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ABSTRACT

As the speed and complexity of computer networks evolve, sharing network

resources becomes increasingly important. Thus, the issue of how to allocate

the available bandwidth among the multitude of users needs to be addressed.

Such allocation needs to be in some sense e�cient and fair to di�erent users. In

this work the so-called maxmin fairness is chosen as the optimality criterion.

A new distributed and asynchronous algorithm is suggested. The algorithm

is shown to converge to the optimal rate allocation in a network with general

topology under dynamic changes in the set of network users, individual user

load and occasional route changes. An upper bound on convergence time

is given. The algorithm is shown to be well-behaved in transience. Unlike

previous work, the algorithm takes bandwidth consumed by feedback tra�c

into account. Further, an extension of the algorithm is suggested to address

the problem of policing misbehaved users.
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1 Introduction

This section discusses design decisions adopted in this work, describes the

existing results for the chosen model, summarizes the main results of this

work and �nally gives the brief layout of the remaining sections.

1.1 Background

There has been extensive debate in the literature about the relative merits and

drawbacks of open-loop control schemes versus closed-loop control schemes.

The large propagation delay to packet transmission time ratio in the modern

high-speed networks poses a signi�cant challenge for any end-to-end feedback

scheme [21], [24], [25]. As a result, a number of open-loop alternatives like

prior reservation and switch-based controls have been suggested.

Prior reservation schemes are generally considered to be suitable for

steady stream-like tra�c with a priori known resource requirements. Reser-

vation also provides quality of service guarantees that are di�cult to achieve

with walk-in service. The price for this, however, is the lack of exibility in the

presence of dynamic changes in the network load leading to potential waste of

precious network resources.

Switch-based controls have been shown to be necessary for achieving

fairness [27]. However, if no source-based control is exercised, the sources may

continue to inject excessive tra�c into the network, causing more overload and

wasting network resources.

The approach adopted in this work is based on the cooperation between

the sources and the network in sustaining an acceptable network load from the

standpoint of fairness and e�ciency. This approach is similar to that of [23]

and [26].

The problem of load allocation is twofold - the sources must be able
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to determine their optimal load, and the network must ensure that even if

all sources operate at their optimal rates, these rates are enforced across the

network. The mechanism of such enforcement strongly depends on the shape

of source tra�c, a particular ow control mechanism, and service discipline

of all switches in the network. There is a vast amount of work addressing

the issue of preserving feasible user rates under various assumptions on the

underlying service discipline and the shape of source tra�c. (see for example

[3], [11], [12], [14], [25]).

This thesis addresses the �rst problem, i.e. how to determine the set of

optimal rates in a distributed network under dynamic changes in the absence

of centralized knowledge about the network and without synchronization of

di�erent network components.

We consider a system in which switches maintain their own controls.

Switches communicate these controls to the source by feedback. We consider

an end-to-end feedback scheme, in which the destination generates feedback

packets which deliver the aggregate feedback signal from all switches on the

packet's route back to the source. Upon receipt of the feedback signal, the

source adjusts its load accordingly. The details of the algorithm are discussed

later in this work.

We show that the algorithm is very general in nature and is applicable

to a broad range of service disciplines and underlying tra�c shapes. This

exibility is largely due to our choice to decouple the problems of determining

the optimal rates and enforcing them.

1.2 Route Selection

It is assumed that at any time of the algorithm operation the route of each

session is unique. We allow the route to change from time to time (for example

in response to equipment failures or due to some routing decisions), but we
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disallow existence of more than one route at any given time. We assume that

the changes in the route do not occur very often, and that in the absence of

network failures the routes will eventually stabilize for a given set of network

users.

The obvious argument against this approach is that the best load al-

location for a particular choice of session routes may not be the best over all

possible route choices. However, even if session routes are unique, the prob-

lem of optimal rate allocation is non-trivial and deserves proper attention. In

addition, note that the algorithm is shown to be robust in the presence of dy-

namic route changes. Thus, it can be run in conjunction with any independent

routing algorithm which will eventually stabilize to some route. As soon as

the route is found, our algorithm will recover from any past changes and will

converge for the optimal rates for this route.

1.3 Network Model

In the real world endnodes are interconnected through a complex network of

switches. There can be many users physically located at one network node,

each of them conducting perhaps several communication sessions with other

users in the network. Some of those sessions can be bi-directional like a con-

versation, other can be uni-directional, like �le transfer.

For our purposes, we assume that all sessions are independent. More-

over, we simply treat one user conducting several sessions as several inde-

pendent users. Similarly, we treat any bi-directional data exchange as two

independent uni-directional ones.

We assume that any two connected nodes in the network are connected

by a pair of half-duplex links of identical capacity pointing in the opposite

directions. In general di�erent link pairs have di�erent capacities.

It is assumed that each enduser is connected to exactly one switch.
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Endusers are not connected directly to each other. A switch can be connected

to zero or more endusers of any type and to zero or more other switches. It

is assumed that there is a path going through one or more switches from any

source to its respective destination.

It is convenient to make a distinction between the `entry' links into

the network and all other links. The `entry' links are in essence arti�cially

created in the model to separate di�erent users located at one network node.

While capacities of all other links are real physical restrictions, capacities of

the `entry' links can be chosen as we please as long as they do not impose

additional restrictions on session ows. It will be seen later that it is convenient

to consider these capacities to be equal to the session demand. Thus we allow

these capacities to be in�nite if session demand is in�nite. Capacities of all

other links are assumed �nite.

Similarly, the model creates an arti�cial switch per endnode located

at the entry into the network. This switch has two `real' half-duplex links

connecting it to the network and 2m arti�cial half-duplex links, connecting it

to m endusers located at the real-life endnode.

1.4 Optimality Criterion

The goal of this work is to determine a fair and e�cient rate allocation . The

precise meaning of the terms `e�cient' and `fair' has been a target of extensive

debate in the last two decades. References [1], [21], [24], [8], [7] contain a

variety of approaches and de�nitions of fairness and e�ciency.

The approach adopted in this work chooses the so-called maxmin or

bottleneck optimality criterion discussed in various modi�cations in [1], [12],

[17], [23], [26].

This approach is based on the following intuition.

Consider a network with given link capacities, the set of sessions and
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�xed session routes. We are interested in such rate allocations that are feasible

in the sense that the total throughput of all sessions crossing any link does

not exceed the link's capacity. We would like the feasible rate allocation to be

fair to all sessions. On the other hand we want the network to be utilized as

much as possible.

We now de�ne a fair allocation in the following way. We consider all

\bottleneck" links, i.e the link with the smallest capacity available per session.

We give a strict de�nition of it in section 2. We share the capacity of these

links equally between all sessions crossing them. Then we remove these sessions

from the network and reduce all link capacities by the bandwidth consumed

by the removed sessions. We now identify the \next level" bottleneck links

of the reduced network and repeat the procedure. We thus continue until all

sessions are assigned their rates.

Such rate vector is known as maxmin fair allocation. The above global

synchronized procedure for achieving maxmin optimal rates is well known and

is described for instance in [1], [23].

It can be easily seen that the rate allocation obtained in such a way

is fair in the sense that all sessions constrained by a particular bottleneck get

an equal share of this bottleneck capacity. It is also e�cient in the sense that

given the fair allocation, no more data can be pushed through the network,

since each session crosses at least one fully saturated link.

Assuming that packets are in�nitely small and the ows are determin-

istic, it can be seen that maxmin fairness implies maximum e�ciency in the

sense that the bottleneck resource is utilized up to its capacity and no queues

build up.

It is well known, however, that for packets of �nite size and the general

distribution of packet arrival and service times utilizing the link to its full

capacity leads to in�nite queue growth and causes severe performance degra-
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dation. Thus, for general distribution of arrival and service times utilizing the

bottleneck to its full capacity is not good for e�ciency. Thus, in this case a

di�erent e�ciency criterion is called for.

Reference [26] introduces the optimal e�ciency criterion for a general

network con�guration as the maximum power of the bottleneck resource, where

Resource Power = Bottleneck Resource Throughput

Bottleneck Resource Response T ime

The resource capacity at which the power is maximized is called the knee

capacity. In general, the knee capacity depends on the particular distribution

of the packet arrival times and service discipline.

However, if the knee capacity is known, then applying the global pro-

cedure for determining maxmin fair rates described above to the network with

the knee capacities replacing the original capacities, we can obtain the rate

allocation which is fair in the sense that the bottleneck resources are still

shared equally among their users and e�cient in the sense that the bottleneck

resource power is maximized.

In summary, provided the knee capacities are known, we can use maxmin

optimality on the network with knee capacities for both e�ciency and fairness.

In practice, the knee capacities are not known a priori. As a result,

either an a priori estimate is required, or an independent algorithm for con-

gestion detection must operate in parallel to provide this estimate \on the

y"[26]. Another approach might be to combine the two by choosing some

conservative estimate of the knee capacity and then attempt to adjust it if the

link detects that it is constantly underutilized.

For the purposes of this work we assume that the knee capacities are

known. Moreover, we will use the word \capacity" to mean the \knee capacity"

unless otherwise indicated.
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1.5 Service Discipline

The only assumption we make about the service discipline employed by the

switch is that the packets of each session are served in FIFO order. Thus, the

switches could be strict FIFO, FIFO+, Priority, Stop-and-Go, Fair-Queuing,

etc. We emphasize that the reason for such exibility is that the algorithm

presented in this work is a calculation algorithm and is not concerned with

enforcement of the rates. Such enforcement is strongly dependent on the

service discipline.

In addition, we allow the switches to drop packets as they please, as

long as at least some packets of each session continue to get through. While

dropping packets can cause a lot of wasteful retransmissions, it is essential to

note that our algorithm will still calculate correct optimal rates even in the

presence of heavy packet loss. This property seems very important, since it

means that the algorithm is robust in the presence of data loss due to heavy

temporary congestion.

