
Correctness of Communication Protocols

A Case Study

J�rgen F. S�gaard-Andersen

Department of Computer Science

Technical University of Denmark

DK-2800 Lyngby, Denmark

Nancy A. Lynch

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

USA

Butler W. Lampson

Cambridge Research Laboratory

Digital Equipment Corporation

Cambridge, MA 02139

USA

November 1993



Appears as Technical Report MIT/LCS/TR-589, Laboratory for Computer Science, Massa-

chusetts Institute of Technology, Cambridge, MA 02139, USA, and as Technical Report ID-TR:

1993-129, Department of Computer Science, Technical University of Denmark, DK-2800 Lyngby,

Denmark.



Contents

1 Introduction 1

I The Formal Framework 5

2 The Model 7

2.1 The Model for Untimed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.1.1 Safe I/O Automata : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.1.2 Live I/O Automata : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2.1.3 Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.1.4 Substitutivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.2 The Model for Timed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

2.2.1 Safe Timed I/O Automata : : : : : : : : : : : : : : : : : : : : : : : : : : 16

2.2.2 Live Timed I/O Automata : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.2.3 Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

2.2.4 Substitutivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

2.3 Embedding Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

3 A Temporal Logic with Step Formulas 31

3.1 Stuttering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

3.2 States, State Functions, and State Predicates : : : : : : : : : : : : : : : : : : : : 32

3.3 State Transition Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

3.4 Step Formulas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

3.4.1 State Predicates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

3.5 Temporal Formulas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

3.6 More Temporal Formulas : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

3.6.1 Precedence : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

3.7 Functions and Temporal Formulas over Automata : : : : : : : : : : : : : : : : : 37

3.8 Satisfaction and Validity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

3.9 Finite vs. In�nite Executions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

3.10 Stuttering-Insensitive Temporal Formulas : : : : : : : : : : : : : : : : : : : : : : 38

3.11 Comparison with Manna and Pnueli's Temporal Logic : : : : : : : : : : : : : : : 39

3.12 Rules and Meta Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

4 Specifying Systems 43

4.1 Specifying Untimed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

4.1.1 Safe I/O Automata : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

i



4.1.2 Live I/O Automata : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

4.2 Specifying Timed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

4.2.1 Safe Timed I/O Automata : : : : : : : : : : : : : : : : : : : : : : : : : : 53

4.2.2 Live Timed I/O Automata : : : : : : : : : : : : : : : : : : : : : : : : : : 56

4.3 Embedding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

5 Proof Techniques 63

5.1 Untimed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

5.1.1 Simulation Proof Techniques : : : : : : : : : : : : : : : : : : : : : : : : : 64

5.1.2 Execution Correspondence : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

5.1.3 Proving Safe Implementation : : : : : : : : : : : : : : : : : : : : : : : : : 67

5.1.4 Proving Correct Implementation : : : : : : : : : : : : : : : : : : : : : : : 68

5.1.5 History and Prophecy Variables : : : : : : : : : : : : : : : : : : : : : : : : 69

5.2 Timed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

5.2.1 Timed Simulation Proof Techniques : : : : : : : : : : : : : : : : : : : : : 72

5.2.2 Execution Correspondence : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

5.2.3 Proving Safe Timed Implementation : : : : : : : : : : : : : : : : : : : : : 74

5.2.4 Proving Correct Timed Implementation : : : : : : : : : : : : : : : : : : : 75

5.2.5 History and Prophecy Variables : : : : : : : : : : : : : : : : : : : : : : : : 76

II Example: Reliable At-Most-Once Message Delivery Protocols 79

6 Speci�cation S 81

6.1 The Speci�cation of S : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

6.1.1 States and Start States : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

6.1.2 Actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

6.1.3 Steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

6.1.4 Liveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

7 Delayed-Decision Speci�cation D 87

7.1 The Speci�cation of D : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

7.1.1 States and Start States : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

7.1.2 Actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

7.1.3 Steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

7.1.4 Liveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

7.2 Correctness of D : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

7.2.1 Invariants : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

7.2.2 Safety : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

7.2.3 Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105

8 The Generic Protocol G 111

8.1 Message Identi�ers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112

8.2 The Channels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112

8.2.1 States and Start States : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113

8.2.2 Actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113

8.2.3 Steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113

8.2.4 Liveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113

ii



8.3 The Sender/Receiver Process : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 114

8.3.1 States and Start States : : : : : : : : : : : : : : : : : : : : : : : : : : : : 114

8.3.2 Partial Order of Identi�ers : : : : : : : : : : : : : : : : : : : : : : : : : : 116

8.3.3 Actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 117

8.3.4 Steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 117

8.3.5 Liveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122

8.4 The Speci�cation of G : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123

8.5 Correctness of G : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

8.5.1 Invariants : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124

8.5.2 Safety : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 128

8.5.3 Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 145

9 The Five-Packet Handshake Protocol H 151

9.1 The Channels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152

9.2 The Sender and the Receiver : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152

9.2.1 States and Start States : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152

9.2.2 Actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154

9.2.3 Steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 155

9.2.4 Liveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 158

9.3 The Speci�cation of H : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 159

9.4 Correctness of H : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 160

9.4.1 Adding History Variables to H0 : : : : : : : : : : : : : : : : : : : : : : : : 161

9.4.2 Invariants : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162

9.4.3 Safety : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 165

9.4.4 Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 174

10 The Clock-Based Protocol C 191

10.1 The Clock Subsystem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 192

10.1.1 States and Start States : : : : : : : : : : : : : : : : : : : : : : : : : : : : 192

10.1.2 Actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 192

10.1.3 Steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 193

10.1.4 Liveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 193

10.2 The Timed Channels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 194

10.2.1 States and Start States : : : : : : : : : : : : : : : : : : : : : : : : : : : : 194

10.2.2 Actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195

10.2.3 Steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195

10.2.4 Liveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195

10.3 The Sender and the Receiver : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195

10.3.1 States and Start States : : : : : : : : : : : : : : : : : : : : : : : : : : : : 196

10.3.2 Actions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 197

10.3.3 Steps : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 198

10.3.4 Timing Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 201

10.3.5 The Sender and Receiver Safe Timed I/O Automata : : : : : : : : : : : : 202

10.3.6 Derived Timing Constants : : : : : : : : : : : : : : : : : : : : : : : : : : : 202

10.3.7 Liveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 204

10.4 The Speci�cation of C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 205

10.5 Correctness of C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 206

iii



10.5.1 Adding History Variables : : : : : : : : : : : : : : : : : : : : : : : : : : : 206

10.5.2 Invariants : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 207

10.5.3 Safety : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 211

10.5.4 Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 220

10.6 A \Weak" Clock-Based Protocol : : : : : : : : : : : : : : : : : : : : : : : : : : : 225

10.7 The Clock-Based Protocol With One Receiver and Multiple Senders : : : : : : : 225

11 Conclusion 231

11.1 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 231

11.2 Evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 232

11.3 Further Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 233

11.4 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 233

Bibliography 234

A Basic De�nitions 237

A.1 Record Notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 237

A.2 Sets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 237

A.3 Bags (Multisets) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 238

A.4 Lists and Sequences : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 238

A.5 Functions and Mappings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 239

B Proofs from Part I 241

B.1 Proofs in Chapter 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 241

B.2 Proofs in Chapter 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 246

B.2.1 Untimed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 246

B.2.2 Timed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 249

B.2.3 Embedding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 249

B.3 Proofs in Chapter 5 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 250

B.3.1 Untimed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 250

B.3.2 Timed Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 252

C Invariance Proofs 253

C.1 Proof of Invariants at the G Level : : : : : : : : : : : : : : : : : : : : : : : : : : 253

C.2 Proof of Invariants at the C Level : : : : : : : : : : : : : : : : : : : : : : : : : : : 263

iv



Chapter 1

Introduction

During the past few years, the technology for formal speci�cation and veri�cation of commu-

nication protocols has matured to the point where we believe that it now provides practical

assistance for protocol design and validation. Several models for distributed systems in gen-

eral and communication protocols in particular have been developed, and recent advances in-

clude formal models that allow reasoning about untimed systems as well as timed systems, e.g.,

[AL92a, GSSL93, LV93a, LV93b].

In connection with these models a host of proof techniques have been developed for proving

that one protocol implements another. One class of proof techniques is the simulation techniques

(including re�nement mappings, and forward and backward simulations) [AL91, GSSL93, Jon91,

LV92, LV93a, LV93b].

In this work, we show how one approach to formal speci�cation and veri�cation of distributed

systems|the live (timed) I/O automata of [GSSL93]|can be used to verify an important class

of communication protocols|those for reliable at-most-once message delivery .

Thus, the report has two main parts: �rst, the formal framework of [GSSL93] is presented

and augmented with additional theory (including a new temporal logic). Second, we consider the

veri�cation example. The purpose of our work is to provide better understanding, documentation

and proof for the relaible at-most-once message delivery protocols, and to test the adequacy of

the formal framework.

Formal Framework

When formally developing new protocols or proving correctness of existing ones with respect

to some speci�cation, a stepwise approach is usually used: the speci�cation is given in a very

abstract manner in which abstract data types are used and where possibly no distributed struc-

ture is present. In a series of development steps this speci�cation is re�ned (or implemented)

by introducing more low-level data types and by introducing a distributed view of the system,

where di�erent nodes (protocol entities) are connected by more or less reliable channels.

By using a formal approach to systems speci�cation, it is possible to prove formally that a

low-level (concrete) protocol correctly implements the high-level (abstract) speci�cation. Such

a proof is performed by proving that each level in the step-wise development is correct with

respect to (i.e., implements) the next more abstract level. This approach to veri�cation implies

that the task of proving correctness of a complicated protocol is split into more managerable

subtasks, and this greatly reduces the complexity of the overall proof.

The models of [GSSL93] for untimed and timed systems use an automaton (or state machine)

1



2 1. Introduction

to express safety properties. A safety property ensures that the system never does anything

wrong by specifying the steps the system is allowed to perform during execution. However, a

safety requirement does not guarantee that the system does anything at all. For that purpose

the models of [GSSL93] contain an extra liveness condition. The liveness condition restricts

the long-term behavior of the system by specifying what must eventually happen. An example

of a liveness condition is the requirement that each process in a parallel system be given fair

chances to proceed. In timed systems it is furthermore possible to specify timing requirements

like deadlines, response times, etc..

The models of [GSSL93] are entirely semantic: they describe an abstract view of how dis-

tributed systems behave when executed. Thus, they do not o�er any syntax for writing down

objects of the models. Such a syntax is presented in this work:

� For writing down the automaton part of the models we use a Pascal-like notation which

makes our speci�cations look close to traditional ways of describing protocols for dis-

tributed systems.

� The liveness part of the models is speci�ed using the language of an extended temporal logic

that we develop. This approach has the advantage that parts of the proofs of correctness

can be performed using rules of the logic.

An important property of the models of [GSSL93] is that they are compositional . This means

that each component (e.g., node) in a complex system can be speci�ed separately and that

we can implement each component separately and yet obtain an implementation of the entire

system. This enables a modular approach to systems speci�cation and veri�cation.

We test the adequacy of the models and proof techniques by formalizing two existing protocols

for solving the at-most-once message delivery problem and showing how these protocols can be

proved correct.

The At-Most-Once Message Delivery Problem

The at-most-once message delivery problem is that of delivering a sequence of messages submit-

ted by a user at one location to a user at another location. Ideally, we would like to insist that

all messages be delivered in the order in which they are sent, each exactly once, and that an

acknowledgement be returned for each delivered message.1

Unfortunately, it is expensive to achieve these goals in the presence of failures (e.g., node

crashes). In fact, it is impossible to achieve them at all unless some change is made to the

stable state (i.e., the state that survives a crash) each time a message is delivered. To permit

less expensive solutions, we weaken the statement of the problem slightly. We allow some

messages to be lost when a node crash occurs; however, no messages should otherwise be lost,

and those messages that are delivered should not be reordered or duplicated. (The speci�cation

is weakened in this way because message loss is generally considered to be less damaging than

duplicate delivery.) Now it is required that the user receive either an acknowledgement that the

message has been delivered, or in the case of crashes, an indication that the message might have

been lost.

There are various ways to solve the at-most-once message delivery problem. All are based on

the idea of tagging a message with an identi�er and transmitting it repeatedly to overcome the

1Our de�nition of at-most-once message delivery is di�erent from what some people call at-most-once message

delivery in that we include acknowledgements and require messages to be delivered in order.



3

unreliability of the channel. The receiver2 keeps a stock of \good" identi�ers that it has never

accepted before; when it sees a message tagged with a good identi�er, it accepts it, delivers

it, and removes that identi�er from the set. Otherwise, the receiver just discards the message,

perhaps after acknowledging it. In order for the sender to be sure that its message will be

delivered rather than discarded, it must tag the message with a good identifer. What makes

the implementations tricky is that the receiver will be keeping track of at least some of its good

identi�ers in volatile (non-stable) memory, which gets lost in case the receiver node crashes. But

the sender does not immediately learn about the crash, so it may go on using these identifers and

thus transmit messages that the receiver will reject. Di�erent protocols use di�erent methods

to keep the sender and the receiver more or less in agreement about what identi�ers to use.

A desirable property, which is not directly related to correctness, is that the implementations

o�er a way of cleaning up \old" information when this cannot a�ect the future behavior.

In this work, we consider two protocols that are important in practice: the Clock-Based

Protocol (which we call C) of Liskov, Shrira and Wroclawski [LSW91] and the Five-Packet

Handshake Protocol (which we call H) of Belsnes [Bel76]. The latter is the standard protocol for

setting up network connections, used in TCP, ISO TP-4, and many other transport protocols.

It is sometimes called the three-way handshake, because only three packets are needed for

message delivery; the additional packets are required for acknowledgement and cleaning up the

state. The former protocol was developed as an example to show the usefulness of clocks in

network protocols [Lis91] and has been implemented at M.I.T.. Both protocols are su�ciently

complicated that formal speci�cation and proof seem useful.

Survey of the Example

We express both protocols, H and C, as well as the formal speci�cation S of the at-most-once

message delivery problem, in terms of the models of [GSSL93].

Although the two protocols appear to be quite di�erent, we have found that both can be

expressed formally as implementations of a common Generic Protocol G, which, in turn, is an

implementation of the problem speci�cation. To prove that G implements the speci�cation, for

proof-technical reasons we introduce an additional level of abstraction, the Delayed-Decision

Speci�cation D. This is depicted in Figure 1.1. Introducing intermediate levels of abstraction,

like G and D, is a general proof strategy that allows large, complicated proofs to be split into

smaller and more managerable subproofs.

The speci�cation S is stated in the untimed model of [GSSL93] whereas the Clock-Based

Protocol C uses the timed model. This apparent model inconsistency is resolved by considering

S to be a timed system that does not put any constraints in real time. In [GSSL93] certain

embedding results provide the formal basis for moving between the timed and untimed model.

In this report we provide almost complete proofs of correctness. Some parts of the proofs

are omitted however but we treat all di�erent kinds of proofs and provide informal justi�cation

for the missing parts.

Outline of the Report

The report is structured as follows. In Part I we consider the formal framework: Chapter 2

gives a brief introduction to the models of [GSSL93] and the embedding results. Chapters 3 and

2We denote by \receiver" the protocol entity that is situated on the receiver node, and use phrases like \the
user at the receiver end" to denote the user that communicates with the receiver. Correspondingly for \sender".
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Overview of the levels of abstraction.

4 describe the syntax we use for specifying systems: �rst, in Chapter 3, we de�ne an extended

temporal logic, and then, in Chapter 4, we speci�cally show how this temporal logic is used

to specify liveness conditions. Chapter 5 describes the proof techniques we use when proving

correctness of the protocols. These techniques are mainly taken from [GSSL93].

