
Observing \True" Concurrency

by

Lalita Jategaonkar

S.B., Electrical Engineering and Computer Science
Massachusetts Institute of Technology

(1989)
S.M., Electrical Engineering and Computer Science

Massachusetts Institute of Technology
(1989)

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1993

c Massachusetts Institute of Technology 1993

Signature of Author :

Department of Electrical Engineering and Computer Science
July 30, 1993

Certi�ed by :

Albert R. Meyer
Hitachi America Professor of Engineering

Thesis Supervisor

Accepted by :

Frederic R. Morgenthaler
Chairman, Departmental Committee on Graduate Students

2

3

Observing \True" Concurrency

by
Lalita Jategaonkar

Submitted to the Department of Electrical Engineering and Computer Science

on July 30, 1993, in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

Abstract

In concurrent process theory, processes are often modeled by state machines and Petri Nets.

Algebraic process theories based on state machines, exempli�ed by Milner's CCS and Hoare's

CSP, have been more fully developed than Net-based theories, but are inadequate for modeling

\true" concurrency concepts such as non-atomic actions, action re�nement, locality of actions,

and multithreadedness. We introduce an action re�nement operator and present some \fully

abstract" semantics for \true" concurrency. We show that these semantics are decidable for

�nite-state concurrent processes and characterize their computational complexity.

Thesis Supervisor: Albert R. Meyer

Title: Hitachi America Professor of Engineering

4

5

Acknowledgments

First and foremost, my deepest thanks to Albert R. Meyer, without whom this thesis would not

have been possible. His constant guidance, encouragement, and advice about both technical

and non-technical matters has been invaluable to me during my time at MIT. It is impossible

for me to distill in a few sentences the innumerable things I have learned from him over the

last several years, so I will say only that I feel very lucky to have had such a wonderful thesis

advisor.

My thanks to John Mitchell for introducing me to the area of programming language theory,

and for his continuing encouragement over the years. I would also like to thank my thesis

readers, Nancy Lynch and David McAllester, for their helpful comments and their ideas about

further directions for this research.

My thanks to Bell Labs for the generous fellowship that made this thesis possible. I would

also like to thank David MacQueen for his continued help and attention over the years.

Special thanks to Larry Stockmeyer for making available to us his unpublished notes on the

lower bound for deciding history-preserving bisimulation of �nite-state processes, and to Alex

Rabinovich for his very helpful presentation of the material to us.

In addition, I am grateful to a large number of people for many helpful technical discussions

about the material in this thesis, including Bard Bloom, Steve Brookes, U�e Engberg, Rob van

Glabbeek, Ursula Goltz, Roberto Gorrieri, Matthew Hennessy, Radhakrishnan Jagadeesan,

Astrid Kiehn, Alain Mayer, Mogens Nielsen, Vaughan Pratt, Wolfgang Reisig, Roberto Segala,

Boris Trakhtenbrot, Frits Vaandrager, Walter Vogler, David Wald.

I would like to thank David Jones for his very patient help with Latex.

My heartfelt thanks to my friends for making my stay at MIT a very enjoyable one. I would

like to thank my parents-in-law, K. and Sarada Jagadeesan, for their constant encouragement.

I would like to thank my husband, Radhakrishnan Jagadeesan, for bringing me so very much

happiness, and for his love, encouragement, and optimism.

My warmest thanks to my parents, Vasanti and Arun Jategaonkar, for their never-ending

patience, support, encouragement, and strength, without which I would never even have begun,

much less completed, this thesis.

Comments on Joint Research

Much of this thesis is based on joint work with Albert R. Meyer. The results in Chapter 3,

Chapter 5, and in the �rst section of Chapter 2 appeared previously in a joint paper with

Meyer [23]. The de�nitions and ideas presented in those chapters are joint work; however, the

proofs of the main theorems in those chapters are largely my own work.

The results in Chapter 6 appeared previously in another joint paper with Meyer [24]. The

de�nitions, ideas, and proofs given in Section 6.2 are joint work, as are the proofs of Theo-

rem 6.3.4, Theorem 6.4.1, and Theorem 6.4.3. The proof of Theorem 6.3.6, the other results in

Section 6.4, and the proofs of Theorems 6.5.1 and 6.5.3 are my own work.

The second section of Chapter 2 is largely a synthesis and adaptation of results in the

literature.

Chapter 4 is entirely my own work.

6

7

Dedication

To my parents, Arun and Vasanti Jategaonkar.

8

Contents

1 Introduction 11

1.1 True Concurrency Semantics and Action Re�nement on Petri Nets : : : : : : : : 13

1.2 The Semantic Domains and Recursion : 15

1.3 Deciding True Concurrency Equivalences : 15

1.4 Outline of the Thesis : 15

2 Well-Terminating Nets and Operations 17

2.1 Well-Terminating Nets : 17

2.2 Operations on Well-Terminating Nets : 19

3 Semantics of Well-Terminating Nets 35

3.1 Testing Equivalence : 35

3.2 Some Compositional Semantics for WT Nets and Operators : : : : : : : : : : : : 38

3.3 Fully Abstract Semantics : 67

4 The Semantic Domains 79

4.1 Standard De�nitions : 79

4.2 The Unsplit Semantics : 80

4.3 The Split Semantics : 96

4.4 The Interval Semantics : 100

5 Action Re�nement 105

5.1 An Action Re�nement Operator : 105

5.2 Semantics for Action Re�nement : 111

9

10 CONTENTS

5.3 The Semantic Domains Revisited : 117

6 Deciding True Concurrency Equivalences 119

6.1 Introduction : 119

6.2 Deciding Pomset-Trace Equivalence : 121

6.2.1 Nets without Hidden Transitions : 123

6.2.2 Nets with Hidden Transitions : 129

6.3 History-Preserving Bisimulation and Pomset-Bisimulation : : : : : : : : : : : : : 135

6.4 Deciding Other True Concurrency Equivalences : : : : : : : : : : : : : : : : : : : 139

6.5 Lower Bounds : 141

6.6 Conclusions : 148

7 Other Results, Open Problems, and Future Work 149

Chapter 1

Introduction

In concurrent process theory, processes are often represented by state machines and Petri Nets.

State machines, by de�nition, have no explicit representation of concurrency, and they iden-

tify concurrent actions with sequential, interleaved actions. Process theories based on state

machines, exempli�ed by Milner's CCS [30] and Hoare's CSP [21], typically have associated

combinators for composing large processes from smaller components, compositional techniques

for reasoning about processes through reasoning about their components, sound and complete

techniques for reasoning about process equivalence, and algorithms for deciding equivalence of

�nite-state processes. These elegant properties have led to automatic veri�cation techniques

and tools such as model checkers.

However, as is well-known, the state machine approach is inherently inadequate for describ-

ing action re�nement, the operation of re�ning atomic actions in a concurrent process, which

suggests aspects of top-down \modular" development [1, 2, 3, 10, 16, 20, 32, 39, 40, 41, 47]

and \changes of granularity" [28, 31]. This limitation is a direct result of the identi�cation of

concurrent actions with sequential, interleaved actions. For example, the state-machine repre-

sentation of the concurrent process a jj b, which can concurrently perform an a and b action,

is identical to the state-machine representation of the purely sequential process ab+ ba, which

can sequentially perform an a and b action in either order. This state-machine is pictured in

Figure 1-1.

start
����

��

a
�������

b

33333
����

��

b

33333
��

��

��

a

���������

��

Figure 1-1: State-Machine Representation of a jj b and ab+ ba

11

12 CHAPTER 1. INTRODUCTION

start
��

start
����

��

a+
�������

b

33333
��

��

��

a+
�������

b

33333
����

��

a�

��

��

��

a+

��

��

��

a�
�������

b

33333
��

��

��

a+

33333
����

��

b

33333
��

��

��

a�

�������

��

��

b

FFFFFFF
""

��

��

a�

��

��

��

a�
||xx

xx
xx

x

��

��

��

��

split(a;a+;a�)(ab+ ba) split(a;a+;a�)(a jj b)

Figure 1-2: After Action Re�nement

Now, if the a action in both processes is \re�ned" or \split" into two actions, a+ followed

by a�, the resulting processes, split(a;a+;a�)(a jj b) def
= a+a� jj b and split(a;a+;a�)(ab + ba)

def
=

a+a�b+ ba+a� have completely di�erent state-machine representations, pictured in Figure 1-2.

Thus, the state machine model is inherently inadequate for describing even the simplest forms

of action re�nement on concurrent processes. In particular, the state machines of Figure 1-2 are

distinguished by all the state-machine based process equivalences in the literature, including

bisimulation equivalence (CCS) [30], partial-trace equivalence, failures equivalence (CSP) [8, 9],

and Hennessy's Testing-equivalence [19], an elegant experimental justi�cation for partial-traces

and failures.

We remark that the operation of re�ning transitions in a state-machine does model action

re�nement of purely sequential processes. Moreover, trace equivalence, failures equivalence,

Testing-equivalence, and intuitively simple variations of bisimulation, notably delay bisimula-

tion and branching bisimulation [12, 13, 43] are sound techniques for reasoning about action

re�nement on purely sequential processes. However, since all of these equivalences identify

concurrent actions with interleaved actions, none of them are sound for reasoning about action

re�nement on concurrent processes.

Petri Net theory, on the other hand does distinguish \true" concurrency from interleaving

by axiomatizing a \causal" partial order on process actions, and is adequate for describing

action re�nement of concurrent processes. However, Petri Net theory typically does not o�er

an explanation of how an external observer can detect causality. Hence, in contrast to the state-

machine theories, Petri Net theory does not provide complete techniques for reasoning about

process equivalence, and compositional reasoning techniques and associated decision procedures

are also much less developed.

An important problem is to merge these viewpoints by developing an operational net model

for process theories such as CCS and CSP that has a sound and complete justi�cation for dis-

tinguishing processes. This requires a precise characterization of which nets are distinguishable

1.1. TRUE CONCURRENCY SEMANTICS ANDACTION REFINEMENTON PETRI NETS13

by any external observer | who sees only sequential behavior | performing action re�nement

and the CCS/CSP-style operations. To this end, it is useful to develop a \fully abstract"

denotational semantics that precisely captures these distinctions. In contrast to purely oper-

ational characterizations, which are implicitly quanti�ed over an in�nite number of contexts,

fully abstract semantics have the advantage that they often lead to a semantic foundation for

recursively-de�ned processes, logical foundations for proving equivalence of (possibly in�nite-

state) processes, and decision procedures for equivalence of �nite-state processes.

De�nition 1.0.1 A semantics, [[�]], assigning to any process, P , a meaning, [[P]], is composi-

tional for an operator on processes if semantic equality is a congruence for the operator, i.e., the

operator preserves semantic equality. We say that a semantics is adequate for an equivalence

on processes if semantic equality implies process equivalence. Finally, we say that a semantics

is fully abstract for a process equivalence with respect to a set of operators if semantic equality

is the coarsest congruence for those operators that is adequate for the equivalence.

1.1 True Concurrency Semantics and Action Re�nement on

Petri Nets

A starting point for such an investigation is to apply state-machine-based equivalences to Petri

Nets. It is well-known [10] that these equivalences, including partial traces, failures, bisim-

ulation, and Testing-equivalence, are not compositional for even very simple forms of action

re�nement on Petri Nets, including those whose only e�ect is to \split" actions into two parts.

In a seminal paper [47], Vogler has developed a semantics for labeled, 1-safe Petri Nets

that is compositional for certain simple \split" and \choice" re�nements, and indeed is fully

abstract for failures semantics [9] and Hennessy's must-experiments [19]. Furthermore, his

semantics supports a full process theory involving CSP-style parallel process composition-with-

communication, hiding, deadlock, and divergences (cf. [9, 19, 21, 30]). Vogler's semantics is

based on \pomset-traces," which are a generalization of ordinary traces, i.e., sequences of

visible actions, to multi-sets of actions partially ordered to reect causality and concurrency.

In particular, his semantics consists of \interval pomset-failures": namely, pomset-traces with

a certain \interval" order, paired with \failure sets" [8, 9, 21].

Vogler's elegant insight is that pomset-failures are not compositional for split re�nements,

since these re�nements reveal \failure sets" of nets when transitions have \half-�red": that is,

when all tokens have been removed from the preset of the transition but no tokens have been

added to the postset. Vogler's technical solution is to specify some maximal events of pomset-

traces to be \half-�red" and to keep track of the corresponding failure sets. The fully abstract

semantics for non-divergent nets is obtained by performing certain closure operations and then

restricting to interval orders. This is extended to a fully abstract semantics for divergent nets

by additionally keeping track of \divergent" pomset-traces (with half-�red events), performing

certain closure operations, and then again restricting to interval orders.

Although Vogler's insight about half-�red transitions is quite elegant, the \half-�red events"

in his pomset-failures make the de�nition of his semantics and his proofs of compositionality

quite di�cult to understand. Furthermore, as Vogler points out, his \general pomset" semantics

for divergent nets, i.e., the intermediate semantics obtained before restricting to interval orders,

is not compositional for split and choice re�nements, and he states and leaves open [47, 49] the

14 CHAPTER 1. INTRODUCTION

problem of identifying such a semantics that is compositional. As a consequence, his closure

operations become rather technically complicated.

Vogler generalizes his simple split and choice re�nements to allow a fairly large class of

\re�nement nets" required to satisfy some structural and behavioral conditions, which are

rather technical and quite restrictive. His semantics is compositional with respect to each of

the operators corresponding to his re�nement nets. Namely, if two nets are equivalent under his

semantics, then applying the same action re�nement � to them yields semantically equivalent

nets.

However, it is not the case that his semantics is compositional for nets as action re�nement

operators. For example, the nets a and �:a, where � is the hidden action, are semantically

equivalent as operands or targets of action re�nement, but they behave di�erently when used

as operators re�ning an action b, viz.,

[[a]] =Vogler [[�:a]] ;

but [[(b+ c)[b:=a]]] 6=Vogler [[(b+ c)[b:=�:a]]]:

In this thesis, we simplify and extend Vogler's results in a number of ways. We �rst present

a general class of Well Terminating (WT) Nets, which are possibly in�nite, safe nets with

designated transitions for signaling successful termination. We then present WT Net opera-

tors corresponding to the familiar CCS/CSP operations of pre�xing (a:), restriction (na), hid-
ing (�a), renaming ([f]), CSP-style sequencing (;), non-communicating parallel composition

(jj), CSP-style parallel-composition-with-synchronization (kL), CCS-style parallel-composition-
with-hiding (j), internal choice, and CCS-style choice (+M). All of our net operations are closely

related to the corresponding CCS/CSP operators on labeled transition systems (lts's).

The �rst main result of this thesis is that rather than keeping track of the technically

cumbersome half-�red events, it is su�cient to �rst simply \duplicate-and-split" all the visible

transitions in a net and then take the ordinary pomset-failures of the \duplicate-split" net. For

divergent nets, one must also keep track of \pomset-divergences": namely, pomsets together

with an explicit representation of the possibly concurrent divergences that are enabled. Per-

forming some natural closure operations then yields a \general pomset" semantics, [[�]]MUST
split- , that

is compositional for split re�nements, choice re�nements, and all of the CCS/CSP operators

on WT Nets, and whose restriction, [[�]]MUST
intvl- , to interval pomsets is fully abstract for must-

equivalence. We describe a similar fully abstract semantics, [[�]]MAY
intvl , for may-equivalence [19]

based on \pomset-traces"; the may- and must-semantics together provide a fully abstract

semantics for Testing Equivalence [19].

Our semantics greatly simplify Vogler's representation by avoiding \half-�red" events; fur-

thermore, keeping track of concurrent divergences simpli�es the closure operations and yields

compositionality of the [[�]]MUST
split- semantics. This generalizes Vogler's results and solves the open

problem mentioned earlier.

This thesis then presents a class of Re�nable Well-Terminating (RWT) Nets, which form a

large subclass of WT Nets that is closed under almost all of the WT operations, together with

a de�nition of action re�nement that allows any RWT net to be used as a target or operator

of action re�nement. The second main result of this thesis is that in contrast to Vogler's

semantics, all of our semantics are compositional for RWT Nets as targets and operators of

action re�nement, with the [[�]]MAY
intvl and [[�]]MUST

intvl- semantics remaining fully abstract for may- and

1.2. THE SEMANTIC DOMAINS AND RECURSION 15

must-equivalence.

1.2 The Semantic Domains and Recursion

In order to ensure that our semantic theories support recursively-de�ned concurrent processes,

we present an abstract characterization of all our semantics. Our semantic domains form

algebraic complete partial orders in which all compact elements are de�nable as the meanings

of WT Nets, and all of our operators are continuous functions.

1.3 Deciding True Concurrency Equivalences

The decision problem for �nite-state concurrent processes under a variety of interleaving se-

mantics has been widely studied in the literature, and the computation complexity has been

tightly characterized [4, 26, 29, 34, 36]. In contrast, there have been essentially no results on the

complexity of the decision problems for true concurrency equivalences on �nite-state concurrent

processes, and little is even known about the decidability of these equivalences. For example,

decidability of such a basic true concurrency property as pomset-trace equivalence appears not

to have been known.

One of the main results of this thesis is that pomset-trace equivalence is decidable for �nite

1-safe Petri Nets, and is, in fact, complete for expspace. Furthermore, we show that the

decision problem for history-preserving bisimulation [5, 35, 39, 44, 46] on �nite 1-safe Petri

nets is complete for dexptime. History-preserving bisimulation had earlier been shown by

Vogler [46] to be decidable; however, he left open its complexity.

In contrast to interleaving equivalences, the decidability of pomset-trace equivalence for

�nite nets does not obviously reduce to equivalence of �nite automata. The di�culty is that

the causal ordering in a pomset-trace depends a priori on the entire pomset-trace, which may be

unboundedly large. Inspired by Vogler's decision procedure for history-preserving bisimulation,

we show that there is in fact a bound on the required information. This idea leads to our

decision procedure for pomset-trace equivalence, and a simple analysis of this procedure yields

an expspace upper bound. The same approach also gives a dexptime decision procedure

for history-preserving bisimulation. Our lower bounds for these true concurrency equivalences

follow easily by reductions from the corresponding interleaving equivalences [29, 34, 36].

Our methods also yield tight complexity bounds for about a dozen other true concurrency

equivalences, several of which resolve open problems in the literature.

1.4 Outline of the Thesis

Chapter 2 presents our class of Well-Terminating Nets together with split re�nements, choice

re�nements, and our CCS/CSP operators. A brief introduction to Hennessy's experiments,

Testing-equivalence, partial trace semantics and failures semantics is given in Chapter 3. We

then develop our true concurrency semantics for Well-Terminating Nets, prove that they are

compositional for all our Net operators and adequate for may- and must-equivalence, and show

that their \interval" restrictions are fully abstract. The corresponding semantic domains are

developed in Chapter 4.

16 CHAPTER 1. INTRODUCTION

Chapter 5 presents our action re�nement operator, and shows that our semantics are com-

positional and our semantic domains are closed under this operator. Our decidability results for

true concurrency equivalences appear in Chapter 6. This chapter is self-contained, and hence

repeats some earlier de�nitions. Chapter 7 concludes with a discussion of some further results,

open problems, and future work.

Chapter 2

Well-Terminating Nets and

Operations

2.1 Well-Terminating Nets

Throughout this thesis, we use the standard de�nitions (cf. [46]) of Petri Nets and their oper-

ational behavior. In order to keep this thesis relatively self-contained, we repeat them here:

De�nition 2.1.1 A labeled Petri Net, N , is a triple hSN ; TN ; StartNi, where SN is the set

of places, TN is the set of transitions, and StartN is the set of initially marked places (which

contain \tokens"). Every transition, t, in TN has a label, lN(t), a preset, preN (t), and a post-set,

postN(t). We refer to the label � as the \hidden action", and refer to all labels other than �

as \visible actions". A transition is visible (hidden) i� its label is visible (hidden). For every

place s 2 SN , we write preN(s) and postN(s) to refer to its preset and post-set. We assume for

expository simplicity that all transitions have non-empty presets, and that the initial marking

is non-empty.

Transitions are represented graphically as horizontal bars, places are represented as circles,

and tokens are represented as dots in these circles. The preset of a transition is the set of places

from which there is an arrow to the transition; the post-set of a transition is the set of places

to which there is an arrow from the transition. Dually, the preset (post-set) of a place is the

set of transitions from (to) which there is an arrow to (from) the place.

A marking of a net is an assignment of a non-negative number of \tokens" to each place in

the net. A transition, t, is enabled under a marking i� every place in the preset of t contains at

least one token. If a transition t is enabled in a marking, then t can �re by removing a token

from each place in its preset and placing a token into each place in its post-set.

A �ring sequence of a net, N , is a possibly empty sequence, t1 : : : tk, of transitions of N

such that t1 is enabled under the initial marking of N , and each ti is successively enabled in

the marking resulting from �ring t1 : : : ti�1. A run is a �nite �ring sequence. The reachable

markings of a net are exactly those markings that result from �ring some run. A net is 1-safe

i� every place contains at most one token under any reachable marking. Rather than being

represented as a function from places to non-negative integers, a marking of a 1-safe net can be

written as the set of places that contain a token.

17

18 CHAPTER 2. WELL-TERMINATING NETS AND OPERATIONS

A pair of transitions, t and t0, can �re concurrently in a 1-safe net i� the union of the preset

and post-set of t is disjoint from that of t0 and there is a reachable marking in which both t

and t0 are enabled.

Our class of \Well-Terminating" Nets is related to the class of CSP processes that signal

successful termination by performing a distinguished action,
p
. In a similar manner, our well-

terminating nets signal successful termination by �ring any transition labeled with
p
. In order

to ensure that the net has actually terminated, we require that all places in the net be unmarked

after any
p
-labeled transition �res. We wish to restrict our attention to labeled, 1-safe nets

with \computable behavior," and we thus impose some syntactic and behavioral restrictions

that guarantee �nite-markings and �nite-branching of the underlying transition system.

De�nition 2.1.2 The class of Well-Terminating (WT) Nets consists of pairs hN;Acti such
that Act is a �nite set of visible labels containing

p
and N is a 1-safe, possibly in�nite Petri

net, all of whose transitions are labeled with actions in Act [f�g. Furthermore, N must satisfy

the following properties:

� The initial marking is �nite.

� The preset and post-set of every transition is �nite.

� Only a �nite number of transitions are enabled under any reachable marking.

� All places are unmarked immediately after any
p
-labeled transition �res. This condition

must be satis�ed in every reachable marking.

We note that these conditions together imply that all reachable markings are �nite and that

nets have only �nite concurrency. The condition on the
p
-transitions ensures that no transition

(not even a
p
-transition) can be �red concurrently with, or following, a

p
-transition.

Our
p
-labeled transitions serve to distinguish deadlock from successful termination. We say

that a net successfully terminates when a
p
-labeled transition �res, while a net is deadlocked

exactly when no transition is enabled. The
p
-action plays a distinguished role in our theory,

and our net operators are de�ned in a way that respects this distinguished role.

WT Nets form natural isomorphism classes:

De�nition 2.1.3 Let hN1;Acti and hN2;Acti be WT Nets over a common alphabet, Act.

Then hN1;Acti and hN2;Acti are isomorphic i� there is a bijection f from SN1
to SN2

and a

bijection g from TN1
to TN2

such that StartN2
= f(StartN1

), and lN2
(g(t)) = lN1

(t), preN2
(g(t)) =

f(preN1
(t)), and postN2

(g(t)) = f(postN1
(t)) for every t 2 TN1

.

In order to view WT Nets as an operational model for CCS and CSP, we will �nd it useful

to represent the behavior of nets as labeled transition systems. The following de�nition is

standard and is essentially taken verbatim from [19].

De�nition 2.1.4 A labeled transition system (lts) is a triple hS;Act;�!; siniti, where
� S is a set of states containing sinit.

� Act is a set of labels.

2.2. OPERATIONS ON WELL-TERMINATING NETS 19

� �! is a relation in S �Act �S.
� sinit is designated as the \initial state" in S.

We write s
a�! s0 in place of (s; a; s0) 2�!. The relations

a�! are extended to relations
v�!, for every v 2 Act�, in the obvious way:

1. s
"�! s0 i� s0 is s

2. s
av�! s0 i� s

a�! s00 for some s00 such that s00
v�! s0.

This means s
v�! s0 if s can evolve to s0 by performing the sequence of actions v. We also

write s
v�! to mean that there exists a s0 such that s

v�! s0. We say that an action, a, is

enabled at a state, s, i� s
a�!.

If Act contains the label � , these relations are generalized as follows, for every v 2 Act�:

1. s
a

=) s0 i� s
�i�! s1

a�! s2
�j�! s0 for some states s1; s2 and some i; j � 0

2. s
"

=) s0 i� s
�k�! s0 for some k � 0

3. s
av
=) s0 i� s

a
=) s00 for some s00 such that s00

v
=) s0.

This means s
v

=) s0 if s can evolve to s0 by performing the sequence of actions v, possibly

interspersed with � -actions. We also write s
v

=) to mean that there exists a s0 such that

s
v

=) s0.

The following de�nition is essentially standard (cf. [33]):

De�nition 2.1.5 The labeled transition system of a WT Net hN;Acti, written lts(hN;Acti),
is the labeled transition system over Act [f�g whose states are the reachable markings of N
and whose labeled transitions correspond to �rings of single transitions of N . In particular,

state M goes to state M 0 via an a-labeled transition in lts(hN;Acti) i� marking M 0 of N can

be reached from marking M by �ring exactly some a-labeled transition of N . The initial state

of lts(hN;Acti) is de�ned to be the initial marking of N .

We note that De�nition 2.1.2 ensures that the labeled transition system of every WT Net

is �nitely-branching.

2.2 Operations on Well-Terminating Nets

This section de�nes WT Net operators corresponding to the familiar CCS/CSP operations

of pre�xing (�:), restriction (na), hiding (�a), renaming ([f]), CSP-style sequencing (;), non-

communicating parallel composition (jj), CSP-style parallel-composition-with-synchronization
(kL), CCS-style parallel-composition-with-hiding (j), internal choice (�), and CCS-style choice

(+M). We also de�ne split(a;a+;a�) and choice(a;aL;aR) re�nement operators on WT Nets.

We begin by de�ning operators that grow or shrink the alphabet of nets:

De�nition 2.2.1 Let hN;Acti be a WT Net, and let Act 0 be a �nite set of visible labels. Then

hN;Acti grow Act0
def
= hN;Act [Act0i.

20 CHAPTER 2. WELL-TERMINATING NETS AND OPERATIONS

�
�

� �
b c d b c d

��

��
��

ttiiii
iiii

ii NNNNNN&&��

��
yytt
tt

JJJJ%%

��

��
��

��

��

zzuu
uu

IIII$$

��

��

��

 !

"oo

 !

"oo

hN;Acti �:hN;Acti

Figure 2-1: An Example of Pre�xing

De�nition 2.2.2 Let hN;Acti be a WT Net, and let Act 0 � Act be a �nite set of visible labels

containing
p
. Then hN;Acti shrink Act0 = hP;Act0i, where P is identical to N except that all

(visible) transitions with labels from Act �Act 0 are removed. In particular,

TP = ft 2 TN : lN(t) 2 Act 0 [f�gg.

The hiding and renaming operators simply relabel transitions:

De�nition 2.2.3 Let hN;Acti be a WT Net, and let a be a label in Act �fpg. Then

hN;Acti� a = hP;Acti, where P is identical to N except that all a-labeled transitions are

relabeled with � .

De�nition 2.2.4 Let hN;Acti be a WT Net, and let f be function from Act to Act such that

for all � 2 Act, f(�) =
p

i� � =
p
. Then hN;Acti[f] = hP;Acti, where P is identical to N

except that lP = f � lN .

The restriction operator simply removes transitions:

De�nition 2.2.5 Let hN;Acti be a WT Net, and let a be a label in Act �fpg. Then

hN;Actina = hP;Acti, where P is identical to N except that all a-labeled transitions are

removed. In particular, TP = ft 2 TN : lN(t) 6= ag.

The pre�xing operator (�:), illustrated in Figure 2-1, simply attaches a new place and a

new �-labeled transition to the \start" of a net:

De�nition 2.2.6 Let hN;Acti be a WT Net, and let � be a label in (Act [f�g)� fpg. Then
hP;Acti = �:hN;Acti is de�ned as:

SP = SN] fs�g

TP = TN] ft�g

preP (t) =

(
fs�g if t = t�
preN(t) otherwise

2.2. OPERATIONS ON WELL-TERMINATING NETS 21

� � �
a1 a2 b1 b2

p p p

��

��
yytt
tt

JJJJ%%

��

��
��

��

��
��

�� �� �� ����

��
��

��

��
��

��

��OOOOO''

��

��
wwooo

oo

hN1;Acti hN2;Acti

�
a1 a2

� �

b1 b2

p

��

��
xxppp

pp
NNNNN&&

�� ����

��
��

��

��
��

��
WWWWWWWWWWWW++ ��

ssggggg
ggggg

gg
��

��
��

��

��
��

�� ����

��OOOOO''

��

��
wwooo

oo

hN1;Acti; hN2;Acti

Figure 2-2: An Example of Sequencing

postP (t) =

(
StartN if t = t�
postN(t) otherwise

lP (t) =

(
� if t = t�
lN(t) otherwise

StartP = fs�g

Our sequencing operator hN1;Acti; hN2;Acti makes critical use of the
p
-transitions of N1

by relabeling them with � and using them as a hidden (� -labeled) signal to transfer control to

N2. We illustrate the de�nition of \sequencing" through the following simple example. Suppose

that we are given the WT nets hN1;Acti and hN2;Acti of Figure 2-2, and we want to de�ne

hN1;Acti; hN2;Acti. We want the �ring of either of the
p
-transitions of N1 to be a hidden

signal that enables both b1 and b2 to �re concurrently. Therefore, we relabel the
p
-transitions

of N1 to � , and then have both of these � -transitions feed into both of the start places of N2.

The resulting net hN1;Acti; hN2;Acti is given in Figure 2-2. The formal de�nition appears

below.

22 CHAPTER 2. WELL-TERMINATING NETS AND OPERATIONS

De�nition 2.2.7 Let hN1;Acti; hN2;Acti be WT Nets with disjoint sets of places and tran-

sitions and with a common alphabet, Act . Then hP;Acti = hN1;Acti; hN2;Acti is de�ned

as:

SP = SN1
[SN2

TP = TN1
[TN2

preP (t) =

(
preN1

(t) if t 2 TN1

preN2
(t) if t 2 TN2

postP (t) =

8><
>:

postN1
(t) if t 2 TN1

and lN1
(t) 6= p

StartN2
if t 2 TN1

and lN1
(t) =

p
postN2

(t) if t 2 TN2

lP (t) =

8><
>:

lN1
(t) if t 2 TN1

and lN1
(t) 6= p

� if t 2 TN1
and lN1

(t) =
p

lN2
(t) if t 2 TN2

StartP = StartN1

Our non-communicating parallel composition operator jj, places two nets in parallel. In

order to preserve the well-terminating property associated with
p
-transitions, the nets are

required synchronize on the
p
-action. Our de�nition is illustrated in Figure 2-3.

De�nition 2.2.8 Let hN1;Acti; hN2;Acti be WT Nets with disjoint sets of places and transi-

tions and with a common alphabet, Act .

Then hP;Acti = hN1;Acti jj hN2;Acti is de�ned as:

SP = SN1
[SN2

TP = f(t1; t2) 2 TN1
� TN2

: lN1
(t1) = lN2

(t2) =
pg]

f(t; �) 2 TN1
� f�g : lN1

(t) 6= pg] f(�; t) 2 f�g � TN2
: lN2

(t) 6= pg

preP ((t1; t2)) = preN1
(t1) [preN2

(t2)

preP ((t; �)) = preN1
(t)

preP ((�; t)) = preN2
(t)

postP ((t1; t2)) = postN1
(t1)[postN2

(t2)

postP ((t; �)) = postN1
(t)

postP ((�; t)) = postN2
(t)

2.2. OPERATIONS ON WELL-TERMINATING NETS 23

� � �
a a a

b c d

p p p

��

��
��

��

��
��

��

��
��

�� �� ����

��
��

��

��
��

��

��
��

�� �� ����

��
��

��

��
��

��

��
��

hN1;Acti hN2;Acti

� � �
a a a

b d c

p p

��

��
��

��

��
��

��

��
��

�� �� ����

��
��

��

��
��

��

��
��

�� �� ����

��OOOOO''

��

��
wwooo

oo OOOOO''

��

��
wwooo

oo

hN1;Acti jj hN2;Acti

Figure 2-3: An Example of Non-communicating Parallel Composition

24 CHAPTER 2. WELL-TERMINATING NETS AND OPERATIONS

� � �
a a a

b c d

p p p

��

��
��

��

��
��

��

��
��

�� �� ����

��
��

��

��
��

��

��
��

�� �� ����

��
��

��

��
��

��

��
��

hN1;Acti hN2;Acti

� � �
a a

b d c

p p

��

��NNNNN&&

��

��
xxppp

pp NNNNN&&

��

��
xxppp

pp

wwooo
oo OOOOO'' wwooo

oo OOOOO''��

��
��

��

��
��

��

��
��

�� �� ����

��OOOOO''

��

��
wwooo

oo OOOOO''

��

��
wwooo

oo

hN1;ActikfaghN2;Acti

Figure 2-4: An Example of CSP-style Parallel Composition

lP ((t1; t2)) =
p

lP ((t; �)) = lN1
(t)

lP ((�; t)) = lN2
(t)

StartP = StartN1
[StartN2

We also have a family of CSP-style parallel composition operators kL, where L is a set of

visible labels. This operator places two nets in parallel and requires them to synchronize on all

actions in the set L[fpg. In particular, the non-communicating parallel composition operator

is de�nable as k;.
Our de�nition is essentially the same as [47], and is illustrated in Figure 2-4.

De�nition 2.2.9 Let hN1;Acti; hN2;Acti be WT Nets with disjoint sets of places and transi-

tions and with a common alphabet, Act . Let L � Act , and let Lp = L [fpg.
Then hP;Acti = hN1;ActikLhN2;Acti is de�ned as:

2.2. OPERATIONS ON WELL-TERMINATING NETS 25

SP = SN1
[SN2

TP = f(t1; t2) 2 TN1
� TN2

: lN1
(t1) = lN2

(t2) and lN1
(t1) 2 Lpg]

f(t; �) 2 TN1
� f�g : lN1

(t) 62 Lpg] f(�; t) 2 f�g � TN2
: lN2

(t) 62 Lpg

preP ((t1; t2)) = preN1
(t1) [preN2

(t2)

preP ((t; �)) = preN1
(t)

preP ((�; t)) = preN2
(t)

postP ((t1; t2)) = postN1
(t1) [postN2

(t2)

postP ((t; �)) = postN1
(t)

postP ((�; t)) = postN2
(t)

lP ((t1; t2)) = lN1
(t1)

lP ((t; �)) = lN1
(t)

lP ((�; t)) = lN2
(t)

StartP = StartN1
[StartN2

Similar to [15], we also have a CCS-style parallel composition operator j, where two nets

are placed in parallel and are allowed to perform hidden synchronizations on all complemen-

tary actions a; a; however, they must (visibly) synchronize on the
p

action. Our de�nition is

illustrated in Figure 2-5.

We say that an alphabet Act is closed under complementation i� for all labels, a 2 Act

implies that a 2 Act , where a
def
= a.

De�nition 2.2.10 Let hN1;Acti; hN2;Acti be WT Nets with disjoint sets of places and transi-

tions and with a common alphabet, Act , such that Act �fpg is closed under complementation.

Then hP;Acti = hN1;Acti j hN2;Acti is de�ned as:

SP = SN1
[SN2

TP = ft 2 TN1
: lN1

(t) 6= pg] ft 2 TN2
: lN2

(t) 6= pg]
f(t1; t2) 2 TN1

� TN2
: lN1

(t1) = lN(t2) or lN1
(t1) = lN2

(t2) =
pg

preP ((t1; t2)) = preN1
(t1)[preN2

(t2)

preP ((t; �)) = preN1
(t)

26 CHAPTER 2. WELL-TERMINATING NETS AND OPERATIONS

� � �
a a a

b c d

p p p

��

��
��

��

��
��

��

��
��

�� �� ����

��
��

��

��
��

��

��
��

�� �� ����

��
��

��

��
��

��

��
��

hN1;Acti hN2;Acti

� � �
a � a � a

b d c

p p

��

��
��

NNNNN&&

��

��
��xxppp

pp NNNNN&&

��

��
��xxppp

pp

�� wwooo
oo OOOOO'' �� wwooo

oo OOOOO'' ����

��
��

��

��
��

��

��
��

�� �� ����

��OOOOO''

��

��
wwooo

oo OOOOO''

��

��
wwooo

oo

hN1;Acti j hN2;Acti

Figure 2-5: An Example of CCS-style Parallel Composition

2.2. OPERATIONS ON WELL-TERMINATING NETS 27

� � �
a1 a2 b1 b2

p p p

��

��
yytt
tt

JJJJ%%

��

��
��

��

��
��

�� �� �� ����

��
��

��

��
��

��

��OOOOO''

��

��
wwooo

oo

hN1;Acti hN2;Acti

�
� �

a1 a2 b1 b2

p p p

��

��
tthhhh

hhhh
hh WWWWWWWWWWWWW++

�� wwooo
oo

OOOOO''��

��
wwooo

oo OOOOO''

��

��
��

��

��
��

�� �� �� ����

��
��

��

��
��

��

��OOOOO''

��

��
wwooo

oo

hN1;Acti � hN2;Acti

Figure 2-6: An Example of Internal Choice

preP ((�; t)) = preN2
(t)

postP ((t1; t2)) = postN1
(t1) [postN2

(t2)

postP ((t; �)) = postN1
(t)

postP ((�; t)) = postN2
(t)

lP ((t1; t2)) =

(p
if lN1

(t1) = lN2
(t2) =

p
� otherwise

lP ((t; �)) = lN1
(t)

lP ((�; t)) = lN2
(t)

StartP = StartN1
[StartN2

We now de�ne the internal choice operator, illustrated in Figure 2-6, which corresponds to

pre�xing each net with � , and then \merging" the resulting (necessarily exactly two) initially

marked places:

De�nition 2.2.11 Let hN1;Acti; hN2;Acti be WT Nets with disjoint sets of places and tran-

sitions and with a common alphabet, Act . Then hP;Acti = hN1;Acti � hN2;Acti is de�ned

28 CHAPTER 2. WELL-TERMINATING NETS AND OPERATIONS

as:

SP = SN1
] SN2

] fsg

TP = TN1
] TN2

] ft1; t2g; where t1; t2 are distinct

preP (t) =

8><
>:
fsg if t = t1 or t = t2
preN1

(t) if t 2 TN1

preN2
(t) if t 2 TN2

postP (t) =

8>>><
>>>:

StartN1
if t = t1

StartN2
if t = t2

postN1
(t) if t 2 TN1

postN2
(t) if t 2 TN2

lP (t) =

8><
>:

� if t = t1 or t = t2
lN1

(t) if t 2 TN1

lN2
(t) if t 2 TN2

StartP = fsg

We also wish to de�ne the Milner's CCS choice operator, +M , which allows non-deterministic

choice between two nets. We illustrate the de�nition of +M through the following simple

example. Suppose that we are given the WT nets hN1;Acti and hN2;Acti of Figure 2-7, and
we want to de�ne hN1;Acti+M hN2;Acti. Clearly, we want to introduce conicts between the

ai and the bj but preserve the concurrency within the bj, and so we do a simple cross product

construction on the start places of both nets. We note that this causes all the
p
-labeled

transitions to be in conict, as desired. The resulting net is given in Figure 2-7.

As discussed in [42], one technical complication arises due to initially marked places that

have incoming transitions, and in general, we apply a start-unwinding operator on nets before

doing the above construction. Our start-unwinding operator, illustrated in Figure 2-8, is es-

sentially the same as that of [15, 42] and produces a net that is \essentially the same"1 as the

original net, except that all initially marked places have empty presets. The \start-unwound"

net is identical to the original net whenever all initially marked places of the original net have

empty presets.

De�nition 2.2.12 Let hN;Acti be a WT net, and let Start-cyclicN be the initially marked

places ofN that have non-empty presets, i.e., Start-cyclicN = fs 2 StartN : preN(s) 6= ;g. Then
hP;Acti = start-unwind(hN;Acti) is de�ned as:

SP = SN] f(�; s) : s 2 Start-cyclicNg

1The resulting net is strongly history-preserving bisimilar [39] to the original net.

2.2. OPERATIONS ON WELL-TERMINATING NETS 29

� � �
a1 a2 b1 b2

p p p

��

��
yytt
tt

JJJJ%%

��

��
��

��

��
��

�� �� �� ����

��
��

��

��
��

��

��OOOOO''

��

��
wwooo

oo

hN1;Acti hN2;Acti

� �
a1 b1 b2 a2

p p p

��

��
xxpp
ppp

��

YYYYYYYYYYYYYYYYYY,,

��

��
��

NNNNN&&rreeeeeee
eeeeeee

eeee

�� �� �� ����

��
��

��

��OOOOO''

��

��
wwooo

oo
��

��
��

hN1;Acti+M hN2;Acti

Figure 2-7: An Example of CCS-style Choice

�
a b

�
a b a b

��

��
yytt
tt

JJJJ%%
JJJJ%% yytt

tt��

��
yytt
tt

JJJJ%%

��

��

yytt
tt

JJJJ%%

!

//

 !

"oo

!

//

 !

"oo

hN;Acti start-unwind(hN;Acti)

Figure 2-8: An Example of Start-Unwinding

30 CHAPTER 2. WELL-TERMINATING NETS AND OPERATIONS

TP = TN] fhU; ti : t 2 TN ; U 6= ;; and U � Start-cyclicN \ preN (t)g

preP (t) = preN (t)

preP (hU; ti) = (preN(t)� U)[f(�; s) : s 2 Ug

postP (t) = postN(t)

postP (hU; ti) = postN(t)

lP (t) = lN(t)

lP (hU; ti) = lN(t)

StartP = (StartN � Start-cyclicN) [f(�; s) : s 2 Start-cyclicNg

Using this start-unwinding operator, we now de�ne the +M operator on nets.

De�nition 2.2.13 Let hN1;Acti; hN2;Acti be WT Nets with disjoint sets of places and transi-

tions and with a common alphabet, Act . Let hN 0
1;Acti and hN 0

2;Acti be start-unwind(hN1;Acti)
and start-unwind(hN2;Acti), respectively. Then hP;Acti = hN1;Acti +M hN2;Acti is de�ned
as:

SP = (SN 0

1
� StartN 0

1
)] (SN 0

2
� StartN 0

2
)] (StartN 0

1
� StartN 0

2
)

TP = TN 0

1
[TN 0

2

preP (t) =

(
(preN 0

1
(t)� StartN 0

1
) [f(s1; s2) 2 SP : s1 2 preN 0

1
(t)g if t 2 TN 0

1

(preN 0

2
(t)� StartN 0

2
) [f(s1; s2) 2 SP : s2 2 preN 0

2
(t)g if t 2 TN 0

2

postP (t) =

(
postN 0

1
(t) if t 2 TN 0

1

postN 0

2
(t) if t 2 TN 0

2

lP (t) =

(
lN 0

1
(t) if t 2 TN 0

1

lN 0

2
(t) if t 2 TN 0

2

StartP = StartN 0

1
� StartN 0

2

Two other simple WT net operators play a signi�cant role in our technical development.

Namely, split re�nements (split(a;a+;a�)) replace every a-labeled transition by two consecutive

transitions labeled a+ and a�, and choice re�nements (choice(a;aL;aR)) replace every a-labeled

transition by two conicting transitions labeled aL and aR. Figure 2-9 gives examples of these

kinds of re�nements.

2.2. OPERATIONS ON WELL-TERMINATING NETS 31

� � � � � � � � � � � � � � �
a a+ aL aR

� � � � � � � � � �
a�

� � � � �

��

��LLLL%%

��

��
yyrr

rr
��

��LLLL%%

��

��
yyrr

rr
��

��
��

WWWWWWWWWWWW++

��

��
ssggggg

ggggg
gg

��

yyrr
rr

LLLL%% �� ��
WWWWWWWWWWWW++ ��

ssggggg
ggggg

gg
��

��

��

��

��

��
��

��

��

��

��

yyrr
rr

LLLL%%��

��

��

��

hN;Acti split(a;a+;a�)(hN;Acti) choice(a;aL;aR)(hN;Acti)

Figure 2-9: Split Re�nements and Choice Re�nements

De�nition 2.2.14 Let hN;Acti be a WT Net, and let a; a+; a� 2 Act �fpg. Then hP;Acti =
split(a;a+;a�)(hN;Acti) is de�ned as:

SP = SN] f(�; t) : t 2 TN and lN(t) = ag

TP = ft 2 TN : lN(t) 6= ag] f(t;+); (t;�) : t 2 TN and lN(t) = ag

preP (t) = preN (t)

preP ((t;+)) = preN (t)

preP ((t;�)) = f(�; t)g

postP (t) = postN(t)

postP ((t;+)) = f(�; t)g
postP ((t;�)) = postN(t)

lP (t) = lN(t)

lP ((t;+)) = a+

lP ((t;�)) = a�

StartP = StartN

De�nition 2.2.15 Let hN;Acti be a WT Net, and let a; aL; aR 2 Act �fpg. Then hP;Acti =
choice(a;aL;aR)(hN;Acti) is de�ned as:

SP = SN

TP = ft 2 TN : lN (t) 6= ag] f(t; L); (t; R) : t 2 TN and lN(t) = ag

32 CHAPTER 2. WELL-TERMINATING NETS AND OPERATIONS

preP (t) = preN (t)

preP ((t; L)) = preN (t)

preP ((t; R)) = preN (t)

postP (t) = postN (t)

postP ((t; L)) = postN (t)

postP ((t; R)) = postN (t)

lP (t) = lN(t)

lP ((t; L)) = aL

lP ((t; R)) = aR

StartP = StartN

The following theorems show that the class of WT Nets is closed under all of the operators,

and that we are justi�ed in referring to the WT Net operators as \CCS/CSP-style" operators.

Theorem 2.2.16 The class of WT Nets is closed under pre�xing (�:), restriction (na), hid-
ing (�a), renaming ([f]), CSP-style sequencing (;), non-communicating parallel-composition

(jj), CSP-style parallel-composition-with-synchronization (kL), CCS-style parallel-composition-
with-hiding (j), internal choice (�), start-unwinding, CCS-style choice (+M), split, and choice.

Proof. The proof is very straightforward but tedious. As an illustration, we prove the

case for start-unwinding; the remaining cases are left to the reader.

Let hN;Acti be a WT Net and let hP;Acti = start-unwind(hN;Acti). It is easy to see that
all transitions in P have labels from Act [f�g, StartP is �nite, and every transition in P has

�nite in-degree and out-degree.

A straightforward inductive argument shows that if t01 : : : t
0
k is a run of P resulting in the

marking M 0 of P then:

� t1 : : : tk is a run of N , where t0i = ti if t
0
i 2 TN , and t0i = hU; tii for some U otherwise.

� The marking reached �ring after t1 : : : tk in N is given by the function M , where M(s) =

M 0(s) for every s 2 SN � Start-cyclicN and M(s) = M 0(s) + M 0((�; s)) for every s 2
Start-cyclic.

It is then easy to see from the de�nition of start-unwind that P is 1-safe, only a �nite num-

ber of transitions are enabled under any reachable marking of P , and that all places in P are

unmarked immediately after any
p
-labeled transition �res; hence hP;Acti is a WT Net.

Except for the parallel composition operators, all of our net operations are closely related

to the corresponding CCS/CSP operators on labeled transition systems (lts's), cf. [7, 30]. In

particular:

2.2. OPERATIONS ON WELL-TERMINATING NETS 33

Theorem 2.2.17 For all the CCS/CSPWT net-operators other than jj, kL, and j, the lts of the
constructed net is strongly bisimilar to the lts obtained by applying the corresponding CCS/CSP

lts-operator to the lts's of the component nets. Also, lts(hN1;ActikLhN2;Acti) is strongly bisim-
ilar to lts(hN1;Acti)kL[fpglts(hN2;Acti) and lts(hN1;Acti jj hN2;Acti) is strongly bisimilar

to lts(hN1;Acti)kfpglts(hN2;Acti). Lastly, lts(hN1;Acti j hN2;Acti) is strongly bisimilar to

lts(hN1;Acti) j lts(hN2;Acti), except that visible synchronization is required on
p
-actions.

Proof. As an illustration, we prove the case for +M . The remaining cases are straightfor-

ward but tedious and are left to the reader.