1.6 Previous Work and Summary of Results

The procedure for achieving maxmin optimal rates described earlier used

global information, which is expensive and di�cult to maintain in the real-

world networks.

Several feedback schemes have been proposed to achieve the same goal

in a distributed network. In essence, all these schemes maintain some link

controls at the switch level and convey some information about these controls

to the source by means of feedback. Upon receipt of the feedback signal the

source adjusts its estimate of the allowed transmission rate according to some

rule.

These algorithms essentially di�er in the particular choices of link con-

trols and the type of feedback provided to the source by the network.
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References [6], [15], [17] describe distributed algorithms of this type.

However, these algorithms required synchronization, which is di�cult to achieve.

Mosley in [23] suggested an asynchronous algorithm for distributed

calculation of maxmin fair rates. The algorithm was shown to converge to

maxmin optimal rates. However, the algorithm convergence time was rather

slow and simulations showed poor adaptation to dynamic changes in the net-

work.

Later Ramakrishnan, Jain and Chiu in [26] suggested a distributed

asynchronous algorithm for achieving maxmin optimal rates which uses a dif-

ferent type of feedback. The switches still calculate fair rate allocation for all

sessions crossing its outgoing links, but this allocation is not explicitly com-

municated to the source. Instead, a bit is set in the packet's header if its

current ow across the link exceeds the current value of the link's fair alloca-

tion. When the source receives packets with the bit set, it decreases its rate,

otherwise it increases it. The algorithm has an attractive property of using

just one bit in the packet header for feedback. It has been extensively tested

in a variety of real-life network con�gurations and have been demonstrated

to be fair and e�cient even under dynamic network changes. However, while

the simulation results are extremely favorable, no theoretical guarantees on

the algorithm convergence to an optimal operating point in a general network

topology are available. Moreover, since the optimal rates are not provided to

the sources, the algorithm produces oscillations around the optimal rate and

it may take a long time to get close to the optimal solution.

The approach adopted in this work requires explicit calculation of the

optimal rates. It de�nes a family of link control calculation policies and a

feedback mechanism which ensure convergence to maxmin optimal rates from

any initial conditions. An algorithm employing any of these policies is shown

to be self-stabilizing in the sense that it recovers from any past errors, changes
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in the set of network users, individual session demands, and session routes.

It is demonstrated that convergence of the algorithm is generally faster

than that of the algorithms describe earlier in this section. An upper bound

on convergence time is provided.

In addition, it is shown that the algorithm is 'well-behaved' in tran-

sience. In particular, it is shown that given an upper bound on round-trip

delay, the actual transmission rates can be kept feasible throughout the tran-

sient stages of algorithm operation while still providing reasonable throughput

to all users.

These qualities are extremely important in a dynamic network where

changes in user load caused by newly arrived sessions can cause infeasibility

which must be quickly taken care of to avoid large queue buildup and perfor-

mance degradation.

We also suggest a mechanism for policing misbehaved users.

In addition, unlike previous work, we take into account the bandwidth

consumed by feedback tra�c.

Simulation results demonstrate that the algorithm works well under

dynamic changes in the network load.

1.7 Outline

Section 2 contains the formal de�nition of the optimality criterion and pro-

vides a global procedure for determining optimal rates in the presense of real

feedback tra�c.

Section 3 contains the description of the distributed algorithm.

Section 4 gives the convergence theorem.

Section 5 discusses the transient behavior of the algorithm and provides

an upper bound on convergence time.

Section 6 gives the results of several simulation experiments.
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Section 7 contains a discussion on some of related issues and suggests

an extension of the algorithm to policing misbehaved users.

Section 8 summarizes the results and gives some suggestions for future

research.

2 Optimality Criterion

2.1 De�nition of the MAXMIN Optimum

It seems natural to consider only static rate allocations for possible candidates

for an optimal allocation. Once such optimal allocation is de�ned, our goal

can be formulated as �nding an algorithm to dynamically control an arbitrary

rate allocation to bring it as close to the static optimum as possible.

We start with de�ning a feasible set of rate allocations � as follows:

�i � 0 (1)

X
i2Gj

(ui;j + kwi;j)�i � Cj (2)

where �i is transmission rate of session i, ui;j = 1 if session i crosses j

on its forward route and 0 otherwise, and wi;j = 1 if session i crosses j on its

feedback route and 0 otherwise, and Gj is the set of all sessions crossing link

j.

(1) simply states that we are not interested in negative transmission

rates, while (2) ensures that a rate allocation is such that no link capacity is

exceeded.

Now we can de�ne the optimality criterion on this feasible set as follows.

We need the following de�nition �rst.
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De�nition 2.1 Consider vector a = (a1; : : : ; an). Let â = (â1; : : : ; ân) be a

permutation of a such that âi � âj if i < j. Vector b is said to be lexicogra�-

cally greater that a if either â1 < b̂1 or 9 1 � j � n s.t. âi = b̂i 8 1 � i < j

and âi < b̂i

Now we de�ne the maxmin optimal vector of transmission rates by

De�nition 2.2 Vector � = (�1; : : : ; �S) is called maxmin optimal for network

N if

� it satis�es restrictions (1) and (2)

� it is lexicogra�cally greater than any other feasible solution of (1) and

(2)

It can easily be seen that this de�nition in fact means that the opti-

mal vector is such that its smallest component is maximized over all feasible

vectors, then, given the value of the smallest component, the next smallest

component is maximized, etc.

The next section describes a global procedure to obtain maxmin optimal

rates for a network with feedback tra�c.

2.2 Finding Globally Optimal Rates

In this section we give a way to �nd the stationary optimal vector � given

global information about the network. The results here are quite similar to

those given in [1], [23], [15], [26]. However, this work considers a somewhat

di�erent model than the cited authors, since our model accounts for the band-

width consumed by feedback ows. Note that it is not clear a priori whether

it is legitimate to treat feedback sessions in the same way as independent

forward sessions, since their rates cannot be chosen independently from their

corresponding forward sessions.
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For the sake of simplicity we consider the case of \greedy" sessions, i.e.

sessions with in�nitely large demands. Note however, that the case of �nite

demands can be reduced to the \greedy" case by simply adding arti�cial links

of capacity equal to the session demand at the entry of each session to the

network.

We start with the following de�nition.

De�nition 2.3 Link l is called bottleneck with respect to network

N (L;S) if Cl

fl+kbl
= minj2L

Cj

fj+kbj

Note that this is slightly di�erent from the traditional de�nition of a

bottleneck link. In our de�nition, we allocate a link's capacity between sessions

(forward and feedback) sharing this link in such a way that each session is

allocated Cl

fl+kbl
on its forward way.

Optimal stationary rates can now be found by the following procedure.

We �nd all bottlenecks link of the network and set the transmission

rates of all the sessions crossing these links in either direction to Cl

fl+kbl
and

mark those sessions. Then we decrease capacities of all links by the total

capacity consumed by the marked sessions crossing these links on their forward

or feedback paths. We consider a reduced network with all link capacities

adjusted as above and with marked sessions removed. We repeat the procedure

until all sessions are marked.

This procedure can be formalized as follows.

PROCEDURE GLOBAL OPTIMUM

Given network N (L;S)

START:
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Denote:

L̂1 - set of all links l 2 L s.t. at least one session of S crosses l

on its forward of feedback path

L1 - set of all links l 2 L̂1 s.t.
Cl

fl+kbl
= minj2L̂1

Cj

fj+kbj

�1 =
Cj

fj+kbj
for any j 2 L1

S1 - set of sessions crossing at least one link L1

f 1l - number of sessions of S1 crossing link l on forward path

b1l - number of sessions of S1 crossing link l on feedback path

ITERATION i :

Given:

S1; : : : ;Si�1,

L1; : : : ;Li�1

b1l ; : : : ; b
i�1
l

f 1l ; : : : ; f
i�1
l

�1; : : : ; �i�1

De�ne :

~Si�1 = S1 [ : : : [ Si�1,

~Li�1 = L1 [ : : : [ Li�1,

L̂i set of all links l 2 L n ~Li�1 s.t. at least one session of S n ~Si�1 crosses

this link on its forward or feedback path
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Li - set of all links l 2 L̂i s.t.

Cl�
P

i�1

j=1
�j(f

j

l
+kb

j

l
)

fl+kbl�
P

i�1

j=1
(f

j

l
+kb

j

l
)
= minq2L̂i

Cq�
P

i�1

j=1
�j(f

j

q+kb
j

q)

fq+kbq�
P

i�1

j=1
(f

j

q+kb
j

q)

Si - set of sessions of S n ~Si�1 crossing at least one link on Li

�i =
Cl�
P

i�1

j=1
�j(f

j

l
+kb

j

l
)

fl+kbl�
P

i�1

j=1
(f

j

l
+kb

j

l
)
8l 2 Li

~Si = Si [ ~Si�1

~Li = Li [ ~Li�1

f il - number of sessions of Si crossing link l on forward path.

bil - number of sessions of Si crossing link l on feedback path.

If S = ~Si , then STOP

Else perform iteration i+ 1

END of GLOBAL OPTIMUM

Theorem 2.1 1. Procedure Global Optimum terminates in a �nite number

of iterations.

2. When the procedure terminates, all sessions are assigned their globally

optimal rates.

3. Let �i be the optimal rates assigned at iteration i. Then �1 < : : : < �m

4. Let Li, Si and �i be the set of bottleneck links of the reduced network

of iteration i and sessions crossing these links respectively. Then any

session in Si crosses at least one link in Li

5. Only sessions from S1 [ : : : [ Si go through any link in Li 8 1 � i � m
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6. 8 1 � i � m

�i

8>>><
>>>:

=
Cl�
P

i�1

j=1
�j(f

j

l
+kb

j

l
)

fl+kbl�
P

i�1

j=1
(f

j

l
+kb

j

l
)

if l 2 Li

<
Cl�
P

i�1

j=1
�j(f

j

l
+kb

j

l
)

fl+kbl�
P

i�1

j=1
(f

j

l
+kb

j

l
)

if l 2 L̂i

where L̂i is the set of sessions in L n L1 [ : : : [ Li s.t. least one session

of S n S1 [ : : : [ Si crosses l.