The remaining part of the report Part II deals with the at-most-once message delivery

example. First, in Chapter 6, we present the formal speci�cation S of the at-most-once message

delivery problem. In Chapter 7 we present the Delayed-Decision Speci�cation D and show that

it correctly implements S. Chapters 8|10 then formally specify the G, H, and C levels and

consider their correctness.

Finally, in Chapter 11, we give concluding remarks.

The report contains three appendices. Appendix A introduces some basic notation and

should be read before the rest of the report. Appendix B and Appendix C contain proofs of

certain results in the main parts of the report.
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Chapter 2

The Model

To make this report self-contained, we give a brief presentation of the operational models for

distributed systems that are developed in [GSSL93]. We give all formal de�nitions and results

that are needed but refer to [GSSL93] for details about, e.g., proofs and for a more thorough

treatment of the models.

We �rst present the model for untimed systems. Then the model for timed systems is

presented, and �nally we show how an untimed system can be thought of as a timed system

that allows time to pass arbitrarily.

2.1 The Model for Untimed Systems

The model for untimed systems, called live I/O automata, which is developed in [GSSL93]

consists of an automaton part (or state machine), with a labeled transition relation, and a

liveness condition. The automaton speci�es the possible steps of the system, i.e., it speci�es

what is allowed to happen, thus, the safety of the system. The liveness condition restricts the

long-term behavior of the system by specifying what must eventually happen.

The liveness condition can be seen as a way of restricting the way the automaton is \executed"

whenever it is working properly. A liveness condition for a system of two parallel processes might

require that each component be given the possibility of making progress in�nitely often. In this

way executions where one component wishes to proceed but is never given a chance are ruled

out. This kind of liveness is known as weak fairness and is implemented on a physical machine

by executing the parallel processes on separate processors or by using a fair scheduler. In the

examples in this work we will see examples of more complicated liveness requirements.

As mentioned above the automaton part has a labeled transition relation. This means that

each step of the automaton is labeled by a name, called an action. The set of actions are

partitioned into external and internal actions, where only the external actions are visible from

the environment. The model is event-based in the sense that communication between parallel

components of a system or between system and environment is modeled by joint actions. That

is, communication is modeled as the joint executions of steps labeled by the same action. Thus,

the states cannot be observed. For this reason correctness is based on the sequences of external

actions (called traces) that can occur when the system is working properly, i.e., when its liveness

condition is satis�ed.

To express a notion of system vs. environment, the external actions are partitioned into in-

put and output actions, i.e., an I/O distinction is introduced. Intuitively output (and internal)

7
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actions are controlled by the system, and are thus called locally-controlled actions, whereas input

actions are controlled by the environment of the system. Since a system cannot control its envi-

ronment, live I/O automata are required to be environment-free which intuitively means that no

matter which inputs the environment provides during execution, the system can perform locally-

controlled actions and in this way satisfy its liveness condition. Thus, the environment-freedom

requirement ensures that live I/O automaton do not have liveness conditions like: \sooner or

later input a arrives".

The environment-freedom requirement also implies that the automaton part of a live I/O

automaton must be input-enabled which means that the automaton should be able to receive

any input in any state.

Even though our live I/O automaton model is not as general as a model without I/O dis-

tinction and the environment-freedom requirement, a large number of systems can be speci�ed

using this model. In particular many distributed systems have a clear distinction between the

output from the system and the input from the environment, and furthermore such systems are

usually designed to be able to receive input at any time since processes are usually connected

by networks that are not capable of bu�ering messages. In [GSSL93] a technical justi�cation of

environment-freedom is o�ered. This justi�cation deals with the fact that without I/O distinc-

tion and environment-freedon, a trace-based correctness notion as the one mentioned above is

not adequate in that it cannot form the base of a notion of implementation that corresponds to

our intuition. Furthermore, there exists simpler proof techniques for live I/O automata than for

more general models.

We �rst present the automaton part, called safe I/O automata. Then we add the liveness

condition, discuss the notion of implementation, and state an important substitutivity property

of the model.

2.1.1 Safe I/O Automata

De�nition 2.1 (Safe I/O Automaton)

A safe I/O automaton A consists of four components:

� A set states(A) of states.

� A nonempty set start(A) of start states (start(A) � states(A)).

� An action signature sig(A) = (in(A); out(A); int(A)) of disjoint sets of input, output, and

internal actions, respectively. Denote by ext(A) the set in(A)[out(A) of external actions,

by local(A) the set out(A) [ int(A) of locally-controlled actions, and by acts(A) the set

ext(A) [ int(A) of actions.

� A transition relation steps(A) � states(A)� acts(A)� states(A). The transition relation

steps(A) must have the property that for each state s 2 states(A) and each input action

a 2 in(A) there exists a state s0 2 states(A) such that (s; a; s0) 2 steps(A). A is said to be

input-enabled.

An action a is enabled in a state s if there exists a state s0 such that (s; a; s0) is a step, i.e.,

(s; a; s0) 2 steps(A). A set A of actions is said to be enabled in state s if there exists an action
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a 2 A such that a is enabled in s. An action or set of actions which is not enabled in a state s

is said to be disabled in s.

An execution fragment � of a safe I/O automatonA is a (�nite or in�nite) sequence of alternating

states and actions starting with a state and, if the execution fragment is �nite, ending in a state

� = s0a1s1a2s2 � � �

where each (si; ai+1; si+1) 2 steps(A). Denote by fstate(�) the �rst state of � and, if � is �nite,

denote by lstate(�) the last state of �. Furthermore, denote by frag�(A), frag!(A), and frag(A)

the sets of �nite, in�nite and all execution fragments of A, respectively. An execution is an

execution fragment whose �rst state is a start state. Denote by exec�(A); exec!(A) and exec(A)

the sets of �nite, in�nite and all execution of A, respectively. A state s of A is reachable if there

exists a �nite execution of A that ends in s.

A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment �2 =

snan+1sn+1 � � � of A can be concatenated . In this case the concatenation, written �1
a �2, is

the execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. Clearly, �1
a �2 is an execution i� �1 is an

execution.

An execution fragment �1 of A is a pre�x of an execution fragment �2 of A, written �1 � �2,

if either �1 = �2 or �1 is �nite and there exists an execution fragment �01 of A such that

�2 = �1
a �01.

Let � = s0a1s1a2s2 � � � be an execution fragment. The length of � is the number of actions

occurring in �. Thus,

j�j
4

=

(
n if � is �nite and ends in sn
1 if � is in�nite

De�ne the ith pre�x and ith su�x of �, for 0 � i � j�j1, as

�ji
4

= s0a1s1 � � �aisi

ij�
4

=

(
siai+1si+1 � � � if i < j�j

sj�j if � is �nite and i = j�j

The trace of an execution fragment � ofA, written traceA(�), or just trace(�) when A is clear,

is the list obtained by restricting � to the set of external actions of A, i.e., trace(�) = ��ext(A).

For a set E of executions of A, denote by tracesA(E), or just traces(E) when A is clear from

context, the set of traces of the executions in E. We say that � is a trace of A if there exists an

execution � of A with trace(�) = �. Denote by traces�(A); traces!(A) and traces(A) the sets of

�nite, in�nite and all traces of A, respectively. Note, that a �nite trace might be the trace of an

in�nite execution. Furthermore, for any list l of actions of A, de�ne traceA(l), or just trace(l)

when A is clear from context, to be l � ext(A).

When specifying complex distributed systems, it is important to be able to specify each process

separately and then obtain the speci�cation of the entire system as the parallel composition of

the speci�cations of the processes. This modular approach greatly reduces the complexity of

specifying large systems. The parallel composition operator in this model uses a synchronization

style where automata synchronize on their common actions and evolve independently on the

others. It is required that each external action be under the control of at most one automaton,

1The index i ranges over the natural numbers so if j�j =1, then i � j�j is the same as i < j�j.
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thus, parallel composition is de�ned only for compatible safe I/O automata. Compatibility

requires that each action be an output action of at most one safe I/O automaton. Furthermore,

to avoid action name clashes, compatibility requires that internal action names be unique.

De�nition 2.2 (Parallel composition of safe I/O automata)

Safe I/O automata A1; : : : ; AN are compatible if for all 1 � i; j � N with i 6= j

1. out(Ai)\ out(Aj) = ;

2. int(Ai) \ acts(Aj) = ;

The parallel composition A1 k � � � k AN of compatible safe I/O automata A1; : : : ; AN is the safe

I/O automaton A such that

1. states(A) = states(A1)� � � � � states(AN)

2. start(A) = start(A1)� � � � � start(AN)

3. out(A) = out(A1) [ � � � [ out(AN)

4. in(A) = (in(A1) [ � � � [ in(AN)) n out(A)

5. int(A) = int(A1) [ � � � [ int(AN)

6. ((s1; : : : ; sN); a; (s
0
1; : : : ; s

0
N)) 2 steps(A) i� for all 1 � i � N

(a) if a 2 acts(Ai) then (si; a; s
0
i) 2 steps(Ai)

(b) if a =2 acts(Ai) then si = s0i

The executions of the parallel composition of compatible safe I/O automata A = A1k : : :kAn

can be projected to the component automata. First, for any state s of A, denote by sdAi the

state of Ai obtained by projecting s to Ai. Then, for any execution � of A denote by �dAi the

execution of Ai obtained from � by projecting the states in � to Ai and by removing each action

not in acts(Ai) together with the state preceding the action.

Parallel composition is typically used to build complex systems based on simpler components.

Some actions are meant to represent internal communications between the subcomponents of

the complex system. The action hiding operator allows us to change some external actions into

internal ones.

De�nition 2.3 (Action hiding)

Let A be a safe I/O automaton and let A be a set of actions such that A � local(A). Then

de�ne A n A to be the safe I/O automaton such that

1. states(A n A) = states(A)

2. start(A n A) = start(A)

3. in(A n A) = in(A)
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4. out(A n A) = out(A) n A

5. int(A n A) = int(A) [ A

6. steps(A n A) = steps(A)

The �nal operator on safe I/O automata is action renaming . Several processes might be identical

except for their actions' names. A classical example is given by the processes of a token ring

communication network. Such processes could be easily speci�ed by �rst de�ning a generic

process and then creating an instance for each process through renaming of the actions. Action

renaming can also be used to resolve name clashes that lead to incompatibilities in De�nition 2.2.

De�nition 2.4 (Action renaming)

A mapping � from actions to actions is applicable to a safe I/O automaton A if it is injective

and acts(A) � dom(�). Given a safe I/O automaton and a mapping � applicable to A, we de�ne

�(A) to be the safe I/O automaton such that

1. states(�(A)) = states(A)

2. start(�(A)) = start(A)

3. in(�(A)) = �(in(A))

4. out(�(A)) = �(out(A))

5. int(�(A)) = �(int(A))

6. steps(�(A)) = f(s; �(a); s0) j (s; a; s0) 2 steps(A)g

2.1.2 Live I/O Automata

We have now described the safety component of a live I/O automaton. The liveness condition

should specify which executions of a safe I/O automaton are considered to represent a properly

working system. For this reason a liveness condition, in this model, is a subset of the executions of

the safe I/O automaton. However, a liveness condition is used to restrict the long-term behavior

of a system, i.e., to specify what must happen sooner or later. Thus, any �nite execution of

the safe I/O automaton should have an extension in the liveness condition. In other words, no

matter what the safe I/O automaton has done up to some time, there is still a way for it to

behave properly according to the liveness condition.

This de�nition of a liveness condition only ensures that the liveness condition does not

introduce more safety than is already speci�ed by the safe I/O automaton. It does not, however,

capture the fact that a live I/O automaton must not constrain its environment. To express this

idea (the environment-freedom condition) formally, we set up a game between the system and

its environment, and the system is then environment-free if it can win the game no matter what

moves the environment performs, i.e., if the system has a winning strategy. The environment

moves by providing any �nite number of input actions, and the system moves by performing a

local step, i.e., a step labeled by a locally-controlled action, or by making no step (a ? move).
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The fact that the environment is allowed to provide any �nite number of input actions at any

move expresses that the environment can be arbitrarily but not in�nitely fast compared to the

system. Note also that the environment provides actions and not steps. This is because the

environment has no control over the state of the system: the environment provides the action

and the system decides which of the possible states it should reach in response.

The behavior of the system during the game is determined by a strategy . A strategy is a

pair (g; f) of functions, where g determines which state to reach in response to an input action,

and f determines the moves of the system. The notion of strategy is formalized as follows.

De�nition 2.5 (Strategy)

Consider any safe I/O automaton A. A strategy de�ned on A is a pair of functions (g; f) where

g : exec�(A)� in(A)! states(A) and f : exec�(A)! (local(A)� states(A))[ f?g such that

1. g(�; a) = s implies (lstate(�); a; s) 2 steps(A)

2. f(�) = (a; s) implies (lstate(�); a; s) 2 steps(A)

The moves of the environment during the game are represented as an in�nite sequence I, called

an environment sequence, of input actions interleaved with in�nitely many � symbols. The

symbol � is used to represent the points at which the system is allowed to move. The occurrence

of in�nitely many � symbols in an environment sequence guarantees that each environment move

consists of only �nitely many input actions.

Remember from the discussion above that after any �nite execution the system should still

have a way of behaving properly. This is reected in the following de�nition of the outcome of

a strategy.

De�nition 2.6 (Outcome of a strategy)

Let A be a safe I/O automaton and (g; f) a strategy de�ned on A. De�ne an environment

sequence for A to be any in�nite sequence of symbols from in(A) [ f�g with in�nitely many

occurrences of �. Then de�ne R(g;f), the next-function induced by (g; f), as follows: for any

�nite execution � of A and any environment sequence I for A,

R(g;f)(�; I) =

8>>>>><>>>>>:

(�as; I0) if I = �I0; f(�) = (a; s)

(�; I0) if I = �I0; f(�) = ?

(�as; I0) if I = aI0; g(�; a) = s

Let � be any �nite execution of A and I any environment sequence for A. The outcome sequence

of (g; f) given � and I is the unique in�nite sequence (�n; In)n�0 that satis�es:

� (�0; I0) = (�; I) and

� For all n > 0, (�n; In) = R(g;f)(�
n�1; In�1).
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Note, that (�n)n�0 forms a chain ordered by pre�x .

The outcome O(g;f)(�; I) of the strategy (g; f) given � and I is the execution limn!1 �n, where

(�n; In)n�0 is the outcome sequence of (g; f) given � and I and the limit is taken under pre�x

ordering.

It is easy to see that any outcome of a strategy is an execution of the safe I/O automaton.

The concepts of strategies and outcomes are used to de�ne formally the environment-freedom-

property.

De�nition 2.7 (Environment-freedom)

A pair (A;L), where A is a safe I/O automaton and L � exec(A), is environment-free if there

exists a strategy (g; f) de�ned on A such that for any �nite execution � ofA and any environment

sequence I for A, the outcome O(g;f)(�; I) is an element of L. The strategy (g; f) is called an

environment-free strategy for (A;L).

Clearly, if a pair (A;L) is environment-free, then any �nite execution of A has an extention in

L. Finally we can present the notion of live I/O automaton.

De�nition 2.8 (Live I/O automata)

A live I/O automaton is a pair (A;L) where A is a safe I/O automaton and L � exec(A) such

that (A;L) is environment-free. We refer to the executions in L as the live executions of (A;L).

Similarly the traces in traces(L) are referred to as the live traces of (A;L).

In Chapter 4 we will de�ne some standard liveness conditions, like weak fairness, for safe I/O

automata and show once and for all that the resulting pairs are environment-free.

The operators on safe I/O automata can now be extended to live I/O automata. For parallel

composition the liveness condition for a composed system consists of all those executions whose

projection to the components yield live executions of the components. That corresponds to the

intuitive idea that a composed system works properly if all components work properly.

De�nition 2.9 (Parallel composition of live I/O automata)

Live I/O automata (A1; L1); : : : ; (AN ; LN) are compatible if the safe I/O automata A1; : : : ; AN

are compatible.

