback of this approach is that it

can not capture long{term temporal correlations over the course of an entire segment

(when more than a single region is used). Also, it should be noted that although this

is a segment{based approach, a score is generated for each frame in the utterance.

For each phone, an iterative expectation{maximization (EM) algorithm [10] is

used to identify a state{space stochastic model for each region. The driving and

measurement noise terms are assumed to be Gaussian and white. A Kalman �lter and

Rauch{Tung{Striebel smoothing [76] are employed during the estimate step of the EM

algorithm. During phonetic classi�cation, the likelihood score for each model is based

on the innovations process. Since the innovations are white, no correlation information

is lost by assuming independence of the innovations at each frame. This is a major

theoretical advantage of this approach. An unfortunate e�ect of the Kalman �lter

implementation during classi�cation is that incorrect models generate increasingly

accurate estimates of the test trajectory over time. This is due to the inherent stability

of the Kalman �lters. Consequently, performance in [15, 16] was highly dependent on

the accuracy of the initial condition estimates [17]. The results reported in [16] will

provide an additional point of comparison with this thesis.
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3.2.4 Polynomial Approximations

Gish and Ng [25] have created trajectory models of the acoustic attributes which as-

sume the trajectories can be well represented by �rst and second{order polynomials.

However, the scoring of the error signal (generated by comparing their polynomial

templates to actual tokens) does not incorporate any temporal correlations, but as-

sumes the errors at each frame are independent. They generate results for a phonetic

classi�cation task on the vowels using the same test set evaluated in parts of this

thesis. Hence, their work will provide an additional point of performance comparison

at the classi�cation level.

3.3 Previous Performance Results

Many of the approaches described above have been used to generate phonetic classi�-

cation and/or recognition results using the timit corpus. Therefore, they will provide

good benchmarks for comparison as the approaches in this thesis are developed and

evaluated. A summary and brief description of some of the previous phonetic recog-

nition results are contained in Table 3.1. It's important to note that the accuracy

values in Table 3.1 can not be directly compared to each other. Aside from the

fact that di�erent test sets are used, and in one case a di�erent error criterion, the

models used in the experiments also reect di�erent levels of complexity (e.g. some

results are based on context{independent phonetic models and others are based on

context{dependent phonetic models).

Several comments are required to fully explain the table. The results cited repre-

sent the best accuracies reported by the researchers listed. The work by Lamel and

Gauvain represents the top phonetic recognition performance for any HMM based ap-

proach. They use context{dependent HMM's with �MFCC's and ��MFCC's [38].

The work by Robinson represents the best phonetic recognition result on the NIST

Core data set of the timit corpus in the literature [68] and also includes context{
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Approach Prin. Researcher(s) Test Set Year Accuracy
REPN Robinson NIST Core 1992 73.9%
HMM Lamel & Gauvain NIST Core 1993 69.1%
SUMMIT Phillips & Glass NIST Core 1994 68.5%
SSM Ostendorf & Roucos BU Test 1990 66.7% �
HMM Lee KFL Test 1989 66.1%
Dynamical System Digilakis BU Test 1992 63%

Table 3.1: Phonetic recognition accuracy results for several approaches using the
timit speech corpus. Phonetic accuracy is de�ned as %Correct - %Insertion Errors.
All results are based on a set of 39 phonetic labels. The\�" denotes that the SSM
algorithm results were computed using a slightly di�erent criterion, to be described
later in the thesis. In many instances the results are not directly comparable since
di�erent test sets and di�erent levels of model complexity were employed (e.g. some
results are based on context{independent phonetic models and others are based on
context{dependent phonetic models). The results stated reect the best accuracies
currently reported in the literature for each of the approaches listed.

dependent information.

The implementation of the SUMMIT system included context{independent pho-

netic models and context{dependent models of the phonetic transitions. The results

of Ostendorf and Roucos are based on a test corpus composed entirely of male speak-

ers from the same dialect region of the United States (western dialect) [13, 15]. Also,

a slightly di�erent means of calculating errors was used. The SSM results are based

on a context{independent phonetic recognition system. No context{dependent pho-

netic recognition results are currently available. The results of Digilakis, likewise, are

based on context{independent results as context{dependent experiments were not

conducted. Although Digilakis used the same test set as the SSM work, his method

of counting errors was in line with the other non{SSM results. His techniques, exper-

iments, and performance are described completely in his doctoral thesis [15]. Finally,

the work by Kai{Fu Lee is a standard early benchmark. Lee used an HMM approach,

and conducted both context{independent and context{dependent experiments. The

results listed here represent his best context{dependent performance [40].
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3.4 Chapter Summary

Speech recognition systems have evolved from temporal based approaches to stochas-

tic approaches. Although much work has been done on segment based approaches,

neural networks, and attempts to explicitly incorporate segment level dynamics,

HMM's remain the current dominant algorithm for performing the phonetic and

word recognition tasks. However, it is widely recognized that their ability to ac-

curately represent spectral level dynamics, or model the within{segment temporal

correlations leaves room for improvement. A stochastic, template based approach

which is able to capture the dynamic behavior of the acoustic spectra, and the tem-

poral correlations within a segment, is clearly worth consideration as a method of

performing speech recognition.



Chapter 4

Acoustic Trajectory Models

This chapter focuses on the track component of the statistical trajectory model. The

purpose of the track is to accurately capture the dynamic behavior of the acoustic

attributes over the duration of a designated unit of speech. The designated unit could

be a phone, a sequence of phones, or a speci�c transition from one phone to another.

Due to the continuous movement of the articulators, the acoustics of the speech

signal generally exhibit strongly non{linear dynamic characteristics, both within a

phonetic segment and across phonetic boundaries. Studies conducted by Digilakis [15]

using a regression analysis indicated that even within a given speech segment, linear

models of the spectral dynamics show signi�cant degradation with respect to non{

linear models. Intersegmentally, Digilakis concluded that linear models were not

adequate. One means of solving this problem is to assume a concatenation of piece{

wise linear models. A di�culty with this type of approach is that it arti�cially

constrains the resulting model into a �xed parametric framework. The idea behind the

creation of a track is to represent the non{linear dynamics of the acoustic attributes

directly by utilizing a non{parametric representation and minimizing the number of

potentially constraining assumptions.

43
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The remainder of this chapter will:

1. De�ne and describe the tracks which will be used to model the spectral motion

that occurs within a speech segment.

2. Develop a metric for measuring how accurately a track, or any other dynamic

representation, is capturing the phonetic spectral trajectories. This metric will

be the mean distortion, an average weighted Euclidean distance measure.

3. Examine a variety of algorithms for creating tracks based on di�erent assump-

tions concerning the variability of a phone's duration. These algorithms will be

called generation functions.

4. Select a particular generation function and its associated design parameters

based on performance as measured by the distortion metric.

All of the training done in this chapter utilized the MIT Train data set of 567

speakers. For the evaluation of the distortion metric, the MIT Test set of 50 speakers

was used. The 61 phones used in the TIMIT corpus were grouped into 58 models for

training. That is, some models combined the data from two or more phones, and no

e�ort was made to distinguish phones whose data were pooled. The 58 models are

shown in Table 4.1.

4.1 Dynamic Tracks

A track, ~T�, represents the temporal trajectory of the acoustic attributes in the

acoustic space. A track consists of a sequence of states which serve as a temporal

representation within which a template of a speci�c unit of speech is stored. In this

chapter the focus will be on constructing tracks for individual phonetic units.

The function of the tracks is to account for the dynamics of the phonetic units

being modelled. The tracks will form the basis for computing an error between
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1. a 10. b 19. nÍ 28. I 37. 4,4Í 46. S 55. w
2. @ 11. b› 20. ∑ 29. | 38. FÊ 47. h#,√ 56. y
3. ^ 12. C 21. 5 30. i 39. o 48. t 57. z
4. O 13. d 22. e 31. J 40. O¤  49. t› 58. Z
5. a⁄  14. d› 23. f 32. k 41. p 50. T
6. { 15. D 24. g 33. k› 42. p› 51. U
7. {‡  16. F 25. g› 34. l 43. ? 52. u
8. } 17. E 26. h 35. m,mÍ 44. r 53. uÚ
9. a¤  18. lÍ 27. H 36. n 45. s 54. v

Table 4.1: Phone models created from training data for all experiments. When more
than a single symbol appears, it means that a single model was created by pooling
the data for both symbols.

each phonetic model and an hypothesized segment of speech. The error will then be

processed to determine the identity of the speech segment. A block diagram of this

component of the system is shown in Figure 4-1.

Speci�cally, the tracks are computed from the training data by mapping the train-

ing tokens for each phone to a sequence of M states. The mapping function is known

as a generation function. When all the tokens in the training set for a particular

phone have been mapped, the phone dependent track is calculated from the maxi-

mum likelihood estimate of each state.

Once the tracks have been created they will serve as the initial stage in evaluating

hypothesized speech segments. To evaluate anN frame speech segment, S, a synthetic

segment, G is generated. The generation function, f , is used to compute the mapping

from the M state track to the N frame synthetic segment. The synthetic segment

produced by the generation function is then compared directly to theN frame acoustic

segment to form an error sequence:

E = S �G = f~e1; : : : ; ~eNg (4:1)
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f (T,N)
Generation
Function

N  -- number of frames

Σ
T -- Track G -- Synthetic

Segment

S -- N frame
acoustic segment

E -- Error
Sequence

+
-

Figure 4-1: Block diagram of the system components associated with the track.

where,

~ei = ~si � ~gi: (4:2)

Note that the generation function used to map the track to an hypothesized num-

ber of frames is the same function that is used in the creation of the track. Hence,

it is the generation function which determines both the computation of the tracks

and their alignment with the speech segments during evaluation. In order to evaluate

the accuracy of the generation functions and the associated tracks, it is necessary to

develop a means of quantifying the errors which arise from each alternative algorithm.

The derivation of a tool for accomplishing this is the topic of the next section.

4.2 Track Evaluation Utilizing a Distortion Metric

Given the variety of methods available to generate the tracks, it is important to

develop a metric by which the magnitude of the track error can be measured, inde-

pendent of the implementation methodology, so that the performance of alternative

modelling techniques can be directly compared. Clearly, a track with a more accurate

dynamic representation is desired and should lead to superior system performance.

The error for a particular token will consist of a temporal sequence of vectors, each
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computed by taking the di�erence between a token's vector of acoustic attributes and

the track with which it is being compared (see Eq's. 4.1, 4.2). Naturally, a more

accurate track will result in error vectors of smaller magnitude than a less accurate

track.

To quantify the quality of a track, a distortion metric will be utilized. The dis-

tortion metric will be based on the Euclidean distance of a token from a synthetic

segment. This distance is equivalent to the magnitude of each of the error vectors in

the error sequence. However, the magnitude su�ers from the fact that the di�erent

acoustic attributes have widely diverse mean values. This has the undesired e�ect

of allowing the error in a single dimension (i.e., a particular acoustic attribute) to

dominate the distortion metric. Therefore, the variances of the acoustic attributes

are used as a means of normalizing each dimension, so that the importance of each

component of the error vector is reected accurately in the distortion metric.

First, the variance of each acoustic attribute is measured indendently using the

training set for each phone � for which a model is to be created. That is, given M�

tokens of training data for phone �, and letting d�(i) be the duration of the i
th token

(in frames), the total number of frames in training set � is:

F� =
M�X
i=1

d�(i) (4:3)

Thus, the mean value of each acoustic attribute, C�i, in training set � is:

C�i =

M�X
j=1

d�(j)X
k=1

C�ijk

F�
(4:4)

Now the variance of each acoustic attribute in training set �, �2�i, can be calculated:

�2�i =

M�X
j=1

d�(j)X
k=1

(C�ijk � C�i)
2

F�
(4:5)
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The second step is to use these phone dependent variances (which we will need later),

to compute the variances for each acoustic attribute over the entire training set. These

pooled variances will then be used as the normalization weights for the distortion

metric. The variances over the entire training set for the ith acoustic attribute are

then the weighted mean of the individual �2�i:

�2i =

X
8�

F��
2
�iX

8�

F�
(4:6)

Now the distortion can be de�ned: Distortion is the mean value (per frame) of the

weighted square magnitude (Euclidean norm) of the error vectors, ~ei. Essentially the

distortion is a normalized mean square error metric. The error vectors, ~ei are formed

by taking the di�erence between each token and its corresponding synthetic segment

for the entire set of data for which the distortion will be measured. Note that all the

generation functions will be de�ned such that the mean error is zero (i.e., E[~ei = ~0]).

The normalization weights are the variances �2i computed over all the frames in the

training data.

The distortion for a particular phone's training set, given that there are P acoustic

attributes in each observation vector, is:

D� =
1

F�

F�X
i=1

PX
j=1

e2ij
�2j

(4:7)

and the distortion over the entire training set is then the weighted mean of the D�'s:

D =

X
8�

F�D�

X
8�

F�
(4:8)

By computing the mean distortion over an evaluation set for each competing algo-

rithm we can determine the relative merits of the di�erent alignment schemes. This

will allow us to incorporate the most accurate alignment scheme during subsequent
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experiments. Furthermore, this metric is valid for comparing completely di�erent

types of algorithms, providing each algorithm accounts for the same frames of input

speech.

4.3 Track Alignment

Regardless of the method used to generate a dynamic model of the acoustic attributes,

a key question that must be answered is how to map tokens of varying duration to a

track. The fact that the same phone will have a large variability in its duration, even

when spoken by the same speaker in the same context, must be accounted for in a

robust manner. In a frame based approach such as HMM's, this durational variability

is handled implicitly, since the duration that a phone remains in a state is variable.

A segmental approach must deal explicitly with the temporal variability that occurs

in the realization of a phone. Di�erent hypotheses which account for this durational

variability can serve as a starting point for determining the nature of the dynamic

representation.

Clearly, contextual factors and individual speaker characteristics will impact both

the articulatory gestures and the resulting spectral trajectories. These issues will be

addressed separately. The assumptions which determine the creation of the tracks

and their subsequent use will be motivated solely from consideration of the durational

variability. Two simple contrasting assumptions that can be made concerning the

durational variability of phonetic segments are:

1. The spectral dynamics involved in realizing an acoustic segment are invariant

with duration. Di�erences in duration primarily reect di�erences in speaking

rate. Therefore, the trajectory followed by the acoustic attributes is the same.

Generation functions which utilize this assumption will be de�ned as trajectory

invariant generation functions. Trajectory invariant generation functions will

rescale the phonetic track in time, until it is of the same duration as the training
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or evaluation token. Trajectory invariance, as de�ned here, need not imply

that the articulatory gestures are invariant, only the resulting dynamics of the

acoustic attributes.

2. The spectral dynamics involved in realizing an acoustic segment are not in-

variant with duration. Di�erences in duration reect actual di�erences in the

trajectories of the acoustic attributes through the acoustic space. In this case,

the assumption is that the dynamics in shorter phones are identical to part of

the dynamics expressed in longer phones, such as the initial, central, or �nal

portion. Generation functions based on this assumption will be de�ned as time

invariant generation functions. Time invariant generation functions align all

tokens about a �xed reference point in time. Therefore, unlike the trajectory

invariant functions, there is no temporal warping of the acoustic trajectory. In-

stead, the trajectory of the acoustic attributes through the space varies with

phone duration.

The term trajectory invariance has been borrowed from Digilakis [14], and its use

here is very similar to the way it is used in the Dynamic Systems model, allowing

for obvious di�erences in the two approaches. Digilakis' second term was called cor-

relation invariance. This term came about directly from assumptions Digilakis was

making concerning the correlation structure of the attributes, namely that the cor-

relation in consecutive states does not change with segment duration and is di�erent

from the use of time invariance in this work.

It should be noted that all of the generation functions which follow use a deter-

ministic mapping of the track states to the frames of a synthetic segment. That is,

the mapping is independent of the data, or input token. This is in contrast to the

DTW approach in which a Viterbi alignment procedure is used to minimize a distance

metric between the template and the input token. The advantage of DTW is that it

accounts for variations in speaking rate. However, as discussed in Chapter 3, DTW

has generally been applied at the word level. While the speaking rate over the course
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of a word may change signi�cantly, the speaking rate within a phonetic segment is

likely to be more constant. Also, performing a Viterbi search while aligning each

phonetic model imposes an additional computational burden.

Therefore, although generation functions which are dependent on the input token

are not investigated in this work, a DTW type generation function is a potential

re�nement to the statistical trajectory model approach. This type of generation

function would also be fully compatible with the statistical model component which

is discussed in the next chapter.

4.3.1 Time Invariant Generation Functions

The tracks are constructed by aligning each token about a reference point in time.

Once the training tokens are all aligned, the mean value of each acoustic attribute is

computed from the ensemble of tokens which contribute at each point in time. The

result is a track for each phonetic model of length equal to the duration of the longest

token in the training set for that phone. The tracks tend to be very smooth where

many tokens contribute and noisier where fewer tokens contribute (those tokens of

unusually long duration for a given phone).

Generation functions which align the training tokens at their mid{point (center),

left endpoint (start), and right endpoint (end) are investigated in this section. The

algorithm to compute the center aligned tracks is shown in Table 4.2. The

algorithms for the start and end time aligned tracks are conceptually identical to the

center alignment algorithm, only the initial and �nal alignment points di�er. There

is no need to compute a mid{point in these cases, since it is not needed for alignment.

Examination of the resulting tracks gives some insight into the types of dynamical

events captured by these generation functions. The cepstral coe�cients (without the

Mel{scale warping) are de�ned to be:

Cn =
1

2�

Z 2�

0
log jX(ejw)jejwndw =

1

�

Z �

0
log jX(ejw)j cos (wn)dw (4:9)
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1. 8 phone models, �

2. Set all elements of ~T� and count to zero

3. long(�) = max
i 2 �

[duration(i)]

4. mid point(�) = long(�)/2 (division with truncation)

5. For 1 � i � M�

(a) �rst point = mid point(�) { duration(i)/2

(b) last point = mid point(�) + duration(i)/2

(c) For �rst point � j � last point

i. ~T�(j) = ~T�(j) + ~S(j { �rst point)

ii. count(j) = count(j) + 1

6. For 1 � j � long(�)

(a) ~T�(j) = ~T�(j)/count(j)

De�nitions:

� M� � the number of tokens in the training set for phone model �

� Count � vector whose elements keep track of the number of tokens con-
tributing at each point in time

� Duration � vector of size M� containing the duration (in frames) of each
token

Table 4.2: Time Invariant { Center generation function
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Figure 4-2: C1 for the four vowels [a] (aa), [a⁄ ] (aw), [I] (ih), and [O¤ ] (oy) using the
Time Invariant { Center generation functions.

where X(ejw) represents the Fourier coe�cients [66].

Interpreting this equation reveals that C1 is providing a measure of the spectral

balance between high and low frequencies, with low frequencies being weighted posi-

tively and high frequencies being weighted negatively. In the case of C2 the extremes

of the frequency range are being weighted positively and the mid{range frequencies

are weighted negatively.

Figures 4-2 and 4-3 show the center 30 frames (150 ms) of C1 and C2 respectively

for four di�erent vowels, using a center based time alignment. The �gures reveal

that the center alignment algorithm is able to capture some features of the vowel

dynamics that are intuitively appealing. For example, in Figure 4-2 the value of C1

for the vowel [O¤ ] is initially steady and then drops over time, reecting the motion of

the second and third formants to higher frequencies in the [y] o�{glide. In contrast,

C1 rises over time for the vowel [a⁄ ] as the energy falls in frequency due to rounding.

Figure 4-3 also shows interesting dynamical features. In this �gure the value of

C2 for [O¤ ] initially falls as the energy in the vowel moves into mid{ranges, and then
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Figure 4-3: C2 for the four vowels [a] (aa), [a⁄ ] (aw), [I] (ih), and [O¤ ] (oy) using the
Time Invariant { Center generation functions.

begins too rise as the second and third formants continue rising.

The biggest problem with the time invariant techniques is the potential for av-

eraging out signi�cant dynamical events due to improper temporal alignment. For

example, this can occur at both the start and end of the track for the center alignment

algorithm. The ends of the tracks then tend to incorporate dynamics dominated by

durational and contextual factors. Early research on the 16 monothong and diph-

thong English vowels resulted in slightly superior performance for the center based

alignment scheme [26], indicating that for longer duration phonemes, center alignment

is the best compromise.

The distortion was then calculated for each of the alignment algorithms over all

the phonetic models. To provide a point of comparison, the distortion for a baseline

case was also computed. The baseline case uses only the mean value of each of the

MFCC's for each phone as a constant, \track." These values are the C�i computed

earlier in Equation 4.4. The baseline distortion values help to determine the reduction

in distortion for each phone achieved by modelling the dynamics. Values for the
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mean distortions for all sounds using the three time invariant algorithms and the

baseline zero'th order MFCC means are shown in Table 4.3. By using the same

normalization parameters for all of the phonetic models, it is possible to compare

the mean distortion of di�erent phones. It is not surprising to note that [?] (glottal

stop) has the highest distortion, since it is so strongly a�ected by the formants of

its contextual environment. The fricatives, most likely due to the consistency of

turbulence, and h# (silence) have the lowest distortion values.