The proof of this theorem is given in Appendix 2.

3 Distributed Algorithm

3.1 Assumptions and Goals

Section 2.2 provided a way to determine the optimal rates of a �xed �xed

set of sessions using the global knowledge of the network. In addition, the

global algorithm described there required synchronization of stages in which

the optimal rates were assigned.

This section presents an algorithm to achieve the same goal in a dis-

tributed asynchronous way.

We start with a few words about the assumptions of the model and the

goals of the distributed algorithm.

We now allow sessions to exit or enter as they please. However, to make

the notion of optimal rates meaningful, we must assume that the sessions enter

or exit not too often, in the sense that there is an extended period of time in

which the set of sessions in the network is �xed. Then for this period we can

de�ne optimal rates as in section 2.

Thus, we allow the sessions to go through a period of instability in

which some sessions can enter and exit, and then to stabilize to some �xed

set for an extended period of time. We want the algorithm to stabilize to

the optimal transmission rates for this set. Once the network has reached its
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current optimal state, we want it to remain there until new sessions enter or

old sessions exit. If some sessions exit or enter, the optimal rates over the new

set change as well. We want the algorithm to stabilize to the new optimal

rates. If the set of network users changes much slower than the time required

for the algorithm to converge, then the network will spend most of the time

in a currently optimal state.

3.2 High-Level Description

The essential idea of the algorithm is to emulate the iterations of Procedure

Global Optimum in a distributed asynchronous way.

To achieve this we let all packets carry an estimate of the bandwidth

available for the session. This estimate will be referred to as the packet's

`stamped rate'. We stress here that in fact the algorithm does not require

that every packet carries the stamped rate. We use this assumption only for

simplicity. It will become clear that special control packets can be used to

carry the stamped rate, or only a fraction of data packets can be used for this

purpose.

We let each link maintain its current estimate of the fair share of its

own capacity, referred to as the link's `advertized rate'.

Originally the source sets the packet's stamped rate to some arbitrary

initial value. As the packet travels through the network, its stamped rate is

reset to the smallest of the packet's initial rate and the smallest of advertized

rates of all links on the packet's round-trip route.

When a feedback packet returns to the source, the source adjusts its

transmission rate according to the stamped rate of the feedback packet.

Each link maintains a list of its users. It adds a session to this list when

the �rst packet of a new session is received. It deletes a session from the list

when it determines that a session has exited. We do not address the issue of
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exactly how this determination is done. One could de�ne a timeout value, or

let the sessions send a special \last" packet. For the purposes of this work,

however, we ignore any details or issues associated with any such choice, and

simply assume that there is some way a switch can recognize the fact that the

session is no longer active.

For each user the link stores its last seen stamped rate. It will be

referred to as the `recorded rate' of the session at the link.

The link sets a bit in the session's entry if a packet of that session is

received with stamped rate below or equal to the current advertized rate of

the link. We say that a session with this bit set at some link is marked at the

link.

The link then calculates its advertized rate as

C � ~C

f + kb� ~f � k~b
(3)

where ~C is capacity used by last seen stamped rates of the sessions marked at

this link; f; b; ~f;~b are the number of total and marked forward and feedback

sessions at the link respectively.

It is essential that the set of marked sessions at any time must satisfy

the following conditions:

1. If any session is marked, its recorded rate is less than or equal to the

advertized rate of the link.

2. Advertized rate is calculated according to (3).

The above conditions will be referred to as M-consistency, for \mark-

ing" consistency.

If at any time a session violates M-consistency, it must be immediately

unmarked and the advertized rate must be recalculated. It turns out that M-

consistency is central to ensure convergence of the algorithm to optimal values
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from any initial conditions. We will discuss M-consistency in more detail later

in this work.

Finally note that is possible that if the source's idea of a session's rate is

below the advertized rates of all sessions in the sessions route, and the session's

demand is not satis�ed, \obeying" the stamped rate received in the feedback

packet would cause the session to operate below its optimal rate. To avoid this

condition, an extra bit in the packet header is used. The bit will be referred to

as the \u-bit". A \greedy" session, (i.e. a session whose demand is in�nite or

unknown), set's the u-bit to 0 on all of its packets. A \conservative' session,

whose demand is known and �nite, sets the u-bit of all its outgoing packets

to 1.If the packet's stamped rate is above or equal to the advertized rate of

a link in the packet's route, the link sets the u-bit to 1. Hence, if a feedback

packet returns with u-bit set to 0, it means that advertized rate of all links

was higher than the stamped rate of the packet. In this case the source ignores

the received stamped rate and resets its idea of allowed rate to its demand.

There is no synchronization between operation of di�erent network

components The next section contains a formal description of the algorithm.

3.3 Algorithm Description

This section describes the data structures and operation of network compo-

nents. Where appropriate, `pidgin C' code is used to describe component op-

eration. The code is not intended to be e�cient and is sometimes redundant

for the sake of clarity of the underlying ideas.

3.3.1 Data Structures

Packet p :

up `u-bit' used to indicate that the session's rate can be increased
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�p packet's stamped rate

tp packet's type (forward or feedback)

Source s :

�s stamped rate of the last feedback packet received

us bit indicating whether or not to set the u-bit of outgoing packets

ds demand of the session

Destination d :

�d stamped rate of the last forward packet received

ud `u-bit' of the last forward packet received

countd used for counting the number of unacknowledged forward pack-

ets

Link l :

Cl Capacity of the link

fl Number of forward sessions known at the link

bl Number of feedback sessions known at the link

Gl Set of sessions known at the link

For any session i 2 Gl :

ali - bit used to mark the session at the link

�li - is equal to 1 if the session is forward and to k if it is feedback

(Note that k is a universal constant across the network)

�li - recorded rate of the session

�l - advertised rate of the link, calculated as
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�l =

8>>>>><
>>>>>:

Cl if fl + kbl = 0

Cl �
P

j2Gl
�lj�

l
ja

l
j +maxi2Gl �

l
i if fl + kbl =

P
j2Gl

�lja
l
j

Cl�
P

j2G
l

�l
j
�l
j
al
j

fl+kbl�
P

j2G
l

�l
j
al
j

otherwise

(4)

3.3.2 Source Operation

source initialize(source s) f

/* called at initialization time */

if (demand not known) set ds =1, us = 0

�s = ds

if (ds <1)

us = 1;

else

us = 0;

g

source receive packet(source s, packet p) f

/* called upon receipt of a feedback packet */

if (�p > ds) f /* must be that demand has decreased */

�s = DS;

us = 1;

g

else if (up == 0) f
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�s = DS;

if (DS <1) us = 1;

else us = 0;

g

else f

/* Packet passed at least one link whose advertized rate

/* was equal to the packet's current stamped rate,

/* so obey this rate

�s = �p;

us = 0;

g

g

source generate packet(source s, packet p)f

create new packet p

�p = �s

up = us

add p to the outgoing link's output queue

g

3.3.3 Destination Operation

destination initialize(destination d)f

countd = 0

�d = 0; ud = 0;

g
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destination receive packet(destination d, packet p)f

/* called upon receipt of a forward packet */

countd = countd + 1

/* setparameters for the feedback packet as seen in the

/* last of the k packets to be acknowledged

if (countd == k) f

�d = �p; ud = up;

countd = 0;

create new feedback packet p

�p = �d; up = ud

send p

g

g

3.3.4 Switch Operation

As soon as a packet arrives to an input link of a switch, it is added to the end

of the output queue of the appropriate outgoing link. If several packets are

received simultaneously from di�erent input links, they are processed in some

random order.

3.3.5 Output Link Operation

link initialize(link l) f

fl = 0; bl = 0; Gl = ;
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�l = Cl

g

link action(link l, packet p)f

/* called when packet p is at the head of the link's output queue */

if any session exited

call link update session exit(link l, session s)

if (ip 62 Gl) /* packet belongs to a new session */

call link update new session(link l, packet p)

else /* packet belongs to a session already seen at the link */

call link update known session(link l, packet p)

transmit packet p

g

link update session exit(link l) f

/* update the list of known sessions */

if packet of forward session

fl = fl � 1

else /* feedback session */

bl = bl � 1

Gl = Gl n fig

/* recalculate advertized rate �l with updated information */

�l = calculate adv rate(l);

g

link update new session(link l, packet p) f
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/* update the list of known sessions */

Gl = Gl [ fipg

�li = tp + k(1� tp)

fl = fl + tp

bl = bl + (1� tp)

/* do not mark the new session */

alip = 0;

/* note that we do not need to set the recorded rate of the

/* new session at this time since unmarked session's recorded rate

/* is not used in calculation of advertized rate

�l = calculate adv rate(l)

if (�p � �l) f

�p = �l;

up = 1;

g

/* record the new rate now */

�ilp = �p;

g

link update known session(link l, packet p) f

if (�p � �l) f

�p = �l;
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up = 1;

g

if (�p � �l)

alip = 1;

�lip = �p;

�l = calculate adv rate(l);

calculate adv rate(link l)

f

/* �rst calculate advertized rate with given set of marked sessions */

RATE CALCULATION: f

if (fl + kbl) == 0

�l = Cl

if (fl + kbl ==
P

j2Gl
�lja

l
j)

�l = Cl �
P

j2Gl
�lj�

l
ja

l
j +maxi2Gl �

l
i

else

�l =
Cl�
P

j2G
l

�l
j
�l
j
al
j

fl+kbl�
P

j2G
l

�l
j
al
j

g

unmark any session whose recorded rate is above the calculated advertized rate

repeat RATE CALCULATION once more and return

g
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4 Convergence Theorem

In section 3.2 we introduced the notion of M-consistent calculation of the

advertized rate of the link. Essentially, M-consistency means that once the

advertized rate is calculated with some set of marked sessions, no session

remains marked with recorded rate exceeding the advertized rate. Function

calculate adv rate() in the algorithm description provides a possible way to

perform M-consistent calculation. Note that the result of the M-consistent

calculation is not only the advertized rate but also the set of \marked" sessions.