The parallel composition (A1; L1) k � � � k (AN ; LN) of compatible live I/O automata (A1; L1),

: : : ; (AN ; LN) is de�ned to be the pair (A;L) where A = A1 k � � � k AN and L = f� 2 exec(A) j

�dA1 2 L1; : : : ; �dAN 2 LNg.

De�nition 2.10 (Action hiding of live I/O automata)
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Let (A;L) be a live I/O automaton and let A be a set of actions such that A � local(A). Then

de�ne (A;L) n A to be the pair (A n A; L).

De�nition 2.11 (Action renaming of live I/O automata)

A mapping � from actions to actions is applicable to a live I/O automaton (A;L) if it is applicable

to A. Let � be any execution of A. De�ne �(�) to be the sequence that results from replacing

each occurrence of every action a in � by �(a). Given a live I/O automaton (A;L) and a mapping

� applicable to (A;L), we de�ne �((A;L)) to be the pair (�(A); �(L)).2

An important property of the operators is that they are closed for live I/O automata in the

sense that they produce new live I/O automata.

Proposition 2.12 (Closure of parallel composition)

Let (A1; L1); : : : ; (AN ; LN) be compatible live I/O automata. Then (A1; L1) k � � � k (AN ; LN) is

a live I/O automaton.

Proposition 2.13 (Closure of action hiding)

Let (A;L) be a live I/O automaton and let A � local(A). Then (A;L) n A is a live I/O

automaton.

Proposition 2.14 (Closure of action renaming)

Let (A;L) be a live I/O automaton and let � be a mapping applicable to (A;L). Then �((A;L))

is a live I/O automaton.

2.1.3 Correctness

The notion of correct implementation between live I/O automata is based on their live traces.

A live I/O automaton (A;L) is said to correctly implement a live I/O automaton (B;M), with

the same input and output actions, if all live traces of (A;L) are also live traces of (B;M).

This correctness notion ensures that whatever (A;L) does, (B;M) could have done the same.

That is, (A;L) does nothing wrong which in other words means that (A;L) satis�es the safety

speci�ed by (B;M). Furthermore, the correctness notion also guarantees that (A;L) in fact

does something because the correctnotion is based on live traces, i.e., traces where something

\good" happens.

Sometimes one is not interested in the liveness of a system and therefore speci�es a system

as a safe I/O automaton. One safe I/O automaton is said to safely implement a safe I/O

2As notational convention we allow a function to be applied to subsets of elements from the domain of the
function. The result is then the set obtained by applying the function to each element of the subset. Thus,

�(L) = f�(�) j � 2 Lg.
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automaton B, with the same input and output actions, if all traces of A are also traces of B.

This notion of safe implementation does not guarantee that A does anything at all. In fact, a

safe I/O automaton A with one state, no local steps, and \self-loop" steps for each of its input

actions, is a safe implementation of any safe I/O automaton with the same input and output

actions. The notion of safe implementation trivially extends to live I/O automata.

De�nition 2.15 (Implementation relations)

Given two live I/O automata (A;L) and (B;M) such that in(A) = in(B) and out(A) = out(B),

de�ne the following implementation relations:

Safe: A vS B i� traces(A) � traces(B)

Safe: (A;L) vS (B;M) i� A vS B

Correct : (A;L) vL (B;M) i� traces(L) � traces(M)

The symbol vS indicates that this relation is based on Safe traces. Similarly vL is based on

Live traces. All implementation relations are clearly preorders.

2.1.4 Substitutivity

An important property of the model is that it allows a modular approach to systems speci�cation

and veri�cation. If, for instance, a system S is made up of several parallel components, it is

possible to implement separately each component of S and yet obtain an implementation of S.

This is usually referred to as the substitutivity of the implementation relations with respect to

the parallel composition operator. Similar results exist for the other two operators as stated in

the following proposition.

Proposition 2.16 (Substitutivity)

Let (Ai; Li); (Bi;Mi), i = 1; : : : ; N , be live I/O automata with in(Ai) = in(Bi) and out(Ai) =

out(Bi), and let vX be one relation among vS and vL. If, for each i, (Ai; Li) vX (Bi;Mi),

then

1. if (A1; L1); : : : ; (AN ; LN) are compatible and (B1;M1); : : : ; (BN ;MN) are compatible then

(A1; L1)k � � � k(AN ; LN) vX (B1;M1)k � � � k(BN ;MN).

2. if A � local(A1) and A � local(B1) then

(A1; L1) n A vX (B1;M1) n A

3. if � is a mapping applicable to both A1 and B1 then

�((A1; L1)) vX �((B1;M1))

Note, in Part 1 of the proposition, that even though (A1; L1); : : : ; (AN ; LN) are compatible, then

the speci�cations (B1;M1); : : : ; (BN ;MN) are not compatible if they contain internal actions

that collide with already existing actions of other components. Thus, we must require that also

(B1;M1); : : : ; (BN ;MN) be compatible. However, in practice the problem is usually solved by

choosing brand new names for new internal actions in an implementation. Similar considerations

apply to Parts 2 and 3.
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2.2 The Model for Timed Systems

The timed model, called live timed I/O automata, is very similar to the untimed model in that it

consists of an automaton part (safe timed I/O automaton) and a liveness condition. Each state

of the safe timed I/O automaton has an associated time, returned by the mapping :now , and a

certain time-passage action � representing the passage of time. The steps of a safe timed I/O

automaton are restricted such that time-passage steps must increase time and all other steps

must not change time. Thus, all other steps than time-passage steps are thought of as occurring

instantaneously. There are a few other restrictions representing natural properties of time.

2.2.1 Safe Timed I/O Automata

Times are speci�ed using a dense time domain T = R�0, i.e., the set of non-negative reals.

De�nition 2.17 (Safe timed I/O automata)

A safe timed I/O automaton A consists of �ve components

� A set states(A) of states.

� A nonempty set start(A) of start states (start(A) � states(A)).

� A mapping :nowA : states(A)! T (called :now when A is clear from context), indicating

the current time in a given state.

� An action signature sig(A) = (in(A); out(A); int(A)) of disjoint sets of input, output, and

internal actions, respectively. Denote by ext(A) the set in(A) [ out(A) [ f�g of external

actions, where � is a special time-passage action, by vis(A) the set in(A)[out(A) of visible

actions, by local(A) the set out(A) [ int(A) of locally-controlled actions, and by acts(A)

the set ext(A)[ int(A) of actions.

� A transition relation steps(A) � states(A)� acts(A)� states(A).

A must be input-enabled and satisfy the following �ve axioms

S1 If s 2 start(A) then s:now = 0.

S2 If (s; a; s0) 2 steps(A) and a 6= �, then s0:now = s:now .

S3 If (s; �; s0) 2 steps(A) then s0:now > s:now .

S4 If (s; �; s0) 2 steps(A) and (s0; �; s00) 2 steps(A), then (s; �; s00) 2 steps(A).

To be able to state the last axiom, the following auxiliary de�nition is needed. Let I be an

interval of T. Then a function ! : I ! states(A) is an A-trajectory , sometimes called trajectory

when A is clear from context, if

1. !(t):now = t for all t 2 I , and

2. (!(t); �; !(t0)) 2 steps(A) for all t; t0 2 I with t < t0.
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That is, ! assigns to each time t in the interval I a state having the given time t as its now

component. The assignment is done in such a way that time-passage steps can span between any

pair of states in the range of !. Denote inf (I) and sup(I) by ftime(!) and ltime(!), respectively.

If I is left closed, then denote !(ftime(!)) by fstate(!). Similarly, if I is right closed, then denote

!(ltime(!)) by lstate(!). If I is closed, then ! is said to be an A-trajectory from fstate(!) to

lstate(!). An A-trajectory ! whose domain dom(!) is a singleton set [t; t] is also denoted by

the set f!(t)g.

The �nal axiom then becomes

S5 If (s; �; s0) 2 steps(A) then there exists an A-trajectory from s to s0.

Axiom S1 states that time must be 0 in any start state. Axiom S2 says that non-time-passage

steps occur instantaneously, at a single point in time. In this framework, operations with some

duration in time are modeled by a start action and an end action. Axiom S3 says that time-

passage steps cause time to increase. Axiom S4 gives a natural property of time, namely that if

time can pass in two steps, then it can also pass in a single step. Finally, Axiom S5 says that if

time can pass from time t to time t0, then it is possible to associate states with all times in the

interval in a consistent way. This axiom opens the possibility of specifying hybrid systems, i.e.,

systems where the state can change coutinuously when time passes. However, in the systems we

will look at in this work the states consists of a \basic" state and a now variable, and the basic

state does not change during time-passage.

2.2.1.1 Timed Executions

The notions of executions and traces and operations on these carry over from the untimed

setting. However, executions do not adequately capture the behavior of a system since they do

not tell us what states the system goes through during time-passage. For this reason a notion

of timed executions is introduced.

A timed execution fragment � of a safe timed I/O automaton A is a (�nite or in�nite) sequence

of alternating A-trajectories and actions in vis(A) [ int(A), starting in a trajectory and, if the

sequence is �nite, ending in a trajectory

� = !0a1!1a2!2 � � �

such that the following holds for each index i:

1. If !i is not the last trajectory in �, then its domain is a closed interval. If !i is the last

trajectory of � (when � is a �nite sequence), then its domain is a left-closed interval (and

either open or closed to the right).

2. If !i is not the last trajectory of �, then (lstate(!i); ai+1; fstate(!i+1)) 2 steps(A).

A timed execution is a timed execution fragment !0a1!1a2!2 � � � for which fstate(!0) is a start

state.

If � is a timed execution fragment, then de�ne ftime(�) and fstate(�) to be ftime(!0) and

fstate(!0), respectively, where !0 is the �rst trajectory of �. Also, de�ne ltime(�) to be the

supremum of the union of the domains of the trajectories of �. Finally, if � is a �nite sequence

where the domain of the last trajectory ! is a closed interval, de�ne lstate(�) to be lstate(!).
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2.2.1.2 Finite, Admissible, and Zeno Timed Executions

The timed executions and timed execution fragments of a safe timed I/O automaton can be

partitioned into �nite, admissible, and Zeno timed executions and timed execution fragments.

A timed execution (fragment) � is de�ned to be �nite, if it is a �nite sequence and the domain

of the last trajectory is closed. A timed execution (fragment) � is admissible if ltime(�) = 1.

Finally, a timed execution (fragment) � is Zeno if it is neither �nite nor admissible.

There are basically two types of Zeno timed executions: those containing in�nitely many

occurrences of non-time-passing actions but for which there is a �nite upper bound on the times

in the domains of the trajectories, and those containing �nitely many occurrences of non-time-

passing actions and for which the domain of the last state set is right-open. Thus, Zeno timed

executions represent executions of a safe timed I/O automaton where an in�nite amount of

activity occurs in a bounded period of time. (For the second type of Zeno timed executions, the

in�nitely many time-passage steps needed to span the right-open interval should be thought of

a the \in�nite amount of activity".)

There are idealized processes that natually exhibit Zeno behaviors. As an example consider

a ball which is bouncing on the oor and is losing a fraction of its energy at each bounce. Ideally

the ball will bounce in�nitely many times within a �nite amount of time. Note, however, that

the safe timed I/O automaton model cannot suitably model this process since there is no way

of specifying what happens after the ball stops bouncing. On the other hand, Zeno behaviors

will not occur in the computer systems we usually want to specify.

Below we will be mostly interested in the admissible timed executions since they correspond

to our intuition that time is a force beyond our control that happens to approach in�nity.

Denote by t-frag�(A), t-frag1(A), t-fragZ(A), and t-frag(A) the sets of �nite, admissible,

Zeno, and all timed execution fragments of A. Similarly, denote by t-exec�(A), t-exec1(A),

t-execZ(A), and t-exec(A) the sets of �nite, admissible, Zeno, and all timed executions of A.

A �nite timed execution fragment �1 = !0a1!1 � � �an!n of A and a timed execution fragment

�2 = S!0nan+1!n+1an+2!n+2 � � � of A can be concateneted if lstate(�1) = fstate(�2). The con-

catenation, written �1
a �2, is de�ned to be � = !0a1!1 � � �an(!n

a !0n)an+1!n+1an+2!n+2 � � �,

where (! a !0) is de�ned to be !(t) if t is in dom(!), and !0(t) if t is in dom(!0)ndom(!). It is

easy to see that � is a timed execution fragment of A.

The notion of timed pre�x, called t-pre�x , for timed execution fragments is de�ned as follows.

A timed execution fragment �1 of A is a t-pre�x of a timed execution fragment �2 of A, written

�1 �t �2, if either �1 = �2 or �1 is �nite and there exists a timed execution fragment �01 of A

such that �2 = �1
a �01. Likewise, �1 is a t-su�x of �2 if there exists a �nite timed execution

fragment �01 such that �2 = �01
a �1.

De�ne � 2 t, read \� before t", for all t � ftime(�), to be the t-pre�x of � that includes

exactly all states with times not bigger than t.

Likewise, de�ne � 3 t, read \� after t", for all t < ltime(�) or all t � ltime(�) when � is

�nite, to be the t-su�x of � that includes exactly all states with times not smaller than t.

2.2.1.3 Timed Traces

In the untimed setting automata are compared based on their traces. This turns out to be

inadequate in the timed setting because traces do not capture the invisible nature of time-

passage actions and furthermore do not contain information about the time of occurrence of the

visible actions. For this reason a notion of timed traces is introduced. We �rst de�ne the notion
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of timed sequence.

A timed sequence over a set K is de�ned to be a (�nite or in�nite) sequence � over K � T in

which the second components (the time components) are nondecreasing. De�ne � to be Zeno if

it is in�nite and the limit of the time components is �nite. For any nonempty timed sequence

�, de�ne ftime(�) to be the time component of the �rst pair in �.

Now, let � = !0a1!1a2!2 � � � be a timed execution fragment of a safe timed I/O automaton

A. For each ai, de�ne the time of occurrence ti to be ltime(!i�1), or equivalently, ftime(!i).

Then, de�ne t-seq(�) to be the timed sequence consisting of the actions in � paired with their

time of occurrence:

t-seq(�) = (a1; t1)(a2; t2) � � �

Then t-trace(�), the timed trace of �, is de�ned to be the pair

t-trace(�)
4

= (t-seq(�) � (vis(A)� T); ltime(�))

Thus, t-trace(�) records the occurrences of visible actions together with their time of occurrence,

and the limit time of the timed execution fragment. The timed trace suppresses both internal

and time-passage actions.

Let t-traces�(A), t-traces1(A), t-tracesZ(A), and t-traces(A) denote the sets of timed traces

of A obtained from �nite, admissible, Zeno, and all timed executions of A, respectively.

2.2.1.4 Operations on Safe Timed I/O Automata

As in the untimed setting, there are three operators de�ned on safe (timed) I/O automata. These

are parallel composition, action hiding , and action renaming . The de�nitions are similar to the

ones in the untimed setting except that special care has to be taken concerning the handling of

time. For instance, in the parallel composition, all components must agree on real time.

De�nition 2.18 (Parallel composition)

Safe timed I/O automata A1; : : : ; AN are compatible if for all 1 � i; j � N with i 6= j

1. out(Ai) \ out(Aj) = ;

2. int(Ai) \ acts(Aj) = ;

The parallel composition A1k � � � kAN of compatible safe timed I/O automata A1; : : : ; AN is the

safe timed I/O automaton A such that

1. states(A) = f(s1; : : : ; sN) 2 states(A1)� � � � � states(AN) j s1:nowA1 = � � �= sN :nowANg

2. start(A) = start(A1)� � � � � start(AN)

3. (s1; : : : ; sN):nowA = s1:nowA1 (= s2:nowA2 = � � �= sN :nowAN )

4. out(A) = out(A1) [ � � � [ out (AN)

5. in(A) = (in(A1) [ � � � [ in(AN)) n out(A)

6. int(A) = int(A1)[ � � � [ int(AN)
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7. ((s1; : : : ; sN); a; (s
0
1; : : : ; s

0
N)) 2 steps(A) i� for all 1 � i � N

(a) if a 2 acts(Ai) then (si; a; s
0
i) 2 steps(Ai)

(b) if a =2 acts(Ai) then si = s0i

Note, how Condition 7 of the de�nition captures both time-passage steps (where all components

participate) and other steps (where a subset of the components participate).