We �rst prove that for all WT Nets N , the lts of hN;Acti is strongly bisimilar to the lts of
start-unwind(hN;Acti). Let

B = f(M;M 0) : M 0 is a reachable marking of start-unwind(hN;Acti);
M(s) = M 0(s) for all s 2 SN � Start-cyclicN ;

and M(s) = M 0(s) +M 0((�; s)) for all s 2 Start-cyclicNg

Using an argument similar to that in the proof of Theorem 2.2.16, it is straightforward to

show that B is a bisimulation between the lts of hN;Acti and the lts of start-unwind(hN;Acti).
Let hN 0

1;Acti and hN 0
2;Acti be start-unwind(hN1;Acti) and start-unwind(hN2;Acti), re-

spectively, and let

C = f(M;M 0) : M 0 is a reachable marking of hN1;Acti+M hN2;Acti and
M = fs1 2 StartN 0

1
: (s1; s2) 2M 0 for all s2 2 StartN 0

2
g

[fs2 2 StartN 0

2
: (s1; s2) 2M 0 for all s1 2 StartN 0

1
g

[(M 0 \ ((SN 0

1
� StartN 0

1
) [(SN 0

2
� StartN 0

2
)))g

We observe that since StartN 0

1
and StartN 0

2
have empty presets, the de�nition of +M ensures

that �ring any initial transition ofN 0
1 in hN1;Acti+M lts(hN2;Acti) will disable all transitions of

N 0
2, and vice-versa. We further observe that for any reachable marking of hN1;Acti+M hN2;Acti

and any s1 2 StartN 0

1
, if some place (s1; s2) is empty while some place (s1; s

0
2) contains a token,

then a transition of N 0
2 must have �red, and vice-versa. It is then straightforward to show from

the de�nition of +M on nets and labeled transition systems that C is a strong bisimulation

between lts(hN 0
1;Acti)+M lts(hN 0

2;Acti) and the lts of hN1;Acti+M lts(hN2;Acti). The details
are left to the reader.

Since strong bisimulation is a congruence with respect to +M (cf. [30]), the presence of C
together with the above fact about start-unwinding immediately implies that lts(hN1;Acti)+M

lts(hN2;Acti) is strongly bisimilar to the lts of hN1;Acti+M hN2;Acti.

The following propositions show that internal choice and CCS-style parallel composition

can be \programmed" from the other operators. These propositions will be helpful in proving

properties about the WT Net operators.

Proposition 2.2.18 Let hN1;Acti; hN2;Acti be WT Nets with disjoint sets of places and tran-

sitions and with a common alphabet, Act . Then there is a net context C[�; �] built from pre�xing

and CCS choice such that C[hN1;Acti; hN2;Acti] is isomorphic to hN1;Acti � hN2;Acti.

34 CHAPTER 2. WELL-TERMINATING NETS AND OPERATIONS

Proof. It is easy to show that hN1;Acti � hN2;Acti is isomorphic to the net

(�:hN1;Acti) +M (�:hN2;Acti):

The details are trivial and are left to the reader.

Proposition 2.2.19 Let hN1;Acti; hN2;Acti be WT Nets with disjoint sets of places and tran-

sitions and with a common alphabet, Act , such thatAct �fpg is closed under complementation.
Then there is a net context C[�; �] built from action expansion and shrinking, CSP-style parallel

composition, choice re�nements, and hiding such that C[hN1;Acti; hN2;Acti] is isomorphic to
hN1;Acti j hN2;Acti.

Proof. Let fa1; a1; : : : ; ak; akg = Act �fpg, and let Act 0 = fa01; a01; : : : ; a0k; a0kg be distinct
symbols not in Act . Let � and �0 be the sequences of choice re�nements

� = choice(a1;a1;a01) � choice(a1;a1;a01) : : :choice(ak;ak;a0k) � choice(ak;ak;a0k)

�0 = choice(a1;a1;a01)
� choice(a1;a1;a01) : : :choice(ak;ak;a0k) � choice(ak;ak;a0k)

Let

hN 0
1;Act

00i def
= �(hN1;Acti grow Act 0)

hN 0
2;Act

00i def
= �0(hN2;Acti grow Act 0)

Then it is straightforward to show that

hN1;Acti j hN2;Acti = ((hN 0
1;Act

00ikAct0[fpghN 0
2;Act

00i)�Act0) shrink Act ;

where equality refers to net isomorphism, and�Act 0 is shorthand for successively hiding each

action in Act 0. The details are straightforward and are left to the reader.

Chapter 3

Semantics of Well-Terminating Nets

3.1 Testing Equivalence

This chapter develops some semantics for WT Nets that are compositional for all the WT Net

operators presented in Chapter 2 and are respectively adequate for may-equivalence, must-

equivalence, and Testing Equivalence [19]. Some fully abstract versions of these semantics are

then presented.

De�nition 3.1.1 A semantics, [[�]], assigning to any process, P , a meaning, [[P]], is composi-

tional for an operator on processes if semantic equality is a congruence for the operator, i.e.,

the operator preserves semantic equality. We say that a semantics is adequate for an equiv-

alence on processes if semantic equality implies process equivalence. Finally, we say that a

semantics is fully abstract for a process equivalence with respect to a set of operators if the

semantics is adequate for the equivalence and semantic equality is the coarsest congruence for

those operators.

We presume that the reader is familiar with the experiment-based theory ofmay-equivalence,

must-equivalence, and Testing equivalence on labeled transition systems developed in [19]. In

order to keep this thesis relatively self-contained, we repeat the basic de�nitions here.

The idea behind experiment-based testing is that experimenters are given the ability to

interact with processes in a way that a�ects both the process and the experimenter. In order to

model success of an experiment, a special action ! is chosen to represent success. In this setting,

both processes and experimenters are labeled transition systems over a common alphabet,

except that in addition, the experimenter is allowed to independently perform the special actions

1 and !. Processes do not have the ability to perform either 1 or !. Both the experimenter and

the process must \move together" on visible actions in the common alphabet, but can move

independently on the � action. In general, the behavior of an experimenter on a process is

non-deterministic.

An experiment is a sequence of possible interactions between an experimenter and a process.

Such a sequence is a computation i� it is an interaction which cannot be extended, i.e., it is

a maximal sequence of interactions. A computation is successful i� the experimenter passes

through a state in which the ! action is enabled. We say that a process, p, may satisfy an

experimenter, e, i� some interactive computation between e and p is successful. We say that a

35

36 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

process, p, must satisfy an experimenter, e, i� every interactive computation between e and p

is successful.

De�nition 3.1.2 Let TS1 and TS2 be labeled transition systems respectively over alphabets

Act1;Act2, where Act1 and Act2 may contain the � action but do not contain the 1 or ! action.

Let E be the set of labeled transition systems over Act1 [Act2 [f1; !g. Then TS1 and TS2

are may-equivalent i� Act1 = Act2 and TS1 and TS2 may satisfy the same set of experimenters

in E. Similarly, TS1 and TS2 are must-equivalent i� Act1 = Act2 and TS1 and TS2 must

satisfy the same set of experimenters in E. TS1 and TS2 are Testing-equivalent i� they are

both may-equivalent and must-equivalent.

The de�nitions of these equivalences carry over directly to WT Nets: two WT Nets will

be said to be may-equivalent, must-equivalent, or Testing equivalent i� their labeled transi-

tion systems are respectively may-equivalent, must-equivalent, or Testing equivalent under the

above de�nition. We assume without loss of generality that for any WT Net, hN;Acti, the
special actions 1 and ! are not in Act .

For technical simplicity, we will work with an alternate formulation of these equivalences,

namely, partial trace equivalence [19, 30] and failures equivalence [7, 8, 9, 21]. In order to keep

this thesis relatively self-contained, we repeat the de�nitions here:

De�nition 3.1.3 Let TS be a labeled transition system, hS;Act[f�g;�!; siniti, where Act is
a set of visible actions. A state s is divergent i� s can perform an in�nite sequence of � -actions.

A failure set of a state s is any set of visible actions, a, that are not enabled at s, even after

further performing any �nite sequence of � -labeled actions; that is, s 6 a=). Then:

traces(TS)
def
= fv 2 Act� : sinit

v
=)g

F(TS) def
= fhv; F i : v 2 Act�; F � Act ; and there is some state s such that

sinit
v

=) s and F is a failure set of sg
[fhv; F i : v 2 D(TS) and F � Actg

D(TS) def
= fv � v0 : v; v0 2 Act� and sinit

v
=) s for some divergent state sg

For anyWTNet hN;Acti, we de�ne traces(hN;Acti) def
= traces(lts(hN;Acti)),F(hN;Acti) def

=

F(lts(hN;Acti)), and D(hN;Acti) def
= D(lts(hN;Acti)).

Proposition 3.1.4 Let TS1 and TS2 be labeled transition systems respectively over �nite

alphabets Act1;Act2, where Act1 and Act2 may contain the � action but do not contain the 1

or ! action. Then

� TS1 and TS2 are may-equivalent i� Act1 = Act2 and traces(TS1) = traces(TS2).

� TS1 and TS2 are must-equivalent i� Act1 = Act2, F(TS1) = F(TS2) and D(TS1) =

D(TS2).

3.1. TESTING EQUIVALENCE 37

� TS1 and TS2 are Testing-equivalent i� Act1 = Act2, traces(TS1) = traces(TS2), F(TS1) =

F(TS2) and D(TS1) = D(TS2).

The proof is a straightforward generalization of that in [19] and is left to the reader.

As shown in [19], may-equivalence, must-equivalence, and Testing-equivalence are compo-

sitional for all the standard CCS/CSP operators on labeled transition systems. Furthermore,

they are compositional for (the natural de�nition of) choice re�nements on labeled transition

systems. Similar properties hold for WT Nets:

Proposition 3.1.5 may-equivalence, must-equivalence, and Testing-equivalence on WT Nets

are compositional for all our CCS/CSP-style operators, choice re�nements, and alphabet ex-

pansion and shrinking.

The proof is analogous to that of [19] and is omitted.

Since labeled transition systems are inherently sequential, these equivalences are also com-

positional for (the natural de�nition of) split re�nements on labeled transition systems. A

similar result holds for purely sequential WT Nets:

Proposition 3.1.6 may-equivalence, must-equivalence, and Testing-equivalence are composi-

tional for split re�nements on sequentialWT Nets, in which no transitions can �re concurrently

in any reachable marking.

Proof. Let hN;Acti be a sequentialWT Net, and let a; a+; a� be distinct symbols in Act.

For any sequence v 2 Act�, we de�ne split(a;a+;a�)(v) to be the sequence �1 : : :�jvj, where each
�i = a+:a� if v[i] = a, and �i = v[i] otherwise.

Firing any newly-created a+-labeled transition in split(a;a+;a�)(hN;Acti) has the e�ect of

\half-�ring" the corresponding a-labeled transition of N , i.e., removing all the tokens from the

preset of the a-labeled transition but not placing any tokens in its post-set. Since hN;Acti
is a sequential net, a� is thus the one and only action enabled in split(a;a+;a�)(hN;Acti) after
performing any sequence of transitions that ends with an occurrence of a newly-created a+-

labeled transition.

It is then straightforward to show that

traces(split(a;a+;a�)(hN;Acti)) =
fsplit(a;a+;a�)(v) : v 2 traces(hN;Acti)g [fsplit(a;a+;a�)(v) � a+ : v � a 2 traces(hN;Acti)g

F(split(a;a+;a�)(hN;Acti)) =
fhsplit(a;a+;a�)(v); F

0i : there is some F with hv; F i 2 F(hN;Acti) such that

F 0 � F [fag; and if a+ 2 F 0 then a 2 Fg
[fhsplit(a;a+;a�)(v) � a+; F 0i : hv � a; ;i 2 F(hN;Acti) and F 0 � Act �fa�gg
[fhv; F i : v 2 D(split(a;a+;a�)(hN;Acti)) and F � Actg

D(split(a;a+;a�)(hN;Acti)) = fsplit(a;a+;a�)(v) � v0 : v 2 D(hN;Acti) and v0 2 Act�g

The proposition is then a simple consequence of Proposition 3.1.4.

However, as is well-known, neither may-equivalence, must-equivalence, nor Testing equiv-

alence on arbitrary WT Nets is compositional for split re�nements:

38 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

� � �
a b a b

b a

��

��
��

��

��
��

��

��
yytt
tt

JJJJ%%

�� ��hN1;Acti
��

��
��

��

��
��

hN2;Acti

� � �
a+ b a+ b

a� a� a+

b a�

��

��
��

��

��
��

��

��
yytt
tt

JJJJ%%

�� �� ����

��
��

��

��
��

��

��
��

�� ��
split(a;a+;a�)(hN1;Acti)

��

��
��

��

��
��

split(a;a+;a�)(hN2;Acti)

Figure 3-1: Standard Example

Proposition 3.1.7 ([10]) may-equivalence, must-equivalence, and Testing equivalence are

not compositional for split re�nements on arbitrary WT Nets.

Proof. It follows easily from De�nition 3.1.3 and Proposition 3.1.4 that if any two

divergence-free WTNets are trace inequivalent then they aremay-inequivalent,must-inequivalent,

and Testing-inequivalent. To prove the proposition, we repeat the example given in [10], and il-

lustrated in Figure 3-1. It is easy to show that hN1;Acti and hN2;Acti of Figure 3-1 are Testing-
equivalent. However, split(a;a+;a�)(hN1;Acti) and split(a;a+;a�)(hN2;Acti) are trace-inequivalent,
since a+ba� is a trace of split(a;a+;a�)(hN1;Acti) but not of split(a;a+;a�)(hN2;Acti). We note

that hN1;Acti is not a sequential net, since the a-labeled and b-labeled transitions can �re

concurrently.

It is well-known that trace-inequivalent lts's cannot be strongly bisimilar (cf. [30]). Since

the labeled transitions systems of hN1;Acti and hN2;Acti of Figure 3-1 are strongly bisimilar,

the same example shows that no interleaving semantics (that lies in between trace equivalence

and strong bisimulation) can be compositional for split re�nements on arbitrary WT Nets. As

is discussed in [39, 49], it is necessary keep track of \pomsets", which generalize linear sequences

of actions to multi-sets of actions partially ordered to reect causality and concurrency.

3.2 Some Compositional Semantics for WT Nets and Operators

We begin with the standard notions of pomsets.

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 39

De�nition 3.2.1 A pomset is a labeled partial order. Formally, a pomset, p, consists of a

set Eventsp whose elements are called events, a set Labelsp whose elements are called labels, a

function labelp: Eventsp!Labelsp, and a partial order relation �p on Eventsp. We say that p is

a pomset over an alphabet Act i� Act contains all the labels of p.

If p is a pomset with an empty carrier, we often simply write ; to denote p. If p is a pomset
with a single event, labeled a, we often simply write a to denote p.

We say that event e causes event e0 in a pomset p i� e <p e0. The downward-closure,

downp(e), of event e in a pomset p is fe0 2 Eventsp : e
0 <p eg. The downward-closure, downp(E),

of a subset E of Eventsp is E [Sfdownp(e) : e 2 Eg; E is downward-closed i� downp(E) = E.

We write min(p) to denote the set of events in p that are minimal with respect to <p, i.e.,

events that do not have any causes in p. We write max (p) to denote the set of events in p that

are maximal with respect to <p, i.e., events that do not cause any event in p. We say that event

e is a maximal cause of an event e0 in pomset p i� e <p e
0 and there is no event e00 2 Eventsp

such that e <p e
00 <p e

0.
The size of a pomset p, written jpj, is the size of the set Eventsp. A chain in p is a sequence

of events x1x2 : : : xk of p such that x1 <p x2 <p : : : <p xk. The depth of an event x in p, written

depthp(x), is the maximum length of any chain in p of the form x1 <p x2 <p : : : <p xk <p x, for

any events x1; : : : ; xk. The depth of p, written depth(p), is the maximum length of any chain in

p.

A cut of p is any subset C of Eventsp such that no two distinct events in C are causally

related by <p. The width of p is the maximum size of any cut of p.

A pomset p is a pre�x of a pomset q i� p is a restriction of q to a downward-closed subset

of Eventsq .

A function f is an isomorphism between pomset p and pomset q i� it is a label-preserving

order-isomorphism, namely,

� f : Eventsp!Eventsq is a bijection,

� labelp = labelq � f ,

� e �p e
0 i� f(e) �q f(e

0) for all e; e0 2 Eventsp.

A pomset p0 is a linearization of a pomset p i� it has the same events and labels as p and

<p0 is a total ordering that contains <p. For any pomset q such that <q is a total ordering and

any 1 � i � jEventsqj, the ith largest event of q is the (necessarily unique) event e 2 Eventsq
such that the longest chain e1 <q : : : <q ek <q e in q is of length i.

We now de�ne the pomsets arising from WT Nets:

De�nition 3.2.2 The places of a transition t of a net N are the places directly connected to

it, i.e., the union of the preset and postset of t. Let t1; t2 be transitions of a net N . We say

that t1 and t2 are statically concurrent in N i� the places of t1 are disjoint from the places of

t2.

A transition-sequence is a sequence of transitions of a net N . For transition-sequence r =

t1 : : : tn and 1 � i � n, we write r[i] to denote the ith element, ti, of r. The transition-pomset

of r = t1 : : : tn has as events the integers from 1 to n, where the label of event i is ti and

the partial ordering is the transitive closure of the following \proximate cause" relation: event

40 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

� � t1 1: t1 2: t2 1: a 2: a

t1:a t2:a t2 3: t3 4: a 5: a

t3 4: t2 5: t1

t3:� t2

t1

��

��

��

��

��

��

HHH$$ zzvv
v

��

NNNNN'' ��wwppp
pp

�� �� zzuu
u III$$��

��KKKKKK%%

��

��

yysss
ss
s Pomset-trace of r

!

//

 !

"oo

Transition-pomset of r

Run r

Figure 3-2: An Example of a Transition-pomset and Pomset-trace

i proximately causes event j i� i < j and ti and tj are not statically concurrent in N , cf.

Figure 3-2. The pomset-runs of a WT Net hN;Acti are the transition-pomsets of runs of N (cf.

De�nition 2.1.1).

If q is a transition-pomset of N , then visible(q) is the restriction of q to its events with

visible-transition labels (cf. De�nition 2.1.1); furthermore, the label of each event i is the label

of transition lq(i) (rather than transition lq(i) itself). The pomset-traces of a WT Net hN;Acti
are the set of visible(q) such that q is a �nite pomset run of N , cf. Figure 3-2.

It is well known (cf. [42]) that there is a uniquely determined �nal marking associated with

each �nite pomset run of a net; this is the marking reached after sequentially �ring the events

of the run in any order that is consistent with its partial order.

Proposition 3.2.3 Let r be a run of a net N , let p0 be a linearization of the transition-pomset

of r, and let r0 be the transition-sequence corresponding to p0, i.e., r0 = t1 : : : tjrj, where each ti
is the label of the ith largest event of p0. Then r0 is a run of N reaching the same �nal marking

as r.

Proof. Let v be the sequence e1 : : : ejrj, where each ei is the i
th largest event of p0. Then

it is easy to see that v is a permutation of the sequence 1 : : : jrj, and r0[i] = r[v[i]] for all

1 � i � jrj.
We prove the proposition by induction on the number, n, of pairs (i; j) such that i < j (as

integers) but v[i] > v[j] (as integers). The base case of n = 0 is trivial.

For the induction step, let n � 1. Then there is some k such that v[k] > v[k+1]. Let w be v

with the kth and k + 1th elements \swapped"; that is, w[k] = v[k+1], w[k+1] = v[k], and w and

v agree on all other indices. Clearly, the number of pairs (i; j) such that i < j but w[i] > w[j]

is strictly less than n. Let p00 be the (totally-ordered) transition-pomset with the same labels

and events as p0 and such that for all events e; e0 2 Eventsp00 , e <p00 e
0 i� e occurs before e0 in

the sequence w. It is easy to show that p00 is a linearization of the transition-pomset of r. Thus,

by induction, the transition-sequence r00 corresponding to p00 is a run of N reaching the same

�nal marking as r. Furthermore, it is easy to see that r00[i] = r[w[i]] for every 1 � i � jrj.
Since p0 is a linearization of the transition-pomset of r, clearly, event v[k+ 1](= w[k]) must

not cause event v[k](= w[k+1]) in the transition-pomset of r, and so by De�nition 6.2.1, tran-

sition r[w[k]] and transition r[w[k + 1]] are statically concurrent in N . Furthermore, since r00

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 41

is a run of N , all places in the preset of transition r[w[k + 1]] must be marked after the run

r[w[1]] : : :r[w[k]]. The de�nition of static concurrency implies that no �ring of transition r[w[k]]

can add any tokens to the preset of transition r[w[k+1]]; thus, transition r[w[k+1]] must be en-

abled after the run r[w[1]] : : :r[w[k�1]] as well. Conversely, all places in the preset of transition
r[w[k]] must be marked after the run r[w[1]] : : :r[w[k� 1]]. The de�nition of static concurrency

implies that no �ring of transition r[w[k+1]] can remove any tokens from the preset of r[w[k]];

thus, r[w[k]] must be enabled after the run r[w[1]] : : :r[w[k � 1]]r[w[k + 1]] as well. It then

follows easily that r[w[1]] : : :r[w[k� 1]]r[w[k+ 1]]r[w[k]] is a run of N reaching the same �nal

marking as the run r[w[1]] : : :r[w[k�1]]r[w[k]]r[w[k+1]], from which the lemma follows easily.

Our de�nition of \pomset-failures" is a natural generalization of (sequential) \failures" in

that it associates \failure sets" to �nite pomsets.

De�nition 3.2.4 A pomset-failure is a pair hp; F i, where p is a �nite pomset, and F is a �nite

set of labels. We say that hp; F i is a pomset-failure over an alphabet Act i� Act contains all

the labels of p and F � Act .

We de�ne a \failure set" of a marking as any set of visible actions that are not enabled under

that �nal marking, even after further �ring any �nite sequence of � -labeled transitions. This is

exactly the standard de�nition of \failure sets" of states of the labeled transition system of the

net (cf. De�nition 3.1.3). Using Proposition 3.2.3, we can unambiguously refer to the marking

of a net reached after a pomset-run.

De�nition 3.2.5 The pomset-failures of a WT Net hN;Acti are the pairs hvisible(q); F i such
that q is a �nite pomset run of N and F � Act is a failure set of the marking after q.

We also wish to de�ne a notion of \pomset-divergences" that is a natural generalization of

(sequential) \divergences."

De�nition 3.2.6 A pomset-divergence is a pair hp;Di, where p is a �nite pomset and D is a

non-empty set of downward-closed subsets of Eventsp. We say that hp;Di is a pomset-divergence
over an alphabet Act i� Act contains all the labels of p.

Given any pomset run with only a �nite number of visible events, it is easy to see that any

in�nite chain of � -labeled-events indicates a divergence of the net. We wish to de�ne pomset-

divergences of nets in such a way that we keep track of all the concurrent divergences within a

pomset run while abstracting away from the � -labeled events.

De�nition 3.2.7 Let q be an in�nite pomset run of a WT Net hN;Acti with a �nite number

of visible events. Let D be the family of sets of the form (events of) visible(downq(C)) such

that C is an in�nite chain of � -labeled events of q. Then hvisible(q);Di is a pomset-divergence

of hN;Acti, cf. Figure 3-3.
It turns out that the semantics de�ned by simply taking these pomset-failures and pomset-

divergences makes too many distinctions between nets, and we need to \blur" certain kinds of

information from our runs. This we accomplish through various closure operations. The �rst

such closure involves taking \augmentations" of our pomset-failures and pomset-divergences.

We �rst restate the standard de�nition for pomsets, where an augmentation is simply an increase

in the partial ordering.

42 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

� �
a c p = a c

b d

b d

D =

� �

��

��

��

��

��

��

�� �� �� ����

��
��

��

��
��

�� ����

��
��

��

��
��

ffa; bg; fc; dgg

!

//

 !

"oo

Figure 3-3: An Example of a Pomset Divergence hp;Di

De�nition 3.2.8 Pomset p0 is an augmentation of pomset p i� p and p0 have the same set

of events with the same labels, and the partial ordering of p0 contains the partial ordering of

p. Let augment(p) be the set of augmentations of p. The augmentations, augment(hp; F i);
of a pomset-failure hp; F i is the set fhp0; F i j p0 2 augment(p)g. For pomset-divergences, let

augment(hp;Di) be

fhp0;D0i : p0 2 augment(p) and D0 = fdownp0(d) : d 2 Dgg

We write p0 � p i� p0 is an augmentation of p, and write hp0; D0i � hp;Di i� hp0; D0i is an
augmentation of hp;Di.

Our other closure operation arises from the fact that must-experiments fail to yield in-

formation about the behavior of a net after a divergence. To get around this di�culty, we

de�ne below the notion of an extension of a pomset-divergence; the idea is that the extension

is another pomset-divergence which may contain more information concerning events and di-

vergences which \happen after" one or more divergences in the original pomset-divergence. All

the information about a process after a pomset-divergence is blurred by throwing in all possible

pomset-failures and pomset-divergences which extend the original pomset-divergence.

De�nition 3.2.9 Pomset-divergence hp0;D0i extends pomset-divergence hp;Di,
written hp;Divhp0;D0i, i�

p is a pre�x of p0

for all e 2 p0 � p; there is some d 2 D with d � downp0(e); and

for all d0 2 D0; there is some d 2 D with d � d0:

For any alphabet Act which contains all the labels in pomset p, let extendAct (hp;Di) be the
set of pomset-divergences over Act which extend hp;Di. Finally, let

implied-failuresAct (hp;Di) def
= fhp; F i : F � Actg:

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 43

We lift these operations on individual pomsets, failures, etc., to sets of individuals by point-

wise union. For example,

augment(X)
def
=
[
x2X

augment(x):

We are now ready to de�ne the pomset versions of the may-, must-, and Testing-semantics.

De�nition 3.2.10 For any WT Net hN;Acti,

[[hN;Acti]]MAY def
= haugment(pomset-traces(hN;Acti));Acti

Div(hN;Acti) def
= augment(extendAct (pomset-divergences(hN;Acti)));

Fail(hN;Acti) def
= augment(pomset-failures(hN;Acti))[implied-failuresAct (Div(hN;Acti));

[[hN;Acti]]MUST def
= hFail(hN;Acti);Div(hN;Acti);Acti;

[[hN;Acti]]TEST def
= h[[hN;Acti]]MAY; [[hN;Acti]]MUSTi:

Our de�nition of semantical equality implicitly equates label-preserving order-isomorphic

pomsets.

We observe that:

Proposition 3.2.11 For anyWTNet hN;Acti, if [[hN;Acti]]MAY = hPT;Acti and [[hN;Acti]]MUST

= hPF; PD;Acti, then PT is a set of pomset-traces over Act , PF is a set of pomset-failures

over Act , and PD is a set of pomset-divergences over Act .

The proof is trivial and is left to the reader.

Theorem 3.2.12 [[�]]MAY, [[�]]MUST, and [[�]]TEST on WT Nets are respectively adequate for may-

equivalence, must-equivalence, and Testing-equivalence.

Proof. There is an obvious correspondence between sequences of actions and linearly-

ordered pomsets, which we implicitly use in the equalities below. Since the [[�]]MAY and [[�]]MUST

semantics are augmentation-closed, it is straightforward to show that for any WT Net hN;Acti,

traces(hN;Acti) = fv 2 fst([[hN;Acti]]MAY) : v is linearly orderedg

F(hN;Acti) = fhv; F i : v is linearly ordered and hv; F i 2 fst([[hN;Acti]]MUST)g

D(hN;Acti) = fv : v is linearly ordered and hv;Di 2 snd([[hN;Acti]]MUST) for some Dg

Act = snd([[hN;Acti]]MAY) = third([[hN;Acti]]MUST)

from which the theorem follows directly.

The following closure properties of the semantics will be useful in proving compositionality.

We extend the de�nition of pre�xes to pomset-divergences:

44 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

De�nition 3.2.13 Let hp;Dpi; hq;Dqi be pomset-divergences. Then hp;Dpi is a pre�x of

hq;Dqi i� p is a pre�x of q and Dp � Dq.

Proposition 3.2.14 Let hN;Acti be a WT Net. Then pomset-traces(hN;Acti) is a pre�x-

closed set of pomset-traces and and pomset-divergences(hN;Acti) is a pre�x-closed set of pomset-
divergences. Furthermore, for any pomset-failure hp; F i and pre�x q of p, if hp; F i is a pomset-
failure of N , then so is hq; ;i.

Proof. The proposition is easily proved from the de�nitions of pomset-traces, pomset-

failures, and pomset-divergences of nets.

Proposition 3.2.15 Let hp;Dpi, hq;Dqi, and hr;Dri be pomset-divergences with hp;Dpi v
hq;Dqi � hr;Dri. Then there is some hp0; Dp0i v hr;Dri such that hp0; Dp0i is an augmentation

of a pre�x of hp;Dpi.

Proof. Let p0 be the restriction of r to the set fe 2 Eventsp : downr(e) � pg, and let

Dp0 = fdownp0(d) : d 2 Dp and d � p0g. The remainder of the proof is straightforward and is

left to the reader.

Proposition 3.2.16 Let hp;Dpi, hq;Dqi, and hr;Dri be pomset-divergences with hp;Dpi �
hq;Dqi v hr;Dri. Then there is some hq0; Dq0i � hr;Dri such that hq0; Dq0i extends hp;Dpi.

Proof. Let q0 have the same events and same labels as r, and let Dq0 = Dr. Furthermore,

de�ne �q0 as x <q0 y i� x 2 Eventsp and x <r y. The remainder of the proof is straightforward

and is left to the reader.

Proposition 3.2.17 Let p; q; q0 be pomsets such that p � q and q0 is a pre�x of q. Then there

is some p0 � q0 such that p0 is a pre�x of p.

Let hp;Dpi; hq;Dqi; hq0; Dq0i be pomset-divergences such that hp;Dpi � hq;Dqi and hq0; Dq0i
is a pre�x of hq;Dqi. Then there is some hp0; Dp0i � hq0; Dq0i such that hp0; Dp0i is a pre�x of

hp;Dpi.
Let hp;Dpi; hq;Dqi; hq0; Dq0i be pomset-divergences such that hp;Dpi v hq;Dqi and hq0; Dq0i

is a pre�x of hq;Dqi. Then there is some hp0; Dp0i v hq0; Dq0i such that hp0; Dp0i is a pre�x of

hp;Dpi.

Proof. Let p0 be the restriction of p to Eventsq0 and, for the second and third parts, let

Dp0 = fd 2 Dp : d � Eventsq0g. The remainder of the proof is straightforward and is left to the

reader.

Proposition 3.2.18 Let hN;Acti be a WT Net. Then Fail(hN;Acti) is an augmentation-

closed set of pomset-failures and Div(hN;Acti) is an augmentation-closed and extension-closed

set of pomset-divergences.

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 45

Proof. It is easy to see from De�nition 3.2.10 and the de�nition of implied-failures that

that both sets are augmentation-closed. The extension-closure of Div(hN;Acti) is a simple

consequence of Proposition 3.2.16.

The following operations on pomsets and pomset-divergences correspond to our operators

on WT Nets and will be useful in proving compositionality of our semantics.

De�nition 3.2.19 Let p be a pomset and a a label. We de�ne p with a to be the set of pomsets

p0 such that p is a pre�x of p0, there is exactly one event in p0 � p, and this event is a-labeled.

De�nition 3.2.20 Let p be a pomset and let X be a set of maximal events in p. Then p�X

is p restricted to Eventsp �X .

De�nition 3.2.21 Let p be a pomset, hp;Di a pomset-divergence, and a a label. We de�ne

a:p to be the pomset with Eventsa:p = Eventsp [feag for some ea 62 Eventsp, la:p(ea) = a

and la:p agrees with lp on Eventsp, and �a:p= �p [(feag � Eventsp). Furthermore, a:hp;Di def
=

ha:p; fd[feag : d 2 Dgi.

De�nition 3.2.22 Let p be a pomset, hp;Di a pomset-divergence, and a a label. We de�ne

p� a to be p restricted to its events that are not a-labeled, and

hp;Di� a
def
= hp� a; fd\ Eventsp�a : d 2 Dgi.

De�nition 3.2.23 Let p be a pomset, hp;Di a pomset-divergence, and f a function from labels

to labels whose domain contains all the labels in p. Then p[f] has the same events as p with

the same ordering, but lp[f] = f � lp. Furthermore, hp;Di[f] def= hp[f]; Di.

De�nition 3.2.24 Let p and q be pomsets with disjoint sets of events. We de�ne p; q to be

the pomset such that Eventsp;q = Eventsp [Eventsq, lp;q agrees with lp on Eventsp and agrees

with lq on Eventsq , and �p;q= �p [�q [(Eventsp � Eventsq).

De�nition 3.2.25 Let p be a pomset, hp;Di a pomset-divergence, and a; aL; aR labels. Then

choice(a;aL;aR)(p) is the set of pomsets q with the same events and same ordering as p and such

that lq agrees with lp on all non-a-labeled events of p, and lq(x) = aL or lq(x) = aR for all

a-labeled events x of p. Furthermore,

choice(a;aL;aR)(hp;Di) def
= fhq;Di : q 2 choice(a;aL;aR)(p)g:

De�nition 3.2.26 Let p be a pomset, a; a+; a� be labels, and H � fx 2 max (p) : lp(x) = ag.
Then split(a;a+;a�;H)(p) is de�ned to be the pomset q with all a-labeled events in H \half-split"

and all other a-labeled events \fully split," i.e.,

� Eventsq = f(y; 0) 2 Eventsp : lp(y) 6= ag [f(y; 1) : y 2 Hg
[f(y; 1); (y; 2) : y 2 Eventsp �H and lp(y) = ag.

� For all (y; i) 2 Eventsq , lq((y; 1)) = a+, lq((y; 2)) = a�, and lq((y; 0)) = lp(y).

� For all (x; i); (y; j)2 Eventsq, (x; i)<q (y; j) i� either x <q y or (x =p y and i < j).

46 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

We then de�ne:

split(a;a+;a�)(p)
def
= fsplit(a;a+;a�;H)(p) : H � fx 2 max (p) : lp(x) = agg

Our de�nition of kA on pomsets generalizes that of [8, 21] on sequences of actions. In

particular, we are careful to prohibit synchronizations between pairs of actions that introduce

too many ordering constraints and hence violate anti-symmetry of the partial orders.

De�nition 3.2.27 Let A be a �nite alphabet, let p and q be pomsets with disjoint sets of

events, and letDp andDq be downward-closed subsets of Eventsp and Eventsq , respectively, such

that Dp [Dq 6= ;. For any bijection f from fe 2 Eventsp : lp(e) 2 Ag to fe0 2 Eventsq : lq(e
0) 2

Ag such that

� f is label-preserving, i.e., lp(e) = lq(f(e)) for all e 2 Eventsp with lp(e) 2 A, and

� f is order-non-contradicting, i.e.,

{ The transitive-closure of �p[f(e; e0) 2 Eventsp � Eventsp : f(e) <q f(e
0)g is a partial

ordering; in particular, it is anti-symmetric.

{ The transitive-closure of �q[f(f(e); f(e0)) 2 Eventsq � Eventsq : e <p e
0g is a partial

ordering; in particular, it is anti-symmetric.

we de�ne r = pkfAq as:

� Eventsr = f(e; �) : e 2 Eventsp and lp(e) 62 Ag [f(�; e0) : e0 2 Eventsq and lq(e
0) 62 Ag [

f(e; f(e)) : e 2 Eventsp and lp(e) 2 Ag.

� lr(e; �) = lp(e), lr(�; e0) = lq(e
0), and lr(e; f(e)) = lp(e).

� (x; y) �r (x
0; y0) i� either x �p x

0 or y �q y
0.

We de�ne hp;DpikfAhq;Dqi = hr;Dri, where r = pkfAq and

Dr = fdownr(E) : E = fz 2 Eventsr : fst(z) 2 dg for some d 2 Dpg
[fdownr(E0) : E0 = fz 2 Eventsr : snd(z) 2 d0g for some d0 2 Dqg

We de�ne

pkAq def
= fpkfAq : f is a label-preserving, ordering-non-contradicting bijection from

fe 2 Eventsp : lp(e) 2 Ag to fe0 2 Eventsq : lq(e
0) 2 Agg

and

hp;DpikAhq;Dqi def
= fhp;DpikfAhq;Dqi : f is a label-preserving, ordering-non-contradicting

bijection from fe 2 Eventsp : lp(e) 2 Ag
to fe0 2 Eventsq : lq(e

0) 2 Agg

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 47

It is easy to show that pomsets and pomset-divergences are closed under all the above

operations; the details are left to the reader.

We now de�ne corresponding operations on sets of pomset-traces, pomset-failures, and

pomset-divergences. We will use these de�nitions heavily in proving the compositionality of

our semantics with respect to the WT Net operators.

De�nition 3.2.28 Let Act be a �nite alphabet containing the distinguished symbol
p

and let

PT be a set of pomset-traces over Act . Let a; aL; aR; a+; a� 2 Act �fpg, let A be a subset of

Act containing
p
, let f be a function from Act to Act such that for all � 2 Act , f(�) =

p
i�

� =
p
, and let Act0 be a �nite set of labels containing

p
. Then:

hPT;Acti grow Act0 def= hPT;Act [Act 0i

hPT;Acti shrink Act0 def= hfp 2 PT : all events in p have labels in Act0g;Act 0i

a:hPT;Acti def
= hf;g [fa:p : p 2 PTg;Acti

hPT;Actina def
= hfp 2 PT : p has no a-labeled eventg;Acti

hPT;Acti[f] def= hfp[f] : p 2 PTg;Acti

hPT;Acti� a
def
= hfp� a : p 2 PTg;Acti

hPT1;Acti; hPT2;Acti def
= hfp 2 PT1 : p does not contain a

p
-labeled eventg

[f(p1; p2) : (p1;
p
) 2 PT1 and p2 2 PT2g;Acti

hPT1;Acti � hPT2;Acti def
= hPT1 [PT2;Acti

hPT1;Acti+M hPT2;Acti def
= hPT1 [PT2;Acti

hPT1;ActikAhPT2;Acti def
= haugment (

[
fp1kAp2 : p1 2 PT1; p2 2 PT2g);Acti

hPT1;Acti jj hPT2;Acti def
= haugment (

[
fp1kfpgp2 : p1 2 PT1; p2 2 PT2g);Acti

split(a;a+;a�)(hPT;Acti)
def
= haugment (

[
fsplit(a;a+;a�)(p) : p 2 PTg);Acti

choice(a;aL;aR)(hPT;Acti)
def
= h
[
fchoice(a;aL;aR)(p) : p 2 PTg;Acti

48 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

hPT1;Acti j hPT2;Acti def
=

((�(hPT1;Acti grow Act0)kAct0[fpg�0(hPT2;Acti grow Act 0))� Act 0) shrink Act

where fa1; a1; : : : ; ak; akg = Act �fpg;
Act 0 = fa01; a01; : : : ; a0k; a0kg are distinct symbols not in Act ;

� is the sequence choice(a1;a1;a01) � choice(a1;a1;a01) : : :choice(ak;ak;a0k) � choice(ak;ak;a0k);
and �0 is the sequence choice

(a1;a1;a01)
� choice(a1;a1;a01) : : : choice(ak;ak;a0k) � choice(ak;ak;a0k)

De�nition 3.2.29 Let Act be a �nite alphabet containing the distinguished symbol
p
, let

PF; PF1; PF2 be sets of pomset-failures over Act , and let PD; PD1; PD2 be sets of pomset-

divergences over Act . Let a; aL; aR; a+; a� 2 Act �fpg, let A be a subset of Act containing
p
,

let f be a function from Act to Act such that for all � 2 Act , f(�) =
p

i� � =
p
, and let Act0

be a �nite set of labels containing
p
.

Then:

hPF; PD;Acti grow Act0 def
= hPF 0; PD0;Act [Act 0i

where

PF 0 = fhp; F [Xi : X �
0

Act �Act and hp; F i 2 PFg
[implied-failures

Act [Act
0(PD0)

PD0 = augment (extend
Act [Act

0(PD))

hPF; PD;Acti shrink Act0 def
= hPF 0; PD0;Act0i

where

PF 0 = fhp; F i 2 PF : all events in p have labels in Act 0 and F � Act0g
PD0 = fhp;Di 2 PD : all events in p have labels in Act 0g

a:hPF; PD;Acti def
= hPF 0; PD0;Acti

where

PF 0
= fh;; F i : F � Act �fagg [fha:p; F i : hp; F i 2 PFg

PD0 = fa:hp;Di : hp;Di 2 PDg

hPF; PD;Actina def
= hPF 0; PD0;Acti

where

PF 0 = fhp; F i : p has no a-labeled event and hp; F � fagi 2 PFg
[implied-failuresAct (PD

0)

PD0 = augment (extendAct (fhp;Di 2 PD : p has no a-labeled eventg))

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 49

hPF; PD;Acti[f] def
= hPF 0; PD0;Acti

where

PF 0 = fhp[f]; F i : F � Act and hp; fb 2 Act : f(b) = a for some a 2 Fgi 2 PFg
[implied-failuresAct (PD

0)
PD0 = augment(extendAct (fhp;Di[f] : hp;Di 2 PDg))

hPF; PD;Acti� a
def
= hPF 0; PD0;Acti

where

PF 0 = fhp� a; F i : hp; F [fagi 2 PFg [implied-failuresAct (PD
0)

PD0 = augment(extendAct (fhp;D [Dpi� a : hp;Di 2 PD [PF;

hp;D [Dpi is a pomset-divergence;

and for all n � 0; there is some pn with hpn; Di 2 PD [PF

such that

hp;Dpi v hpn; fEventspngi; all events in pn � p are a-labeled;

and for every d 2 Dp;

there is some n-length chain of a-labeled events in pn � p

whose downward closure restricted to p is dg))

choice(a;aL;aR)(hPF; PD;Acti) def
= hPF 0; PD0;Acti

where

PF 0 = fhq; Fqi : there is some hp; Fpi 2 PF such that q 2 choice(a;aL;aR)(p); Fq � Fp [fag;
and if aL 2 Fq or aR 2 Fq then a 2 Fpg

[implied-failuresAct (PD
0)

PD0 = augment(extendAct (
Sfchoice(a;aL;aR)(hp;Di) : hp;Di 2 PDg))

hPF1; PD1;Acti � hPF2; PD2;Acti def
= hPF1 [PF2; PD1 [PD2;Acti

hPF1; PD1;Acti; hPF2; PD2;Acti def
= hPF 0; PD0;Acti

where

PF 0 = fhp; F i : hp; F [fpgi 2 PF1 and p does not contain a
p
-labeled eventg

[fhp1; p2; F i : hp1;
p
; ;i 2 PF1 and hp2; F i 2 PF2g [implied-failuresAct (PD

0)
PD0 = PD1 [fhp1; p2; fd[Eventsp1 : d 2 Di : hp1;

p
; ;i 2 PF1 and hp2; Di 2 PD2g

hPF1; PD1;ActikAhPF2; PD2;Acti def
= hPF 0; PD0;Acti

where

PF 0 = augment(fhp; F i : there are some hp1; F1i 2 PF1; hp2; F2i 2 PF2 such that p 2 p1kAp2;
F �A � F1 \ F2 and F \A � F1 [F2g)

[implied-failuresAct (PD
0)

PD0 = augment(extendAct (
Sfhp1; D1ikAhp2; D2i : hp1; D1i 2 PD1 [PF1; hp2; D2i 2 PD2 [PF2;

D1 and D2 are (possibly empty) downward-closed subsets of

Eventsp1 and Eventsp2 ; respectively, and D1 [D2 6= ;g))

50 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

hPF1; PD1;Acti jj hPF2; PD2;Acti def
= hPF1; PD1;ActikfpghPF2; PD2;Acti

hPF1; PD1;Acti j hPF2; PD2;Acti def
=

((�(hPF1; PD1;Acti grow Act 0)kAct0[fpg�0(hPF2; PD2;Acti grow Act 0))� Act 0) shrink Act

where fa1; a1; : : : ; ak; akg = Act �fpg;
Act0 = fa01; a01; : : : ; a0k; a0kg are distinct symbols not in Act;

� is the sequence choice(a1;a1;a01) � choice(a1;a1;a01) : : : choice(ak;ak;a0k) � choice(ak;ak;a0k);
and �0 is the sequence choice

(a1;a1;a
0

1
)
� choice(a1;a1;a01) : : :choice(ak;ak;a0k) � choice(ak;ak;a0k)

Theorem 3.2.30 [[�]]MAY is compositional for split re�nements, choice re�nements, alphabet

expansion and shrinking, and all of our CCS/CSP operators.

Proof. Let Act be a �nite alphabet containing
p
, let a; aL; aR; a+; a� 2 Act �fpg, let

A � Act, let f be a function from Act to Act such that for all � 2 Act , f(�) =
p
i� � =

p
, and

let Act 0 be a �nite set of labels containing
p
. Furthermore, let hN;Acti; hN1;Acti; hN2;Acti be

WT Nets.

It is straightforward but tedious to show that the following identities hold, where the op-

erations on the right-hand side of the equations are those de�ned in De�nition 3.2.28. As an

illustration, we will prove the equality for pre�xing; the details of the other cases are left to the

reader.

[[hN;Acti grow Act 0]]MAY = [[hN;Acti]]MAY grow Act 0

[[hN;Acti shrink Act 0]]MAY = [[hN;Acti]]MAY shrink Act 0

[[a:hN;Acti]]MAY = a:[[hN;Acti]]MAY

[[�:hN;Acti]]MAY = [[hN;Acti]]MAY

[[hN;Actina]]MAY = [[hN;Acti]]MAYna

[[hN;Acti[f]]]MAY = [[hN;Acti]]MAY[f]

[[hN;Acti� a]]MAY = [[hN;Acti]]MAY� a

[[hN1;Acti; hN2;Acti]]MAY = [[hN1;Acti]]MAY; [[hN2;Acti]]MAY

[[hN1;Acti � hN2;Acti]]MAY = [[hN1;Acti]]MAY � [[hN2;Acti]]MAY

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 51

[[hN1;Acti+M hN2;Acti]]MAY = [[hN1;Acti]]MAY +M [[hN2;Acti]]MAY

[[hN1;Acti jj hN2;Acti]]MAY = [[hN1;Acti]]MAY jj [[hN2;Acti]]MAY

[[hN1;ActikAhN2;Acti]]MAY = [[hN1;Acti]]MAYkA[fpg[[hN2;Acti]]MAY

[[hN1;Acti j hN2;Acti]]MAY = [[hN1;Acti]]MAY j [[hN2;Acti]]MAY

[[choice(a;aL;aR)(hN;Acti)]]MAY = choice(a;aL;aR)([[hN;Acti]]MAY)

[[split(a;a+;a�)(hN;Acti)]]MAY = split(a;a+;a�)([[hN;Acti]]MAY)

To prove the equality for pre�xing, we �rst make without proof the easy observation that

pomset-traces(a:hN;Acti) = fst(a:hpomset-traces(hN;Acti);Acti):

For one direction of the desired equality above, let q 2 [[a:hN;Acti]]MAY; then, from the above

fact, the de�nition of [[�]]MAY, and De�nition 3.2.28, it is easy to see that either q = ; or q � a:p

for some pomset-trace p of hN;Acti. It follows from general properties of pomsets that either

q = ; or q = a:q0 for some q0 � p, from which it follows immediately that q 2 a:[[hN;Acti]]MAY.

For the other direction, let r 2 a:[[hN;Acti]]MAY; then either r = ; or r = a:p for some p that is

an augmentation of some pomset-trace p0 of hN;Acti. If r is non-empty, it follows from general

properties of pomsets that r � a:p0. Using the de�nition of [[�]]MAY and the highlighted fact

above, it is then easy to see that r 2 [[a:hN;Acti]]MAY, proving this case.

Proposition 2.2.19 and the above equalities for alphabet expansion and shrinking, CSP-style

parallel composition, choice re�nements, and hiding together immediately imply the composi-

tionality of CCS-style parallel composition.

The following proposition will be helpful in our proof of compositionality for the [[�]]MUST

semantics:

Proposition 3.2.31 Let Act be a set of labels, let hq1; Dq1i 2 augment(extendAct (hp1; Dp1i)),
let hq2; Dq2i 2 augment(extendAct (hp2; Dp2i)), and let hq;Dqi 2 hq1; Dq1ikAhq2; Dq2i. Then there
are some pre�xes hp01; Dp01

i; hp02; Dp02
i of hp1; Dp1i; hp2; Dp2i, respectively, such that hq;Dqi 2

augment(extendAct (hp01; Dp0
1
ikAhp02; Dp0

2
i)).

Proof. By de�nition, hq;Dqi = hq1; Dq1ikfAhq2; Dq2i for some label-preserving, order-

non-contradicting bijection f from fe 2 Eventsq1 : lq1(e) 2 Ag to fe0 2 Eventsq2 : lq2(e
0) 2 Ag.