Lemma 4.1 below proves that the result of this function is in fact M-consistent.

Convergence theorem given later in this section proves that given any M-

consistent advertized rate calculation the algorithm described in the previous

section will converge to the optimal rate vector if started from arbitrary initial

conditions. Thus, function calculate adv rate() can be treated as a \black

box" and can be replaced by any other function providing M-consistent result.

Thus in essence, Convergence Theorem 4.1 proves convergence of a family of

algorithms with M-consistent link control calculation. We will return to the

issue of M-consistency in section 7, where will will also give another example

of M-consistent calculation.

Lemma 4.1 After any link state update the advertized rate of the link and the

marking of the sessions known at that link are M-consistent.

Proof of Lemma 4.1. Consider any link update. Let Y be the set

of sessions marked at the beginning of this update. Let �1 be the result of

the �rst advertized rate calculation in function calculate adv rate(). Let Z

denote the set of sessions which happen to be marked with stamped rates

greater that �1. By operation of function calculate adv rate() all sessions in

Z will be unmarked. Then, if not all sessions are marked, the �nal advertized

rate � returned by function calculate adv rate() is calculated as
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� =
C �

P
i2YnZ �i�i

f + kb�
P

i2YnZ �i
=

C �
P

i2Y �i�i +
P

i2Z �i�i

f + kb�
P

i2Y �i +
P

i2Z �i
�

�
C �

P
i2Y �i�i + �1

P
i2Z �i

f + kb�
P

i2Y �i +
P

i2Z �i
= �1

The last equality can be easily checked. Since all sessions which remain

marked after the second advertized rate calculation in calculate adv rate()

have recorded rates below or equal to �1, the statement of the lemma follows.

If all sessions are marked, the statement of the lemma trivially holds, since

by (4) advertized rate is greater or equal to the maximum recorded rate of its

sessions.

Theorem 4.1 Given arbitrary initial conditions on the states of all links in

the network, states of all sources, destinations and arbitrary number of packets

in transit with arbitrary control information written on them, the algorithm

given in section 3 converges to the optimal rates as long as the set of sessions,

their demands and routes eventually stabilize.

Note that essentially any change in route or demand of the session is

equivalent to an old session exiting and a new session entering. Thus, without

loss of generality, the proof will be given under the assumption that demands

and routes are �xed, but sessions are allowed to enter or exit, as long as

eventually the set of sessions stabilizes. We give the proof for the case of

in�nite user demand. This does not cause any loss of generality, since as it has

been already mentioned, the case of �nite demands is reduced to this case by

adding arti�cial links with capacities equal to session demands at the entry to

the network.

The proof of this theorem is based on the following 4 lemmae.
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Lemma 4.2 After the set of sessions stabilizes at some time t0 and all these

sessions have become known at all links in the network,

�l(t) �
Cl

fl(t) + kbl(t)

for all links l for all times t � t0. Here fl and bl are the number of forward

and feedback sessions crossing link l respectively.

Proof of Lemma 4.2

In what follows the link index l and the time argument t is omitted.

Consider the time of any state update of link l after t0. By Lemma

4.1 the result of any link update is M-consistent, so any marked session i has

recorded rate �i � �. Let Y denote the set of indices j s.t. aj = 1, (i.e. the

set of marked sessions). Then, for the case when not all sessions are marked,

by M-consistency

� =
C �

P
j2Y �j�j

f + kb�
P

j2Y �j
�

C � �
P

j2Y �j

f + kb�
P

j2Y �j

Hence, � � C
f+kb

.

If all sessions are marked, two cases are possible. If maxi2G�i �
C

f+kb
,

then by M-consistency � � maxi2G�i �
C

f+kb
, where G is the set of all sessions

crossing the link, and the statement of the lemma holds.

If all �i <
C

f+kb
, then by (4) and by M-consistency � = max �i + C �

P
i2G �i�i � C � �

P
i2G �i = C � �(f + kb) and the statement of the lemma

follows.

Lemma 4.3 Let �i denote the optimal rate of sessions in Si, where Si is the

set of sessions whose optimal rates were assigned at iteration i of Procedure

Global Optimum, and Li - the set of bottleneck links of this iteration. Let t0,

fl, bl be as in Lemma 4.1. Then for any t > t0 it must be that

�l(t) > �1 8 l 2 L n L1

�l(t) � �1 8 l 2 L1
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Proof of Lemma 4.3

By Lemma 4.2 �l �
Cl

fl(t)+kbl(t)
� Cl

fl+kbl

By Theorem 2.1 �1 =
Cl

fl+kbl
if l 2 L1 and

�1 <
Cl

fl+kbl
if l 2 L n L1.

This should be obvious since �1 is the capacity per session of a �rst-level

bottleneck link, which by de�nition must be smaller than Cl

fl+kbl
of any other

link.

The statement of this lemma immediately follows.

The next Lemma states that there exists some time, after which all

sessions in S1 will have reached their optimal rate �1 and will be marked with

this optimal rate at all links on their routes.

Lemma 4.4 Let �i; Si; Li be as in Lemma 4.3. Then 9 T1 � 0 s:t: 8 t � T1

1. �pi > �1 for any packet p of session i 2 S n S1.

2. �li > �1 for any session i 2 S n S1 and link l in the route of i or its

feedback.

3. �l = �1 for any session l 2 L1

4. �sj = �1 for the source s of any session j 2 S1

5. �sj > �1 for the source of any session j 2 S n S1

6. �pi = �1 for any packet p of session i 2 S1

7. ali = 1; �li = �1 for all sessions i 2 S1 and all links l in the route of i

or its feedback.

Argument t is omitted here.

The proof of this Lemma is given in the Appendix 3.
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The result of this lemma will now be used as the base case for induction

on the index i of Si. Note that this lemma states that not only the sessions in

S1 have reached their optimal rates, but this rates will never change and the

sessions will be marked at all links in their routes ever after (as long as the set

of sessions remains the same).

The inductive step is given the by following Lemma:

Lemma 4.5 (Inductive Step). Suppose for some 1 � i < m

9 ti � 0 s:t: 8 t � ti

1. �l = �j for any link l 2 Lj; 1 � j � i

2. �sj = �i for the source s of any session j 2 Sj; 1 � j � i

3. �sj > �j for the source s of any session j 2 S n (S1 [ : : : [ Si)

4. �pk = �j for any packet p of session k 2 Sj; 1 � j � i

5. alk = 1; �lk = �j for all sessions k 2 Sj 1 � j � i and all links l in the

route of k or its feedback

6. �pj > �i for any packet p of session j 2 S n (S1 [ : : : [ Si).

7. �lj > �i for any session j 2 S n (S1 [ : : : [ Si) and link l in the route of i

or its feedback.

Then 9 ti+1 � 0 s:t: 8 t � ti+1 such that conditions 1-7 hold for i + 1.

It is assumed that the set of sessions has stabilized by time ti.

Proof of Lemma 4.5.

By inductive hypothesis all sessions in Sj; 1 � j � i have reached

their optimal rates �j and these rates do not change as long as the set of

sessions remains unchanged. Moreover, by inductive hypothesis any session in

Sj; 1 � j � i is marked with its optimal rate �j at any link on its way for all
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times t > tm. Therefore, capacity of any link l in the network available for all

sessions in S n ~S, where ~Si = (S1 [ : : : [ Si), is ~Cl = Cl �
P

j2 ~Si crossing l
�j�j

8 t > tm.

Consider a reduced network with links Ln ~Li ,where ~L1 = (L1[: : :[Li),

sessions S n ~S, and link capacities ~Cl = Cl �
P

j2 ~Si crossing l
�j�j. Note that it

is legitimate to consider the reduced network precisely because by inductive

hypothesis all sessions in S1[; : : : ;[Si have stabilized at their optimal rates

and are forever marked at all links with their optimal recorded rates.

Denote ~fl = fl �
Pi

j=1 f
l
j and

~bl = bl �
Pi

j=1 b
l
j

Note that by Theorem 2.1 �i+1 =
~Cl

~fl+k~bl
for all l 2 Li+1 and

�i+1 <
~Cl

~fl+k~bl
for all l 2 L n ~Li+1

Now the argument of Lemma 4.3 can be repeated for the reduced net-

work to show that �l � �i+1 8 l 2 Li+1 and �l > �i+1 8 l 2 L n ~Li+1

Then repeating the proof of Lemma 4.4 for the reduced network we

show that all the statements of Lemma 4.5 hold.

The statement of Theorem 4.1 follows by induction.

It is important to emphasize the role of M-consistent link control cal-

culation in the proof. The fact that after any link state update there were no

marked sessions with recorded rates above the newly calculated link control

value ensured that the link control was eventually increased to allow sessions

with higher rates regain capacity unused by sessions with lower rates.

5 Transient Behavior

There are several important implications of the proof of Theorem 2.1.

Note that the algorithm ensures that the optimal rates of sessions ia

assigned in stages analogous to the stages of Procedure Global Optimum de-

scribed in section 2.2. Lemmae 4.4 and 4.5 provide the framework for obtaining
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a worst case bound on the number of round-trips required for convergence. In

particular, these lemmae imply that provided no new changes occur in the

network,

� eventually all sessions of S1 get their optimal rates

� once all sessions of S1[; : : : ;[Si get their optimal rates set, these rates

are not going to change

� once all sessions of S1[; : : : ;[Si get their optimal rates set, sessions in

Si+1 will eventually get their optimal rates.

It follows from the proof of Lemmae 4.4 and 4.5 that the time re-

quired for all sessions of Si+1 to obtain their optimal rates after all sessions

in S1[; : : : ;[Si obtain their optimal rates is at most the time needed by any

session to complete 4 round-trips (See the comment at the end of the proof

of Lemma 4.4 in Appendix 3). Suppose now that the round-trip delay for is

bounded by some D. Then the following upper bound holds:

Proposition 5.1 Given an upper bound D on round-trip delay and the num-

ber N of iterations of the global procedure, the upper bound on the algorithm

convergence time from any initial conditions is given by 4ND.