Table 4.3 also reveals the di�erences between the three algorithms and the baseline

results. For the longer phones with lots of dynamics, such as the diphthongs, the

center alignment algorithm is generally superior. The problem with averaging out

dynamical events is particularly evident for the voiced and unvoiced stop closures. In

these cases, center alignment is a poor idea. The sharp energy transitions which occur

at the boundaries will become obscured when the transitions in short duration tokens

are averaged with periods of silence in the longer tokens. The reduced distortion

values for the start and end alignment algorithms reect this. The superiority of the

end alignment algorithm in these cases is noteworthy. This is due to the fact that

although the end alignment algorithm loses information during the initial energy

transition, it creates a very accurate model of the �nal energy transition. The release

of a stop is very abrupt and occurs over a shorter period of time than the decrease in

energy that occurs during the preceding closure. The closure can often be gradual,

thus accounting for the advantage of end point alignment. Figure 4-4 shows the three

generation functions for a model created by pooling all of the voiced closure data.

Over all the phones, the performance of the center and end based generation functions

are close and only slightly better than that of the start generation function.

Two important points regarding these generation functions need to be made. The

�rst is that, although the reduction in distortion over the baseline might appear to

be small, it is in fact very signi�cant. In most cases the reductions achieved are

roughly an order of magnitude greater than the standard deviation of the estimate

of the zero'th order distortion. This �nding will also be apparent in the classi�cation

experiments presented in the next chapter. Secondly, it will turn out that each of the
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phn base start center end phn base start center end
a 18.390 18.221 18.214 18.175 | 17.222 17.035 16.995 17.045
@ 17.039 16.927 16.778 16.737 i 16.223 15.830 15.923 16.058
^ 18.498 18.452 18.260 18.241 J 10.064 9.644 9.558 9.475
O 21.136 20.943 20.917 20.859 k 14.718 14.296 14.126 14.019
a⁄  20.446 19.573 19.266 19.628 k› 13.558 12.823 12.865 12.264
{ 17.364 17.278 17.209 17.211 l 18.624 18.472 18.531 18.488
{‡  15.645 15.565 15.523 15.544 m 17.516 17.311 17.383 17.307
} 16.477 16.279 16.231 16.245 n 16.916 16.610 16.760 16.796
a¤  17.839 16.720 16.061 16.220 4 18.448 18.127 18.275 18.438
b 12.900 12.614 12.197 11.925 FÊ 17.279 17.221 17.138 17.133
b› 12.476 12.052 12.354 11.952 o 19.868 19.473 19.206 19.263
C 9.636 8.955 8.727 8.719 O¤  20.930 19.226 18.524 18.948
d 12.913 12.492 12.488 12.530 p 11.116 10.854 10.642 10.303
d› 13.952 13.343 13.560 12.939 √ 12.544 12.399 12.410 12.209
D 13.304 13.268 12.870 12.198 p› 9.269 8.462 8.542 8.395
F 15.630 15.496 15.504 15.439 ? 24.307 24.153 24.101 23.905
E 17.866 17.712 17.614 17.611 r 18.847 18.797 18.692 18.512
lÍ 15.730 15.348 15.412 15.513 s 9.713 9.416 9.440 9.435
mÍ 16.148 15.846 15.965 16.263 S 9.375 8.985 8.940 8.857
nÍ 15.492 15.291 15.430 15.541 t 11.732 11.034 10.759 10.828
4Í 21.749 21.796 21.910 21.930 t› 13.106 12.601 12.530 11.847
∑ 12.137 12.323 12.458 12.356 T 9.428 8.998 8.882 8.903
5 19.330 19.097 19.013 19.018 U 19.583 19.506 19.517 19.513
e 17.097 16.131 15.928 16.151 u 21.105 20.494 20.470 20.719
f 7.807 7.526 7.320 6.973 uÚ 17.515 17.192 17.080 17.275
g 15.864 15.572 15.157 14.887 v 11.612 11.099 11.370 11.511
g› 16.630 16.107 16.197 15.633 w 17.415 17.329 17.065 16.487
h# 9.267 9.163 9.179 9.188 y 16.473 16.443 16.212 16.134
h 15.335 15.226 15.127 14.837 z 11.759 11.185 11.336 11.596
H 16.284 16.284 16.227 16.154 Z 10.888 10.484 10.356 10.458
I 18.196 18.180 18.001 17.994

Weighted average over all phones 14.869 14.545 14.488 14.431

Table 4.3: Distortions for baseline and time invariance algorithms.



CHAPTER 4. ACOUSTIC TRAJECTORY MODELS 57

1 2 3 4 5 6 7 8 9 10
1300

1400

1500

1600

1700

1800

1900

Number of frames (5 ms/frame)

M
ag

ni
tu

de
 o

f C
0

+  start

*   center
x  end

Figure 4-4: C0 for a Time Invariant voiced closure.
The �gure shows the tracks estimated by pooling the three voiced closures. The tracks
have 10 states and are shown for each of the three Time Invariant generation functions.
The center generation function fails to capture the initial and �nal transitions, which
are averaged out. The time invariance tracks appear to lose important dynamic
information for the closures. Note that the transition from silence to the stop is more
abrupt than the initial transition to silence.
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generation functions is most accurate at their alignment point (start, center, or end).

It will be shown that algorithms motivated by a trajectory invariant assumption will

capture the accuracy of all three of these algorithms.

4.3.2 Trajectory Invariant Generation Functions

Trajectory invariance assumes that the trajectory through the acoustic{space does

not vary with the duration of a speci�c phonetic unit. Under this assumption, tracks

will consist of a �xed sequence of vectors. Each vector can be thought of as a state,

and hence, the track can be considered to be a sequence of states that the phone

is modelled as passing through. Short phones will be aligned to a subset of the

track states and long phones will be aligned with the same state more than once.

Generation functions may also align observations in between states via interpolation.

Variations of each of these approaches will be investigated in this section.

It is relevant to note that many HMM implementations can be interpreted as

generating a piecewise constant track consisting of the expected value of the attributes

in each state. Accordingly, the track is constant over the duration that a model

remains in a particular state. These HMM's can be considered to be a form of

trajectory invariance, in that the acoustic attributes pass through a sequence of states

in which there is some degree of temporal expansion or compression. Note that the

trajectories associated with the HMM's could also be subjected to the same distortion

metric de�ned above.

As in the time invariance case, the trajectory invariant generation function deter-

mines the mapping of the track to the input token during both training (when the

track is computed) and evaluation. Five alternative mapping algorithms are investi-

gated in this section. In the �rst four algorithms, each frame of the input token is

utilized exactly once, both during track creation and evaluation. The �fth algorithm

is distinct in that data in long duration tokens is sub{sampled, and data in short

tokens is augmented by interpolation. This allows each token to contribute exactly

one data point to each state of the track. A brief description of the �ve approaches
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follows:

� Traj1 | Linear Interpolation with Fixed Endpoints: This algorithm is based on

a linearly interpolated mapping of a token's frames to the frames of the track.

The initial and �nal frames of the token are always aligned with the initial and

�nal frames of the track with intermediate frames falling linearly in between.

If the token is longer than the track, the same procedure is followed, but some

frames of the track are mapped to more than one frame from the token. This

means that multiple frames of the token are averaged into the same track frame

for longer tokens.

� Traj2 | Fractional Linear Interpolation with Fixed Endpoints: This algorithm

preserves the mapping of endpoint to endpoints, but smoothes out the contri-

bution of interior points. Instead of mapping each frame of an input token to a

particular frame of the track, the frame contributes its data to adjacent track

frames in proportion to how closely it maps to each frame.

� Traj3 | Linear Interpolation with Fictitious Endpoints: This algorithm uses

linear interpolation, but creates �ctitious endpoint frames for both the input

token and the track, which always map to each other. The e�ect of this is that

the actual �rst frame of the input token is mapped to the interior of the track.

For tokens of duration longer than the track, this algorithm reverts to Traj1.

The idea is to create a slight compromise between this algorithm and the time

invariant algorithms.

� Traj4 | Fractional Linear Interpolation with Fictitious Endpoints: This algo-

rithm combines the features of Traj2 and Traj3. For longer input tokens, it

reverts to the Traj2 mapping algorithm.

� Traj5 | Fixed Duration Synthetic Segment: This approach is unique in that

data is sometimes created (via interpolation) or ignored (due to subsampling).

Rather than map each frame of the input token to a state or combination of

states, the input token is stretched or compressed until it has the same duration
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as the �xed duration track. If the token is shorter than the track duration, it is

expanded in time via a linear interpolation with the endpoints mapping to the

endpoints of the track. If the token is long, then it is linearly compressed in time,

the endpoints are again lined up, and the data is down{sampled. Consequently,

each token in the training set contributes exactly one frame to each state of the

track.

Analysis of Trajectory Invariant Generation Functions

The Traj1 algorithm is de�ned in detail in Table 4.4. Examples of mapping the

frames of input tokens of di�erent duration into the track are given in Table 4.5. One

problem with this algorithm is that, depending on the number of states in the track

and the typical durations of the tokens it is representing, consecutive states of the

track can receive disproportionate amounts of the training data due to the e�ects of

mapping the frame to the nearest state.

The Traj2 algorithm, which preserves the endpoint mapping and re�nes the linear

interpolation, can resolve this problem. The algorithm, which is de�ned in Table 4.6,

spreads out the contribution of an individual frame to both of the track states that

it \falls between." For example, a token's frame whose mapping to the track is 3.75

would contribute 25% of its value to the track's third state and 75% of its value to

the track's fourth state. This results in smoother tracks, particularly for the short

duration phones. Figure 4-5 shows the tracks of C0 for the phone [b] generated with

the Traj1 and Traj2 algorithms. For longer phones, such as the vowels, semi-vowels,

and strident fricatives, the tracks are indistinguishable. This is shown in Figure 4-6

which depicts C0 and C1 for the phone [a⁄ ].

The Traj3 approach permits some exibility in mapping the endpoints of the

trajectory. The idea is to create two \�ctitious" endpoints of the trajectory, one at

the start and one at the end. Each token utilizes these �ctitious endpoints, which

always map directly to the corresponding states of the track. Then the interior

points are linearly interpolated. For tokens of duration equal to or longer than the
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1. 8 phone models, �

2. Set all elements of ~T� and count to zero

3. num = track duration { 1

4. For 1 � i � M�

(a) den = duration(i) { 1

(b) For 0 � j < duration(i)

i. track index = round to nearest integer(j � num/den)

ii. ~T�(track index) = ~T�(track index) + ~S(j)

iii. count(track index) = count(track index) + 1

5. For 0 � j < track duration

(a) ~T�(j) = ~T�(j)/count(j)

De�nitions:

� Track duration � pre-speci�ed duration (in frames) to be used for this
track

� M� � number of tokens in the training set for phone model �

� Count � vector whose elements keep track of the number of tokens con-
tributing at each point in time

� Duration � vector of size M� containing the duration (in frames) of each
token

Table 4.4: Trajectory Invariant Generation Function I { Traj1
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Track of 10 States 0 1 2 3 4 5 6 7 8 9
token with 2 frames 0 1
token with 4 frames 0 1 2 3
token with 8 frames 0 1 2 3 4 5 6 7
token with 12 frames 0 1 2,3 4 5 6 7 8,9 10 11
token with 16 frames 0 1,2 3,4 5 6,7 8,9 10 11,12 13,14 15

Table 4.5: Trajectory Invariant Generation Function I { Example frame mappings
for tokens of di�erent durations to a 10 state track. The frame numbers of the input
token are mapped to the indicated states of the track.
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Figure 4-5: C0 for the labial stop release [b] using Traj1 and Traj2 with a 10 state
track.
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1. 8 phone models, �

2. Set all elements of ~T� and count to zero

3. num = track duration { 1

4. For 1 � i � M�

(a) den = duration(i) { 1

(b) For 0 � j < duration(i)

i. track index = oor(j � num/den)

ii. frac = j � num/den { track index; omfrac = 1 { frac

iii. ~T�(track index) = ~T�(track index) + omfrac � ~S(j)

iv. count(track index) = count(track index) + omfrac

If (j 6= den) Do steps v. and vi.

v. ~T�(track index + 1) = ~T�(track index + 1) + frac � ~S(j + 1)

vi. count(track index + 1) = count(track index + 1) + frac

5. For 0 � j < track duration

(a) ~T�(j) = ~T�(j)/count(j)

De�nitions:

� Track duration � pre-speci�ed duration (in frames) to be used for this
track

� M� � number of tokens in the training set for phone model �

� Count � vector whose elements keep track of the number of tokens con-
tributing at each point in time

� Duration � vector of size M� containing the duration (in frames) of each
token

Table 4.6: Trajectory Invariant Generation Function II { Traj2
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Figure 4-6: C0 and C1 for the vowel [a⁄ ] using Traj1 and Traj2 with a 20 state track.
The two algorithms virtually coincide.

track, the algorithm reverts to the �xed endpoint approach. The e�ect on shorter

tokens is to map initial and �nal frames towards the interior of the trajectory. This

is a compromise between the previous trajectory invariant algorithms and the time

invariant track algorithms. The algorithm is explained in Table 4.7. Examples of the

mapping of the input token's frames to the track is shown in Table 4.8.

The Traj4 algorithm is constructed by combining elements of the Traj2 and Traj3

algorithms. The fractional interpolation scheme of Traj2 is used in combination with

the �ctitious endpoints used in the Traj3 algorithm. The resulting tracks for each of

the �rst four trajectory invariant algorithms are shown for the phone [D] in Figure 4-

7. The Traj4 algorithm e�ectively smoothes the tracks, but this smoothness will not

turn out to generate superior distortion results.

The �rst four approaches utilize every frame in the input token exactly once.

Each frame is mapped to a point in time, or state, in the trajectory, and no data

is created or ignored. The �fth and �nal approach is unique in that data is created

by interpolating short tokens and ignored by subsampling long tokens. Rather than
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1. 8 phone models, �

2. Set all elements of ~T� and count to zero

3. num1 = track duration { 1

4. num2 = nm1 + 2

5. For 1 � i � M�

(a) den1 = duration(i) { 1

(b) den2 = den1 + 2

(c) For 0 � j < duration(i)

i. if (duration(i) < track duration)
track index = round to nearest integer((j+1) � num2/den2) { 1
else (revert to Traj1)
track index = round to nearest integer(j � num1/den1)

ii. ~T�(track index) = ~T�(track index) + ~S(j)

iii. count(track index) = count(track index) + 1

6. For 0 � j < track duration

(a) ~T�(j) = ~T�(j)/count(j)

De�nitions:

� Track duration � pre-speci�ed duration (in frames) to be used for this
track

� M� � number of tokens in the training set for phone model �

� Count � vector whose elements keep track of the number of tokens con-
tributing at each point in time

� Duration � vector of size M� containing the duration (in frames) of each
token

Table 4.7: Trajectory Invariant Generation Function III { Traj3
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Track of 10 States 0 1 2 3 4 5 6 7 8 9
token with 2 frames 0 1
token with 4 frames 0 1 2 3
token with 8 frames 0 1 2 3 4 5 6 7

Table 4.8: Trajectory Invariant Generation Function III { Example frame mappings
for tokens of di�erent durations to a 10 state track. The frame numbers of the input
token are mapped to the indicated frames of the track.
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Figure 4-7: Trajectory Invariant tracks for the weak fricative [D].
This �gure shows C0 for the weak fricative [D] using generation functions Traj1,
Traj2, Traj3 and Traj4 and a 20 state track. The algorithms which have \fractional
interpolation" (Traj2 and Traj4) have smoother tracks. However, the algorithms
which achieve lower distortions share the \�xed endpoints" feature (Traj1 and Traj2).



CHAPTER 4. ACOUSTIC TRAJECTORY MODELS 67

map each frame of the input token to the trajectory, the input token is stretched

or compressed until it has the same duration as the �xed duration track. If the

token has fewer frames than the track has states, it is expanded in time via a linear

interpolation with the endpoints mapping to the endpoints of the track. If the token

has more frames than the number of states, then it is linearly compressed in time,

the endpoints are again lined up, and the data is down{sampled. Hence, each token

in the training set contributes exactly one frame to each frame of the track. The

algorithm is de�ned in Table 4.9.

Selecting the Number of Track States

An important issue not yet addressed is choosing the number of states for the tra-

jectory invariant tracks. If too few states are used, then the resulting tracks will

not contain all of the relevant dynamical characteristics of the phone being mod-

elled. If too many states are used then unnecessary storage and computation costs

are incurred.

To determine the optimal number of states, the mean distortion was computed

as a function of the number of states for each phonetic model. The distortions for

all the models were then summed, with each model weighted by the number of times

it occurred in the training set (the prior probability). Figure 4-8 shows the summed

distortion as a function of the number of track states for each of the �ve trajectory

invariance algorithms. It can be seen that the distortion falls o� rapidly with the

number of states until reaching a steady value at approximately 9 or 10 states. It

is also apparent that using too many states does not cause an increase in distortion.

The forty{nine speaker development set, HM Development, was used for all distortion

calculations.

This result was consistent on an individual phone{by{phone basis as well. The

mean distortions for 4 individual phones, representing distinctly di�erent phonetic

classes, are shown in Figure 4-9. Consistent with the behavior over all the phones, it

is apparent that steady{state distortion levels are achieved by using approximately



CHAPTER 4. ACOUSTIC TRAJECTORY MODELS 68

1. 8 phone models, �

2. Set all elements of ~T� and count to zero

3. num = track duration { 1

4. For 1 � i � M�

(a) den = duration(i) { 1

(b) For 0 � j < duration(i)
track index(j) = j � num/den

(c) For 0 � n < track duration

i. For 0 � j < duration(i)

A. deltax = n { track index(j)

B. deltay = n { track index(j+1)

C. If ((deltax > 0.0) and (deltay < 0.0))
distance = track index(j+1) { track index(j)
ratio = deltax/distance
~T�(track index) = ~T�(track index) + ratio � ~S(j+1)

+ (1 { ratio) � ~S(j)

D. Else If (deltax = 0.0)
~T�(track index) = ~T�(track index) + ~S(j)

5. For 0 � j < track duration

(a) ~T�(j) = ~T�(j)/M�

De�nitions:

� Track duration � pre-speci�ed duration (in frames) to be used for this
track

� M� � number of tokens in the training set for phone model �

� Count � vector whose elements keep track of the number of tokens con-
tributing at each point in time

� Duration � vector of size M� containing the duration (in frames) of each
token

Table 4.9: Trajectory Invariant Generation Function V { Traj5
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Figure 4-8: Sum of the mean distortion vs. number of states in track. Calculated
over all the phones for each of the �ve trajectory invariance generation functions.
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Figure 4-9: Mean distortion vs. number of states for four di�erent phones, computed
using the Traj2 algorithm.

10 states in the track. Since even the phone with the shortest mean duration, [b],

is not adversely a�ected by using additional states, it is possible to choose a single

track length for all the phonetic models.

An additional issue of importance with respect to phone duration occurs when

we examine the initial and �nal few frames of the trajectory invariant track. Fig-

ure 4-10 depicts the synthetic segments generated by the Traj2 algorithm assuming

three di�erent input token durations. Although the synthetic segment trajectories

look virtually identical, note that the 40 frame synthetic segment assumes a slower

transition from the proceeding phone and into the following phone by factors of two
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and four, when compared to the 20 and 10 frame segments respectively. For example,

this means that the transition from a preceding vowel to an [s] is expected to take

four times longer if the [s] is 200 ms than if the [s] is 50 ms. This assumption does not

reect intuitive expectations, and could be a potential weakness of the trajectory in-

variant track generation functions. This problem is addressed later by creating tracks

of the transition dynamics directly.

Analysis of Distortion Results

The distortions for the baseline (zeroth order) algorithm and the �ve trajectory in-

variant track generation functions, each using a 20 state track, are shown for all the

phones in Table 4.10. The �rst four algorithms are directly comparable, since they

all compute the mean distortion over exactly the same set of data points. Direct

comparison with the �fth algorithm is not as straightforward, since it is normalized

over arti�cial data, and also eliminates data for the longer phones. Hence, it is not

computing comparisons identical to those made by the �rst four algorithms, all of

which deal with identical data. Enumerated below is a summary of some salient

points regarding the �rst four algorithms:

1. For the longer duration segments, such as the vowels and syllabic consonants,

there are no statistically signi�cant di�erences in the distortions. The tracks

themselves are virtually indistinguishable. The same is true for six of the eight

fricatives, with the exceptions being the two weak voiced (shorter duration)

fricatives [D] and [v].