Let f 0 be f restricted to Eventsp1 � Eventsp2 . Let p01 be the pre�x of p1 with carrier fx 2
Eventsp1 : for all y 2 Eventsp1 ; if y �p1 x and lp1(y) 2 A then f(y) 2 Eventsp2g, and let Dp01

=

fd 2 Dp1 : d � p01g. Similarly, let p02 be the pre�x of p2 with carrier fx 2 Eventsp2 : for all y 2

52 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

Eventsp2 ; if y �p2 x and lp2(y) 2 A then f�1(y) 2 Eventsp1g, and let Dp02
= fd 2 Dp2 : d � p02g.

It is straightforward but tedious to show that hq;Dqi 2 augment(extendAct (hp01; Dp0
1
ikf 0A hp02; Dp0

2
i));

the details are left to the reader.

Theorem 3.2.32 [[�]]MUST and [[�]]TEST are compositional for all the WT Net operators, except

for split re�nements and the CCS choice operator, +M .

Proof. Let Act be a �nite alphabet containing
p
, let a; aL; aR; a+; a� 2 Act , let A � Act,

let f be a function from Act to Act such that for all � 2 Act , f(�) =
p

i� � =
p
, and let Act0

be a �nite set of labels containing
p
. Furthermore, let hN;Acti; hN1;Acti; hN2;Acti be WT

Nets.

It is straightforward but tedious to show that the following identities hold, where the oper-

ations on the right-hand side of the equations are those de�ned in De�nition 3.2.29. We prove

the equalities for CSP-style parallel composition and hiding; the details of the remaining cases

are left to the reader.

[[hN;Acti grow Act 0]]MUST = [[hN;Acti]]MUST grow Act 0

[[hN;Acti shrink Act 0]]MUST = [[hN;Acti]]MUST shrink Act 0

[[a:hN;Acti]]MUST = a:[[hN;Acti]]MUST

[[�:hN;Acti]]MUST = [[hN;Acti]]MUST

[[hN;Actina]]MUST = [[hN;Acti]]MUSTna

[[hN;Acti[f]]]MUST = [[hN;Acti]]MUST[f]

[[hN;Acti� a]]MUST
= [[hN;Acti]]MUST� a

[[hN1;Acti; hN2;Acti]]MUST = [[hN1;Acti]]MUST; [[hN2;Acti]]MUST

[[hN1;Acti � hN2;Acti]]MUST
= [[hN1;Acti]]MUST � [[hN2;Acti]]MUST

[[hN1;Acti jj hN2;Acti]]MUST = [[hN1;Acti]]MUST jj [[hN2;Acti]]MUST

[[hN1;ActikAhN2;Acti]]MUST = [[hN1;Acti]]MUSTkA[fpg[[hN2;Acti]]MUST

[[hN1;Acti j hN2;Acti]]MUST = [[hN1;Acti]]MUST j [[hN2;Acti]]MUST

[[choice(a;aL;aR)(hN;Acti)]]MUST = choice(a;aL;aR)([[hN;Acti]]MUST)

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 53

To prove the equality for CSP-style parallel composition, we �rst state without proof the
easily proved fact that:

pomset-failures(hN1;ActikAhN2;Acti) =
fhp; F i : there are some hp1; F1i 2 pomset-failures(hN1;Acti); hp2; F2i 2 pomset-failures(hN2;Acti)

such that p 2 p1kA[fpgp2; F � (A [fpg) � F1 \ F2 and F \ (A [fpg) � F1 [F2g

pomset-divergences(hN1;ActikAhN2;Acti) =Sfhp1; D1ikA[fpghp2; D2i : hp1; D1i 2 pomset-divergences(hN1;Acti) [pomset-failures(hN1;Acti);
hp2; D2i 2 pomset-divergences(hN2;Acti) [pomset-failures(hN2;Acti);
D1 and D2 are (possibly empty) downward-closed subsets of

Eventsp1 and Eventsp2 ; respectively, and D1 [D2 6= ;g))

For one direction of the desired equality, let hr;Dri 2 snd([[hN1;ActikAhN2;Acti]]MUST); then

hr;Dri 2 augment(extendAct (hp;Dpi)) for some pomset-divergence hp;Dpi of hN1;ActikAhN2;Acti.
It then follows easily from the highlighted fact above, the de�nition of [[�]]MUST, and De�ni-

tion 3.2.29 that hr;Dri 2 [[hN1;Acti]]MUSTkA[fpg[[hN2;Acti]]MUST. The proof for pomset-failures

is very similar and omitted. For the other direction, let

hr;Dri 2 snd([[hN1;Acti]]MUSTkA[fpg[[hN2;Acti]]MUST);

then hr;Dri 2 augment(extendAct (hq;Dqi)) for some pomset-divergence hq;Dqi such that hq;Dqi
2 hq1; Dq1ikA[fpghq2; Dq2i for some hq1; Dq1i 2 [[hN1;Acti]]MUST and hq2; Dq2i 2 [[hN2;Acti]]MUST.

In turn, hqi; Dqii 2 augment(extendAct (hpi; Dpii)) for some hp1; Dp1i and hp2; Dp2i that are

pomset-divergences/pomset-failures of N1 and N2 respectively. Now, Proposition 3.2.31 implies

that there are pre�xes hp01; Dp01
i; hp02; Dp02

i of hp1; Dp1i; hp2; Dp2i respectively such that hq;Dqi 2
augment(extendAct (hp01; Dp0

1
ikA[fpghp02; Dp0

2
i)). By Proposition 3.2.14, hp01; Dp0

1
i; hp02; Dp0

2
i are

pomset-divergences/pomset-failures of N1; N2, hence the highlighted fact above together with

the de�nition of [[�]]MUST implies that hq;Dqi 2 snd([[hN1;ActikAhN2;Acti]]MUST. It now follows

from Proposition 3.2.18 that hr;Dri 2 snd([[hN1;ActikAhN2;Acti]]MUST. The proof for pomset-

failures in fst([[hN1;Acti]]MUSTkA[fpg[[hN2;Acti]]MUST) then follows easily from the highlighted

fact above; we omit the details.

We now prove the equality for hiding. Since the de�nition of failure sets \looks through"
�rings of � -transitions and failure sets are closed under subsets, it is straightforward to show
that

pomset-failures(hN;Acti� a) = fhp� a; F i : hp; F [fagi 2 pomset-failures(hN;Acti)g

We recall that by de�nition of WT Nets, only a �nite number of transitions are enabled
under any reachable marking. Thus, it is possible for unbounded-length sequences of a-labeled
events to be enabled after any pre�x d of a pomset p only if either a divergence is enabled
immediately after d or a divergence is enabled \along the way to d," i.e., immediately after
some pomset d0 with hd0; fEventsd0gi v hd; fEventsdgi. In either case, it then follows easily from

54 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

the de�nition of pomset-divergences that:

extendAct (pomset-divergences(hN;Acti� a)))

=

extendAct (fhp;D [Dpi� a : hp;Di 2 pomset-divergences(hN;Acti) [pomset-failures(hN;Acti);
D [Dp 6= ;; hp;D [Dpi is a pomset-divergence;

and for all n � 0; there is some pn with

hpn; Di 2 pomset-divergences(hN;Acti)) [pomset-failures(hN;Acti))
such that

hp;Dpi v hpn; fEventspngi; all events in pn � p are a-labeled;

and for every d 2 Dp;

there is some n-length chain of a-labeled events in pn � p

whose downward closure restricted to p is dg)

To prove one direction of the desired equality, let hr;Dri 2 snd([[hN; acti� a]]MUST); then

hr;Dri 2 augment(extendAct (hp;Dpi)) for some pomset-divergence hp;Dpi of hN;Acti � a.

It then follows easily from the highlighted fact above, the de�nition of [[�]]MUST, and De�ni-

tion 3.2.29 that hr;Dri 2 snd([[hN; acti]]MUST� a). The proof for pomset-failures hr; Fri 2
fst([[hN; acti� a]]MUST) is very similar and is omitted.

For the other direction, let hPF; PD;Acti = [[hN;Acti]]MUST and let hr;Dri
2 snd([[hN;Acti]]MUST� a). Then by De�nition 3.2.29, hr;Dri 2 augment(extendAct (hp;D [
Dpi � a)) for some pomset-divergence hp;D [Dpi and some sequence hhpn; Di : n � 0i such
that

hp;Di 2 PD [PF;
and for all n � 0; there is some pn with hpn; Di 2 PD [PF

such that hp;Dpi v hpn; fEventspngi; all events in pn � p are a-labeled;

and for every d 2 Dp;

there is some n-length chain of a-labeled events in pn � p

whose downward closure restricted to p is d

For one case, suppose that hp;Di and all of the hpn; Di are in pomset-divergences(hN;Acti)[
pomset-failures(hN;Acti). Then it follows by the highlighted equality above that

hp;D[Dpi� a 2 extendAct (pomset-divergences(hN;Acti� a));

and thus that hr;Dri 2 snd([[hN; acti� a]]MUST).

For another case, suppose that all of the hpn; Di 2 augment(pomset-divergences(hN;Acti))[
augment(pomset-failures(hN;Acti)). Then there is some sequence hhqn; Dni : n � 0i such that

each hpn; Di � hqn; Dni 2 pomset-divergences(hN;Acti) [pomset-failures(hN;Acti). Since

Eventsp is �nite, there must be some subsequence hhqnk ; Dnki : k � 0i and some set such that

for all i � 0, all the Dni are identical to some common D0 and the ordering of all the qni
restricted to Eventsp is identical. Let q be the pomset with this common ordering and with

the same events and labels as p; it is easy to see that hq;D0i � hp;Di. Furthermore, assuming
without loss of generality that n0 > jpj, it is easy to see that there is some set Dq of downward-

closed sets of Eventsq such that Dp � fdownp(d) : d 2 Dqg, and hq;D0i, Dq, and the sequence

hhqnk; Dnki : k � 0i are in the set on the right-hand side of the highlighted equality. By the

�rst case, hq;D0 [Dqi� a 2 extendAct (pomset-divergences(hN;Acti� a)). It is easy to see that

hq;D0 [Dqi� a v hp;D [Dpi� a; thus by Proposition 3.2.18, hp;D [Dpi� a and hr;Dri are

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 55

in snd([[hN; acti� a]]MUST).

For the last case, suppose that some hpi; Di 62 augment(pomset-divergences(hN;Acti)) [
augment(pomset-failures(hN;Acti)). If for all such i, there is some j > i with

hpj; Di 2 augment(pomset-divergences(hN;Acti)) [augment(pomset-failures(hN;Acti)), then
substituting pj for pi yields a sequence that satis�es the earlier case. Otherwise, there must be

some hpi; Di 62 augment(pomset-divergences(hN;Acti)) [augment(pomset-failures(hN;Acti))
such that for all j > i,

hpj; Di 62 augment(pomset-divergences(hN;Acti))[augment(pomset-failures(hN;Acti)):

It is clear that there must be some sequence hhqn; Dni : n � 0i such that each hqn; Dni 2
minv(pomset-divergences(hN;Acti)) and hpn; Di 2 augment(extendAct (hqn; Dni)). Let p-related(Dn)

be the set of d0 \ Eventsp such that d0 2 Dn. It is easy to see that the number of distinct sets

p-related(Dn) is �nite; hence there must be some subsequence hhqnk; Dnki : k � 0i such that

all the p-related(Dnk) sets are equal. By Proposition 3.2.14, pomset-divergences(hN;Acti) is a
pre�x-closed set, and so we can assume without loss of generality that for all nk � 0, there is no

event x 2 qnk such that downqnk (x) � d0 for some d0 2 Dnk. Using a straightforward �niteness

argument on the length of chains that are unbounded in the pnk but bounded in the qnk , it is easy

to show that there is some some subsequence hhq0nl ; D0
nl
i : l � 0i of hhqnk; Dnki : k � 0i, some set

Dq0 of pre�xes of q
0
n0
, and some D0 in the set on the right-hand side of the equality such that all

theD0
nl
= D0. Furthermore, it is easy to show that hp;D[Dpi�a 2 augment(extendAct (hq0n0; D0[

Dq0i� a)). By the �rst case, hq0n0; Dn0 [Dq0i� a 2 augment(pomset-divergences(hN;Acti� a)).

Hence, by Proposition 3.2.18, hp;D[Dpi� a 2 snd([[hN; acti� a]]MUST) and hence so is hr;Dri.
The proof that fst([[hN; acti�a]]MUST) � fst([[hN; acti]]MUST� a) is similar and is left to the

reader.

Proposition 2.2.19 and the equalities for alphabet expansion and shrinking, CSP-style paral-

lel composition, choice re�nements, and hiding together immediately imply the compositionality

of CCS-style parallel composition.

It is easy to show that for sequential nets, [[�]]MUST-equivalence and [[�]]TEST-equivalence respec-
tively coincide with must-equivalence and Testing-equivalence. Thus, as a simple consequence

of Proposition 3.1.6, the [[�]]MUST and [[�]]TEST semantics are compositional for split re�nements

on sequential nets.

However, in general:

Proposition 3.2.33 [[�]]MUST and [[�]]TEST are not compositional for split re�nements or the CCS
choice operator, +M .

Proof. For the proof for split re�nements, let hN1;Acti and hN2;Acti be the nets

illustrated in Figure 3-4, and let Act = fa; a+; a�; bg; this example is due to Frits Vaan-

drager [38]. It is straightforward to show that [[hN1;Acti]]MUST = [[hN2;Acti]]MUST and that

[[hN1;Acti]]TEST = [[hN2;Acti]]TEST.
However,

ha+; fbgi 2 snd([[split(a;a+;a�)(hN1;Acti)]]MUST)� snd([[split(a;a+;a�)(hN2;Acti)]]MUST):

56 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

� � � �
a a b a

b b b

��

��
��

NNNNN&&

��

��
��xxppp

pp

��

��
��

��

��
������������ ��

�� ����

��
��

��

��
��

hN1;Acti hN2;Acti

� � � �
a+ a+ b a+

a� a� a�

b b b

��

��
��

NNNNN&&

��

��
��xxppp

pp

��

��
��

��

��
������������������� ��

�� �� ����

��
��

��

��
��

��

��
��

�� ����

��
��

��

��
��

split(a;a+;a�)(hN1;Acti) split(a;a+;a�)(hN2;Acti)

Figure 3-4: Standard Example for Split Re�nements

� �
a �

a

��

��
��

��

��
��

����
��

��

hN1;Acti hN2;Acti

� �
b a � b

a

��

��
��xxppp

pp

��

��
��

NNNNN&&

����
��

��

b+M hN1;Acti b+M hN2;Acti

Figure 3-5: Standard Example for CCS choice

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 57

� �
� �

a a1

a0

p
a2

p

��

��
��

��

��
��

�� ����

��
��

��

��OOOOO''���������� ����

��
��

>>>>>>
��

��

��
��

wwooo
oo

hN;Acti ��

��
��

dupl-split(hN;Acti)

Figure 3-6: An Example of Duplicate-Splitting

We note that neither hN1;Acti nor hN2;Acti is a sequential net, since both of them can �re an

a-labeled transition concurrently with a b-labeled transition.

For the proof of +M , let hN1;Acti and hN2;Acti be the nets illustrated in Figure 3-5, and

let Act = fa; bg. It is straightforward to show that [[hN1;Acti]]MUST = [[hN2;Acti]]MUST and that

[[hN1;Acti]]TEST = [[hN2;Acti]]TEST. However,

h;; fbgi 2 snd([[hN2;Acti+M b]]MUST)� snd([[hN1;Acti+M b]]MUST):

The di�culty with split re�nements is that they make visible the failure sets of the net after

transitions have \half-�red", while the [[�]]MUST semantics does not keep track of this information.

To correct this di�culty in our semantics, we �rst \duplicate-split" our nets; in particular, we

\duplicate" every visible transition, then simultaneously \split" every duplicate transition into

two consecutive transitions labeled a1 and a2, where a is the label of the original transition.

Furthermore, we relabel with a0 every visible transition of the original net, where a is the

label of the original transition. We leave all � -labeled and
p
-labeled transitions untouched.

Figure 3-6 gives an example.

More formally:

De�nition 3.2.34 Let hN;Acti be a WT Net. Then hP;Act0i = dupl-split(hN;Acti) is de�ned
as:

Act 0 = fai : a 2 Act �fpg and 0 � i � 2g [fpg

SP = SN] f(�; t) : t 2 TN and lN(t) 62 f
p
; �gg

58 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

TP = TN] f(t; 1); (t; 2) : t 2 TN and lN(t) 62 f
p
; �gg

preP (t) = preN(t)

preP ((t; 1)) = preN(t)

preP ((t; 2)) = f(�; t)g

postP (t) = postN(t)

postP ((t; 1)) = f(�; t)g
postP ((t; 2)) = postN(t)

lP (t) =

(
lN(t)0 if lN(t) 62 f

p
; �g

lN(t) otherwise

lP ((t; 1)) = lN(t)1

lP ((t; 2)) = lN(t)2

StartP = StartN

We note that:

Proposition 3.2.35 WT Nets are closed under dupl-split .

The proof is simple and is left to the reader.

The di�culty with the +M operator is that the [[�]]MUST semantics does not keep track of

initial �rings of � -transitions; to correct this di�culty, we simply +M the dupl-split nets with

a fresh, distinguished action , and take the [[�]]MUST semantics of the resulting net:

De�nition 3.2.36 Let hN;Acti be a WT Net and assume without loss of generality that

 62 Act. Then:

[[hN;Acti]]MUST
split-

def
= [[+M (dupl-split(hN;Acti) grow fg)]]MUST

[[hN;Acti]]TESTsplit-

def
= h[[hN;Acti]]MAY; [[hN;Acti]]MUST

split-i

Theorem 3.2.37 [[�]]MUST
split- , and [[�]]TESTsplit- onWTNets are respectively adequate formay-equivalence,

must-equivalence, and Testing-equivalence.

Proof. From the de�nition of dupl-split and +M and Proposition 3.2.18, it is straight-

forward to show that

F(hN;Acti) = fhv; F i : hv; F i is a linearly-ordered pomset-failure over Act

and hv[f]; ff(a) : a 2 Fgi 2 fst([[hN;Acti]]MUST

split-);

where f(a) = a0 for all a 2 Act �fpg and f(
p
) =

pg

D(hN;Acti) = fv : v is a linearly-ordered pomset over Act

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 59

and hv[f]; fEventsvgi 2 snd([[hN;Acti]]MUST

split-);

where f(a) = a0 for all a 2 Act �fpg and f(
p
) =

pg

Act = fa : a0 2 third([[hN;Acti]]MUST

split-)g [f
pg

from which the adequacy of [[�]]MUST
split- follows easily. The adequacy of [[�]]TESTsplit- is an immediate

consequence of this fact and Theorem 3.2.12.

The �1-labeled transitions in dupl-split(hN;Acti) yield essential information about the fail-

ures of the net hN;Acti after some transitions are \half-split." On the other hand, the �2-labeled

transitions yield no new information. In fact, as we will show below, the pomset-failures and

pomset-divergences of dupl-split(hN;Acti) that contain any �2-labeled events can be fully re-

covered from those contain no �2-labeled events by \splitting" some �0-labeled events.

We �rst observe that:

Proposition 3.2.38 Let hN;Acti be aWTNet, and let p be a pomset-trace of dupl-split(hN;Acti).
Then:

� For any a 2 Act , if p does not contain any a2-labeled events, then every a1-labeled event

is a maximal event in p.

� Let hp; F i be a pomset-failure of dupl-split(hN;Acti). For any a 2 Act , if p does not

contain any a2-labeled events and does contain some a1-labeled event, then a2 62 F .

� Let hp;Di be a pomset-divergence of dupl-split(hN;Acti). For any a 2 Act , if p does not

contain any a2-labeled events, then no d 2 D contains any a1-labeled events.

The proposition is a simple consequence of the de�nitions of pomset-traces, pomset-divergences,

and dupl-split; the details are left to the reader.

De�nition 3.2.39 Let Act0 be a �nite alphabet such that for some �nite alphabet Act , Act0 =
f;pg [fai : a 2 Act and 0 � i � 2g. Let PF be a set of pomset-failures over Act 0, and let

PD be a set of pomset-divergences over Act 0. Then:

1-2-respect(PF)
def
= fhp; F i 2 PF : for every label a 2 Act ;

p has no a2-labeled events

and all a1-labeled events in p are maximal in pg
1-2-respect(PD)

def
= fhp;Di 2 PD : for every label a 2 Act ;

p has no a2-labeled events;

all a1-labeled events in p are maximal in p;

and no d 2 D contains any a1-labeled eventsg

De�nition 3.2.40 Let Act0 be a �nite alphabet such that for some �nite alphabet Act , Act0 =
f;pg[fai : a 2 Act and 0 � i � 2g. Let p be a pomset overAct0, let hp; F i be a pomset-failure
overAct 0, let hp;Di be a pomset-divergence, and let X � fx 2 Eventsp : lp(x) = a0 for some a 2
Actg. Then 0-splitX(p) is de�ned to be the pomset q with all events in X split, i.e.:

60 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

� Eventsq = (f(y; 0) : y 2 Eventsp �X)[f(y; 1); (y; 2) : y 2 Xg.

� lq((y; i)) =

(
lp(y) if i = 0

lp(y)i otherwise

� (y; i)<q (y
0; j) i� either y <p y

0 or (y =p y
0 and i < j).

Furthermore, 0-splitX(hp;Di) def
= h0-splitX(p); f0-splitX(d) : d 2 Dgi. We then de�ne:

0-split(p)
def
= f0-splitX(p) : X � fx 2 Eventsp : lp(x) = a0 for some a 2 Actgg

0-split(hp; F i) def
= fhq; F i : q 2 0-split(p)g

0-split(hp;Di) def
= f0-splitX(hp;Di) : X � fx 2 Eventsp : lp(x) = a0 for some a 2 Actgg

We lift 0-split to sets of individuals by point-wise union.

We remark that pomsets, pomset-failures, and pomset-divergences are preserved under

0-split ; the details are left to the reader.

As promised, the pomset-failures and pomset-divergences of duplicate-split nets can be

recovered from 1-2-respect ing pomsets by 0-split ting.

Proposition 3.2.41 Let hN;Acti be a WT Net. Then:

pomset-failures(dupl-split(hN;Acti)) =
0-split(1-2-respect(pomset-failures(dupl-split(hN;Acti))))

pomset-divergences(dupl-split(hN;Acti)) =
0-split(1-2-respect(pomset-divergences(dupl-split(hN;Acti))))

The proof is a straightforward consequence of the de�nitions of pomset-failures, pomset-

divergences, and duplicate-splitting; the details are left to the reader.

The presence of �2-labeled events does complicate split and choice re�nements since corre-

sponding �1 and �2 events in a pomset-trace might not \match up" correctly during re�nement;

so, we restrict attention to pomsets without �2-labeled events. Similar to Proposition 3.2.41,

we will be able to fully recover the re�ned �2-labeled events from the re�ned �0-labeled events.

De�nition 3.2.42 Let Act0 be a �nite alphabet such that for some �nite alphabet Act , Act0 =
f;pg [fai : a 2 Act and 0 � i � 2g. Let p be a pomset such that no event in p is labeled b2
for any b 2 Act , let hp; F i be a pomset-failure over Act 0, let hp;Di be a pomset-divergence over
Act 0, and let a; aL; aR be labels in Act. Then

0-1-choice(a;aL;aR)(hp; F i)
def
= fhq; Fqi : q 2 choice(a0;aL0;aR0)(choice(a1;aL1;aR1)(p))

Fq � Fp [fa0; a1; a2g
and if aL0 2 Fq or aR0 2 Fq then a0 2 Fp

if aL1 2 Fq or aR1 2 Fq then a1 2 Fp

if aL2 2 Fq then there is no aL1-labeled event in q

if aR2 2 Fq then there is no aR1-labeled event in qg))

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 61

Furthermore,

0-1-choice(a;aL;aR)(hp;Di) def
= choice(a0;aL0;aR0)(choice(a1;aL1;aR1)(hp;Di))

In de�ning split re�nements, we want to \fully split" each a0-labeled event into the sequence

a+0:a�0. Furthermore, we want a1-labeled events to simulate half-�rings of splits, and hence we

have three choices for each a1-labeled event: relabel the event with a+1, relabel the event with

a+0, or split the event into a+0:a�1. (The other two possibilities, a+1:a+2 and a+1:a+2:a�1, can

be obtained from 0-splitting.) These choices are reected below:

De�nition 3.2.43 Let Act0 be a �nite alphabet such that for some �nite alphabet Act , Act0 =
f;pg [fai : a 2 Act and 0 � i � 2g. Let p be a pomset such that no event in p is labeled b2
for any b 2 Act , let hp; F i be a pomset-failure over Act 0, let hp;Di be a pomset-divergence over
Act 0, and let a; a+; a� be labels in Act . Furthermore, let X0; X1; X2 be a partition of the set of

a1-labeled events of p. Then 0-1-split(a;a+;a�) is de�ned to be the pomset q such that

� Eventsq = f(y; 0) : y 2 Eventsp and lp(y) 62 fa0; a1gg
[f(y; 1) : y 2 Eventsp and lp(y) 2 fa0; a1gg
[f(y; 2) : y 2 Eventsp and either lp(y) = a0 or y 2 X2g.

� lq((y; i)) =

8>>>>><
>>>>>:

lp(y) if i = 0

a+0 if i = 1 and y 62 X0

a+1 if i = 1 and y 2 X0

a�0 if i = 2 and y 62 X2

a�1 if i = 2 and y 2 X2

� (y; i)<q (y
0; j) i� either y <p y

0 or (y =p y
0 and i < j).

We then de�ne:

0-1-split(a;a+;a�)(p)
def
= f0-1-split(a;a+;a�;X0;X1;X2)

(p) : X0; X1; X2 partition fx 2 Eventsp : lp(x) = a1gg

0-1-split(a;a+;a�)(hp;Di)
def
= fhp0; D0i : p0 = 0-1-split(a;a+;a�;X0;X1;X2)(p) and

D0 = f0-1-split(a;a+;a�;X0;X1;X2)
(d) : d 2 Dg

for some X0; X1; X2 that partition fx 2 Eventsp : lp(x) = a1gg
0-1-split(a;a+;a�)(hp; F i)

def
= fhp0; F 0i : p0 = 0-1-split(a;a+;a�;X0;X1;X2)(p)

for some X0; X1; X2 that partition fx 2 Eventsp : lp(x) = a1g;
F 0 � F [fa0; a1; a2g;
and if a+0 2 F 0 or a+1 2 F 0 then a0 2 F and a1 2 F

if X0 6= ; then a+2 62 F 0

if X1 6= ; then F 0 \ fa�0; a�1g = ;
if X2 6= ; then a�2 62 F 0g

The following de�nition will be helpful in proving the compositionality of the [[�]]MUST
split- and

[[�]]TESTsplit- semantics for +M :

62 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

De�nition 3.2.44 Let PF be a set of pomset-failures over a �nite alphabet Act . Then

init(PF)
def
= fa 2 Act : ha; ;i 2 PFg.

The following de�nition will be used heavily in our proof of compositionality for [[�]]MUST
split- . In

this de�nition, the presence of in failure sets is used to indicate that some initial � -transitions

have been �red.

De�nition 3.2.45 Let Act be a �nite alphabet containing the distinguished symbol
p
, let

Act 0 = fai : a 2 Act �fpg and 0 � i � 2g[f;pg, let PF; PF1; PF2 be sets of pomset-failures

overAct 0, and let PD; PD1; PD2 be sets of pomset-divergences overAct
0. Let a; aL; aR; a+; a� 2

Act �fpg, let A be a subset of Act containing
p
, let f be a function from Act to Act such

that for all � 2 Act , f(�) =
p

i� � =
p
. Let hPF ; PD ;Act

0i def
= [[h;Act0i]]MUST, and for

all a 2 Act �fpg, let hPFa:p; PDa:
p;Act0i def

= [[hNa:
p;Act0i]]MUST

split- , where Na:
p is a net that

can perform exactly an a-transition causally followed by a
p
-transition, after which the net

deadlocks.

The following de�nitions use the operators de�ned in De�nition 3.2.29. The jj operator
remains the same as in De�nition 3.2.29.

hPF; PD;Act0i grow A
def
= hPF; PD;Act0i grow A

hPF; PD;Act0i shrink A
def
= hPF; PD;Act0i shrink A

a pref hPF; PD;Act0i def
= hPF; PD ;Act

0i+M (hPFa:p; PDa:
p;Act0i; (hPF; PD;Act0in))

� pref hPF; PD;Act0i def
= hPF; PD ;Act

0i+M (hPF; PD;Act0in)

hPF; PD;Act0i rst a def
= ((hPF; PD;Act0ina0)na1)na2

hPF; PD;Act0i rename with f
def
= hPF; PD;Act0i[f 0];

where f 0(ai) = (f(a))i for all a 2 Act and 0 � i � 2;

and f 0 is the identity on f;pg

hPF; PD;Act0i hide a def
= ((hPF; PD;Act0i� a0)� a1)� a2

hPF1; PD1;Act
0i seq hPF2; PD2;Act

0i def
= hPF1; PD1;Act

0i; (hPF; PD;Act0in)

hPF1; PD1;Act
0i internal choice hPF2; PD2;Act

0i def
= � pref hPF1; PD1;Act

0i+M � pref hPF; PD;Act0i

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 63

hPF1; PD1;Acti +M hPF2; PD2;Acti def
= hPF 0; PD0;Acti

where

PF 0 = fh;; F i : h;; F [fgi 2 PF1 [PF2g
[fhp; F i 2 PF1 [PF2 : either p 6= ; or F \ (init(PF1) [init(PF2)) = ;g

PD0 = PD1 [PD2

hPF1; PD1;Act
0i CSP-parallelA hPF2; PD2;Act

0 def
= hPF 0; PD0;Act 0ii

where

hPF; PD;Act0i = 1-2-respect(hPF1; PD1;Act
0i)kA01-2-respect(hPF2; PD2;Act

0i)
A0 = fai : a 2 A� fpg and 0 � i � 2g [f;pg

and

PF 0 = augment(0-split(PF))[implied-failures
Act

0 (PD0)
PD0 = augment(extend

Act
0(0-split(PD)))

choice(a;aL;ar)(hPF; PD;Act0i) def
= hPF 0; PD0;Act 0i

where

hPF 00; PD00;Act0i = 0-1-choice(a;aL;aR)(1-2-respect(hPF; PD;Act0i))
and

PF 0 = augment(0-split(PF 00)) [implied-failures
Act

0(PD0)
PD0 = augment(extend

Act
0(0-split(PD00)))

split(a;a+;a�)(hPF; PD;Act0i) def
= hPF 0; PD0;Act 0i

where

hPF 00; PD00;Act0i = 0-1-split(a;aL;aR)(1-2-respect(hPF; PD;Act
0i))

and

PF 0 = augment(0-split(PF 00)) [implied-failures
Act

0(PD0)
PD0 = augment(extendAct 0(0-split(PD00)))

hPF1; PD1;Act
0i CCS-parallel PF2; PD2;Act

0 def
=

((hPF 0
1; PD

0
1;Act

00i CSP-parallelA[f;pg hPF 0
2; PD

0
2;Act

00i) hide A) shrink Act 0

where

hPF 0
1; PD

0
1;Act

00i = �(hPF1; PD1;Act
0i grow A)

hPF 0
2; PD

0
2;Act

00i = �0(hPF2; PD2;Act
0i grow A)

and fa1; a1; : : : ; ak; akg = Act 0�f;pg;
A = fa01; a01; : : : ; a0k; a0kg are distinct symbols not in Act0;
� is the sequence choice(a1;a1;a01) � choice(a1;a1;a01) : : :choice(ak;ak;a0k) � choice(ak;ak;a0k);
and �0 is the sequence choice

(a1;a1;a01)
� choice(a1;a1;a01) : : :choice(ak;ak;a0k) � choice(ak;ak;a0k)

We now show:

Theorem 3.2.46 [[�]]MUST
split- and [[�]]TESTsplit- are compositional for split re�nements, choice re�ne-

ments, alphabet expansion and shrinking, and all of our CCS/CSP operators.

64 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

Proof. Let Act be a �nite alphabet containing
p
, let a; aL; aR; a+; a� 2 Act , let A � Act,

let f be a function from Act to Act such that for all � 2 Act , f(�) =
p

i� � =
p
, and let Act0

be a �nite set of labels containing
p
. Furthermore, let hN;Acti; hN1;Acti; hN2;Acti be WT

Nets.

The following identities hold, where the operations on the right-hand side of the equations

are those de�ned in De�nition 3.2.45:

[[hN;Acti grow Act
0
]]
MUST
split- = [[hN;Acti]]MUST

split- grow Act
0

[[hN;Acti shrink Act 0]]MUST
split- = [[hN;Acti]]MUST

split- shrink Act0

[[a:hN;Acti]]MUST
split- = a pref [[hN;Acti]]MUST

split-

[[�:hN;Acti]]MUST
split- = � pref [[hN;Acti]]MUST

split-

[[hN;Actina]]MUST
split- = [[hN;Acti]]MUST

split- rst a

[[hN;Acti[f]]]MUST
split- = [[hN;Acti]]MUST

split- rename with f

[[hN;Acti� a]]MUST
split- = [[hN;Acti]]MUST

split- hide a

[[hN1;Acti; hN2;Acti]]MUST
split- = [[hN1;Acti]]MUST

split- seq [[hN2;Acti]]MUST
split-

[[hN1;Acti +M hN2;Acti]]MUST
split- = [[hN1;Acti]]MUST

split- +M [[hN2;Acti]]MUST
split-

[[hN1;Acti � hN2;Acti]]MUST
split- = [[hN1;Acti]]MUST

split- internal choice [[hN2;Acti]]MUST
split-

[[hN1;Acti jj hN2;Acti]]MUST
split- = [[hN1;Acti]]MUST

split- jj [[hN2;Acti]]MUST
split-

[[hN1;ActikAhN2;Acti]]MUST
split- = [[hN1;Acti]]MUST

split- CSP-parallelA[f;pg [[hN2;Acti]]MUST
split-

[[hN1;Acti j hN2;Acti]]MUST
split- = [[hN1;Acti]]MUST

split- CCS-parallel hN2;Acti

[[choice(a;aL;aR)(hN;Acti)]]MUST
split- = choice(a;aL;aR)([[hN;Acti]]MUST

split-)

[[split(a;a+;a�)(hN;Acti)]]MUST
split- = split(a;a+;a�)([[hN;Acti]]MUST

split-)

The proof for CSP-style parallel composition is essentially the same as that in Theo-

rem 3.2.32, except it uses the following easily proved fact:

3.2. SOME COMPOSITIONAL SEMANTICS FOR WT NETS AND OPERATORS 65

pomset-failures(+M (dupl-split(hN1;ActikAhN2;Acti) grow fg)) =
0-split(fhp; F i : hp1; F1i 2 1-2-respect(pomset-failures(+M (dupl-split(hN1;Acti) grow fg)));

hp2; F2i 2 1-2-respect(pomset-failures(+M (dupl-split(hN2;Acti) grow fg)));
and p 2 p1kA0p2; F �A0 � F1 \ F2 and F \A0 � F1 [F2;

where A0 = fai : a 2 A and 0 � i � 2g [fpg)

pomset-divergences(+M (dupl-split(hN1;ActikAhN2;Acti) grow fg)) =
0-split(

Sfhp1; D1ikA0hp2; D2i :
hp1; D1i 2 1-2-respect(pomset-divergences(+M (dupl-split(hN1;Acti) grow fg)))

[1-2-respect(pomset-failures(+M (dupl-split(hN1;Acti) grow fg)));
hp2; D2i 2 1-2-respect(pomset-divergences(+M (dupl-split(hN2;Acti) grow fg)))

[1-2-respect(pomset-failures(+M (dupl-split(hN2;Acti) grow fg)));
D1 and D2 are (possibly empty) downward-closed subsets of

Eventsp1 and Eventsp2 ; respectively, and D1 [D2 6= ;;
and A0 = fai : a 2 A and 0 � i � 2g [fpg)

The proofs for choice re�nement and split re�nement follow straightforwardly from Propo-

sition 3.2.18 and the easily proved facts that:

pomset-failures(+M (dupl-split(choice(a;aL;aR)(hN;Acti)))) =
0-split(0-1-choice(a;aL;aR)(1-2-respect(pomset-failures(+M (dupl-split(hN;Acti) grow fg)))))

pomset-divergences(+M (dupl-split(choice(a;aL;aR)(hN;Acti)))) =
0-split(0-1-choice(a;aL;aR)(1-2-respect(pomset-divergences(+M (dupl-split(hN;Acti) grow fg)))))

pomset-failures(+M (dupl-split(split(a;a+;a�)(hN;Acti)))) =
0-split(0-1-split(a;a+;a�)(1-2-respect(pomset-failures(+M (dupl-split(hN;Acti) grow fg)))))

pomset-divergences(+M (dupl-split(choice(a;a+;a�)(hN;Acti)))) =
0-split(0-1-split(a;a+;a�)(1-2-respect(pomset-divergences(+M (dupl-split(hN;Acti) grow fg)))))

The proof for hiding is analogous to that in Theorem 3.2.32. The proofs of the remaining

equalities are left to the reader. We remark that Proposition 2.2.18 and the equalities for

pre�xing and CCS choice together imply the compositionality of internal choice. Furthermore,

Proposition 2.2.19 and the equalities for alphabet expansion and shrinking, CSP-style parallel

composition, choice re�nements, and hiding together imply the compositionality of CCS-style

parallel composition.

The compositionality of [[�]]TESTsplit- then follows easily from the above proofs together with

Theorem 3.2.30.

In fact, [[�]]MUST
split- and [[�]]TESTsplit- make just the right distinctions with respect to [[�]]MUST, [[�]]TEST,

and our WT Net operators:

Theorem 3.2.47 [[�]]MUST
split- and [[�]]TESTsplit- are fully abstract for split re�nements, choice re�ne-

ments, and all of our CCS/CSP operators with respect to [[�]]MUST and [[�]]TEST, respectively.

66 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

Proof. From the de�nition of dupl-split and , it is easy to see that

fst([[hN;Acti]]MUST) = fhp; F i : hp; F i is a pomset-failure over Act

and hp[f]; ff(a) : a 2 Fgi 2 fst([[hN;Acti]]MUST

split-);

where f(a) = a0 for all a 2 Act �fpg and f(
p
) =

pg

snd([[hN;Acti]]MUST) = fhp;Di : p is a pomset-divergence over Act

and hp[f]; Di 2 snd([[hN;Acti]]MUST

split-);

where f(a) = a0 for all a 2 Act �fpg and f(
p
) =

pg

Act = fa : a0 2 third([[hN;Acti]]MUST

split-)g [f
pg

from which adequacy follows easily.

Theorem 3.2.46 has shown that [[�]]MUST
split- and [[�]]TESTsplit- are compositional for all the WT Net

operators. To prove full abstraction, we observe that +M (dupl-split(�) grow fg) can be

programmed by CCS choice and a �nite sequence of choice and split re�nements, together with

some alphabet-expansion and shrinking. In particular, assuming that fa1i : a1 2 Act and 0 �
i � 2g \Act = ;,

 +M (dupl-split(hN;Acti) grow fg) = +M ((�(hN;Acti grow Act0)) shrink Act 0)

where � is the sequence split(a1;a1
1
;a1
2
) : : : split(ak;ak

1
;ak
2
) � choice(a1;a1;a10) : : :choice(ak;ak;ak0);

Act �fpg = fa1; : : : ; akg, Act0 = fa1i : a1 2 Act and 0 � i � 2g [fp; g, and equality refers

to net isomorphism. If a1i 2 Act for some a1 2 Act and some 0 � i � 2, the equality above

can be suitably modi�ed to use di�erent \fresh" variables and renaming. The theorem is then

a simple consequence of this equality and the de�nition of [[�]]MUST
split- and [[�]]TESTsplit- .

However, as we will prove in the next section, [[�]]MAY, [[�]]MUST
split- , and [[�]]TESTsplit- are not fully

abstract for our WT Net operators with respect to may-equivalence, must-equivalence, and

Testing-equivalence, respectively. The complication is that these semantics make strictly more

distinctions than our net contexts.

We remark here that keeping track of concurrent divergences is necessary for composition-

ality with respect to parallel composition. In particular, suppose we modify the de�nition of

pomset-divergences, hp;Di, so that D must be a singleton set. Then the rede�ned [[�]]MUST
split-

semantics based on this modi�ed version of pomset-divergences will not be compositional for

parallel composition, which was the di�culty faced by Vogler [47, 49]. Our [[�]]MUST
split- semantics

avoids this di�culty by keeping track of concurrent divergences, and resolves an open prob-

lem posed in [49]. The di�culty with keeping track of only single divergences is illustrated in

Figure 3-7. It is easy to see that hN1;Acti and hN2;Acti have the same meanings under the
rede�ned [[�]]MUST

split- semantics and that hN3;Acti and hN4;Acti have the same meanings under

the rede�ned [[�]]MUST
split- semantics, where Act = fa; b; c; dg. However, hp; fea; ecgi is a pomset-

single-divergence of hN2;Acti jj hN4;Acti, while it is not an augmentation of any extension of

3.3. FULLY ABSTRACT SEMANTICS 67

� �
a b

� �

��

��
��

��

��
��

�� ����

��
��

��

��
��

!

//

!

//

hN1;Acti hN3;Acti

� �
a a b b

� c � d

� �

��

��
yytt
tt

JJJJ%%

��

��JJJJ%%yytt
tt

�� �� �� ����

��
��

��

��
��

��

��
��

��

��
��

!

//

��
!

//

����

��
��

��

��
��

!

//

!

//

hN2;Acti hN4;Acti

p = a b

c d
�� ��

Figure 3-7: An Example of the Necessity of Concurrent Divergences

any pomset-single-divergence hq; fdgi of hN1;Acti jj hN3;Acti.

3.3 Fully Abstract Semantics

It turns out that [[�]]MAY, [[�]]MUST
split- , and [[�]]TESTsplit- make more distinctions than are apparent to a

single experimenter. Namely, single experimenters can only detect di�erences between pomsets

with interval orderings [32, 47]. We repeat the de�nition here:

De�nition 3.3.1 A partial order � is is an interval ordering i� whenever both w < x and

y < z, then either w < z or y < x. A pomset p is an interval pomset i� �p is an interval

ordering.

It is well-known (cf. [14]) that:

Lemma 3.3.2 ([14]) Every interval ordering, �p, is order-isomorphic to a set of intervals of

the real line, where by de�nition, (interval w) < (interval x) i� every point in (interval w)

strictly precedes every point in (interval x).

68 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

We de�ne a corresponding version of \interval pomset-divergences":

De�nition 3.3.3 A pomset-divergence hp;Di is an interval pomset-divergence i� p is an in-

terval pomset and D = fdg for some d that contains all the non-maximal events of p, i.e.,

d � Eventsp �max (p).

We de�ne the interval-may-, interval-must-, and interval-Testing semantics by restricting

the [[�]]MAY, [[�]]MUST
split- , and [[�]]TESTsplit- semantics to interval pomsets and interval pomset-divergences:

De�nition 3.3.4 Let P be a set of pomsets, let PF be a set of pomset-failures, and let

PD be a set of pomset-divergences. Then intervals(P) is the set of interval pomsets p 2 P ,
intervals(PF) is the set of hp; F i 2 PF such that p is an interval pomset, and intervals(PD)
is the set of interval pomset-divergences hp;Di 2 PD.

For any alphabet Act , let intervals(hP ;Acti) def
= hintervals(P);Acti, and let

intervals(hPF;PD;Acti) def
= hintervals(PF); intervals(PD);Acti.

De�nition 3.3.5 For any WT Net hN;Acti,

[[N]]MAY
intvl

def
= intervals([[N]]MAY)

[[N]]MUST
intvl-

def
= intervals([[N]]MUST

split-)

[[N]]TESTintvl-

def
= h[[N]]MAY

intvl ; [[N]]MUST
intvl-i

We have:

Theorem 3.3.6 The [[�]]MAY
intvl , [[�]]MUST

intvl- , and [[�]]TESTintvl- semantics are respectively adequate for may-

equivalence, must-equivalence, and Testing-equivalence.

Proof. We �rst note that all linear orderings are interval orderings. The proof is then

identical to that of Theorem 3.2.37.

The following facts will be useful in proving the compositionality of the interval semantics:

Proposition 3.3.7 Let p; p1; p2; q be pomsets.

1. If p is an interval pomset and q is a pre�x of p, then q is an interval pomset.

2. a:p is an interval pomset i� p is an interval pomset.

3. p[f] is an interval pomset i� p is an interval pomset.

4. p1; p2 is an interval pomset i� p1;
p

and p2 are interval pomsets.

5. q 2 choice(a;aL;aR)(p) is an interval pomset i� p is an interval pomset.

6. If q is an interval pomset and q = p � a for some pomset p, then there is some interval

pomset p0 � p such that q = p0 � a.

7. If q is an interval pomset and q 2 augment(p1kAp2), then there are interval pomsets p01; p02
with p01 � p1, p

0
2 � p2 such that q 2 augment(p01kAp02).

3.3. FULLY ABSTRACT SEMANTICS 69

8. If q is an interval pomset and q 2 augment(split(a;a1;a2)(p)) for some pomset p, then there

is some interval pomset p0 � p such that q 2 augment(split(a;a1;a2)(p
0)).

9. If q is an interval pomset and q 2 augment(0-split(p)) for some pomset p, then there is

some interval pomset p0 � p such that q 2 augment(0-split(p0)).

Proof. We prove the case for hiding. Suppose q is an interval pomset and q = p � a

for some pomset p. Let p0 have the same events with the same labels as p, and let �p0 be

a partial order that is maximal with respect to the following conditions: (i) �p0 contains �p,

and (ii) �p0 agrees with �p on all non-a-labeled events of p. Clearly, such a pomset p0 exists
since �p satis�es conditions (i) and (ii). Furthermore, it is easy to see by construction of p0

that p0 � a = p � a = q. Let x <p0 y and z <p0 w, and suppose for the sake of contradiction

that x 6<p0 w and z 6<p0 y. Then by maximality of �p0 , there must be some non-a-labeled

events x0; y0; z0; w0 such that x0 �p x, y �p y0, z0 �p z, w �p w0, and x0 6<p w0 and z0 6<p y0,
contradicting the fact that p� a is an interval ordering. Hence, either x <p0 w or z <p0 y after

all, and so p0 is an interval pomset.

The remaining cases are straightforward and are left to the reader.

Similarly:

Proposition 3.3.8 Let hp;Dpi; hp1; D1i; hp2; D2i; hq;Dqi be pomset-divergences.

1. If hp;Dpi is an interval pomset-divergence and hq;Dqi is a pre�x of hp;Dpi, then hq;Dqi
is an interval pomset.

2. a:hp;Dpi is an interval pomset-divergence i� hp;Dpi is an interval pomset-divergence.

3. hp;Dpi[f] is an interval pomset-divergence i� hp;Dpi is an interval pomset-divergence.

4. hp1; p2; fd [Eventsp1 : d 2 D2gi is an interval pomset-divergence i� p1;
p

is an interval

pomset and hp2; D2i is an interval pomset-divergence.

5. hq;Dqi 2 0-1-choice(a;aL;aR)(hp;Dpi) is an interval pomset-divergence i� hp;Dpi is an in-

terval pomset-divergence.

6. If hq;Dqi is an interval pomset-divergence and hq;Dqi = hp;Dpi � a for some pomset-

divergence hp;Dpi, then there is some interval pomset-divergence

hp0; Dp0i 2 augment(extendAct (hp;Dpi)) such that hq;Dqi = hp0; Dp0i � a.

7. If hq;Dqi is an interval pomset-divergence and hq;Dqi 2 augment(hp1; D1ikAhp2; D2i),
then there are interval pomset-divergences hp01; D0

1i; hp02; D0
2i with hp01; D0

1i � hp1; D1i,
hp02; D0

2i � hp2; D2i such that hq;Dqi 2 augment(hp01; D0
1ikAhp02; D0

2i).

8. If hq;Dqi is an interval pomset-divergence and hq;Dqi 2 augment(0-1-split(a;a+;a�)(hp;Dpi))
for some pomset-divergence hp;Dpi, then there is some interval pomset-divergence hp0; Dp0i �
hp;Dpi such that hq;Dqi 2 augment(0-1-split(a;a+;a�)(hp0; Dp0i)).

70 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

Proof. We prove the case for hiding. Suppose hq;Dqi is an interval pomset-divergence

and hq;Dqi = hp;Dpi � a for some pomset-divergence hp;Dpi. Let p0 be de�ned as in the proof

of Proposition 3.3.7 and let Dp0 = fd0g, where d0 = downp0(d)[(Eventsp0 �max (p0)) for some
d 2 D. By the earlier proof and by construction of Dp0 , clearly, hp0; Dp0i is an interval pomset-

divergence and hp;Dpi v hp;Dp0i � hp0; Dp0i. Since hq;Dqi is an interval pomset-divergence,

Dq = fdqg for some dq � Eventsq � max (q); it is then easy to see from the construction of

hp0; Dp0i that hp0; Dp0i � a = hq;Dqi, proving this case.