Note that the number of iterations of the global procedure is exactly

equal to the number of di�erent rates in the optimal rate vector.

It can also be easily seen that if the network operates at the optimum

and then a new session comes in or exits, it takes at most 4D(N �M) for

the algorithm to converge to a new set of optimal rates. Here N is again

the number of iterations of the global procedure for the new set, and M is the

\seniority" of the session, i.e. the index of the iteration of the global procedure

at which the optimal rate of this session is assigned. This is simply because by
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operation of the algorithm sessions of lower optimal rates will not be a�ected

by the newly arrived or departed session.

A few words are due about this bound.

First this bound gives the theoretical worst-case guarantee. In practice,

convergence time should be expected to be signi�cantly better. In fact, in our

simulations we were not able to produce convergence worse than 2N round-

trips. However, this result is tight in the sense that it is possible to create a

very unfortunate sequence of packet transmissions to attain this bound.

Second, the convergence time measured in round-trips does not give a

good insight into the actual convergence time measured in real time units if

the time of round-trip delay D is not satisfactory bounded. Given a feasible

set of transmission rates, a network con�guration, a particular underlying

service discipline, and the source's tra�c shaping mechanism, we could hope

to be able to obtain such bound either from experiment or from theoretical

analysis. References [25], [11] provide such upper bounds for particular service

disciplines and source tra�c shapes. Note also that for feasible constant-rate

smooth ows of in�nitely small packets D is simply the network propagation

delay.

However, unless special measures are taken, the transient infeasibility

of transmission rates can cause signi�cant queue growth, and, as a result,

can signi�cantly increase the upper bound on D and slow convergence of the

algorithm (as measured in real time rather than the number of round-trips).

Thus it would be very important to ensure that the algorithm produces a

feasible transmission vector as early as possible.

To get some intuition on this, consider a synchronized implementation

of the algorithm in which all sessions start simultaneously and each link up-

dates its state when it has received information from all of its users. Suppose

that all sessions are known at all links. Then it can be easily seen that after a
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link updates all of its sessions (on their very �rst pass), and possibly resets the

stamped rates of the packets, the sum of all stamped rates on output does not

exceed the capacity of that particular link. Thus, in such synchronized version

when all packets return to their sources, the resulting vector of stamped rates

will be feasible. This feasibility will continue to hold if we look at the stamped

rate as it is received in the incoming feedback packet rather than as it is set in

the outgoing packets. ( Note that the vector of stamped rates of the outgoing

packets may not and will not be feasible if a source detects that it needs to

increase its rate upon receiving a packet with u-bit set to zero. In this case

the stamped rate of the outgoing packet will be set to potentially very large

value of the session's demand).

Hence, in the synchronized implementation we could preserve the fea-

sibility of the actual rate vector by simply setting the actual rate to the newly

received stamped rate if the u-bit is set to 1 and preserving the old actual

rate otherwise. If in addition we choose initial transmission rates conserva-

tively to ensure initial feasibility, we would ensure feasibility of the algorithm

in transience. Clearly, as soon as the stamped rates converge to their optimal

values, this policy will reset the actual rates to the optimal values at most one

round-trip later.

However, in an asynchronous implementation this policy will not nec-

essarily ensure feasibility. This can be seen by observing that a faster session

can increase its actual transmission rate before slower sessions realize that they

need to decrease theirs. We have not rigorously proved, but we believe that

the heuristic described below will resolve this problem. The key point is that

the actual transmission rate does not have to be adjusted at the same time

as the stamped rate, since the stamped rate calculation is completely decou-

pled from the underlying tra�c. Suppose the value of D for the uncongested

network is available. Then,
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� if the actual transmission rate needs to be decreased according to the

\synchronized" policy described above, decrease it immediately

� if the actual transmission rate needs to be increased, according to the

\syncronized" policy wait for 2D before increasing it.

The rationale for this policy is that decreasing the rate cannot possibly

violate feasibility, while increasing it can, if the other sessions are not yet

aware of the increase. Since the stamped as opposed to the actual rate is

in fact increased according to the original algorithm, on the next round-trip

the new rate increase will be known at all links, so the other sessions will be

noti�ed about this change no later than on their next round-trip after that.

The results of our simulation in fact suggest that such policy may be too

conservative. In the experiments described in the next section we were unable

to produce infeasibility for more than one round-trip after a new session entered

the network even without implementing the above policy. More investigation

on this issue is called for.

It should be also noted that one round-trip after all sessions become

known at all links, any session's stamped rate is at least as large as the min-

imum of its demand and the equal share of the capacity of the bottleneck

session for this link. Note that while this may be less than the optimal rate

of this session, this bound ensures that all sessions are guaranteed reasonable

throughput even before the optimal rates are obtained.

The above considerations in combination with the simulation results

presented in the next section lead us to believe that the algorithm is \well-

behaved" in transience.

Finally it is instructive to compare the behavior of this algorithm to

other algorithms for �nding maxmin optimal rates. In particular we will look

at Selective Binary Feedback Scheme (SBF) presented in [26] and the scheme

presented in [23]. While extensive comparison is beyond the scope of this
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work, we believe that the following simple example gives a good insight on the

comparative behavior of these algorithms.

Consider a network consisting of one bottleneck link of capacity C

shared by two sessions with the desired demand D. We will now investigate

the behavior of the three algorithms in such system. Since SBF scheme is

designed to operate in the window environment, we \translate" the window

size to the e�ective transmission rate by dividing the window size by the

round-trip delay.

For simplicity, we assume synchronized operation. We look at the case

when initial demands D > C. Suppose C = 20 and initial rates are R1 = 100,

R2 = 50. The optimal rate for both session is 10

Selective Binary Feedback Scheme This scheme essentially computes the

same value for link controls (called \fair allocation" in [26]) as the \ad-

vertized rate" in this thesis. However, instead of delivering the minimal

value of all link controls to the source, SFB sets a bit in the packet

header if the current demand of the session on the link is above the link

control value. If this bit is set in the feedback signal, the source adjusts

its e�ective rate to Rnew = cRold, where 0 < c < 1. If the bit is 0, the

source sets the e�ective rate to Rnew = Rold + b, where b � 0. Note that

the optimal rate in our example is C=2 for both sessions.

Clearly, if D � C=2 is large, it may take quite a few iterations to just

reduce the rate below C=2. Then the algorithm will additively increase

the e�ective rate until it gets above the current link control, etc. Note

that it is impossible to ensure feasibility, since the algorithm will invari-

ably have to eventually raise the rate above its feasible value to \feel"

its way to the optimum. The following sequence gives the e�ective rates

for the two sessions of our example for the case c = b = 0:5:

R1 : 100, 50, 25, 12.5, 13.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 10.0 10.5, 11.0 ...
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R2 : 50, 25, 12.5, 6.25 6.75, 7.25, 7.75, 8.25, 8.75, 9.25, 9.75, 10.25, 5.125,

...

Mosley [23] calculates link controls as maxi ri+
C�
P

i
ri

n
, where ri is the \ob-

served rate" of session i across the link and n is the number of sessions

crossing the link. As in our scheme, the minimal value of the link con-

trols is conveyed to the source, which then sets its transmission rate to

this value.

The following sequence gives the rates obtained at several iterations for

the sessions in our example:

R1 : 100, 25, 10, 10, 10 ...

R2 : 50, 25, 10, 10, 10 ...

Our Scheme As we have seen earlier, our scheme gets the optimal values on

the very �rst round-trip.

R1 : 10, 10, 10, 10, 10 ...

R2 : 10, 10, 10, 10, 10 ...

As indicated by this trivial example, it should be expected that the

algorithm described in this thesis converges and reaches feasibility faster. This

expectation should be intuitively clear for the following reasons. SBF, while

taking information about individual sessions into account, does not have a way

to e�ciently use this information, since the source is only noti�ed whether its

rate must be increased or decreased, but is not told \how far to go". Mosley's

scheme does inform the source about the rate it should transmit at, but the

information needed to compute this rate is based on the aggregate rate of

all sessions and the maximum rate of all sessions. In contrast, our algorithm

takes full information about the individual session rates into account when

calculating the rate estimate, and informs the source about this rate.
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6 Simulation Results

Experiments 1-5 show that the algorithm described in this thesis allows the

sessions to adapt quickly to the changes in network load due to sessions enter-

ing or exiting the network or variation of active session demands.

The MIT Advanced Network Architecture group's network simulator

was used in in this work.

A number of simulation experiments have been performed on di�erent

con�gurations. The results of these experiments are provided in the following

subsections. We demonstrate that the algorithm allows the sessions to adapt

quickly to any changes in the network load and converge to the current optimal

rate.

All experiments were performed with deterministic packet transmission

rates on an underutilized network. The main purpose of these experiments was

to investigate the number of round-trips required for convergence in the pre-

sense of dynamic network changes. Even in an underutilized network the actual

length of round-trips of di�erent sessions and even di�erent packets of any one

session can be di�erent due to di�erent path lengths, event scheduling, etc.

Thus, the number of round-trips seems to give more insight into the algorithm

behavior than the actual time. We observed that in all our experiments the

time of convergence was well below the worst-case theoretical bound obtained

in section 5.

In addition we investigated the feasibility of the transient solutions.

We have not used the heuristic described in section 5. Even without it, the

rate vector of stamped rates became feasible after one round-trip following a

change in the network load.

Finally, we investigated the behavior of the algorithm with link control

calculation used by the Selective Binary Feedback Scheme. Since no substan-

tial di�erence was observed, the results of these simulations are not shown.
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Note that the stamped rate plotted in all �gures of this thesis reect

the stamped rate as seen at the input to the sources. That is, if we were to

follow the \synchronized" policy described in 5 this stamped rate would in

fact reect the actual transmission rate.