2. Short duration segments, such as the the voiced and unvoiced stop releases, favor

the Traj1 and Traj2 algorithms (�xed endpoints). Traj1 and Traj2 also show

very signi�cant performance improvements for the voiced and unvoiced closures,

where, as was seen for the time invariant algorithms, endpoint alignment is

critical.
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Figure 4-10: Synthetic segments of [s] for di�erent durations.
C1 is plotted assuming durations of 10, 20, and 40 frames. All synthetic segments were
created using the Traj2 generation function. Note that the trajectories, normalized
by duration, are virtually identical.
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phn base Traj1 Traj2 Traj3 Traj4 Traj5 �

a 18.390 18.081 18.077 18.079 18.084 18.207
@ 17.039 16.654 16.652 16.651 16.654 16.393
^ 18.498 18.104 18.100 18.097 18.106 17.916
O 21.136 20.830 20.828 20.834 20.837 20.995
a⁄  20.446 19.206 19.206 19.204 19.205 19.078
{ 17.364 17.199 17.194 17.189 17.191 16.773
{‡  15.645 15.488 15.471 15.482 15.520 14.696
} 16.477 16.136 16.134 16.134 16.144 15.694
a¤  17.839 15.915 15.903 15.903 15.917 15.938
b 12.900 12.332 12.171 12.237 12.356 11.265
b› 12.476 11.563 11.561 11.760 11.764 11.713
C 9.636 8.461 8.450 8.463 8.476 8.080
d 12.913 12.463 12.471 12.558 12.547 11.786
d› 13.952 12.466 12.474 12.826 12.813 12.640
D 13.304 12.519 12.555 12.734 12.704 11.936
F 15.630 15.239 15.259 15.320 15.328 15.070
E 17.866 17.558 17.555 17.546 17.550 17.375
lÍ 15.730 15.254 15.254 15.260 15.259 15.345
mÍ 16.148 16.243 16.230 16.208 16.235 15.960
nÍ 15.492 15.253 15.241 15.268 15.282 14.996
4Í 21.749 21.751 21.751 21.760 21.722 21.614
∑ 12.137 12.199 12.184 12.267 12.292 11.558
5 19.330 18.867 18.863 18.858 18.861 18.775
e 17.097 15.924 15.918 15.919 15.925 15.683
f 7.807 6.884 6.875 6.880 6.895 6.724
g 15.864 15.062 15.041 15.062 15.095 14.508
g› 16.630 15.193 15.205 15.448 15.437 15.156
h# 9.267 9.161 9.153 9.153 9.161 8.943
h 15.335 14.819 14.815 14.872 14.884 14.122
H 16.284 16.146 16.143 16.146 16.162 15.795
I 18.196 17.940 17.935 17.925 17.932 17.846
| 17.222 17.001 17.000 16.987 16.990 16.584
i 16.223 15.849 15.848 15.850 15.851 15.740
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phn base Traj1 Traj2 Traj3 Traj4 Traj5 �

J 10.064 9.252 9.252 9.321 9.336 8.715
k 14.718 13.915 13.917 13.906 13.914 13.520
k› 13.558 11.787 11.785 11.943 11.941 11.554
l 18.624 18.500 18.502 18.530 18.528 18.381
m 17.516 17.148 17.149 17.175 17.172 16.728
n 16.916 16.559 16.560 16.606 16.607 16.499
4 18.448 18.195 18.183 18.220 18.233 18.398
FÊ 17.279 16.998 16.977 17.027 17.102 17.162
o 19.868 19.212 19.206 19.202 19.209 19.118
O¤  20.930 18.556 18.542 18.540 18.556 18.309
p 11.116 10.330 10.331 10.402 10.402 9.914
√ 12.544 12.200 12.206 12.229 12.223 12.995
p› 9.269 7.619 7.624 7.717 7.711 7.386
? 24.307 23.801 23.808 23.835 23.811 22.787
r 18.847 18.577 18.584 18.612 18.609 18.466
s 9.713 9.224 9.219 9.218 9.227 8.967
S 9.375 8.627 8.622 8.622 8.632 8.420
t 11.732 10.629 10.631 10.621 10.618 10.217
t› 13.106 11.587 11.592 11.817 11.819 11.740
T 9.428 8.658 8.642 8.638 8.653 8.405
U 19.583 19.385 19.384 19.381 19.386 18.950
u 21.105 20.452 20.440 20.440 20.450 20.262
uÚ 17.515 17.087 17.082 17.084 17.089 16.441
v 11.612 11.041 11.045 11.094 11.078 11.039
w 17.415 16.852 16.865 16.952 16.953 17.403
y 16.473 16.130 16.103 16.098 16.123 15.658
z 11.759 11.013 11.009 11.030 11.036 10.860
Z 10.888 10.073 10.029 10.043 10.081 9.461

Weighted average over all phones:
14.869 14.276 14.273 14.303 14.308 14.096

Table 4.10: Distortions for baseline and trajectory invariance generation functions.
The \�" denotes that the Traj5 algorithm isn't really directly comparable to the other
algorithms listed, and consequently it's superior distortion results may not reect
algorithmic superiority.



CHAPTER 4. ACOUSTIC TRAJECTORY MODELS 75

3. The remaining phones tend to show slight advantages for the Traj1 and Traj2

algorithms. As can be seen, the overall di�erences are small, with Traj2 coming

out on top. This seems to indicate that the endpoint alignment is important,

and that the smoothing from \fractional interpolation" is helpful.

4. Note that all the algorithms show signi�cant improvement over the best �xed

track results.

5. The results for Traj5, while tantalizing, do not translate into a performance

advantage. The reasons for this will be covered when baseline classi�cation

experiments are conducted. However, the primary factors appear to be the

creation of arti�cial data for short phones, which creates arti�cial and erroneous

correlation information, and the subsampling of longer phones, when relevant

data is ignored. It is surmised that the apparent advantage in distortion is an

artifact of this data manipulation.

The advantage of the trajectory invariant approach is made clear when examin-

ing Figures 4-11 and 4-12. C0 is plotted for the start, center, and end �xed track

algorithms and for a synthetic segment generated using the Traj2 algorithm. A close

examination of the �gures reveals that the synthetic segment from the Traj2 algo-

rithm is initially aligned with the start algorithm trajectory, becomes aligned in the

middle of the segment with the center trajectory, and over the last several frames

is coincident with the end trajectory. This evidence strongly supports the idea that

the trajectory invariance assumption is able to capture the more accurate elements

of each of the time invariance algorithms.

4.4 Chapter Summary

A distortion evaluation over the development set showed that tracks generated using

a trajectory invariance assumption were consistently slightly superior to those gen-

erated using a time invariance assumption. The generation function which resulted
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Figure 4-11: C0 for the three time invariant algorithms and a synthetic segment
generated from the Traj2 algorithm of duration 150 ms (30 frames) for the phone [f].
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Figure 4-12: C0 for the three time invariant algorithms and a synthetic segment
generated from the Traj2 algorithm of duration 150 ms (30 frames) for the phone [a¤ ].
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in the least distortion for the four algorithms that could be directly compared was

fractional linear interpolation with �xed endpoints. This generation function is a lin-

early interpolated mapping of a token's frames to the states of the track. The initial

and �nal frames of the token are always aligned with the initial and �nal states of

the track. This result agrees with work done by Ostendorf, et al. where superior

performance for SSM was realized with a trajectory invariance type of assumption

which included �xing the endpoints [57].

Figure 4-13 shows example trajectories of Mel{frequency cepstral coe�cients C0

through C3 for a synthetic [O¤ ] segment and an [O¤ ] token selected at random from the

evaluation set. The synthetic segment accurately captures the dynamic motion of the

test token. Note also the temporal correlation of the error over the duration of the

segment. Capturing this correlation is a key objective of the error models, which are

the topic of the next chapter.
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Figure 4-13: Synthetic segment and test token for the phone [O¤ ].
This �gure shows the Mel{frequency cepstral coe�cients C0{C3 for a synthetic [O¤ ]
segment generated from a ten state track using the Traj2 algorithm (solid), and an
[O¤ ] token (+) randomly selected from the test set. Note that the synthetic segment
accurately captures the dynamic motion of the test token. Also note the signi�cant
temporal correlations in the error over the duration of the segment.



Chapter 5

Statistical Error Modelling

The speech signal varies slowly enough that successive frames of acoustic attributes

are highly correlated in time. Despite this fact, the majority of existing speech recog-

nition systems employ techniques (HMM's) which model the signal as a sequence of

conditionally independent observations. The models developed in this chapter will

provide a basis for capturing the statistical dependencies of acoustic attributes within

a speech segment.

The next section introduces the di�culties inherent in capturing the relevant cor-

relation information and motivates the solution used in this thesis, which involves

dividing the error sequence into sub{segments. Then, in section 5.2, an analysis of

the key design parameter which determines the number of sub{segments is conducted.

The bene�ts of sub{segmenting the error signal after accounting for segmental dy-

namics are shown by comparing the loss of accuracy to that which would occur if the

sub{segmentation had been applied to the original acoustic attributes. This section

also provides some analysis of the di�erent types of correlations which are captured.

The last section summarizes the results obtained in the chapter.

80
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5.1 Choosing a Statistical Model

The objective of the statistical model is to take advantage of information residing in

the correlations both over time and between attributes. Many previous approaches

are either not structured to capture all of the relevant correlation information or

have been unable to do so in a robust manner. In the work by Digilakis [14, 16]

and also by Gish [25], the statistical models are of the errors, which are assumed to

be independent. This assumption is appropriate for the stochastic dynamic system

model [14, 16] since the Kalman �lter produces a white innovations process. For

other methodologies however, the simplicity gained by assuming the error sequence

is independent is potentially damaging since important correlation information is

discarded.

The issue of creating a probability density function which is able to capture cor-

relation information involves two key problems. The �rst problem is due to the fact

that the observation sequence varies in duration. For each segment that is hypoth-

esized, the observation sequence will be N frames long, where N is variable. The

second problem arises when the dimension of the distribution becomes large, and

the estimate of the covariance matrix parameters becomes di�cult due to a lack of

training data.

Two approaches can be taken to the �rst problem. Clearly, if enough training

data existed, it would be desirable to create a pdf for each phone, for every possible

duration. Since this is not the case, the alternative is to attempt to preserve any

acoustical variability that is related to duration by allowing individual sequences to

contribute to di�erent parameters of the pdf, or, by normalizing the duration of each

sequence so that they all contribute to each element of the pdf parameters.

Some preliminary attempts were made using the �rst approach early in this thesis

work. The idea was to create a single large covariance matrix and to map each

contributing sequence to a subset of the mean vector and covariance matrix. The

mapping was a function of both the duration and of the generation function used

to create the tracks. A principle components analysis was then used to rotate the
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covariance matrices and extract a lower dimensional representation. Unfortunately

this approach never succeeded in achieving performance levels which were competitive

with approaches based on normalization. Therefore, the remainder of this chapter

will be devoted to investigating an approach based on normalization.

It is interesting to note that all of the segmental approaches discussed in this work

have a mechanism for performing duration normalization. The type of normalization

used will also directly impact the dimensionality of the pdf and the capability of the

approach to estimate it e�ectively.

The SSM approach [56] provides a framework for capturing temporal and spatial

correlations. Most variations of this approach involve performing interpolation on

short tokens and sub{sampling or remapping large tokens to produce a �xed length

sequence of the acoustic attributes. If the length of this normalized sequence is M

frames, then the mapping of the original N frame sequence, S, is similar to a type of

generation function:

f(SN) = ~SM = f~~s1; : : : ;~~sMg (5:1)

This �xed{length sequence is then concatenated together to form a single high{

dimensional vector for estimating a Gaussian pdf

~V ~S = f~s11; : : : ; ~s1P ; : : : ; ~sMPg
T (5:2)

The drawback of this approach is that if there are P acoustic attributes, then the

resulting dimension of the pdf is PM , which in practice was anywhere from 112 to

140 dimensions. This proved to be too large to allow for robust estimation of the

covariance matrix. The approach has been limited to using either only the spatial

correlations or spatial correlations in combination with local temporal correlations.

However, no implementation utilizing temporal correlations of more than a few frames

has been reported in the literature.

A second solution to the problem involves dividing the observation sequence into

Q sub{segments of equal duration and averaging the vectors within each sub{segment.

For example, for a ten state track with Q equal to three, that part of the error which
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resulted from comparing the token to the �rst third of the track (i.e., the �rst three

and a third \states") would be averaged, and so on for each of the other two thirds.

The speci�c operations for a hypothesized segment SN are:

SN = f~S1; : : : ; ~SN
Q
j : : : ; j ~SN(Q�1)

Q
+1
; : : : ; ~SNg

T
(5:3)

~�Si =

Ni
QX

j=
N(i�1)

Q
+1

~Sj

N=Q
i = 1; : : : ; Q (5:4)

Concatenation of these vectors is then performed to generate a single vector of di-

mension QP (where P is again the number of attributes in an observation vector),

and it is this vector that forms the basis for estimating the pdf:

~V �S = f�s11; : : : ; �s1P ; : : : ; �sQPg
T (5:5)

The dimension of the resulting vector used for pdf estimation, QP , is independent of

the number of mapping frames or states, M . Note that correlations between the be-

ginning of a segment and the end of a segment will be captured. As Q approaches M ,

the two approaches become nearly identical, depending on the nature of the mapping

function. Therefore, with certain types of mapping functions, the SSM approach

can be seen to be a special case of sub{segmenting and averaging the attributes,

speci�cally for the case where Q = M .

Normalizing for duration by averaging a sequence of acoustic vectors into a �xed

number of parts has also been employed in work by Leung, by Meng, and by Chigier

et al. [7, 43, 50] who all used a value of Q = 3 to achieve a manageable dimensionality.

Implicit in this type of normalization is the assumption that the signal can be consid-

ered constant over the averaged interval, and that the averaging operation is removing

or reducing the impact of a zero{mean additive noise over the averaged interval. Since

the normalization is motivated by implementation considerations rather than by the-

ory, it is realistic to view the normalization as a sacri�ce of information in order to
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deal with the durational variabilities of phonetic segments. Therefore, an important

consideration is that the loss of information be minimized, so that the piecewise{

constant intervals accurately represent the signal prior to sub{segmentation.

5.2 E�ects of Error Sub{Segmentation

A distinguishing characteristic of the approach presented in this thesis is that each

segment is �rst compared to a synthetic segment to form an error sequence. Therefore,

the assumption is that the error signal, not the observation sequence, is piecewise{

constant. This is because the averaging operation is applied to the error, after all

the data in the acoustic sequence has been utilized. If the dynamics of the acoustic

attributes over the duration of a segment can be modelled accurately, the assumption

that the error is piecewise{constant will be less of a simpli�cation than assuming

the original signal is piecewise{constant. Thus, less accuracy and information should

be lost by sub{segmenting and averaging at this later stage in the processing. An

example of the e�ects of this processing on the observation sequence and the error

sequence is shown in Figure 5-1. The following section provides a quantitative analysis

and comparison of the e�ects of sub{segmenting each of these two sequences.

5.2.1 Distortion Analysis

When a signal is sub{segmented into Q pieces, and each piece is averaged, the result

can be considered to be a new signal comprised of Q piece{wise constant intervals.

One means of measuring the loss of information which occurs due to sub{segmenting

and averaging is to examine the energy that remains when the di�erence is taken

between the original signal and its piece{wise constant representation. An experiment

was performed which measures this residual energy for each of three sequences and

their piecewise{constant approximations, using the same weighting of the components

of the observation vector that were used for the distortion calculations described

earlier (the �2i 's). The acoustic attributes were the �rst 15 MFCC's (including C0).
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Figure 5-1: Residual energy of the observation and error due to sub{segmentation.
The residual energy is computed from the [O¤ ] token and the synthetic segment shown
in Figure 4.15. The top left graph shows the original C0 sequence (solid) and its sub{
segmented approximation (*) using Q = 3. The top right is the residual computed
from the di�erence of the two sequences on the left. The bottom left graph shows
the error in C0 between the [O¤ ] token and its synthetic segment (solid), along with
its sub{segmented approximation (*). The bottom right is the residual generated by
subtracting the two sequences on the bottom left. Note that the residual generated
from the error sequence has signi�cantly less energy than the residual computed using
the original value of C0.
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The three sequences are:

1. The original observation sequence of MFCC's.

2. The error sequence formed by taking the di�erence between the nominal context{

independent (CI) synthetic segments (described above) and the MFCC's.

3. The error sequence formed by taking the di�erence between a set of context{

dependent (CD) synthetic segments (described in Chapter 7) and the MFCC's.

The expectation is that, if the tracks are capturing the signi�cant dynamic features

of the phonetic units they model, the error sequences will involve less approximation,

and will have less residual energy. Hence, the residual energy present in the original

sequence of acoustic attributes should be reduced in the context{independent and

context{dependent cases. These reductions should be greatest for phonetic units

with the most abrupt dynamic changes in the acoustic realization, and less for those

phones for which the acoustic attributes are relatively constant. For segments with

fewer frames than the value of Q, there will be no residual energy.

The concept of gaining accuracy by using an error signal generated from comparing

measured data to a model or template, instead of the original measured data, has been

successful in other instances. An example of this is the use of linear predictive coding

techniques to generate an error signal for the purpose of pitch detection in voiced

speech [66]. In this instance, the error signal generated by computing the di�erence

between the original speech waveform and an all{pole model is more robust since

the formant frequency information has been removed. Another example in which

the error signal provides a better approximation occurs in the theory of di�erential

quantization [66]. In this case the idea is to minimize the loss of information due

to quantization by encoding the di�erence between a signal and it's predicted value

instead of the original signal itself.

The residual energy measurements verify that reductions are achieved when using

an error sequence instead of the original MFCC's. Using di�erent values of Q, the

mean, weighted, residual energy per utterance was measured over the MIT Test data
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Q { # of piecewise constant intervals 1 2 3 4 5 10
Residual Energy Case I: Original MFCC's 87.2 55.7 39.2 29.6 23.5 9.9
Residual Energy Case II: CI Track Errors 79.5 50.6 36.0 27.5 22.0 9.5
Pct. Reduction from Case I 8.8 9.2 8.2 7.1 6.4 4.0
Residual Energy Case III: CD Track Errors 72.7 47.6 34.3 26.3 21.1 9.2
Pct. Reduction from Case I 16.6 14.5 12.5 11.1 10.2 7.1

Table 5.1: Mean utterance residual energy due to sub{segmentation of a signal
into Q piecewise{constant intervals. Previous approaches performed segmentation
based on the original acoustic attribute sequence of a phonetic segment (Case I). The
residual energy between the original sequence and the approximation is diminished
by �rst forming an error sequence using track generated synthetic segments (Cases II
and III). Increasing the value of Q decreases the e�ect of the approximation, resulting
in a convergence of the three methods. Although large values of Q result in a more
accurate representation, they also impose a high dimensionality on the probability
density function.

set with tracks created using the Traj2 algorithm and the MIT Training data set.

The results are summarized in Table 5.1. Although the table shows the bene�ts of

increasing Q, it must be kept in mind that incrementing Q by one adds P (in this

case 15) dimensions to the Gaussian probability density function, making a robust

estimate of the covariance parameters more di�cult.

The mean reduction per utterance obscures the fact that there is a large degree of

variability in the reductions achieved for the di�erent phones. The average reductions

are also lowered by the initial and �nal silences. Table 5.2 shows the phones which

had the largest reductions in residual energy when sub{segmenting the error sequence

produced when using the context{dependent tracks (Case III) instead of the original

acoustic sequence (Case I). The reductions achieved using the context{independent

tracks are also shown. All of the values in the table were calculated for the case where

Q = 3.

Table 5.2 shows large reductions for several closures. This is due to the sharp

spectral changes which occur at the end of a closure when the burst occurs for the

following stop and also at the start when the closure occurs (see Figure 4-4). In

the timit corpus, the closure boundaries appear to have a slight overlap with the
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Phone Percent Reduction in Residual Energy
Context{Independent Context{Dependent

[p›] 17.1 21.9
[b›] 17.8 21.5
[k›] 18.2 20.3
[FÊ] 18.3 19.7
[O¤ ] 10.8 19.0
[a] 10.1 18.9
[S] 15.6 18.6
[e] 10.4 18.3
[a¤ ] 11.5 18.1
[5] 10.0 18.1

Table 5.2: The ten phones which achieved the largest reduction in residual energy
when sub{segmenting error sequences generated by the context{independent and
context{dependent tracks instead of the observation sequences. The values are for
the case where Q = 3.

neighboring segments. Another group which shows large distortion reductions are

the vowels, particularly those with an attached semi{vowel. The tracks are consis-

tently accounting for some of the spectral motion in the realization of these phones,

particularly in the context{dependent case where the reductions are almost 100%

greater than in the context{independent case.