The remaining cases are straightforward and are left to the reader.

We will also use the following fact about interval pomset-divergences:

Lemma 3.3.9 Let hp;Dpi be a (possibly non-interval) pomset-divergence and let hq;Dqi be
an interval pomset-divergence with hp;Dpi v hq;Dqi. Then there is some interval pomset-

divergence hp0; fd0gi with hp0; fd0gi v hq;Dqi such that p0 is a pre�x of p and d0 � d for some

d 2 Dp.

Proof. By the de�nition of interval pomset-divergences, Dq = fdqg for some dq �
Eventsq �max (q).

We �rst show that there is some d 2 Dp such that hp; fdgi v hq; fdqgi. The proof is by

induction on n = jEventsq � Eventspj. The base case of n = 0 is obvious. For the other

base case, let n = 1, and let fxg = Eventsq � Eventsp. Clearly, there is some d 2 Dp with

d � downq(x); furthermore, d � downq(x) � Eventsq�max (q) � dq, and so hp; fdgi v hq; fdqgi.
For the inductive step, suppose that n > 1. Let fx1; : : : ; xng = Eventsq � Eventsp, and

assume wlog that xn 2 max (q). It is easy to see that hq � xn; fdq � xngi is an interval pomset-

divergence and that hp;Dpi v hq � xn; fdq � xngi; by the inductive hypothesis, there is some

d1 2 Dp with hp; fd1gi v hq�xn; fdq�xngi. If d1 � downq(xn), then clearly hp; fd1gi v hq; fdqgi.
Otherwise, there is some y 2 d1 such that y 6<q xn; we recall that y <q xi for all 1 � i < n

since hp; fd1gi v hq � xn; fdq � xngi. Now consider any z <q xn; since q is an interval ordering,

it follows that z <q xi for all 1 � i < n. Thus, downq(xn) � downq(xi) for all 1 � i < n. Since

hp;Dpi v hq; fdqgi, there is some d 2 Dp with d � downq(xn) � downq(xi) for all 1 � i < n.

Furthermore, d � downq(xn) � Eventsq �max (q) � dq, and so hp; fdgi v hq;Dqi as desired.
Now let p0 be the restriction of p to the set fx 2 Eventsp : d 6� downp(x)g, which is easily seen

to be a downward-closed subset of Eventsp. Furthermore, let d
0 = d[(Eventsp0�max (p0)), which

is easily seen to be a downward-closed subset of Eventsp0 . Since d � dq and Eventsp0�max (p0) �
Eventsq �max (q) � dq, it is easy to see that d

0 � dq. Let x 2 d0 and let z 2 Eventsq �Eventsp0 .

For one case, let x 2 d; then it is easy to see that x <q z. For the other case, let x 2 d0 � d;

then there is some x0 2 p0 such that x <p0 x
0 and d 6� downp(x

0); so there is some y 2 d

with y 6<p x
0. It is easy to see that y <q z, and since q is an interval pomset, it follows that

x <q z, proving that hp0; fd0gi v hq; fdqgi. Clearly, pre�xes of interval pomsets are also interval
pomsets, from which it follows easily from the construction of d0 that hp0; fd0gi is an interval

pomset-divergence, proving the lemma.

Theorem 3.3.10 The [[�]]MAY
intvl , [[�]]MUST

intvl- , and [[�]]TESTintvl- semantics are compositional for split re-

�nements, choice re�nements, alphabet expansion and shrinking, and all of our CCS/CSP

operators.

3.3. FULLY ABSTRACT SEMANTICS 71

Proof. Let Act be a �nite alphabet containing
p
, let a; aL; aR; a+; a� 2 Act , let A � Act,

let f be a function from Act to Act such that for all � 2 Act , f(�) =
p

i� � =
p
, and let Act0

be a �nite set of labels containing
p
. Furthermore, let hN;Acti; hN1;Acti; hN2;Acti be WT

Nets.

The following identities, where the operations on the right-hand side of the equations are

those de�ned in De�nition 3.2.28, follow immediately from the augmentation-closure of the

[[�]]MAY semantics, Proposition 3.3.7, and Theorem 3.2.30. The details are straightforward and

are left to the reader.

[[hN;Acti grow Act 0]]MAY

intvl = [[hN;Acti]]MAY

intvl grow Act 0

[[hN;Acti shrink Act 0]]MAY

intvl = [[hN;Acti]]MAY

intvl shrink Act 0

[[a:hN;Acti]]MAY

intvl = a:[[hN;Acti]]MAY

intvl

[[�:hN;Acti]]MAY

intvl = [[hN;Acti]]MAY

intvl

[[hN;Actina]]MAY

intvl = [[hN;Acti]]MAY

intvl na

[[hN;Acti[f]]]MAY

intvl = [[hN;Acti]]MAY

intvl [f]

[[hN;Acti� a]]MAY

intvl = [[hN;Acti]]MAY

intvl � a

[[hN1;Acti; hN2;Acti]]MAY

intvl = [[hN1;Acti]]MAY

intvl ; [[hN2;Acti]]MAY

intvl

[[hN1;Acti � hN2;Acti]]MAY

intvl = [[hN1;Acti]]MAY

intvl � [[hN2;Acti]]MAY

intvl

[[hN1;Acti+M hN2;Acti]]MAY

intvl = [[hN1;Acti]]MAY

intvl +M [[hN2;Acti]]MAY

intvl

[[hN1;Acti jj hN2;Acti]]MAY

intvl = intervals([[hN1;Acti]]MAY

intvl jj [[hN2;Acti]]MAY

intvl)

[[hN1;ActikAhN2;Acti]]MAY

intvl = intervals([[hN1;Acti]]MAY

intvl kA[fpg[[hN2;Acti]]MAY

intvl)

[[hN1;Acti j hN2;Acti]]MAY

intvl = intervals([[hN1;Acti]]MAY

intvl j [[hN2;Acti]]MAY

intvl)

[[choice(a;aL;aR)(hN;Acti)]]MAY

intvl = choice(a;aL;aR)([[hN;Acti]]MAY

intvl)

[[split(a;a1;a2)(hN;Acti)]]MAY
intvl = intervals(split(a;a1;a2)([[hN;Acti]]MAY

intvl))

72 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

The following identities follow immediately from the augmentation-closure of the [[�]]MUST
split-

semantics, Proposition 3.2.14, Proposition 3.2.18, Proposition 3.3.8, Proposition 3.3.9, and

Theorem 3.2.46. The operations on the right-hand side of the equations are those de�ned in

De�nition 3.2.45. We prove the case for CSP-style parallel composition; the remaining equalities

are left to the reader.

[[hN;Acti grow Act 0]]MUST
intvl- = intervals([[hN;Acti]]MUST

intvl- grow Act 0)

[[hN;Acti shrink Act 0]]MUST
intvl- = [[hN;Acti]]MUST

intvl- shrink Act 0

[[a:hN;Acti]]MUST
intvl- = intervals(a pref [[hN;Acti]]MUST

intvl-)

[[�:hN;Acti]]MUST
intvl- = intervals(� pref [[hN;Acti]]MUST

intvl-)

[[hN;Actina]]MUST
intvl- = intervals([[hN;Acti]]MUST

intvl- rst a)

[[hN;Acti[f]]]MUST
intvl- = intervals([[hN;Acti]]MUST

intvl- rename with f)

[[hN;Acti� a]]MUST
intvl- = intervals([[hN;Acti]]MUST

intvl- hide a)

[[hN1;Acti; hN2;Acti]]MUST
intvl- = intervals([[hN1;Acti]]MUST

intvl- seq [[hN2;Acti]]MUST
intvl-)

[[hN1;Acti+M hN2;Acti]]MUST
intvl- = [[hN1;Acti]]MUST

intvl- +M [[hN2;Acti]]MUST
intvl-

[[hN1;Acti � hN2;Acti]]MUST
intvl- = [[hN1;Acti]]MUST

intvl- internal choice [[hN2;Acti]]MUST
intvl-

[[hN1;Acti jj hN2;Acti]]MUST
intvl- = intervals([[hN1;Acti]]MUST

intvl- jj [[hN2;Acti]]MUST
intvl-)

[[hN1;ActikAhN2;Acti]]MUST
intvl- = intervals([[hN1;Acti]]MUST

intvl- CSP-parallelA[f;pg [[hN2;Acti]]MUST
intvl-)

[[hN1;Acti j hN2;Acti]]MUST
intvl- = intervals([[hN1;Acti]]MUST

intvl- CCS-parallel hN2;Acti)

[[choice(a;aL;aR)(hN;Acti)]]MUST
intvl- = intervals(choice(a;aL;aR)([[hN;Acti]]MUST

intvl-))

[[split(a;a+;a�)(hN;Acti)]]MUST
intvl- = intervals(split(a;a+;a�)([[hN;Acti]]MUST

intvl-))

We prove the equality for CSP-style parallel composition. It is easy to see that one direction
follows easily from Theorem 3.2.46 and the monotonicity of all the operations. To prove the

3.3. FULLY ABSTRACT SEMANTICS 73

other direction, we �rst recall from the proof of Theorem 3.2.46 that:

pomset-failures(+M (dupl-split(hN1;ActikAhN2;Acti) grow fg)) =
0-split(fhp; F i : hp1; F1i 2 1-2-respect(pomset-failures(+M (dupl-split(hN1;Acti) grow fg)));

hp2; F2i 2 1-2-respect(pomset-failures(+M (dupl-split(hN2;Acti) grow fg)));
and p 2 p1kA0p2; F �A0 � F1 \ F2 and F \A0 � F1 [F2;

where A0 = fai : a 2 A and 0 � i � 2g [fpg)

pomset-divergences(+M (dupl-split(hN1;ActikAhN2;Acti) grow fg)) =
0-split(

Sfhp1; D1ikA0hp2; D2i :
hp1; D1i 2 1-2-respect(pomset-divergences(+M (dupl-split(hN1;Acti) grow fg)))

[1-2-respect(pomset-failures(+M (dupl-split(hN1;Acti) grow fg)));
hp2; D2i 2 1-2-respect(pomset-divergences(+M (dupl-split(hN2;Acti) grow fg)))

[1-2-respect(pomset-failures(+M (dupl-split(hN2;Acti) grow fg)));
D1 and D2 are (possibly empty) downward-closed subsets of

Eventsp1 and Eventsp2 ; respectively, and D1 [D2 6= ;;
and A0 = fai : a 2 A and 0 � i � 2g [fpg)

Let hr;Dri 2 snd([[hN1;ActikAhN2;Acti]]MUST
intvl-); then

hr;Dri 2 intervals(augment(extendAct (hp;Dpi)))

for some pomset-divergence hp;Dpi of hN1;ActikAhN2;Acti. By Lemma 3.2.16 and Lemma 3.3.9,
there is some interval pomset-divergence hq; fd0ggi such that hr;Dri 2 augment(extendAct (hq; fd0gi)),
q is an augmentation of a pre�x of p and d0 � d for some d 2 Dp. By Proposition 3.2.14,

hq; fd0gi 2 extendAct (augment(pomset-divergences(hN1;ActikAhN2;Acti))):

It then follows easily from the highlighted fact above and the de�nitions of augment and 0-split

that hq; fd0gi 2 extendAct (augment(0-split(hp0; Dp0i))) for some hp0; Dp0i 2 hp1; D1ikA0hp2; D2i),
where hp1; D1i; hp2; D2i are appropriate pomset-divergences or pomset-failures.

It follows from Lemma 3.3.9 and Proposition 3.3.8 that there are some interval pomset-

divergences hq0; Dq0i � hp0; Dp0i, hq1; Dq1i � hp1; D1i, hq2; Dq2i � hp2; D2i such that hq; fd0gi 2
extendAct (augment(0-split(hq0; Dq0i))) and hq0; Dq0i 2 augment(hq1; Dq1ikA0hq2; Dq2i). From the

de�nition of 0-split and augment and Lemma 3.2.16, it is easy to see that

hq; fd0gi 2 augment(extendAct (0-split(hq1; Dq1ikA0hq2; Dq2i)))

The desired equality then follows easily. The proof for pomset-failures is similar, except that it

uses Proposition 3.3.7 instead of Proposition 3.3.8.

Proposition 2.2.18 and the equalities for pre�xing and CCS choice together imply the com-

positionality of internal choice. Proposition 2.2.19 and the equalities for alphabet expansion

and shrinking, CSP-style parallel composition, choice re�nements, and hiding together imply

the compositionality of CCS-style parallel composition.

Theorem 3.3.11 The [[�]]MAY
intvl , [[�]]MUST

intvl- , and [[�]]TESTintvl- semantics are respectively fully abstract for

may-equivalence, must-equivalence, and Testing-equivalence with respect to alphabet expan-

sion, split re�nements, choice re�nements, and CCS choice. Furthermore, only split and choice

74 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

re�nements are necessary for [[�]]MAY
intvl .

Proof. By Theorem 3.3.6 and Theorem 3.3.10, it remains to prove distinguishability.

Let hN1;Act1i; hN2;Act2i be WT Nets. For one case, let hPT1;Act1i = [[hN1;Act1i]]MAY
intvl , let

hPT2;Act2i = [[hN2;Act2i]]MAY
intvl , and suppose that hPT1;Act1i 6= hPT2;Act2i. If Act1 6= Act2, it

is easy to see that the nets are may-inequivalent. Otherwise, Act1 = Act2 = Act and PT1 6=
PT2; we assume wlog that there is some interval pomset p 2 PT1 � PT2. Let n = jEventspj,
and let Act0 = faj ; aj1; aj2 : a 2 Act and 1 � j � ng be distinct symbols not in Act . Finally, let

C[�] be the following net context:

C[�] = �(�(� grow Act0));

where � is the sequence of choice re�nements hchoice(a;a1;:::;an) : a 2 Acti (which can be pro-

grammed by repeated use of binary choice re�nements), and � is the sequence of split re�ne-

ments hsplit(a1;a1
1
;a1
2
) : : : split(an;an

1
;an
2
) : a 2 Acti.

We will perform corresponding split and choice re�nements on pomsets. Using De�ni-

tion 3.2.25, we can overload notation and let � also represent the obvious sequence of choice

re�nements on pomsets. For concreteness, we will \fully split" all events in p, and so, using

De�nition 3.2.26, we let �0 = hsplit(a1;a1
1
;a1
2
;;) : : :split(an;an

1
;an
2
;;) : a 2 Acti.

Since n = Eventsp, it is easy to see that there is some pomset q 2 �0(�(p)) such that q

is an augmentation of a pomset-trace of C[N1] and all labels in q are distinct. Furthermore,

since we implicitly equate isomorphic pomsets, it is easy to see that we can assume wlog that

Eventsq = f(y; 1); (y; 2) j y 2 Eventspg, lq((y; i)) = (lp(y))
k
i for some 1 � k � n, and (y; i) <q

(y0; j) i� either y <p y
0 or (y =p y

0 and i < j). Clearly, there is a unique (injective) mapping I

from events x of p to labels ai, where I(x) = ai i� lp(x) = a and lq((x; 1)) = ai1. For any event

x of p, we can regard the (unique) I(x)1-labeled and I(x)2-labeled events of q as respectively

representing the \beginning" and \end" of the interval corresponding to x. Now, since p is an

interval pomset, it follows by Lemma 3.3.2 that there is a linearization v of q such that (the

unique) ai2-labeled event precedes (the unique) bj1-labeled event in v i� I�1(ai) <p I
�1(bj).

Clearly, v 2 traces(C[N1]). If v 2 traces(C[N2]), there would be some pomset-trace p0 of
N and some q0 2 �0(�(p0)) such that v is a linearization of q0; thus, all events in q0 must have
distinct labels. Clearly, there is a unique (injective) mapping I 0 from events x of p0 to labels

ai, where I 0(x) = ai i� lp0(x) = a and lq0((x; 1)) = ai1. It is then easy to see that I�1 � I 0 is a
label-preserving order-augmenting bijection from p0 to p. But by de�nition of [[�]]MAY

intvl , this would

imply that p 2 PT2, a contradiction. Thus, v 2 traces(C[N1])� traces(C[N2]) after all, and so

by Proposition 3.1.4, C[N1] and C[N2] are may-inequivalent, proving this case.

To prove that [[�]]MUST
intvl- is fully abstract, let hPF1; PD1;Act

0
1i = [[hN1;Act1i]]MUST

intvl- , let

hPF2; PD2;Act
0
2i = [[hN2;Act2i]]MUST

intvl- , and suppose that hPF1; PD1;Act
0
1i 6= hPF2; PD2;Act

0
2i.

If Act 01 6= Act 02, it is easy to see that Act1 6= Act2 and hence the nets are must-inequivalent.

For the next case, suppose PD1 6= PD2; we assume wlog that there is some interval

pomset-divergence hp; fdpgi 2 PD1 � PD2. Using Proposition 3.2.15, Proposition 3.2.17, and

Lemma 3.3.9, we can assume wlog that there is some d � dp such that hp; fdgi is an augmenta-

tion of a pomset-divergence hr; fdrgi of +M (dupl-split(hN1;Acti) grow fg); the details are
straightforward and are left to the reader. From the de�nition of +M and the de�nition of WT

Nets, r, and hence p, does not have any -labeled or
p
-labeled events. By Lemma 3.2.41, we

can assume wlog that r, and hence p, does not contain any �2-labeled events for any � 2 Act.

3.3. FULLY ABSTRACT SEMANTICS 75

By Proposition 3.2.38, it is easy to see that for all � 2 Act , every �1-labeled event is maximal

in r; thus, we can assume wlog that for all � 2 Act , every �1-labeled event is also maximal in p.

Again using Proposition 3.2.38, it follows that dr, and hence d, contains only �0-events; thus,

we can assume wlog that dp contains all and only the �0-events of p. Let Act
0, �, and � be as

in the previous case, and let

C[�] = +M �(�(� grow Act 0 [fg)):

Furthermore, let n = jEventspj, and let �0 be the sequence hchoice(a0;a1;:::an) : a 2 Acti followed
by the sequence hchoice(a1;a11;:::an1) : a 2 Acti. We let �0 be as in the previous case.

It is easy to see that there is some pomset-divergence hq; fdqgi 2 �0(�0(hp; fdpgi)) such that

all labels in q are distinct, dq contains all and only the �2-labeled events of q for all � 2 Act , and

for some d0 � dq, hq; fd0gi is an augmentation of a pomset-divergence of C[N1]. Furthermore,

in q all �0-labeled events of p have been \fully split," while all �1-labeled events of p have been

relabeled. Again, since we implicitly equate isomorphic pomsets, it is easy to see that we can

assume wlog that

� Eventsq = f(y; 1); (y; 2) j y 2 Eventsp and lp(y) = a0 for some a 2 Actg [
f(y; 1) j y 2 Eventsp and lp(y) = a1 for some a 2 Actg

� lq((y; i)) = (lp(y))
k
i for some 1 � k � n, and

� (y; i)<q (y
0; j) i� either y <p y

0 or (y =p y
0 and i < j).

Clearly, there is a unique mapping I from events x of p to labels ai, where I(x) = ai i�

lp(x) = a and lq((x; 1)) = ai1. Using similar reasoning as in the previous case, it follows by

Lemma 3.3.2 that since p is an interval pomset, there is a linearization v of q such that (the

unique) ai2-labeled event precedes (the unique) b
j
1-labeled event in v i� I�1(ai) <p I�1(bj).

Clearly, v 2 D(C[N1]). If v 2 D(C[N2]), let v
0 be the minimal pre�x of v with v0 2 D(C[N2]).

Then there must be some pomset-divergence hp0; fdp0gi of +M (dupl-split(hN2;Acti) grow fg)
such that p0 contains no �2-labeled events and some hq0; fdq0gi 2 �0(�0(p0)) such that v0 is a
linearization of q0. By the same reasoning as before, we can assume without loss of generality

that all �1-labeled events in p0 are maximal, and dp0 contains exactly the a0 labeled events of

p for all a 2 Act . Clearly, there is a unique mapping I 0 from events x of p0 to labels ai, where
I 0(x) = ai i� lp0(x) = a and lq0((x; 1)) = ai1. It is then easy to see that I�1 � I 0 is a label-

preserving order-augmenting bijection from p0 to a downward-closed subset of p. Furthermore,

for all x 2 p � I�1(I 0(p0)) and all y 2 dp, it is easy to see that the I 0(y)2-labeled event exists

and is in v0, and the lq(x; 1)-labeled event is in v � v0. Hence, I�1(I 0(y)) <p x. Furthermore,

since dp and dp0 contain exactly the the �0-labeled events of p and p0, respectively, it is easy to

see that I�1(I 0(dp0)) � dp, and so I�1(I 0(hp0; fdp0gi)) v hd; fdpgi. But by de�nition of [[�]]MUST
intvl- ,

this would imply that hp; fdpgi 2 PD2, a contradiction. Thus, v 62 D(C[N2]) after all, and so

by Proposition 3.1.4, C[N1] and C[N2] are must-inequivalent, proving this case.

For the last case, suppose that PD1 = PD2 but PF1 6= PF2; we assume wlog that there is

some interval pomset-failure hp; Fpi 2 PF1�PF2 such that hp; fEventspgi 62 PD1[PD2. Thus,

hp; Fpi is an augmentation of a pomset-failure hr; Fpi of +M (dupl-split(hN1;Acti) grow fg).
It is easy to see from the de�nition of [[�]]MUST

intvl- that r, and hence p, cannot contain any -

labeled event, while it follows from the de�nition of WT Nets that r, and hence p, can contain

76 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

at most one
p
-labeled event. Furthermore, from Lemma 3.2.41, we can assume without loss

of generality that r, and hence p, does not contain any �2 labeled events, for any � 2 Act.

Finally, using Proposition 3.2.38, it is easy to see that for all � 2 Act, any �1-labeled event

is maximal in r; thus, we can assume wlog that for all � 2 Act , all �1-labeled events are

also maximal in p. Let Act 0, �, �, and C[�] be as in the previous case. Furthermore, let

n = jEventspj, and let �0 be the sequence hchoice(a0;a1;:::an) : a 2 Act �fpgi followed by the

sequence hchoice(a1;a11;:::an1) : a 2 Act �fpgi followed by choice(p;p1;
p1). We let �0 be as in

the previous cases. It is easy to see that there is some pomset q 2 �0(�0(p)) such that all

labels in q are distinct and hq; Fqi is an augmentation of a pomset-failure of C[N1], where

Fq = fa11 : a0 2 Fpg [(f;pg \ Fp). Furthermore, in q all �0-labeled events of p have been

\fully split," while all �1-labeled events of p have been \half-split." Again, since we implicitly

equate isomorphic pomsets, we can assume that q has the same form as in the previous case.

Clearly, there is a unique mapping I from events x of p to labels ai, where I(x) = ai i�

lp(x) = a and lq((x; 1)) = ai1. Using similar reasoning as in the previous case, it follows by

Lemma 3.3.2 that since p is an interval pomset, there is a linearization v of q such that (the

unique) ai2-labeled event precedes (the unique) b
j
1-labeled event in v i� I�1(ai) <p I�1(bj).

Clearly, hv; Fqi 2 F(C[N1]). If v 2 D(C[N2]), then it is easy to show by the same reasoning

as the previous case that hp; fEventspgi 2 PD2, a contradiction. Thus, if hv; Fqi 2 F(C[N2])

there would be some pomset-failure hp0; Fp0i of +M (dupl-split(hN2;Acti) grow fg); and some
q0 2 �0(�0(p0)) such that v0 is a linearization of q0 and Fq � fa11 : a0 2 Fp0g [(f;pg \ Fp0).

Clearly, there is a unique mapping I 0 from events x of p0 to labels ai, where I 0(x) = ai i�

lp0(x) = a and lq0((x; 1)) = ai1. It is then easy to see that I�1 � I 0 is a label-preserving order-

augmenting bijection from p0 to p. Furthermore, it is easy to see that Fp � Fp0 . But by

de�nition of pomset-failures and [[�]]MUST
intvl- , this would imply that hp; Fpi 2 PF2, a contradiction.

Thus, hv; Fqi 62 F(C[N2]) after all, and so by Proposition 3.1.4, C[N1] and C[N2] are must-

inequivalent, proving this case and the theorem.

We now observe that the [[�]]MAY,[[�]]MUST
split- , and [[�]]TESTsplit- semantics make strictly more dis-

tinctions than the [[�]]MAY
intvl ,[[�]]MUST

intvl- , and [[�]]TESTintvl- semantics, respectively, and hence are not fully

abstract:

Theorem 3.3.12 The [[�]]MAY, [[�]]MUST
split- , and [[�]]TESTsplit- semantics are respectively not fully abstract

for may-equivalence, must-equivalence, and Testing-equivalence with respect to the WT Net

operators.

Proof. Let N1 and N2 be the nets pictured in Figure 3-8, let Act = fa; bg, and let p be

the pomset pictured in Figure 3-8. It is straightforward to show that hN1;Acti +M hN2;Acti
and hN2;Acti have equivalent [[�]]TESTintvl- meanings. However, they have di�erent [[�]]MAY mean-

ings, since p is a non-interval pomset-trace of hN1;Acti but not of hN2;Acti. Furthermore,

they have di�erent [[�]]MUST
split- meanings, since hp[f]; ;i, where f(a) = a0 and f(b) = b0, is a non-

interval pomset-failure of the +M dupl-split version of hN1;Acti+M hN2;Acti but not of the
 +M dupl-split version of hN2;Acti. Thus, it is an immediate consequence of Theorem 3.3.11

and the de�nitions of the semantics that [[�]]MAY, [[�]]MUST
split- , and [[�]]TESTsplit- cannot be fully abstract.

In addition to process equivalence under experiments, Hennessy [19] presents a natural form

of may-, must-, or Testing-approximation, in which a process, p, is said to may-approximate

3.3. FULLY ABSTRACT SEMANTICS 77

� � � �
a a a a

b b b b

��

��
��

��

��
��

��

��
��

��

��
��

�� �� ��
KKKK%% ����

��
��

��

��
��

��

��
��

��

��KKKK%%

��

��
��

N1 N2

p = a a

b b
�� ��

Figure 3-8: Interval Example

(must-approximate) a process, q, i� q may (must) pass every experiment that p may (must)

pass, but not necessarily the converse. Our [[�]]MAY
intvl , [[�]]MUST

intvl- , and [[�]]TESTintvl- semantics are, in

fact, also fully abstract with respect to may-, must-, or Testing-approximation, where the

[[�]]MAY
intvl semantics is ordered by set-theoretic containment of the pomset-traces, and the [[�]]MUST

intvl-

semantics is ordered by component-wise reverse containment of the pomset-failures and pomset-

divergences. These orderings will be presented in detail in Chapter 4. The proofs of full

abstraction for process approximation are identical to the proof of 3.3.11.

78 CHAPTER 3. SEMANTICS OF WELL-TERMINATING NETS

Chapter 4

The Semantic Domains

In this chapter, we show that all the semantics presented in Chapter 3 map WT Nets to

elements of complete partial orders (cpo's) and and that all our process operations correspond

to continuous functions on these cpo's. In order to prove these properties, we give an abstract

characterization of each of our spaces of process meanings. These results together provide a

semantic foundation for inductive (�xed-point) reasoning about recursively-de�ned processes in

the standard manner (cf. [18, 19]).

We also prove in this chapter that all our semantic domains are algebraic cpo's, in the sense

that all elements are fully determined by the compact (�nitely-speci�ed) elements that approx-

imate them. Furthermore, all compact elements of these cpo's are de�nable as the meanings of

WT Nets. These results, although technically rather hard, are important because they guaran-

tee that our full abstraction results from Chapter 3 will continue to hold for recursively-de�ned

processes.

4.1 Standard De�nitions

We begin with some standard de�nitions about algebraic complete partial orders and continuous

functions, cf., [18, 19].

De�nition 4.1.1 A partial order is a pair hD;vDi, where D is a set and vD is a binary relation

on D that is reexive, anti-symmetric, and transitive.

A element x 2 D is the least element of D i� x vD y for every y 2 D. Let A be a subset

of D and x an element of A. Then x is an upper bound of A i� y vD x for every y 2 A. We

say that x is a least upper bound of A i�, in addition, x vD z for every upper bound z of A. It

follows from the anti-symmetry of vD that least upper bounds, if they exist, are unique. We

use
F
D A to denote the least upper bound of A, when it exists.

A is a directed subset of D i� it is non-empty and for all pairs of elements x1; x2 2 A, there

is some x3 2 A such that x3 is an upper bound of the set fx1; x2g.
The partial order hD;vDi is a complete partial order (cpo) i� it has a least element and

every directed subset of D has a least upper bound.

An element x 2 D is compact i� for every directed set A � D such that x vD
F
A, there

is some y 2 A with x vD y. A cpo hD;vDi is algebraic i� for every element z 2 D, the set
Mz = fx 2 D : x is compact and x vD zg is directed and z =

F
Mz.

79

80 CHAPTER 4. THE SEMANTIC DOMAINS

De�nition 4.1.2 Let hD;vDi and hE ;vEi be cpo's and let f be a function from D to E .
Then f is continuous i� for every directed subset A � D, f(A) is a directed subset of E and

f(
F
D A) =

F
E f(A).

De�nition 4.1.3 Let hD;vDi be a cpo and let f : D!D be a function. An element x 2 D is

called a �xed point of f i� x = f(x). It is called the least �xed point if, in addition, x vD y for

every �xed point y of f .

The following well-known theorem ensures that complete partial orders and continuous

functions support �xed point reasoning about recursively-de�ned processes, cf., [18, 19] for the

proof.

Theorem 4.1.4 (standard) Let hD;vDi be a cpo and let f : D!D be a continuous function.

Then f has a least �xed point (in D).

4.2 The Unsplit Semantics

This section gives an abstract characterization of the [[�]]MAY, [[�]]MUST, and [[�]]TEST semantics on

WT Nets, shows that they form algebraic cpo's, and proves that all the corresponding process

operations from Chapter 3 are continuous functions on these cpo's.

The following proposition will be useful in proving these properties of our semantic domains:

Proposition 4.2.1 Let Act be a �nite set of labels, let PT be a pre�x-closed set of pomset-

traces over Act , let PF be a pre�x-closed set of pomset-failures over Act, and let PD be a

pre�x-closed set of pomset-divergences over Act . Then

� augment(extendAct (PD)) is pre�x-closed and extension-closed over Act.

� augment(PT) is pre�x-closed and augment(PF) is pre�x-closed.

� If PF � fhp; ;i : hp;Dpi 2 PD for some Dpg, then
augment(PF) [implied-failuresAct (augment(extendAct (PD))) is pre�x-closed.

Proof. The extension-closure of augment(extendAct (PD)) is a simple consequence of

Proposition 3.2.15 and the pre�x-closure of PD. To show that augment(extendAct (PD)) is

pre�x-closed, suppose that hp;Dpi v hq;Dqi � hr;Dri, hp;Dpi 2 PD, and hr0; Dr0i is a pre�x

of hr;Dri. By Proposition 3.2.17, there is some pre�x hq0; Dq0i of hq;Dqi such that hq0; Dq0i �
hr0; Dr0i. It is then a simple consequence of Proposition 3.2.17 and the pre�x-closure of PD

that hr0; Dr0i 2 augment(extendAct (PD)).

The pre�x-closure of augment(PT) and of augment(PF) follows immediately from Propo-

sition 3.2.17 and the pre�x-closure of PT and PF .

For the last part of the proof, let hr; F i 2 implied-failuresAct (augment(extendAct (PD))) and

let r0 be a pre�x of r. Thus, there is some hp;Dpi 2 PD and some hq;Dqi with hp;Dpi v
hq;Dqi � hr; fEventsrgi, and we can assume without loss of generality that Dq = fEventsqg.
Let q0 be the restriction of q to r0; it is easy to see that q0 is a pre�x of q and q0 � r0. If q0 is a
pre�x of p, then hp; ;i 2 PF and the pre�x-closure of PF imply that hq; ;i 2 PF , and so hr; ;i 2
augment(PF). For the other case, when q0 is not a pre�x of p, it follows by Proposition 3.2.17

4.2. THE UNSPLIT SEMANTICS 81

that hp0; Dp0i v hq0; fEventsq0gi � hr0; fEventsr0gi for some pre�x hp0; Dp0i of hp;Dpi. Thus, it
follows from the pre�x-closure of PD that hr0; ;i 2 implied-failuresAct (augment(extendAct (PD))),

completing the proof.

We now give the abstract characterizations of the [[�]]MAY, [[�]]MUST, and [[�]]TEST semantics.

De�nition 4.2.2 Let Act be a �nite set of labels containing the distinguished symbol
p
. A

pair hPT;Acti is said to be may-respecting i� PT is a set of pomset-traces over Act such that

1. ; 2 PT .

2. PT is pre�x-closed.

3. PT is augmentation-closed.

4. p 2 PT and p contains a
p
-labeled event implies that there is exactly one such event and

this event is the unique maximum event of p.

De�nition 4.2.3 Let Act be a �nite set of labels containing the distinguished symbol
p
. A

triple hPF; PD;Acti is said to be must-respecting i� PF is a set of pomset-failures over Act

and PD is a set of pomset-divergences over Act such that the following properties hold:

1. Closure properties of PF :

(a) h;; ;i 2 PF .

(b) PF is pre�x-closed.

(c) PF is augmentation-closed.

(d) hp; F i 2 PF and F 0 � F implies that hp; F 0i 2 PF .

(e) hp; F i 2 PF , c 2 Act , and hp; c; ;i 62 PF implies that hp; F [fcgi 2 PF .

2. Closure properties of PD:

(a) PD is pre�x-closed.

(b) PD is augmentation-closed.

(c) PD is extension-closed under pomset-divergences over Act.

(d) if hp0; Di 2 PD, r1; : : : ; rk are downward-closed subsets of p0, and for all n � 0,

there is some pn+1 with hpn+1; Di 2 PD and some fx1; : : : ; xkg � max (pn+1)

such that pn+1 � fx1; : : : ; xkg = pn and ri = downpn+1(xi) for 1 � i � k,

then hp0; D [fr1; : : : ; rkgi 2 PD.

(e) hp;Di 2 minv(PD) implies that p contains no
p
-labeled events.

3. Mixed closure properties:

(a) hp; F i 2 PF and hp; fEventspgi 62 PD and p contains a
p
-labeled event implies that

there is exactly one such event, this event is the unique maximum event of p, and

hp;Acti 2 PF .

82 CHAPTER 4. THE SEMANTIC DOMAINS

(b) hp;Di 2 PD and F � Act implies that hp; F i 2 PF .

(c) if hp0; ;i 2 PF , r1; : : : ; rk are downward-closed subsets of p0, and for all n � 0,

there is some hpn+1; ;i 2 PF and some fx1; : : : ; xkg � max (pn+1)

such that pn+1 � fx1; : : : ; xkg = pn and ri = downpn+1(xi) for 1 � i � k,

then hp0; fr1; : : : ; rkgi 2 PD.

We remark that closure conditions (2d) and (3c) are necessary and su�cient to ensure that

unbounded concurrency in PF or PD is possible only in the presence of appropriate causal

divergences, which themselves may be concurrent.

De�nition 4.2.4 Let Act be a �nite set of labels containing the distinguished symbol
p
. A

pair hhPT;Acti; hPF; PD;Actii is said to be test-respecting i� hPT;Acti is may-respecting ,

hPF; PD;Acti is must-respecting , and

1. p 2 PT implies that hp; ;i 2 PF .

2. hp; F i 2 PF and hp; fEventspgi 62 PD implies that p 2 PT .

3. hp;Di 2 minv(PD) implies that p 2 PT .

De�nition 4.2.5 Let Act be a �nite set of labels containing the distinguished symbol
p
.

Then DMAY
Act

is de�ned to be the set of all may-respecting pairs hPT;Acti. Furthermore,

vMAY

Act
is the binary relation on DMAY

Act
such that for every hPT1;Acti and hPT2;Acti in DMAY

Act
,

hPT1;ActivMAY
Act

hPT2;Acti i� PT1 � PT2.

De�nition 4.2.6 Let Act be a �nite set of labels containing the distinguished symbol
p
. Then

DMUST
Act

is de�ned to be the set of all must-respecting triples hPF; PD;Acti. Furthermore, vMUST

Act

is the binary relation on DMUST
Act

such that for every hPF1; PD1;Acti and hPF2; PD2;Acti in
DMUST
Act

, hPF1; PD1;ActivMUST

Act
hPF2; PD2;Acti i� PF1 � PF2 and PD1 � PD2.

De�nition 4.2.7 Let Act be a �nite set of labels containing the distinguished symbol
p
.

Then DTEST
Act

is de�ned to be the set of all test-respecting pairs hhPT;Acti; hPF; PD;Actii.
Furthermore, vTEST

Act
is the binary relation on DTEST

Act
such that for every h�1; �1i and h�2; �2i in

DTEST
Act

, h�1; �1ivTEST

Act
h�2; �2i i� �1vMAY

Act
�2 and �1vMUST

Act
�2.

We �rst show that [[�]]MAY, [[�]]MUST, and [[�]]TEST map WT Nets to elements of DMAY
Act

, DMUST
Act

,

and DTEST
Act

, respectively.

Theorem 4.2.8 Let hN;Acti be a WT Net. Then [[hN;Acti]]MAY 2 DMAY
Act

, [[hN;Acti]]MUST 2
DMUST
Act

, and [[hN;Acti]]TEST 2 DTEST
Act

.

Proof. The proof for [[�]]MAY is a simple consequence of De�nition 2.1.2, the de�nition of

pomset-traces, Proposition 3.2.14, and Proposition 4.2.1; the details are left to the reader.

For the proof of [[�]]MUST, let hPFN ; PDN ;Acti = [[hN;Acti]]MUST. All the closure conditions

in De�nition 4.2.6 except for (2d) and (3c) follow directly from the de�nition of [[�]]MUST, the

de�nition of WT Nets, Proposition 3.2.14, Proposition 3.2.15, and Lemma 4.2.1.

To prove that closure condition (2d) holds, let some sequence hhpn; Di : n � 0i and some set
R of pre�xes of p0 be given that satisfy the hypothesis of (2d). For one case, suppose that all of

4.2. THE UNSPLIT SEMANTICS 83

the hpn; Di 2 augment(pomset-divergences(hN;Acti)). We recall that by de�nition of WT Nets,

only a �nite number of transitions are enabled under any reachable marking of hN;Acti. Thus,
it is possible for an unbounded number of concurrent events to be enabled after any pre�x r of

p0 only if either a divergence is enabled immediately after r or a divergence is enabled \along

the way to r," i.e., immediately after some pomset r0 with hr0; fEventsr0gi v hr; fEventsrgi. In
either case, it then follows easily from the de�nition of pomset-divergences that hp0; D [Ri 2
PDN .

For the other case, Proposition 3.2.14 and Proposition 3.2.15 imply that there is some se-

quence hhqn; Dni : n � 0i such that every hqn; Dni 2 augment(pomset-divergences(hN;Acti))
and hqn; Dni v hpn; Di. Since by Proposition 3.2.14 and Proposition 3.2.17,

augment(pomset-divergences(hN;Acti)) is pre�x-closed, we can assume without loss of gener-

ality that for all n � 0, there is no event x 2 qn such that downqn(x) � d for some d 2 Dn.

Furthermore, since by hypothesis all events in pn�p0 are maximal in pn, we can assume without
loss of generality that every Dn is a non-empty set of pre�xes of p0. Thus, there are only a

�nite number of distinct Dn, and hence there is some subsequence hhqnk; Dnki : k � 0i such that
all the Dnk are equal to some non-empty set D0. If there is some x 2 p0 and some qnj such

that x is not an event of qnj , there must be some d 2 D0 with d � downp0(x); therefore, by our

assumptions on the qn, it follows that x is not an event of any of the qnk . We then have that

for all nk, the set Eventsqnk \Eventsp0 is identical. Furthermore, for every xi 2 (pnj � p0)� qnj ,

there must be some d 2 D0 with d � downpnj (xi) = ri for some ri 2 R. Thus, it follows

by our assumptions on the qn that xi is not an event of any of the qnk . Furthermore, since

augment(pomset-divergences(hN;Acti)) is pre�x-closed, we can assume without loss of gener-

ality that qn0 is a pre�x of p0 and that for all i � 0, qni+1 � x = qni for some x 2 max (qni+1).

It is now easy to see that either (i) all of the qnk are identical and are equal to some pomset

q that is a pre�x of p0, and for every ri 2 R, there is some d 2 D0 with d � ri or (ii) there is

some R0 � R such that R0 and the sequence hhqnk; D0i : k � 0i satisfy the hypothesis of (2d),

and for all ri 2 R � R0, there is some d 2 D0 with d � ri. If (i) holds, it follows easily by our

construction of the hqnk; Dnki that hq;D0i v hp;D[Ri. If (ii) holds, it follows from the earlier

case in this proof that hqn0; D0 [R0i 2 PDN . It follows from the construction of the qnk that

hqn0 ; D0 [R0i v hp0; D [Ri, proving this case.
The proof of closure condition (3c) is quite similar and is left to the reader.

For the proof of [[�]]TEST, it is straightforward to see from the de�nitions of pomset-traces,

pomset-failures, and pomset-divergences of WT Nets, the de�nition of [[�]]TEST, and Proposi-

tion 3.2.15 that the additional closure conditions hold. The proof of this case then follows

easily from the previous cases.

We now observe that:

Theorem 4.2.9 Let Act be a �nite set of labels containing the distinguished symbol
p
. Then

hDMAY
Act

;vMAY

Act
i, hDMUST

Act
;vMUST

Act
i, and hDTEST

Act
;vTEST

Act
i are complete partial orders.

Proof. It is easy to see that hDMAY
Act

;vMAY

Act
i, hDMUST

Act
;vMUST

Act
i, and hDTEST

Act
;vTEST

Act
i are partial

orders.

For DMAY
Act

, it follows immediately from the de�nition of may-respecting and DMAY
Act

that

h;;Acti 2 DMAY
Act

and approximates every element hPT;�i 2 DMAY
Act

with � = Act . Let A

84 CHAPTER 4. THE SEMANTIC DOMAINS

be a directed subset of DMAY
Act

, and let fhPTi;Acti : i � 0g = A. It is very easy to see that

hSfPTi : i � 0g;Acti 2 DMAY
Act

, proving this case.

For the proof of DMUST
Act

, let PF

Act

be the set of all pomset-failures over Act , and let PD

Act

be

the set of all pomset-divergences over Act . It is easy to see that hPF

Act

; PD

Act

;Acti 2 DMUST
Act

and approximates every element hPF; PD;�i 2 DMUST
Act

with � = Act .

We now show that every directed subset A of DMUST
Act

has a least upper bound in DMUST
Act

.

Let fhPFi; PDi;Acti : i � 0g def
= A, let PFA =

TfPFi : i � 0g, and let PDA =
TfPDi : i � 0g.

Clearly, it su�ces to show that hPFA; PDA;Acti 2 DMUST
Act

. All the closure properties follow

trivially, except for (1e), (2e), and (3a).

(1e) hp; F i 2 PFA, c 2 Act , and hp; c; ;i 62 PFA implies that hp; F [fcgi 2 PFA.

(2e) hp;Di 2 minv(PDA) for some D implies that p contains no
p
-labeled or -labeled events.

(3a) hp; F i 2 PFA and hp; fEventspgi 62 PDA and p contains a
p
-labeled event implies that

there is exactly one such event, this event is the unique maximum event of p, and hp;Acti 2
PFA.

To prove (1e), suppose for the sake of contradiction that for some c 2 Act , hp; F i 2 PFA,

hp; c; ;i 62 PFA, and hp; F [fcgi 62 PFA. Then hp; F i 2 PFi for all hPFi; PDi;Acti 2 A, hp; F [
fcgi 62 PFm for some hPFm; PDm;Acti 2 A, and hp; c; ;i 62 PFj for some hPFj ; PDj;Acti 2
A. Since A is a directed set, there would be some hPFk; PDk;Acti 2 A that is an upper

bound of both hPFm; PDm;Acti and hPFj; PDj;Acti. This would imply that hp; F i 2 PFk,

hp; F [fcgi 62 PFk , and hp; c; ;i 62 PFk, a contradiction since hPFk; PDk;Acti 2 A � DMUST
Act

.

Thus, (1e) must hold after all for PFA.

To prove (2e), it su�ces to show that hp;Di 2 minv(PDA) implies that hp;Di 2 minv(PDj)

for some hPFj ; PDj;Acti 2 Act . Clearly, there are only a �nite number of distinct pomset-

divergences hpi; Dii with hpi; Dii < hp;Di, and PDA does not contain any of them. Hence

for every such hpi; Dii, there is some hPFi; PDi;Acti 2 A such that hpi; Dii 62 PDi. By

compactness, there is then some hPFj ; PDj;Acti 2 A with hp;Di 2 minv(PDj).

The proof of (3a) is very similar and is left to the reader.

The proof for DTEST
Act

is a straightforward combination and adaptation of the proofs of the

previous two cases. The details are left to the reader.

We now give a �nite characterization of the compact elements of these domains:

De�nition 4.2.10 Let Act be a �nite set of labels containing the distinguished symbol
p
. A

pair hPT;Acti is a �nite candidate of DMAY
Act

i� hPT;Acti 2 DMAY
Act

and PT is a �nite set.

A triple hPF; PD;Acti is a �nite candidate of DMUST
Act

i� Act is a �nite set of labels and

there is some �nite set PF�n of pomset-failures over Act and some �nite set PD�n of pomset-

divergences over Act such that:

� hPF�n; ;;Acti 2 DMUST
Act

.

� PD�n is pre�x-closed.

� hp;Di 2 PD�n implies that hp; ;i 2 PF�n.

4.2. THE UNSPLIT SEMANTICS 85

� PD = augment(extendAct (PD�n)).

� PF = PF�n [implied-failuresAct (PD).

A tuple h�; �i is a �nite candidate of DTEST
Act

i� h�; �i 2 DTEST
Act

, � is a �nite candidate of

DMAY
Act

, and � is a �nite candidate of DMUST
Act

.

Lemma 4.2.11 Let Act be a �nite set of labels containing the distinguished symbol
p
. Then

all �nite candidates of DMAY
Act

, DMUST
Act

, and DTEST
Act

are compact elements of DMAY
Act

, DMUST
Act

, and

DTEST
Act

, respectively.

Proof. For the proof for DMAY
Act

, let hPT;Acti be a �nite candidate, and let A � DMAY
Act

be a

directed set such that hPT;ActivMAY

Act

F
A. Since PT is �nite, it follows immediately from the

directedness of A that there is some hPTk;Acti 2 A with PT � PTk.

For the proof for DMUST
Act

, let hPF; PD;Acti be a �nite candidate, and let PF�n;PD�n

be given. We �rst show that hPF; PD;Acti is in fact an element of DMUST
Act

. Proposition 4.2.1

immediately implies that closure conditions (2a), (2b), and (2c) of De�nition 4.2.6 hold for PD.

Proposition 3.2.15, the given properties of PD�n, and the fact that hPF�n; ;;Acti 2 DMUST
Act

immediately imply that closure condition (2e) holds. To show (2d), suppose there is some

hpn; Di 2 PD for n � 0 and some r1; : : : ; rk satisfying the hypothesis. By de�nition of PD

and the �niteness of PD�n, clearly an in�nite number of the hpn; Di must be augmentations of
extensions of some common hp;D0i 2 PD�n such that hp;D0 [fr1; : : : ; rkgi 2 PD�n. It is then

easy to show that the other closure properties of PD imply that hp0; D [fr1; : : : ; rkgi 2 PD;

the details are left to the reader. The proof of closure condition (3c) for PF is similar.

From the de�nition of DMUST
Act

, Proposition 4.2.1, and the fact that hPF�n; ;;Acti 2 DMUST
Act

,

it is easy to see that all the other closure conditions hold, proving that hPF; PD;Acti 2 DMUST
Act

.

Let A � DMUST
Act

be a directed set such that hPF; PD;ActivMUST

Act
hPFA; PDA;Acti =

F
A:

Let k = maxfjpj : hp; ;i 2 PF�ng, and let m be the number of distinct pomsets in PF�n,

i.e., m = jfp : hp; ;i 2 PF�ngj. Let U be the following set of pomset-failures:

U = fhp; F i : hp; F i is a pomset-failure over Act ; hp; F i 62 PF; and jpj � m � 8kg:

Clearly, U is �nite and does not intersect PF , and hence does not intersect PFA. The

directedness of A then implies that there is some hPFi; PDi;Acti 2 A such that PFi does not

intersect U .