6.1 Experiment 1

Network con�guration of this experiments is shown in Figure 1. The purpose of

this experiment is to observe how the sessions adjust to the changing network

load when sessions enter or exit the network.

In this con�guration 5 sessions share one bottleneck link. At time 0

all sessions begin transmitting their data. Their initial demands exceed the

fair share of the bottleneck link. Eventually session 1 exits, while sessions 2-4

continue to transmit. Then, some time later sessions 2 and 3 exit. Still some

time later session 3 reenters, but this time its demand is below its fair share

of the bottleneck link. Finally, session 2 reenters with its initial demand.

Tables 1 and 2 contain the session demands and session optimal rates

at di�erent times of this experiment.

Figures 2 - 6 show the behavior of the stamped rates of Sessions 1-5 as a

function of time. Boxes on the plots correspond to the round-trip epochs. Note

that the sessions quickly adjust to the changing network load when sessions

enter or exit. Table 3 gives the number of round-trips each session took to

converge to the new optimal rates after each change in the network load. Note

that all these numbers are within the theoretical guarantee of 4. After the

very �rst round-trip feasibility is preserved throughout the experiment.

6.2 Experiment 2

The setting of this experiment is similar to Experiment 1 (see Figure 7).

There are 15 sessions sharing one bottleneck link. All sessions start
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transmission at time 0. Given in�nite demand, the fair share of the bottle-

neck link is 10000. We consider the case when the demand of sessions 1-7 is

strictly below this value, while demand of sessions 9-15 is strictly above 10000.

Demand of session 8 is exactly 10000.

The demands are chosen so that the total demand is exactly equal to

the bottleneck link capacity. As a result, the demand vector is also the optimal

rates vector (see Table 4).

In this scenario, it should be expected that sessions 1-8 should be able

to transmit at their demand immediately, while sessions 9-17 should regain

the capacity not used by the less demanding sessions and should stabilize to

their demanded rate. Moreover, any session of 9-17 should wait for all sessions

with lower optimal rates to stabilize before it can reach its own optimal rate.

Figures 8-10 show that the sessions behave exactly as expected. Note

that this time the x-axis is the number of round-trips rather than the actual

time. Since di�erent round-trips may take di�erent time, the plots of stamped

rate versus time will not necessarily be as well alligned.

We see that the worst observed convergence time is 10 round-trips

(session 15) is drastically smaller than the theoretical guarantee of 60.

6.3 Experiment 3

In this experiment we investigate the behavior of the network with 2 levels of

bottleneck links.

Con�guration used in this experiment is shown in Figure 11. Sessions

1-4 with large initial demands start transmission at time 0. Sessions 3 and 4

share the �rst-level bottleneck link 2. Their optimal rates are 5000. Sessions

1 and 2 share the second-level bottleneck links 1 and 2. Their optimal rates

are 1000.

Figures 12 - 15 show the behavior of sessions 1-4. As expected, the
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sessions sharing the second-level bottleneck links take longer to converge to

their optimal rates as the sessions sharing the worst bottleneck.

Note the typical \climbing upstairs" behavior of the sessions sharing

the second-level bottleneck (sessions 1 and 2). They operate at a lower rate

until they realize that the �rst-level sessions operate at low rates and regain

the free capacity.

We still observe that the worst obsered convergence time of 6 (session

2) is much smaller than the theoretical guarantee of 12.

6.4 Experiment 4

This experiment is intended to investigate the behavior of the network with

di�erent number of hops in the routes of di�erent sessions and di�erent optimal

rates. Con�guration of this experiment is given in Figure 16. It is clear that

the actual number of round-trips required for all sessions to converge to their

optimal rates depends on the speci�c timing of the events in the system. In

particular, clearly session 4 should receive its optimal rate after the very �rst

round-trip. In contrast, session 1 may have to wait till all other sessions

stabilize to their optimal rates before getting its optimal rate assigned. Since

session 1 also has the shortest route, it should be expected that it will take

session 1 signi�cantly more round-trips to converge than session 1. Similarly,

session 2 may have to wait for session 1, and session 3 may have to wait for

sessions 1 and 2.

Optimal rates of the sessions are given in table 5.

Figure 17 shows that the simulated behavior of session 4 is exactly as

expected, that is, it converges to its optimal rate immediately after the �rst

round-trip. Session 3 also converges after the �rst round-trip, which is faster

than the worst-case behavior described above. The behavior of sessions 3 and

4 corresponds to our expectations. Session 2 converges on the third round-
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trip, and it takes session 3 6 round-trips to converge. This is much better than

the theoretical guarantee of 16. Again, we see that feasibility is preserved

throughout the experiment.

6.5 Experiment 5

Con�guration of this experiment is shown in Figure 18. This experiment is

intended to examine a more sophisticated case in which di�erent sessions have

di�erent number of links in their routes. In addition, there are 3 levels of

bottleneck links here. We also investigate the response of the algorithm to

dynamic changes.

All 5 sessions enter at time 0. Then session 3 exits at time 15. At time

48 sessions 1 and 2 exit, and, �nally, at time 67 session 3 reenters. Demands

of all sessions are large.

Optimal rates of sessions at di�erent times are given in Table 6. Figures

19-23 show that all sessions quickly determine their optimal rates after load

changes. Table 7 gives the number of round-trips required by each session to

stabilize to the new optimal rate.

We observe again that the maximum observed number 7 of round-trips

required for the algorithm to stabilize to its optimal rate after a change in the

network load is still signi�cantly below the theoretical upper bound of 12.

Note also that the feasibility is restored after the very �rst round-trip

following a change in the set of network users.

7 Discussion

7.1 Remarks on M-consistency

As mentioned earlier in this work, M-consistent rate calculation was essential

in ensuring the algorithm convergence. We proved earlier that our advertized
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rate calculation policy was M-consistent. We emphasize that checking for

violation of M-consistency and enforcing it at all times ensures full recovery

from any previous data corruption.

It is possible to construct other M-consistent policies. In this section we

will show that the scheme for link control calculation in the Selective Binary

Feedback Scheme presented in [26] is also M-consistent. The SBF performs

calculation on each update of its link control Afair , called \fair allocation" as

follows. Let J denote the set of a \allocated" sessions, and Ai denote the rate

of session i as observed by the link.

� Initially it sets Afair =
C
n
, J = ;

� Otherwise, if Ai < Afair , allocate i, i.e. set J = J + fig and calculate

Afair =
C �

P
J Ai

n� number of unallocated sessions

Repeat until there are no sessions to allocate.

Note that the \allocated" sessions in SBF are analogous to our \marked"

sessions.

It can be easily seen that SBF is also M-consistent. Thus, we can

use SBF control calculation in our algorithm and get the same convergence

results. In fact, we have done that in simulation and no signi�cant changes in

the algorithm behavior were observed.

Note signi�cant similarity in the actions taken between the two schemes.

The main di�erence, however, is that SBF does not keep track of previous

allocations (or markings in our terminology) and recalculates them anew on

each calculation. In contrast, our scheme remembers the past allocations and

uses the past information for the new calculation.

Note also that the two schemes may produce di�erent values of link

controls and the sets of marked sessions. To see this, consider 3 sessions with
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\observed", or \recorded", rates equal to 1, 1 and 5 on a link of capacity 6. It

is entirely possible that in our algorithm one of the sessions with (\recorded")

rate 1 is marked, while the other 2 are not. Our algorithm will then calculate

the control value (\advertised rate") as 6�1
2

= 2:5. The calculation of SBF for

theses rates will calculate its control value (\fair allocation") as 4 and would

mark (\allocate") both sessions with observed rates 1.

Thus, a family of link control calculation policies has been identi�ed.

If plugged into the algorithm suggested in this thesis, any policy of this family

will ensure convergence and the transient properties described in the previous

sections.

7.2 Comments on the usage of the \Stamped Rate"

Field in the Packet Header

The algorithm makes substantial use of the �eld in the packet header, which

we call the \stamped rate" of the packet. Note that if the actual transmission

rates could be accurately measured on input to a switch and if newly calculated

rates could be accurately enforced on output, the packets would no longer need

to carry this �eld, thus reducing the overhead. However, despite the obvious

overhead, the use of this �eld may be well justi�ed for the following reasons.

� It is very di�cult to measure and enforce rates with su�cient accuracy.

Such measurements and enforcement strongly depend on the underly-

ing service discipline and the shape of underlying tra�c. The e�ects of

measurement and enforcement errors are unclear and need more investi-

gation.

� Rate measurements constitute signi�cant operational overhead in every

network node. It can be argued that measurments might be necessary

anyway for rate enforcement for some service disciplines. While this is
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certainly true for some service disciplines, simple FIFO does not need to

perform any measurements. Rate measurments may also be needed for

policing misbehaved users. However, such policing can be done at the

entry to the network only, thus relieving the rest of the network from

the necessity of measuring the rates.

� Having the stamped rate in the packets completely decouples the pro-

cesses of rate calculation and rate enforcement. In particular,

{ the algorithm can be used with any underlying service discipline (as

long as the packets of each sessions are served FIFO), e.g. FIFO,

FIFO+, Round-Robin, Stop-and-Go, etc, with any ow control

mechanism and any tra�c shaper;

{ the algorithm is robust in the presence of heavy packet loss in the

sense that it converges even if only some packets continue to get

through;

{ the above quality allows to the algorithm on top of any other algo-

rithm in some specialized control packets if needed

These considerations in combination with the convergence and transient

properties described earlier in this thesis suggest that the overhead of having

an extra �eld in the packet header may be well justi�ed by the bene�ts it

produces.

7.3 Policing Misbehaved Sessions

The algorithm described so far su�ers from the same problem as most of the

other schemes using FIFO queues. That is, if a session violates the rules

imposed by the algorithm due to malfunction, maliciousness or a di�erent

protocol used, it can ood the network with its data at the expense of well-

behaved users.
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Note that when a feedback packet returns to the source, its stamped

rate is set to the current estimate of the session's allowed rate. If the packet's

`u-bit' is set, then the source is supposed to adjust its transmission rate to

this stamped rate. If the `u-bit' is not set, then the source is expected to send

unmarked packets with some a-priori known initial rate.