Just like (ordinary) execution fragments can be projected to components in a composed

system, it is possible to de�ne projection on timed execution fragments. If � = !0a1!1a2!2 � � �

is a timed execution fragment of a safe timed I/O automaton A = A1k � � � kAN , de�ne �dAi to

be the timed execution fragment of Ai obtained by �rst projecting each state in the range of

each trajectory to Ai, and then, for each action aj =2 acts(Ai), removing aj and merging the two

(projected) trajectories to the left and right of aj . (Thus, if none of the actions belongs to Ai,

the result is one big trajectory representing time-passage of Ai.)

Action hiding and action renaming for safe timed I/O automata can also be de�ned.

De�nition 2.19 (Action hiding)

Let A be a safe timed I/O automaton and let A be a set of actions such that A � local(A).

Then de�ne A n A to be the safe timed I/O automaton such that

1. states(A n A) = states(A)

2. start(A n A) = start(A)

3. :nowAnA = :nowA

4. in(A n A) = in(A)

5. out(A n A) = out(A) n A

6. int(A n A) = int(A) [ A

7. steps(A n A) = steps(A)

De�nition 2.20 (Action renaming)

A mapping � from actions to actions is applicable to a safe timed I/O automaton A if it is

injective, acts(A) � dom(�), and �(�) = �. Given a safe timed I/O automaton and a mapping

� applicable to A, de�ne �(A) to be the safe timed I/O automaton with

1. states(�(A)) = states(A)

2. start(�(A)) = start(A)

3. :now�(A) = :nowA

4. in(�(A)) = �(in(A))

5. out(�(A)) = �(out(A))
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6. int(�(A)) = �(int(A))

7. steps(�(A)) = f(s; �(a); s0) j (s; a; s0) 2 steps(A)g

2.2.2 Live Timed I/O Automata

In the untimed setting a liveness condition for a safe I/O automaton A is a subset of the

executions of A such that a special environment-freedom condition is satis�ed. Similarly, in the

timed setting a liveness condition for a safe timed I/O automaton is a set of timed executions

such that a special timed version of the environment-freedom condition is satis�ed.

As in the untimed setting the environment-freedom condition is stated in terms of a game

between the system and its environment.

The notion of strategy is similar to the one used for the untimed case. However, the presence

of time has a strong impact on the kind of interactions that can occur between an automaton

and its environment.

In the untimed case the environment is allowed to provide any �nite number of input actions

at each move, whereas the system is allowed to perform at most one of its locally-controlled

steps at each move. In this way it is taken into account that the environment can be arbitrarily

fast with respect to a system, however, not in�nitely fast. In the timed case there is no need

to assume the environment to be arbitrarily fast because each action occurs at a speci�c time.

Therefore, the relative speeds of the system and the environment are given by their timing

constraints. As a consequence the moves of the environment in the timed setting are input

actions associated with their time of occurrence. Thus, the behavior of the environment during

the game can be represented as a timed sequence over input actions.

If a strategy in the timed setting decides to let time pass, it has to specify explicitly all

intermediate states since the system must be able to respond to possible inputs during such

a time-passage phase. Remember, that in our model it is generally not possible to deduce

deterministically states at intermediate times given a time-passage step.

De�nition 2.21 (Strategy)

Consider any safe timed I/O automaton A. A strategy de�ned on A is a pair of functions (g; f)

where g : t-exec�(A)�in(A)! states(A) and f : t-exec�(A)! (traj (A)� local(A)�states(A))[

traj (A), where traj (A) denotes the set of A-trajectories, such that

1. g(�; a) = s implies �afsg 2 t-exec�(A)

2. f(�) = (!; a; s) implies � a !afsg 2 t-exec�(A)

3. f(�) = ! implies � a ! 2 t-exec1(A)

4. f is consistent , i.e., if f(�) = (!; a; s), then, for each t, ftime(!) � t � ltime(!), f(� a

(! 2 t)) = (! 3 t; a; s), and, if f(�) = !, then, for each t, ftime(!) � t < ltime(!),

f(� a (! 2 t)) = ! 3 t.

For notational convenience de�ne f(�):trj
4

=

(
! if f(�) = (!; a; s)

! if f(�) = !
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A strategy is a pair of function (g; f). Function f takes a �nite timed execution and decides how

the system behaves till its next locally-controlled action under the assumption that no input are

received in the meantime, whereas function g decides what state to reach whenever some input

is received. Condition 1 states that g returns a \legal" next state given the input. Conditions

2 and 3 give two possibilities for the system moves given by f : either f speci�es time-passage

followed by a local step, or f speci�es that the system simply lets time pass forever. Note, that

f speci�es all states during time passage. This is because, as mentioned above and as we shall

see formally below, a move given by f might be interrupted by input actions, and in that case

it is necessary to know the current state when the inputs arrive. The consistency condition

(Condition 4) for f says that, whenever after a �nite timed execution � the system decides to

behave according to !afsg or !, after performing a part of ! the system would decide to behave

according to the rest of the step !afsg or !. The consistency condition is fundamental for the

substitutivity results below.

The game between the system and the environment works as follows. The environment can

provide any input at any time, while the system lets time pass and provides locally-controlled

actions according to its strategy. If an input arrives, the system will perform its current step

till the time at which the input occurs, and then use function g to compute the state to reach

after the input has occurred.

In the timed setting the system might decide to perform a step at the same time at which

the environment provides some input. Such situations are modeled as nondeterministic choices.

As a consequence, the outcome, i.e., the result of the game, for a timed strategy is a set of timed

executions.

De�nition 2.22 (Outcome of a strategy)

Let A be a safe timed I/O automaton and (g; f) a strategy de�ned on A. De�ne a timed

environment sequence for A to be a timed sequence over in(A), and de�ne a timed environ-

ment sequence I for A to be compatible with a timed execution fragment � of A if either I is

empty, or � is �nite and ltime(�) � ftime(I). Then de�ne R(g;f), the next-relation induced by

(g; f), as follows: for any �;�0 2 t-exec(A) and any I; I0 compatible with �;�0, respectively,

((�; I); (�0; I0)) 2 R(g;f) i�

(�0; I0) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

(� a !afsg; I) where � is �nite, I = "; f(�) = (!; a; s);

(� a !; I) where � is �nite, I = "; f(�) = !;

(� a !afsg; I) where � is �nite, I = (b; t)I00; f(�) = (!; a; s);

ltime(!) � t;

(� a !0afs0g; I00) where � is �nite, I = (a; t)I00; f(�):trj = !;

ltime(!) � t; !0 = ! 2 t; g(� a !0; a) = s0; or

(�; I) where � is not �nite:

Let � be a �nite timed execution of A, and I be a timed environment sequence for A compatible

with �.

An outcome sequence of (g; f) given � and I is an in�nite sequence (�n; In)n�0 that satis�es:

� (�0; I0) = (�; I) and
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� for all n > 0, ((�n�1; In�1); (�n; In)) 2 R(g;f).

Note, that (�n)n�0 forms a chain ordered by t-pre�x .

The outcome O(g;f)(�; I) of the strategy (g; f) given � and I is the set of timed executions

�0 for which there exists an outcome sequence (�n; In)n�0 of (g; f) given � and I such that

�0 = limn!1�n.

In the de�nition of outcome of a strategy (g; f), the next-relation R(g;f) determines allowable

moves based on incoming inputs or performance of locally-controlled actions. In this way the

outcome sequences of (g; f) given some � and I are determined step by step.

In the de�nition of R(g;f), the �rst, second, and third cases deal with di�erent situations

where no input occurs during the system move chosen by f ; the fourth case, instead, takes care

of new incoming inputs; �nally, the �fth case of the above de�nition is needed for technical

reasons to generate a �xpoint in the outcome sequences since the second case generates an

admissible timed execution. Note, that the third and fourth cases might both be applicable

whenever an input occurs exactly at the same time at which the system decides to perform a

locally-controlled action. This is the reason for which the outcome is a set of timed executions.

Assume that the liveness condition for a safe timed I/O automaton could consist of Zeno timed

executions only. If another safe timed I/O automaton has a liveness condition consisting of

admissible timed executions, both of these systems could never work properly when composed

in parallel since the �rst system would keep time from passing beyond some bound, which could

never yield live timed execitions of the second system. (Remember that all components in a

parallel composition have to agree on real time.)

In this model this problem is solved by restricting attention to admissible timed executions

since these timed executions correspond to our intuition that time grows unboundedly. Thus, in

a live timed I/O automaton a liveness condition is a nonempty subset of the admissible timed

executions.

However, a problem arises as illustrated by the following example, which is due to Lamport:

Consider two almost identical safe timed I/O automata with the following characteristics. They

both have one input action and one output action, and if they receive an input before 12 o'clock

they will issue an output after exactly half the time between the input was received and 12

o'clock. Otherwise no output will be issued. To break the symmetry, one of the safe timed

I/O automata will unconditionally issue an output some time before 12 o'clock. Both of these

safe timed I/O automata have a nonempty set of admissible timed executions, so adopt these

sets to be the liveness conditions of the safe timed I/O automata, respectively. Now, compose

these systems in parallel by connecting the output of one system to the input of the other,

and vice versa. Then the resulting system has no admissible timed executions but only Zeno

timed executions where time is constrained from passing beyond 12 o'clock. Seen from any of

the components the other component prevents time from passing, and none of the components

will behave properly in the parallel composition. Thus, the parallel composition would not be

an element of the model (since it has no admissible timed executions), which contradicts the

requirement that the parallel composition operator be closed for live timed I/O automata.

The problem illustrated in the example arises because the two components collaborate on

performing the Zeno timed executions. To solve the problem, systems that can collaborate in

this fashion need to be excluded from the model. We do this by identifying a special class of
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Zeno timed executions, the Zeno-tolerant timed executions. A Zeno-tolerant timed execution is

a Zeno timed execution containing in�nitely many input actions but only �nitely many locally-

controlled actions. We denote by t-execZt(A) the set of Zeno-tolerant timed executions of a safe

time I/O automaton A.

The Zeno-tolerant timed executions represent Zeno behaviors that are exclusively due to a

Zeno environment. Thus, there is no collaboration between system and environment. This gives

rise to a notion of Zeno-tolerant strategy .

De�nition 2.23 (Zeno-tolerant strategy)

A strategy (g; f) de�ned on a safe timed I/O automaton A is said to be Zeno-tolerant if, for

every �nite timed execution � 2 t-exec�(A) and every timed environment sequence I for A

compatible with �, O(g;f)(�; I) � t-exec1(A) [ t-execZt(A).

Thus, any Zeno timed execution in an outcome of a Zeno-tolerant strategy is Zeno-tolerant and

thus represents a behavior that is Zeno only because of Zeno inputs from the environment. Note,

that in the Lamport example above it is not possible to �nd a Zeno-tolerant strategy de�ned on

any of the two components: if one component behaves in a Zeno fashion, the other component

will collaborate, and the resulting outcome cannot contain Zeno-tolerant timed executions.

We are now ready to present the timed de�nition of environment-freedom.

De�nition 2.24 (Environment-freedom)

A pair (A;L), where A is a safe timed I/O automaton and L � t-exec(A), is environment-free i�

there exists a Zeno-tolerant strategy (g; f) de�ned on A such that for each �nite timed execution

� of A and each timed environment sequence I for A compatible with �, O(g;f)(�; I) � L. The

pair (g; f) is called an environment-free strategy for (A;L).

A pair (A;L) is environment-free if, after any �nite timed execution and with any (Zeno or non-

Zeno) sequence of input actions, it can behave according to some admissible or Zeno-tolerant

timed execution in A.

This leads to the de�nition of live timed I/O automata, where the liveness condition con-

tains only admissible timed executions, but where the strategy is allowed to yield Zeno-tolerant

outcomes when given a Zeno timed environment sequence.

De�nition 2.25 (Live timed I/O automata)

A live timed I/O automaton is a pair (A;L), where A is a safe timed I/O automaton and

L � t-exec1(A), such that the pair (A;L[ t-execZt(A)) is environment-free.

2.2.2.1 Operations on Live Timed I/O Automata

The parallel composition, action hiding, and action renaming operators de�ned for safe timed

I/O automata are now extended to live timed I/O automata in a fashion similar to the way the

operators were extended in the untimed setting.
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De�nition 2.26 (Parallel composition of live timed I/O automata)

Live timed I/O automata (A1; L1); : : : ; (AN ; LN) are compatible i� the safe timed I/O automata

A1; : : : ; AN are compatible.

The parallel composition (A1; L1)k � � � k(AN ; LN) of compatible live timed I/O automata

(A1; L1); : : : ; (AN ; LN) is de�ned to be the pair (A;L) where A = A1k � � �kAN and L = f� 2

t-exec1(A) j �dA1 2 L1; : : : ;�dAN 2 LNg.

De�nition 2.27 (Action hiding of live timed I/O automata)

Let (A;L) be a live timed I/O automaton and let A be a set of actions such that A � local(A).

Then de�ne (A;L) n A to be the pair (A n A; L).

De�nition 2.28 (Action renaming of live timed I/O automata)

A mapping � from actions to actions is applicable to a live timed I/O automaton (A;L) if it

is applicable to A. Let � be a timed execution of (A;L). De�ne �(�) to be the sequence that

results from replacing each occurrence of every action a in � by �(a). Given a live timed I/O

automaton and a mapping � applicable to (A;L), de�ne �((A;L)) to be the pair (�(A); �(L)).

As expected the three operators above are closed for live timed I/O automata in the sense that

they produce a new live timed I/O automaton. This is a consequence of the environment-freedom

property.

Lemma 2.29 (Closure of timed parallel composition)

Let (A1; L1); : : : ; (AN ; LN) be compatible live timed I/O automata. Then the parallel composition

(A1; L1)k : : :k(AN ; LN) is a live timed I/O automaton.

Lemma 2.30 (Closure of action hiding)

Let (A;L) be a live timed I/O automaton and let A � local(A). Then (A;L) n A is a live timed

I/O automaton.

Lemma 2.31 (Closure of action renaming)

Let (A;L) be a live timed I/O automaton and let � be a mapping applicable to (A;L). Then

�((A;L)) is a live timed I/O automaton.

2.2.3 Correctness

In the timed setting the safe and correct implementation relations are based on timed traces.
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De�nition 2.32 (Timed implementation relations)

Given two live timed I/O automata (A;L) and (B;M) such that in(A) = in(B) and out(A) =

out(B), de�ne the following implementation relations:

Safe: A vSt B i� t-traces(A) � t-traces(B)

Safe: (A;L) vSt (B;M) i� A vSt B

Correct : (A;L) vLt (B;M) i� t-traces(L) � t-traces(M)

2.2.4 Substitutivity

The timed model, like the untimed model, o�ers a modular approach to systems speci�cation

and veri�cation as stated by the following substitutivity results.

Proposition 2.33 (Substitutivity)

Let (Ai; Li); (Bi;Mi), i = 1; : : : ; N , be live timed I/O automata with in(Ai) = in(Bi) and

out(Ai) = out(Bi), and let vX be one relation among vSt and vLt. If, for each i, (Ai; Li) vX

(Bi;Mi), then

1. if (A1; L1); : : : ; (AN ; LN) are compatible and (B1;M1); : : : ; (BN ;MN) are compatible then

(A1; L1)k � � � k(AN ; LN) vX (B1;M1)k � � �k(BN ;MN).