To show that PFi � PF , let hr; Fri be a pomset-failure over Act with hr; Fri 62 PF . If

jrj � m � 8k, then clearly, hr; Fri 62 PFi. Otherwise, when jrj > m � 8k; we will show that there

is some pre�x r0 of r such that jr0j � m � 8k and hr0; ;i 62 PF . Let q be a pre�x of r such

that hq; ;i 2 PF�n, and q is maximal with respect to these properties; clearly, such a pomset q

exists since by De�nition 4.2.10, h;; ;i 2 PF�n. Furthermore, by de�nition of k, it follows that

jqj � k.

We obtain a pre�x r0 of r by iterating the following procedure until termination. First set

r0 to be the pre�x of r with carrier fx 2 Eventsr : depthr(x) � k + 1g. Pick some x 2 r0 � q

such that x is in some cut C of r0 of size strictly larger than k + 1. If there are k + 1 distinct

x1; : : : ; xk+1 2 (C � fxg) such that for all q0 with hq0; ;i 2 PF�n, downr0(x)\ q0 = downr0(x1)\
q0 = : : : = downr0(xk+1)\ q0, then remove from r0 the set of events fy 2 Eventsr0 : x �r yg, and
re-set r0 to be the resulting pomset. Repeat this procedure until there are no events x in r0

86 CHAPTER 4. THE SEMANTIC DOMAINS

satisfying the above conditions. Clearly, the resulting pomset r0 is a pre�x of r. Furthermore,

since PF�n contains at most m di�erent pomsets, each of size bounded by k, and each such

pomset has at most 2k pre�xes, it is easy to see that the size of any cut in r0 is bounded by

m �2k �(k+1). Furthermore, since the depth of r0 is bounded by k+1, it follows that jr0j � m �8k.
It is easy to see by construction of r0 that q is a pre�x of r0 and that r0 6= q; thus hr0; ;i 62

PF�n by maximality of q. Suppose for the sake of contradiction that hr0; fEventsr0gi 2 PD; then

by Proposition 3.2.15 and the pre�x-closure of PD�n, there is some hp;Dpi 2 augment(PD�n)

such that hp;Dpi v hr0; fEventsr0gi. Thus, De�nition 4.2.10 implies that hp; ;i 2 PF�n and

hence that jpj � k. For every y 2 r � r0, either (i) there is some x 2 r � r0 with x �r y, some

cut C of r0, and some k + 1 distinct x1; : : : ; xk+1 2 C such that for all q0 with hq0; ;i 2 PF�n,

downr0(x) \ q0 = downr0(x1) \ q0 = : : : = downr0(xk+1) \ q0 or (ii) depthr(y) > k + 1. Suppose

(i) holds, then since p has concurrency bounded by k, there must be some such xi with xi 62 p.

So, there is some d 2 Dp with d � downr0(xi) \ p, and so by hypothesis, downr0(xi) \ p =

downr0(x) \ p, and so d � downr0(x) � downr(y). If (ii) holds, then there must be some z 2 r

such that z �r y and depthr(z) = k + 1. If z 2 r0, then since the depth of p is bounded by

k, z 62 p and there is some d 2 Dp such that d � downr0(z) � downr(y). If z 62 r0, then
there is some x �r z satisfying the conditions of (i), so there is some d 2 Dp such that d �
downr0(x) � downr(z) � downr(y). Thus, hp;Dpi v hr; fEventsrgi, and so by De�nition 4.2.6,

hr; fEventsrgi 2 PD, a contradiction since hr; Fri 62 PF . Hence, hr0; fr0gi 62 PD, and since

hr0; ;i 62 PF�n, it follows that hr0; ;i 62 PF and is thus in U .

Now, hr; ;i 2 PFi would imply that hr0; ;i 2 PFi, since PFi is an element of DMUST
Act

and

thus pre�x-closed. But this would imply that PFi \ U 6= ;, a contradiction. Thus, PFi � PF .

We now give the proof for pomset-divergences. Let V be the following set of pomset-

divergences:

V = fhp;Dpi : hp;Dpi is a pomset-divergence; hp;Dpi 62 PD; and hp; ;i 2 PF�ng:

Clearly, V is �nite and does not intersect PD, and hence does not intersect PDA. The

directedness of A then implies that there is some hPFj ; PDj;Acti 2 A such that PDj does not

intersect V and PFj � PFi � PF .

We now show that PDj � PD. Let hr;Dri be a pomset-divergence over Act with hr;Dri 62
PD. If hr; ;i 62 PF , then hr; ;i 62 PFj , and so hr;Dri 62 PDj from the closure properties of

elements of DMUST
Act

. If hr; ;i 2 PF�n, then hr;Dri 2 V , and so hr;Dri 62 PDj . For the last

case, we have that hr; ;i 62 PF�n and hr; ;i 2 PF . We de�ne an extension hr0; fEventsr0gi
of hr;Dri as follows: let the carrier of r0 be the carrier of r together with some disjoint set

of events f(d; i) : d 2 Dr and 1 � i � k + 1g. The ordering and labeling of r0 agrees with r

on events in r, all the new events (d; i) are maximal in r0, and for all (d; i), downr0((d; i)) =

d. The labels of the (d; i) are arbitrarily chosen to be labels in Act . It is easy to see that

hr;Dri < hr0; fEventsr0gi and that hr0; ;i 62 PF�n since hr; ;i 62 PF�n and by De�nition 4.2.10,

PF�n is pre�x-closed. Suppose for the sake of contradiction that hr0; fEventsr0gi 2 PD; then by

Proposition 3.2.15 and the pre�x-closure of PD�n there is some hp0; Dp0i 2 augment(PD�n) with

hp0; Dp0i < hr0; fEventsr0gi. Since the concurrency in p0 is bounded by k, there must be some

(d; i) 2 r0�p0 for every d 2 Dr. Hence, for every d 2 Dr, there is some d
0 2 Dp0 with d

0 � d. Let

p be p0 with all (d; i) events removed, and let Dp = fd0 2 Dp0 : d
0 � pg. Then it is easy to see that

Dp is non-empty, hp;Dpi is a pre�x of hp0; Dp0i, and hp;Dpi v hr;Dri. But by De�nition 4.2.6,

4.2. THE UNSPLIT SEMANTICS 87

this would imply that hr;Dri 2 PD, a contradiction. Hence, hr0; fEventsr0gi 62 PD after all,

and since hr0; ;i 62 PF�n, it follows that hr0; ;i 62 PF .

Now hr;Dri 2 PDj would imply by the closure properties that hr0; fEventsr0gi 2 PDj, and

hence that hr0; ;i 2 PFj , a contradiction since PFj � PF . Thus,

hPF; PD;ActivMUST

Act
hPFj ; PDj;Acti 2 A;

proving this case.

The proof forDTEST
Act

is a simple consequence of De�nition 4.2.7 and the previous two cases.

Lemma 4.2.12 Let Act be a �nite set of labels containing the distinguished symbol
p
. For

every hPT;Acti 2 DMAY
Act

, there is a directed set A1 � DMAY
Act

of �nite candidates of DMAY
Act

withF
A1 = hPT;Acti. For every hPF; PD;Acti 2 DMUST

Act
, there is a directed set A2 � DMUST

Act
of

�nite candidates of DMUST
Act

with
F
A2 = hPF; PD;Acti. For every hhPT;Acti; hPF; PD;Actii 2

DTEST
Act

, there is a directed set A3 � DTEST
Act

of �nite candidates of DTEST
Act

with
F
A3 =

hhPT;Acti; hPF; PD;Actii.

Proof. We �rst give the proof for DMAY
Act

. For every n � 0, we de�ne the nth approximation,

hPTn;Acti, to hPT;Acti as follows:

PTn = fp 2 PT : jpj � ng

We recall that by de�nition of DMAY
Act

, Act is �nite. It is then easy to see that each hPTn;Acti
is a �nite candidate, each hPTn;ActivMAY

Act
hPT;Acti, and that the hPTn;Acti form a chain in

DMAY
Act

. Thus,
FfhPTn;Acti : n � 0gvMAY

Act
hPT;Acti. For the other direction, let p 2 PT ; then

p 2 PTjpj, proving this case.
We now prove the case for DMUST

Act
. For every n � 0, we de�ne nth approximation,

hPFn; PDn;Acti, to hPF; PD;Acti as follows. The idea is that each nth approximation is

generated by the set of pomset-failures and pomset-divergences in PF and PD whose depth

is bounded by n. However, PF and PD may have unbounded concurrency and hence may an

in�nite number of pomsets of any given depth n. In order to ensure that each PF�n-n and

PD�n-n are �nite, we use only the minimal elements of PF and PD; in order to ensure that

PF�n and PD�n satisfy the conditions in De�nition 4.2.6, we close under pre�xing.

Since we want the resulting �nite candidates to approximate hPF; PD;Acti, we need to

ensure that all pomset-failures and pomset-divergences in PF and PD are generated by the

augmentation and extension closure of PF�n and PD�n. Thus, in PF�n and PD�n, we extend

past all pomsets of depth equal to n by throwing in all failure sets and throwing in all divergences

that causally follow any chain of length of n.

PF 0 = fhp; F i 2 PF : p is a pre�x of some q such that hq; ;i 2 PF;

and either hq; fEventsqgi 62 PD or hq;Di 2 minv(PD) for some Dg

PF�n-n = augment(fhp; F i 2 PF 0 : depth(p) � ng
[fhp; F i : hp; ;i 2 PF 0; depth(p) = n; and F � Actg)

88 CHAPTER 4. THE SEMANTIC DOMAINS

PD�n-n = fhp;D[D0i : hp; ;i 2 PF�n-n; D [D0 6= ;; D0 � fdownp(x) [fxg : depthp(x) = ng;
and either hp;Di 2 PD or D = ;g

PDn = augment(extendAct (PD�n-n))

PFn = PF�n-n [implied-failuresAct (PDn)

We �rst show that hPFn; PDn;Acti is a �nite candidate, recalling that by De�nition 4.2.6,

Act is �nite. Therefore, an in�nite number of distinct hpi; ;i 2 PF�n-n would imply unbounded

concurrency in PF�n-n, and so the closure conditions (2d) and (3c) of De�nition 4.2.6 would

immediately contradict the de�nitions of PF 0 and PF�n-n. Thus, PF�n-n must be �nite.

We now show that hPF�n-n; ;;Acti 2 DMUST
Act

. It follows easily from the closure conditions

of PF and Proposition 4.2.1 that closure conditions (1a)|(1d) hold for PF�n-n. For closure

condition (1e), suppose that hr; F i 2 PF�n-n and c 2 Act and hr; F [fcgi 62 PF�n-n. Then

r � p of some hp; F i 2 PF 0 with depth(p) � n. Since hr; F [fcgi 62 PF�n-n, it is easy

to see that hp; F [fcgi 62 PF�n-n and depth(p) < n. Furthermore, the closure conditions

of PF; PD and the de�nition of PF 0 imply that hp; F i 2 PF and hp; F [fcgi 62 PF , and

hence that hp; fEventspgi 62 PD. Moreover, the closure condition (1e) on PF implies that

hp; c; ;i 2 PF . Clearly, p; c � r; c and since depth(p) < n, it follows that depth(p; c) � n.

If hp; c; ;i 62 PF 0, then by Proposition 3.2.15 and the de�nition of PF 0, there must be some

hq;Dqi 2 minv(PD) such that q 6= p; c and hq;Dqi < hp; c; fEventsp;cgi. Hence q is a pre�x of

p, and so hq;Dqi v hp; fEventspgi, implying that hp; fEventspgi 2 PD, a contradiction. Thus,

hp; c; ;i 2 PF 0, from which it is clear that hr; c; ;i 2 PF�n-n.

It follows easily from the pre�x-closure of PD and the pre�x-closure of PF�n-n that PD�n-n

is also pre�x-closed. The construction of hPFn; PDn;Acti then immediately implies that it

satis�es De�nition 4.2.10 and hence is a �nite candidate.

We now show that hPFn; PDn;ActivMUST

Act
hPF; PD;Acti. Let hq;Dqi 2 PD, and using

Proposition 3.2.15 and the pre�x-closure of PD, let hr;Dri 2 minv(PD) such that hr;Dri v
hq;Dqi. Then hr;Dri 2 PF 0. If depth(r) � n, then clearly, hr;Dri 2 PDn and hence so is

hq;Dqi. If depth(r) � n, let r0 be the (necessarily unique) maximal pre�x of r of depth n and

let Dr0 = fd 2 Dr : d
0 � r0g. By the closure conditions of PF and PD, hr0; ;i 2 PF and

hr0; Dr0i 2 PD if Dr0 is non-empty. For one case, suppose that Dr0 is non-empty. Then by

Proposition 3.2.15, there is some hr00; Dr00i 2 minv(PD) such that hr00; Dr00i v hr0; Dr0i, and
so it is easy to see by the pre�x-closure of PF and the de�nition of PF�n-n that hr00; ;i 2
PF�n-n. It is easy to show that hr00; Dr00 [fdownr00(x) [fxg : depthr00(x) = ngi 2 PD�n-n and

hr00; Dr00[fdownr00(x)[fxg : depthr00(x) = ngi v hr0; Dr0[fdownr0(x)[fxg : depthr0(x) = ngi v
hr;Dri v hq;Dqi, so hq;Dqi 2 PDn. The details are simple and are left to the reader, as is the

other case, which is similar. Thus, PD � PDn.

To show that PF � PFn, let hq; F i 2 PF . If hq; fEventsqgi 2 PD, then hq; fEventsqgi 2
PDn, and hence hq; F i 2 PFn. Otherwise, hq; F i 2 PF 0. For one case, if depth(q) � n,

it is clear that hq; F i 2 PFn. For the other case, using a proof similar to that for pomset-

divergences, it is easy to show that hq; fEventsqgi 2 PDn, and hence hq; F i 2 PFn; the details

are straightforward and are left to the reader. Thus, hPFn; PDn;ActivMUST

Act
hPF; PD;Acti.

4.2. THE UNSPLIT SEMANTICS 89

To show that the set of nth-approximations forms a directed set, we show that for every

n � 0, hPFn; PDn;ActivMUST

Act
hPFn+1; PDn+1;Acti. Let hq;Dqi 2 PDn+1; then hq;Dqi is

an augmentation of an extension of some (r;Dr) 2 PD�n-n+ 1. For one case, suppose that

depth(r) � n. Then it is easy to see that (r;Dr) 2 PD, so hr;Dri 2 PDn by the earlier proof,

and therefore so is hq;Dqi. The proof of the other case, when depth(r) = n + 1, is very similar

to the proof that PD � PDn, and the details are left to the reader. Thus, PDn+1 � PDn.

To show that PFn+1 � PFn, let hq; F i 2 PFn+1. If hq; fEventsqgi 2 PDn+1, then by the

above case, hq; fEventsqgi 2 PDn, and hence hq; F i 2 PFn. Otherwise, if depth(q) � n, it is

clear that hq; F i 2 PFn. For the other case, using a proof similar to that for pomset-divergences,

it is easy to show that hq; fEventsqgi 2 PDn, and hence that hq; F i 2 PFn; the details are left

to the reader. Thus, hPFn; PDn;ActivMUST

Act
hPFn+1; PDn+1;Acti.

For the last part of the proof, we show that hPF; PD;Acti = FfhPFn; PDn;Acti : n � 0g.
One direction follows immediately from the fact that every hPFn; PDn;ActivMUST

Act
hPF; PD;Acti.

For the other direction, let hp;Dpi 2
TfPDn : n � 0g, and let k = depth(p). Then hp;Dpi 2

PDk+1 implies that hp;Dpi is an augmentation of an extension of some hq;Dqi 2 PD�n-k+1.

Since augmentation and extension only increase depth, depth(q) � k, from which it is easy

to see that hq;Dqi 2 PD and hence that hp;Dpi 2 PD. For the other case, let hp; F i 2TfPFn : n � 0g, and let k = depth(p). Then hp; F i 2 PFk+1 implies that hp; F i 2 PF�n-k+1

or hp; fEventspgi 2 PDk+1, both of which imply that hp; F i 2 PF . Thus, hPF; PD;Acti =FfhPFn; PDn;Acti : n � 0g, proving this case.

We now prove the case for DTEST
Act

. For every 1 � n � m, we de�ne the (n;m)
th

approxi-

mation, hPF(n;m); PDn;Acti to hPF; PD;Acti as follows. First, PF 0;PD�n-n; PDn are de�ned

as in the proof of the above case. Furthermore, in order to appropriately de�ne the approx-

imate pomset-traces, we may also need to replace some non-maximal pomsets of depth n in

PF � PF 0. Since we only want to construct �nite sets of pomset-traces, we de�ne the (n;m)
th

approximation by replacing all such pomsets of depth bounded by n and size bounded by m.

The formal de�nitions are as follows:

PF�n-(n;m) = PF�n-n [augment(fhp; F i 2 PF : p 2 PT; depth(p) � n and jpj � mg)

PT(n;m) = fp : hp; ;i 2 PF�n-(n;m)g

PF(n;m) = PF�n-(n;m) [implied-failuresAct (PDn)

The proof is a straightforward combination and adaptation of the proofs of the above cases;

the details are left to the reader.

We now have:

Theorem 4.2.13 Let Act be a �nite set of labels containing the distinguished symbol
p
. Then

DMAY
Act

, DMUST
Act

, and DTEST
Act

are algebraic cpo's.

The theorem is a simple consequence of the de�nition of compact elements, Lemma 4.2.11,

and Lemma 4.2.12 (cf. [18]).

90 CHAPTER 4. THE SEMANTIC DOMAINS

We now show that all compact elements are de�nable as the [[�]]MAY meanings of WT Nets:

Theorem 4.2.14 Let Act be a �nite set of labels containing the distinguished symbol
p
. For

every compact element hPT;Acti 2 DMAY
Act

, there is some WT Net hN;Acti with [[hN;Acti]]MAY =

hPT;Acti.

Proof. Let hPT;Acti be a compact element of DMAY
Act

. As a simple consequence of

Lemma 4.2.12 and the de�nition of compactness (cf. [18]), hPT;Acti is a �nite candidate of

DMAY
Act

. Thus, PT is �nite set of pomsets over Act .

We �rst build a tree whose nodes are labeled with valid pairs of the form hp; xpi, where
p 2 PT and xp 2 max (p) whenever p is non-empty and xp =� otherwise. We use � as a

wildcard character.

The tree is recursively built as follows. The root node is labeled h;; �i. A node labeled

hp; �i has an arc to a node labeled with some valid pair hp0; xp0i i� p0 � xp0 = p. Since PT is

pre�x-closed, it is easy to see inductively that there is some hp; �i-labeled node in the tree for

every p 2 PT . Furthermore, it is easy to see that the tree is �nite, and hence is also �nitely-

branching. Since every pomset implicitly represents its isomorphism class, we assume without

loss of generality that any two children of any given node of the tree will have distinct second

components in their labels, i.e., if the labels of the children are respectively h�; xi and h�; yi,
then x and y are distinct symbols.

From this tree, we will recursively construct a loop-free net N in which every place has

in-degree of at most one. This net preserves concurrency of events occurring within any branch

of the tree; however, events on di�erent branches of the tree will always be represented as

conicting transitions.

We now recursively construct the following net from the tree, level by level. For the �rst

level, we begin with a net with one place, which is initially marked. For every child s of the

root, we add to the net a new lp(x)-labeled transition, named s, where the label of node s in

the tree is hp; xi. The single initially marked place is attached as the pre-set of each transition

s. All of these transitions have empty post-sets.

For the induction step, we show how to de�ne the (k+ 1)-level of the tree from the k-level

segment of the tree. For every node s in the kth level of the tree and each child s0 of node s,
we construct a new lp0(x

0)-labeled transition, named s0, where the label of node s0 in the tree is

hp0; x0i.
It is easy to see that for every maximal cause x 2 Eventsp0 of x

0, there is a unique h�; xi-
labeled node s00 along the path from the root to s0. We then hook up transition s0 to the

(already existing) transition s00. This is accomplished by creating a new, unmarked place for

transition s00 and adding it both to the post-set of transition s00 and to the pre-set of transition

s0. If x0 2 min(p0), then a new initially marked place is added to the net and is attached as the

preset of transition s0. Finally, transition s0 is placed in conict with every transition v in the

net such that node v is not a predecessor of s0 in the tree. This is accomplished by creating

a new, initially marked place for every such transition v, and putting this new place in the

pre-sets of both transition s0 and v.

It is then straightforward to show inductively that PT is the set of pomset-traces of the

net; the details are left to the reader.

Let Act be the alphabet of the net; clearly, all transitions of the net have labels from Act.

Since the original tree is �nite, an inductive argument shows that the net is 1-safe, has a �nite

4.2. THE UNSPLIT SEMANTICS 91

number of initially marked places, and that all places and transitions have �nite in-degree and

out-degree. Thus, only a �nite number of transitions are enabled under any reachable marking

of the net. However, one complication is that the
p
-labeled transitions of N may not clean out

all the tokens in the net. To correct this, we �rst recall that any pomset in PT can contain

at most one
p
-labeled event, which must be the sole maximum event in the pomset. We then

observe that any
p
-labeled transition, s, in the net, is thus enabled only after �ring exactly the

transitions corresponding to each of the predecessors of node s in the tree. By construction of

the net, these transitions can only be �red in a sequence that is consistent with the ordering of

the pomset corresponding to the node s. By Theorem 3.2.3, every such �ring sequence results

in the same �nal marking; thus, there is exactly one reachable marking of the net under which

transition s is enabled. A simple modi�cation of the preset of each
p
-labeled transition to

include all such corresponding marked places then yields the desired WT Net.

We now show that all compact elements are de�nable as the [[�]]MUST meanings of WT Nets:

Theorem 4.2.15 Let Act be a �nite set of labels containing the distinguished symbol
p
.

For every compact element hPF; PD;Acti 2 DMUST
Act

, there is some WT Net hN;Acti with

[[hN;Acti]]MUST = hPF; PD;Acti.

Proof. Let hPF; PD;Acti be a compact element of DMUST
Act

. As a simple consequence of

Lemma 4.2.12 and the de�nition of compactness (cf. [18]), hPF; PD;Acti is a �nite candidate

of DMUST
Act

. By De�nition 4.2.10, Act is a �nite set of labels and there is some �nite set PF�n of

pomset-failures over Act and some �nite set PD�n of pomset-divergences over Act such that:

� hPF�n; ;;Acti 2 DMUST
Act

.

� PD�n is pre�x-closed.

� hp;Di 2 PD�n implies that hp; ;i 2 PF�n.

� PD = augment(extendAct (PD�n)).

� PF = PF�n [implied-failuresAct (PD).

We �rst build a tree whose nodes are labeled with valid triples of the form hp;Dp; xpi or
hp; Fp; xpi, where hp;Dpi 2 PD�n or hp; Fpi 2 PF�n, respectively, and xp 2 max (p) whenever

p is non-empty and xp =� otherwise. Furthermore, we require that Fp = F 0 � A for some F 0

and A such that hp; F 0i 2 PF�n, hp; F 0 [fcgi 62 PF�n for all c 2 Act �F 0, ; � A � Act , and

for every a 2 A, there is some p0a 2 p with a such that hp0a; ;i 2 PF�n. We use � as a wildcard

character.

The tree is recursively built as follows. The root node is labeled h;;Act�init(PF�n); �i.
A node v labeled hp; Fp; xpi has an a-labeled arc to a node labeled with some valid triple

hp0; Fp0 ; xp0i or hp0; Dp0; xp0i i� (i) a 2 Act �Fp, (ii) lp0(xp0) = a, (iii) p � xp0 = p, and (iv) for

every ancestor w of v, if hq; Fq; �i is the label of w, then either downp0(xp0) 6� q or a 62 Fq.

We �rst show that for every node labeled hp; Fp; xpi, there is an a-labeled arc emanating

from the node i� a 2 Act �Fp. One direction follows immediately from the construction of the

tree. For the other direction, let a 2 Act �Fp, then by de�nition of the valid triples and the

92 CHAPTER 4. THE SEMANTIC DOMAINS

closure properties of PF�n, it is straightforward to show that hp; a; ;i 2 PF�n. Let xa be the

(unique) maximum event of p; a; it is then easy to see that there must be an a-labeled arc from

the hp; Fp; xpi-labeled node to a hp; a; F 0; xai-labeled node for some F 0.

We now show that for every hp;Dpi 2 PD�n, there is some node in the tree with label

hp;Dp; xpi, and for every hp; F i 2 PF�n, there is some node in the tree with label hp; Fp; xpi
for some Fp � F . We prove the lemma by induction on the size of p. The base case of

p = ; follows easily from the closure properties of PF�n. For one case of the induction step,

let hp; F i 2 PF�n, let xp 2 max (p), let a be the label of xp, and choose some Fp � F with

hp; Fpi 2 PF�n such that hp; Fp[fcgi 62 PF�n for all c 2 Act �Fp. Since PF�n is pre�x-closed,

there is by induction some node v in the tree with label hr; Fr; xpi, where r = p � xp. From

the construction of the tree, we can assume without loss of generality that a 62 Fr. If some

hqi; Fqi ; xqii-labeled node is an ancestor of v with a 2 Fqi and downp(xp) � qi, let it be the

least such ancestor. Let q0i be p restricted to qi [fxpg; clearly, q0i is a pre�x of p, and hence

hq0i; ;i 2 PF�n. Thus, there is a hqi; Fqi � fag; xqii-labeled node reachable by the same path

as the hqi; Fqi ; xqii-labeled node, and there is a path from this hqi; Fqi � fag; xqii-labeled node

to some hr; Fr; xri-labeled node. By repeating this argument down the path to hr; Fr; xri, it is
easy to prove that there is a-labeled arc from the hr; Fr; xri-labeled node to a hp; Fp; xpi-labeled
node. The induction step for hp;Dp; xpi-labeled nodes is similar and is omitted.

Furthermore, it is easy to see that the tree is �nitely branching. Since every pomset implic-

itly represents its isomorphism class, we assume without loss of generality that any two children

of any given node of the tree will have distinct third components in their labels, i.e., if the labels

of the children are respectively h�; �; xi and h�; �; yi, then x and y are distinct symbols.

From this tree, we will recursively construct a loop-free net N in which every place has in-

degree of at most one. This net preserves concurrency within any branch of the tree; however,

transitions arising from di�erent branches on the tree will always be conicting.

We now recursively construct the following net from the tree, level by level; the procedure

is analogous to that in the proof of Theorem 4.2.14. For the �rst level, we begin with a net

with one place, which is initially marked. For every child s of the root, we add to the net a new

lp(x)-labeled transition, named s, where the label of node s in the tree is (p; �; x). The single
initially marked place is attached as the pre-set of each transition s. All of these transitions

have empty post-sets.

For the induction step, we show how to de�ne the (k+ 1)-level of the tree from the k-level

segment of the tree. For every node s in the kth level of the tree and each child s0 of node s,
we construct a new lp0(x

0)-labeled transition, named s0, where the label of node s0 in the tree

is (p0; �; x0). It is easy to see that for every maximal cause x 2 Eventsp0 of x
0, there is a unique

h�; �; xi-labeled node s00 along the path from the root to s0. We then hook up transition s0 to the
(already existing) transition s00. This is accomplished by creating a new, unmarked place for

transition s00 and adding it both to the post-set of transition s00 and to the pre-set of transition

s0. If x0 2 min(p0), then a new initially marked place is added to the net and is attached as the

preset of transition s0. Finally, transition s0 is placed in conict with every transition v in the

net such that node v is not a predecessor of s0 in the tree. This is accomplished by creating

a new, initially marked place for every such transition v, and putting this new place in the

pre-sets of both transition s0 and v.

The procedure is analogous for every node s0 labeled with some hp0; Dp0; xp0i, except that in
addition, a new divergence (i.e., a � -transition in a self-loop) corresponding to each d 2 Dp0 is

4.2. THE UNSPLIT SEMANTICS 93

hooked up in the obvious analogous manner.

It is then straightforward to show inductively that for any hp; Fp; xpi-labeled node in the

tree, there is a pomset-trace corresponding to p after which exactly the actions in Act �Fp are
enabled. Thus, all pomset-failures in PF�n are actual pomset-failures of the net. Furthermore,

PD�n is exactly the set of pomset-divergences of the net.

However, for some hp; Fp; xpi-labeled nodes or some hp;Dp; xpi-labeled nodes, the marking

of the net reached after �ring some proper pre�x of p may generate a failure set that is \too

big." We thus patch up the net by iterating the following procedure: pick some hp; Fp; xpi-
labeled node or some hp;Dp; xpi-labeled node, some proper pre�x q of p, and some branch of

the tree starting at some hq; Fq; xqi-labeled node, and prune this branch so that each of its

nodes are labeled with hr; Fr; xri for some r such that downr(x) � q for all x 2 r � q. It is

straightforward to show that there exists some such pruned branch whose leaves are leaves of

the original tree. Now, for every occurrence of q in the net that has an incorrect failure set,

add transitions following q so that it emulates the pruned branch. It is straightforward to show

�ring q in the resulting net always leads to a correct failure set and that the failure sets of

the markings corresponding to the nodes of the tree are una�ected. Each iteration reduces

the number of distinct pomsets q with incorrect failure sets, and hence PF�n and PD�n are

respectively exactly the pomset-failures and pomset-divergences generated by this net.

An inductive argument then shows that the net is 1-safe, has a �nite number of initially

marked places, and that all places and transitions have �nite in-degree and out-degree. Thus,

the labeled transition system of the net is �nitely branching. However, one complication is that

the
p
-labeled transitions of N may not clean out all the tokens in the net; this di�culty is

resolved exactly as in the proof of Theorem 4.2.14. It is then easy to show that the resulting

net is a WT Net hN;Acti such that [[hN;Acti]]MUST = hPF; PD;Acti.

We now show that all compact elements are de�nable as the [[�]]TEST meanings of WT Nets:

Theorem 4.2.16 Let Act be a �nite set of labels containing the distinguished symbol
p
. For

every compact element hhPT;Acti; hPF; PD;Actii 2 DTEST
Act

, there is some WT Net hN;Acti
with [[hN;Acti]]TEST = hhPT;Acti; hPF; PD;Actii.

Proof. Let hhPT;Acti; hPF; PD;Actii be a compact element of DTEST
Act

. As a simple conse-

quence of Lemma 4.2.12 and the de�nition of compactness (cf. [18]), hhPT;Acti; hPF; PD;Actii
is a �nite candidate of DTEST

Act
. Thus, hPT;Acti is a �nite candidate of DMAY

Act
and hPF; PD;Acti

is a �nite candidate of DMUST
Act

. Let PF�n;PD�n be the �nite generating sets of PF; PD as given

by De�nition 4.2.10.

Using the same technique as in the proof of Theorem 4.2.15, we �rst build a tree whose

nodes are labeled with valid triples over PF�n and augment(PD�n), rather than PD�n. In

addition, nodes can also be labeled with valid pairs hp; xpi, where p 2 PT , hp; ;i 62 PF�n,

and xp 2 max (p). The nodes labeled with valid pairs are connected up as follows. A node

labeled hp;Dp; xpi has an a-labeled arc to a node labeled with some valid pair hp0; xp0i i�

hp;Dpi v hp0; fp0gi, p0 � xp0 = p, and lp0(xp0) = a. Finally, a node labeled hp; xpi has an

a-labeled arc to a node labeled with some valid pair hp0; xp0i i� p0 � xp0 = p and lp0(xp0) = a.

By the closure conditions of De�nition 4.2.7, hp; ;i 2 PF for every p 2 PT . Hence, hp; ;i 62
PF�n for some p 2 PT , then there must be some hr;Dri 2 PD�n such that hp; fEventspgi 2
augment(extendAct (hr;Dri)). Thus, hp; F i 2 PF for every F � Act . By Proposition 3.2.15 and

94 CHAPTER 4. THE SEMANTIC DOMAINS

the pre�x-closure of PD�n, there must be some hr0; Dr0i 2 augment(PD�n) with hr0; Dr0i v
hp; fEventspgi. It is then easy to show inductively that for every p 2 PT , the tree contains

some node labeled with either hp; �; �i or h�; �i, where � is the wildcard symbol.

The construction of the net is then the obvious straightforward combination of the construc-

tions in the proofs of Theorem 4.2.14 and Theorem 4.2.15, as is the remainder of the proof.

The operations on DMAY
Act

and DMUST
Act

are given in De�nition 3.2.28 and De�nition 3.2.29,

respectively. We do not restate the de�nitions here. Let the operations on DTEST
Act

be the

natural pairwise combination of the operations on DMAY
Act

and DMUST
Act

. Then:

Theorem 4.2.17 Let Act be a �nite set of labels containing the distinguished symbol
p
. Then

DMAY
Act

, DMUST
Act

, and DTEST
Act

are closed under pre�xing, restriction, renaming, hiding, sequencing,

internal choice, CCS choice, non-communicating parallel composition, CSP-style parallel com-

position, CCS-style parallel composition, split re�nements, and choice re�nements. Further-

more, all of these operations are continuous functions on the respective domains.

Let Act 0 be a �nite set of labels containing
p
. Then grow Act 0 and shrink Act 0 are con-

tinuous functions from hDMAY
Act

;vMAY

Act
i, hDMUST

Act
;vMUST

Act
i, and hDTEST

Act
;vTEST

Act
i to hDMAY

Act0
;vMAY

Act 0
i,

hDMUST
Act0

;vMUST

Act0
i, and hDTEST

Act0
;vTEST

Act0
i, respectively.

The proof for DMAY
Act

is completely routine but tedious and is left to the reader.

It is routine but tedious to verify that DMUST
Act

is closed under all of the operations except

alphabet expansion and shrinking, grow Act 0 and shrink Act 0 are continuous functions from
hDMUST

Act
;vMUST

Act
i to hDMUST

Act 0
;vMUST

Act 0
i, all of the operations are monotone, and that all the opera-

tions except hiding and CCS-style parallel composition are continuous. The details are left to

the reader. The proof for DTEST
Act

is a simple consequence of De�nition 4.2.7 and the continuity

of the operations on DMAY
Act

and DMUST
Act

.

We prove the case for hiding on DMUST
Act

, from which the proof for CCS-style parallel compo-

sition follows easily. The proof for hiding is a generalization of that in [8] for failures semantics,

and uses the following lemma:

Lemma 4.2.18 Let hq;Dqi be a pomset-divergence over a �nite alphabet Act , let a 2 Act,

and let PDS = fhpn; Dni : n � 0g be an in�nite set of pomset-divergences such that hpn; Dni�
a = hq;Dqi for all hpn; Dni 2 PDS. Then there is some pomset-divergence hr0; D [Ri with
hr0; D [Ri� a v hq;Dqi and some in�nite sequence r1; r2 : : : of pomsets such that for i � 0:

� ri is a pre�x of ri+1.

� All events in ri � r0 are a-labeled.

� For every d 2 R, ri contains an i-length chain of a-labeled events whose downward-closure

restricted to r0 is a subset of d.

� hri; Di is a pre�x of some hpni ; Dnii 2 PDS.

Proof. Let hr0; Di be a pair consisting of a pomset, r0, together with a possibly empty

set, D, of its pre�xes such that

� hr0; Di is a pre�x of an in�nite number of pomset-divergences hpni; Dnii 2 PDS.

4.2. THE UNSPLIT SEMANTICS 95

� For every pair hr00; D0i that is a pre�x of an in�nite number of pomset-divergences in PDS,
if hr0; Di� a is a pre�x of hr00; D0i� a, then hr0; Di� a and hr00; D0i� a are isomorphic.

Clearly, h;; ;i is a pre�x of every pomset-divergence. Since the size of all such hp00; D0i� a

is bounded by hq;Dqi it is easy to see that a pomset-divergence hp0; Di exists that satis�es the
above conditions; however, it is not necessarily unique.

Let hq0; Dq0i = hr0; Di� a for some such pair hr0; Di; clearly, hq0; Dq0i is a pre�x of hq;Dqi.
Let R be the following set of downward-closed subsets of r0:

R1 = fdownr0(d) : d 2 Dq; downr0(d) 62 D; and d � q0g
R2 = fdownr0(downq(x)\ q0) : x 2 q � q0g
R = R1 [R2

It is straightforward to show that the maximality conditions of hr0; Di imply that hr0; Di is
extended in PDS by concurrent chains of a-labeled events of unbounded length in PDS, and

whose set of downward-closures is exactly R. It is also easy to see that hr0; D[Ri�av hq;Dqi,
proving the lemma.

We now prove the continuity of the hiding operation on DMUST
Act

:

Lemma 4.2.19 Let Act be a �nite set of labels containing the distinguished symbol
p
. Then

the hiding operation on DMUST
Act

is continuous.

Proof. One direction follows immediately from the easy observation that hiding is a mono-

tone function. For the other direction, let A be an in�nite chain in DMUST
Act

, let fhPFk; PDk;Acti :
k 2 IAg def

= A for some index set IA, and let hPFA; PDA;Acti =
F
A. For one case, let

hq;Dqi 2
TfPDk� a : k 2 IAg. Lemma 3.2.15 and the closure properties of the PDk imply

that for every PDk with k 2 IA, there is some hpk; Dki 2 PDk [PFk and some possibly empty

set Rk of downward-closed subsets of Eventspk such that hpk; Dk [Rki is a pomset-divergence,
hpk; Dk [Rki� a v hq;Dqi, and for all n � 0, there is some pkn with hpkn; Di 2 PDk [PFk such
that:

� hpk; Rki v hpkn; fEventspkngi.

� All events in pkn � pk are a-labeled.

� For every d 2 Rk, there is some n-length chain of a-labeled events in pkn � pk whose

downward closure restricted to pk is d.

Furthermore, we can clearly assume without loss of generality that every pkn has size bounded

by jpkj+ jRkj � n.

Let PDS be the set fhpk; Dk [Rki : k 2 IAg. If PDS is �nite, then it is easy to see

that an in�nite number of hPTk; PFk; PDk;Acti 2 A have the same hpk; Dk; Rki and the same

sequence pk1; p
k
2; : : :. Since A is a chain, this hpk; Dk; Rki and this sequence pk1; p

k
2; : : : must

occur in every element of A, from which it follows easily that hq;Dqi 2 PDA. If PDS is

in�nite, then clearly there must be some in�nite subset PDS 0 of PDS such that for all hpi; Di[
Rii; hpj; Dj [Rji 2 PDS, hpi; Di [Rii� a = hpj; Dj [Rji� a. Thus, Lemma 4.2.18 gives the

96 CHAPTER 4. THE SEMANTIC DOMAINS

existence of a pre�x hr0; Di of some hpk; Dk [Rki 2 PDS, some set R of pre�xes of r0 with

hr0; D [Ri� a v hq;Dqi, and some appropriate sequence r1; r2 : : : such that every hri; Di is a
pre�x of some hpi; Di[Rii 2 PDS. Thus it follows by closure properties of the hPFi; PDi;Acti
that hri; Di 2 PDi [PFi. The de�nition of PDS and the chain condition then immediately

implies that hr0; Di and all of the hri; Di are in PDm [PFm for every hPFm; PDm;Acti, from
which it follows easily that hq;Dqi 2 PDA.

The proof that
TfPFk� a : k 2 IAg � PFA is very similar and is left to the reader.

4.3 The Split Semantics

This section gives abstract characterizations of the [[�]]MUST
split- and [[�]]TESTsplit- semantics on WT Nets,

shows that they form algebraic cpo's, and proves that all the corresponding process operations

from Chapter 3 are continuous functions on these cpo's.

We de�ne hDMUST-split-

Act 0
;vMUST-split-

Act0
i as a sub-partial-order of hDMUST

Act
;vMUST

Act
i corresponding

to [[�]]MUST meanings of +M dupl-split nets. In order to ensure that every compact element of

DMUST-split-

Act 0
is de�nable as the [[�]]MUST

split- meaning of some WT Net, we require that DMUST-split-

Act 0

satisfy some additional closure conditions.

First, we must ensure that Act is a \dupl-split alphabet," and that PF and PD are closed

under \0-splitting" any a0-labeled events. Dually, any minimal pomset-failure or pomset-

divergence must be the result of \0-splitting" some 1-2-respect ing pomset. We note that the

de�nition of 1-2-respect ing ensures that no a1-labeled event must be a maximal cause of any

divergence. Furthermore, any maximal a1-labeled events corresponds to \half-�red" a0-events

and hence can be relabeled with a0. Also, �ring any a1-labeled event additionally enables only

a a2-labeled event. The special role of
p

and is also reected in the closure conditions. In

particular, (1e) reects the presence of initial � -moves.

De�nition 4.3.1 Let Act be a �nite alphabet containing
p

and let Act0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. A triple hPF; PD;Act0i is said to be must-split-respecting i� it is a

must-respecting triple and satis�es the following properties:

1. Additional closure properties of PF :

(a) 0-split(PF) � PF .

(b) hp; F i 2 1-2-respect(PF) and p0 2 �(p) implies that hp0; ;i 2 PF , where � is the

sequence of choice re�nements hchoice(a1;a1;a0) : a 2 Act �f;pgi.
(c) hp; F i 2 PF , c 2 Act �f;pg, and hp; F [fc1gi 62 PF implies that there is some

p0 2 p with c1 such that hp0; F � fc2gi 2 PF .

(d) h;Acti 2 PF .

(e) h;; F [fagi 2 PF and ha; ;i 2 PF implies that h;; F [fa; gi 2 PF .

2. Additional closure properties of PD:

(a) hp;Di 2 minv(PD) implies that hp;Di 2 augment(0-split(1-2-respect(PD))).

(b) 0-split(PD) � PD.

4.3. THE SPLIT SEMANTICS 97

(c) hp;Di 2 1-2-respect(PD) and p0 2 �(p) implies that hp0; Di 2 PD, where � is the

sequence of choice re�nements hchoice(a1;a1;a0) : a 2 Act �f;pgi.
(d) hp;Di 2 minv(PD) implies that p contains no -labeled events.

3. Additional mixed properties:

(a) hp; F i 2 PF and hp; fEventspgi 62 PD implies that

hp; F i 2 augment(0-split(1-2-respect(PF)))

(b) hp; F i 2 PF and hp; fEventspgi 62 PD and p contains a
p
-labeled event implies that

this is the sole event in p.

(c) hp; F i 2 PF , hp; fEventspgi 62 PD, and F \ fa0; a1g 6= ; for some a 2 Act �f;pg
implies that F � fa0; a1g.

(d) hp; F i 2 1-2-respect(PF), hp; fEventspgi 62 PD, and a2 2 F for some a 2 Act �f;pg
implies that no event in p is a1-labeled.

De�nition 4.3.2 Let Act be a �nite alphabet containing
p

and let Act0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. A pair hhPT;Acti; hPF; PD;Act0ii said to be test-split-respecting i�

hPT;Acti is may-respecting , hPF; PD;Act0i is must-split-respecting , and

1. p 2 PT and p0 2 �(�(p)) implies that hp0; ;i 2 PF , where � is the sequence of choice

re�nements hchoice(a;a0;a0) : a 2 Act �f;pgi, � is the sequence of split re�nements

hsplit(a0;a1;a2) : a 2 Act �f;pgi, and all the a0 are distinct symbols not in Act [Act 0.

2. hp; F i 2 PF and hp; fEventspgi 62 PD implies that there is some p0 2 PT such that

p 2 augment(�(�(p0))), where � and � are as above.

3. hp;Di 2 minv(PD) implies that there is some p0 2 PT such that p 2 augment(�(�(p0))),
where � and � are as above.

De�nition 4.3.3 Let Act be a �nite alphabet containing
p

and let Act0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Then DMUST-split-

Act0
is the restriction of DMUST

Act0
to must-split-respecting

triples and vMUST-split-

Act 0
is the restriction of vMUST

Act0
to DMUST-split-

Act 0
� DMUST-split-

Act0
.

De�nition 4.3.4 Let Act be a �nite alphabet containing
p

and let Act0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Then DTEST-split-

Act;Act0 is de�ned to be the set of all test-split-respecting

pairs hhPT;Acti; hPF; PD;Act0ii. Furthermore,vTEST-split-

Act;Act 0 is the binary relation on DTEST-split-

Act;Act 0

such that for every h�1; �1i and h�2; �2i in DTEST-split-

Act;Act0 , h�1; �1ivTEST-split-

Act;Act 0 h�2; �2i i� �1vMAY

Act
�2

and �1vMUST-split-

Act 0
�2.

We �rst show that [[�]]MUST
split- and [[�]]TESTsplit- map WT Nets to elements of these domains:

Theorem 4.3.5 Let hN;Acti be a WT Net, and let Act 0 = fa0; a1; a2 : a 2 Act �f;pgg [
f;pg. Then [[hN;Acti]]MUST

split- 2 DMUST-split-

Act 0
and [[hN;Acti]]TESTsplit- 2 DTEST-split-

Act;Act0 .

98 CHAPTER 4. THE SEMANTIC DOMAINS

Proof. We �rst prove the case for [[�]]MUST
split- . Since WT Nets are closed under +M and

dupl-split , the de�nition of [[�]]MUST
split- and Theorem 4.2.8 together imply that [[hN;Acti]]MUST

split- 2
DMUST
Act

0 . The additional closure conditions of De�nition 4.3.3 follow directly from the properties

of +M and dupl-split nets, and are easy to verify. The details are left to the reader.

For [[�]]TESTsplit- , it is straightforward to see from the de�nitions of pomset-traces, pomset-failures,

and pomset-divergences of WT Nets, the de�nition of [[�]]TESTsplit- , the de�nition of dupl-split and

+M , and Proposition 3.2.15 that the additional closure conditions hold. The theorem then

follows easily from Theorem 4.2.8 and the above case.

Theorem 4.3.6 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg[fp; g. Then hDMUST-split-

Act0
;vMUST-split-

Act 0
i and hDTEST-split-

Act;Act 0 ;vTEST-split-

Act;Act 0 i are com-
plete partial orders.

The proof of the theorem is an easy combination and adaptation of the proof of Theo-

rem 4.2.9. The details are left to the reader.

We now give a �nite characterization of the compact elements ofDMUST-split-

Act 0
and DTEST-split-

Act;Act0 .

De�nition 4.3.7 Let Act be a �nite alphabet containing
p

and let Act0 = fa0; a1; a2 : a 2
Act �f;pgg[fp; g. A triple hPF; PD;Act0i is a �nite candidate ofDMUST-split-

Act 0
i� hPF; PD;Act 0i

2 DMUST-split-

Act 0
and hPF; PD;Act 0i is a �nite candidate of DMUST

Act0
. A tuple h�; �i is a �nite can-

didate of DTEST-split-

Act;Act 0 i� h�; �i 2 DTEST-split-

Act;Act0 , � is a �nite candidate of DMAY
Act

, and � is a �nite

candidate of DMUST-split-

Act0
.

As an immediate consequence of De�nitions 4.3.3 and 4.3.4 and Lemma 4.2.11, we have:

Lemma 4.3.8 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Then all �nite candidates of DMUST-split-

Act 0
and DTEST-split-

Act;Act0 are compact

elements of DMUST-split-

Act0
and DTEST-split-

Act;Act0 , respectively.

We now show:

Lemma 4.3.9 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. For every hPF; PD;Act0i 2 DMUST-split-

Act0
, there is a directed set A1 �

DMUST-split-

Act 0
of �nite candidates with

F
A1 = hPF; PD;Act0i. For every h�; �i 2 DTEST-split-

Act;Act0 ,

there is a directed set A2 � DTEST-split-

Act;Act 0 of �nite candidates with
F
A2 = h�; �i.

Proof. The proof for DMUST-split-

Act0
is a minor modi�cation of that of Theorem 4.2.12, needed

in order to ensure that closure condition (2a) of De�nition 4.3.3 holds for every approximation.

For every n � 0, we de�ne nth approximation, hPFn; PDn;Act
0i to hPF; PD;Act0i as follows:

PF 0 = fhp; F i 2 PF : p is a pre�x of some q such that hq; ;i 2 PF;

and either hq; fEventsqgi 62 PD or hq;Di 2 minv(PD) for some Dg

PF0
�n-n = fhp; F i 2 PF 0 : depth(p) � ng [fhp; F i : hp; ;i 2 PF 0; depth(p) = n; and F � Act 0g

4.3. THE SPLIT SEMANTICS 99

PD�n-n = fhp;D [D0i : hp; ;i 2 PF 0
�n-n; D [D0 6= ;; either hp;Di 2 PD or D = ;;

and for all d 2 D0; either d = downp(x)[fxg for some x such that

depthp(x) = n; and lp(x) 6= a1 for any a 2 Act �f;pg;
or d = downp(y) [fyg for some y such that

y is a maximal cause of some x with depthp(x) = n;

and lp(x) = b1 for some b 2 Act �f;pgg

PDn = augment(extendAct 0(PD�n-n))

PF�n-n = augment(PF0
�n-n)

PFn = PF�n-n [implied-failuresAct
0(PDn)

The proof of this case is then a straightforward adaptation of that of Theorem 4.2.12; the

details are left to the reader.

The proof of DTEST-split-

Act;Act 0 is a straightforward adaptation of the proof of Theorems 4.2.12

and the above case; the details are left to the reader.