Thus, the �rst switch on the session's way, which is also the last switch

on the feedback's way can determine session's allowed rate by the information

it the last feedback packet of that session seen. It can then measure the actual

transmission rate of the session and drop packets of this session if this rate is

exceeded.

Note that this is only needed at the entry to the network, so the switches

in the middle of the network connected to other switches only do not need to

worry about misbehaved users at all.

7.4 Network with Full-Duplex Links

The assumption of this model was that each physical connection is modeled

as two half-duplex links of identical capacity.

It should be noted that the algorithm can be used for the case of the

full-duplex links with the following modi�cation. In essence, the link should

no longer distinguish between the forward and the feedback sessions crossing

it. Instead, it should keep track of the total number of sessions crossing it and

should calculate its \advertized rate" as if all sessions were one-way only, but

the total capacity of the link were C
(1+k)

rather than C. In addition, the control

�elds of the feedback packets should not be changed by the switches. It can

be shown that with these modi�cations the algorithm will produce maxmin

optimal rate allocation in a network with full-duplex links as well.
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8 Summary and Areas for Future Research

We have described an algorithm for distributed asynchronous computation of

maxmin optimal session transmission rates. We have shown that the algorithm

converges to the optimal rates faster than other algorithms achieving a similar

objective and that it is well-behaved in transience. The algorithm is self-

stabilizing in the presence of dynamic network changes and heavy packet loss.

Unlike previous work, this algorithm takes bandwidth consumed by feedback

tra�c into consideration.

We have argued that though a �eld in the packet header utilized by

the algorithm constitutes undesirable overhead, it also provides signi�cant

exibility of potential application.

Note that the algorithm can be easily extended to the case when in-

stead of end-to-end feedback the switch sends a feedback packet to the previous

switch on its way to inform it about its control value if it is smaller. Such hop-

by-hop feedback will propagate the minimum link control value (advertized

rate) to the source faster than the end-to-end scheme. Investigating the be-

havior of this algorithm with hop-by-hop feedback might be a topic for future

research.

Another possibility to improve convergence time of the algorithmmight

be to restrict allowed transmission rates to some discrete values. While this

would certainly decrease the number of potential di�erent values of the optimal

vector and thus improve convergence time, the e�ects of such discretization

are not very clear and need further research.

We also believe that the transient behavior of the algorithm needs to be

further examined in more extensive simulation and perhaps in some real-life

environment. The results of such investigation may be crucial to determine

practical applicability of the algorithm.
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9 Appendix 1

Summary of Notation

R Set of switches in the network.

L Set of (half-duplex) links in the network (assumed even).

S(t) Set of sessions in the network at time t

R Number of Switches in the network.

L Number of (half-duplex) links in the network.

S(t) Number of sessions in the network at time t.

0 < k � 1 Ratio of session reception rate to acknowledgement transmission

rate (assumed constant throughout the network).

P(l) Mapping of set f1; : : : ;Lg into itself such that

� P(i) = j , P(j) = i

� P(i) 6= i

Mapping P breaks the set of all indices of the half-duplex links in the

network into L

2
pairs, such that each pair contains the indices of two

half-duplex links corresponding to one full-duplex link

ui;j Set to 1 if session i crosses link j on its forward path, set to 0 otherwise.

wi;j Set to 1 if session i crosses link j on its feedback path, set to 0 otherwise.

�ji = ui;j + kwi;j

Fj(t) Set of sessions crossing link j on the forward path at time t.

Bj(t) Set of sessions crossing link j on the feedback path at time t.
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Gj(t) = Fj(t) [ Bj(t) Set of all sessions crossing link j at time t

fj(t) Number of forward sessions crossing link j at time t.

bj(t) Number of forward sessions crossing link j at time t.

Ci Capacity of link i.

hi Number of links (hops) in the route of session i.

nij Index of the j-th link in the route of session i.

Ai Set of half-duplex links incoming to switch i.

�i(t) Actual transmission rate of session i at time t.

�i;j(t) Actual throughput of session i across link j at time t.

 i;j(t) Actual throughput of acknowledgement of session i across link j at

time t.

�j(t) Actual service rate of link j at time t

�ji (t) The queue in the output bu�er of link i due to session j only at time t.

Li Set of bottleneck links of iteration i of Procedure Global Optimum.

Si Set of sessions crossing all links in Li whose optimal rate is assigned iter-

ation i of Procedure Global Optimum.

�i Optimal rate of sessions in Si

f li Number of sessions of Si crossing link l on the forward path

bli Number of sessions of Si crossing link l on the feedback path
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10 Appendix 2

Proof of Theorem 2.1.

At every iteration of the procedure at least one new link is chosen as

the bottleneck link of the reduced network. All sessions crossing this link are

added to ~Si. Note that none of these sessions have been added to ~Si at any

iteration j < i. Thus, at the end of each iteration the number of sessions in ~Si

increases at least by one. The algorithm terminates when all sessions in S are

in ~Si, so at most S iterations are needed to terminate. This proves Statement

1 of the theorem.

We now prove statement 2. First note that by the way �i is de�ned

�1 < �2 < : : : < �m.

Let ni be the number of sessions in Si. Renumber the sessions in S

so that the �rst n1 indices correspond to sessions in S1, the next n2 indices

correspond to sessions in S2, etc. Then the rate allocation obtained by Proce-

dureGlobal Optimum can be written as � = (�1; : : : ; �S) = (�1; : : : ; �1| {z }
n1

; : : : �m; : : : ; �m| {z }
nm

)

Let � = (�1; : : : ; �S) be any other feasible rate allocation. We show that �

is lexicogra�cally greater than than �. Let a be the a permutation of � such

that a1 � a2 � : : : � aS. Suppose a1 > �1. Then consider any link l 2 L1.

Note that by operation of Procedure Global Optimum �1 =
Cl

fl+kbl
.

The total throughput across link l is

X
j2Gl

aj�
l
j � a1(fl + kbl) > �1(fl + kbl) = Cl

where �
j
i = ui;j + kwi;j.

Thus, feasibility condition is violated, so it must be that a1 � �1. If

a1 < �1, then � is lexicogra�cally greater than than �. Suppose a1 = �1.

We now show that if aj = �j 8 1 � j < i then ai � �i. Let 1 � k � m

be the index s.t. �i = �k. Consider any link l 2 Lk. Note that by operation of
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the Procedure only links from ~Lk cross l. Also, for this l

�k =
Cl �

Pk�1
j=1 �j(f

j
l + kbjl )

fl + kbl �
Pk�1

j=1(f
j
l + kbjl )

(5)

Suppose ai > �k. Denote by Q the set of sessions j crossing link l s.t. �j =

�k. Note that Q is just the set of sessions of Lk crossing l. Then the total

throughput across link l is

X
j2Gl

aj�
l
j =

k�1X
j=1

�j(f
j
l + kbjl ) +

X
j2Q

aj(f
j
l + kbjl ) �

k�1X
j=1

�j(f
j
l + kbjl ) + ai

X
j2Q

(f jl + kbjl ) >

k�1X
j=1

�j(f
j
l + kbjl ) + �k

X
j2Q

((f jl + kbjl ) =

=
k�1X
j=1

�j(f
j
l + kbjl ) + �k(fl + kbl �

k�1X
j=1

(f jl + kbjl )) = Cl

The last equality follows from (5). Thus, feasibility condition is violated

again and it has been proved that it must be that ai � �i. If the inequality is

strict, then � is lexicogra�cally greater that �. Thus it follows by induction

that � is lexicogra�cally greater than any other feasible rate allocation vector,

so � are indeed optimal rates.

This concludes the proof of Statement 2 of the theorem. The fact

of Statement 3 of the theorem that �1 <; : : : < �m simply follows from the

de�nition of the bottleneck link of iteration i.

The claim of Statements 4, 5 and 6 of the theorem immediately follow

from the operation of Procedure Global Optimum.

The proof of Theorem 2.1 is now complete.

11 Appendix 3

Proof of Lemma 4.4 By Lemma 4.3 9 t1 � 0; s:t: 8 t � t1
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�l � �1 8 l 2 L1 (6)

�l > �1 8 l 2 L n L1 (7)

It will now be shown that eventually all packets of any session in S1

will have stamped rate at least as great as �1, any packet of any session not

in S1 will have stamped rate strictly above �1, all sessions in S1 have recorded

rates at least as great as �1 at all links in their route, and all sessions not in

S1 have recorded rates strictly greater than �1 at all links in their route. That

is, 9 t2 such that the following inequalities hold 8 t � t2:

�lj � �1 8 l in route of j 2 S1

�pj � �1 for any packet p of j 2 S1

�lj > �1 8 l in route of j 62 S1 (8)

�pj > �1 for any packet p of j 62 S1

Note that the last two inequalities of (8) are exactly the statements 1

and 2 of this lemma.

To see that (8) holds, consider some j 2 S1. Consider the �rst packet

of j to leave the source after time t1. When feedback to that packet returns

to the source at some time t1j � t1, two cases are possible:

Case 1.

The `u-bit' of the packet is set. Then its stamped rate �p(t
1
j) must be

set to the minimum of the advertised rates of the links seen on the packet's

route. By (6) and (7) it then must be that �p(t
1
j) � �1. Hence at the source

�s(t
1
j) � �1

Case 2.

The u-bit is not set. Then by operation of the algorithm �s(t
1
j) =1 >

�1.
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Note that since individual sessions are served in FIFO order, any feed-

back packet arriving at the source after time t1j corresponds to a forward packet

which left the source after time t1. Applying the above argument to any such

packet we can see that

8 t > t1j �sj (t) � �1 (9)

Note that condition (9) holds for any session in S1 at all times after it

it has completed its �rst round-trip.