2. if A � local(A1) and A � local(B1) then

(A1; L1) n A vX (B1;M1) n A

3. if � is a mapping applicable to both A1 and B1 then

�((A1; L1)) vX �((B1;M1))

2.3 Embedding Results

The untimed model is used to specify systems where the actual amount of time that passes

between actions is considered unimportant. Many problems in distributed computing can be

stated and solved using this model. However, it is not possible to state anything about, e.g.,

response times. It is implicitly assumed that the �nal implementation on a physical machine is

\fast enough" for practical usage.

An untimed system can be thought of as a timed system that allows arbitrary time-passage,

as long as possible liveness restrictions are satis�ed. This indicates that our timed model is, in

some sense, more general than our untimed model, and that we could use the timed model for

all purposes. However, the timed model is more complicated than the untimed model due to

the time-passage action, the :now component, etc., and furthermore it does not seem natural to

have to deal with time, when the problem to be solved does not mention time at all.

Thus, it is preferable to work within the untimed model as much as possible and only switch to

the timed model when it is needed. The work in this report shows how the untimed speci�cation

(of the at-most-once message delivery problem) is implemented by a system that assumes upper

time bounds on certain process steps and channel delays. Figure 2.1 depicts such a stepwise
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A stepwise development from an untimed speci�cation to a timed implementation.

development. The question is of course what it means to implement an untimed speci�cation

by a timed implementation. Our approach is to convert the untimed levels to the timed model

by applying an operator, called patient , that adds arbitrary time-passage steps as mentioned

above. We then have an Embedding Theorem which states that if a concrete level implements an

abstract level in the untimed model, then the patient version of the concrete level implements

the patient version of the abstract level in the timed model, and vice versa. Thus, the �rst part

of the stepwise development of Figure 2.1 can be carried out entirely in the simpler untimed

model, and the last part in the timed model. In the intermediate development step which goes

from untimed to timed, one must prove that the timed level implements the patient version of

the untimed level. The embedding lemma can then be applied to show that the implementation

IMPL implements the patient version of the speci�cation SPEC.

We start by de�ning a patient safe I/O automaton.

De�nition 2.34 (Patient safe I/O automaton)

Let A be a safe I/O automaton where � =2 acts(A). Then de�ne patient(A) to be the safe timed

I/O automaton with

� states(patient(A)) = states(A)� T

If s = (s0; t) is a state of patient(A), we let s:basic denote s0.

� start(patient(A)) = start(A)� f0g

� :nowpatient(A)(s; t) = t

� ext(patient(A)) = ext(A)[ f�g

� in(patient(A)) = in(A)



28 2. The Model

� out(patient(A)) = out(A)

� int(patient(A)) = int(A)

� steps(patient(A)) consists of the steps

{ f((s; t); a; (s0; t)) j (s; a; s0) 2 steps(A)g

{ f((s; t); �; (s; t0)) j t0 > tg

In order to state what it means to apply the patient operator to a live I/O automaton, we need

the following auxiliary de�nition of what it means to untime a timed execution: Let A be a safe

I/O automaton with � =2 acts(A) and let � = !0a1!1a2!2 � � � be a timed execution of patient(A).

Then de�ne

untime(�) = (fstate(!0):basic)a1(fstate(!1):basic)a2(fstate(!2):basic) � � �

Similarly, let  = ((a1; t1)(a2; t2) � � � ; t) be a timed trace of patient(A). Then de�ne

untime() = a1a2 � � �

The notion of a patient live I/O automaton can now be de�ned. For any live I/O automaton

(A;L), the patient live I/O automaton of (A;L) should be the live timed I/O automaton whose

safety part is patient(A) and whose liveness part consists of all those admissible executions that,

when being made untimed, are live according to L. Thus, the liveness condition of the patient

live I/O automaton allows time to pass arbitrarily, as long as the liveness prescribed by L is

satis�ed.

De�nition 2.35 (Patient live I/O automaton)

Let (A;L) be a live I/O automaton with � =2 acts(A). Then, de�ne patientA(L) = f� 2

t-exec1(patient(A)) j untime(�) 2 Lg and de�ne patient(A;L), the patient live I/O automaton

of (A;L), to be the pair (patient(A); patientA(L)).

It can be proved that for any live I/O automaton (A;L), patient(A;L) is a live timed I/O

automaton.

Lemma 2.36

Let (A;L) be a live I/O automaton. Then patient(A;L) is a live timed I/O automaton.

We now state the Embedding Theorem, thus that the safe and correct implementation relations

for live I/O automata coincide with the safe and correct implementation relations for the patient

versions of the live I/O automata.

Theorem 2.37 (Embedding Theorem)

Let (A;L) and (B;M) be live I/O automata with � =2 (acts(A)[ acts(B)). Then
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1. (A;L) vS (B;M) i� patient(A;L) vSt patient(B;M).

2. (A;L) vL (B;M) i� patient(A;L) vLt patient(B;M).

Finally we state a result which is important when doing speci�cation and veri�cation in a

modular fashion. Namely, the patient operator commutes with the three operators on safe and

live (timed) I/O automata. First, let �St and �Lt denote the kernels of the preorders vSt and

vLt, respectively.
3

Proposition 2.38

Let (A;L) and (A1; L1); : : : ; (AN ; LN) be live I/O automata and let �X be one of �St and �Lt.

1. Let (A1; L1); : : : ; (AN ; LN) be compatible. Then,

patient((A1; L1)k � � � k(AN ; LN)) �X patient(A1; L1)k � � � kpatient(AN ; LN)

2. Let A � local(A). Then,

patient((A;L) n A) �X patient(A;L) n A

3. Let � be an action mapping applicable to A and let �� be � [ [� 7! �]. Then,

patient(�(A;L))�X ��(patient(A;L))

This concludes the introduction to the basic models of untimed and timed systems that we will

use in this work.

3The kernel of a preorder v is de�ned to be the equivalence � de�ned by x � y
4

= x v y ^ y v x.





Chapter 3

A Temporal Logic with Step

Formulas

Chapter 2 de�ned the models of distributed systems we use in this work. One component of the

models is the liveness condition which is a set of (timed) executions. Since such sets may be

in�nite (and each execution in the set may be an in�nite sequence), it is necessary to have some

way of denoting them without explicitly having to write down any executions. For this purpose

we shall use a temporal logic which will be able to express properties of (ordinary) executions of

safe (timed) I/O automata. Exactly how this temporal logic is used to specify liveness conditions

for timed and untimed systems will be one of the issues of Chapter 4. This chapter is devoted

to de�ning the temporal logic.

In [MP92], Manna and Pnueli develop a temporal logic and give several examples of its use.

For two reasons we cannot use their temporal logic directly. First, Manna and Pnueli evaluate

temporal formulas over sequences of states and not over sequences of alternating states and

actions. Second, they only deal with in�nite sequences of states whereas (even live) executions

of our systems may be �nite. In a section below we show, however, how our temporal logic is

related to that of [MP92].

The �rst reason suggests that maybe Lamport's Temporal Logic of Actions (TLA) [Lam91]

could be used. However, TLA is still state based in the sense that the semantics of a TLA

formula is a set of sequences of states. Actions are in TLA merely state changes. It is possible

that by having special TLA variables ranging over action names we could use TLA. However,

due to the inherent importance of actions in our approach, we chose to develop our own temporal

logic dealing with actions in a more intuitive manner.

The rest of this chapter is organized as follows: In order to be able to state and prove results in

this and later chapters, we start by introducing notions of stuttering and stuttering-equivalence

in Section 3.1. Sections 3.2{3.4 then introduce the basic building blocks of our temporal logic:

�rst, in Section 3.2, we introduce the notion of state functions and the special notion of state

predicates . Section 3.3 then describes the notion of state transition functions , which are state

functions that are evaluated over pairs of states. Finally, in Section 3.4, we introduce the

important notion of step formulas . A step formula is a boolean valued function which is evaluated

over steps. Thus, step formulas can express properties of both the states and the action of a

step.

Sections 3.5 and 3.6 now introduce the formulas of our temporal logic, i.e., the temporal

31
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formulas , by �rst, in Section 3.5, giving some basic temporal operators and then, in Section 3.6,

de�ning some important derived operators. In Section 3.7 we see how temporal formulas can be

seen as formulas over safe (timed) I/O automata, and Section 3.8 deals with satisfaction and

validity as well as validity with respect to safe (timed) I/O automata or sets of executions.

Sections 3.9 and 3.10 provide results, mainly about special stuttering-insensitive formulas,

which will prove very important in the next chapter.

Then, in Section 3.11 we compare out temporal logic with that of Manna and Pnueli [MP92].

Finally, in order for our temporal logic to be useful for proving correctness of the protocols in

the second part of this report, Section 3.12 provides certain rules of the logic. We do not in this

work attempt to develop a completely axiomatized temporal logic, but merely state the rules we

have found useful. Further research should investigate a basic set of rules of our temporal logic.

Even though, strictly speaking, executions are only de�ned with respect to speci�c automata,

we will in this chapter use the term \execution" to denote any alternating sequence of states

and actions. As usual we let � range over executions.

3.1 Stuttering

For technical reasons which will become clear below, we introduce a notion of stuttering steps

and stuttering-equivalence of executions.

Denote by � a special stuttering action. We will assume that � cannot be used as an ordinary

action of any safe (timed) I/O automaton. Below we will let A denote an arbitrary set of actions

and, hence, it will always be the case that � =2 A. A stuttering step is any triple of the form

(s; �; s), where s is a state.

Since � can never be an action of a safe (timed) I/O automaton A, it can never occur in

any execution of A. However, we will allow stuttering steps to occur in the more broad sense of

executions used in this chapter. As we shall see below, we will not be able in temporal formulas

to refer to the stuttering actions in executions, but it turns out to be important to be able to

evaluate temporal formulas over executions possibly containing stuttering.

De�ne \� to be the execution obtained by replacing every maximal (�nite or in�nite) sequence

s�s�s � � � in � by the single state s. Thus, the \ operator removes all stuttering. Now, de�ne

two executions �1 and �2 to be stuttering-equivalent , written �1 ' �2, if \�1 = \�2.

For any execution � = s0a1s1a2s2 � � � de�ne

b� 4

=

(
� if � is in�nite

s0a1s1a2s2 � � �ansn�sn�sn � � � if � is �nite and ends in sn

Thus, if � is �nite, b� is the in�nite execution obtained by concatenating in�nite stuttering at

the end of �. Clearly, � ' b�.
3.2 States, State Functions, and State Predicates

In Chapter 2 we de�ned the state space of a safe (timed) I/O automaton to be any set of

individual states. We did not assume any structure of these states but merely assumed that

states are names. In practical examples, especially those presented in this work, the state space

will be described as a mapping from state variables to their values. Thus, a safe (timed) I/O

automaton is assumed to contain a number of (typed) state variables, and the individual states

are then distinguished by having di�erent assignments of values to these state variables. For this
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reason the temporal logic de�ned below will reference states using variable names. This approach

is also used in [MP92, Lam91]. Below we will let V denote a set of variables. Furthermore, in

order to avoid the complexity of carrying around the types of the variables, we assume that the

type of a variable is given implicitly by the name of the variable. For example, i, j and k will

typically range over the natural numbers.

We assume that we have a language for writing state functions|using variables, constants,

standard operators, boolean connectives, and quanti�cation|that can be evaluated over states.

We will not give a language for writing down state functions since such languages are fairly

standard. We refer to, e.g., [MP92] for a more thorough treatment of state functions.

A state function over V is a state function whose free variables are a subset of V . If f is

a state function over V , then clearly f is also a state function over V [ V 0, where V 0 is any set

of variables. For any state function f over V and any V-state s (i.e., any assignment of proper

values to all variables in V), we let s[[f ]] denote the value of f in state s.

A state predicate over V is a boolean valued state function over V . Below we shall see that state

predicates are a special case of a more general notion of step formula.

3.3 State Transition Functions

A state transition function f over V is a state function over V [V�, where V� is the set obtained

by tagging each variable in V with �. State transition functions over V are evaluated over pairs

(s; s0) of V-states. The variables in V refer to state variables in s and variables in V� refer to

the corresponding state variables in s0. Formally, the value of a state transition function f over

V in a pair s; s0 of V-states, written (s; s0)[[f ]], is de�ned as

(s; s0)[[f ]]
4

= (s [ [x� 7! s0(x) j x 2 V ])[[f ]]

Action Functions and State Transition Predicates

An action function f over (V ;A) is a state transition function over V that yields a subset of

the actions in A when evaluated in any pair of V-states. Note, that the stuttering action � can

never be in the range of an action function.

A state transition predicate P over V is any boolean valued state transition function over V .

3.4 Step Formulas

A step formula over (V ;A) is a formula that can be evaluated over triples (s; a; s0), where s and

s0 are V-states and a 2 A[f�g, i.e., step formulas are evaluated over (possibly stuttering) steps.

There are two kinds of step formulas: those based on action functions and those based on

state transition predicates. We consider these two possibilities and in each case we de�ne what

it means for a step formula P to hold in (s; a; s0), written (s; a; s0) j= P .

If f is an action function over (V ;A), then hfi is a step formula over (V ;A), and we de�ne

(s; a; s0) j= hfi i� a 2 (s; s0)[[f ]]

Since � can never be in the range of f , the step formula hfi can never hold in a stuttering step.
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A state transition predicate P over V is also a step formula over (V ;A), where A is an arbitrary

set of actions, and we de�ne

(s; a; s0) j= P i� (s; s0)[[P ]] = true

3.4.1 State Predicates

A state predicate P over V can now be seen as a special case of a step formula, namely a state

transition predicate over V that does not mention any variables in V�. Thus, consistent with

the normal semantics of state predicates, we de�ne what it means for a state predicate P over

V to hold in a V-state s, written s j= P ,

s j= P i� (s; s)[[P ]] = true

When de�ning temporal formulas below, we deal with step formulas and thereby also state

predicates.

3.5 Temporal Formulas

An execution � = s0a1s1a2s2 � � � over (V ;A) is an execution where each si is a V-state and each

ai 2 A [ f�g such that if ai = � then si�1 = si. (Thus, stuttering actions can only occur in

executions if they are part of stuttering steps.) Below we de�ne the notion of temporal formulas

P over (V ;A), and what it means for such a formula to hold at position j 2 N in an execution �

over (V ;A), written (�; j) j= P . (If � is �nite, it is thought of as being extended with stuttering

such that we can also de�ne what it means for P to hold at positions j � j�j.)

A temporal formula over (V ;A) contains only free variables in V and can only mention actions

in A. Thus, a temporal formula over (V ;A) is also a temporal formula over (V [ V 0;A [ A0),

where V 0 is any set of variables and A0 is any set of actions.

Let � = s0a1s1a2s2 � � � below.

Step Formulas

Any step formula P over (V ;A) is also a temporal formula over (V ;A) and we have,

(�; j) j= P i� (0 � j < j�j and (sj ; aj+1; sj+1) j= P ) or

(j � j�j and (sj�j; �; sj�j) j= P )

Thus, for all positions j in � (except the last one if � is �nite), P has to hold for the step

starting in state sj . If � is �nite and j is greater than or equal to the last position in �, P has

to hold for the step that stutters the last state.

The Next Operator

If P is a temporal formula over (V ;A), then so is P , read next P .

(�; j) j=P i� (�; j + 1) j= P
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The Unless (Waiting-for) Operator

If P and Q are temporal formulas over (V ;A), then so is P W Q, read P unless (or waiting-for)

Q.

(�; j) j= P W Q i� either there exists a k � j, such that (�; k) j= Q,

and for every i with j � i < k, (�; i) j= P ,

or else for all i with i � j, (�; i) j= P

Quanti�cation

If P is a temporal formula over (V ;A), then (8x : P ) and (9x : P ) are temporal formulas over

(V n fxg;A).

For any V-state s denote by sxv , where v is assumed to be in the type of the variable x, the

(V [ fxg)-state obtained from s by either, if x 2 V , changing the value of x in s to v, or, if

x =2 V , extending s with a mapping from x to v. Thus, sxv
4

= (s n fxg) [ [x 7! v]. For any

execution � = s0a1s1a2s2 � � � over (V ;A), let �
x
v denote the execution (s0)

x
va1(s1)

x
va2(s2)

x
v � � � over

(V [ fxg;A). With this de�nition, we can de�ne the semantics of universal quanti�cation.