We now have:

Theorem 4.3.10 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Then DMUST-split-

Act0
and DTEST-split-

Act;Act0 are algebraic cpo's.

The theorem is a simple consequence of Lemma 4.3.8 and Lemma 4.3.9 (cf. [18]).

We now show that all compact elements are de�nable as the meanings of WT Nets:

Theorem 4.3.11 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. For every compact element hPF; PD;Act0i 2 DMUST-split-

Act 0
, there is

some WT Net hN1;Acti with [[hN1;Acti]]MUST
split- = hPF; PD;Act 0i. For every compact element

hhPT;Acti; hPF; PD;Act0ii 2 DTEST-split-

Act;Act 0 , there is someWTNet hN2;Acti with [[hN2;Acti]]TESTsplit-

= hhPT;Acti; hPF; PD;Act0ii.

Proof. For the �rst case, let hPF; PD;Act 0i be a compact element of DMUST
Act

. As a simple

consequence of Lemma 4.3.9 and the de�nition of compactness (cf. [18]), hPF; PD;Act0i is a
�nite candidate of DMUST-split-

Act 0
.

The construction of the tree is analogous to the proof of the proof of Theorem 4.2.15, except

that nodes are labeled with pomset-failures only from 0-split(1-2-respect(PF�n)) (rather than

PF�n) and with pomset-divergences only from 0-split(1-2-respect(PD�n)) (rather than PD�n).

Furthermore, the root has � -labeled arcs to nodes labeled with valid triples of the form h;; f;g; �i
or h;; F [fg; �i. Finally, an additional restriction is that a node labeled hp; Fp; xpi has an a1-
labeled arc to a node labeled with hp0; Fp0 ; xp0i, then Fp � fa2g � Fp0 . The remainder of the

proof is a straightforward modi�cation of the proof of Theorem 4.2.15; the details are left to

100 CHAPTER 4. THE SEMANTIC DOMAINS

the reader. In particular, using closure condition (3a), it is easy to rewire the net to simulate

duplicate-splitting.

We remark that the \patching-up" process is done �rst on pre�xes whose maximal nodes

are all �0-labeled or �2-labeled. The failure sets for the remaining pre�xes are then chosen

appropriately.

The resulting net is then isomorphic to +M (dupl-split(hN1;Acti) grow fg) for some WT

Net hN2;Acti, proving this case.

The proof for DTEST-split-

Act;Act0 is then a straightforward combination of the proofs of Theo-

rems 4.2.16 and the previous case; the details are left to the reader.

The operations on DMUST-split-

Act0
are given in De�nition 3.2.45. We do not restate the def-

initions here. Let the operations on DTEST-split-

Act;Act 0 be the natural pairwise combination of the

operations on DMAY
Act

and DMUST-split-

Act0
. Then:

Theorem 4.3.12 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Then DMUST-split-

Act 0
and DTEST-split-

Act;Act0 are closed under pre�xing, restric-

tion, renaming, hiding, sequencing, internal choice, CCS choice, non-communicating parallel

composition, CSP-style parallel composition, CCS-style parallel composition, split re�nements,

and choice re�nements. Furthermore, all of these operations are continuous functions on the

respective domains.

Let Act1 be a �nite alphabet containing
p

and let Act1
0 = fa0; a1; a2 : a 2 Act1�f;

pgg[
fp; g. Then grow Act1 and shrink Act1 are continuous functions from hDMUST-split-

Act0
;vMUST-split-

Act 0
i

and hDTEST-split-

Act;Act 0 ;vTEST-split-

Act;Act 0 i to hDMUST-split-

Act1
0 ;vMUST-split-

Act1
0 i and hDTEST-split-

Act1;Act10
;vTEST-split-

Act1;Act10
i, re-

spectively.

Proof. It is straightforward but tedious to show that DMUST-split-

Act 0
is closed under all

of the operations except alphabet growing and shrinking, and that the domain and range of

grow Act1 and shrink Act1 are as speci�ed. It is easy to show that +M , augment, extend

1-2-respect , 0-split , 0-1-choice, and 0-1-split are continuous functions. The theorem then fol-

lows easily from Theorem 4.2.17.

4.4 The Interval Semantics

This section gives abstract characterizations of the [[�]]MAY
intvl , [[�]]MUST

intvl- , and [[�]]TESTintvl- semantics on

WT Nets, shows that they form algebraic cpo's, and proves that all the corresponding process

operations from Chapter 3 are continuous functions on these cpo's.

De�nition 4.4.1 Let Act be a �nite alphabet containing
p

and let Act0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Then DMAY-intvl

Act
is de�ned to be the set intervals(DMAY

Act
). Furthermore,

vMAY-intvl
Act

is the binary relation on DMAY-intvl
Act

such that for every hPT1;Acti and hPT2;Acti in
DMAY-intvl
Act

, hPT1;Act1ivMAY-intvl

Act
hPT2;Act2i i� PT1 � PT2.

DMUST-intvl-

Act0
is de�ned to be the set intervals(DMUST-split-

Act0
). Furthermore, vMUST-intvl-

Act0
is the

binary relation on DMUST-intvl-

Act0
such that for every hPF1; PD1;Act

0i and hPF2; PD2;Act
0i in

DMUST-intvl-

Act 0
, hPF1; PD1;Act

0ivMUST-intvl-

Act 0
hPF2; PD2;Act

0i i� PF1 � PF2 and PD1 � PD2.

4.4. THE INTERVAL SEMANTICS 101

DTEST-intvl-

Act;Act 0 is de�ned to be the set intervals(DTEST-split-

Act;Act 0). Furthermore, vTEST-intvl-

Act;Act 0 is

the binary relation on DTEST-intvl-

Act;Act0 such that for every h�1; �1i and h�2; �2i in DTEST-intvl-

Act;Act 0 ,

h�1; �1ivTEST-intvl-

Act;Act 0 h�2; �2i i� �1vMAY-intvl

Act
�2 and �1vMUST-intvl-

Act0
�2.

We �rst show that the interval semantics of Chapter 3 map WT Nets to elements of the

above partial orders:

Theorem 4.4.2 Let hN;Acti be a WTNet. Then [[hN;Acti]]MAY
intvl 2 DMAY-intvl

Act
, [[hN;Acti]]MUST

intvl- 2
DMUST-intvl-

Act 0
, and [[hN;Acti]]TESTintvl- 2 DTEST-intvl-

Act;Act 0 .

The theorem is a simple consequence of the de�nitions of [[�]]MAY
intvl , [[�]]MUST

intvl- , [[�]]TESTintvl- , Theo-

rem 4.2.8 and Theorem 4.3.5.

The following propositions will be useful in the technical development in this section:

Proposition 4.4.3 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. The intervals and augment functions on DMAY-intvl

Act
are continuous and

the intervals, augment, extend, and 0-split functions on DMUST-intvl-

Act0
are continuous.

Proposition 4.4.4 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Let hPT;Acti 2 DMAY

Act
and let hPF; PD;Act0i 2 DMUST-split-

Act 0
. Then

� augment(intervals(hPT;Acti)) 2 DMAY
Act

� intervals(augment(intervals(hPT;Acti))) = intervals(hPT;Acti)

� augment(extendAct 0(0-split(intervals(hPF; PD;Act0i)))) 2 DMUST-split-

Act0

� intervals(augment(extendAct 0(0-split(intervals(hPF; PD;Act0i))))) =
intervals(hPF; PD;Act0i)

� hPF; PD;Act0ivMUST-split-

Act0
augment(extendAct

0(0-split(intervals(hPF; PD;Act0i))))

The proof of Proposition 4.4.3 is routine. The �rst two items of Proposition 4.4.4 follows

easily from Proposition 4.2.1 and De�nition 4.2.5. The remaining items of Proposition 4.4.4

follows easily from Proposition 3.2.15, Proposition 3.3.9, Proposition 4.2.1, and De�nition 4.3.3.

The details are left to the reader.

Theorem 4.4.5 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Then hDMAY-intvl

Act
;vMAY-intvl

Act
i, hDMUST-intvl-

Act0
;vMUST-intvl-

Act0
i, and

hDTEST-intvl-

Act;Act 0 ;vTEST-intvl-

Act;Act 0 i, are complete partial orders.

Proof. It is easy to see that hDMAY-intvl
Act

;vMAY-intvl

Act
i, hDMUST-intvl-

Act0
;vMUST-intvl-

Act 0
i, and

hDTEST-intvl-

Act;Act 0 ;vTEST-intvl-

Act;Act 0 i are partial orders.
We give the proof of completeness for DMAY-intvl

Act
. It is easy to see that h;;Acti is the least

element of DMAY-intvl
Act

. Let A be a directed set in DMAY-intvl
Act

; then by de�nition of DMAY-intvl
Act

,

A = intervals(B) for some set B � DMAY
Act

. Proposition 4.4.3 and Proposition 4.4.4 im-

ply that augment(intervals(B)) is a directed set in DMAY
Act

, and Theorem 4.2.9 implies that

102 CHAPTER 4. THE SEMANTIC DOMAINS

S
augment(intervals(B)) 2 DMAY

Act
. By de�nition, intervals(

S
augment(intervals(B))) 2 DMAY-intvl

Act
,

and by Proposition 4.4.3 and Proposition 4.4.4,

intervals(
[

augment(intervals(B))) =
[

intervals(augment(intervals(B))) =
[
(intervals(B));

proving this case.

The proofs for DMUST-intvl-

Act
0 and DTEST-intvl-

Act;Act0 are completely analogous, except that they use

Theorem 4.3.6. The details are simple and are left to the reader.

We now give a �nite characterization of the compact elements of these domains.

De�nition 4.4.6 Let Act be a �nite alphabet containing
p

and let Act0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. A pair hPT;Acti is a �nite candidate of DMAY-intvl

Act
i� hPT;Acti =

intervals(hPT 0;Acti) for some �nite candidate hPT 0;Acti of DMAY
Act

. A triple hPF; PD;Act0i is
a �nite candidate of DMUST-intvl-

Act 0
i� hPF; PD;Act0i = intervals(hPF 0; PD0Act 0i) for some �nite

candidate hPF 0; PD0;Act0i of DMUST-split-

Act 0
. A tuple h�; �i is a �nite candidate of DTEST-intvl-

Act;Act 0 i�

h�; �i = intervals(h�0; �0i) for some �nite candidate h�0; �0i of DTEST-split-

Act;Act 0 .

Lemma 4.4.7 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg[fp; g. Then all �nite candidates of DMAY-intvl

Act
, DMUST-intvl-

Act 0
, and DTEST-intvl-

Act;Act 0 are

compact elements of DMAY-intvl
Act

, DMUST-intvl-

Act 0
, and DTEST-intvl-

Act;Act0 , respectively.

Proof. The proof for DMAY-intvl
Act

is identical to that for DMAY
Act

in Theorem 4.2.11.

Let intervals(hPF; PD;Act0i) be a �nite candidate of DMUST-intvl-

Act 0
and let A be a subset of

DMUST-split-

Act 0
such that intervals(A) is a directed set in DMUST-intvl-

Act 0
and

intervals(hPF; PD;Act0i)vMUST-intvl-

Act 0

F
intervals(A). By Propositions 4.4.3 and 4.4.4,

hPF; PD;Act 0i vMUST-split-

Act0
augment(extendAct

0(0-split(intervals(hPF; PD;Act0i))))
vMUST-split-

Act0
augment(extendAct

0(0-split(
F
intervals(A))))

vMUST-split-

Act0

F
augment(extendAct

0(0-split(intervals(A))))

Since by Theorem 4.3.8, hPF; PD;Act0i is a compact element of DMUST-split-

Act0
, there is some

hPFn; PDn;Act
0i 2 A with

hPF; PD;Act 0ivMUST-split-

Act 0
augment(extendAct

0(0-split(intervals(hPFn; PDn;Act
0i)))):

Then by Proposition 4.4.4,

intervals(hPF; PD;Act0i) vMUST-intvl-

Act0

intervals(augment(extendAct
0(0-split(intervals(hPFn; PDn;Act

0i)))))

which by Proposition 4.4.4 is equal to intervals(hPFn; PDn;Act
0i), proving this case.

The proof for DTEST-intvl-

Act;Act 0 is a simple consequence of the previous two cases and is left to

the reader.

Lemma 4.4.8 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. For every hPT;Acti 2 DMAY-intvl

Act
, there is a directed set A1 � DMAY-intvl

Act

4.4. THE INTERVAL SEMANTICS 103

of �nite candidates with
F
A1 = hPT;Acti. For every hPT;Act0i 2 DMUST-intvl-

Act 0
, there is a

directed set A2 � DMUST-intvl-

Act
0 of �nite candidates with

F
A2 = hPT;Act0i. For every h�; �i 2

DTEST-intvl-

Act ;Act0 , there is a directed set A3 � DTEST-intvl-

Act;Act 0 of �nite candidates with
F
A3 = h�; �i.

Proof. We prove the case for DMAY-intvl
Act

. By de�nition, hPT;Acti = intervals(hPT 0;Acti)
for some hPT 0;Acti 2 DMAY

Act
. Lemma 4.2.12 gives a directed set B of �nite candidates of

DMAY
Act

whose least upper bound in DMAY
Act

is hPT 0;Acti. Thus, hPT;Acti = intervals(
F
B). By

Proposition 4.4.3 and De�nition 4.4.6, intervals(B) is a directed set of �nite candidates of

DMAY-intvl
Act

and

hPT;Acti = intervals(
G

B) =
G

intervals(B):

The proofs of the other cases are analogous and are omitted.

Theorem 4.4.9 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Then DMAY-intvl

Act
, DMUST-intvl-

Act 0
, and DTEST-intvl-

Act;Act0 are algebraic cpo's.

The theorem is a simple consequence of the de�nition of compact elements and Lemma 4.4.7

and Lemma 4.4.8 (cf. [18]).

Theorem 4.4.10 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. For every compact element hPT;Acti 2 DMAY-intvl

Act
, there is some WT

Net hN1;Acti with [[hN1;Acti]]MAY
intvl = hPT;Acti. For every compact element hPF; PD;Act0i 2

DMUST-intvl-

Act 0
, there is some WT Net hN2;Acti with [[hN2;Acti]]MUST

intvl- = hPF; PD;Act0i. For every
compact element h�; �i 2 DTEST-intvl-

Act;Act0 , there is some WT Net hN3;Acti with [[hN3;Acti]]TESTintvl- =

h�; �i.

The theorem is a simple consequence of the de�nition of [[�]]MAY
intvl , [[�]]MUST

intvl- , [[�]]TESTintvl- , Lemma 4.4.8,

and Theorems 4.2.14 and 4.3.11.

The operations on DMAY-intvl
Act

, DMUST-intvl-

Act 0
, and DTEST-intvl-

Act;Act0 are given in the proof of Theo-

rem 3.3.10. We do not restate the de�nitions here. We have that:

Theorem 4.4.11 Let Act be a �nite alphabet containing
p

and let Act 0 = fa0; a1; a2 : a 2
Act �f;pgg [fp; g. Then DMAY-intvl

Act
, DMUST-intvl-

Act0
, and DTEST-intvl-

Act;Act 0 are closed under pre�x-

ing, restriction, renaming, hiding, sequencing, internal choice, CCS choice, non-communicating

parallel composition, CSP-style parallel composition, CCS-style parallel composition, split re-

�nements, and choice re�nements. Furthermore, all of these operations are continuous functions

on the respective domains.

Let Act1 be a �nite alphabet containing
p

and let Act1
0 = fa0; a1; a2 : a 2 Act1�f;

pgg[
fp; g. Then grow Act1 and shrink Act1 are continuous functions from hDMAY-intvl

Act
;vMAY-intvl

Act
i,

hDMUST-intvl-

Act0
;vMUST-intvl-

Act 0
i, and hDTEST-intvl-

Act;Act0 ;vTEST-intvl-

Act;Act0 i to hDMAY-intvl
Act0

;vMAY-intvl

Act 0
i,

hDMUST-intvl-

Act1
0 ;vMUST-intvl-

Act1
0 i, and hDTEST-intvl-

Act1;Act1
0 ;vTEST-intvl-

Act1;Act1
0 i, respectively.

The theorem follows easily from Theorems 4.2.17 and 4.3.12, and Proposition 4.4.3.

104 CHAPTER 4. THE SEMANTIC DOMAINS

Chapter 5

Action Re�nement

5.1 An Action Re�nement Operator

This section presents our action re�nement operator on a restricted class of WT Nets. In order

to preserve the �nite marking condition on Well-Terminating Nets, we will de�ne our action

re�nement on a suitably restricted subclass of WT Nets.

De�nition 5.1.1 The class of Re�nable Well-Terminating (RWT) Nets consists of WT Nets

hN;Acti in which every place has only a �nite number of transitions with labels from Act �fpg
emanating from it, i.e., for all s 2 SN , the set ft 2 postN(s) : lN(t) 2 Act �fpgg is �nite.

It is easy to show that:

Theorem 5.1.2 The class of RWT Nets is closed under pre�xing (�:), restriction (na), hiding
(�a), renaming ([f]), CSP-style sequencing (;), non-communicating parallel composition (jj),
CCS-style parallel-composition-with-hiding (j), internal choice (�), start-unwinding, CCS-style
choice (+M), split, and choice, but not under CSP-style parallel composition (kA).

Proof. CSP-style parallel composition, kfag, applied to two RWT Nets that each contain

an in�nite number of a-labeled transitions will result in a net in which every a-labeled transition

of one net is allowed to synchronize with every a-labeled transition of the other net. We recall

that by de�nition, all transitions in WT Nets have non-empty presets. Thus, it is easy to

see that some place in this resulting net must have an in�nite number of a-labeled transitions

emanating from it, violating the de�ning condition on RWT Nets.

The proof that RWT Nets are closed under all the other net operators follows easily from

Theorem 2.2.16 and is omitted.

Our action re�nement operator hN;Acti[a:=hNa;Acti] \replaces" each a-labeled transition

in the target net hN;Acti by a separate but identical copy of the re�nement net hNa;Acti; these
copies are distinguished by \tagging" the names of the places and transitions of Na with the

name of the corresponding a-labeled transition. We want our action re�nement operator to

satisfy some intuitively simple distributivity properties, and so we need to be careful in how we

hook up the copies of Na to the places of N .

105

106 CHAPTER 5. ACTION REFINEMENT

� � �
d a1 a2

a a
p

b c

��

��
��

��

��
��

��

��
��

�� �� ����

��
wwooo

oo OOOOO''

��

��OOOOO''

��

��
wwooo

oo

�� ����

��
��

��

��
��

hN;Acti hNa;Acti

�
d

a1 a2 a1 a2

� �

b c

��

��
��
OOOOO''

ZZZZZZZZZZZZZZZZZZ,,wwooo
oo

rrddddddd
ddddddd

dddd
��

��
��

[[[[[[[[[[[[[[[[[[[[[[[[[[--

��

��
ssggggg

ggggg
gg [[[[[[[[[[[[[[[[[[[[[[[[[[--

��

��
ssggggg

ggggg
gg

��

��

��
��qqccccccccc

ccccccccc
cccccccc

�� �� �� ����

��OOOOO''

��

��
wwooo

oo
��

��OOOOO''

��

��
wwooo

oo

�� ����

��
��

��

��
��

hN;Acti[a:=hNa;Acti]

Figure 5-1: An Example of Action Re�nement

In the same spirit as the de�nition of the +M operator, we take cross products of the start

places of appropriate copies of Na; in particular, for every place s in N , we take a cross product

v of the start places of the copies of Na corresponding to the a-labeled transitions emanating

from s. Furthermore, in the same spirit as the de�nition of sequencing, we relabel with �

all of the
p
-labeled transitions of the copies of Na and connect them all up to the post-set

of the corresponding a-labeled transition. The other transitions of the copies of Na and the

non-a-labeled transitions ofN are then hooked up to all of these places in the expected manner.

Not surprisingly, we encounter the same di�culties as the +M operator when our re�nement

nets have initially marked places that have incoming transitions, and we thus start-unwind the

re�nement net before performing our replacements.

The action re�nement operator is illustrated in Figure 5-1.

We now de�ne the action re�nement operator. For simplicity we assume that the re�nement

net Na is already start-unwound; otherwise, we �rst start-unwind Na and then carry out this

construction using the start-unwound version of Na rather than Na itself.

5.1. AN ACTION REFINEMENT OPERATOR 107

De�nition 5.1.3 Let hN;Acti and hNa;Acti be RWT Nets over a common alphabet Act , and

let a be a label in Act �fpg: Then hP;Acti = hN;Acti[a:=hNa;Acti] is de�ned as:

SP = f(s; v) j s 2 SN and v: T!StartNa
; where T = ft 2 postN (s) j lN(t) = ag g

] f(t; s0) j t 2 TN ; lN(t) = a and s0 2 SNa
� StartNa

g

TP = f(t; �) j t 2 TN and lN(t) 6= ag] f(t; t0) j t 2 TN ; lN(t) = a and t0 2 TNa
g

preP ((t; �)) = f(s; v) 2 SP j s 2 preN (t)g

postP ((t; �)) = f(s; v) 2 SP j s 2 postN (t)g

lP ((t; �)) = lN(t)

preP ((t; t
0)) = f(s; v) 2 SP j s 2 preN (t) and v(t) 2 preNa

(t0)g
] f(t; s0) 2 SP j s0 2 preNa

(t0)g

postP ((t; t
0)) =

(
f(t; s0) 2 SP j s0 2 postNa

(t0)g if lNa
(t0) 6= p

f(s; v) 2 SP j s 2 postN (t)g otherwise

lP ((t; t
0)) =

(
lNa

(t0) if lNa
(t0) 6= p

� otherwise

StartP = f(s; v) 2 SP j s 2 StartNg

We refer to the net hN;Acti as the target of action re�nement, or the target net, and we

refer to the net hNa;Acti as the operator of action re�nement, or the re�nement net.

The following facts will be useful in proving that the class of RWT Nets is closed under

action re�nement.

De�nition 5.1.4 Let hN;Acti and hN 0;Acti be RWT Nets over a common alphabet Act , let a

be a label in Act �fpg, and let r be a run ofN of length n. A hN; r; a;N 0i-respecting substitution
is a function � from the set fi : 1 � i � n and lN(r[i]) = ag to non-empty runs of N 0 such that

for all i 2 dom(�), if i is a non-maximal event in the pomset-run of r, then some
p
-labeled

transition of N 0 occurs in �(i). Let dom(�) = dom(�), and let each �(i) = (r[i]; t1) : : :(r[i]; tk),

where �(i) = t1 : : : tk. Then we de�ne r� = r1 : : :rn, where each ri = �(i) if i 2 dom(�), and

ri = (r[i]; �) otherwise.

Lemma 5.1.5 Let hN;Acti and hNa;Acti be RWT Nets over a common alphabet, Act, such

that hNa;Acti is start-unwound, and let a be a label in Act �fpg. Also, let hP;Acti =

hN;Acti[a:=hNa;Acti], and let r0 be a run of P . Then there is some run r of N and some

108 CHAPTER 5. ACTION REFINEMENT

hN; r; a;Nai-respecting substitution � such that r� is a run of P whose pomset-run is isomor-

phic to that of r0.
Furthermore, let M 0 be the marking of P reached after �ring r0, let M be the marking of N

reached after �ring r, and for all i 2 dom(�), let Mi be the marking of Na reached after �ring

the run �(i). Then for all places of P of the form (t; s0) 2 TN � SNa
,

M 0(t; s0) =

(
0 if t does not occur in r

Mi(s
0) if r[i] is the last occurrence of t in r

For all places of P of the form (s; v),

M 0(s; v) =

8>>><
>>>:

0 if for some i 2 dom(�) with r[i] 2 preN(s);

�(i) does not contain a
p
-labeled transition

1 if there is some i 2 dom(�) with r[i] 2 postN (s) such that Mi(v(r[i])) = 1

M(s) otherwise

Proof. The proof is by induction on the length of r0. It is easy to see that lemma holds

for the base case of jr0j = 0. For the other base case, suppose jr0j = 1. The proof is obvious

if r0 = (t; �) for some transition t of N that is not a-labeled. Otherwise, r0 = (t; t0) for some
a-labeled transition t of N and some transition t0 of Na. Let r = t, let dom(�) = f1g, and let

�(1) = t0. Then it is easy to see that r� = r0 and that markings of places of the form TN �SNa

satisfy the above equation. The remaining property about markings is easily veri�ed.

For one induction step, let r0 = r00:(t; �) for some non-empty run r00 and some transition t of

N that is not a-labeled. By induction, there is some run r ofN and some hN; r; a;Nai-respecting
substitution � such that r� is a run of P whose pomset-run is isomorphic to that of r00 and the

properties of the corresponding markings hold. By Proposition 3.2.3, the marking of P reached

after r00 is identical to that reached after r�. Thus, all places (s; v) 2 SP with s 2 preN (t) must

be marked in P . Suppose for the sake of contradiction that for some place s 2 preN(t) and

every corresponding v, there is some i 2 dom(�) with s 2 preN(r[i]) such that Mi(v(r[i])) = 1.

Since N is 1-safe, hNa;Acti is start-unwound, and the �ring of
p
-labeled transitions cleans out

N and Na, it would follow from De�nition 5.1.3 that there is some unique such i and that �(i)

is empty, contradicting the de�nition of �. Thus, it follows from the inductive hypothesis about

markings that all places s 2 preN (t) are marked in N . It is then easy to see from De�nition 5.1.3

that r:t is a run of N , � is a hN; (r:t); a; Nai-respecting substitution, and (r:t)� is a run of P

whose pomset-run is isomorphic to that of r0. Furthermore, since N is 1-safe, it is easy to see

that the desired property of the markings holds.

For the other induction step, let r0 = r00:(t; t0) for some non-empty run r00, some a-labeled
transition t of N , and some transition t0 of Na. By induction, there is some run r of N and

some hN; r; a;Nai-respecting substitution � such that r� is a run of P whose pomset-run is

isomorphic to that of r00 and the properties of the corresponding markings hold. For one case,

suppose that for every occurrence r[i] of t in r, �(i) contains a
p
-labeled transition. Since

the �ring of
p
-labeled transitions cleans out Na, it is easy to see that all such markings Mi

are empty. It then follows easily from the 1-safeness of N that all places s 2 preN(t) must be

marked in N , and hence that r:t is a run of N . Let �0 be the extension of � with �(jr:tj) = t0.
It is easy to show that �0 is a hN; (r:t); a; Nai-respecting substitution, and that (r:t)�0 is a run
of P whose pomset-run is isomorphic to that of r0. Furthermore, since N is 1-safe, it is easy to

5.1. AN ACTION REFINEMENT OPERATOR 109

see that the desired property of the markings holds.

For the last case, suppose that for there is some occurrence r[i] of t in r such that �(i)

does not contain a
p
-labeled event. The 1-safeness of N and De�nition 5.1.4 immediately

imply that i is unique and is the last occurrence of t in r. Thus, it follows from the inductive

hypothesis about markings that t0 is enabled in Na under marking Mi. Let �
0(k) = �(k):t0, let

dom(�0) = dom(�), and let �0 agree with � on the rest of dom(�). It is easy to see from the

above fact about Mi that �
0 is a hN; r; a;Nai-respecting substitution. Furthermore, it follows

easily from the 1-safeness of N and the inductive hypothesis about markings that r�0 is a run
of P whose pomset-run is isomorphic to that of r0. Finally, since N is 1-safe, it is easy to see

that the desired property of the markings holds, proving the lemma.

The following related fact will be useful in proving properties about our semantics:

Lemma 5.1.6 Let hN;Acti and hNa;Acti be RWT Nets over a common alphabet, Act, such

that hNa;Acti is start-unwound, and let a be a label in Act �fpg. Also, let r be a run of N

and let � be a hN; r; a;Nai-respecting substitution. Then r� is a run of hN;Acti[a:=hNa;Acti].

Proof. Using Lemma 5.1.5, a straightforward induction on the length of r gives the proof.

The details are left to the reader.

We now have:

Theorem 5.1.7 The class of RWT Nets is closed under action re�nement.

Proof. Let hN;Acti; hNa;Acti be RWT Nets over a common alphabet, Act , let a 2
Act �fpg, and let hP;Acti = hN;Acti[a:=hNa;Acti]. For simplicity, we assume that hNa;Acti
is itself start-unwound; however, since by Proposition 5.1.2, start-unwind(hNa;Acti) is a RWT

Net, the proof is identical for the general case except that we use start-unwind(hNa;Acti) instead
of hNa;Acti. It is easy to see that the initial marking of P is non-empty and that all transitions

in P have non-empty presets. De�nition 2.1.2 and De�nition 5.1.1 then imply that only a �nite

number of places ofNa are initially marked and that only a �nite number of a-labeled transitions

emanate from any given place in N . Thus, it is easy to see that for every place s 2 SN , there are

only a �nite number of functions v: T!StartNa
, where T = ft 2 postN (s) j lN(t) = ag. Using

the fact that hN;Acti and hNa;Acti are RWT Nets, it is then easy to show that the initial

marking of P is �nite, the preset and post-set of every transition in P is �nite, and that every

place in P has only a �nite number of transitions with labels in Act �fpg emanating from it.

Lemma 5.1.5 together with Proposition 3.2.3 and the 1-safeness of N and Na immediately

implies that P is 1-safe. Similarly, Lemma 5.1.5 together with Proposition 3.2.3 and the fact that

all places of N and Na are unmarked immediately after the �ring of any
p
-labeled transition

of the respective net immediately implies that the same property about
p
-labeled transitions

holds for P . Finally, the �nite-enabling property for P follows easily from Lemma 5.1.5 together

with the de�nition of pomset-runs, Proposition 3.2.3, the fact that hNa;Acti is start-unwound,
and the fact that only a �nite number of transitions are enabled under any reachable marking

of N or Na.

110 CHAPTER 5. ACTION REFINEMENT

Our action re�nement operator has a rich algebraic theory. For example, the following

simple identities hold up to [[�]]TESTsplit- equality. We write Succ to denote the WT net which

must immediately successfully terminate, i.e., exactly one transition is enabled under its initial

marking and this transition is
p
-labeled. For notational convenience, we simply write a to refer

to the net a:Succ and write a+:a� to refer to the net a+:a�:Succ. Furthermore, we write Dead
to denote the deadlocked process consisting of a single initially marked place and no transitions,

and a:Dead to refer to the net that does an a and then deadlocks in the sense that no place is

marked.

Our action re�nement operator satis�es the following simple identities:

Proposition 5.1.8 Let hN;Acti; hN1;Acti; hN2;Acti be RWT Nets over a common alphabet

Act , and let a; a+; a�; aL; aR; b 2 Act �fpg. Then the following identities hold up to [[�]]TESTsplit-

equality:

a[a:=hN ;
p
;Acti] = hN ;

p
;Acti

hN;Acti[a:=ha;Acti] = hN;Acti
hN;Acti[a:=hDead ;Acti] = hN;Actina

hN;Acti[a:=h�;Acti] = hN;Acti[a:=hSucc;Acti] = hN;Acti� a

split(a;a+;a�)(hN;Acti) = hN;Acti[a:=ha+:a�;Acti]
choice(a;aL;aR)(hN;Acti) = hN;Acti[a:=haL +M aR;Acti]

Assuming that a and b are \fresh" labels, (i.e., N1 and N2 contain no a-labeled or b-labeled

transitions), we also have up to [[�]]TESTsplit- equality:

((a+M b)[a:=hN1;
p
;Acti])[b:=hN2;

p
;Acti] = hN1;

p
;Acti+M hN2;

p
;Acti

((a:b)[a:=hN1;
p
;Acti])[b:=hN2;

p
;Acti] = hN1;

p
;Acti; hN2;

p
;Acti

((a jj b)[a:=hN1;
p
;Acti])[b:=hN2;

p
;Acti] = hN1;

p
;Acti jj hN2;

p
;Acti

For all re�nements �, the following distributivity properties hold up to [[�]]TESTsplit- equality:

(hN1;Acti+M hN2;Acti)� = hN1;Acti�+M hN2;Acti�
(hN1;Acti; hN2;Acti)� = hN1;Acti�; hN2;Acti�

(hN1;Acti jj hN2;Acti)� = hN1;Acti� jj hN2;Acti�

Proof. We give a sketch of the proofs of these identities. It is easy to see that that

hN;Acti[a:=hDead ;Acti] = hN;Actina

holds up to net isomorphism. For the remaining identities in the �rst set, we �rst note that

all of the re�nement nets satisfy the property that for every reachable marking under which

a
p
-labeled transition is enabled, no non-

p
-labeled transition is enabled under that marking.

It is straightforward to see that the � -labeled transitions resulting from hiding these
p
-labeled

transitions during action re�nement thus do not create any extra failure sets. The identities

then follow easily.

For the second set of identities, we note for all nets of the form hN ;
p
;Acti, the � -labeled

transitions resulting from hiding the
p
-labeled transitions during action re�nement do not

create any extra failure sets. The identity for +M then follows easily. It is straightforward to

5.2. SEMANTICS FOR ACTION REFINEMENT 111

show that start-unwinding preserves [[�]]TESTsplit--meanings, from which the identity for sequencing

follows easily. Finally, it is easy to see that the di�erent cross-products of
p
-labeled transitions

in the identity for parallel composition do not a�ect [[�]]TESTsplit- equality.

To prove the distributive properties, it is easy to see that the identities for sequencing and

non-communicating parallel composition hold up to net isomorphism. The identity for +M

follows easily from the de�nitions of start-unwinding and action re�nement.

Our de�nition of re�nement generalizes the de�nitions of re�nement given by Vogler [47]

and van Glabbeek/Goltz [41] in the sense that our re�ned net is [[�]]TESTsplit--equivalent to their nets.

In fact, there is an even tighter relationship between them, namely, these nets are equivalent

up to a weaker form of history-preserving bisimulation [39] which treats � -moves as hidden and

respects concurrent divergences. We omit the de�nition here since it is not necessary in our

development. Since Vogler and van Glabbeek/Goltz use a cross-product construction on the

\accept" places of their re�nement nets rather than using � -moves to transfer control back to

the target net, our re�ned net is not quite strongly history-preserving bisimilar to their nets.

However, if we attach a single
p
-labeled transition to their set of accept places, we obtain

nets which satisfy the property that for every reachable marking under which a
p
-labeled

transition is enabled, no non-
p
-labeled transition is enabled under that marking. Thus, the

� -labeled transitions resulting from hiding these
p
-labeled transitions during action re�nement

do not create any extra failure sets. We note, however, that van Glabbeek/Goltz do not impose

�niteness conditions on their nets since they do not have a hiding operation. Vogler imposes a

more liberal �niteness condition than ours since his action re�nement operator does not allow

re�nement nets to have \initial concurrency".

We note that our de�nition of action re�nement preserves �niteness of nets, and thus, in the

same spirit as our full class of RWT nets, we can allow arbitrary �nite RWT nets to function

as both target nets and re�nement nets. The class of �nite RWT nets is also closed under all

of the net operations presented in Chapter 2, including CSP-style parallel composition.

5.2 Semantics for Action Re�nement

Since RWT Nets by de�nition are a subclass of WT Nets, all of the net semantics developed

in Chapter 3 are well-de�ned on RWT Nets. This section shows that all of these semantics are

compositional for action re�nement, except for [[�]]MUST and [[�]]TEST.

Proposition 5.2.1 [[�]]MUST and [[�]]TEST are not compositional for RWT Nets as either targets

or operators of action re�nement.

By Theorem 3.2.47, [[�]]TESTsplit--equality implies [[�]]TEST-equality. The proposition is then a

simple consequence of Proposition 3.2.33 and Proposition 5.1.8.

The following de�nitions will be useful in proving the compositionality of the other seman-

tics.

De�nition 5.2.2 Let p be a pomset over an alphabet Act , let A � Act �fpg, and let f map

every event e in p whose label is in A to some (possibly empty) pomset pe over Act . The pomset

q = p[A:=f] is de�ned as:

112 CHAPTER 5. ACTION REFINEMENT

� Eventsq = f(e; �) : e 2 Eventsp and lp(e) 62 Ag
[f(e; e0) : e 2 Eventsp; lp(e) 2 A and e0 2 Eventspeg.

� lq((e; �)) = lp(e) and lq((e; e
0)) = lpe(e

0).

� For all (e1; �1); (e2; �2) 2 Eventsq , (e1; �1) <q (e2; �2) i� either e1 <p e2 or (e1 =p e2,

lp(e1) 2 A, and �1 <pe1
�2).

If A is a singleton set fag, we write p[a:=f] to denote p[fag:=f].

Since non-maximal events in a pomset-trace of a target net represent \fully �red" transitions,

we must be careful to replace them only with \successfully terminated" pomset-traces of the

re�nement nets. The following de�nition reects this fact:

De�nition 5.2.3 Let PT and PTa be sets of pomsets over a common alphabet, Act , and let

a 2 Act �fpg. Then:

hPT;Acti[a:=hPTa;Acti] def= augment(fp[a:=f] : p 2 PT and f maps every a-labeled event e in p

to some pomset pe in PTa such that

if e 62 max (p) then pe;
p 2 PTag)

De�nition 5.2.4 Let p be a pomset over an alphabet Act, let Dp be a (possibly empty) set

of downward-closed subsets of Eventsp, and let A � Act . Let g map every event e in p whose

label is in A to some pair hpe; Dei, where pe is a (possibly empty) pomset over Act and De is a

(possibly empty) set of downward-closed subsets of Eventspe . Then hq;Dqi = hp;Dpi[A:=g] is
de�ned as:

� q = p[A:=f], where dom(f) = dom(g) and f(e) = pe(= fst(g(e))) for every event

e 2 dom(g).

� Dq = fdownq(f(e; �) 2 Eventsq : e 2 dg) : d 2 Dpg
[fdownq(feg � d) : e 2 Eventsp; lp(e) 2 A; d 2 De; and d 6= ;g
[fdownq(f(e0; �) 2 Eventsq : e

0 <p eg) : e 2 Eventsp; lp(e) 2 A; and ; 2 Deg

Since a0-labeled events of dupl-split nets represent \fully �red" transitions, we must be care-

ful to replace them only with \successfully terminated" pomset-traces of the re�nement net.

Similarly, since a1-labeled events of dupl-split nets represent \half �red" transitions, we must

be careful to replace them only with \non-terminated" pomset-traces of the re�nement net.

Furthermore, in order to be sure that the failure sets corresponding to these non-terminated

pomset-traces remain valid after re�nement, we require that these failure sets contain
p
; this

ensures that new actions do not become ready by \looking through" the � -transition corre-

sponding to successful termination. As in the semantic de�nition of CSP-style parallel com-

position, we only re�ne 1-2-respect ing pomsets to avoid confusion between \non-matching" a1
and a2-labeled actions.

As evidenced by Proposition 5.1.8, hiding is de�nable from action re�nement. More gener-

ally, re�ning a-labeled transitions with any net that can successfully terminate after �ring some

5.2. SEMANTICS FOR ACTION REFINEMENT 113

�nite sequence of � -transitions will have the possible e�ect of hiding the a-labeled transitions,

and hence may create additional divergences. In order to simplify our de�nition of action re�ne-

ment on sets of pomset-failures and pomset-divergences, we �rst de�ne a replace operator that

ignores the e�ects of hiding on pomset-divergences (but does account for the independent e�ects

on pomset-failures). Using this replace operator, we then de�ne a semantic action re�nement

operator that properly accounts for all the e�ects of hiding.

De�nition 5.2.5 Let Act be a �nite alphabet containing the distinguished symbol
p
, let

Act 0 = fai : a 2 Act �fpg and 0 � i � 2g [f;pg, and let a 2 Act �fpg. Let PF; PFa be

sets of pomset-failures over Act 0, and let PD; PDa be sets of pomset-divergences over Act 0.
Then:

hPF; PD;Act0i[a replace hPFa; PDa;Act
0i] def= hPF 0; PD0;Act0i; where

PF 00 = fhp[fa0; a1g:=f]; F 0i : hp; Fpi 2 1-2-respect(PF) for some Fp;

and f maps every event e in p with lp(e) 2 fa0; a1g
to some pomset-failure hpe; Fei in PFa such that

if hp; ;i 2 PFa then a0 2 Fp;

if lp(e) = a0 then hpe;
p
; ;i 2 PFa;

if lp(e) = a1 then
p 2 Fe and pe contains no

p
-labeled events,

and F 0 � (Fp [X)\T fFe : lp(e) = a1g;
where X = fa0; a1; a2g � init(PFa)g

PD00 = fhp;Dpi[fa0; a1g:=g] : hp;Dpi 2 1-2-respect(PF) [1-2-respect(PD);

Dp is a (possibly empty) set of downward-closed subsets of Eventsp;

g maps every event e in p with lp(e) 2 fa0; a1g
to some hpe; Dei in PFa [PDa such that

De is a (possibly empty) set of downward-closed subsets of Eventspe ;

Dp [
SfDe : e 2 dom(g)g is non-empty;

and if lp(e) = a0 then hpe;
p
; ;i 2 PFag

PF 0 = augment(0-split(PF 00)) [implied-failuresAct
0(PD0)

PD0 = augment(extendAct 0(0-split(PD00)))

We now de�ne the semantic action re�nement to reect the hiding behavior of action re-

�nement:

De�nition 5.2.6 Let Act be a �nite alphabet containing the distinguished symbol
p
, let

Act 0 = fai : a 2 Act �fpg and 0 � i � 2g [f;pg, and let a 2 Act �fpg. Let PF; PFa be

sets of pomset-failures over Act 0, and let PD; PDa be sets of pomset-divergences over Act 0.
Furthermore, let a0 be an action not in Act [Act0. The following de�nitions use the operations
presented in De�nition 3.2.45 and De�nition 5.2.5.

If hp; ;i 62 PFa, then

hPF; PD;Act0i[a:=hPFa; PDa;Act
0i] def= hPF; PD;Act0i[a replace hPFa; PDa;Act

0i]

114 CHAPTER 5. ACTION REFINEMENT

Otherwise, if hp; ;i 2 PFa, then

hPF; PD;Act0i[a:=hPFa; PDa;Act
0i]

def
=

(((choice(a;a;a0)(hPF; PD;Act0i grow fa0g)) hide a0) shrink Act 0)[a replace hPFa; PDa;Act
0i]

We now show that our [[�]]MAY, [[�]]MUST
split- , and [[�]]TESTsplit- semantics are compositional for nets as

targets and operators of action re�nement. As discussed in the Introduction, this is in contrast

to the semantics of [47], which is not compositional for nets as action re�nement operators.

Theorem 5.2.7 [[�]]MAY, [[�]]MUST
split- , and [[�]]TESTsplit- are compositional for RWT Nets as targets and

operators of action re�nement.

Proof. LetAct be a �nite alphabet containing
p
, let a 2 Act �fpg, and let hN;Acti; hNa;Acti

be RWT Nets.

To prove compositionality of the [[�]]MAY semantics, we �rst observe that as a simple conse-

quence of Lemma 5.1.5, Lemma 5.1.6, and the de�nition of pomset-traces and pomset-runs,

pomset-traces(hN;Acti[a:=hNa;Acti]) =

fp[a:=f] : p 2 pomset-traces(hN;Acti) and f maps every a-labeled event e in p

to some pomset pe in pomset-traces(hNa;Acti) such that

if e 62 max (p) then pe;
p 2 pomset-traces(hNa;Acti)g

The details are straightforward and are left to the reader.

It is now easy to see that

[[hN;Acti[a:=hNa;Acti]]]MAY = [[hN;Acti]]MAY [a:=[[hNa;Acti]]MAY];

where the action re�nement operation on the right-hand side of the equation is that given in

De�nition 5.2.3.

We now prove compositionality of the [[�]]MUST
split- semantics. For the �rst case, suppose that

hp; ;i 62 fst([[hNa;Acti]]MUST
split-). As a consequence of Lemma 5.1.5, Lemma 5.1.6, and the de�ni-

tion of pomset-runs, pomset-traces, pomset-failures, and pomset-divergences, we have

pomset-failures(hN;Acti[a:=hNa;Acti]) =

0-split(fhp[fa0; a1g:=f]; F 0i : hp; Fpi 2 1-2-respect(pomset-failures(hN;Acti)) for some Fp;
and f maps every event e in p with lp(e) 2 fa0; a1g
to some pomset-failure hpe; Fei of hNa;Acti such that

if lp(e) = a0 then hpe;
p
; ;i 2 pomset-failures(hNa;Acti);

if lp(e) = a1 then
p 2 Fe and pe contains no

p
-labeled events,

and F 0 � (Fp [X)\T fFe : lp(e) = a1g;
where X = fa0; a1; a2g � init(pomset-failures(hNa;Acti))g)

5.2. SEMANTICS FOR ACTION REFINEMENT 115

pomset-divergences(hN;Acti[a:=hNa;Acti]) =

0-split(fhp;Dpi[fa0; a1g:=g] : Dp is a (possibly empty) set of downward-closed subsets of Eventsp;

hp;Dpi 2 1-2-respect(pomset-failures(hN;Acti))[1-2-respect(pomset-divergences(hN;Acti));
g maps every event e in p with lp(e) 2 fa0; a1g
to some hpe; Dei in pomset-failures(hNa;Acti)[pomset-divergences(hNa;Acti)
such that De is a (possibly empty) set of downward-closed subsets of Eventspe ;

Dp [
SfDe : e 2 dom(g)g is non-empty;

and if lp(e) = a0 then hpe;
p
; ;i 2 pomset-failures(hNa;Acti)g)

The details are straightforward but tedious and are left to the reader.

We now show that for the case when hp; ;i 62 fst([[hNa;Acti]]MUST
split-),

[[hN;Acti[a:=hNa;Acti]]]MUST

split- = [[hN;Acti]]MUST

split- [a:=[[hNa;Acti]]MUST

split-];

where the action re�nement operation on the right-hand side of the equation is that given in

De�nition 5.2.6.

One direction is a simple consequence of the de�nition of [[�]]MUST
split- , De�nition 5.2.6, and the

highlighted equality above for the pomset-failures and pomset-divergences of the re�ned net.

For the other direction, let hr;Dri 2 snd([[hN;Acti]]MUST
split- [a:=[[hNa;Acti]]MUST

split-); then hr;Dri 2
augment(extendAct (hq;Dqi)) for some pomset-divergence hq;Dqi such that hq;Dqi =

hq1; Dq1i[fa0; a1g:=g] for some hq1; Dq1i 2 [[hN;Acti]]MUST
split- and some g mapping a0-labeled and

a1-labeled events e of q1 to [[hNa;Acti]]MUST
split- . In turn, hq1; Dq1i 2 augment(extendAct (hp1; Dp1i))

for some hp1; Dp1i that is a pomset-divergence/pomset-failure of N , and each g(e)

2 augment(extendAct (hpe; Dpei)) for some hpe; Dpei that is a pomset-divergence/pomset-failure
of Na. It is easy to show that hq;Dqi 2 augment(extendAct (hp1; Dp1i[fa0; a1g:=g0]), where g0 is
the restriction of g to a0-labeled and a1-labeled events e of p1. Hence, the highlighted fact above

together with the de�nition of [[�]]MUST
split- implies that hq;Dqi 2 snd([[hN;Acti[a:=hNa;Acti]]]MUST

split-).

It now follows from Proposition 3.2.18 that hr;Dri 2 snd([[hN;Acti[a:=hNa;Acti]]]MUST
split-). The

proof for pomset-failures in hr;Dri 2 fst([[hN;Acti]]MUST
split- [a:=[[hNa;Acti]]MUST

split-]) is similar and is

left to the reader.

The other case, when hp; ;i 2 fst([[hNa;Acti]]MUST
split-), then follows from the above proof, De�-

nition 5.2.6, Theorem 3.2.46, and the following easily proved fact: if hp; ;i 2 fst([[hNa;Acti]]MUST
split-),

then

[[hN;Acti[a:=hNa;Acti]]]MUST
split-

=

(((choice(a;a;a0)([[hN;Acti]]MUST
split- grow fa0g)) hide a0) shrink Act 0)[a replace [[hNa;Acti]]MUST

split-]

The details are left to the reader.

116 CHAPTER 5. ACTION REFINEMENT

In order to prove compositionality of the corresponding interval semantics, we will need the

following facts about re�ning interval pomsets and interval pomset-divergences:

Proposition 5.2.8 Let q be an interval pomset such that q 2 augment(p[a:=f]) for some pom-

set p and function f mapping a-labeled events in p to pomsets. Then q 2 augment(p0[a:=f 0])
for some interval pomset p0 � p and some function f 0 mapping a-labeled events in p0 to interval
pomsets such that f 0(e) � f(e) for all e 2 dom(f).