Naturally, the phones with a larger degree of dynamic activity will be better rep-

resented if a larger number of sub{segments are used. However, for phones which

have a relatively at spectrum over time, the use of a large Q requires the estima-

tion of additional parameters which will be largely redundant. Ideally, the number

of sub{segments would depend on the identity of the phone. However, this creates a

complication when performing classi�cation and recognition experiments since di�er-

ent phones would have di�erent dimensional pdf's, making it very di�cult to directly

compare the likelihood scores. For this reason, a single value of Q is selected for

all the phones in each set of experiments. The value will be chosen based on the

performance achieved on the development set for each task. The value will represent

a compromise between capturing additional information in the phones which exhibit
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a large degree of dynamics and estimating potentially unnecessary parameters in the

phones which exhibit minimal spectral variation over time.

5.2.2 Correlation Analysis

Dividing the error sequence for each training token into Q pieces and averaging is

identical to using Equations 5.3 and 5.4, except the error sequence E is processed

instead of the original segment, S. The resulting vectors, V �E:

~V �E = f�e11; : : : ; �e1P ; : : : ; �eQPg
T (5:6)

are computed for each training token and then used to estimate a jointly{Gaussian

probability density function for each phonetic model. Due to the averaging operation,

the error distribution will not be zero{mean in practice, although the mean of the error

should be very small compared to the standard deviation. The covariance matrices can

be analyzed to determine which, if any, correlations are being captured. An interesting

way to examine the correlations is to normalize the covariance matrices to produce a

matrix of correlation coe�cients. This is done by dividing the ijth entry of the matrix

by the product of the ith and jth standard deviations. The resulting correlations will

range from -1 to 1, where the extremes imply complete linear correlation, and a value

of zero means the ith and jth variables are independent.

Figure 5-2 shows the resulting matrix for the phone [e], using a value of Q =

10. The absolute value of each element has been taken so that the degree of corre-

lation is displayed, with dark area indicating a high degree of correlation and white

areas indicating statistical independence (the diagonal terms will be black since every

variable is completely correlated with itself). Each 10x10 sub{block represents the

correlations between the two relevant MFCC's, with their correlation at the same

instant of time (the Q intervals running down the sub{block diagonal), and the tem-

poral correlations between the two attributes on the o�{diagonal. A rich correlation

structure is clearly evident and is strongest in a large block extending from C1 to

C9. Temporal and spatial correlations are also clear between several sets of adjacent
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MFCC's. However, a value of Q = 10 is too large to be of use in an actual imple-

mentation, since the parameters are di�cult to estimate robustly, and because of the

impact of the computational burden during phonetic recognition. Figure 5-3 shows

the matrix for a value of Q = 4. Although the correlation structure is more coarsely

represented, the majority of the correlation information is retained. Hence, reduced

values of Q which produce a covariance matrix of more practical dimension appear

to retain useful temporal correlation information.

It is interesting to note that we can eliminate all of the temporal correlations and

just leave the spatial correlations. These represent the inter{attribute correlations

at each of the Q time intervals (in this case, �rst quarter, second quarter, etc.).

Therefore, although the explicit temporal correlations have been eliminated, there

is inherently some temporal information present. For example, the variances at the

beginning and end of the segment (�rst and fourth quarters) will be larger than the

variances in the middle of the segment, primarily due to co{articulatory e�ects. The

resulting image of the matrix is shown in Figure 5-4.

Finally, the spatial, or inter{attribute, correlations can be ignored while retaining

the temporal correlations. The resulting matrix of correlation coe�cients is shown in

Figure 5-5. A baseline classi�cation performance experiment will later be conducted

to assess the relative impact of these alternative correlation representations. It is

also interesting to examine the di�erences between phonetic units, in terms of which

correlations are most important. The matrix of correlation coe�cients for [s] and for

[f] are shown in Figures 5-6 and 5-7 with Q = 3. For [s], the correlation structure

is richest in a sub{block bounded by C3 and C6, while [f] has a structure with very

sparse temporal correlations. The faint strips along the super and sub{diagonals

reveal some relevant spatial correlations. Relative to the other phones, [f] has much

less inter{attribute and temporal correlation.



CHAPTER 5. STATISTICAL ERROR MODELLING 91

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Figure 5-2: Matrix of error correlation coe�cients for the phone [e].
The matrix was constructed using 15 Mel-frequency cepstral coe�cients (C0{C14) and
Q = 10 (10x15 = 150 dimensions). The �gure is arranged such that the coe�cients
of C0 over time are in the upper left, and the C14 coe�cients are in the lower right.
The absolute value of each element was taken so that large correlations show up dark
and areas of little or no correlation show up light. If the errors were independent, the
diagonal would have been black and all other elements would be white.
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Figure 5-3: Reduced matrix of error correlation coe�cients for the phone [e].
The matrix was constructed using 15 Mel-frequency cepstral coe�cients (C0{C14) and
Q = 4 (4x15 = 60 dimensions). The picture provides a coarser version of Figure 5-2,
but the correlation structure is largely maintained.
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Figure 5-4: Matrix of error spatial correlation coe�cients for the phone [e].
The temporal correlations have all been removed, leaving only the inter{attribute
correlations at each of the 4 quarters. The �gure is otherwise identical to Figure 5.2.
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Figure 5-5: Matrix of error temporal correlation coe�cients for the phone [e].
The spatial (inter{attribute) correlations have all been removed, leaving only the
temporal correlations of each of the MFCC's with itself. The �gure is otherwise
identical to Figure 5.2.
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Figure 5-6: Matrix of error correlation coe�cients for the phone [s]. The matrix was
constructed using 15 MFCC's and a value of Q = 3.
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Figure 5-7: Matrix of error correlation coe�cients for the phone [f].
The matrix was constructed using 15 MFCC's and a value of Q = 3. The matrix re-
veals that in comparison to other phones, the MFCC's in [f] are relatively independent
of each other and have little temporal correlation between attributes.
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5.3 Chapter Summary

In this work, the statistical model is a joint-Gaussian probability density function

based on the error signal. A method which allows important temporal correlations

to be captured while maintaining a dimensionality small enough to robustly estimate

the covariance parameters was presented. This method involves creating an error

sequence of variable duration with the tracks, and then normalizing this duration by

averaging the vectors over each ofQ sub{segments. This technique has the advantages

of utilizing all of the available data. Thus, the model of the error used in this work is

the maximum likelihood estimate of the mean, which is not zero, due to the averaging

intoQ pieces, and full covariance matrix for each phone. For P acoustic attributes, the

result is a joint-Gaussian density of dimension PQ. It is important to note that the

dimension of the model is independent of the number of statesM used to characterize

the track. The next chapter will address the issue of the best choice of covariance

matrix dimension as a�ected by the choice of Q.



Chapter 6

Context{Independent Phonetic

Classi�cation

This chapter is concerned with developing and tuning the statistical trajectory models

and with preliminary evaluation of their performance. To meet this end, baseline

phonetic classi�cation experiments will be used to evaluate the impact of di�erent

aspects of the system. Following a description of the protocol and framework for

conducting classi�cation experiments, the chapter will presents an evaluation of the

e�ects of varying the parameter Q. The value of this parameter involves a trade{o�

between the ability to capture additional correlation information versus the penalty

of increasing the dimension of the covariance matrix used in the pdf. The algorithms

Traj2 and Traj5 are then evaluated to determine which generation function is to be

used throughout the remainder of the thesis.

The chapter next presents a series of context{independent (CI) phonetic classi-

�cation experiments. In CI experiments, the phonetic context is not known during

either training or testing. The �rst set of experiments in section 6.3 was conducted

on the set of 16 unreduced vowels in American English for preliminary comparison

with other results in the literature. The vowels were chosen for this �rst set of ex-

98
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periments since they exhibit a high degree of dynamic behavior, which is particularly

relevant for the trajectory modelling. Additionally, another set of experiments was

undertaken to examine the impact of the di�erent correlations in the pdf's on vowel

classi�cation performance. These results show the importance of the temporal cor-

relations to classi�cation performance. Classi�cation experiments are also performed

over the full set of phones in the timit corpus. These experiments are described in

Section 6.4.

6.1 Classi�cation Framework

The classi�cation experiments are conducted by extracting all the segments from each

of the utterances in the data set being evaluated and scoring them independently with

each of the phonetic units. The segment boundaries are provided with the timit

transcriptions. The approach is to �rst process each segment with the tracks for each

phonetic unit to create an error sequence which is then sub{segmented. A maximum

likelihood computation is then performed based only on the sub{segmented error, V �E

(de�ned in Equation 5.6).

Speci�cally, the probability of a phonetic unit, ai given the sub{segmented error

is:

p(aijV �E) =
p(V �Ejai)p(ai)

p(V �E)
(6:1)

The prior probabilities for context{independent experiments are the unigram priors

(i.e. the estimate is based on number of times each phone occurs in the training set).

The denominator is a normalization constant which does not depend on the phonetic

unit and can be ignored. The procedure for selecting the identity of each segment is

therefore:

a? = argmax
i

p(V �Ejai)p(ai) (6:2)

The speci�c protocol for conducting classi�cation and recognition experiments

involves dividing the data into three pieces called the training, development, and
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test sets. The training set is used to train all of the phonetic models, and also

to collect relevant statistics, such as prior probabilities. Therefore, it is important

that the data in the training set be representative of the data that the system will be

evaluated on. The test set is the data set that determines the system performance. For

experiments on systems which are meant to be speaker{independent, it is a generally

accepted practice that the speakers in the training and test sets do not overlap.

Furthermore, when a system is being tuned and design decisions are being made, it

is also standard practice to evaluate the system on another independent set of data

known as the development set. The development set serves as a type of \practice"

test set. During system tuning, there exists a natural tendency to keep what increases

performance and disregard what doesn't. The danger is that a type of hill climbing

takes place, wherein it is possible to start \learning" the test set. Decisions may be

made based on performance improvements which, rather than actually reecting a

superior implementation, in fact reect nuances of the speakers in the evaluation set.

Using a development set protects the actual test results from being arti�cially inated

due to this e�ect.

6.2 Preliminary System Tuning

There are two performance issues to be examined in this section. The �rst issue

examines the impact of di�erent values of Q, and the second issue is the choice of

a generation function between the two most promising candidates, Traj2 and Traj5.

The early work in this thesis involved experiments focused on the 16 unreduced vowels

used in American English. The HM Train vowel corpus was split into two pieces for

training, HM Sub{Train and test HM Development. The speakers in the MIT Test

corpus were set aside for eventual classi�cation experiments. The training set was

then used to create tracks and models of their associated error statistics for each of

the 16 vowels.
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Q { # of piecewise constant intervals 1 2 3 4 5
Dimension of distribution 15 30 45 60 75
Test % Vowels Correct 46.7 57.8 61.0 62.1 57.5
Train % Vowels Correct 46.7 58.0 63.2 64.8 64.5

Table 6.1: Vowel classi�cation on test and training sets for di�erent values of the
parameter Q using the Traj2 algorithm. Q determines the number of regions within
which the error sequence is averaged. The resulting probability density function is of
dimension PQ.

6.2.1 E�ects of Varying Q

To examine the e�ect of varying Q, statistical error models were trained for each of

the 16 models for values of Q from one to �ve. Since there were 15 MFCC's used as

acoustic attributes, the dimensions of the resulting pdf's varied from 15 to 75. The

results of a series of classi�cation experiments are shown in Table 6.1. Classi�cation

performance is shown for the test set and also for the training set used to create the

models.

For small values ofQ, the performance on the training and test sets is close because

the lower dimension of the covariance matrix allows for robust parameter estimation,

and there was su�cient training data. However, for the experiment with Q = 5, the

test performance, which had been rising as Q was increased, suddenly drops almost

5%. This suggests that there was not enough training data to adequately estimate

the large number of parameters in the resulting 75 dimension covariance matrix. This

hypothesis is supported by the discrepancy between training and test set performance

for Q = 5.

Based on the data in Table 6.1, a value of Q = 4 was used for all of the vowel

classi�cation experiments involving the Traj2 algorithm.
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6.2.2 Selection of a Generation Function

The Traj5 algorithm showed the least distortion of any of the generation functions

explored in Chapter 4 (see Table 4.10). However, due to the unique nature of the

Traj5 algorithm its distortion values are not directly comparable to those of the other

algorithms, all of which compute distortion using exactly the same MFCC data.

Therefore, the best means of comparing the Traj2 and Traj5 algorithms is on an

actual classi�cation task.

The Traj5 algorithm was the only algorithm which involved sub{sampling of long

tokens and interpolation of short tokens during training and test. To create a track

of ten states, this means that all tokens over 50 ms. in duration (ten frames) will be

sub{sampled. In the case of the vowels, nearly every token will be greater than 50

ms. in duration. Therefore, to fully understand the e�ects of the Traj5 algorithm, a

vowel classi�cation experiment is insu�cient. For this reason, the Traj2 and Traj5

generation functions were compared on a classi�cation task involving all the phones.

The data sets used were MIT Training and MIT Augment{Test. At this stage it was

deemed acceptable to use data from the MIT Test set. No actual parameter tuning

takes place as a result of these experiments, and the trends discovered will be of a

very general nature. Additionally, the MIT Test set is not the data set which will

be used for the phonetic recognition experiments, when the complete algorithm is

evaluated.

The Traj2 and Traj5 algorithms were compared directly using an error model

built with a value of Q = 4. In addition, a series of experiments was conducted for

Traj5 in which the error model was constructed without using sub{segment averages

of the error sequence. Instead, the full error sequence computed using the Traj5

generation function was used to estimate a full covariance Gaussian distribution.

These experiments were conducted for cases where the Traj5 algorithm was set to

four, �ve, and ten states. This means that much data was thrown out due to sub{

sampling. For example, in the four state case, a vowel of duration 40 frames (200

ms.) would be sub{sampled every ten frames. The results of these experiments are
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Case Algorithm Track States Error Model Covariance Dim. % Correct
I. Traj2 10 Nominal 60 67.29
II. Traj5 10 Nominal 60 66.61
III. Traj5 4 Full Seq. 60 66.25
IV. Traj5 5 Full Seq. 75 64.50
V. Traj5 10 Full Seq. 150 51.45

Table 6.2: Classi�cation performance comparison between the Traj2 and Traj5 gen-
eration functions. The nominal error model refers to the sub{segment and average
processing of the error sequence described in the last chapter, using a value of Q =
4. The full sequence case means that the entire sequence was used as the basis for
creating a high dimensional covariance matrix.

shown in Table 6.2.

Several trends of interest are evident from the table. First, it is once again appar-

ent that there is not enough training data to estimate the high dimensional probability

density functions. The second interesting result is the comparison between the Traj5

algorithm using a ten state track and a nominal (sub{segment and average) error

model versus a four state track and an error model based on the full error sequence.

Although the performance was better for the nominal error model, the performance

was close. This means that there is not much di�erence between averaging the er-

ror computed in each quarter of the error sequence and using a single data point

from each quarter of the original observations to produce a short error sequence.

This means that sub{sampling long tokens can be done without losing important

correlation information. However, in no instance was the performance of the Traj5

generation function superior to the performance of the Traj2 generation function. A

closer examination of the data reveals the reason.

All of the Traj5 experiments showed a great deal of di�culty with short tokens,

in particular, with tokens whose duration is less than the number of states. When

a token has fewer frames than the number of states, interpolation is used to �ll in

the extra parts of the trajectory. An unfortunate side e�ect of this interpolation is

that it arti�cially creates temporal correlations of the acoustic attributes in the error
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Phone Class Mean Duration Case I Case II Case III Case IV Case V
(in Frames)

[b] stop 3.5 212 539 523 754 1070
[F] ap 5.7 80 84 96 100 477
[n] nasal 10.9 377 423 418 476 611
[{] vowel 9.9 169 259 266 313 466

Table 6.3: Misclassi�cations for di�erent phones as a function of the algorithm used
during training. The case numbers refer to the experimental conditions described in
the previous table. As the number of states becomes greater than the the duration of
a signi�cant number of training tokens, the misclassi�cations caused by the shortest
phones within a class rises dramatically. This is due to arti�cially created correlation
information caused by linear interpolation.

model. During test, any short token which is interpolated will also have this arti�cial

correlation structure, which leads to misclassi�cation. This phenomenon is revealed

in Table 6.3, which shows the shorter duration phones from each of several acoustic

classes. For each phone, the percent correct is shown along with the number of

misclassi�cations caused by this phone, i.e. tokens which were actually other phones

but which were classi�ed as the indicated phone. As soon as a large number of

training tokens need to be interpolated (mean number of frames near the number of

states), the number of misclassi�cations caused by the shortest phone within a class

rises dramatically.

While the arti�cial correlations caused by linear interpolation to \create" extra

data are a problem during classi�cation, their e�ect on recognition results could cause

severe performance degradation. This is because the duration of individual tokens

is unknown during recognition and must be hypothesized. Therefore, all the actual

segments will at some time have a portion of their data hypothesized as a segment re-

quiring signi�cant interpolation. This will exacerbate the problem of misclassi�cation

by the shorter duration models.

Based on the reasons cited above and superior performance in this experiment,

the Traj2 algorithm will be used throughout the remainder of the thesis.
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IPA
a @ ^ O a⁄  a¤  E 5
e I i o O¤  U u uÚ

TIMIT
aa ae ah ao aw ay eh er
ey ih iy ow oy uh uw ux

Table 6.4: Vowels used for the classi�cation experiments. The vowel symbols are
shown using both IPA and timit formats.

6.3 Vowel Classi�cation Experiments

At this point, most of the design parameters have been decided upon, and it is

possible to begin to evaluate the statistical trajectory algorithm. The experiments

reported in this section pertain to the thirteen monothong and three diphthong vowels

of American English, as shown in Table 6.4. The vowels were chosen for the initial

set of experiments because they tend to exhibit a large degree of spectral motion,

and therefore, provided a good means of exploring the statistical trajectory model

concept. There are also several other published vowel classi�cation studies which can

be used as a basis of comparison.

The experiments were based on the training sets HM Train and HM Augment{

Train, and the test set MIT Test{V described in Table 2.2. The data sets are also

shown in Table 6.5 for ease of reference. The training set containing only the (sx)

utterances is identical to that used in several previous studies [6, 25, 43, 50]. The

e�ects of adding the (si) utterances to the training data were also investigated. Some

of the experiments also explored the use of �MFCC's which were computed at the

beginning and end of the vowel segment [7]. The �MFCC's used a window extending

seven frames (35 ms) in each direction from the boundary. This value will be used in

all the experiments in this thesis.

The vowel classi�cation results reported here were all based on a common track

con�guration of ten states. This choice was determined by the results of the distortion

studies in Chapter 4, which showed that the reduction in mean distortion began to
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Type # Speakers # Sentences # Vowel Tokens
HM Train (sx) 499 2,495 20,528
HM Augment{Train (sx,si) 499 3,992 34,576
MIT Test{V (sx) 50 250 1,879

Table 6.5: Training and test sets for the vowel classi�cation experiments.

asymptote at larger values. In all cases the resulting error was sub{segmented using

a value of four for Q. The choice of these parameters resulted in a 60 dimensional

distribution for experiments with the 15 MFCC's and 90 dimensions for experiments

that included the two cepstral di�erences (at the start and end of the segment).

The �rst set of experiments investigated the relative importance of the temporal

and spatial correlations in the error for classi�cation. As shown in Table 6.6 a set

of four experiments was performed using a single track and full covariance Gaussian

error model for each phone. The diagonal condition assumed total independence of

all dimensions in the error. The time condition retained the temporal correlations

of each MFCC across the four sub-segments and assumed independence between

MFCC's. The space condition assumed independence between each of the four sub-

segments. Thus, it modelled the MFCC correlations within each sub-segment and also

captured some temporal information as well, since a separate block was trained for

each sub-segment. It is important to note that although the space condition utilized

nearly four times the number of parameters as the time condition, the performance

was very similar. This result highlights the importance of the temporal correlations.

Finally, the full condition modelled all correlations and produced the highest accuracy

of 62.5%. This last condition was used for all subsequent experiments.

Additional experiments consisted of adding information to enhance classi�cation

performance. This information included segment duration, �MFCC's, and separate,

gender speci�c models for each vowel. The (si) training data was also added to the

training set. A vowel classi�cation result of 68.9% was achieved. A summary of the

experimental results for the vowels is shown in Table 6.7.

In the table, the baseline con�guration refers to the use of a single track for
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Condition Covariance Parameters Correct (%)
Diagonal 15 x 4 = 60 51.0
Time 15 x (4x4) = 240 55.0
Space 4 x (15x15) = 900 55.8
Full (4x4) x (15x15) = 3600 62.5

Table 6.6: Vowel classi�cation performance as a function of information retained in
the covariance matrices.