(�; j) j= 8x : P i� for all values v, (�xv; j) j= P

Thus, P must, for arbitrary (proper) values v, hold for the execution where x is assigned the value

v in every state. This is in [MP92] and [Lam91] known as quanti�cation over rigid variables since

the variable has a constant value during the execution. In [MP92] and [Lam91] quanti�cation

over a program variable x allows x to vary during the execution. We do not consider that kind

of quanti�cation in this work.

Existential quanti�cation is de�ned in a similar fashion.

(�; j) j= 9x : P i� there exists a value v such that (�xv ; j) j= P

Boolean Operators

We give the standard de�nition of implication and negation. The remaning boolean operators

will be derived from these below.

If P and Q are temporal formulas over (V ;A), then so is P =) Q, and we have

(�; j) j= (P =) Q) i� (�; j) j= P implies that (�; j) j= Q

If P is a temporal formula over (V ;A), then so is :P , and we have

(�; j) j= :P i� (�; j) 6j= P

Since we allow boolean operators in both state functions and temporal formulas, there might

be an ambiguity as to how such boolean operators should be interpreted in a given temporal

formula. For example, R
4

= (x = 1 =) y = 2) can be regarded as obtained by A) applying

the next operator to the step formula (x = 1 =) y = 2), or B) �rst applying the temporal

implies operator to the two step formulas x = 1 and y = 2, and then applying the next operator

to the result. It turns out that either interpretation leads to the same result as to whether the

formula holds at a certain position in an execution. However, to avoid confusion we adopt the

convention that step formulas in temporal formulas are always \as large as possible", thus, we

consider R in the example to be produced as described in case A).
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3.6 More Temporal Formulas

The rest of the temporal operators can be described syntactically from W , =) and :. Below

we assume that P and Q are temporal formulas over (V ;A). The formulas we de�ne are then

also temporal formulas over (V ;A).

More Boolean Operators

Disjunction and conjunction are de�ned in the standard way.

P _ Q
4

= (:P ) =) Q

P ^ Q
4

= :((:P ) _ (:Q))

The Inclusive Unless Operator

The W operator de�ned above requires a formula P to hold forever or, if another formula Q

holds at some point, at least up to but not necessarily including the point where Q starts to

holds. Often we need to express that P also holds in the state where Q starts to hold. For this

reason we introduce the inclusive unless operator Wi de�ned as

P Wi Q
4

= P W (P ^ Q)

The Always Operator

To express that a formula holds forever, we de�ne 2P , read always P .

2P
4

= P W false

The Eventually Operator

To express that sooner or later a temporal formula holds, we de�ne 3P , read eventually P .

3P
4

= :2(:P )

The (Inclusive) Until Operator

The unless operator expresses that a temporal formula P holds at least until another temporal

formula Q starts to hold, but it does not require that Q eventually holds. (If Q does not hold

eventually, P should hold forever). To express that Q is required to hold eventually, we de�ne

P U Q, read P until Q.

P U Q
4

= (3Q) ^ (P W Q)

There is also an inclusive version of the until operator.

P Ui Q
4

= (3Q) ^ (P Wi Q)

The Leads-To Operator

The leads-to operator is an important temporal operator which expresses that during an execu-

tion, if P holds at some point, then Q will hold at a later (or the same) point. Thus, P ; Q,

read P leads to Q, is de�ned as

P ; Q
4

= 2(P =) (3Q))
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3.6.1 Precedence

To avoid excessive use of parentheses, we use the following convention regarding the precedence

(binding power) of the temporal operators. The operators in the group

 2 3 :

have equal precedence but higher precedence than the operators

^ _

which, in turn, have equal precedence but higher precedence than the operators

=) W Wi U Ui ;

which have equal precedence.

3.7 Functions and Temporal Formulas over Automata

For any safe (timed) I/O automata A whose state space is de�ned by state variables, denote

by variables(A) the set of state variables of A. We say that f is a state function or state

transition function over A if f is a state function or state transition function over variables(A),

respectively. Similarly, f is said to be an action function over A if it is an action function over

(variables(A); acts(A)). This notion trivially extends to step formulas and temporal formulas.

3.8 Satisfaction and Validity

An execution � over (V ;A) is said to satisfy a temporal formula P over (V ;A), written � j= P ,

if and only if P holds at position 0 of �, thus

� j= P i� (�; 0) j= P

A temporal formula P over (V ;A) is said to be valid , written j= P , if every execution � over

(V ;A) satis�es P , thus

j= P i� for all � over (V ;A), � j= P

We also introduce a notion of validity relative to a set E of executions over (V ;A). A temporal

formula P over (V ;A) is then E-valid , written E j= P , if every execution of E satis�es P , thus

E j= P i� for all � 2 E, � j= P

This notion extends to A-validity , where A is a safe (timed) I/O automaton. Then, for any

temporal formula P over A, P is said to be A-valid , written A j= P , if every execution of A

satis�es P , thus

A j= P i� for all � 2 exec(A), � j= P
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3.9 Finite vs. In�nite Executions

Above � has ranged over in�nite as well as �nite executions. In this section we prove that the

question whether a temporal formula P holds at position j in execution � is equivalent to the

question whether P holds at position j in b�. This result is, of course, due to the semantics of

step formulas which has a special case dealing with stuttering steps.

Lemma 3.1

Let P be a temporal formula over (V ;A). Then, for all executions � over (V ;A) and all j � 0,

(�; j) j= P i� (b�; j) j= P

Proof

In Appendix B.

3.10 Stuttering-Insensitive Temporal Formulas

A temporal formula P over (V ;A) is stuttering-insensitive if, for arbitrary executions �1 and

�2 over (V ;A) with �1 ' �2, �1 j= P if and only if �2 j= P . Thus, if P is stuttering-insensitive

and holds for �, it holds for all executions that can be obtained from � by adding or removing

stuttering.

Below, in Proposition 3.4, we prove that certain types of temporal formulas are stuttering-

insensitive. However, �rst we need two technical lemmas.

Lemma 3.2

Let P be a temporal formula over (V ;A) and � = s0a1s1a2s2 � � � an arbitrary in�nite execution

over (V ;A). Then, for all j � 0 and all i � j

(�; j) j= P i� (j�ij�; i) j= P

Proof

In Appendix B.

Lemma 3.3

Let � and �0 be in�nite executions such that � ' �0. Then, for all k � 0, there exists a k0 � 0

such that

1. kj� ' k0j�
0

2. for all 0 � i0 < k0, there exists an i with 0 � i < k such that ij� ' i0 j�
0

Proof

In Appendix B.
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We can now characterize certain temporal formulas which are stuttering-insensitive. State pred-

icates are always stuttering-insensitive. This is because stuttering-equivalent executions will

always start in the same state. General state transition predicates are not, however, stuttering-

insensitive in general. This is due to the fact that stuttering-equivalent executions do not neces-

sarily agree on the �rst step. All state transition predicates that hold in all stuttering steps are,

however, stuttering-insensitive. Also, step formulas of the form hfi are not stuttering-insensitive,

but 3hfi is.

For the temporal operators, formulas of the form P are not stuttering-insensitive in gen-

eral. Assume for instance that �1 = s0a1s1a2s2 � � � and �1 = s0�s0a1s1a2s2 � � �. Then �1 ' �2.

Assume that (�1; j) j= P only if j = 1. Then �1 j= P but �2 6j= P . Thus, P is not stuttering-

insensitive. However, all other temporal operators yield stuttering-insensitive temporal formulas

when applied to stuttering-insensitive formulas.

Proposition 3.4

1. Every state predicate P is stuttering-insensitive.

2. If P is a state transition predicate such that for all states s, (s; �; s) j= P , then P is

stuttering-insensitive.

3. If f is an action function, then 3hfi is stuttering-insensitive.

4. If P and Q are stuttering-insensitive, then

(a) P W Q,

(b) 8x : P ,

(c) 9x : P ,

(d) :P , and

(e) P =) Q

are all stuttering-insensitive.

Proof

In Appendix B.

3.11 Comparison with Manna and Pnueli's Temporal Logic

The temporal logic of Manna and Pnueli [MP92] is state based in the sense that temporal for-

mulas are evaluated over sequences of states, i.e., with no actions interleaved. These sequences

(computations) must be in�nite; terminating computations are made in�nite by appending in-

�nite stuttering at the end.

As Lemma 3.1 indicates we could also have chosen to deal with in�nite executions only: any

temporal formula in our temporal logic is satis�ed by a �nite execution � if and only if the

temporal formula is satis�ed by the in�nite execution obtained by appending in�nite stuttering

at the end of �. This indicates that the use of in�nite computations only in [MP92] as opposed

to our use of both �nite and in�nite executions is not an important di�erence between the two

logics.
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The real di�erence lies in the important role of actions in our logic. We need to be able to

express properties of the actions occurring in executions. However, as the following discussion

indicates, several results of [MP92] carry over to our logic.

Consider any (in�nite) execution

� = s0a1s1a2s2 � � �

This execution can be encoded as the following state based computation:

� = (s0; a1; s1)(s1; a2; s2) � � �

Thus, each state of � is a triple. Speci�cally, states of � are assignments of the form:

[ x1 7! v1;

: : :

xn 7! vn;

act 7! a;

x01 7! v01;

: : :

x0n 7! v0n ]

where the variable assignments to x1; : : : ; xn represent the �rst state in a triple, the special

variable act holds the action of the triple, and the variable assignments to x01; : : : ; x
0
n represent

the last state in the triple.

Now, any valid temporal formula of [MP92] holds, in particular, for computations, where

each state has the form (s; a; s0) such that the last state of each triple coincides with the �rst

pair of the next triple. Thus, valid formulas of [MP92] hold speci�cally for all computations

that are encodings of our executions.

In order for such validity results of [MP92] to carry over to our temporal logic, it is important

that the operators of [MP92] that we also use have a similar semantics in the two temporal logics,

but this is easy to see. In fact, we have been guided by the temporal logic of [MP92] when de�ning

the semantics of our temporal operators.

Note, that since our notion of execution in the encoding into computations is more restrictive

than general computations, validities in our logic do not carry over to the temporal logic of

[MP92].

3.12 Rules and Meta Rules

Temporal logics, or any logic for that matter, usually contain inference rules which allow validities

to be inferred from other validities. This is however not the way we shall use our temporal logic

in the veri�cation examples in this work. Typically, we are given a particular execution � which

satis�es a temporal formula P and then have to show that � satis�es another temporal formula

Q. Thus, our proofs will be proofs of satisfaction as opposed to proofs of validity.

So, for our purpose inference rules are not very useful. Instead we shall use rules of the form

of valid implications.

j= P =) Q

Such a rule (together with the de�nition of implication) allows us to conclude � j= Q from

� j= P .
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We now present the rules that we use in our correctness proofs below. We do not present simple

rule like, e.g., manipulation of Boolean operators or rules like

Par: j= (2P ) =) P

but implicitly use such rules in our proofs. An approach like TLA [Lam91] has invested a lot of

e�ort in �nding rules that are typically used when proving systems correct. Such an investigation

still needs to be done for our temporal logic. Thus, we present the rules we have found a need

for in the particular examples presented in this work and leave the more general investigation

for further research. We do not prove that the rules are actually validities but we note that

this should follow easily from an encoding into the temporal logic of [MP92] as described in

Section 3.11. In the rules we let P (k) denote a formula with k free. Then, e.g., P (0) is the

formula obtained from P (k) by replacing all free occurrences of k with 0.

MP: j= (((P1 ^ : : : ^ Pk) =) Q) ^ P1 ^ � � � ^ Pk) =) Q

MP1: j= (2(P =) Q) ^ 3P ) =) 3Q

Pro1: j= (8k : 9k0 : (k > k0 ^ P (k)); P (k0)) =) 3P (0)

Pro2: j= (2(P =) (QW R)) ^ (2Q =) 3S) ^ ((Q ^ S); R)) =) (P ; R)

Ind: j= ((P (0); Q) ^ 8k : (k > 0 =) 9k0 : (k0 < k ^ (P (k); P (k0) _ Q)))) =)

8n : (P (n); Q)

Unl: j= (2(P =) :Q) ^ (P Wi Q)) =) 2P

Unl1: j= (2(P =) (QWi R)) ^ (2Q =) 3S)) =) 2(P =) (3R _ 23S))

The rules allow us to prove that a given execution satis�es a formula, provided it satis�es another

formula. We shall be using other rules, called meta rules , which cannot be stated as validities.

For instance, if � j= 2P and �0 is a su�x of �, then �0 j= 2P . Again, we present the meta rules

we have found useful in our particular examples, and leave an investigation of a \complete" set

of meta rules as well as proofs of our meta rules for further research. We note, however, that

many of the meta rules can be proved using Lemma 3.2.

Lemma 3.5

1. If � j= 2P and �0 is a su�x of �, then �0 j= 2P .

2. If, for all su�xes �0 of �, �0 j= P , then � j= 2P .

3. If � j= 3P , then there exists a su�x �0 of � such that �0 j= P .

4. If there exists a su�x �0 of � and �0 j= P , then � j= 3P .

5. If, for any proper constant v, � j= P (v), then � j= 8k : P (k).

6. If � j= 8k : P , then, for any proper constant v, � j= P (v).

7. If, for some proper constant v, � j= P (v), then � j= 9k : P (k).

8. If � j= 9k : P (k), then there exists a proper constant v such that � j= P (v).

Since, in our proofs below, we shall use the di�erent parts of Lemma 3.5 extensively, sometimes

we use several parts at once and then simply refer to the lemma and not the particular parts.
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This concludes the introduction to our temporal logic. The temporal logic is especially designed

so that formulas are evaluated over executions of safe (timed) I/O automata. This allows us

to use the temporal logic to specify liveness conditions of live (timed) I/O automata and use

the rules of the temporal logic in correctness proofs. Exactly how we use the temporal logic for

specifying liveness conditions is one of the issues of the next chapter.



Chapter 4

Specifying Systems

Chapter 2 introduced our basic models of timed and untimed systems. The models are entirely

semantic: they describe the operational meaning of a system, that is, how a system behaves

when executed.

A live I/O automaton consists of mathematical objects like sets and lists. However, these

sets and lists may be in�nite, which indicates that a direct enumeration is not feasible. Thus, we

need a language or some syntax , other than standard mathematical notation, for writing down

elements of our models. This chapter describes the syntax we use.

Furthermore, we describe how the e�ect of semantic operators (like parallel composition) is

reected in the syntax. For instance, we shall use the language of the temporal logic of Chapter 3

for specifying liveness conditions. We then show, e.g., that under certain circumstances if the

liveness of two systems are described by temporal formulas QA and QB , respectively, then the

liveness of the composed system is described by QA ^ QB . This is important since it enables us

to obtain a syntactic speci�cation of the composed system directly from the speci�cation of the

component systems.

The rest of this chapter is organized as follows. We �rst, in Section 4.1, deal with untimed

systems and then, in Section 4.2, show how timed systems can be speci�ed. Finally Section 4.3

proves important embedding results.

4.1 Specifying Untimed Systems

4.1.1 Safe I/O Automata

Safe I/O automata will be speci�ed using the precondition-e�ect style normally used for speci-

fying the I/O automata of [LT87, LT89].

This style assumes that the state space of the safe I/O automaton is described as a mapping

from state variable names to their values. Thus, the state space of a safe I/O automaton will

be described by listing the state variable names together with their types. The start states of

a safe I/O automaton are then speci�ed by giving the possible values the state variables can

assume initially.