Proposition 5.2.9 Let hq;Dqi be an interval pomset-divergence such that

hq;Dqi 2 augment(hp;Dpi[A:=g]) for some pomset-divergence hp;Dpi and function g mapping

events in p with labels in A to pomset-divergences. Then hq;Dqi 2 augment(hp0; Dp0i[A:=g0])
for some interval pomset-divergence hp0; Dp0i � hp;Dpi and some function g0 mapping events in
p0 with labels in A to interval pomset-divergences such that g0(e) � g(e) for all e 2 dom(g).

Using Lemmas 3.3.7 and 3.3.8 to account for the possible hiding e�ect of action re�nement,

the proofs of the propositions are straightforward and left to the reader.

We now have:

Theorem 5.2.10 The [[�]]MAY
intvl , [[�]]MUST

intvl- , and [[�]]TESTintvl- are compositional for RWT Nets as targets

and operators of action re�nement.

Proof. LetAct be a �nite alphabet containing
p
, let a 2 Act �fpg, and let hN;Acti; hNa;Acti

be RWT Nets.

We show that the following identities hold, where operations on the right-hand side of the

equations are those given in De�nition 5.2.3 and De�nition 5.2.6.

[[hN;Acti[a:=hNa;Acti]]]MAY

intvl = intervals([[hN;Acti]]MAY

intvl [a:=[[hNa;Acti]]MAY

intvl])

[[hN;Acti[a:=hNa;Acti]]]MUST

intvl- = intervals([[hN;Acti]]MUST

intvl- [a:=[[hNa;Acti]]MUST

intvl-])

The identity for [[�]]MAY
intvl is a simple consequence of the augmentation-closure of the [[�]]MAY

semantics, Theorem 5.2.7, and Proposition 5.2.8.

It is easy to see that one direction of the equation for [[�]]MUST
intvl- follows easily from Theo-

rem 5.2.7 and the monotonicity of the action re�nement operation. For the other direction, let

hr;Dri 2 snd([[hN;Acti[a:=hNa;Acti]]]MUST
intvl-); then hr;Dri 2 intervals(augment(extendAct (hp;Dpi)))

for some pomset-divergence hp;Dpi of hN;Acti[a:=hNa;Acti]. By Lemma 3.2.15 and Lemma 3.3.9,
there is some interval pomset-divergence hq; fd0ggi such that hr;Dri 2 augment(extendAct (hq; fd0gi)),
q is an augmentation of a pre�x of p and d0 � d for some d 2 Dp. By Proposition 3.2.14,

hq; fd0gi 2 extendAct (augment(pomset-divergences(hN;Acti[a:=hNa;Acti]))):

It then follows easily from the highlighted fact in the proof of Theorem 5.2.7 that hq; fd0gi 2
extendAct (augment(0-split(hp0; Dp0i))) for some hp0; Dp0i 2 hp1; D1i[fa0; a1g:=g], where hp1; D1i
is an appropriate pomset-divergence or pomset-failure and g is a suitable function.

5.3. THE SEMANTIC DOMAINS REVISITED 117

It follows from Lemma 3.3.9 and Proposition 5.2.9 that there are some interval pomset-

divergences hq0; Dq0i � hp0; Dp0i, hq1; Dq1i � hp1; D1i and g0(e) � g(e) for all e 2 dom(g), such

that hq; fd0gi 2 extendAct (augment(0-split(hq0; Dq0i))) and hq0; Dq0i 2 augment(hq1; Dq1i[fa0; a1g:=g0]).
From the de�nition of 0-split and augment and Lemma 3.2.16, it is easy to see that

hq; fd0gi 2 augment(extendAct (0-split(hq1; Dq1i[fa0; a1g:=g0]))):

The desired equality then follows easily. The proof for pomset-failures is similar, except that it

uses Proposition 5.2.8 as well.

We then have:

Theorem 5.2.11 The [[�]]MAY
intvl , [[�]]MUST

intvl- , and [[�]]TESTintvl- semantics are respectively fully abstract for

may-equivalence, must-equivalence, and Testing-equivalence with respect to alphabet expan-

sion and action re�nement.

Proof. It is easy to see from the de�nitions of the [[�]]TESTsplit- and [[�]]TESTintvl- that [[�]]TESTsplit--

equality implies [[�]]TESTintvl- -equality. Thus, Proposition 5.1.8 shows that split re�nements, choice

re�nements, and CCS choice can be de�ned from action re�nement up to [[�]]TESTintvl--equality. The

theorem is then a simple consequence of Theorem 3.3.11 and Theorem 5.2.10.

5.3 The Semantic Domains Revisited

All of the semantic domains, except for DMUST
Act

and DTEST
Act

, developed in Chapter 4 are closed

under the appropriate action re�nement operators given De�nition 5.2.3 and De�nition 5.2.6.

Furthermore, these action re�nements operators are continuous functions on the corresponding

domains.

Theorem 5.3.1 The DMAY
Act

, DMUST-split-

Act0
, DTEST-split-

Act;Act 0 , DMAY-intvl
Act

, DMUST-intvl-

Act0
, and DTEST-intvl-

Act;Act0

domains are closed under action re�nement. Furthermore, action re�nement is a continuous

function on all of these domains.

Proof. The proof that the domains are closed is straightforward but tedious; the details

are left to the reader.

The continuity of action re�nement on DMAY
Act

and and DMAY-intvl
Act

is completely routine to

verify, as is the continuity for the other domains when hp; ;i is not in the failure set of the

re�nement operator. The general case is then a simple consequence of De�nition 5.2.6 and

the continuity of alphabet expansion and shrinking, choice re�nements, and hiding, which were

proved in Chapter 4.

118 CHAPTER 5. ACTION REFINEMENT

Chapter 6

Deciding True Concurrency

Equivalences

6.1 Introduction

The computational complexity of the equivalence problem for nondeterministic �nite-state au-

tomata under a variety of standard process semantics has been tightly characterized. In partic-

ular, trace equivalence and failure equivalence [8] are pspace-complete [26], while bisimulation

[30] is ptime-complete [4, 26]. It has been shown recently that these equivalence problems

are exponentially harder for automata presented as �nite \Mazurkiewicz nets" of synchro-

nized state-machines [35]: namely, trace equivalence and failure equivalence of these nets are

expspace-complete [29, 34] and bisimulation of these nets is dexptime-complete [36].

The known results for \true" concurrency equivalences are much more limited. Vogler

[46, 48] has shown the decidability of history-preserving bisimulation [5, 35, 39, 50, 46] and

maximality-preserving bisimulation [13, 50] for �nite 1-safe Petri nets; however, their complex-

ity remained open. Decidability of such a basic true concurrency property as pomset-trace

equivalence [39] appears not to have been known. (An ordinary trace is a linear sequence of

visible actions; pomset-traces generalize these to multi-sets of actions partially ordered to reect

causality and concurrency.)

In contrast to trace equivalence, the decidability of pomset-trace equivalence for �nite nets

does not obviously reduce to equivalence of �nite automata. The di�culty is that if a run of a

net has a pomset-trace isomorphic to the pomset-trace of a run of another net, then whether a

transition �rable after one run yields the \same" pomset extension as a transition �rable after

the other run depends a priori on the entire pomset trace, which may be unboundedly large.

Hence instead of searching for a suitable equivalence relation on the �nite set of net markings,

one has to consider equivalence relations on a potentially in�nite set of pomset traces and �nal

markings.

A similar di�culty appears in deciding whether �nite nets are history-preserving bisimilar,

which Vogler [46, 48] overcomes by maintaining, instead of an entire pomset history, a partial

order on the �xed set of places of the nets that reects \most-recent" �rings. We use a similar

partial order, but instead of places, we �nd it technically smoother to keep track of the partial

ordering between the most-recent �rings of transitions. This idea leads to a decision procedure

119

120 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

Class Equivalence Complexity

Traces

Step-traces [25, 37, 39]

Traces ST-traces [39, 42] expspace-complete

Interval-pomset-traces [23, 47]

Pomset-traces [23, 39, 47]

Failures [9]

Step-failures [25, 37, 39]

Failures/ ST-failures [39, 42] expspace-complete

divergences Interval-pomset-failures [23, 47]

Bisimulation [30]

Delay bisimulation [43]

Branching bisimulation [43]

Step-bisimulation [25, 39]

Bisimulation ST-bisimulation [39, 42] dexptime-complete

History-preserving Bisimulation

[5, 35, 39, 50, 46]

Maximality-preserving-bisimulation [13]

Pomset-bisimulation [6] dexptime-hard

and in expspace

Pomset-ST-bisimulation [50] dexptime-hard

and in expspace

Table 6.1: Complexity results for �nite 1-safe Petri Nets

for pomset-trace equivalence, and a simple analysis of this procedure yields an expspace upper

bound.1 The same approach also gives a dexptime decision procedure for history-preserving

bisimulation.

Our lower bounds for these true concurrency equivalences follow easily from reductions

from the corresponding interleaving equivalences, whose lower bounds in turn essentially follow

from the results of [29, 34, 36]. We thus obtain a tight bound of expspace-completeness for

pomset-trace equivalence. Likewise, we obtain dexptime-completeness for history-preserving

bisimulation and maximality-preserving bisimulation, settling questions left open by Vogler

[46, 48].

Our methods also yield tight complexity bounds for several other true concurrency equiva-

lences, summarized in Table 6.1. In particular, our expspace-completeness results for ST-traces

and ST-failures solve problems left open by Vogler [49], who had earlier proved the decidabil-

ity of these equivalences. Furthermore, our decidability results for pomset-bisimulation and

pomset-ST-bisimulation settle questions alluded to by Vogler [45].

This chapter is organized as follows. Section 6.2 describes our alternate characterization

of pomset-trace equivalence, together with an expspace decision procedure. Similar analyses

1For expository purposes, we refer to bounds of the form 2O(n
k) for �xed k as exponential in n. In the results

presented here, k is at most 4.

6.2. DECIDING POMSET-TRACE EQUIVALENCE 121

of history-preserving bisimulation and pomset bisimulation are given in Section 6.3, while Sec-

tion 6.4 describes decision procedures for the other equivalences. Section 6.5 gives lower bounds

for all these equivalences. A discussion of some open problems appears in Section 6.6.

6.2 Deciding Pomset-Trace Equivalence

Throughout this chapter, we use the term nets to refer to marked, 1-safe Petri Nets [46] whose

transitions have labels from a �xed set Act [f�g, where Act is a set of \visible actions" and

� 62 Act is the \hidden action." A transition is visible (hidden) i� its label is visible (hidden).

The runs of a net are its �nite �ring sequences [46]. A net is �nite i� it has a �nite number of

places and transitions; the size of a net is the total number of its places and transitions.

De�nition 6.2.1 A pomset is a labeled partial order. Formally, a pomset, p, consists of a

set Eventsp whose elements are called events, a set Labelsp whose elements are called labels, a

function labelp: Eventsp!Labelsp, and a partial order relation <p on Eventsp. A function f is

an isomorphism between pomset p and pomset q i� it is a label-preserving order-isomorphism,

namely,

� f : Eventsp!Eventsq is a bijection,

� labelp = labelq � f ,
� e <p e

0 i� f(e) <q f(e
0) for all e; e0 2 Eventsp.

The places of a transition t of a net N are the places directly connected to it, i.e., the union

of the preset and postset of t. Let t1; t2 be transitions of a net N . We say that t1 and t2 are

statically concurrent in N i� the places of t1 are disjoint from the places of t2.

A transition-sequence, r, is a sequence of transitions of a net N . The transition-pomset of r

has as events the integers from 1 to n, where the label of event i is ti and the partial ordering

is the transitive closure of the following \proximate cause" relation: event i proximately causes

event j i� i < j and ti and tj are not statically concurrent in N , cf. Figure 6-1.

The visible-pomset of r is the transition-pomset of r, restricted to events labeled with visible

transitions; moreover, in the visible-pomset, the label of event i is the label of ti (rather than ti
itself), cf. Figure 6-1. The pomset-traces of N are the visible-pomsets of runs of N .

For transition-pomsets and visible-pomsets, it is traditional to say that event e causes event

e0 i� e < e0 in the partial order.

De�nition 6.2.2 Let N and N 0 be nets. Then N pomset-trace approximates N 0, written
N vpt N

0, i� every pomset-trace of N is isomorphic to some pomset-trace of N 0. N and N 0

are pomset-trace equivalent i� each is vpt the other.

The runs of a �nite net are clearly recognizable by a �nite state automaton, namely, the

\global state" automaton of the net itself. We represent an ordered pair r = t1 : : : tn, r
00 =

t001 : : : t
00
n, of transition-sequences of the same length as an input string (t1; t

00
1) : : :(tn; t

00
n) for an

automaton whose alphabet is ordered pairs of transitions. So an \obvious" solution to the

pomset-trace equivalence problem would be to de�ne an e�ective procedure that, given any

two �nite nets as input, computes a �nite-state automaton whose language consists of all the

122 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

� � t1 1:t1 2:t2 1:a 2:a

t1:a t2:a t2 3:t3 4:a 5:a

t3 4:t2 5:t1

t3:� t2

t1

��

��

��

��

��

��

EEEE
"" ||yy

yy
��

MMMMM&& ��xxqq
qq
q

�� �� {{ww
w GGG

##��

��MMMMMM&&

��

��

xxqqq
qqq

Pomset-trace of r

!

//

 !

"oo

Transition-pomset of r

Run r

Figure 6-1: An Example of a Transition-pomset and Pomset-trace

� �
t1:a t2:b

��

��
��

��

��
��

!

//

 !

"oo

N

Figure 6-2: An Example

pairs of runs of the respective nets that have isomorphic pomset-traces. Such an automaton

would easily yield a decision procedure for pomset-trace equivalence, since we could project the

language it accepts onto the components of the pairs and check that the resulting languages

include the set of runs of the respective nets.

However, such a �nite-state automaton does not exist; the di�culty is that pairs of runs

with isomorphic pomset-traces may generate the pomset-traces in di�erent order, one getting

unboundedly behind the other before catching up at the end. For example, let N be the net

pictured in Figure 6-2. Then two runs of N have the same pomset-trace i� they have the

same number of occurrences of a- and b-labeled transitions, and the set of such pairs of runs is

obviously not �nite-state recognizable.

We will show in this section that it su�ces to consider pairs of runs that are \synchronous"

in the sense that their behavior corresponds at each pair of transitions. We say that two runs

r0 and r00 are equivalent up to concurrency i� they have isomorphic transition-pomsets. We will

show that:

� For all pairs of runs r and r0 with isomorphic pomset-traces, there is a run r00 that is
equivalent to r0 up to concurrency, and r and r00 are \synchronous."

� The set of pairs of synchronous runs is recognizable by a �nite automaton with size

bounded by an exponential in the sizes of the nets.

Our decision procedure for pomset-trace equivalence is based on constructing such a �nite-

state automaton. To simplify the exposition, we consider �rst the case without hidden transi-

tions. Our proofs will use the following fact about transition-pomsets:

6.2. DECIDING POMSET-TRACE EQUIVALENCE 123

De�nition 6.2.3 A pomset p0 is a linearization of a pomset p i� it has the same events and

labels as p and <p0 is a total ordering that contains <p. Let q be a pomset such that <q is

a total ordering. Then for any 1 � i � jEventsqj, the ith largest event of q is the (necessarily

unique) event e 2 Eventsq such that the longest chain e1 <q : : : <q ek <q e in q is of length i.

Let r = t1t2 : : : be a transition-sequence of a net N ; we write jrj for the length of r, and for

any 1 � i � jrj, we write r[i] to denote the ith element, ti, of r.

Proposition 6.2.4 Let r be a run of a net N , let p0 be a linearization of the transition-pomset

of r, and let r0 be the transition-sequence corresponding to p0, i.e., r0 = t1 : : : tjrj, where each ti
is the label of the ith largest event of p0. Then r0 is a run of N reaching the same �nal marking

as r.

The proposition is easily proved by induction on the number of pairs (i; j) such that i < j

but the ith event of p0 is larger (in the standard integer ordering) than the jth event of p0. The
details are left to the reader.

6.2.1 Nets without Hidden Transitions

In this section, we assume that nets do not contain hidden transitions.

De�nition 6.2.5 Let r and r0 be transition-sequences of nets N and N 0, respectively. We

say that r and r0 are synchronous i� the identity function on f1; 2; : : : ; jrjg is an isomorphism

between the visible-pomset of r and the visible-pomset of r0.

In particular, if r and r0 are synchronous, then they are of the same length.

We then have:

Lemma 6.2.6 Let r and r0 be runs of nets N and N 0, respectively. If the pomset-traces of r
and r0 are isomorphic, then there is some run r00 of N 0 such that

� r0 and r00 are equivalent up to concurrency, and

� r and r00 are synchronous.

Proof. Let I be the isomorphism between the pomset-trace of r and the pomset-trace of

r0. Since in this section we assume that nets do not contain hidden transitions, clearly r and

r0 are of the same length. Let r00 be the transition-sequence obtained from r0 by applying I

element-wise to r; that is, r00[i] = r0[I(i)] for all 1 � i � jr0j.
It follows easily from the de�nition of r00 that I is a label-preserving bijection between the

transition-pomsets of r00 and r0. To show that I is an order-isomorphism, it clearly su�ces to

show that I and I�1 preserve proximate causes. Let event i be a proximate cause of event j

in the transition-pomset of r00. Then i < j, and transition r00[i] and transition r00[j] are not
statically concurrent in N 0; hence transition r0[I(i)] and transition r0[I(j)] are not statically
concurrent in N 0. I(j) < I(i) would imply that event I(j) is a proximate cause of event I(i)

in the pomset-trace of r0; since I is an isomorphism between the pomset-trace of r and the

pomset-trace of r0, it would follow that event j causes event i in the pomset-trace of r, and

therefore that j < i, a contradiction. Hence I(i) < I(j), and so event I(i) is a proximate cause

124 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

of I(j) in the transition-pomset of r0, proving this direction. The proof of the other direction is

similar and omitted. This completes the proof that r0 and r00 are equivalent up to concurrency;

that is, they have isomorphic transition-pomsets.

Every transition-sequence corresponds to a linearization of its transition-pomset, by de�-

nition. Since r0 is a run, and r0 and r00 have isomorphic transition-pomsets, Proposition 6.2.4

immediately implies that r00 is a run of N 0.
Clearly, I�1 is an isomorphism between the pomset-trace of r0 and the pomset-trace of r00.

Pomset isomorphisms are closed under function composition; thus I�1 � I , i.e., the identity

function on f1; : : : ; jrjg, is an isomorphism between the pomset-trace of r and the pomset-trace

of r00. This implies that r and r00 are synchronous, completing the proof of the lemma.

An important property of synchronous transition-sequences is that their equal-length pre-

�xes are also synchronous.

De�nition 6.2.7 Let p be a pomset and e; e0 2 Eventsp. Event e
0 is a maximal cause of event

e in p providing e0 <p e and there is no event e00 2 Eventsp such that e0 <p e
00 <p e.

Proposition 6.2.8 Let r and r0 be transition-sequences of length n � 0 and let t and t0 be
transitions of nets N and N 0, respectively. Then r:t and r0:t0 are synchronous i�

� r and r0 are synchronous,

� t and t0 have the same label, and

� the maximal causes of event n+ 1 are the same in the transition-pomsets of r:t and r0:t0.

The proof is completely straightforward and is left to the reader.

Thus, in determining whether two pomset-traces \grow" synchronously, it su�ces to keep

track of the correspondence between maximal causes. We now observe that all maximal causes

will necessarily be the most-recent �rings of the corresponding transitions.

De�nition 6.2.9 Let r = t1 : : : tn be a transition-sequence of a net N . Event i is a most

recent �ring of transition t in r i� ti = t and tj 6= t for i < j � n. Let growth-sites(r) be the

transition-pomset of r, restricted to the most-recent �rings of the transitions in r, cf. Figure 6-3.

Proposition 6.2.10 Let r = t1 : : : tn be a transition-sequence and t be a transition of a net N .

Then the maximal causes of event n + 1 in the visible-pomset of r:t are a subset of the events

of growth-sites(r).

Proof. Suppose event i of the visible-pomset of r:t is a maximal cause of event n + 1.

Then by the de�nition of the causal partial ordering, event i must be a proximate cause of

event n + 1, and hence transition ti must not be statically concurrent with t. Therefore any

later �ring of ti, that is, any event j with i < j � n and tj = ti, would also be a proximate

cause of t. But since event i proximately causes any such event j, this would contradict event

i being a maximal cause of event n+ 1.

We also make the simple observation that the growth-sites of transition-sequence r:t are

fully determined by t and the growth-sites of r:

6.2. DECIDING POMSET-TRACE EQUIVALENCE 125

Proposition 6.2.11 Let r be a transition-sequence and t a transition of a net N . Then

growth-sites(r:t) = fi 2 growth-sites(r) : r[i] 6= tg [fjr:tjg.

Proof. Clearly, event jr:tj is the most-recent �ring of transition t in r:t. Furthermore, the

most recent �ring of any other transition t0 is the same in r and r:t.

It now follows that whether two synchronous runs remain synchronous after �ring another

pair of transitions depends solely on the labels of these transitions, and on whether the causes

of these transitions are the same in the growth-sites of the respective runs. It will be helpful

to de�ne a more general growth-site correspondence (gsc) between causes in growth-sites. To

avoid confusion, we introduce the following terminology:

De�nition 6.2.12 Let p and q be pomsets and let f : p!q be a partial function from Eventsp
to Eventsq. Then p is the source of f , written source(f), and q is the target of f , writ-

ten target(f). Furthermore, the domain-of-de�nition of f is the subset of Eventsp given

by fe 2 Eventsp : f(e) is de�nedg, and the image of f is the subset of Eventsq given by

fe0 2 Eventsq : f(e) = e0 for some e 2 Eventspg.

De�nition 6.2.13 Let r = t1 : : : tn and r
0 = t01 : : : t

0
m be transition-sequences of nets N and N 0,

respectively. Then gsc(r; r0) is de�ned i� r and r0 are synchronous. Furthermore, if r and r0 are
synchronous, then gsc(r; r0) is the partial identity function �: growth-sites(r)!growth-sites(r0)
such that �(i) = j i� i = j and i 2 Eventsgrowth-sites(r) \ Eventsgrowth-sites(r0), cf. Figure 6-

3. In particular, growth-sites(r) is the source of gsc(r; r0), and growth-sites(r0) is the target of
gsc(r; r0).

We now state the key observation underlying our decision procedure: the growth-site cor-

respondence of a pair of runs r:t and r0:t0 is determined up to isomorphism by the isomorphism

class of the growth-site correspondence between r and r0.

De�nition 6.2.14 Let � and be partial functions whose source and target are pomsets. We

say that � and are isomorphic, written � � , i� there is a pair of functions (I; J) such that

� I is an isomorphism between source(�) and source(),

� J is an isomorphism between target(�) and target(), and

� � I = J � �.

Lemma 6.2.15 Let r1; r2 be transition-sequences and t a transition of net N ; likewise for

r01; r
0
2; t

0 of net N 0. If gsc(r1; r01) � gsc(r2; r
0
2), then gsc(r1:t; r

0
1:t

0) � gsc(r2:t; r
0
2:t

0).

Proof. Let (I; J) be the isomorphism between gsc(r1; r
0
1) and gsc(r2; r

0
2), noting that both

gsc(r1; r
0
1) and gsc(r2; r

0
2) are de�ned.

We de�ne the function I 0 to be

I 0(i) =

(
jr2:tj if i = jr1:tj
I(i) if i 2 Eventsgrowth-sites(r1:t) and i 6= jr1:tj

126 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

� t1 1:t1 1:t1

t1:a t2 2:t2 4:t3 4:t3

t2 3:t2 5:t4 3:t2 5:t4

t2:b t3:c t3

t4

t4:c

� t01 1:t01 1:t01

t01:a t02 2:t02 4:t04 2:t02

t03 3:t03 5:t04 3:t03 5:t04

t02:b t04:c t04

t04

t03:b

��

��

��

EEEE
""||yy

yy
EEEE

""

��xxqqq

qqq
MMMMMM&& �� �� ����

��

��

��

��

��

!

//

��
Transition-pomset of r Growth-sites of r

��

��
��

 !

"oo

Transition-sequence r

��

��

��

DDD
""||zz

z 2222222
��

||zz
z

yysss
sss

KKKKKK%% �� �� ����

��

��

��

��

��

��
 !

"oo

Transition-pomset of r0 Growth-sites of r0

��

��
��

!

//

Transition-sequence r0

gsc(r; r0)
def
= f(1; 1); (3; 3); (5; 5)g

Figure 6-3: An Example of Growth-Sites and Growth-Site Correspondence

6.2. DECIDING POMSET-TRACE EQUIVALENCE 127

and de�ne the function J 0 to be

J 0(j) =

(
jr02:t0j if j = jr01:t0j
J(j) if j 2 Eventsgrowth-sites(r0

1
:t0) and j 6= jr01:t0j

By Proposition 6.2.11, I 0 and J 0 are total functions on Eventsgrowth-sites(r1:t) and Eventsgrowth-sites(r01:t0),
respectively. De�nition 6.2.9, Proposition 6.2.11, and the properties of I and J imply that I 0 is
an isomorphism between growth-sites(r1:t) and

growth-sites(r2:t), and J 0 is an isomorphism between growth-sites(r01:t
0) and

growth-sites(r02:t
0). The details are left to the reader.

In order to prove that gsc(r2:t; r
0
2:t

0)�I 0 = J 0�gsc(r1:t; r01:t0), we �rst show that gsc(r1:t; r
0
1:t

0)
is de�ned i� gsc(r2:t; r

0
2:t

0) is de�ned. For one direction, suppose that gsc(r1:t; r01:t
0) is de�ned;

thus, r1:t and r01:t
0 are synchronous and t and t0 have the same label, Furthermore, since

gsc(r2; r
0
2) is de�ned, we have that r2 and r02 are synchronous and jr2j = jr02j. By Proposi-

tion 6.2.8, it remains to show that the maximal causes of event jr2:tj are the same in the

transition-pomsets of r2:t and r02:t
0. For one direction, let event k be a maximal cause of event

jr2:tj in the transition-pomset of r2:t; Proposition 6.2.10 implies that k 2 growth-sites(r2).

Since I is an isomorphism between growth-sites(r1) and growth-sites(r2), it follows that I
�1(k) 2

growth-sites(r1) and that event I
�1(k) is a maximal cause of event jr1:tj in the transition-pomset

of r1:t; the details are straightforward but slightly tedious and are left to the reader. Since

r1:t and r01:t
0 are synchronous, Proposition 6.2.8 implies that event I�1(k) is also a maximal

cause of event jr01:t0j in the transition-pomset of r01:t
0, r01[I

�1(k)] and t0 are not statically concur-
rent, and I�1(k) 2 growth-sites(r01). De�nitions 6.2.9, 6.2.13, and 6.2.14 and our de�nition of

(I; J) then imply that r01[I
�1(k)] = r02[J(I

�1(k))] = r02[k], and so r02[k] and t0 are not statically
concurrent; hence, event k must cause event jr02:t0j in the transition-pomset of r02:t

0. The other
direction is analogous, and so the maximal causes of event jr2:tj are the same in the transition-

pomsets of r2:t and r02:t
0. Thus, by Proposition 6.2.8, r2:t and r02:t

0 are synchronous, proving
that gsc(r2:t; r

0
2:t

0) is de�ned. The proof of the other direction, namely that gsc(r1:t; r
0
1:t

0) is
de�ned whenever gsc(r2:t; r

0
2:t

0) is de�ned, is analogous and omitted.

We now show that gsc(r2:t; r
0
2:t

0) � I 0 = J 0 � gsc(r1:t; r01:t0). For one direction, let i be some
event on which gsc(r2:t; r

0
2:t

0)�I 0 is de�ned. It then follows by De�nition 6.2.13 and the de�nition
of I 0 that i 2 growth-sites(r1:t), I

0(i) 2 growth-sites(r2:t)\growth-sites(r02:t0), and gsc(r2:t; r
0
2:t

0)
is de�ned; thus, by the above proof, gsc(r1:t; r

0
1:t

0) is de�ned, jr1:tj = jr01:t0j, and jr2:tj = jr02:t0j.
For one case, suppose that i 6= jr1:tj; then I 0(i) = I(i) 6= jr02:t0j and thus by Proposition 6.2.11,

i 2 growth-sites(r1), I
0(i) 2 growth-sites(r2) \ growth-sites(r02), and r02[I

0(i)] 6= t0. Since by

assumption, gsc(r1; r
0
1) and gsc(r2; r

0
2) are de�ned and gsc(r2; r

0
2) � I = J � gsc(r1; r01), it follows

that (J � gsc(r1; r01))(i) = I 0(i). Thus, i 2 growth-sites(r01), I
0(i) = J(i), and r01[i] = r02[J(i)] =

r02[I
0(i)], and so r01[i] 6= t0. Proposition 6.2.11 then implies that i 2 growth-sites(r01:t

0), and so

J 0 � gsc(r1:t; r01:t0) is de�ned on i. Furthermore,

(gsc(r2:t; r
0
2:t

0) � I 0)(i) = (gsc(r2; r
0
2) � I)(i) = (J � gsc(r1; r01))(i) = (J 0 � gsc(r1:t; r01:t0))(i);

proving this case. The other case is similar and is left to the reader. The proof of the other

direction is analogous.

128 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

The size of the growth-sites of any transition-sequence of a net is obviously bounded by the

number of transitions in that net. We can thus easily conclude that the number of isomorphism

classes of growth-site correspondences between transition-sequences of netsN andN 0 is bounded
by an exponential in the maximum of the number of transitions in N and N 0.

We thus have:

Theorem 6.2.16 For any �nite nets N and N 0, there is a deterministic �nite-state automaton
recognizing the set of pairs of synchronous transition-sequences of N and N 0. If m and m0 are
the number of transitions in N and N 0, respectively, then the number of states in the automaton
is bounded by cmaxfm;m0g2 for some �xed constant c > 1.

Proof. The states of the automaton are the isomorphism classes of growth-site corre-

spondences between transition-sequences of N and N 0. A state � moves to a state via a pair

(t; t0) of transitions i� � is the isomorphism class of gsc(r; r0) and is the isomorphism class of

gsc(r:t; r0:t0) for some transition-sequences r and r0 of N and N 0, respectively. The start state
is the isomorphism class of the empty function, and all states are accepting. By Lemma 6.2.15,

this automaton is deterministic.

If (t1; t
0
1) : : :(tk; t

0
k) is in the language of the automaton, then by Lemma 6.2.15, the �-

nal state reached must be the isomorphism class of gsc(t1 : : : tk; t
0
1 : : : t

0
k). Hence, this growth-

site correspondence is de�ned, and so t1 : : : tk and t01 : : : t
0
k are synchronous. Conversely, if

t1 : : : tk and t01 : : : t
0
k are synchronous, then all their equal-length pre�xes are synchronous, and

so gsc(t1 : : : ti; t
0
1 : : : t

0
i) is de�ned for all 0 � i � k. Hence, by Lemma 6.2.15 and the de�nition

of the automaton, (t1; t
0
1) : : :(tk; t

0
k) is in its language.

Since the runs of a �nite net are �nite-state recognizable by the (necessarily deterministic)

transition system of the net itself, and since �nite-state recognizable sets are closed under

intersection and renaming input symbols, we conclude:

Corollary 6.2.17 For any �nite nets N and N 0, there is a �nite-state automaton whose lan-

guage is the set of runs r of N for which there is some run r0 of N 0 such that r and r0 are
synchronous. If m and m0 are the number of transitions in N and N 0, respectively, and n

and n0 are the number of places in N and N 0, respectively, then the number of states in the

automaton is bounded by dmaxfm;m0g2+maxfn;n0g for some �xed constant d > 1.

Proof. The number of states in the deterministic automaton that recognizes the set of

pairs of runs of N and N 0 is bmaxfn;n0g for some �xed constant b > 1. The intersection of this

automaton with that of Theorem 6.2.16 has number of states bounded by dmaxfm;m0g2+maxfn;n0g

for some �xed constant d > 1. Then renaming each input symbol (t; t0) by symbol t does not

change the number of states and yields the desired automaton.

It is fairly straightforward to show that such an automaton can in fact be constructed in

space proportional to the size of its transition table. The desired decidability result then follows

as a corollary:

Theorem 6.2.18 The pomset-trace equivalence problem for �nite nets without hidden tran-

sitions can be decided in space exponential in the number of places and transitions in the

nets.

6.2. DECIDING POMSET-TRACE EQUIVALENCE 129

Proof. By Lemma 6.2.6 and Corollary 6.2.17,N vpt N
0 i� the language of the �nite-state

automaton given in Corollary 6.2.17 is the set of all runs of N . It is easy to construct another

�nite-state automaton, of essentially the same size, recognizing the runs of N . So N vpt N
0 i�

these automata recognize the same language. But language equivalence is checkable in space

proportional to the size of the automata [22].

6.2.2 Nets with Hidden Transitions

We now show how the results above extend to nets which may contain hidden transitions. We

begin by modifying our de�nition of \synchronous" to take account of hidden transitions. This

new de�nition will coincide with De�nition 6.2.5 for nets without hidden transitions.

De�nition 6.2.19 Let r = t1 : : : tn and and r0 = t01 : : : t
0
m be transition-sequences of nets N

and N 0, respectively.
Let �r;r0 be the partial function on the integers such that �r;r0 (i) = j i� ti is the k

th transition

of r with a visible label and t0j is the k
th transition of r0 with a visible label, for some (necessarily

unique) k.

Then r and r0 are synchronous i� �r;r0 is an isomorphism between the visible-pomset of r

and the visible-pomset of r0.

In particular, if r and r0 are synchronous, then they have the same number of occurrences

of visible transitions.

Lemma 6.2.6 continues to hold for this generalized notion of synchronous:

Lemma 6.2.20 Let r and r0 be runs of nets N and N 0, respectively. If the pomset-traces of r
and r0 are isomorphic, then there is some run r00 of N 0 such that

� the transition-pomsets of r0 and r00 are isomorphic, and

� r and r00 are synchronous.

Proof. The proof extends that of Lemma 6.2.6. Let I be the isomorphism between the

pomset-trace of r and the pomset-trace of r0, and let q and q0 respectively be the transition-

pomsets of r and r0. Clearly, r and r0 must contain the same number, k, of occurrences of

transitions with visible labels. For 1 � i � k, we de�ne visr(i) to be the index of the ith

visible transition-occurrence in r; that is, visr(i) = m, where r[m] is the (necessarily unique) ith

transition of r with a visible label. We let v be the sequence of visible transition-occurrences

obtained from r0 by applying I element-wise to visible transitions of r; that is, v[i] = r0[I(visr(i))]
for all 1 � i � k. We then obtain r00 by \padding" v with sequences wi of hidden transition-

occurrences of r0; each composite sequence w1 : : :wi will contain exactly the hidden transition-

occurrences of r0 that are necessary for the v[1]; : : : ; v[i] to �re. In order to de�ne the wi, we

�rst de�ne zi, for 1 � i � k, to be the ascending sequence of indices of the \remaining" hidden

transition-occurrences that causally precede r0[I(visr(i))]. Furthermore, we de�ne zk+1 to be

the sequence of indices of \left-over" hidden transition-occurrences of r0.

130 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

zi = the ascending sequence over the set

fj <q0 I(visr(i)) : r
0[j] is a hidden transition and j 6<q0 I(visr(n)) for all n < ig

zk+1 = the ascending sequence over the set

fj � jr0j : r0[j] is a hidden transition and j 6<q0 I(visr(n)) for all n � kg

We then de�ne r00 to be the sequence w1v[1]w2v[2] : : :v[k]wk+1, where each wi is the sequence

of transition-occurrences of r0 corresponding to zi; that is, jwij = jzij and wi[n] = r0[zi[n]] for
all 1 � n � jzij. Hence, for all 1 � i � k, r00[visr00(i)] = v[i] = r0[I(visr(i))].

Let

C(i) =

8>>>>><
>>>>>:

I(visr(vis
�1
r00 (i))) if r00[i] is a visible transition

if for some (necessarily unique) n and hidden transition t

m r00[i] is the nth occurrence of t in r00; and
r0[m] is the nth occurrence of t in r0

It is straightforward but tedious to show that C is a label-preserving bijection between the

transition-pomsets of r00 and r0; the details are left to the reader.

To show that C is an order-isomorphism, it clearly su�ces to show that C and C�1 preserve

proximate causes. Suppose that event i is a proximate cause of event j in the transition-

pomset of r00; then i < j and transition r00[i] and transition r00[j] are not statically concurrent

in N 0. Then by de�nition of r00 and C, transition r0[C(i)] and transition r0[C(j)] are not

statically concurrent inN 0. For one case, suppose that both r00[i] and r00[j] are visible transitions.
C(j) < C(i) would imply that event C(j) is a proximate cause of event C(i) in the pomset-

trace of r0; since I is an isomorphism between the pomset-trace of r and the pomset-trace of

r0, it would follow that event I�1(C(j)) causes event I�1(C(i)) in the pomset-trace of r, and

so I�1(C(j)) < I�1(C(i)). Clearly, visr and vis�1
r00 are monotone functions, implying that j < i,

a contradiction. Hence C(i) < C(j), and so event C(i) is a proximate cause of event C(j) in

the transition-pomset of r0, proving this case.

For another case, suppose that r00[i] is a hidden transition t, and r00[j] is a visible transition.
Then for some n, r00[i] is the nth occurrence of t in r00 and r0[C(i)] is the nth occurrence

of t in r0. Let n0 be the number of occurrences of t preceding r00[j] in r00; clearly, n0 � n

since i < j. By de�nition of r00, r00[j] = v[vis�1
r00 (j)]; hence by de�nition of the zi, there are

distinct l1; : : : ; ln0 in z0 : : : zvis�1
r00

(j) such that r0[l1]; : : : ; r0[ln0] is each an occurrence of t. Let l

be the maximum of l1; : : : ; ln0; from the de�nition of C and the zi, l > C(j) would imply that

there is some j0 < j such that r0[C(j0)] is a visible transition and l <q0 C(j
0). Then, clearly,

C(j) <q0 l <q0 C(j
0), and so I(visr(vis

�1
r00 (j))) <q0 I(visr(vis

�1
r00 (j

0))). Since I is an isomorphism

between the pomset-traces of r and r0, it would follow that visr(vis
�1
r00 (j)) <q visr(vis

�1
r00 (j

0)), and
so visr(vis

�1
r00 (j)) < visr(vis

�1
r00 (j

0)). The monotonicity of visr and vis�1
r00 would then imply that

j < j0, a contradiction. Thus, l < C(j) after all; now, C(j) < C(i) would imply that there are

n0 � n occurrences of t preceding r0[C(i)] in r0, contradicting the fact that r0[C(i)] is the nth

occurrence of t in r0. Hence C(i) < C(j), and so event C(i) is a proximate cause of event C(j)

6.2. DECIDING POMSET-TRACE EQUIVALENCE 131

in the transition-pomset of r0, proving this case.
The proofs of the other cases and the other direction are similar, and are left to the reader.

The proof that r00 is a run of N 0 is identical to that for Lemma 6.2.6.
Clearly, visr00 �vis�1

r �I�1 is an isomorphism between the pomset-trace of r0 and the pomset-
trace of r00. Pomset isomorphisms are closed under function composition; thus, visr00 � vis�1

r �
I�1 � I is an isomorphism between the pomset-trace of r and the pomset-trace of r00. It follows
easily from the de�nitions of �r;r00 , visr , and visr00 that �r;r00 = visr00 � vis�1

r , proving that r and

r00 are synchronous, and completing the proof of the lemma.

The notion of maximal cause must now be sharpened to be a maximal visible cause.

De�nition 6.2.21 Let N be a net, let p be a transition-pomset of N , and let e; e0 2 Eventsp.

Event e0 is a maximal visible cause of event e in p providing lp(e
0) is a visible transition of N ,

e0 <p e and there is no event e00 2 Eventsp such that lp(e
00) is a visible transition of N and

e0 <p e
00 <p e.

Then Proposition 6.2.8 generalizes as follows:

Proposition 6.2.22 Let r; r0 be transition-sequences and let t; t0 be visible transitions of nets
N;N 0, respectively. Then r:t and r0:t0 are synchronous i�

� r and r0 are synchronous,

� t and t0 have the same label, and

� �r;r0 restricted to the maximal visible causes of event jrj+ 1 in the transition-pomset of

r:t is a bijection onto the maximal visible causes of event jr0j+1 in the transition-pomset

of r0:t0.

Also, if t is a hidden transition, then r:t and r0 are synchronous i� r and r0 are synchronous.

The proof is completely straightforward and is left to the reader.

The notion of growth-sites extends to hidden transitions as follows:

De�nition 6.2.23 Let r be a transition-sequence of a net N . Let most-recent(r) be the set of

most recent �rings in r of each transition. Let max-visible-causes(t; r) be the maximal visible

causes (in the transition-pomset of r) of the most recent �ring in r of transition t. Then

growth-sites(r) is the restriction of the transition-pomset of r to

most-recent(r)[
[
fmax-visible-causes(t; r) : t is a hidden transitiong:

As before, the maximal causes will necessarily be a subset of the events in the growth-sites:

Proposition 6.2.24 Let r = t1 : : : tn be a transition-sequence and t be a visible transition of

a net N . Then the maximal causes of event n + 1 in the visible-pomset of r:t are a subset of

the events of growth-sites(r).

132 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

Proof. Suppose event i of the visible-pomset of r:t is a maximal cause of event n+1. For

one case, suppose that event i is also a maximal cause of n+ 1 in the transition-pomset of r:t;

then i 2 most-recent(r) by a proof identical to that of Proposition 6.2.10. For the other case,

there must be some event k in the transition-pomset of r:t such that tk is a hidden transition,

event i causes event k, and event k is a maximal cause of event n + 1. It follows by the same

reasoning as in the proof of Proposition 6.2.10 that event k must be the most-recent �ring of

transition tk in r. Therefore, event i not being in growth-sites(r) would imply that event i is

not a maximal visible cause of event k. There would thus be some event j in the transition-

pomset of r such that tj is a visible transition, event i causes event j, and event j causes event

k. But this would contradict event i being a maximal cause of n+1 in the visible-pomset of r:t.

We now observe that the growth-sites of transition-sequence r:t are fully determined by t,

the growth-sites of r, and the static concurrency relation of N :

Proposition 6.2.25 Let r be a transition-sequence and t a transition of a net N . Then an

event i is a visible cause of event jr:tj in the transition-pomset of r:t i� i 2 growth-sites(r), r[i]

is a visible transition, and there is some event j 2 growth-sites(r) such that transition r[j] and

t are not statically concurrent, and either event i causes event j in growth-sites(r) or i = j.

Furthermore, an event i is a maximal visible cause of event jr:tj in the transition-pomset of r:t

i� event i is a visible cause of event jr:tj in the transition-pomset of r:t and there is no event

k 2 growth-sites(r) such that event i causes event k in growth-sites(r) and event k is a visible

cause of event jr:tj in the transition-pomset of r:t.

The proposition is a straightforward consequence of Proposition 6.2.10; the details are left

to the reader.

Proposition 6.2.26 Let r = t1 : : : tn be a transition-sequence of a netN . Thenmost-recent(r) =

fi 2 growth-sites(r) : there is no event j 2 growth-sites(r)

such that j > i and lgrowth-sites(r)(i) = lgrowth-sites(r)(j)g

Furthermore, max-visible-causes(tk; r) =

fi 2 growth-sites(r) : there is some event j 2 most-recent(r)

such that lgrowth-sites(r)(j) = tk and

event i is a maximal visible cause of event j

in growth-sites(r)g
The proposition is a simple consequence of De�nition 6.2.23; the details are left to the

reader.

Proposition 6.2.27 Let r be a transition-sequence and t a transition of a net N . Then

growth-sites(r:t) =

fjr:tjg [fi 2 growth-sites(r) : either i 2 most-recent(r) and r[i] 6= t

or i 2 max-visible-causes(t0; r)
for some hidden transition t0 6= t

or i 2 max-visible-causes(t; r:t)

and t is a hidden transitiong

6.2. DECIDING POMSET-TRACE EQUIVALENCE 133

Proof. Clearly, event jr:tj is the most-recent �ring of transition t in r:t, and the most-

recent �ring of any other transition is the same in r and r:t. Furthermore, the maximal visible

causes of the most-recent occurrence of any hidden transition other than t are the same in the

transition-pomsets of r and r:t, from which the highlighted equality immediately follows.

As an immediate consequence of the preceding three propositions, we have:

Proposition 6.2.28 Let r be a transition-sequence and t a transition of a net N . Then

growth-sites(r:t) is fully determined by t, growth-sites(r), and the static concurrency relation of

N .

Our de�nition of growth-site correspondences is also modi�ed accordingly; this new de�ni-

tion will coincide with De�nition 6.2.13 for nets without hidden transitions.

De�nition 6.2.29 Let r and r0 be transition-sequences of nets N and N 0, respectively. Then
gsc(r; r0) is de�ned i� r and r0 are synchronous. Furthermore, if r and r0 are synchronous, then
gsc(r; r0) is the 1-1 partial function
�: growth-sites(r)!growth-sites(r0) such that

graph(�) = graph(�r;r0) \ (Events(growth-sites(r)) � Events(growth-sites(r0))):

In particular, growth-sites(r) is the source of gsc(r; r0), and growth-sites(r0) is the target of

gsc(r; r0).

Again, the growth-site correspondences are signi�cant only up to isomorphism:

Lemma 6.2.30 Let r1; r2 be transition-sequences of netN and let r01; r
0
2 be transition-sequences

of net N 0. If gsc(r1; r01) � gsc(r2; r
0
2), then

� gsc(r1:t; r
0
1:t

0) � gsc(r2:t; r
0
2:t

0) for any pair of visible transitions t and t0 of N and N 0,
respectively.

� gsc(r1:t; r
0
1) � gsc(r2:t; r

0
2) for any hidden transition t of N .

� gsc(r1; r
0
1:t

0) � gsc(r2; r
0
2:t

0) for any hidden transition t0 of N 0.

The proof is a straightforward but tedious adaptation of the proof of Lemma 6.2.15 and

uses De�nitions 6.2.1, 6.2.19, 6.2.23, and 6.2.29, and Propositions 6.2.22, 6.2.28, and 6.2.24,

instead of the corresponding de�nitions and propositions in the previous section. The details

are left to the reader.

We note that it follows from De�nition 6.2.23 that the size of the growth-sites of any

transition-sequence of a net is bounded by the square of the number of transitions in that net.

We remark that, in order to allow hidden transitions to move independently, the alphabet

of the automaton of Theorem 6.2.16 is generalized to pairs (u; u0), where either u and u0 are
both visible transitions of the respective nets, or exactly one of u and u0 is a hidden transition

of the respective net and the other is a special symbol �. We refer to any sequence w of such

pairs as a �-pair-sequence, and for i = 1; 2, we write proji(w) to denote the projection of w

onto its ith component alphabet, with all occurrences of � omitted.

134 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

Theorem 6.2.31 For any �nite nets N and N 0, there is a deterministic �nite-state automaton
recognizing the set of pairs of synchronous transition-sequences of N and N 0. If m and m0 are
the number of transitions in N and N 0, respectively, then the number of states in the automaton
is bounded by cmaxfm;m0g4 for some �xed constant c > 1.

Proof. The states of the automaton are the isomorphism classes of growth-site corre-

spondences between transition-sequences of N and N 0. A state � moves to a state via a pair

(t; t0) of transitions i� � is the isomorphism class of gsc(r; r0) and is the isomorphism class of

gsc(r:t; r0:t0) for some transition-sequences r and r0 of N and N 0, respectively. A state � moves

to a state via a pair (t; �) i� � is the isomorphism class of gsc(r; r0) and is the isomorphism

class of gsc(r:t; r0) for some transition-sequences r and r0 of N and N 0, respectively; a similar

de�nition applies to pairs (�; t0). The start state is the isomorphism class of the empty function,

and all states are accepting. By Lemma 6.2.30, this automaton is deterministic.

If w = (u1; u
0
1) : : :(uk; u

0
k) is in the language of the automaton, then by Lemma 6.2.30,

the �nal state reached must be the isomorphism class of gsc(proj1(w); proj2(w)). Hence, this

growth-site correspondence is de�ned, and so proj1(w) and proj2(w) are synchronous. Con-

versely, if proj1(w) and proj2(w) are synchronous, then

gsc(proj1(w
0); proj2(w0)) is de�ned for all pre�xes w0 of w. Hence, by Lemma 6.2.30 and the

de�nition of the automaton, w is in its language.

As before, we conclude:

Corollary 6.2.32 For any �nite nets N and N 0, there is a �nite-state automaton whose lan-

guage is the set of runs r of N for which there is some run r0 of N 0 such that r and r0 are
synchronous. If m and m0 are the number of transitions in N and N 0, respectively, and n

and n0 are the number of places in N and N 0, respectively, then the number of states in the

automaton is bounded by dmaxfm;m0g4+maxfn;n0g for some �xed constant d > 1.