Description Baseline (%)Gender (%)
MFCC's 62.5 62.5
+ Duration 63.8 65.1
+ �MFCC's 66.0 67.5
+ si Training Data 66.6 68.9

Table 6.7: Results for the vowel classi�cation experiments.

each of the 16 vowels and a single Gaussian distribution for each error model. The

gender con�guration augmented the baseline with tracks and error models which were

trained separately on male and female speakers. Hence, three models were produced

for each vowel. During testing the gender was unknown, and the top-scoring model

determined the classi�cation result.

Duration statistics are collected over the training set for each phone. The best

representation of duration was found to be the log duration, which was modelled as

jointly{Gaussian with the acoustic parameters. Relevant correlations were discov-

ered between durational errors and errors in the MFCC's. Hence incorporating the

durational information into the covariance matrix, rather than treating it as an inde-

pendent source of error, resulted in better performance results. The choice of a log

Gaussian pdf and a more complete study of duration is presented in Appendix A.

The �MFCC's help incorporate contextual information, since they are computed

using data beyond the segment boundaries. By using only the 2 P dimensional vec-

tors computed at the segment boundaries, the dimension of the covariance matrix is

increased by 2P . Had the �MFCC's been processed like the static MFCC's, then the
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dimension of the covariance matrix would have increased by QP , and the important

contextual information obtained at the boundary would have been diluted by the

cepstral slope on the interior of the segment. However, this is information already

inherent in the track. Additionally, the spectral motion at the boundary is generally

greater than the motion within a segment, since the articulators are moving from one

phone con�guration to another.

Making speci�c gender models also boosted performance considerably. This was

particularly true in distinguishing vowels such as [@] and [E]. The reason can be seen

in Figure 6-1, which shows tracks created for the vowels [@] and [E] using tokens from

both genders along with gender speci�c tracks. When the data is combined, male [@]

tokens will generally be closer to the [E] track leading to misclassi�cations. This type

of di�erence in the spectral outputs can be attributed to di�erences in the vocal tract

physiology of the two genders. In particular, males tend to have longer vocal tracts

resulting in resonances at lower frequencies.

6.3.1 Vowel Results Discussion

The vowel experiments clearly indicate the advantages of the durations, the �MFCC's,

and the use of gender speci�c models. The results obtained on the vowels compare

favorably to other results currently in the literature. Meng reports 59.6% on the same

task when using 15 MFCC's with an MLP classi�er [51]. Her representation is very

similar to the static MFCC experiment which achieved 62.5%, although she did not

use C0. Her best result was 65.6% using two auditory model outputs.

Carlson and Glass also reported results on this vowel classi�cation task using an

MLP classi�er [6]. Their most similar experiment used three average Bark spectral

vectors, obtaining 62.5% accuracy. When they included gender information, they

obtained 65.8% with a formant{based representation. They found that duration

information improved classi�cation performance by around 1.3%, which agrees with

the results in this work.
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Figure 6-1: Example of track variability due to gender.
C1 for tracks created using all the [@] (ae) data and all the [E] (eh) data from both
genders (called \combined" in the �gure), and also from tracks created using just
the male tokens for [@] and the female tokens for [E]. For clarity, the plots of the [@]
female and [E] male tracks, which would have appeared below and above those shown,
have been omitted. The plot reveals why gender speci�c models can be important.
Note that the track from all of the [E] tokens is very close to the track representing
the [@] male tokens. Without gender speci�c models, male [@] test tokens would be
easily confused with [E].
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Type # Speakers # Sentences # Phonetic Tokens
MIT Train (sx,si) 567 4,536 175,095
MIT Test (sx) 50 250 8,751

Table 6.8: Training and test sets for the phonetic classi�cation experiments.

6.4 Phonetic Classi�cation Experiments

The classi�cation experiments over the full set of phones were also based on a track

of ten states. The experiments were based on the training set MIT Train and the test

set MIT Test described in Table 2.2, and also summarized in Table 6.8 for ease of

reference. For these experiments, the best results were found when the error was sub{

segmented using a value of three for Q. Although the di�erence was small, some of the

phones had insu�cient data to support the higher dimensionality that results when

Q increases. This choice resulted in a 75 dimensional distribution for experiments

with the 15 MFCC's and the �MFCC's computed at each segment boundary. The

window for the computation of the �MFCC's was 7 frames (35 ms) in each direction.

For experiments which included log duration information, the Gaussian pdf increased

to 76 dimensions.

Fifty{seven (57) phonetic models are created to represent the phones in the timit

corpus. Note that in some cases, multiple phones have been combined to form a

single model. This was done for [h#, √], [m, mÍ ], and [4, 4Í ]. Very little data exists

for [mÍ ] and [4Í ], and pauses were deemed similar enough to silences to combine the

two. The classi�cation results are computed by mapping the phones to a set of 39

classes de�ned by Lee [40] and commonly used in the literature [16, 38, 68]. Note

that in accordance with Lee, glottal stops are ignored. The phone classes are shown

in Table 6.9.

The results over all the phones are roughly equivalent or slightly superior to other

results in the literature [7, 16, 45]. The results are summarized in Table 6.10. In the

table, \Duration (independent)" means durations were included, but considered sta-

tistically independent of the MFCC's. \Duration (correlations)" means the duration
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Class Phones Class Phones Class Phones
a a, O u u, uÚ v v
@ @ r r D D
^ ^, {, {‡  l l, lÍ F F
a⁄  a⁄  w w p p
a¤  a¤  y y b b
5 5, } m m, mÍ t t
E E n n, nÍ , FÊ d d
e e 4 4, 4Í k k
I I, | s s g g
i i z z C C
o o S S, Z J J
O¤  O¤  f f h h, H
U U T T
SILENCE p›, t›, k›, b›, d›, g› , √, ∑, h#

Table 6.9: Phone classes with allowable confusions (confusions scored as correct an-
swers).

information was included in the Gaussian pdf, so as to capture correlations with the

other acoustic attributes. Single Gaussian means one Gaussian pdf was trained for

each phonetic model. Gender Gaussians means (as with the vowels), gender based

tracks and pdf's were used in combination with a combined model for each phone,

and the gender of the test speaker was unknown. Enforced Gaussian means gender

speci�c models were trained, but that the gender of the test speaker was assumed to

be known. Therefore, only male models were used to test male speakers. For female

speakers, the female models were used in conjunction with the combined models.

The use of combined models was necessitated by the fact that there are fewer female

speakers in the timit corpus, and for some phonetic units training data was sparse.

The assumption that the gender of the speaker is known is not a strong one.

Studies by Lamel and Gauvain conducted on the timit corpus showed accurate gender

identi�cation performance of better than 97% after 0.4 seconds of speech (about 4

phones) which improved to 99% after 2.0 seconds of speech [37]. When using two

utterances by the same speaker, the performance was 100%. The test set consisted
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Description Correct (%)
Single Gaussian 74.2
MFCC's and �MFCC's
Single Gaussian 74.4
+ Duration (independent)
Single Gaussian 75.2
+ Duration (correlations)
Gender Gaussians 76.4
+ Duration (correlations)
Enforced Gender Gaussians 76.8
+ Duration (correlations)

Table 6.10: Results for the context independent classi�cation experiments.

of 168 speakers.

An experiment verifying this consistency was run using the gender speci�c sta-

tistical trajectory models. Each token was scored by all the models for each gender.

Duration and prior information was ignored. The gender of the winning token was

then compared to the gender of the speaker. Probabilities for each utterance were also

obtained by combining the winning likelihood scores for each gender separately. Of

the 250 utterances in the test set, all were correctly classi�ed with respect to gender.

Further, on a token{by{token basis, the winning model had the correct gender 91.2%

of the time. This result includes silences, closures, and glottal stops. In the case of

silences and closures, most of the information is assumed to come from the cepstral

derivatives which provide some contextual information. Tokens in the silence class

(including glottal stops) had the correct gender 80.1% of the time. Excluding silence

class tokens, the correct gender was identi�ed on the other tokens 92.9% of the time.

This result strongly reinforces the conclusion that the gender of the speaker can be

reliably identi�ed.

Therefore, the \enforced gender" results should not su�er signi�cant degradation

if the gender must be identi�ed by the system. It should be noted that in those cases

where Lamel and Gauvain made gender errors, the results for those speakers were

better when using the cross{gender phonetic models.
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6.4.1 Classi�cation Results Discussion

The context independent classi�cation experiments show the improvement obtained

by including the durational information in the covariance matrix. This is an advan-

tage of modelling duration, or log duration, as a Gaussian variable. The Gaussian

assumption makes it possible to directly augment the vector of acoustic errors with

the duration error. Again, the bene�ts of gender speci�c models are evident, but the

1.6% increase achieved over the full set of phones was not as high as the 2.3% increase

which was achieved on the vowels. This is because the acoustic realization of many

non{vowel phones, such as those articulated at the lips, are not as dependent on the

vocal track, and thus, carry less information about the speaker.

Other signi�cant context{independent classi�cation results currently reported in

the literature use di�erent training and test sets from those used in this work. There-

fore, performance comparisons are made to illustrate what has been achieved else-

where as opposed to making a direct comparison. The best result currently reported

on a context{independent classi�cation task is 78.0% [7, 45]. This study used the KFL

Train and KFL Test data sets consisting of 610 speakers and 20 speakers respectively.

This same work reported results of 77.0% using MFCC's with a multi{layer percep-

tron (MLP) classi�er, and 75.3% was using a Gaussian pdf. These values are close

to the result reported here of 76.8%. These results appear to indicate that the exi-

bility inherent in using a neural network to estimate the pdf provides a performance

advantage over assuming a Gaussian distribution.

An additional point of comparison can be made with the Dynamic Systems Models

of Digilakis. Using a test set consisting of twelve male western speakers and an

acoustic representation based on 18 MFCC's and �MFCC's he achieved classi�cation

performance of 73.9% [16].
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6.5 Chapter Summary

This chapter focused on evaluating the statistical trajectory models at an initial but

signi�cant stage in their evolution. Before the classi�cation experiments could be

conducted, preliminary experiments allowed values for Q (number of averaged sub{

segments in the error model) and a generation function to be selected. The Traj2

algorithm achieved superior performance and is the algorithm which will be used in

the remainder of the thesis. Future experiments will also use a value of Q = 3 when

creating the error models.

The temporal correlations were then shown to be of great importance. Their

impact on system performance was equivalent to the impact of the spatial correlations.

The statistical trajectory models were shown to achieve high performance on a vowel

classi�cation task and an all{phone classi�cation task using full covariance Gaussian

distributions of the error. The importance of the �MFCC's, duration correlations,

and gender speci�c models was also demonstrated.

Contextual information has not yet been accounted for when creating the tracks.

Dynamics due to context are therefore \averaged out" of the track states near the

boundaries. Also, many phones exhibit a relatively constant spectral trajectory across

the interior of a segment. The dynamic nature of the transitions between phones has

not yet been examined. Therefore, areas where the statistical trajectory model may

have a signi�cant advantage have not yet been dealt with. These areas are the subject

of the next chapter.



Chapter 7

Co{Articulation Modelling

The key idea behind co{articulation modelling is to account for the variability in the

acoustic realization of phones that occurs due to the phonetic context. The motion of

the articulators is highly inuenced by the articulatory con�guration of the preceding

phonetic segments, referred to as the left context, and the following phonetic segments,

referred to as the right context. While predominantly due to the immediate neighbor,

this contextual inuence can extend across several phones. An example is shown in

Figure 7-1. The spectrogram shows the e�ect of rounding due to the [o] extending

through the preceding phones to the [s] in the word stroll. The [s] has a lower cuto�

frequency at t = 0.3 seconds than it does at t = 0.1 seconds.

This chapter seeks to attack the problem of co{articulation from two di�erent

directions. First, the e�ects of co{articulation within a segment will be examined.

Context{dependent models will be constructed for each of the phones, and the impact

on performance will be evaluated. Second, an approach emphasizing the phonetic

transitions will be investigated. During transitions, the articulators are in motion,

and the acoustic attributes are highly dynamic. By �nding a means of accurately

modelling the transitions themselves, system performance might be greatly enhanced.

The next section discusses the key problem that makes designing context{dependent

models di�cult, the problem of sparse training data. The standard approach to solv-
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Figure 7-1: Spectrogram of the word \stroll." The cuto� frequency of the [s] falls due
to the e�ect of anticipatory co{articulation with the [o].

ing this problem, clustering of similar contexts, is then discussed. Section 7.2 presents

and evaluates the techniques involved in creating context{dependent tracks. The use

of a track distortion metric for clustering tracks is presented, and also a technique

for merging of tracks to account for both left and right phonetic context. Section 7.3

presents the algorithm used for creating robust tracks of the phonetic transitions.

The impact of these transition tracks on performance will be presented in Chapter 8.

The chapter is summarized in section 7.4.

7.1 Sparse Data and Clustering

An important consideration in designing context{dependent models is the problem

of sparse training data. Ideally, complete models would be constructed for a partic-

ular phone in every possible context. If the context includes only an immediate left
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or right phonetic neighbor it is a biphone model. If both left and right contextual

dependencies are included, the model is a triphone model. As the phonetic model

becomes more speci�c, from a context{independent model (O(N) models), to a bi-

phone model (O(N2) models) or a triphone model (O(N3) models), fewer instances

of the phone in the speci�c environment are available for training. Since most models

require the estimation of a large number of parameters, the lack of the training data

becomes a severe design constraint. Therefore, it is generally only possible to create

full triphone models for the most common phonetic combinations. This is also the

reason why contextual e�ects extending beyond the immediate phonetic environment

are seldom modelled.

Early work done by Schwartz et al. [74] and Chow et al. [8] interpolated triphone,

biphone, and context{independent models based on their frequency of occurrence.

Results from these studies showed error reductions at the word and phone level of

approximately 50% compared to their context{independent implementations. An

approach employed by Lee and Hon [40] was to create right context models of common

biphone combinations. In their work, the context{dependent models are initialized

by, and share information with, the context{independent models.

A more recent solution to the sparse data problem which has led to signi�cant

performance improvements is to pool, or share data, across contexts via a clustering

mechanism. The idea is to let a single model incorporate several di�erent contexts

which have a similar e�ect on the phone's acoustic realization. A typical approach

is to perform a clustering operation to determine which contexts should be pooled

together.

One approach is to cluster contexts top{down, using linguistic knowledge, such as

place{of{articulation [46]. This approach is completely supervised, that is, the cluster-

ing categories are based solely on expert knowledge of acoustic{phonetics. Top{down

clustering can also be implemented in a data{driven, or partially unsupervised man-

ner. An example is the work of Lee et al (generalized triphones) [41]. The method

employs an expert generated list of questions about contexts which are generally lin-

guistically motivated, and recursively selects the most appropriate question to split
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the phone's data. Other top{down algorithms using context decision trees have been

successfully applied by Bahl et al. [2], and Phillips et al. [60]. Ostendorf et al. [58]

used a linguistically based top{down approach to create initial clusters for triphones.

For the SSM, the idea is for triphones in the same cluster to share covariance statis-

tics. The clusters were then re{sorted using a k{means clustering algorithm and a

Mahalanobis distance metric.

A second method of clustering the contexts is to use a bottom{up approach. Lee

used a greedy bottom{up clustering algorithm and an entropy based distance metric

to create generalized HMM triphone models [39]. The decision metric in this case

provided a measure of how \close" di�erent HMM models were to each other. The

work of Hwang and Huang uses an entropy metric to merge output distributions

from di�erent HMM states to create senones [29, 30]. Di�erent senonic units share

Markov states and output distributions, without sharing an entire model. This can

be an advantage over merging entire models, since only parts of the models may be

similar. The results in [30] report a 20% improvement over the method of generalized

triphones [41] on the 997 word DARPA Resource Management task [63].

Lee et al. [41] compared the results obtained using an agglomerative clustering

algorithm to a top{down decision{tree algorithm on a word recognition task. In

a vocabulary{dependent task where there was full coverage of the test set, the re-

sults were comparable. Top{down clustering performed slightly better in this case.

However, 20% more contextual models were used in the top{down case because the

tree{based structure was able to support more models due to superior smoothing

capabilities. Next the two algorithms were compared on a vocabulary{independent

task where triphone coverage of the test set was only 90%. In this case the top{down

algorithm outperformed the bottom{up algorithm with word error rates being 15.0%

and 15.8% respectively. The superior performance of the top{down approach was

attributed to two problems with the bottom{up approach:

1. A bottom{up approach has di�culty dealing with the issue of coverage of the

test set. Coverage has to do with the fact that not every possible phonetic
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combination is always seen in the training data. Hence, only a subset of all

possible combinations are \covered" during test. With a bottom{up approach,

if a context is encountered in the test set that was not seen in the training set,

the context{independent model is used. With a tree based top{down approach,

it is possible to \back o�" a single layer up the tree to �nd the appropriate

context in the hierarchy. For example, a right context for [g] such as [g] [U] may

not occur in the training set, but there could be a category [g] [back vowel].

If [g] [U] is encountered in the test set then this close category could be used,

instead of going all the way back to the less useful context{independent [g].

Hence a top{down approach has a more elegant mechanism for dealing with the

coverage issue.

2. Clustered biphones and triphones may still have insu�cient training data. As

in the issue of coverage, a bottom-up approach is forced to move from a tri-

phone to a biphone, or possibly a context{independent model. This is because,

unlike a top{down approach, no contextual hierarchy exists which would permit

smoothing with a closely related but slightly more general model, which would

still include relevant contextual information.

A possible advantage of a bottom{up approach is the fact that the data can fully

drive the clustering mechanism. This avoids constraints imposed by a{priori assump-

tions. This advantage can manifest itself in several ways. First, although linguistic

knowledge can be useful, expert linguists can not always agree on which contexts

are acoustically similar. Second, phonetic combinations which are acoustically close,

but which are not intuitively obvious from a linguistic standpoint, can be discovered

by the clustering mechanism. Third, linguistic knowledge which is useful for a given

phone in a given context, might be less useful in another instance. That is to say, a

phonetic environment which has a large impact on one phone may have a di�erent, or

reduced, impact on another phone. Therefore, if a means could be found of addressing

the two problems cited above, a bottom{up approach might be preferable.

This thesis seeks to utilize a bottom{up approach which permits a high{degree
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of training data pooling to overcome the sparse data problem, while still modelling

a large number of triphone units and covering a high percentage of the possible pho-

netic combinations. The approach undertaken is inherently less vulnerable to the

main di�culties generally encountered using a bottom{up approach. Once the main

algorithm is described, experimental results based on the bottom{up clustering mech-

anism will be presented. The essential point is to show how the dynamic tracks can

be utilized to capture segment level contextual e�ects. The thesis is not attempting

to claim that bottom{up clustering is superior to top{down clustering.

7.2 Merging Tracks Based on Segment Dynamics

Although contextual inuences can extend across several phonetic boundaries, it is

most often the case that the e�ect of the phone in the left context position is primarily

seen near the left boundary of a segment, and the e�ect of a right context phone is

primarily seen near the right boundary. This can be clearly seen if we re{examine

the spectrogram shown in Chapter 1. In the phone [^] at 0.35 seconds, the left

portion of the phone is primarily a�ected by the preceding [l] which is pulling down

the second formant. This formant can be seen to move gradually towards its target

location before being pulled up at the end to the alveolar locus at roughly 1.8 kHz

in anticipation of the following [s]. The [E] at 0.6 seconds is pulled slightly up on

the left, again by the alveolar locus, and towards the end of the segment all of the

formants start to fall in anticipation of the labial fricative [v]. In neither of these

instances does the inuence of the left or right context extend beyond the center of

the segment they are a�ecting. This is essentially the case with all the segments in

this utterance.

Therefore, as a �rst approximation, it will be assumed that the contextual e�ects

of the phonetic environment can be modelled as inuencing primarily the adjacent

region of a segment. This simpli�cation should enable us to capture the dominant

contextual e�ects in a novel and e�cient way. A method which will take advantage

of the dynamic tracks is to independently account for the left and right contexts by
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creating biphone tracks, and then combine them to create triphone tracks as they are

needed. Tracks can be estimated and stored for the left and right contexts separately

and then merged when a synthetic segment is generated to create a triphone based

synthetic segment.

Such an implementation would dramatically reduce the magnitude of both the

coverage problem and the sparse data problem. For a system with N = 58 phonetic

models, the maximum number of required context{dependent tracks is reduced from

N3 = 195,112, to 2 �N2 = 6,728, not accounting for the large number of transitions

that never occur in English. The factor of two occurs because for a given transition

we get two possible tracks (e.g. for [r] [a] the [r] data is used for modelling a right

context track for [r], and the [a] data is used for modelling a left context track for [a]).

This can help to alleviate both the sparse data problem and the coverage problem

associated with context{dependent modelling.

Additionally, since the error modelling techniques are independent of the track,

the number of statistical error models (which require the majority of parameters)

is a design parameter, since the errors can be pooled over di�erent contexts. This

means only the tracks themselves will be context{dependent. This pooling of the

error matrices, if successful, will alleviate the sparse data problem with respect to the

estimation of the statistical parameters.