Consider any packet of j which left the source after t1j Let t2j be the

time when feedback to this packet returns to the source. Any packet of j

which is in the network at any time after t2j left the source after time t1j . By

operation of the algorithm, at any link l in its route its stamped rate is set to

�new = min(�l; �
old). By (9) its initial rate is set to �init = �sj � �1, so by (6)

and (7) it must be that for any packet p of session j the second inequality of

8 holds for all t > t2j .

By operation of the algorithm �lj is set to the last seen �p of session

j. Let t3j denote the time when �rst feedback packet to any forward packet

of j sent after t2j returned to source. Then the recorded rate of session j at

any link on its way was set after time t2j . It has already been shown that all

packets of j have stamped rates above or equal �1 for any time t � t2j . Hence,

by operation of the algorithm and from 6 and 7 the �rst 8 holds for all t � t3j .

Thus, taking t2 = maxj2S1t
3
j we have shown that the �rst two inequal-

ities of (8) hold for all t > t2.

By Theorem 2.1 any session j 2 S n S1 does not go through any link

l 2 L1. Repeating the exact same argument as above for j 2 S nS1 and taking

(7) into account, it can be shown that the third and fourth inequalities of (8)

hold as well.

Note that time t2 is the time when all sessions in S1 have completed 2
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round-trips.

To prove statement 3 of the lemma, consider any link l 2 L1. By

Theorem 2.1 only sessions from S1 cross any link of L1. Then, if not all

sessions are marked,

�l =
Cl �

P
j2S1 �

l
ja

l
j�j

fl + kbl �
P

j2S1 a
l
j�j

By Theorem 2.1 �1 =
Cl

fl+kbl
for any l 2 L1. Hence for any l 2 L1

�l =
�1(fl + kbl)�

P
j2S1 �

l
ja

l
j�j

fl + kbl �
P

j2S1 a
l
j�j

(10)

Note that (10) and (8) imply that 8 t > t1 and 8 l 2 L1

�l =
�1(fl + kbl)�

P
j2S1 �

l
ja

l
j�j

fl + kbl �
P

j2S1 a
l
j�j

�
�1(fl + kbl)� �1

P
j2S1 �j

fl + kbl �
P

j2S1 a
l
j�j

= �1

By (6) �l � �1 for all l 2 L1, so statement 3 of the lemma follows for

any t � t2.

The case when all sessions are marked is quite similar and is omitted

here.

To see that statement 4 holds, note that by Theorem (2.1) j crosses

at least one link of L1, so by (8) and statement 3 of this lemma feedback to

any packet which left the source after time t2 returns to the source with the

stamped rate set to �1. Denote the time of the return of this feedback to the

source by t4j

It then follows that for any t > tj4 �s is set to �1, so statement 4 of the

lemma holds for all t � t3 = maxj2S1 t
j
4.

The proof of statement 5 is almost identical to the proof of statement

4. Statement 6 follows from statements 2 and 3, which are aleady proved.

Note that t3 is the time when all sessions in S1 have completed their

third round-trip.

Finally, it follows from conditions 1-6 and the operation of the algorithm

that any session j 2 S1 will be marked at every link on its way as soon as the
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�rst packet of j is sent after time t4j passes that link and will remain marked

ever after as long as the set of sessions remains unchanged. Thus, there exists

time t4 such that statement 7 of this lemma holds for all j.

This completes the proof of Lemma 4.4.

Note that t4 is the time when all sessions in S1 have completed their

fourth round-trip. We have just shown that it takes at most four round-trips

of the \slowest" session in S1 to ensure that all sessions in S1 have reached

their optimal rates and are marked with their optimal rates at all links in

their routes. This result will be used in section 5 to obtain an upper bound

on convergence time.
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[25] Parekh, A., 1992. \ A Generalized Processor Sharing Approach to Flow

Control in Integrated Services Networks," Ph.D. thesis, MIT, Dept of

Electrical Engineering and Computer Science, Cambridge, MA.

[26] K.K.Ramakrishnan, Raj Jain, Dah-Ming Chiu. \ Congestion Avoidance

in Computer Networks With a Connectionless Network Layer. Part IV: A

Selective Binary Feedback Scheme for General Topologies Methodology",

DEC-TR-510, Digital Equipment Corporation. 1987

[27] Shenker, Scott, \A Theoretical Analysis of Feedback Flow Control", Proc.

SIGCOMM'90, Philadelphia, PA, September 1990, pp.156-165.

[28] Zhang, L., Shenker, S., Clark, D., \ Observations on the Dynamics of a

Congestion Control Algorithm: The E�ects of Two-Way Tra�c," Proc.

ACM SIGCOMM '91, Zurich, September 1991, pp.133-148.

64



Session/time 0-27 27-42 42-63 63-86 86-100

1 11000 - - - -

2 11000 11000 - - 11000

3 11000 11000 - 2000 2000

4 11000 11000 11000 11000 11000

5 11000 11000 11000 11000 11000

Table 1: Experiment 1: Demand of sessions 1-5 at di�erent times.

Session/time 0-27 27-42 42-63 63-86 86-100

1 4000 - - - -

2 4000 5000 - - 6000

3 4000 5000 - 2000 2000

4 4000 5000 10000 9000 6000

5 4000 5000 10000 9000 6000

Table 2: Experiment 1: Optimal rates of sessions 1-5 at di�erent times.

Session/time 0 27 42 63 86

1 2 - - - -

2 2 3 - - 4

3 2 2 - 0 0

4 1 1 1 4 4

5 2 3 2 4 2

Table 3: Experiment 1: Number of round-trips required for sessions 1-5 to

stabilize to new optimal rates after changes in network load 1-5.
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Figure 2: Experiment 1: Session 1. Boxes correspond to round-trip epochs.

This session reaches its optimal rate after the �rst round-trip; it exits at time

27 and never returns.
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Figure 3: Experiment 1: Session 2. Boxes correspond to round-trip epochs.

This session takes 2 round-trips to stabilize ti its original optimal rate of 4000.

At time 27 session 1 exits, and this session restabilizes to the new optimal rate

of 5000. At time 42 the session exits and re-enters at time 86, stabilizing to

its new optimal rate of 6000.
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Figure 4: Experiment 1: Session 3. Boxes correspond to round-trip epochs.

This session exits at time 42 and re-enters at time 63 with a low demand of

2000. Its behavior up to time 42 is similar to Session 2. Since its demand

after time 2000 is lower than the equal share of all sessions in the network, its

optimal rate is exactly equal to its demand.
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Figure 5: Experiment 1: Session 4. Boxes correspond to round-trip epochs.

This session does not exit during the experiment. At times 27, 42, 63 and 86

other sessions enter or exit. It can be seen that the session quickly stabilized

to the new optimal rates.
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Figure 6: Experiment 1: Session 5. Boxes correspond to round-trip epochs.

The behavior of this session is similar to Session 4.
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session s1 s2 s3 s4 s5 s6 s7 s8

demand 3000 4000 5000 6000 7000 8000 9000 10000

session s9 s10 s11 s12 s13 s14 s15

demand 11000 12000 13000 14000 15000 16000 17000

Table 4: Experiment 2: Session demands (optimal rates are exactly session

demands in this experiment.

SW.
.
.

.

.

.
150

51 

Server15 Clients

Figure 7: Experiment 2: Con�guration. Numbers next to the links are ca-

pacites (x 10�3)
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Figure 8: Experiment 2: Sessions 1-8.
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Figure 9: Experiment 2: Sessions 9-12.
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Figure 10: Experiment 2: Sessions 12-15.
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Figure 11: Experiment 3: Con�guration. Demands of all session are large

(40000). Numbers in italics next to the links are capacities (x 10�3.) The

bottleneck links are numbered by boxed bold �gures in a box . Link 1 is the

bottleneck for sessions 3 and 4, while links 2 and 3 are bottleneck for sessions

1 and 2. Optimal rate of sessions 1 and 2 is 10000, optimal rate of sessions 3

and 4 is 5000.

1 2 3 4

4000 3000 2000 1000

Table 5: Experiment 4: Optimal rates of sessions 1-4.
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Figure 12: Experiment 3: Session 1 (optimal rate 10000).
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Figure 13: Experiment 3: Session 2 (optimal rate 10000).
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Figure 14: Experiment 3: Session 3 (optimal rate 5000).
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Figure 15: Experiment 3: Session 4 (optimal rate 5000).
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Figure 16: Experiment 4: Con�guration.
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Figure 17: Experiment 4: Sessions 1-4, Simultaneous start.
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Figure 18: Experiment 5: Con�guration. Sessions 1-5 enter at time 0. Then

session 3 exits at time 15. Then sessions 1 and 2 exit at time 48. Finally session

1 reenters at time 67. Sessions 2, 3 and 4 share the �rst-level bottleneck link

5. Session 1 is bottlenecked by link 1. Finally, session 5 is bottlenecked by

link 4. Capacities of the links are given in italics (x 10�3). Bottleneck links

are numbered in boxed bold print. Links which are not numbered are not

bottlenecks.

Session/time 0-15 15-48 48-67 67-100

1 4000 3000 - 5000

2 2000 3000 - -

3 2000 - - -

4 2000 3000 6000 5000

5 6000 6000 6000 5000

Table 6: Experiment 5: Optimal rates of sessions 1-5 at di�erent times.
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Session/time 0 15 48 67

1 4 5 - 2

2 2 2 - -

3 2 - - -

4 1 3 2 1

5 7 6 3 1

Table 7: Experiment 5: Number of round-trips required for sessions 1-5 to

stabilize to new optimal rates after changes in network load 1-5.
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Figure 19: Experiment 5: Session 1. Exits at time 48 and reenters at time 67.
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Figure 20: Experiment 5: Session 2. Exits at time 48.
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Figure 21: Experiment 5: Session 3. Exits at time 15.
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Figure 22: Experiment 5: Session 4.
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Figure 23: Experiment 5: Session 5.
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