Proof. The number of states in the deterministic automaton whose alphabet consists of

�-pairs and that recognizes the set of pairs of runs of N and N 0 is bmaxfn;n0g for some �xed

constant b > 1. The intersection of this automaton with that of Theorem 6.2.31 has number

of states bounded by dmaxfm;m0g4+maxfn;n0g for some �xed constant d > 1. Then renaming each

input symbol (t; t0) by symbol t, renaming each input symbol (t; �) by t, and renaming each in-

put symbol (�; t0) by " does not change the number of states and yields the desired automaton.

The earlier argument without hidden transitions now carries over:

Theorem 6.2.33 The pomset-trace equivalence problem for �nite nets that may contain hid-

den transitions can be decided in space exponential in the number of places and transitions in

the nets.

Proof. Since, language equivalence of automata with "-moves is decidable in space pro-

portional to the size of the automata [22], the proof of the theorem is identical to that of

Theorem 6.2.18, except that it uses Lemma 6.2.20 and Corollary 6.2.32.

6.3. HISTORY-PRESERVING BISIMULATION AND POMSET-BISIMULATION 135

6.3 History-Preserving Bisimulation and Pomset-Bisimulation

In this section, we assume that all nets may contain � -labeled transitions. We begin by de�ning

history-preserving bisimulation on nets. Our de�nition induces the same equivalence as that of

[5, 35, 39, 50, 46].

De�nition 6.3.1 A set H of triples of the form (r; r0; f) is a history-preserving bisimulation

between nets N and N 0 i�

1. If (r; r0; f) 2 H, then r and r0 are runs of N and N 0, respectively, and f is an isomorphism

between pomset-trace(r) and pomset-trace(r0).

2. ("; "; ;) 2 H, where " is the empty transition-sequence.

3. If (r; r0; f) 2 H and r:t is a run of N , then there is some, possibly empty, sequence of

transitions t01 : : : t
0
k and some function f 0 such that

((r:t); (r0:t01 : : : t
0
k); f

0) 2 H and f 0 restricted to pomset-trace(r) equals f .

4. If (r; r0; f) 2 H and r0:t0 is a run of N 0, then there is some, possibly empty, sequence of

transitions t1 : : : tk and some function f 0 such that

((r:t1 : : : tk); (r
0:t0); f 0) 2 H and f 0 restricted to pomset-trace(r) equals f .

Vogler [46, 48] has given an alternate characterization of history-preserving bisimulation

based on partially ordered sets of places, together with a decidability result. We give an alternate

proof based on the approach presented in Section 6.2. We recall that the �nite automaton

described in Theorem 6.2.31 is deterministic, and we let update refer to its state-transition

function. Furthermore, for any �-pair-sequence w and any gsc �, we write update(�; w) to

mean the successive application of update to each of the pairs in w. For any net N , we write

init(N) to denote the initial marking of N .

De�nition 6.3.2 A set G of triples of the form (M;M 0; �) is an gsc-bisimulation between nets

N and N 0 i�

1. If (M;M 0; �) 2 G, then M and M 0 are markings of N and N 0, respectively, and � is an

isomorphism class of growth-site correspondences between N and N 0.

2. (init(N); init(N 0); ;) 2 G.

3. If (M;M 0; �) 2 G and M [tiM1 for some transition t and some marking M1, then there is

some marking M 0
1 and some �-pair-sequence w such that proj1(w) = t, M 0[proj2(w)iM 0

1

and (M1;M
0
1; update(�; w)) 2 G.

4. Vice-versa; if (M;M 0; �) 2 G and M 0[t0iM 0
1 for some transition t0 and some marking M 0

1,

then there is some marking M1 and some �-pair-sequence w such that proj2(w) = t0,
M [proj1(w)iM1 and (M1;M

0
1; update(�; w)) 2 G.

Lemma 6.3.3 Nets are history-preserving bisimilar i� they are gsc-bisimilar.

136 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

Proof. For one direction, let H be a history-preserving bisimulation between nets N and

N 0. Let

G = f(M;M 0; gsc(r; r0)) : (r; r0; gsc(r; r0)) 2 H; init(N)[riM and init(N 0)[r0iM 0g:

Property (1) and (2) of De�nition 6.3.2 follow easily from De�nition 6.2.29 and De�nition 6.3.1;

the details are left to the reader. To prove property (3), let (M;M 0; �) 2 G and let transition t

and marking M1 be such that M [tiM1. Clearly, there must be some (r; r
0; gsc(r; r0)) 2 H such

that � = gsc(r; r0), init(N)[riM , and init(N 0)[r0iM 0. By De�nition 6.3.1, r:t is a run of N , and

so property (3) of De�nition 6.3.1 implies the existence of some, possibly empty, sequence of

transitions t01 : : : t
0
k and some function f 0 such that ((r:t); (r0:t01 : : : t

0
k); f

0) 2 H and f 0 restricted
to pomset-trace(r) equals gsc(r; r0). De�nition 6.3.1 implies that f 0 is an isomorphism between

the pomset-traces of r:t and r0:t01 : : : t
0
k, from which it then follows easily from De�nition 6.2.29

that f 0 = gsc(r:t; r0:t01 : : : t
0
k). The de�nition of �-sequences, the de�nition of update, and the

de�nition of G then immediately imply that property (3) of De�nition 6.3.2 must hold for G.
A similar proof holds for property (4), and hence G is a gsc-bisimulation.

For the other direction, let G be a gsc-bisimulation between nets N and N 0. We de�ne the

set of triples H inductively as follows. For the basis step, let H = f("; "; ;)g. For one inductive
step, if (r; r0; f) 2 H, and for some t, t01 : : : t

0
k,

1. r:t is a run of N , r0:t01 : : : t
0
k is a run of N 0, and

2. (M;M 0; gsc(r:t; r0:t01 : : : t
0
k)) 2 G, where init(N)[r:tiM and init(N 0)[r0:t01 : : : t

0
kiM 0,

then (r:t; r0:t01 : : : t
0
k; �r:t;r0:t01:::t0k) 2 H.

For the other inductive step, if (r; r0; f) 2 H, and for some t1 : : : tk, t
0,

1. r:t1 : : : tk is a run of N , r0:t0 is a run of N 0, and

2. (M;M 0; gsc(r:t1 : : : tk; r0:t0)) 2 G, where init(N)[r:t1 : : : tkiM and init(N 0)[r0:t0iM 0,

then (r:t1 : : : tk; r
0:t0; �r:t1:::tk;r0:t0) 2 H.

By the de�nition of gsc and the �, it is clear that properties (1) and (2) of De�nition 6.3.1

hold forH. To prove (3), suppose that (r; r0; f) 2 H and r:t is a run ofN . Then (M;M 0; gsc(r; r0)) 2
G, where init(N)[riM and init(N 0)[r0iM 0. Let M1 be the marking such that init(N)[r:tiM1.

Then by the de�nition of gsc-bisimulations, there is some markingM 0
1 and some �-pair-sequence

w such that proj1(w) = t,M 0[proj2(w)iM 0
1 and (M1;M

0
1; update(gsc(r; r

0); w) 2 G. Let proj2(w) =
t01 : : : t

0
k; then by de�nition, update(gsc(r; r0); w) is isomorphic to gsc(r:t; r0:t01 : : : t

0
k),

so (r:t; r0:t01 : : : t
0
k; �r:t;r0:t01:::t0k) 2 H. It is easy to see by the de�nition of � that �r:t;r0:t0

1
:::t0

k
re-

stricted to the pomset-trace of r is equal to �r;r0 , which is in turn equal to f , proving this case.

The proof of (4) is analogous.

As in Section 6.2.2, it is easy to see that for any �nite net, the number of triples (M;M 0; �)
is bounded by an exponential in the sizes of the nets. We use this fact in our decision procedure:

Theorem 6.3.4 For �nite nets that may contain hidden transitions, history-preserving bisim-

ulation can be decided in deterministic time exponential in the number of places and transitions

in the nets.

6.3. HISTORY-PRESERVING BISIMULATION AND POMSET-BISIMULATION 137

Proof. The algorithm to decide history-preserving bisimulation of nets N andN 0 is similar
to the decision procedure for (interleaving) bisimulation by successive re�nement. We start with

a set G0 that contains all possible triples, and each step, we shrink this set. Speci�cally, we

de�ne inductively:

G0 = f(M;M 0; �) : M;M 0 are markings of N;N 0;
and � is a gsc-isomorphism class between N and N 0g

Gi+1 = f(M;M 0; �) 2 Gi : for every transition t and marking M1 with M [tiM1;

there is some marking M 0
1 and some � -pair-sequence w

such that proj1(w) = t; M 0[proj2(w)iM 0
1;

and (M1;M
0
1; update(�; w)) 2 Gi

and vice-versag

We now show that N and N 0 are gsc-bisimilar i�

(init(N); init(N 0); ;) 2 Gk

for any k that exceeds the number of possible triples (M;M 0; �). For one direction, let G0 be a
gsc-bisimulation between N and N 0. Using De�nition 6.3.2, a simple induction on i shows that

G0 � Gi for all i � 0. Since De�nition 6.3.2 implies that (init(N); init(N 0); ;) 2 G0, we have
that (init(N); init(N 0); ;) 2 Gk, as desired. For the other direction, we observe that for all i,

Gi+1 is either a strict subset of Gi or Gi = Gj for all j > i. Since k is greater than the number

of triples, it immediately follows that Gk = Gk+1. Thus, by De�nition 6.3.2 and the de�nition

of the Gi, Gk is a gsc-bisimulation whenever it contains (init(N); init(N 0); ;).
We observe that k is easily bounded by an exponential in the sizes of N and N 0. It is also

easy to check that Gk can be computed in dexptime in the size of N and N 0 (using a transitive
closure technique as in [26] to calculate the existence of a �-pair-sequence w). Thus, it can be

checked in deterministic time exponential in the number of places and transitions in N and N 0

whether (init(N); init(N 0); ;) 2 Gk, and hence the theorem follows easily from Lemma 6.3.3.

We now de�ne pomset-bisimulation. Our de�nition induces the same equivalence as that of

[6, 39, 50].

De�nition 6.3.5 A set P of pairs of the form (M;M 0) is a pomset-bisimulation between nets

N and N 0 i�

1. If (M;M 0) 2 P , then M and M 0 are markings of N and N 0, respectively.

2. (init(N); init(N 0)) 2 P .
3. If (M;M 0) 2 P and M [riM1 for some transition-sequence r and some marking M1, then

there is some transition-sequence r0 and some marking M 0
1 such that the pomset-traces

of r and r0 are isomorphic, M 0[r0iM 0
1, and (M1;M

0
1) 2 P .

4. Vice-versa; if (M;M 0) 2 P and M 0[r0iM 0
1 for some transition-sequence r

0 and some mark-
ing M 0

1, then there is some transition-sequence r and some marking M1 such that the

pomset-traces of r and r0 are isomorphic, M [riM1, and (M1;M
0
1) 2 P .

138 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

Theorem 6.3.6 For �nite nets that may contain hidden transitions, pomset-bisimulation can

be decided in space exponential in the number of places and transitions in the nets.

Proof. The algorithm to decide pomset-bisimulation of nets N and N 0 is also by successive
re�nement. We start with a set P0 that contains all possible pairs, and each step, we shrink

this set. Speci�cally, we de�ne inductively:

P0 = f(M;M 0) : M;M 0 are markings of N;N 0g

Pi+1 = f(M;M 0) 2 Pi : for every transition-sequence r and marking M1 with M [riM1;

there is some transition-sequence r0 and some marking M 0
1

such that the pomset-traces of r and r0 are isomorphic;
M 0[r0iM 0

1; and (M1;M
0
1) 2 Pi

and vice-versag

It is straightforward to show that N and N 0 are pomset-bisimilar i�

(init(N); init(N 0)) 2 Pk

for any k that exceeds the number of pairs, and this number is easily bounded by an exponential

in the sizes of N and N 0. To compute each Pi+1, we use the following straightforward modi�-

cation of the decision procedure for pomset-trace equivalence. For each pair (M;M 0) 2 Pi, let

NM be N , except that the initial marking of NM is M (rather than init(N)); net N 0
M 0 is de�ned

similarly. As in the proof of Corollary 6.2.32, we intersect the automaton that recognizes the

set of pairs of runs of NM and N 0
M 0 with the automaton of Theorem 6.2.31 constructed for NM

and N 0
M 0 . Each state of the resulting automaton is a pair of the form (�; (M1;M

0
1)), where M1

is a state of NM and M 0
1 is a state of N

0
M 0. For each state (�; (M1;M

0
1)), we now add a new M1-

labeled transition i� (M1;M
0
1) 2 Pi; all such transitions lead to a single new, accepting state.

All other states of the automaton are de�ned to be non-accepting. We then relabel the other

transitions (u; u0) as in the proof of Corollary 6.2.32. Thus, the language of this automaton is

all pairs (r;Mr) of runs r and corresponding �nal marking Mr of NM for which there is some

run r0 and corresponding �nal marking M 0
r0 of N

0
M 0 such that r and r0 are synchronous and

(Mr;M
0
r0) 2 Pi. It is easy to see that the transition table of this modi�ed automaton remains

exponential in the sizes of N and N 0. (An similar automaton is also constructed whose language
is all pairs (r0;M 0

r0) of runs r
0 and corresponding �nal marking M 0

r0 of N
0
M 0 for which there is

some run r and corresponding �nal marking Mr of NM such that r and r0 are synchronous and
(Mr;M

0
r0) 2 Pi.)

By Proposition 6.2.4, De�nition 6.2.19, and Lemma 6.2.20, it is then straightforward to

show that (M;M 0) 2 Pi+1 i� (1) the language of the �nite-state automaton given above is the

set of all pairs (r;Mr) such that r is a run of NM and M [riMr , and (2) the language of the

similar automaton constructed forN 0
M 0 is the set of all pairs (r0;Mr0) such that r

0 is a run ofN 0
M 0

and M 0[r0iMr0 . It is easy to construct other �nite-state automata of essentially the same size,

recognizing the set of such pairs (r;Mr) or the set of such pairs (r0;Mr0). So (M;M 0) 2 Pi+1

i� each of the two appropriate pairs of automata recognize the same language. Since language

equivalence is checkable in space proportional to the size of the automata [22], each Pi can be

computed in space exponential in the size of N and N 0, and hence so can Pk.

6.4. DECIDING OTHER TRUE CONCURRENCY EQUIVALENCES 139

6.4 Deciding Other True Concurrency Equivalences

Since the transition system of a net is a �nite-state automaton, the decision procedures for the

interleaving trace, failure and bisimulation equivalences for nets follow directly from the results

of Kanellakis&Smolka [26] for �nite-state automata.

Theorem 6.4.1 For �nite nets that may contain hidden transitions, the trace equivalence

problem and the failure equivalence problem can be decided in space which is a product of an

exponential in the number of places in the nets and a polynomial in the number of transitions

in the nets. Furthermore, the bisimulation problem, the delay bisimulation problem, and the

branching bisimulation problem can be decided in deterministic time which is a product of an

exponential in the number of places in the nets and a polynomial in the number of transitions

in the nets.

Proof. The transition system of a �nite net is a deterministic �nite-state automaton

whose states correspond to the reachable markings of the net and whose transitions correspond

to transitions of the net. Let m and m0 be the number of transitions in N and N 0, respectively,
and let n and n0 be the number of places in N and N 0, respectively. Then the maximum of the

number of transitions in these automata is bounded by m � 2maxfn;n0g, and the maximum of the

number of states in these automata is bounded by 2maxfn;n0g. Clearly, relabeling each visible

transition t with the label of t and relabeling each hidden transition t0 with " does not change

the sizes of the automata.

By de�nition, the �nite nets are trace, failures, or bisimulation equivalent i� these �nite-state

automata with "-moves are respectively trace, failures, or bisimulation equivalent. Trace equiv-

alence of �nite-state automata is checkable in space proportional to the size of the automata

[26], while bisimulation equivalence is checkable in ptime [26], as are delay bisimulation and

branching bisimulation [17]. The decision procedure for divergence-respecting failures equiv-

alence [9] of �nite-state automata is a straightforward generalization of Kannelakis&Smolka's

pspace decision procedure for divergence-blind failures equivalence.

The decision procedures for most of the other true concurrency equivalences in Table 6.1

then follow from reductions to the corresponding interleaving equivalences, which are part of

known full abstraction proofs [23, 25, 47, 49].

Theorem 6.4.2 For �nite nets that may contain hidden transitions, the step-trace equivalence

problem and the step-failure equivalence problem can be decided in space exponential in the

number of places and transitions in the nets. Furthermore, the step-bisimulation problem can

be decided in deterministic time exponential in the number of places and transitions in the nets.

Proof. By a known full abstraction result [25], there is a context C[�] involving only a

self-synchronization operator [25] such that nets N and N 0 are step-trace, step-failures, or step-
bisimulation equivalent i� the nets C[N] and C[N 0] are respectively trace equivalent, failures

equivalent, or bisimulation equivalent. In particular, C[�] adds a new transition for every set of

pairwise statically concurrent transitions, and does not add any new places.

140 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

Let m and m0 be the number of transitions in N and N 0, respectively, and let n and n0 be
the number of places in N and N 0, respectively. Then the maximum of the number of transi-

tions in C[N] and C[N 0] is bounded by 2maxfm;m0g, and the maximum of the number of places

in C[N] and C[N 0] is bounded by maxfn; n0g. The proof then follows easily by Theorem 6.4.1.

The decision procedure for interval-pomset-trace equivalence and interval-pomset-failure

equivalence relies on a full abstraction result involving action re�nement:

Theorem 6.4.3 For �nite nets that may contain hidden transitions, the interval-pomset-trace

equivalence problem and the interval-pomset-failures equivalence problem can be decided in

space exponential in the number of places and transitions in the nets.

Proof. By known full abstraction results [23, 47], there is a context C[�] built from

split and choice re�nements such that nets N and N 0 are interval-pomset-trace equivalent or
interval-pomset-failures equivalent i� the nets C[N] and C[N 0] are respectively trace equivalent

or failures equivalent. In particular, C[�] re�nes every visible transition by the net a+1 :a�1 + : : :+

a+k :a
�
k , where a is the label of the visible transition and k is bounded by the maximum of the

number of transitions in N and N 0.
Letm andm0 be the number of transitions in N andN 0, respectively, and let n and n0 be the

number of places in N and N 0, respectively. Then the maximum of the number of transitions in

C[N] and C[N 0] is bounded by 2 �maxfm;m0g2+1, and the maximum of the number of places

in C[N] and C[N 0] is bounded by maxfn; n0g+maxfm;m0g2. The proof then follows easily by

Theorem 6.4.1.

Vogler [49] has shown that the interval-pomset equivalences coincide with the ST-equivalences

[39, 42]. We have as an immediate consequence:

Theorem 6.4.4 For �nite nets that may contain hidden transitions, the ST-trace equivalence

problem and the ST-failure equivalence problem can be decided in space exponential in the

number of places and transitions in the nets. Furthermore, the ST-bisimulation problem can be

decided in deterministic time exponential in the number of places and transitions in the nets.

Proof. The proofs for ST-traces and ST-failures is identical to that of Theorem 6.4.3,

while the proof for ST-bisimulation uses the same context C[�] to yield a reduction to bisimu-

lation. The desired upper bound then follows by Theorem 6.4.1.

Using the decision procedure for history-preserving bisimulation, a similar result holds for

maximality-preserving bisimulation [13]:

Theorem 6.4.5 For �nite nets that may contain hidden transitions, the maximality-preserving

bisimulation problem can be decided in deterministic time exponential in the number of places

and transitions in the nets.

Proof. Let C[�] be the net context involving split and choice re�nements given in the

proof of Theorem 6.4.3. Then by a proof similar to that of [45], nets N and N 0 are maximality-
preserving bisimilar i� the nets C[N] and C[N 0] are history-preserving bisimilar. The theorem

6.5. LOWER BOUNDS 141

is then a simple consequence of Theorem 6.3.4.

Lastly, our decision procedure for pomset-bisimulation yields one for pomset-ST-bisimulation [50]:

Theorem 6.4.6 For �nite nets that may contain hidden transitions, the pomset-ST-bisimulation

problem can be decided in space exponential in the number of places and transitions in the nets.

Proof. Let C[�] be the net context involving split and choice re�nements given in the

proof of Theorem 6.4.3. Then by a proof similar to that of [45], nets N and N 0 are pomset-
ST-bisimilar i� the nets C[N] and C[N 0] are pomset-bisimilar. The theorem is then a simple

consequence of Theorem 6.3.6.

6.5 Lower Bounds

The lower bounds for trace equivalence and bisimulation essentially follow from previous results

of Mayer&Stockmeyer on Mazurkiewicz nets and regular expressions with interleaving. In

particular, Mayer&Stockmeyer [29] have shown the expspace-hardness of deciding whether the

language of a regular expression with interleaving is ��. Our expspace lower bound for trace

equivalence of �nite 1-safe Petri nets follows by a polynomial-time reduction. For expository

simplicity, we �rst give the proof for nets that may contain hidden transitions.

Theorem 6.5.1 The problem of deciding whether the language of a regular expression with

interleaving is �� is polynomial-time reducible to trace equivalence of �nite nets that may

contain hidden transitions.

Proof. Let � be a �nite alphabet consisting only of visible labels, and let
p 62 � be a

visible label. For any regular expression r over � built from f[; �; �; jjg, we give an inductive

translation to �nite 1-safe nets with labels from �[f�;pg. Each of these nets will have exactly
one

p
-labeled transition, and the post-set of this transition will be empty.

The translation, net, uses net operators de�ned in [23]; we do not repeat the de�nitions

here. However, we slightly modify the internal choice operator presented there to ensure that

the resulting nets always have exactly one
p
-labeled transition. This in turn guarantees that

the translation net can be performed in polynomial-time; that is, for any regular expression

r with interleaving, the net net(r) can be constructed in deterministic time polynomial in the

number of symbols in r.

For every a 2 �, a is the net corresponding to a:
p
. The � operator is modeled by the

sequencing operator on nets. The � operator applied to a net N adds the initially marked

places of N to the post-set of its
p
-labeled transition, relabels the

p
-transition with � , and

hooks up a single new
p
-labeled transition to the set of initially marked places of N . The union

operator applied to nets N and N 0 is modeled by the internal choice operator on nets except

that in addition, the
p
-labeled transitions of N and N 0 are relabeled by � , one common new

place is added to the postset of both of these relabeled transitions, and this new place feeds into

a new
p
-labeled transition. The interleaving operator applied to nets N and N 0 is modeled by

the non-communicating parallel composition operator on nets, in which N and N 0 are simply
placed side by side but required to synchronize on

p
-labeled transitions. We note that since all

142 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

nets in the target of net have exactly one
p
-labeled transition, the non-communicating parallel

composition operator takes only a trivial cross-product of the
p
-labeled transitions and hence

adds no extra transitions (or places). This ensures that net is a polynomial-time translation in

the length of r.

It is straightforward to show by induction that each of the nets in the target of net will

immediately reach a deadlocked state whenever its (necessarily unique)
p
-labeled transition

�res. Furthermore, this
p
-labeled can be �red from any reachable marking, after �rst perform-

ing a �nite, possibly empty, sequence of other transitions. For any regular expression r with

interleaving, it follows by a simple induction that

L(r) = fv 2 �� j vp is a trace of net(r)g;

where L(r) is the language of r.

LetN�� be the �nite net with exactly j�j+1 transitions, each uniquely labeled from �[fpg,
and exactly one place, which is initially marked and is in the preset of all the transitions and in

the post-set of all the transitions not labeled with
p
. The set of traces ofN�� is the pre�x closure

of �� � p. We show that for any regular expression r with interleaving, L(r) = �� i� net(r)

and N�� are trace equivalent. One direction follows immediately from the equality highlighted

above. For the other direction, suppose L(r) = ��. Since �ring the
p
-labeled transition

immediately puts net(r) in a deadlocked state, clearly the traces of net(r) are contained in the

traces of N�� . For the reverse containment, it follows immediately from the highlighted equality

that the set �� � p is contained in the traces of net(r). Since traces are pre�x-closed, the set

�� is also contained in the traces of net(r), and so net(r) and N�� are trace-equivalent.

This is a polynomial-time reduction from deciding whether the language of a regular ex-

pressions with interleaving is �� to trace equivalence of �nite nets with hidden transitions.

We then have as a corollary:

Theorem 6.5.2 For �nite nets that may contain hidden transitions, trace equivalence is expspace-

hard.

We now modify the proof of Theorem 6.5.1 to yield the lower bound for trace equivalence

of �nite nets without hidden transitions.

Theorem 6.5.3 The problem of deciding whether the language of a regular expression with

interleaving is �� is polynomial-time reducible to trace equivalence of �nite nets without hidden
transitions.

Proof. Let net be the translation de�ned in the proof of Theorem 6.5.1, and let 1 62
(�� [fpg) be a visible label. For any regular expression r with interleaving, we de�ne a new

translation Net from net(r) as follows: �rst, we relabel all � -labeled transitions in net(r) with

the label 1, then for every place s in net(r), we add a new 1-labeled transition and put it in

the preset and postset of the place s (i.e., in a self-loop under s). Net(r) is de�ned to be the

resulting net, and clearly can be constructed in polynomial time in the length of r. Furthermore,

Net(r) satis�es all the properties of net(r) speci�ed in the proof of Theorem 6.5.1 concerning

markings and
p
-labeled transitions. The labeled transition system of Net(r) is identical to that

6.5. LOWER BOUNDS 143

of net(r), except that all � -labeled transitions are replaced by 1-labeled transitions, and every

state has a 1-labeled transition trivially looping back to itself.

It is straightforward to show by induction that for any regular expression r with interleaving,

net(r) can perform at most 4 � jrj consecutive � -moves, where jrj is the number of symbols in r.

By construction of Net(r), it then follows that:

L(r) = fa1 : : : ak 2 �� j 14�jrja114�jrj : : : ak14�jrj
p

is a trace of Net(r)g:

For any regular expression r with interleaving, let Nr be the �nite net with 4 � jrj+ j�j+ 1

transitions and 4 � jrj+1 places, whose set of traces is the pre�x-closure of (14�jrj ��)� �14�jrj �p;
the intended de�nition of Nr is obvious and omitted. By reasoning similar to that of the proof

of Theorem 6.5.1, it follows that L(r) = �� i� the set of traces of Net(r) contains the set of the

traces of Nr. The details are left to the reader.

To reduce trace-containment to trace equivalence, we observe that for any nets N1 and N2,

the set of traces of N1 contains the set of traces of N2 i� the net (N1 jj�[fp;1g N2) and the

net N2 are trace equivalent, where jj�[fp;1g is a parallel composition operator which requires

synchronization on (visible) labels and hence corresponds to trace intersection. Furthermore,

the size of N1 jj�[fp;1g N2 is polynomial in the sizes of N1 and N2, giving a polynomial-time

reduction from trace containment to trace equivalence, and proving the theorem.

We then have as a corollary:

Theorem 6.5.4 For �nite nets without hidden transitions, trace equivalence is expspace-hard.

Using these results, we obtain a lower-bound for failures equivalence; the proof is very

similar to that of Kanellakis&Smolka [26] for �nite-state automata.

Theorem 6.5.5 For �nite nets without hidden transitions, trace equivalence is polynomial-

time reducible to failures equivalence.

Proof. For any �nite nets N1 and N2 without hidden transitions, let N 0
i be constructed

by adding to Ni a single new, initially marked place, snew, which is placed in the preset and

post-set of every transition of Ni. The labeled transition system of N 0
i is isomorphic to that

of Ni. Now, N
00
i is constructed by adding to N 0

i a new a-labeled transition ta, for every visible

label a, and hooking up each ta so that its post-set is empty and its preset contains only the

place snew. All of the ta are enabled under every reachable marking of N 0
i , and �ring any one

of them puts N 00
i in a deadlocked state.

N1 and N2 are trace equivalent i� N 00
1 and N 00

2 are failures equivalent; the proof is identical

to that of Kanellakis&Smolka [26] and is omitted. This is a polynomial-time reduction from

trace equivalence to failures equivalence.

We then have as a corollary:

Theorem 6.5.6 Failures equivalence of �nite nets is expspace-hard.

Our proof of a dexptime lower bound for bisimulation is a simple adaptation of Stock-

meyer's result [36] for Mazurkiewicz nets: namely, we reduce the acceptance problem for

144 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

polynomial-space Alternating Turing Machines to the bisimulation problem for �nite 1-safe

Petri nets. In particular, we simulate the tape and �nite-state control of polynomial-space

Alternating Turing Machines by polynomial-time constructible 1-safe Petri Nets, and our re-

duction to bisimulation is essentially identical to that of Stockmeyer. Since Mazurkiewicz nets

are somewhat more succinct than 1-safe Petri Nets, our lower bound for bisimulation is a minor

technical improvement of the results of Stockmeyer.

Theorem 6.5.7 The acceptance problem for polynomial-space Alternating Turing Machines

is polynomial-time reducible to bisimulation of �nite nets.

Proof. Let A be an alternating Turing Machine that, for some polynomial p, uses

p(n) space on input of size n. A well-known property of polynomial-space alternating Turing

Machines is that every computation halts in deterministic time exponential in the size of the

input [11, 27]. Let p0(n) be so large that 2p
0(n) exceeds the time bound of A on input of

size n, and let � be the �nite tape alphabet of A. We can assume without loss of generality

that A begins in an existential state, existential and universal states alternate at every step,

and when A enters an accepting state it continues to take steps while staying in accepting

states. Furthermore, we can assume that A has exactly two possible moves at every step, every

existential state has at least one immediate successor that is a rejecting universal state, every

universal state has at least one immediate successor that is an accepting existential state, and

the �nal state of every computation is an existential state.

For any input x, we �rst construct a polynomial-size Petri Net net(Ax) that \simulates"

the computation of A on x. Each tape square i of A is represented as a group of places

fs(i;a1); : : : ; s(i;ak)g [fs(i;q0); : : : ; s(i;ql)g, where � = fa1; : : : ; akg and fq0; : : : ; qlg are the control
states ofA. The idea is that for each tape square i, exactly one of the places in fs(i;a1); : : : ; s(i;ak)g
will be marked under every reachable marking, indicating which tape symbol is currently written

on tape square i. Furthermore, over all 1 � i � p(n) and all 0 � j � l, exactly one of s(i;qj) is

marked, indicating which tape square holds the head and which control state A is currently in.

Let x = ai1 : : :ain ; then exactly the places fs(1;ai1); : : : ; s(n;ain)g [fs(1;q0)g are initially marked.

The net net(Ax) is wired up as follows: for every tape square i, every control state q, every

symbol aj 2 �, and every control transition (q0; aj0; D) 2 �(q; aj) in A, where D is either L or

R, net(A) contains a transition ti(q;aj)!(q0;aj0 ;D), labeled with some common label 1. The idea is

that this transition �res i� A is currently in control state q and tape square i holds the head and

contains aj . Firing this transition puts A in control state q0, writes aj0 on tape square i, and

moves the head to tape square i� 1 if D = L and to tape square i+ 1 if D = R. In particular,

the preset of transition ti(q;aj)!(q0;aj0 ;D) is fs(i;q); s(i;aj)g and the post-set is fs(i�1;q0); s(i;aj0)g or

fs(i+1;q0); s(i;aj0)g depending on whether D is L or R. Finally, for every accepting existential

control state q and tape square i, we introduce a transition X(i;q) with preset fs(i;q)g, empty
postset, and label acc. For every rejecting existential control state q and tape square i, we

introduce a transition X(i;q) with preset fs(i;q)g, empty postset, and label acc, and a transition

Y(i;q) with preset fs(i;q)g, empty postset, and label rej. Clearly, net(Ax) contains (k + l) � p(n)
places and at most (2l+m) � p(n) transitions, where k is the size of the tape alphabet of A, l

is the number of control states of A, and m is the number of control transitions of A.

It is straightforward to show that net(Ax) is 1-safe, sequential (i.e., no transitions can �re

concurrently under any reachable marking), and that its labeled transition system is isomorphic

6.5. LOWER BOUNDS 145

9(a)

8(a) 8(r)

9(r)

1

||yy
yy

yy

1

EEEEEE
""

acc

ccGGGGGGG
rej

ww
ww
ww
w;;

#

1

//

1

��

"

1

oo

rej

��

!

"

1

oo

Figure 6-4: Labeled Transition System of NF

to that of A on input x, ignoring the labels of the control transitions, and ignoring the acc-

labeled and rej-labeled transitions altogether.

Let T be the deterministic Turing machine which, started with a string of 0's on its tape,

successively adds 1 to the binary number on its tape until the original string of 0's is changed into

a string of 1's (of the same length). Then T enters an accepting state and halts. So, when started

on a string on m 0's, it runs for at least 2m steps and halts. The polynomial-time translation

net given above for alternating Turing Machines also holds for any deterministic polynomial-

space Turing Machine, except that we add both acc-labeled and rej-labeled transitions for

every pair (i; q). Hence if \started" on input consisting of a string of p0(jxj) 0's, this net is of
size bounded by some polynomial in jxj, and has the sole behaviors that it �res at most some

�xed m0 > 2p
0(jxj) number of 1's, and each point along the way it non-deterministically chooses

between �ring either acc or rej and exiting, or �ring a 1. Furthermore, after �ring m0 1's
followed by a single acc or rej, it reaches a deadlocked state. We call this net Count(m0). We

can assume without loss of generality that m0 is odd, and since m0 exceeds the time bound of

A on input x, we can assume without loss of generality that every computation path of A on

input x is exactly of length m0.

To �nish the construction, let NF be a �nite 1-safe net of constant size with the labeled

transition system pictured in Figure 6-4, and let Nx
def
= NF jj

1;acc;rej
Count(m0), where

synchronization is required on the symbols 1, acc, and rej. Nx is of size polynomial in jxj, and
its labeled transition system is bisimilar to the transition system pictured in Figure 6-5.

We now show that net(Ax) is bisimilar to the net Nx i� A accepts input x. For one direction,

suppose that net(Ax) is bisimilar to Nx; then net(Ax) must have some m
0-length path bisimilar

to 9(a)8(a)9(a)8(a) : : :9(a) after which it �res an acc-labeled transition. Thus, all the states of

net(Ax) that are reached along the way must be accepting. Since the labeled transition system

of net(Ax) is essentially isomorphic to the labeled transition system of A on x, A must accept x.

Recalling our assumptions on A, the other direction follows by a simple induction on �i, where

�i is an i-step bisimulation (cf. [30]). This is a polynomial-time reduction from the acceptance

problem for polynomial-space alternating Turing Machines to bisimulation of �nite nets.

146 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

9(a)

8(r) 8(a)

9(r) 9(a)

8(r) 8(a) Depth m0

9(r) 9(a)

1

||yy
yy

yy
1

��

rej

@@@@@@
��

acc //

��

1

��

1

EEEEEE
""

1

��

rej

����
��
��

1

��
1

||yy
yy

yy
1

��

rej

??????
��

acc //

1

��

1

GGGGGGG
##

1

���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

rej

��

rej

��

acc

CCCCCC
!!

Figure 6-5: Bisimilar to the Labeled Transition System of Nx

6.5. LOWER BOUNDS 147

It is well-known that the class of problems decidable in polynomial space by alternating

Turing Machines is the same as the class of problems decidable in deterministic exponential

time by ordinary Turing Machines [11, 27]. We then have as a simple corollary of this fact and

Theorem 6.5.7:

Theorem 6.5.8 Bisimulation of �nite nets is dexptime-hard.

We now show the lower bounds for the remaining equivalences listed in Table 6.1.

Theorem 6.5.9 For �nite nets,

1. trace equivalence is polynomial-time reducible to step-trace equivalence, ST-trace equiv-

alence, interval pomset-trace equivalence, and pomset-trace equivalence,

2. failures equivalence is polynomial-time reducible to step-failures equivalence, ST-failures

equivalence, and interval pomset-failures equivalence, and

3. bisimulation is polynomial-time reducible to step-bisimulation, ST-bisimulation, history-

preserving bisimulation, maximality-preserving bisimulation, pomset-bisimulation, and

pomset-ST-bisimulation.

Proof. We give the proof only for pomset-trace equivalence, as the other cases are com-

pletely analogous. For any �nite nets N1; N2 without hidden transitions, let N 0
i be constructed

by adding to Ni a single new, initially marked place which is placed in the preset and post-set of

every transition of Ni. Clearly, N
0
i is trace equivalent to Ni. Since no transitions in N

0
i are stat-

ically concurrent, it is easy to see that N 0
1 and N

0
2 are trace equivalent i� they are pomset-trace

equivalent; hence N1 and N2 are trace equivalent i� N 0
1 and N 0

2 are pomset-trace equivalent.

This is a polynomial-time reduction from trace equivalence to pomset-trace equivalence.

We then have as a simple corollary:

Theorem 6.5.10 For �nite nets, the decision problems for

1. step-trace equivalence, ST-trace equivalence, interval pomset-trace equivalence, and pomset-

trace equivalence are expspace-hard,

2. step-failures equivalence, ST-failures equivalence, and interval pomset-failures equivalence

are expspace-hard,

3. delay bisimulation, branching bisimulation, step-bisimulation, ST-bisimulation, history-

preserving bisimulation, maximality-preserving bisimulation, pomset-bisimulation, and

pomset-ST-bisimulation are dexptime-hard.

Proof. Delay bisimulation and branching bisimulation coincide with bisimulation for

nets without hidden transitions [43]. The lower bound for delay bisimulation and branching

bisimulation is thus a simple consequence of Theorem 6.5.8. All the other lower bounds follow

immediately from Theorems 6.5.4, 6.5.6, 6.5.8, and 6.5.9.

We remark that all the lower bound results in this section are independent of the presence of

hidden transitions, except as speci�cally stated in the lower bound proofs for trace equivalence.

148 CHAPTER 6. DECIDING TRUE CONCURRENCY EQUIVALENCES

6.6 Conclusions

We remark that all these complexity results apply equally to process approximation as well

as equivalence. An open problem is the decidability and complexity of augmentation-closed

pomset-trace equivalence. Another open problem that we regard as especially signi�cant is the

decidability and complexity of our earlier general pomset-failures semantics [23], which keeps

track of concurrent divergences. We are currently working to extend our methods to handle

these cases.

Chapter 7

Other Results, Open Problems, and

Future Work

There is not yet a consensus on what an action re�nement operator should be. For example,

our action re�nement operator and that of [47] are tuned to a CSP-style synchronization-

with-restriction, while those of [3, 20] are tuned to a CCS-style synchronization-by-hiding-

complementary-actions. In this regard, an action-re�nement theory closely related to ours

has been proposed by Hennessy [20]. His theory incorporates an interesting, and in certain

respects more powerful, action re�nement operation, and he has compositionality and full ab-

straction results similar to ours. Unlike our action re�nement operation, Hennessy's de�nition

allows \concurrent" re�nement nets to \communicate" with one another in a manner closely

related to CCS-style parallel composition, where concurrent, complementary actions (i.e., a and

�a) can synchronize and perform a hidden move. However, in order for Hennessy's semantics

to remain compositional for this powerful sort of action re�nement, this inter-communication

must in fact be quite restricted: in particular, \initial" hidden communications between re-

�nement nets must be disallowed. As a result, Hennessy forbids some simple action re�ne-

ments like (a j b)[a:=c; b:=�c]. We have explored the connection between Hennessy's and

our theories of action re�nement in [25]. In particular, [25] presents a new operator of self-

synchronization, which allows concurrent transitions within a process to synchronize, and shows

that self-synchronization provides a tight connection between our action re�nement operator

and Hennessy's communicating action re�nement operator. Furthermore, self-synchronization

can detect \steps" of concurrent actions, and hence non-interleaving semantics are not compo-

sitional.

In a related direction, we believe that true concurrency semantics may reveal a distinction

between existing synchronization operators for which non-interleaving semantics are compo-

sitional. For example, in interleaving theories like CSP and CCS, the choice of operators is

immaterial since the di�erent synchronization operators can simulate each other. However,

the known simulations do not preserve true concurrency semantics. The relation between the

process theories based on these di�erent synchronization mechanisms remains an interesting

question, which we are currently exploring.

This thesis has shown that our [[�]]MAY,[[�]]MUST
split- and [[�]]TESTsplit- are compositional for all our

operators, including action re�nement, and are respectively adequate for may-, must-, and

Testing-equivalence. However, it remains open as to which sorts of observations these semantics

149

150 CHAPTER 7. OTHER RESULTS, OPEN PROBLEMS, AND FUTURE WORK

are fully abstract. To this end, we are currently working on a theory of local observers, which

we believe will be able to detect full causality and concurrency through experiments.

In Chapter 4, we showed that all of our semantical spaces form complete partial orders, and

that our action re�nement and CCS/CSP operators on nets correspond to continuous semantical

operations. Consequently, we expect that our theory will routinely support arbitrary (not merely

guarded) recursive de�nitions of nets, with recursion understood as usual via least �xed points.

We hope to formalize these de�nitions in the near future.

An important direction for further research is development of the algebra of process terms

with re�nement. One immediate problem to consider is �nding a complete axiom system for

equations between closed recursion-free CSP/CCS process terms|corresponding to the (non-

divergent) isolated elements in our semantical spaces.

Bibliography

[1] L. Aceto and U. Engberg. Failure semantics for a simple process language with re�nement.

Technical report, INRIA, Sophia-Antipolis, 1991.

[2] L. Aceto and M. Hennessy. Towards action-re�nement in process algebras. In Proceedings,

Fourth Annual Symposium on Logic in Computer Science, pages 138{145. IEEE Computer

Society Press, 1989.

[3] L. Aceto and M. Hennessy. Adding action re�nement to a �nite process algebra. In

Proceedings of ICALP '91, Volume 510 of Lecture Notes in Computer Science, pages 506{

519, 1991.

[4] C. Alvarez, B. J., J. Gabarro, and M. Santa. Parallel complexity in the design and analysis

of concurrent systems. In Proceedings of PARLE '91, Volume 505 of the Lecture Notes in

Computer Science, pages 288{303, 1991.

[5] E. Best, R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimulations in Petri Nets.

Acta Inf., 28:231{264, 1991.

[6] G. Boudol and I. Castellani. On the semantics of concurrency: Partial orders and transition

systems. In Proceedings of TAPSOFT '87, Volume 249 of the Lecture Notes in Computer

Science, pages 123{137, 1987.

[7] S. Brookes. A Model for Communicating Systems. PhD thesis, Oxford University, 1984.

[8] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential

processes. J. ACM, 31(3):560{599, July 1984.

[9] S. D. Brookes and A. W. Roscoe. An improved failures model for communicating processes.

In Seminar on Concurrency, Volume 197 of Lecture Notes in Computer Science, pages

281{305, 1984.

[10] L. Castellano, G. De Michelis, and L. Pomello. Concurrency vs. interleaving: an instructive

example. Bulletin of the European Association of Theoretical Computer Science, 31:12{15,

1987.

[11] A. Chandra and L. Stockmeyer. Alternation. In Proceedings of the Seventeenth Annual

IEEE Symposium on Foundations of Computer Science, pages 98{108, 1976.

[12] F. Cherief and P. Schnoebelen. � -bisimulations and full abstraction for the re�nement of

actions. Information Processing Letters, 40:219{222, 1991.

151

152 BIBLIOGRAPHY

[13] R. Devillers. Maximality preserving bisimulation. Theor. Comput. Sci., 102(1):165{184,

Aug. 1992.

[14] P. Fishburn. Intransitive indi�erence with unequal indi�erence intervals. Journal of Math-

ematical Psychology, 7:144{149, 1970.

[15] U. Goltz. CCS and Petri nets. Technical report, GMD, July 1990.

[16] R. Gorrieri. Re�nement, Atomicity, and Transactions for Process Description Languages.

PhD thesis, University of Pisa, 1991.

[17] J. Groote and F. Vaandrager. An e�cient algorithm for branching bisimulation and stut-

tering equivalence. In Proceedings of ICALP '90, 1990.

[18] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. Series

on Foundations of Computing. MIT Press, 1992. 419 pp.

[19] M. C. Hennessy. Algebraic Theory of Processes. Series on Foundations of Computing. MIT

Press, 1988. 272 pp.

[20] M. C. Hennessy. Concurrent testing of processes. In Proceedings of CONCUR '92, Volume

630 of Lecture Notes in Computer Science, pages 94{107, 1992.

[21] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science. Prentice-

Hall, Inc., 1985. 256 pp.

[22] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and compu-

tation. Addison-Wesley, 1979.

[23] L. Jategaonkar and A. R. Meyer. Testing equivalence for Petri nets with action re�nement.

In Proceedings of CONCUR '92, Volume 630 of the Lecture Notes in Computer Science,

pages 17{31, 1992.

[24] L. Jategaonkar and A. R. Meyer. Deciding true concurrency equivalences on �nite safe

nets. In Proceedings of ICALP '93, Volume 700 of the Lecture Notes in Computer Science,

pages 519{531, 1993.

[25] L. Jategaonkar and A. R. Meyer. Self-synchronization of concurrent processes. In Proceed-

ings of LICS '93, pages 409{417, 1993.

[26] P. Kannelakis and S. Smolka. CCS expressions, �nite state processes, and three problems

of equivalence. Inf. Comput., 86(1):43{68, 1990.

[27] D. Kozen. On parallelism in turing machines. In Proceedings of the Seventeenth Annual

IEEE Symposium on Foundations of Computer Science, pages 89{97, 1976.

[28] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, 1991. 427 pp.

[29] A. J. Mayer and L. J. Stockmeyer. The complexity of word problems { this time with

interleaving. Technical report, IBM Research Division, Almaden Research Center, San

Jose, CA, Sept. 1992.

BIBLIOGRAPHY 153

[30] R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-Hall,

Inc., 1989.

[31] R. Milner. Action structures. Technical report, University of Edinburgh, UK, 1992.

[32] M. Nielsen, U. Engberg, and K. S. Larsen. Fully abstract models for a process language

with re�nement. In Linear Time, Branching Time, and Partial Order in Logics and Models

of Concurrency, Volume 354 of Lecture Notes in Computer Science, pages 523{548, 1988.

[33] L. Pomello. Some equivalence notions for concurrent systems: An overview. In Advances

in Petri Nets, Volume 222 of Lecture Notes in Computer Science, pages 381{400, 1985.

[34] A. Rabinovich. Checking equivalences between concurrent systems of �nite agents. In

Proceedings of ICALP '92, Volume 379 of the Lecture Series in Computer Science, pages

696{707, 1992.

[35] A. Rabinovich and B. Trakhtenbrot. Behavior structures and nets of processes. Fundamenta

Informaticae, 11(4):357{404, 1988.

[36] L. Stockmeyer, Jan. 1992. Unpublished notes.

[37] D. Taubner and W. Vogler. Step failures semantics and a complete proof system. Acta

Inf., 27(2):125{156, Nov. 1989.

[38] F. Vaandrager, 1991. Private communication.

[39] R. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and re�nement

of actions. In Proceedings of MFCS '89, Volume 379 of the Lecture Series in Computer

Science, pages 237{248, 1989.

[40] R. van Glabbeek and U. Goltz. Partial order semantics for re�nement of actions { neither

necessary nor su�cient but appropriate when used with care. Bulletin of the European

Association of Theoretical Computer Science, 38:154{163, 1989.

[41] R. van Glabbeek and U. Goltz. Re�nement of actions in causality based models. In Stepwise

Re�nement of Distributed Systems: Models, Formalisms, Correctness, Proceedings of REX

Workshop '89, Volume 430 of Lecture Notes in Computer Science, pages 267{300, 1989.

[42] R. van Glabbeek and F. Vaandrager. Petri net models for algebraic theories of concurrency.

In Proceedings of PARLE '87, Volume 259 of the Lecture Notes in Computer Science, pages

224{242, 1987.

[43] R. van Glabbeek and P. Weijland. Branching time and abstraction in bisimulation seman-

tics. Information Processing Letters, 89:613{618, 1989.

[44] W. Vogler. Bisimulation and action re�nement. In Proceedings of STACS '91, Volume 480

of the Lecture Notes in Computer Science, pages 309{321, 1991.

[45] W. Vogler. Bisimulation and action re�nement. Technical report, Technische Universit�at

M�unchen, 1991.

154 BIBLIOGRAPHY

[46] W. Vogler. Deciding history preserving bisimulation. In Proceedings of ICALP '91, Volume

510 of the Lecture Notes in Computer Science, pages 495{505, 1991.

[47] W. Vogler. Failures semantics based on interval semiwords is a congruence for re�nement.

Distributed Computing, 4:139{162, 1991.

[48] W. Vogler. Generalized om-bisimulation. Technical report, Technische Universit�at

M�unchen, 1991.

[49] W. Vogler. Is partial order semantics necessary for action re�nement? Technical report,

Technische Universit�at M�unchen, 1991.

[50] W. Vogler. Bisimulation and action re�nement. Theor. Comput. Sci., 114:173{200, 1993.