Hence, the main ideas behind this approach are �rst, to generate robust biphone

tracks, second to merge these tracks to generate triphone synthetic segments, and

third to use the errors generated from these triphones to estimate the error covariance

parameters. By pooling the errors, tracks can be created for a large number of

contexts without compromising the estimates of the parameters used in the Gaussian

models. Finally, since the left and right contexts are utilized independently, triphone

tracks can be created \on the y" if needed during test. That is, contexts never seen

during training can be created synthetically from the left and right biphone tracks.

This presents a possible method of greatly increasing the coverage provided by the

training set.

The remainder of this section presents an investigation of this approach using
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data{driven bottom{up clustering. The clustering mechanism uses a metric based on

the \distance" between two tracks. In each case, error matrices are pooled over all

contexts. Context{dependent classi�cation experiments are then performed with the

context assumed to be known.

7.2.1 Bottom{Up Clustering

The key problem inherent in bottom{up clustering involves a lack of access to an

intermediate representation when presented with sparse data or a trigram (sequence

of three phones) in the test set which was not seen in the training set. This is

the problem of lack of coverage. However, the technique of merging biphones could

reduce the impact of these di�culties substantially. Fortunately it is possible to

directly measure the impact of these two problems. To avoid creating tracks based

on sparse data, measurements of distortion reduction on a separate data set will be

made. If there are too many tracks created from the training set, they will not be

robust, and distortions over an independent set will increase. Hence, the threshold

at which clustering should be stopped is a measurable parameter. This is not an

issue for the Gaussian distributions, since they are computed for each phone from the

entire ensemble of errors computed over the phone's training data. The coverage over

the test set can be measured explicitly, by counting the number of instances when

either a left or right biphone clustered track is not available.

The algorithm to cluster the phonetic tokens to form context{dependent tracks is

performed separately for each phone, once for all left contexts, and again for all right

contexts. Given a phone and a left/right context, the algorithm is:

1. Create a separate track for every phonetic context in the training set. These

are the \seed" biphone (left or right) tracks. Count the number of contributors

to each track state.

2. For biphone tracks with only one or two contributors, merge these tracks with

the biphone track nearest them using the track distance metric (TDM).
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3. Compute the distance between all remaining tracks using the TDM. If the closest

tracks have a TDM less than a threshold, merge them and repeat this step. Else

stop.

This is a greedy clustering algorithm. The TDM is based on a step{wise optimal

computation, but does not guarantee that the �nal clusters will be optimal [19]. The

criterion takes into account the number of tokens in each cluster as well as the track

distances from each other. A normalized Euclidean distance between the tracks is

weighted by the number of contributors to each track state. In general, this makes the

TDM favor adding smaller clusters to larger ones rather than merging two medium

size clusters. In addition, each state is also multiplied by the same weight which will

be used when the tracks are merged. Hence, the TDM is more heavily inuenced by

the left states when merging left context tracks, and by the right states when merging

right context tracks.

Let P represent the number of acoustic attributes, M represent the number of

states, and N represent the count for each state in a track. Then, given the merger

weight for state i, wi, the distance between two tracks for phone � in the two contexts

� and , is TDM(T�; T):

TDM(T�; T) =
MX
i=1

wi

"
N�i �Ni

N�i +Ni

#
PX
j=1

"
(T�ij � Tij )

2

�2�j

#
(7:1)

Recall that �2�j are the phone dependent variances used to normalize the di�erent

acoustic attributes.

The threshold used in the clustering algorithm is an important design parameter.

If the threshold is set too high, the clustering will continue for too many iterations.

This will result in a small number of clusters and contextual resolution will be lost.

If the threshold is set to be to low, then there will be many clusters, but there will

be two risks. First, there will be too many clusters which were trained on only a few

tokens. This will result in non{robust tracks which may not be representative enough

to be useful. Secondly, when the error covariance matrix is estimated, the errors will

be super�cially low for these sparse clusters. This will result in too \tight" an error
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covariance matrix, and system performance will su�er. We can test the threshold by

measuring the distortion on a set of data independent of the training set. If the net

distortion on this independent set continues to fall as the number of clusters goes up

(threshold goes down) then there is a high degree of con�dence in the robustness of

the tracks. When this trend begins to reverse itself it means too many clusters are

being created and the threshold should be raised to ensure track robustness.

Phones Comment
[r] retroexed
[{] [^] [o] back vowels
[a¤ ] [a] back vowels
[O] [O¤ ] [lÍ ]
[E] [@] [e] [a⁄ ] mid{front vowels
[{‡ ] [h] aspiration
[}] [5] retroexed vowels
[b›] [p›] [g›] [k›] [∑] [m] [f] [v] [S] [n] closures and labials
[SIL] [?] [nÍ ] [t›] [D] silence and glottal stop
[i] [y] [H] [4] palatal/velar
[I] front vowel
[|] front vowel
[w] [l] low F2 semi{vowels
[s] [T] predominantly [s]
[u] [U]
[uÚ ]

Table 7.1: Example of clusters formed using the TDM. The clusters represent the
right contexts which formed automatically for the phone [t]. Each cluster appears
with the most frequently occurring phones listed �rst.

An example of 16 clusters which formed for the right context of the phone [t] are

shown in Table 7.1. The table reveals that in many instances the tracks for [t] in

similar acoustic contexts were clustered together. The third cluster is logical when it

is realized that from the perspective of the previous phone [a¤ ] and [a] are often iden-

tical. The phone [lÍ ] has acoustic characteristics which are very similar to a back vowel

and is clustered with [O] and [O¤ ]. The phones [w] and [l] which are often confusable

due to their acoustic similarity are also clustered together. The relative consistency
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with which many phones are clustered with phones that are similar in manner of ar-

ticulation seems to indicate that the biphone tracks are capturing signi�cant acoustic

information.

Merging Biphone Tracks

The basic premise behind merging biphone tracks to create a triphone based synthetic

segment is that the left context of a phone has its strongest inuence on the left{most

portion of a phone, and the right context has its strongest inuence on the right. The

mergers are computed using the TDM metric.

The following algorithm was used to conduct the mergers:

1. The synthetic segments for the two context{dependent biphone tracks are gen-

erated.

2. Each frame in the merged triphone synthetic segment receives contributions

from each of the two synthetic segments just generated. These contributions

are weighted using linear interpolation. The left context weights begin at a

value of 1.0 for the �rst frame and end at a value of zero for the last frame. The

right context weights for each frame are equal to the 1.0 minus the left context

weight. Note that the sum of the weights at each frame is one.

A set of context{dependent tracks was created using the MIT Training data set.

Since the classi�cation experiments use the MIT Test set, a development set was not

available for optimizing the clustering threshold. Therefore, a value of 20 was chosen

for the threshold which resulted in 1,201 left context tracks and 1,348 right context

tracks. Thus 2,549 tracks were created in total, an average of 44 biphone tracks for

each of the 58 models. To determine if the tracks could be improved by adding a

small amount of context{independent information to the center states as a form of

\ballast," a similar set of 2,549 tracks was created using the same threshold. Also, to

verify that this was not too large a number of tracks, a threshold of 30 was used to

create an alternative set of 2,111 tracks. The distortions for the context{independent
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Context CI Track Threshold Total # Mean Distortion
in Center of Tracks (per frame)

Context{Independent | | 58 14.39
(combined genders)
Context{Independent | | 116 13.57
(gender speci�c) (14.01m/12.72f)
Context{Dependent Yes 30 2111 13.16
(combined genders)
Context{Dependent Yes 20 2549 13.15
(combined genders)
Context{Dependent No 20 2549 13.13
(combined genders)
Context{Dependent No 20 4167 12.03
(gender speci�c) (2398m/1769f) (12.39m/11.33f)

Table 7.2: Distortions for context{independent tracks (gender combined and speci�c)
and a variety of context{dependent track conditions.

tracks and all sets of context{dependent tracks, taken over the test set, are shown in

Table 7.2. The table also shows the distortion which resulted from using the threshold

of 20 to create sets of gender speci�c tracks.

The distortion results reveal that the threshold of 20 was not too small for main-

taining robust tracks, since the distortions were reduced from the case where the

threshold value was 30. They also reveal that the addition of information from the

context{independent tracks was counter{productive. Therefore, for the experiments

described below, the tracks resulting from a cluster threshold of 20 and the biphone

merger algorithm detailed above (no context{independent information) will be used.

An example of a merged track is shown in Figure 7-2. The �gure shows C2 for

a triphone track synthesized from left and right context biphone tracks. The left

and right biphone tracks represent [O] in the contexts [kO] and [Or] respectively. The

triphone track for an [O], in the context [kOr], is then synthesized by merging the

two biphone tracks. Note that the resulting triphone track closely resembles the left

biphone track in the initial states and the right biphone track in the later states.

Of all the tokens in the test set, only 18 of them had contexts for which the correct
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Figure 7-2: C2 for a triphone track synthesized by merging two biphone tracks.
The left and right biphone tracks represent [O] (ao) in the contexts [kO] (k ao) and [Or]
(ao r) respectively. The triphone track for an [O], in the context [kOr] (k ao r), is then
synthesized by merging the two biphone tracks. Note that the resulting triphone track
closely resembles the left biphone track in the initial states, and the right biphone
track in the later states.

triphone synthetic segment, based on these clusters, could not be synthesized, and the

context{independent track was used for the missing context in these cases. Hence,

coverage was on the order of 99.8%. To reiterate, this high coverage was possible

because contexts not seen in training could be synthetically created during test by

merging the appropriate biphone tracks. This result is arti�cially high, since these

training and test sets share some identical utterances. Therefore, this issue must be

re{examined in Chapter 8 where the sentences used for training and test are disjoint

sets.

The main point of this section is to show the improvement which can be obtained

by just creating context{dependent tracks and pooling the errors to create a single



CHAPTER 7. CO{ARTICULATION MODELLING 128

covariance matrix for each phone. Therefore, it is not critical to optimize the thresh-

old for clustering at this juncture. When the phonetic recognition experiments are

conducted in Chapter 8, a development set will be available for optimizing this pa-

rameter. The key point is that a large number of robust tracks can be easily created

to account for contextual factors.

7.2.2 Context{Dependent Experiments

A series of experiments was conducted using the 2,549 context{dependent tracks con-

structed from combining the genders, and the 4,167 gender speci�c context{dependent

tracks. The context{dependent duration statistics are based on the clusters formed

during training. The classi�cation results are summarized in Table 7.3. The re-

sults are compared to the values achieved under identical conditions in the context{

independent case. The �rst result, \Acoustic Scores" used a uniform distribution

for the prior probabilities so as to isolate the e�ect of only adjusting the acoustic

component. For the durations, counts were kept of how often each phone occurred in

each tri{cluster context. This was found to be more robust than using the duration

statistics for each individual triphone. The context{dependent duration correlations

resulted in a relatively large performance improvement compared to the context{

independent duration correlations. Under each experimental condition the context{

dependent results were approximately 4% higher than the context{independent re-

sults.

The results indicate that merging biphones to create synthetic segments which

incorporate both left and right contextual information can lead to signi�cant per-

formance improvements. It is important to emphasize that the actual contexts were

known during the experiments, hence, this improvement represents an upper bound

of what might be expected under more realistic circumstances. However, the results

of the phonetic recognition experiments presented in Chapter 8, where the context

must be determined, will support the idea that merging of biphone tracks is able to

account for signi�cant contextual e�ects in a way that improves system performance.
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Description CI (%) CD (%)
Acoustic Scores 73.2 76.7
+ Duration Correlations 74.1 79.5
+ Priors (unigram) 75.1 79.8
+ Priors (trigram) 80.7 84.9
+ Enforced Gaussians 76.8 80.6
(unigram priors)
+ Enforced Gaussians 81.7 85.6
(trigram priors)

Table 7.3: Results for the merger context{dependent classi�cation experiments. The
results are shown for the comparable CI experiment and the CD experiment using
bottom{up unsupervised clustering. All the experiments utilized duration correlation
modelling in the Gaussian pdf's.

7.3 Transition Dynamics

Another method of using dynamic tracks to enhance system performance is to examine

the acoustic information that spans adjacent segments. The idea is to make tracks

of the phonetic transitions themselves. This lends itself well to the overall approach,

since the transition regions are highly dynamic because the articulators are generally

in motion during this interval. During classi�cation/recognition, the transition model

scores augment the segment scores to provide contextual information.

The main di�culty which needs to be overcome is the very large number of pho-

netic transitions which occur. Again, sparse data considerations limit the number of

models which can be created. However, many transitions are very similar. While it

may be impractical to capture all of the transitions, it may be possible to create a

signi�cantly large subset of transition models.

Other approaches have attempted to utilize a method of explicitly scoring the

phonetic boundaries. Marteau et al. [49] used HMM models of diphones to clas-

sify 9 broad phonetic \macro{classes" of transitions. They concluded that dynamic

information was critical for the recognition of high{speed or highly co{articulated

segments, when it was often di�cult to detect any target con�guration. Leung et
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al. [27] used an MLP classi�er to explicitly detect boundaries in a full recognition

framework. As in the work by Marteau, the classi�er was trained to recognize broad

classes of transitions, which were linguistically motivated. The classi�cation scheme

combined the probability that each of two boundary frames were boundaries with the

probability that all internal frames were not boundaries. By examining only those

boundaries which occurred with a high probability, they were able to reduce the num-

ber of hypothesized segments for classi�cation scoring by over an order{of{magnitude.

Performance improvements due to the boundary classi�er were not reported. More

recently, Kimball et al. [33] used a similar scheme of combining probabilities for the

boundaries with probabilities that internal frames were not boundaries, to determine

an explicit segmentation score. In this work, the main classi�cation engine was a

Stochastic Segment Model. They report that without the explicit scoring of segment

boundaries, system word recognition error increases 18%. Once again, this work used

broad phonetic classes (a total of 6) based on manner{of{articulation.

The idea to be explored in this thesis is to use the TDM to cluster together

transition tracks to arrive at a group of transitions which are representative of the

major classes which such transitions fall into. These major transition classes would

essentially be canonical transitions. However, rather than using a predetermined set

of broad linguistic categories, bottom{up clustering will again be employed. This will

allow a large number of unsupervised data{driven transition models to be created.

The transition models can potentially help in two ways. First, the transition scores

will be incorporated into the overall scoring framework to help determine the phonetic

identity of the two phones involved. Secondly, they can be examined to determine

likely segment boundaries within an utterance. This reduces the possible search space

when we do phonetic recognition, particularly since the transition likelihoods provide

an idea of which phones are involved in the transition.
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7.3.1 Transition Track Generation Function

The �rst issue which must be addressed is the type of generation function best suited

for creating the transition tracks. In Section 4.3.2, a potential weakness of the tra-

jectory invariance assumption was noted. When synthetic segments are generated,

the rate at which the transition is assumed to take place is directly a�ected by the

duration of the token (see Figure 4-10). This does not match our intuition, which is

that the rate at which the articulators move from one con�guration to another need

not be related to the duration of the phonetic segments. In other words, the transi-

tions to and from a 200 ms. [s] can be made at the same rate as the transitions to

and from a 100 ms. [s]. Therefore, when modeling the transitions, it was decided to

use a �xed number of frames, centered about the transition boundary, to create the

tracks. This is a time invariance assumption with a center alignment point. During

recognition experiments, every frame is a potential boundary frame, and can be used

as the center frame in hypothesizing a transition. The number of frames to use in

the transition tracks is a design parameter which will be chosen based on recognition

performance over a development set.

In practice, the strategy will be to preprocess an utterance, by scoring frames

every �T with each of the canonical transition models. This will e�ectively create a

segmentation map of the utterance. At each hypothesized transition frame, the seg-

mentation map will provide likelihood information pertaining to whether a transition

took place, and also which of the canonical transitions are the most likely. These

segmentation maps will be used during the search process of the phonetic recognition

experiments discussed in Chapter 8.

7.3.2 Canonical Transition Design

The goal in creating canonical transition models is to create robust models of as

many distinctly di�erent types of transitions as possible. The robustness of each

model will be determined by the amount of data we have available to estimate its

covariance parameters, and is therefore adversely a�ected as the total number of
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models is increased. Therefore, to generate a large number of transition models, the

number of phonetic categories was collapsed from 58 to 42. The 42 categories selected

were based on the 39 categories designated by Lee [40] and listed in Table 6.9. In

addition, the silence class was broken down into silence (h#, pause { [√], epinthetic

silence { [∑]), voiced and unvoiced closures, and glottal stop [?].

Using 42 classes means there are a total of 1,764 possible phonetic transitions.

The data set NIST Train was used to analyze the transitions, and 1,275 distinct

transitions were found. Tracks of each of these transitions were computed, with each

track consisting of 21 states. In this instance the tracks represent the mean MFCC

values calculated over an interval of 105 ms., with the center frame aligned using the

phonetic boundaries in the timit transcriptions.

The tracks are then clustered, in an unsupervised manner, with the same bottom{

up algorithm used in the creation of the context{dependent tracks. The distance

between the closest tracks, calculated using the track distance metric, is shown for

each merger in Figure 7-3. However, in this instance it is not possible to use the

phone dependent variances as the normalization weights in Equation 7.1. Instead, the

MFCC variances calculated over all of the phones were used as common normalization

weights for each transition model. These are the same �2i used to calculate distortion

in Chapter 4.

To allow for a larger number of canonical transitions, the �MFCC's were not

used as statistical features. Since duration is not a variable for discriminating be-

tween transition models, the total number of dimensions in the Gaussian pdf is 45,

resulting in 1,013 independent parameters in each covariance matrix (recall the ma-

trix is symmetric). This allowed for the creation of 200 canonical transition models.

The robustness of the covariance matrices was checked by observing the range of

eigenvalues and the size of the determinant.

An example of three di�erent transition tracks is shown in Figure 7-4. The �rst

cluster consists of the transitions [in], [en], and [i4], the second cluster consists of

[En], [@n], [a¤ n], and [O¤ n] transitions, and the third cluster consists of only the [In]

transitions. Although all three of these transition clusters could be considered as
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Figure 7-3: The distance between transition tracks at each merger during clustering.
There are initially 1275 transition tracks, which are clustered to form 200 canonical
transitions. The box marks the point at which the track mergers were halted (200
transition tracks remain). Note that the y{axis uses a log scale.

[front{vowel][n] transitions (with the exception of the [i4] component), yet the di�er-

ences in their trajectory dynamics are apparent in the �gure.

7.4 Chapter Summary

This chapter attempted to capture the e�ects of co{articulation in two ways. The

�rst method involved creating tracks which account for contextual variability based on

the acoustics within a phonetic segment. Traditional approaches to this problem have

di�culties with sparse training data when attempting to model triphones, and also

with lack of coverage of the test set. The technique employed here was to separately

cluster biphone tracks which independently accounted for left and right context. The
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Figure 7-4: C1 for three di�erent [front{vowel][nasal] transition tracks.
The three tracks are taken from a cluster consisting of [in] (iy n), [en] (ey n), and [i4]
(iy ng) transitions, a cluster consisting of [En] (eh n), [@n] (ae n), [a¤ n] (ay n), and
[O¤ n] (oy n) transitions, and a cluster of only [In] (ih n) transitions. The standard
deviation of C1 for these tracks is on the order of 55 in the center, and is slightly
higher towards the ends.

biphone tracks are then merged as they are needed to create a triphone track. By

pooling the errors across all contexts to estimate the statistical parameters, the sparse

data problem is signi�cantly reduced. Furthermore, since triphones can be created

synthetically for contexts not seen in the training data, the coverage over the test

set is near 100%. This result will be veri�ed in the next chapter, when coverage is

measured using a test set that does not contain any utterances that overlap with the

training set.

Classi�cation experiments showed that using a single Gaussian distribution for

each phonetic model and the unigram priors resulted in a performance increase of

4.7% for the context{dependent tracks. This is a decrease in the error rate of nearly



CHAPTER 7. CO{ARTICULATION MODELLING 135

18.9%. When the gender speci�c models are used, the classi�cation error is reduced

from 18.3% to 14.4%. This is a reduction in error rate of 21.3%. Therefore, the

reduction from merging the biphone tracks appears to be consistently in the area

of 20%. When the more realistic phonetic recognition experiments are conducted,

the actual phonetic context will not be known. However, since the error rates will be

uniformly higher on this task, there is more room for potential improvement using the

triphone synthetic segments. Their impact will be re{evaluated in the next chapter.

The second method used to capture the co{articulatory e�ects was to model in-

formation that occurred across segment boundaries. The acoustical parameters in

the transitions exhibit a large degree of dynamic behavior due to the motion of the

articulators. To robustly capture the signi�cant dynamic events, a set of 200 canon-

ical transitions were created by clustering the tracks created by modelling all of the

transitions in the training set. These canonical transitions will be used to create a

segmental map of each utterance. The segmental maps will serve to both reduce the

search space during recognition experiments, and to provide information about the

identity of the phones involved in the transition.