As an example, consider the speci�cation of a one-place bu�er with the following functions:

a message m can be placed in the bu�er by the input action send(m) and removed from the

bu�er by the output action receiver(m). (The environment is thought of as sending messages

to the bu�er and receiving them from the bu�er.) If a new message is sent to the bu�er before

43
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the previous message is passed on to the receiver, a special overow ag is set, which leads to

an output action overow . Initially the bu�er is empty and the overow ag is not set. Thus,

the state space and start state of this safe I/O automaton is described as:

Variable Type Initially Description

buf Msg [ f?g ? The one-place bu�er. The symbol ? denotes the

empty bu�er.

of Bool false The overow ag. A value of true denotes

overow.

We denote by variables(A) the set of state variables of the safe I/O automaton A. We use the

normal record-notation for referencing the values of state variables in a given state. For instance,

the value of state variable buf in state s is denoted by s:buf . Formally, since s is a mapping

from variables to values, we have s:buf
4

= s(buf ).

The action signature of the one-place bu�er is described as follows:

Input:
send(m), m 2Msg

Output:
receive(m), m 2Msg

overow

Internal:
none

Thus, even though there might be in�nitely many actions (Msg might be in�nite), we use

only �nitely many action generator functions to describe these actions. (The action generator

functions are assumed to be disjoint and their union to be injective).

It now only remains to show how to de�ne the transition relation. Generally, for each action

generator function we de�ne one or more step rules . For example, in the case of the action

generator function send above we might want to de�ne two step rules based on some partition

of the messages Msg into Msg1 and Msg2. Then one step rule would de�ne steps labeled with

actions from fsend(m) j m 2 Msg1g, and the other would de�ne steps labeled with actions from

fsend(m) j m 2 Msg2g. The sets Msg1 and Msg2 could even be overlapping, in which case we

introduce nondeterminism of the send steps. A step rule has the form

agf (x; y; : : :)

Precondition:

P

E�ect:

E

where agf is an action generator function over the variables x, y, etc., P is a precondition, and

E is an e�ect clause.

The precondition P is a state predicate over the state variables of the system and the variables

x, y, etc.. A particular action, say agf (1; 2; : : :), is then enabled in state s, if P holds in s after

replacing free occurrences of x with 1, free occurrences of y with 2, and so on.

The e�ect clause E uses a Pascal-like style of assignments. Thus, the e�ect clause consists

of a list of assignments (one per line) of the form

v := e
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where v is a state variable and e is an expression (state function)|of the same type as v|over

the state variables and the variables x, y, etc.. Again, for a particular action agf (1; 2; : : :) we

must replace free occurrences of x with 1, free occurrences of y with 2, and so on, in the expression

e. If e0 denotes this instantiated expression, then if s is the state before the assignment, the

result of executing the assignment is the state s0 obtained by changing the value of v to s[[e0]].

Thus, s0
4

= (s n fvg)[ [v 7! s[[e0]]]. The result of executing a list of assignments

assignment1
� � �

assignmentn

is obtained by �rst executing assignment1, then assignment2, and so on. Thus, the state will be

changed in an sequential manner, but remember that this is just a convenient way of describing

the post-state of the step, namely the state after the last assignment. In TLA [Lam91] the

e�ects of steps are given by directly relating the values of the individual state variables in the

pre- and post-states, but we have chosen this more program-like notation.

To make some assignments conditional we use an if-then-else construct. An example of such

a construct is,

if P then

assignment1
assignment2

else

assignment3
assignment4

where P is a state predicate. The semantics is of course that if P holds when control has reached

the if-statement, then assignments 1 and 2 are executed (in that order); otherwise assignments

3 and 4 are executed. Note, that we use indentation to indicate the end of the if-then-else

construct. This means that

if P then

assignment1
assignment2

else

assignment3
assignment4

is di�erent from the previous if-then-else construct in that this construct �rst executes either

assignments 1 and 2 or assignment 3 depending on the value of P , and then, unconditionally,

executes assignment 4. We omit the else part of an if-then-else construct if it contains no

assignments.

The format of the e�ect-clause described so far does not allow nondeterminism for a particular

action. To specify such nondeterminism we will use optional assignments of the form

optionally x := e

with the meaning that nondeterministically either the assignment is or is not executed.

We could have been more formal in de�ning the syntax and semantics of assignments, etc.,

but since such syntax and semantics are standard, we have chosen to keep the exposition at a

more intuitive level.
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Finally, we note that step rules may contain variables which are not state variables or vari-

ables occurring in action generator functions. Such variables can be thought of as constants,

and we then e�ectively de�nes a step rule for each proper value of the constant. An example is

the following step rule, where n is such an extra variable.

agf (x; y; : : :)

Precondition:

: : : ^ 0 � n < 10
E�ect:

: : :

[76 v := x+ n2

: : :

Safe I/O automata must be input-enabled (cf. De�nition 2.1). This is ensured by omitting the

preconditions for input actions. This has the same meaning as a precondition of true . The

de�nition of the transition relation for the one-place bu�er now looks like:

send(m)

E�ect:
if buf 6= ? then

of := true

buf :=m

overow

Precondition:

of = true

E�ect:

of := false

receive(m)

Precondition:
buf = m

E�ect:

buf := ?

An operational way to read such a de�nition is as follows. The de�nition for send(m) says that

if the bu�er receives a new message m when buf is not empty, the overow bif of is set. After

that the new message is placed in buf (and a possible previous message will thus be overwritten).

The one-place bu�er can perform a receive(m) step if m is the message in the bu�er. The result

is to empty the bu�er. Finally, overow can be signaled if the overow ag of is set, and the

result is that of gets reset to false.

4.1.1.1 Operations on Safe I/O Automata

In Section 2.1.1 we de�ned the three operators (parallel composition, action hiding, and action

renaming) on safe I/O automata. Below we explain how the safe I/O automata resulting from

applying these operators can be described using syntax derived from the description of the safe

I/O automata to which the operators were applied.

We start by considering parallel composition of safe I/O automata. In De�nition 2.2, which

de�nes parallel composition, we de�ned a notion of compatibility for safe I/O automata. This

notion deals with guaranteeing that each action in a composed system be controlled by at most

one component and that internal actions be unique. De�nition 2.2 also says that the state space

of a composed system is the cartesian product of the component state spaces. This means that

if we want to reference the value of a certain state variable of one component, we �rst have to

extract the state of the component from the total state. This becomes even more cumbersome

if several levels of parallel composition are used. In order to avoid dealing with these not very

interesting details of extracting component states of component states, etc., we will extend the
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notion of compatibility to also include the requirement that the sets of state variables of the

component systems be disjoint. In this way a state s of the composed system can be uniquely

described by an assignment of values to the total set of state variables in the system such that

the value of any state variable x in s agrees with the value of x in the state of the component

to which x belongs. (More precisely, such a \at" assignment of values to state variables is

isomorphic to the state de�ne by the parallel composition operator in Chapter 2.) Thus, if si
describes the state of the ith component as a mapping from state variables of this component

to their values, the state of the composed system is described by the mapping s1 [ � � � [ sN .

Thus, below we shall use the following de�nition of compatibility (cf. De�nition 2.2): Safe

I/O automata A1; : : : ; AN are syntactically compatible if for all 1 � i; j � N with i 6= j

1. out(Ai) \ out(Aj) = ;

2. int(Ai) \ acts(Aj) = ;

3. variables(Ai) \ variables(Aj) = ;.

Note that the �rst two conditions have not changed. Below we let \compatibility" refer to

\syntactical compatibility".

This notion of compatibility trivially extends to live I/O automata (cf. De�nition 2.9). A

consequence of this way of looking at the state space of a composed system is that for compat-

ible safe I/O automata A1; : : : ; AN , the set of state variables of A = A1k � � �kAN is given by

variables(A) = variables(A1)[ � � � [ variables(AN ) .

Thus, the state variables (together with types and initial values) of a composed system can

be described by writing the lists of state variables for the components one below the other. In

a similar fashion it is easy to list the action signature of the composed system.

The question is, how can the description of the steps of the composed system be derived

from the description of the steps of the components? Remember, from De�nition 2.2, that in

each step of the composed system several components might participate (each executing state

changes described locally for the action of that step) whereas all other components do not

change their state. Also remember, that the action of the step is locally-controlled by at most

one component. That is, either the action is an input action for all participating components,

or it is locally-controlled by one component and an input action for the remaining participating

components. Then, if the step rules for send(m) in three components, one of which controls the

actions, are described by

send(m)

Precondition:

P1

E�ect:

E1

send(m)

E�ect:

E2

send(m)

E�ect:

E3

then the send(m) steps of the composed system can be described by

send(m)
Precondition:

P1

E�ect:
E1

E2

E3
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Note, that the order of the three e�ect clauses is unimportant since E1, E2, and E3 mention

disjoint sets of state variables.

Since the construction of the step rules of the composed system is so simple, we usually omit

the explicit construction and instead refer to the step rules of the components.

For action hiding the situation is much simpler (cf. De�nition 2.3). If, for instance, A is a

safe I/O automaton and A is a set of locally-controlled actions of A, the syntactic description

of A n A is obtained from the syntactic description of A by simply moving the action generator

functions describing output actions in A from the list of action generator function describing

output actions to the list of action generator functions describing internal actions. Of course,

if only some of the actions described by an action generator function are hidden, the action

generator function will have to be split. For example, if send-nat(i), where i 2 N, is an action

generator function for output actions of A, and A = fsend-nat(i) j i � 100g, then send-nat(i),

0 � i < 99, will be in the listing of output actions of A n A and send-nat(i), i � 100, will be in

the listing of internal actions of A n A.

Finally, for action renaming we use mappings of the form [send(m) 7! send-message(m) j

m 2 Msg] [ � � �, where, intuitively, each entire action generator function is being renamed. In

this case each action generator function is simply replaced according to the action mapping in

the syntactic descriptions of the action signature and the steps.

In the remainder of this work we shall assume that the syntactic changes to safe (timed) I/O

automata reecting semantic operations on these are well understood and concentrate on the

more interesting aspects of de�ning liveness.

4.1.2 Live I/O Automata

We specify a liveness condition L for a safe I/O automaton A indirectly in terms of a temporal

formula Q over A in the following way:

L = f� 2 exec(A) j � j= Qg (4.1)

That is, the liveness condition L consists of all the executions of A that satisfy a certain temporal

formula Q. Of course, we have to make sure that what we de�ne is in fact a liveness condition

for A, i.e., we must make sure that any �nite execution of A can be extended to an execution

in L. We shall refer to any temporal formula Q over A that de�nes a liveness condition L for

A as a liveness formula for A. Moreover, we call the liveness formula environment-free for A if

(A;L) is environment-free and thus is a live I/O automaton.

Given a liveness formula Q for A, we shall refer to the liveness condition de�ned by (4.1) as

the liveness condition for A induced by Q.

4.1.2.1 Operations on Live I/O Automata

In Section 2.1.2 we de�ned the three operators (parallel composition, action hiding, and action

renaming) on live I/O automata. If our approach with specifying liveness using temporal for-

mulas should have any practical relevance, it is important that the environment-free liveness

formulas inducing the liveness conditions for the resulting live I/O automata can be obtained

directly from the environment-free liveness formulas for the original live I/O automata.

This section proves that this is the fact given a few restrictions. As always we start by

the result for parallel composition, which requires three preliminary lemmas the �rst of which

embodies the complexity of the proof.
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To help us state and prove the results below, we �rst de�ne a notion of restriction of an execution

over (V ;A) to (V 0;A0). This notion is not similar to the notion of projection of executions to

automata as de�ned in Chapter 2 since it introduces stuttering steps for actions not in A0,

whereas the de�nition in Chapter 2 simply removes such steps. Below we shall, however, see

how the two notions are related.

For any V-state s, s � V 0, where V 0 � V , is the V 0-state obtained from the mapping s by

restricting the domain to V 0.

Then, for any execution � over (V ;A), de�ne � � (V 0;A0), where V 0 � V and A0 � A, to

be the execution over (V 0;A0) obtained from � by replacing each state s in � with s � V 0 and

replacing each action a =2 A0 with �.

Lemma 4.1

Let P be a temporal formula over (V 0;A0). Then, for all pairs (V ;A) with V 0 � V and A0 � A,

all executions � over (V ;A), and all j � 0,

(� � (V 0;A0); j) j= P i� (�; j) j= P

Proof

In Appendix B.

We now give an alternative characterization of the projection operator d on executions de�ned

in Section 2.1.1. For any execution � of a safe I/O automaton A1k � � � kAN , de�ne

� �Ai
4

= � � (variables(Ai); acts(Ai))

Then �dAi = \(� �Ai) and clearly we have �dAi ' � �Ai.

The following lemma is now a direct consequence of Lemma 4.1.

Lemma 4.2

Let A1; : : : ; AN be compatible safe I/O automata and let Q1; : : : ; QN be temporal formulas over

A1; : : : ; AN , respectively. Furthermore, let A = A1k � � �kAN and � 2 exec(A). Then, for all

1 � i � N and all j � 0,

(� �Ai; j) j= Qi i� (�; j) j= Qi

Proof

Since � is an execution over (variables(A); acts(A)) and each Qi is a temporal formula over

(variables(Ai); acts(Ai)) with variables(Ai) � variables(A) and acts(Ai) � acts(A), the result

follows directly from Lemma 4.1 and the de�nition of � �Ai.

Lemma 4.3

Let A1; : : : ; AN be compatible safe I/O automata and let Q1; : : : ; QN be stuttering-insensitive

temporal formulas over A1; : : : ; AN , respectively. Let A = A1k � � � kAN and � 2 exec(A). Then,

�dA1 j= Q1 and � � � and �dAN j= QN i� � j= Q1 ^ : : : ^ QN
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Proof

In Appendix B.

The following important result for parallel composition can now be proved.

Proposition 4.4

Let (A1; L1); : : : ; (AN ; LN) be compatible live I/O automata and let Q1; : : : ; QN be stuttering-

insensitive temporal formulas over A1; : : : ; AN , respectively, such that each Li is induced by Qi.

Let (A;L) = (A1; L1)k � � � k(AN ; LN). Then L is induced by Q1 ^ : : : ^ QN .

Proof

In Appendix B.

It is important to understand the role that stuttering-insensitivity plays in the proposition. In

the execution of a composed system, each step represents activity in a certain subset of the

components while all other components do not engage in the step at all. When projecting the

execution to any component, such steps where the component does not engage (i.e., stuttering

steps) are simply removed. Thus, when specifying the liveness for a component system (Ai; Li),

we might write Qi = 32(x
� = x + 1) and hence specify that in any live execution (of (Ai; Li))

there must be an in�nite su�x where x is incremented by one at each step. Now, in a live

execution � of the composed system, even though �dAi satis�es Qi, � itself does not necessarily

satisfy Qi since steps performed by other components might result in x being incremented only

in, e.g., every other step (but still, of course, incremented in every step where Ai engages). In the

proposition we solve the problem by simply ruling out Qi since it is not stuttering-insensitive.

However, in the example we might write the following stuttering-insensitive liveness condition

which captures the same idea: Q0
i = 23hacts(Ai)i ^ 32(hacts(Ai)i =) (x� = x + 1)). Thus,

Q0
i describes that there is a su�x, with in�nite activity of Ai, such that every time Ai engages,

x is incremented.

Attention is now turned to the simpler operations of action hiding and action renaming.

Proposition 4.5

Let (A;L) be a live I/O automaton such that L is induced by the temporal formula Q for A and

let A � local(A). Then the liveness condition of (A;L) n A is induced by Q.

Proof

In Appendix B.

Proposition 4.6

Let (A;L) be a live I/O automaton such that L is induced by the temporal formula Q for A, and

let � be an action mapping applicable to (A;L). De�ne �(Q) to be the temporal formula obtained

by applying � to every action function in Q. Then the liveness condition of �((A;L)) is induced

by �(Q).
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Proof

In Appendix B.

4.1.2.2 Fairness

Fairness is a special form of liveness, where the requirement is that each component of the

system be given fair turns. Fairness is important since it in most cases is environment-free,

and furthermore fairness is easy to implement on a physical system. Traditionally, two di�erent

kinds of fairness are considered: weak and strong fairness.