Chapter 8

Search and Phonetic Recognition

The problem of phonetic recognition is to determine the most likely sequence of pho-

netic units, A = fa1; a2; : : : ; aNg, by searching a sequence of acoustic observations

X = f~x1; ~x2; : : : ; ~xTg. In a segment based system, each phonetic unit will also have

an explicitly hypothesized starting and ending boundary associated with it. The se-

quence of boundaries which partitions the utterance into phonetic units is called a seg-

mentation of the utterance, and is denoted by S = fs1; s2; : : : ; sNg. Each si is a frame

number specifying the left phonetic boundary for the following phone. The observa-

tions associated with segment, si, will be denoted by X(si) = f~xsi; ~xsi+1; : : : ; ~xsi+1�1g.

Therefore, de�ning Si as a speci�c segmentation from the set S of all possible

segmentations of X, the problem can be stated as:

A? = argmax
A

p(AjX) = argmax
A

X
Si2S

p(ASijX) (8:1)

As in the case of HMM's, most segment based approaches do not compute the

summation on the right hand side of Equation 8.1. HMM's generally are implemented

with a Viterbi algorithm that only computes the most likely state sequence for an

utterance. Analogously, most segment based approaches [27, 33, 44], use only the

136
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most likely joint labeling and segmentation.

p(AjX) = argmax
S

p(ASjX) (8:2)

This approximation greatly simpli�es the implementation, and for HMM's has been

shown to have no signi�cant e�ect on performance [52, 64]. Equation 8.1 now be-

comes:

A? = argmax
AS

p(ASjX) (8:3)

By Bayes Law, the term we are maximizing over in Equation 8.3 can be rearranged

as:

p(ASjX) =
p(XjAS)p(AS)

p(X)
(8:4)

The denominator term p(X) is simply a normalization factor, and will not a�ect

the most likely label sequence. Therefore, it can be dropped from the expression.

Expanding the joint distribution p(AS) in the numerator now yields:

A? = argmax
AS

p(XjAS)p(SjA)p(A) (8:5)

The terms in Equation 8.5 can be interpreted as distinct scoring components.

The p(XjAS) reects the acoustic component of the score, given an hypothesized

segmentation and a sequence of phonetic models. The term p(SjA) will nominally be

approximated by p(S). This term will be modelled simply as a \segment transition

weight," it is strictly a function of the number of segments in S. Thus it serves to

control the tradeo� between deletion and insertion errors. The p(A) term corresponds

to the phonetic grammar of the utterance. This is the a{priori probability of the full

hypothesized phonetic string. The details of this grammar, known as a language

model, are discussed in Section 8.1.2.

Assuming independence between adjacent segments, and ignoring the transition
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model component of the system for the moment, yields:

p(XjAS)p(SjA)p(A) = p(A)
NY
i=1

p(X(si)jaisi)p(sijai) (8:6)

To incorporate the transition component of the acoustic score, it is necessary to

de�ne some additional notation. Assume that the transition likelihood at frame si is

being computed. These calculations involve � frames on each side of si. The acoustic

observations at this boundary that are used to calculate the transition likelihoods will

be denoted X(�i) = f~xsi��; : : : ; ~xsi+�g. Now Equation 8.6 becomes:

p(XjAS)p(SjA)p(A) = p(A)
NY
i=1

p(X(si)X(�i)jaisi)p(sijai) (8:7)

The relationship between the acoustic observations which comprise a segment

and the observations which are involved in the transition dynamics is depicted in

Figure 8-1. Note that the acoustic observations within each X(�i) will be used twice,

once for the acoustic score of the segment, and again for the transition from the

given segment to the following segment. However, it is important to recall that the

acoustic likelihoods are calculated not from the observations, but from the errors

produced when the synthetic segment associated with phone ai is compared to the

observations. Since the transition models and the phone models produce di�erent

synthetic segments for comparison to the observation sequences X(si) and X(�i)

respectively, the errors produced by each of these calculations can be approximated

as independent. This yields:

p(X(si)X(�i)jaisi) = pI(X(si)jaisi)pT (X(�i)jaisi) (8:8)

where pI represents the likelihood of the internal component of ai, and pT represents

the likelihood of a transition from phone ai to phone ai+1.
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Figure 8-1: A portion of a schematized acoustic attribute, partitioned into segments.
Each segment consists of internal and transition regions.

Therefore, the context{independent score for an utterance is:

A? = argmax
AS

p(A)
NY
i=1

pI(X(si)jaisi)pT (X(�i)jaisi)p(sijai) (8:9)

The pT component is used only when transition models are included.

To incorporate contextual dependencies, de�ne j to be the triphone faj�1; aj; aj+1g.

Now Equation 8.9 becomes:

A? = argmax
AS

p(A)
NY
i=1

pI(X(si)jisi)pT (X(�i)jisi)p(siji) (8:10)

8.1 Implementation Issues

This section contains a brief discussion of implementation issues pertaining to the

Viterbi search algorithm. More detailed descriptions of this algorithm can be found

in [22, 64]. Di�erences between the context{independent and context{dependent
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search strategies will be discussed. The section concludes with an examination of the

language models used in the search (the p(A) term in the derivation above), as well

as the duration model component.

8.1.1 The Viterbi Algorithm

The Viterbi algorithm is a time{synchronous beam search algorithm which utilizes

dynamic programming. The search can be envisioned as �nding the best path through

a lattice. The axes represent time (x{axis) and phonetic model (y{axis). Each (x,y)

coordinate represents a potential phonetic boundary at a speci�c time. Depending

on the implementation strategy, the phonetic model coordinate can represent either

the beginning or the end of a phonetic segment with the label speci�ed by the co-

ordinate. In this thesis, the search is conducted from left{to{right (increasing time)

at an interval of �T frames. The value of �T determines how frequently a phonetic

boundary is hypothesized (e.g. 10 ms). A segment is speci�ed by an arc, connecting

two points in the lattice. An example of a partial path through the lattice is shown

in Figure 8-2.

The cost associated with a segment is computed according to Equation 8.9 for

context{independent recognition and Equation 8.10 for context-dependent recogni-

tion. At each point in time at which a segment boundary is hypothesized, the best

path to reach each vertex at that time is retained. The best path is the one with the

least cost (highest probability) associated with it. The search need only keep track

of the best path to reach a vertex because of the dynamic programming aspect of the

implementation. Therefore, at each vertex in the search, all that must be stored is

the cost up to that time, along with a pointer to the vertex attached to the initial

point of the arc.

By conducting an exhaustive search through the lattice, the complete path is con-

structed. The node with the least cost at the �nal frame is used to determine the

phonetic label sequence along with the segmentation. Exhaustive search is compu-

tationally expensive. To compute the segment scores for M models with boundaries
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Figure 8-2: A portion of a hypothetical path in a Viterbi search.
The vertices are connected by arcs, which each have a cost associated with them.
A vertex can represent either a left or right phonetic boundary, depending on the
implementation strategy.

hypothesized at each of N frames requires a total of MN(N � 1)=2 acoustic likeli-

hood computations. However, this is assuming context{independence of each of the

phonetic models. To perform a context{dependent search, the computational require-

ment becomes heavier. In this instance a single acoustic score connecting a vertex to a

previous time is not su�cient. Instead, a context{dependent score must be computed

based on the track of the phonetic unit which incorporates the contextual informa-

tion. This adds an additional factor of M to the search computation for a biphone

acoustic representation, and potentially a factor of M2 for a triphone computation.

The speci�c implementation strategy becomes a key factor for context{dependent

search. The designation of each vertex as a starting or ending boundary for the

phonetic model at that coordinate becomes important. If the terminal vertex of

each arc is designated as the endpoint for the phone speci�ed by the vertex, then

the left context in that path will be known, since it is the departure point for the

arc. However, the potential right context associated with that arc is completely
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unknown. For example, using this type of implementation, the second arc in Figure 8-

2 represents an [@], with an [f] as its left context. But when the acoustic score for

the [@] is computed, no right context can yet be hypothesized for the merger to form

a triphone synthetic segment.

The alternative is to designate the terminal vertex of an arc to be the starting

boundary of the next phone in the sequence. Under this implementation, the second

arc in Figure 8-2 is an hypothesized [f] going to an [@]. Now, both contexts can be

used to create the synthetic segment, since the [f] is already assumed to be coming

from a [√] (pause). This will also allow for trigram constraints to be used in other

system components. However, this is not a full triphone implementation, since every

arc departing from the [f] is assumed to have the same left context. Essentially, the

search is being pruned by assuming that the left context for a given vertex is the best

context in spite of the fact that the right context has yet to be accounted for. To

hypothesize alternative left contexts would require that a pointer be kept to the best

path for each possible preceding phone model, potentially adding a factor of M to

the computation cost.

8.1.2 Language and Duration Models

Both the language and duration models applied during the search are functions

of the amount of contextual information being accounted for. The term context{

independence applies to the acoustic{phonetic models, of which duration is a compo-

nent. It is a common practice to incorporate phonotactic constraints, in the form of

a grammar, at the context{independent level.

Language Model

The a{priori probability of a phonetic string, p(A), can be written as:

p(A) = p(a1)p(a2ja1)p(a3ja2a1) : : : p(aN jaN�1aN�2 : : : a1) (8:11)
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However, due to limitations in the amount of training data which exists, it is

not tractable to estimate p(A) accurately for realistic values of N . Therefore, a lan-

guage model is used which incorporates simplifying assumptions. The assumptions

are generally of the form that the a{priori probability of a particular phone, ai, is

conditionally dependent only on the identity of it's closest phonetic neighbors. Dif-

ferent levels of complexity include a unigram model in which the phones are assumed

to be independent, a bigram model in which the the priors are conditioned on either

the left or right phonetic context, or a trigram model which generally conditions the

prior probability on either the two preceding or following phones.

The power of a language model is often measured by the reduction in perplexity

that it provides. The perplexity, P , is related to the estimate of p(A) [35]:

P = p(A)�1=N (8:12)

In very loose terms, the perplexity can be interpreted as the average number of

phones which can follow a given phone after applying the language model. For this

thesis, the language models used are based on the full set of 58 phones shown in

Table 4.1. Given the 58 phone lexicon, and using the NIST designated training and

core test sets, the perplexity was measured to be 46.1 for a unigram model, 15.7 for

a bigram model, and 15.1 for a trigram model. This small reduction in going from a

bigram to a trigram is consistent to that measured by Lamel and Gauvain using a 61

phone lexicon (17.7 bigram and 17.0 trigram) [38]. This is attributable to the limited

training data available for trigram estimation, and possibly, to the fact that there are

no overlapping sentences in the training and test sets.

Duration Model

The duration models used in this chapter are all based on measurements of the statis-

tics of the log duration, as measured in frames. The log duration was chosen based

on the fact that this assumption was shown to provide a better explanation of the
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data (see Appendix A). For both the context{independent and context{dependent

experiments, the log duration is included as an attribute in the feature vector, so

that its correlations with the MFCC errors can be measured.

For the context{dependent experiments, the mean of the log duration was mea-

sured for each cluster{based triphone. Pooling the statistics across the contexts used

for clustering the acoustic parameters proved to be more robust than using a triphone

model for each individual context. If an unseen context is hypothesized during test,

then the context{independent log duration is used.

8.2 Scoring for Phonetic Recognition

Due to the search that must take place during phonetic recognition, scoring recogni-

tion experiments is more complex than it is for phonetic classi�cation experiments.

Since the number of segments being hypothesized may not be the same as the number

of segments in the actual transcription, it is not su�cient to state that a particular

segment is either correctly or incorrectly labelled. Instead, errors besides substitution

errors can take place. These errors are deletions and insertions, and refer to phones

in the utterance which are missed during the search process, and extra phones hy-

pothesized during search which are not present in the provided transcription. The

actual segment alignment times are not used in the scoring process.

To score an utterance, the reference transcription (that which is provided with

the timit database) is compared to a hypothesized transcription. A NIST designated

alignment program is then used to align the two transcriptions such that the total

number of errors (substitutions, deletions, and insertions) is minimized [59]. The

phonetic accuracy is then de�ned to be one minus the percentage of errors in the

utterance:

%Errors = %Substitutions +%Deletions +%Insertions (8:13)

%Accuracy = 1:0�%Errors = %Correct�%Insertions (8:14)
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%Correct =
number of phones correct

number of phones in utterance
(8:15)

Note that it is mathematically possible to have an accuracy of less than zero, due to

the presence of insertion errors.

8.3 Context{Independent Recognition

The recognition experiments presented in this section are based on context{independent

acoustic models. The context{independent experiments provide a baseline standard

upon which subsequent improvements, due to the incorporation of contextual infor-

mation, can be measured. Also, a large body of research reported in the literature

exists which is based on context{independent phonetic recognition. Hence, a ba-

sis of comparison is possible between this approach and other phonetic recognition

approaches.

To re�ne the system design parameters, models were trained on the NIST Train

data set and initial evaluation was performed using Dev1 data set (see Table 2.2 for

details). To save time, the evaluation experiments were run using the BG{Dev1 data

set, a subset of the Dev1 data set, consisting of twelve male speakers.

All the experiments presented in this section use gender speci�c, context{independent

acoustic models. The models are constructed in exactly the same manner as those

used in the context{independent classi�cation experiments described in Chapter 6,

including the use of duration and the �MFCC's. The grammar is a phone bigram,

based on the same 58 phonetic classes used in the classi�cation experiments, and for

which acoustic models were constructed. During the Viterbi search phonetic bound-

aries are proposed every 10 ms.

After the system parameters had been tuned on the development set, models

were constructed for evaluation on three distinct test sets. First, the models used

in the development set were used in recognition experiments on the NIST Core Test

data set. This data set has been used many times for reporting context{dependent

results [38, 62, 68], but has not generally been used at the context{independent level.
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Therefore, the results reported here both provide a baseline for other researchers in

the �eld, and serve to measure improvements when transitional and contextual factors

are used. The NIST Core Test data set also has the feature, alone among the data

sets used in the literature, of having sentences which are completely disjoint from

those used in the training set (NIST Train). This lack of overlap between training

and test set utterances precludes the grammar model from containing a favorable

statistical bias towards the overlapping sentences in the test set.

To provide an additional basis of comparison between STM and other approaches,

models were also constructed for use with two additional test sets used in the research

community. Early successes in phonetic recognition using HMM's were achieved by

Lee and Hon [40]. To use their results as a point of comparison, models were trained

on the KFL Train data set, and tested on the KFL Test data set. The test set

is identical to that used by Lee and Hon, but the training set is somewhat larger,

reecting the release of additional timit data by NIST. Segment{based phonetic

recognition results utilizing representations which incorporate dynamic information

have been reported for the Stochastic Segment Model [13] and the Dynamic Systems

model [15]. Models were trained using the set of male speakers contained in the BU

Train data set (426 speakers) and tested on the BU Test data set which consisted of

twelve male speakers from the western dialect region of the United States. Again,

the training set used here was somewhat larger due to the release of additional timit

data by NIST.

The results of the context{independent experiments, both with and without the

use of the phonetic transition models, are presented in Table 8.1. To utilize the

transition models in a context{independent manner, the log likelihoods for all the

transitions from the phone being scored were exponentiated and summed. This results

in a transition likelihood which is conditioned only on the hypothesized phone. All of

the transition models used data from both genders, if available, in the training set.

Table 8.1 shows the accuracies tabulated according to each of three distinct cri-

teria. The nominal method is the accuracy using the same allowable confusions used

in the classi�cation experiments and de�ned in Table 6.9, and also includes glottal
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Statistical Trajectory Model (STM) Results
Test Set Scoring Method to Measure Accuracy

Nominal Remove [?] Closure/Stop
NIST Core Test 61.9% 61.9% 63.0%
+ transition models 63.9% 64.0% 64.9%
KFL Test 63.9% 63.6% 65.0%
+ transition models 65.6% 65.3% 66.7%
BU Test 66.0% 66.2% 67.2%
+ transition models 68.3% 68.4% 69.5%

Table 8.1: Context{independent recognition results for three data sets using a bigram
grammar. The results are presented for each of three alternative methods of scoring
the errors.

stops ([?]) which are mapped to silence. The Remove [?] condition shows the e�ect

of removing all incidents of [?] from both the reference and hypothesis transcriptions.

This is the most common method used to report results in the literature [38, 40, 68].

Finally, the Closure/Stop condition shows the results which occur when substitutions

of a closure{stop pair by the corresponding single closure or stop are acceptable errors.

If a closure{stop pair is hypothesized for a single closure or stop and the result is an

insertion error, this insertion error is not counted [15, 18]. In this case, instances of [?]

were not removed. The Closure/Stop condition seems to make good sense within the

context of constructing words, as these types of confusions would then be irrelevant.

As can be seen from Table 8.1, the data sets vary considerably with respect to

recognition performance. The superior results for the KFL Test and BU Test data

sets should be partially attributable to the fact that the training and test sets have

overlapping sentences, providing a bias for the bigram language model. In addition,

the NIST Core Test data set is balanced with respect to dialect, with two male speak-

ers and one female speaker from each of eight pre{de�ned regions. The signi�cant

improvements for the BU Test data set might also be attributable to the fact that only

male speakers from a single dialect region are used. The timit data base provides

twice the amount of data for males as it does for females. For the other test sets,

the accuracies for the male speakers were anywhere from 1.0% to 2.5% higher than
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the corresponding accuracies for the females, depending on the use of the transition

models (which were constructed from data of both genders).

Finally, the removal of the glottal stops, [?] had little impact on performance.

This generally boosts performance by one or two tenths of a percent, but on the

KFL Test data set it actually causes a drop in the measured performance of 0.3%.

The value of keeping or dropping the glottal stops is debatable; however, dropping

them has been a common standard adopted in the literature. Allowing closure{stop

substitutions by either the closure or the stop boosted performance uniformly by

0.9% to 1.4%. Again, this criterion seems to reect the fact that, when searching

for words, either the correct closure or stop would be bene�cial. Some additional

confusions at the phonetic level might also be considered to be allowable. This would

include permitting confusions of syllabic phones with a schwa{phone counterpart. For

example, the distinction between [lÍ ] and [{] [l] is often arbitrary, and irrelevant at the

word level.

Table 8.2 compares the results from other work reported in the literature to the

relevant results obtained in this thesis. The accuracies achieved on the KFL Test data

set are a considerable improvement to Lee and Hon's accuracy, and are comparable

to the accuracy they achieved using context{dependent models (66.1%). However,

these results are old (1989) and also the accuracy measure was not used at that time.

Lee attempted to maximize percent correct while maintaining insertions under twelve

percent. With a lower insertion rate, it is possible his accuracy performance would

have improved. Without transition models, the STM results are closest to those of

the stochastic segment model (SSM). This is not surprising in light of the fact that

the SSM model used to achieve this result included some local modelling of temporal

correlations [13].

The accuracy results were consistently better on the smaller test sets than on the

NIST Core Test data set. This most likely reects the fact that there is no overlap

of sentences in training set and the test set, and also, that the test set is carefully

balanced across all eight dialect regions of the timit corpus.
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Accuracy Comparison of STM to other Work
Work Accuracy Relevant STM Accuracy

w/o transitions with transitions
KFL 53.3% 63.6% 65.3%
KFL Test Set
Dynamic Systems 63% 66.2% 68.4%
BU Test Set
SSM 66.7% 67.2% 69.5%
BU Test Set

Table 8.2: Comparison of results achieved using statistical trajectory models to other
work reported in the literature.

8.4 Context{Dependent Recognition

The recognition experiments reported in this section are based on a set of gender de-

pendent, context{dependent models. Due to the additional computation required for

a context{dependent search, the total number of MFCC's and �MFCC's was reduced

from 15 to 13. This lowered the dimensionality of the Gaussian error distributions

from 76 to 66. The models were trained on the NIST Training data set. The tracks

were clustered bottom{up using the TDM described in Chapter 7. A total of 2,492

gender dependent tracks were generated via bottom{up clustering, using the TDM.

The errors for each phone were pooled into a single covariance matrix for each of

the gender models. As was the case for the context{independent experiments, the

recognizer design parameters were tuned using the Dev1 and BG{Dev1 data sets.

Since the context{dependent experiments impose a signi�cantly larger computational

burden than the context{independent experiments, the actual experiment tuning was

conducted using only the BG{Dev1 data set. When statistical measures were used

to choose design parameters (e.g. the mean track distortion is used to determine the

threshold for clustering), the Dev1 data set was used.

The issue of coverage was discussed in Chapter 7 and can now be re{examined.

In Chapter 7, coverage over the data set used in the context{dependent classi�cation
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experiments was found to be 99.8%. However, the training and test sets used in

that chapter contained some overlap of the sentences. As discussed earlier, the NIST

designated training and test sets were created speci�cally to avoid this problem.

Triphone coverage was found to be 99.6% for the Dev1 set, and 99.5% for the NIST

Core Test data set. This consistently high degree of coverage supports the intuition

that merging the biphone tracks to create triphone tracks is an e�ective solution to

the coverage problem. If just the original triphone contexts provided in the training

set are used, the coverage on the Dev1 and NIST Core Test drops to 87.6% and 87.1%

respectively.

The Viterbi search was conducted by hypothesizing alternative right contexts for

each phonetic model at each point in time (i.e., at 10 ms intervals). The left context

and boundary for each model were constrained to be those used in the best path

achieved up to the current time. Hence, the search was over all possible bigrams.

However, since the best left context was \known" for each hypothesized segment,

the acoustic models utilized a full triphone track, created by merging the \known"

left context biphone track with each allowable right biphone track. Additionally, a

trigram phonetic grammar was also employed. Hence, this implementation strategy

allowed the use of triphone and trigram information while maintaining a bigram

search. Essentially, this constitutes a constrained trigram search.

The results of the context{dependent experiments, both with and without the use

of the phonetic transition models, are presented in Table 8.3. For these experiments,

the transition likelihoods were used to help determine the right context. Two sets of

200 transition models were constructed. One set was composed only of data from the

male training speakers and was used on the male test utterances. The other set used

all utterances in the training set and was used for the female test speakers.

Once again the improvement due to the transition models is noteworthy. The im-

provement of 3.0% in recognition accuracy is almost 50% better than that achieved

in the context{independent experiments (�2%). This is not surprising since the

contextual information in the transition models was not available in the context{

independent experiments. The improvement in the complete context{dependent sys-
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Statistical Trajectory Model (STM) Results
Test Set Scoring Method to Measure Accuracy

Nominal Remove [?]
Trigram 66.5% 66.5%
+ transition models 69.3% 69.5%

Table 8.3: Context{dependent recognition results for NIST Core Test data set using a
\constrained" trigram grammar/search. The results are presented with and without
glottal stop.

tem was 5.5%. This absolute improvement is slightly higher than was obtained in the

context{dependent classi�cation experiments (�4%). However the relative improve-

ment in terms of reduction of the error is �15% in recognition whereas it was �21%

in classi�cation. As noted in Chapter 7, the fact that the context was known during

classi�cation provided a signi�cant advantage.

The best result using statistical trajectory models is compared with other results

in the literature in Table 8.4. The results in the table represent the best accuracy

achieved on the NIST designated Core Test data set at the current time. The STM re-

sult of 69.5% is virtually identical to that achieved by Lamel and Gauvain (69.1%) [38].

Their result represents the state{of{the{art in HMM phonetic recognition, which is

currently the dominant speech recognition technology. It is also very close to the

best SUMMIT result of 68.5% [62]. The SUMMIT result used context{independent

mixture Gaussian pdf's and context{dependent models to determine phonetic transi-

tions. Robinson, using arti�cial neural networks, achieved an accuracy of 73.9% [68].

This value is signi�cantly higher than any other accuracy reported in the literature

on this test set. Clearly, the neural net is capturing important information that is not

being modelled well in other approaches. One hypothesis might be that the neural

net is making advantageous use of a language model which incorporates high N{gram

constraints. However, this hypothesis is not supported by the small decrease in per-

plexity which occurs as N is increased beyond a value of 2 for the NIST training and

core test sets. Also, both Lamel and Gauvain [38], as well as the STM approach show
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Comparison of Recognition Results on NIST Core Test Set
ANN { Robinson 73.9%
STM 69.5%
HMM { Lamel & Gauvain 69.1%
SUMMIT { Phillips & Glass 68.5%

Table 8.4: Best recognition results for the NIST Core Test data set reported in the
literature. The results are presented using Kai{Fu Lee's 39 confusion classes after
removing glottal stops.

only small performance gains in going from a bigram to a trigram. Other possibilities

are that the neural network could be estimating a signi�cantly more accurate prob-

ability density function, or, incorporating contextual information in a superior way.

The possible use of neural nets in an STM framework is discussed briey in the next

chapter.

8.5 Chapter Summary

This chapter described the application of statistical trajectory models to the phonetic

recognition task. This task is signi�cant because it is an important component of

all modern large vocabulary speech recognition systems. The task requires the use

of both acoustic classi�cation and search components. A formalism for computing

the search likelihoods for an utterance was described, including the incorporation of

phonetic transition likelihoods and contextual dependencies.

A series of context{independent and context{dependent recognition experiments

were then performed. Several di�erent scoring methods were utilized so that the

impact of each method could be assessed. Finally, a set of context{dependent recog-

nition experiments using the NIST designated training and test sets was performed.

The results indicate that the performance of the STM methodology is virtually iden-

tical to that achieved by the most successful HMM technology currently available.

Since this thesis represents a �rst attempt at exploiting the potential of the STM
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approach, it is hoped that further e�orts and experimentation will allow signi�cant

advances in phonetic recognition performance. Additional avenues of future research

using this approach are discussed in the next chapter.



Chapter 9

Conclusions and Future Work

This thesis attempted to establish the importance of capturing the temporal behavior

of the speech waveform for use in a speech recognition engine. The temporal behavior

is modelled by templates of the dynamics of the acoustic attributes used to represent

the waveform, and by estimating their spatio{temporal correlation structure. Models

incorporating these two components were created for phonetic units and for phonetic

transitions.

This work represents only an initial attempt at utilizing the statistical trajectory

model concept. The main �ndings which resulted from this investigation are summa-

rized in the next section. The thesis then concludes with a discussion of how these

results might be expanded upon to produce additional gains in speech recognition

performance.

9.1 Conclusions and Thesis Contributions

The implementation of statistical trajectory models encompassed several distinct

steps which were of major importance to the eventual task of applying STM to pho-

netic recognition. In general, each step served to re�ne the selection and use of each

of the two key model components, the tracks and the statistical error models.

154



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 155

The �rst task involved determining the methodology and design parameters for

generating the tracks. It is the tracks which are responsible for capturing the non{

linear dynamics of the acoustic attributes. In order to evaluate the relative accuracy

of the tracks, it was necessary to de�ne a metric which would provide a meaningful

quantitative measure of the \distance" between the tracks and the tokens they are

intended to represent. This lead to the use of a distortion criterion in Chapter 4.

The distortion criterion does not depend on a particular track algorithm, but instead

provides a means of evaluating competing algorithms. To apply the criterion fairly,

each algorithm involved in the analysis must be compared to the same data. Note

that it would also be possible to measure the distortion produced using an HMM

by creating a \trajectory" consisting of the mean value of the distribution (or the

expectation over the mixture components) used to score each frame.

The distortion criterion provides a useful means of breaking down the design pro-

cess of the statistical trajectory models. It allows the tracks and generation functions

to be evaluated independently of the statistical models. Subsequent track improve-

ments, such as context{dependent modelling, speaker adaptation, noise normaliza-

tion, etc. can all be evaluated in a simple manner without conducting extensive

recognition experiments. This is because it is generally the case that tracks which

result in a larger distortion are unlikely to result in performance improvements.

Using distortion measurements, a generation function was selected for use in sub-

sequent experiments. The generation function, \fractional linear interpolation with

�xed endpoints," is a linearly interpolated mapping of a token's frames to the states of

the track. The initial and �nal frames of the token are always aligned with the initial

and �nal states of the track. This generation function carries the implication that

the trajectory through the acoustic space is not a�ected by durational variabilities in

the realization of a phone. Naturally, when a phone's duration is correlated to the

phonetic context, then co{articulation will a�ect the trajectory. However, the results

here indicate that, when averaged over all contexts in the training set, the trajectory

invariance assumption is a viable one.

Chapter 5 focused on the second main task, the creation of a statistical error
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model. The objective of the statistical model is to take advantage of information

residing in the correlations both over time and between attributes. This objective

involves dealing with two key di�culties. The �rst di�culty is that the observation

sequence varies in duration. For each segment that is hypothesized, the observation

sequence will be N frames long, where N is variable. The second di�culty involves

the dimension of the distribution, which is limited by the amount of training data

available.

A method which produced a good compromise was to create error sequences of

variable frames and to normalize the duration by averaging the vector sequence over

each of Q pieces. This technique had the advantages of reducing the dimensionality

of the Gaussian distribution while utilizing all of the data.

The bene�ts of sub{segmenting the error signal instead of sub{segmenting the

acoustic attributes themselves was demonstrated. This was done by measuring the

residual energy caused by the sub{segmentation approximation. This result supports

the use of a track to model the dynamics at the phonetic level. By accounting for

the dynamics prior to making a statistical model, the accuracy of the signal after

sub{segmentation is enhanced.

Chapter 5 concluded with some insights into the structure of the information in

the covariance matrix. After determining some initial design parameters, Chapter 6

presented some vowel classi�cation experiments, both as an initial evaluation of STM

and as a means of assessing the impact of the di�erent components in the covariance

matrix. It was demonstrated in a vowel classi�cation experiment that the temporal

correlations had a performance impact at least as great as the spatial (inter{acoustic)

correlations. The vowel classi�cation results, which compared favorably to other re-

sults reported in the literature, indicated that the STM's were doing a reasonable

job of scoring phonetic segments. This conclusion was supported by a full set of

context{independent phonetic classi�cation experiments. The result of 76.8% com-

pares favorably to other results reported in the literature using MFCC's and full

Gaussian covariance statistics. The importance of the �MFCC's, the correlation of

duration with the acoustic attributes, and performance increases obtained by training
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separate models for each gender was also demonstrated.

Chapter 7 addressed the incorporation of the e�ects of co{articulation into the

STM framework. Two types of modelling were attempted, both of which can be

utilized in a complete phonetic recognition system. The �rst technique attempts to

account for the dynamic e�ects of co{articulation in the tracks. This technique is

able to handle the two main di�culties which arise when creating context{dependent

models, sparse data problems created by splitting the data up into a large number

of contexts, and coverage of contexts not seen in the training set. The sparse data

problem is resolved by creating context{dependent tracks and pooling the resulting

errors over context. Merging biphone tracks to synthesize triphone tracks as they are

needed was shown to provide a high degree of coverage of the test set. An important

result was that signi�cant performance improvements were shown to be possible by

accounting for contextual e�ects with the track alone. This allows the system to

operate with only a single probability density function for each phonetic unit, or two

if separate gender models are used. Lamel and Gauvain use 500 full HMM's to model

context in their system [38].

The second technique which was applied to the co{articulation problem involved

making STM's which spanned the segment boundaries in an attempt to accurately

capture the dynamics of the phonetic transitions. Sets of 200 (or more) \canonical"

transition models were created using a bottom{up, data{driven, clustering algorithm.

The models are highly dynamic, due to the motion of the articulators during phonetic

transitions, and are therefore well suited to the STM approach. The transition models

were used to augment the acoustic scores and also to help reduce the search space

during phonetic recognition.

Finally, in Chapter 8, the di�erent design elements presented throughout this the-

sis were combined to create a complete phonetic recognizer. Chapter 8 described the

search problem and formally developed the scoring framework to be used during the

Viterbi search. The language and duration model components were also described.

This was followed by a description of several sets of context{independent phonetic

recognition experiments. These experiments established that STM's were capable
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of performance that compared favorably with other context{independent results re-

ported in the literature. Additionally, performance improvements resulting from the

use of the transition models, in a context{independent manner, were demonstrated.

Hopefully, the benchmarks established in this section will be of use to future re-

searchers as a point of comparison.

The last section in Chapter 8 presented the results when the full context{dependent

STM's and transition model likelihoods were used. The transition models increased

the recognition accuracy by 3.0%, which is slightly better than the increases achieved

for the context{independent results. This is most likely due to the fact that the tran-

sitional context information was not used in the context{independent experiments.

The context{dependent accuracies were 4.6% and 5.5% higher than the corresponding

context{independent accuracies, measured with and without the transition models re-

spectively. The best result of 69.5% is virtually identical to that achieved by Lamel

and Gauvain of 69.1% [38]. Their result represents the state{of{the{art in HMM

phonetic recognition, which is currently the dominant speech recognition technology.

It appears that the use of both dynamic models of the acoustic attributes and

their temporal correlations can be bene�cial in determining an accurate phonetic

transcription of an utterance. It should be reiterated that this work represents only

a �rst attempt at incorporating these elements into a complete speech recognition

system. Additional research should lead to further performance improvements. Some

areas where this improvement can possibly be found are the topic of the next section.

9.2 Future Work

The goal in this work has been to ascertain the viability of the concepts behind

STM, rather than to exhaustively attempt the promising implementation alternatives.

However, each of the model components could easily have been implemented in a

di�erent way, and many potential enhancements exist. A few of these possibilities

will be briey described here.

Several generation functions were considered as a basis for forming the tracks. The
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ones examined here were motivated by two alternative assumptions which attempt to

account for the durational variability which occurs in the realization of the same pho-

netic unit. Certainly other types of assumptions could be made and other generation

functions explored. It might also be of value to re{examine the trajectory invariance

assumption with the context{dependent tracks. Once the phonetic context has been

accounted for, the validity of this assumption could be more readily ascertained.

Generation functions which perform a type of dynamic time{warping may serve

as an enhancement. However, it is unclear whether this exibility is actually advan-

tageous at the phone level. Generation functions which are a function of the phonetic

identity might also be employed. Better clustering techniques, and an improved track

distance metric are also areas where the tracks could be improved. For example, the

track distance metric in this work used a linear weighting of the states when merging

tracks. A better weighting might be related to the phone dependent variances of the

individual states.

Instead of always merging biphone tracks, the original triphone tracks could also be

incorporated. It might be possible to use a procedure similar to that used in language

modelling where a combination of the trigram and bigram statistics are used. In this

case, the triphone tracks could be weighted and combined with the merged biphone

track. The weight which determined the exact combination of triphone track and

merged biphone track would depend on the number of examples which were available

in the training data.

Another area which is well suited to a dynamically based approach would be to

create compound phonetic units, such as [@l], or [Or]. It might also be possible to

adapt the tracks during recognition to account for speaker{dependent characteris-

tics. The small number of parameters needed in a track makes for a much simpler

adaptation scheme than re{estimation of the statistical parameters.

The transition tracks also warrant further investigation. One simple re�nement

not explored here would be to retain a large number of transition tracks, and to pool

the errors across sets of clustered tracks to create a smaller number of statistical

models. This approach was e�ective when applied to the context{dependent biphone
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tracks.

The statistical error models could also be improved in several ways. The dimen-

sionality problem has a highly constraining e�ect on the use of the temporal corre-

lation information. A principle components analysis might be one method of getting

around this problem. A large value could initially be used forQ, the sub{segmentation

parameter, and then the dimension could be reduced via principle components [32].

Mixtures of diagonal Gaussians might also yield a more robust/accurate represen-

tation of the distribution in the acoustic space. Alternatively the errors could be

fed directly into an arti�cial neural network. A neural network would be completely

unconstrained in estimating the shape of the probability density function.

The search algorithms used to obtain the recognition results could easily be en-

hanced. The system employed here used a very small set of tunable design parameters

(on the order of �ve). A more sophisticated search engine could be employed in the

future. A full triphone A? search would also probably boost system performance. It

might also be possible to dynamically adjust the relative weighting of the segment

and transition acoustic scores depending on the log likelihoods produced for a given

hypothesized segment.

Finally, feedback from higher level knowledge sources which take into account

super{segmental features of the utterance should be incorporated into the search.

In addition, speech recognition engines would also be greatly enhanced if superior

methods of rapidly adapting to speaker{dependent characteristics are e�ectively in-

corporated.



Appendix A

Modelling Phonetic Durations

An important component of a segment based approach is the information inherent in

the durations of di�erent phonetic units. Duration is a segment level feature that can

be used to help di�erentiate phones which are acoustically similar. For example the

vowel pair [@] and [E] are easily confused acoustically, but the mean duration of an

[@] is approximately 27.3 frames, while the mean duration of an [E] is approximately

18.7 frames. The durations vary with context, speaker, placement within a sentence,

and other factors.

The duration is measured in frames and is therefore always an integer value.

Since the measurements are discretely valued, one method of creating a probability

distribution of duration would be to count the number of tokens which occur for each

duration for each of the phones. However, this method can lead to inaccuracies at

the extremes of the distribution, or at intermediate values due to sparse data or an

unusual tendency within the training set. Therefore, a continuous probability density

function is generally selected to approximate the actual discrete distribution. The

continuous density serves to smooth the data and provides a more robust measure at

the extremes.

Three di�erent probability density functions were considered as duration distri-

bution models. They were a gamma distribution, a Gaussian distribution, and a log

161



APPENDIX A. MODELLING PHONETIC DURATIONS 162

Gaussian distribution. Duration distributions, particularly for short phones, have

tails which are lengthened at longer durations and are more compact at the shorter

durations. This is partially due to the limiting factor that the duration is always

positive. The gamma distribution was chosen as a candidate since it shares this at-

tribute. For the same reason. a Gaussian distribution is at a disadvantage, due to

it's symmetry about the mean value and the fact that it will assign some component

of the probability to negative durations. Therefore, a log Gaussian was also chosen

as a possible distribution.

The accuracy of the distributions was measured by computing the distribution

parameters from a training set, and then measuring the likelihoods of the training

tokens using each of the distributions just created. This method provides a direct

measure of the relative accuracy which the distributions are able to achieve.

The data set used for this computation was theMIT Train data set, and the results

are summarized in Table A.1. The log Gaussian distribution was signi�cantly superior

to the Gaussian distribution and slightly superior to the gamma distribution. An

additional advantage of the Gaussian and log Gaussian assumptions, is that they allow

the durational information to be modelled jointly with the acoustic parameters. This

permits relevant correlations between the duration errors and errors in the acoustic

attributes to be captured. This combination of advantages lead to the choice of the

log Gaussian distribution for modelling the duration of phonetic segments.



APPENDIX A. MODELLING PHONETIC DURATIONS 163

phn Gauss Log Gauss Gamma phn Gauss Log Gauss Gamma
a -0.7613 -0.7432 -0.7442 J -0.2939 -0.2775 -0.2810
@ -0.7903 -0.7766 -0.7776 k -1.0591 -1.0558 -1.0451
^ -0.7142 -0.6809 -0.6880 l -1.3360 -1.2954 -1.2972
O -0.7047 -0.6922 -0.6919 m -1.0624 -1.0622 -1.0512
a⁄  -0.2448 -0.2386 -0.2398 n -1.7437 -1.7026 -1.6979
{ -0.0811 -0.0729 -0.0751 4 -0.3399 -0.3339 -0.3323
{‡  -0.9675 -0.9452 -0.9444 FÊ -0.1243 -0.1252 -0.1241
} -0.8179 -0.7979 -0.7986 o -0.5683 -0.5524 -0.5550
a¤  -0.7050 -0.6951 -0.6950 O¤  -0.1117 -0.1114 -0.1111
b -0.3809 -0.3592 -0.3605 p -0.7373 -0.7315 -0.7242
C -0.2418 -0.2348 -0.2355 ? -0.8275 -0.8091 -0.8048
d -0.5542 -0.4985 -0.5102 r -1.3793 -1.3539 -1.3486
D -0.6525 -0.6223 -0.6231 s -2.0876 -2.0519 -2.0505
F -0.3445 -0.3378 -0.3373 S -0.4246 -0.4216 -0.4205
E -1.0579 -1.0219 -1.0283 silence -3.9936 -3.4707 -3.6920
lÍ -0.3117 -0.3035 -0.3044 t -1.1407 -1.1266 -1.1173
nÍ -0.1946 -0.1917 -0.1911 T -0.2464 -0.2461 -0.2435
∑ -0.2265 -0.1998 -0.2081 U -0.1715 -0.1664 -0.1670
5 -0.6182 -0.6060 -0.6067 unvcl -3.7539 -3.6221 -3.6236
e -0.7840 -0.7602 -0.7646 u -0.2006 -0.1936 -0.1943
f -0.7580 -0.7699 -0.7609 uÚ -0.4861 -0.4616 -0.4657
g -0.2641 -0.2552 -0.2544 v -0.5531 -0.5452 -0.5429
h -0.2878 -0.2772 -0.2781 vcl -2.1167 -2.0487 -2.0474
H -0.2010 -0.2008 -0.1992 w -0.7167 -0.6957 -0.6943
I -1.2979 -1.2486 -1.2567 y -0.2982 -0.2857 -0.2871
| -1.9564 -1.8879 -1.8943 z -1.1495 -1.1045 -1.1133
i -1.6144 -1.5515 -1.5620 Z -0.0541 -0.0517 -0.0522

Sum over all tokens in data set -44.51 -42.87 -43.11

Table A.1: Log likelihoods (x10�4) of the tokens in the data set MIT Train assuming
di�erent probability density functions. The phone models are the same as the 58
models de�ned in Table 4.1 except that the data for all the voiced closures (b›, d›,
g›) have been pooled into the model, vcl, and the unvoiced closures (p›, t›, k›) have
been pooled into the model unvcl.
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