Weak fairness to a system component or, as we shall phrase it, to the set of actions repre-

senting this component says that actions from the set cannot be enabled inde�nitely without

being executed in�nitely often. Thus, for a safe I/O automaton A and a set C � acts(A), weak

fairness to C can be expressed as the temporal formula

WFA(C)
4

= 23hCi _ 23:enabledA(C) (4.2)

where enabledA(C) is a state predicate over A that holds in exactly the states of A where an

action in C is enabled. As usual we omit the subscript A and write WF (C) and enabled(C)

when A is clear.

We have in this work found it useful to use a slight variant of weak fairness in which actions

are only forced to occur if they are enabled inde�nitely and a special forcing condition is satis�ed

inde�nitely. This can be formalized as

WF (C; P )
4

= 23hCi _ 23:(enabled(C) ^ P ) (4.3)

where P is a state predicate (the forcing condition). When using this variant of weak fairness, it

is possible to separate the issues of when actions may occur (are enabled) and when they must

occur.

Strong fairness says that actions from a set must be executed in�nitely often if actions from

the set are enabled in�nitely often. In other words, we cannot ignore the actions forever if we

are given in�nitely many chances to execute them.

SF (C)
4

= 23hCi _ 32:enabled(C) (4.4)

Again, with a forcing condition this looks like

SF (C; P )
4

= 23hCi _ 32:(enabled(C) ^ P ) (4.5)

It is easy to see that temporal formulas of the form WF (C), WF (C; P ), SF(C), or SF(C; P ),

where C � acts(A) and P is a state predicate over A, are liveness formulas for A. But are they

environment-free? First of all environment-freedom must require that C consist of only locally-

controlled actions since otherwise we could be restricting the environment to perform certain

input actions. This condition turns out to be su�cient for weak fairness to be environment-free.

However, there is a problem with strong fairness as illustrated by the following example: Let L be

induced by the strong fairness formula SF(C) for A, where C � local(A). Then, for any in�nite

execution � in L it is the case that if C is enabled in in�nitely many states in �, then � contains

in�nitely many actions from C. Now suppose, in the game between system and environment,

that each environment move consists of two input actions: one that is bound to enable C and

one that is bound to disable C (thus no g function of a strategy can be de�ned to avoid that
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C is enabled between the input actions and disabled afterwards). In this situation no strategy

function f can be de�ned that can ever execute an action in C during such a game; in other

words, every time the system gets a chance to move, it is not possible to execute an action in C

since C is not enabled. Thus, any strategy de�ned on A will, when playing against this villainous

environment, generate an outcome in which C is in�nitely often enabled (namely between the

two input actions of every environment move) but in which only �nitely many C actions are

executed. Thus the outcome is not live and it follows that SF(C) is not environment-free.

However, strong fairness is environment-free if the safe I/O automaton in question is C-

persistent , where C � local(A). De�ne A to be C-persistent if for each state s of A in which C

is enabled and each step (s; a; s0) where a 2 in(A), C is enabled in s0. Thus, in any execution of

A, if C becomes enabled, C will stay enabled at least until a locally-controlled action has been

executed.

Lemma 4.7

Let A be a safe I/O automaton and let Qi, 1 � i � k, be temporal formulas over A of the form

WF (Ci), WF (Ci; Pi), SF (Ci), or SF (Ci; Pi), where

� Ci � local(A),

� Pi is a state predicate over A, and

� if Qi = SF(Ci) or Qi = SF(Ci; Pi), then A is Ci-persistent.

Then Q1 ^ � � � ^ Qk is an environment-free liveness formula for A.

Proof

This proof can be carried out similarly to the proof of Lamport and Abadi's Proposition 4

in [AL92b]. (Note that [GSSL93] argues that Lamport and Abadi's notion of �-machine-

realizability is similar to our notion of environment-freedom. Furthermore, �-invariance is similar

to our notion of C-persistence.)

Another important property of the fairness formulas is that they are stuttering-insensitive as

expressed by the following lemma.

Lemma 4.8

Any conjunction of temporal formulas of the form WF (C), WF (C; P ), SF(C), and SF (C; P )

is stuttering-insensitive.

Proof

Directly by the de�nition of the fairness formulas and Proposition 3.4.

4.2 Specifying Timed Systems

We now turn attention to timed systems. As above we �rst describe how to specify safe timed

I/O automata, and then how to use our temporal logic to specify liveness.
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4.2.1 Safe Timed I/O Automata

In this work we use two approaches for specifying safe timed I/O automata: explicit and implicit

speci�cation. Both approaches describe state spaces using state variables as in the untimed

setting. The de�nition of safe timed I/O automata (De�nition 2.17) describes that the time can

be obtained from any state by the :now mapping. Below we assume that

each safe timed I/O automaton has a special now state variable such that the :now

mapping simply returns the value of this state variable.

(We will not be able to see if s:now means the value of the now state variable in state s or the

result of applying the :now mapping to state s, but since, by de�nition, both interpretations

return the same time, this does not give rise to ambiguity.)

We denote by variables(A) the set of state variables (including now) of the safe timed I/O

automaton A. With this de�nition we can extend the de�nition of compatibility for safe timed

I/O automata (cf. De�nition 2.18) by requiring the state variables of the safe timed I/O automata

be almost mutually disjoint. (They sets of state variables must only have now in common): Safe

timed I/O automata A1; : : : ; AN are syntactically compatible if for all 1 � i; j � N with i 6= j

1. out(Ai) \ out(Aj) = ;

2. int(Ai) \ acts(Aj) = ;

3. variables(Ai) \ variables(Aj) = fnowg

As in the untimed setting we use, for brevity, the term \compatibility" to refer to syntactical

compatibility. The notion of compatibility trivially extends to live timed I/O automata (cf.

De�nition 2.26). As in the untimed setting we can now characterize the state of a composed

safe timed I/O automaton A = A1k � � �kAN by a \at" mapping from variables(A1) [ � � � [

variables(AN) (i.e., variables(A)) to values such that s is the state of A if s � variables(Ai) is

the state the component Ai. This characterization is possible since all components must agree

on real time (cf. De�nition 2.18).

Explicit Speci�cation

The explicit approach to specifying safe timed I/O automata is similar to our way of specifying

safe I/O automata: the state space and initial states are speci�ed by a list of typed state

variables with possible initial values (the now variable must assume the value 0 initially), the

action signature is speci�ed by using action generator functions to list input, output, and internal

actions and the special time-passage action �, and the steps are speci�ed using the precondition-

e�ect style.

Some of the state variables will typically be used to keep track of deadlines etc. Also, when

specifying the steps using this explicit approach, the time-passage steps will have to be speci�ed

explicitly. The precondition for the time-passage steps will usually state that time is not allowed

to pass beyond some deadlines representing times by which some other steps must have been

executed.

It must be proved that what we specify is in fact a safe timed I/O automaton (cf. De�ni-

tion 2.1). The axioms S1{S3 are easy to ensure: S1 is ensured by initializing now to 0, S2 is

ensured by leaving now unchanged in the step rules for visible and internal actions, and S3 is

ensured by requiring, in the step rule for �, that time will increase. S4 and S5 are ensured if
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time-passage steps change the now variable only and, from any time, time-passage steps to any

future time, possibly less than some deadline, is allowed.

As in the untimed setting it is easy to construct the syntactic description of a safe time I/O

automaton from the syntactic description of its components. The only di�erence compared to

the untimed setting is constructing the step-rule for � when dealing with the parallel composition

operator. In this case the preconditions of the step-rules for � have to be combined so that all

components allow the assignment to the (common) now variable. This turns out not to be a

problem in practice.

In some situations it is possible to avoid dealing explicitly with deadlines and time-passing when

specifying safe timed I/O automata. This approach is described next.

Implicit Speci�cation

In [MMT91] and [LA91] alternative models for timed systems are developed. We will refer to

these models by \MMT-models" derived from the names of the authors of [MMT91]. As shown

in [GSSL93] the model we use is a generalization of the MMT-models.

In the MMT-models the locally-controlled actions are partitioned into classes and each class

has associated with it a lower and upper time bound that represent the maximum and minimum

delay of the system when executing these actions.

While these models are su�cient for the speci�cation of many timed distributed systems,

they are not su�cient for all the examples presented later in this work. However, because the

MMT-models handle time implicitly, they tend to be easier to understand.

Instead of developing a theory for MMT-models, we will merely, whenever possible, use the style

of these models as a convenient way of specifying our safe timed I/O automata. So below we

de�ne a notion of MMT-speci�cation and show what such a speci�cation denotes in the model

of safe timed I/O automata.

De�nition 4.9 (MMT-Speci�cation)

An MMT-speci�cation AMMT is a triple where

� automaton(AMMT ) is a safe I/O automaton,

� sets(AMMT ) is a collection C1; : : : ; Ck of disjoint sets of locally-controlled actions of the

safe I/O automaton automaton(AMMT ), and

� boundmap(AMMT ) is a mapping that to each Ci 2 sets(AMMT ) associates a lower time

bound bl(Ci) 2 T and an upper time bound bu(Ci) 2 (T n f0g)[ f1g, such that bu(Ci) �

bl(Ci).

We let states(AMMT ), etc., refer to the corresponding components of the underlying safe I/O

automaton automaton(AMMT ).

The intuition behind an MMT-speci�cation is as follows: Let the triple (A; S; b) be an MMT-

speci�cation. A itself contains no information about time but we will now \execute" it in a world

that has a notion of real time and now . Suppose during execution that a set Ci 2 S becomes

enabled at time t. Then b speci�es that if Ci stays enabled, then an action from Ci must be
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executed in the time interval [t + bl(Ci); t + bu(Ci)]. Thus, the boundmap speci�es the time

interval (relative to t) in which an action from Ci must be executed, unless Ci becomes enabled

in the meantime. The same has to hold for Ci if it stays enabled after being executed; thus, in

this case a new legal interval is calculated based on the current time, bl(Ci), and bu(Ci). If Ci

becomes disabled, the timing constraints on Ci are removed.

To encode this idea into the model of safe timed I/O automata, we need to add several state

variables. For instance we need to add the variable now representing real time, and for each

of the sets Ci we need to add two variables: �rst(Ci) and last(Ci) to denote the �rst and last

(absolute) times at which an action from Ci must be executed. In the encoding in our model,

the �rst and last variables should then be set to the proper interval when the associated set

Ci becomes (re-)enabled and reset to \no timing constraints" (i.e., the interval [0;1]) when

Ci becomes disabled. Furthermore, actions in Ci are only allowed to be executed if real time

has passed beyond �rst(Ci). Additional time-passage steps also need to be added. These steps

should only change now and are not allowed to let time pass beyond any of the last bounds.

This idea is now formalized.

De�nition 4.10

Let AMMT be an MMT-speci�cation. Then time(AMMT ) is the safe timed I/O automaton A for

which

� each state s of states(A) consists of a state s:basic, which is a state of AMMT , augmented

with a new state variable now and, for each set Ci of sets(AMMT ), two new state variables

�rst(Ci) and last(Ci).

� start(A) consists of states s for which s:basic is a start state of AMMT , s:now = 0, and,

for each set Ci of sets(AMMT ), if Ci is enabled in s:basic then �rst(Ci) = bl(Ci) and

last(Ci) = bu(Ci); otherwise, �rst(Ci) = 0 and last(Ci) =1.

� (in(A); out(A); int(A)) = (in(AMMT ); out(AMMT ); int(AMMT )).

� ext(A) = ext(AMMT )[ f�g.

� (s; a; s0) 2 steps(A) i� the following conditions hold:

1. If a 2 acts(AMMT ) then

(a) s0:now = s:now .

(b) (s:basic; a; s0:basic) 2 steps(AMMT ).

(c) For each Ci 2 sets(AMMT ):

i. If a 2 Ci then s:�rst(Ci) � s:now .

ii. If Ci is enabled in both s:basic and s0:basic, and a =2 Ci, then s0:�rst(Ci) =

s:�rst(Ci) and s0:last(Ci) = s:last(Ci).

iii. If Ci is enabled in s0:basic and either a 2 Ci or Ci is not enabled in s:basic,

then s0:�rst(Ci) = s0:now + bl(Ci) and s0:last(Ci) = s0:now + bu(Ci).

iv. If Ci is not enabled in s0:basic then s0:�rst(Ci) = 0 and s0:last(Ci) =1.

2. If a = � then

(a) s0:now > s:now .

(b) s0:basic = s:basic.



56 4. Specifying Systems

(c) s0:now � s0:last(Ci) for all Ci 2 sets(AMMT ).

(d) s0:�rst(Ci) = s:�rst(Ci) and s0:last(Ci) = s:last(Ci) for all Ci 2 sets(AMMT ).

It is easy to see that time(AMMT ) is in fact a safe timed I/O automaton (cf. De�nition 2.17).

Speci�cally, axiom S1 is ensured since now is initialized to 0, S2 is ensured since, by explicit

construction, now does not change in steps labeled by visible or internal actions, S3 is ensured

since time-passage steps are explicitly required to increase time, and �nally S4 and S5 are easily

seen to be ensured since time(AMMT ) from any time allows time-passage to any future time less

than some deadline (expressed by the last variables) and time-passage steps do not change the

basic part of the state.

When using the implicit approach to specifying safe timed I/O automata, we use the

precondition-e�ect style of Section 4.1.1 to specify the underlying safe I/O automaton, and

then use standard notation (cf. Appendix A) to specify the sets of locally-controlled actions

and the boundmap. Based on the simple way the new variables (now and the �rst and last

variables) are manipulated, it is easy to construct an explicit description of time(AMMT ) based

on the description of AMMT .

We refer to Chapter 10 for an example of the implicit style of speci�cation.

4.2.2 Live Timed I/O Automata

If we were to follow the lines of the untimed section when specifying the liveness condition

for a safe timed I/O automaton, we should devise some temporal logic in which formulas were

evaluated over timed executions. However, we take a di�erent approach. The idea is that a

timed execution can be characterized by a set of (ordinary) executions each of which can be

thought of as a sampling of the timed execution. Thus, there exists a close relationship between

timed executions and (ordinary) executions of a safe timed I/O automaton.

We proceed by de�ning the notion of sampling. Then we de�ne what constitutes a sampling

characterization of a liveness condition, show how the operations on live timed I/O automata

are reected in the syntax describing the liveness of the live timed I/O automata, and �nally

discuss the notions of weak and strong fairness in the timed setting.

4.2.2.1 Sampling

All de�nitions and lemmas in this section are taken from [GSSL93] and are similar to those of

[LV93b].

Roughly speaking, an (ordinary) execution fragment can be regarded as \sampling" the state

information in a timed execution fragment at a countable number of points in time. Formally,

we say that an execution fragment � = s0a1s1a2s2 � � � of A samples a timed execution fragment

� = !0b1!1b2!2 � � � of A if there is a monotone increasing mapping f : N ! N such that the

following conditions are satis�ed.

1. f(0) = 0,

2. bi = af(i) for all i � 1,

3. aj = � for all j not in the range of f ,
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4. For all i � 0 such that !i is not the last trajectory in �,

(a) sj 2 rng(!i) for all j, f(i) � j < f(i+ 1),

(b) sf(i):now = ftime(!i), and

(c) sf(i+1)�1:now = ltime(!i).

5. If !i is the last trajectory in �, then

(a) sj 2 rng(!i) for all j, f(i) � j,

(b) sf(i):now = ftime(!i), and

(c) supfsj :now j f(i) � jg = ltime(!i).

In other words, the function f in this de�nition maps the (indices of) actions in � to corre-

sponding (indices of) actions in �, in such a way that exactly the non-time-passage actions of �

are included in the range. Condition 4 is a consistency condition relating the �rst and last times

for each non-�nal trajectory to the times produced by the appropriate steps of �. Condition 5

gives a similar consistency condition for the �rst time of the �nal trajectory (if any); in place of

the consistency condition for the last time, there is a \co�nality" condition asserting that the

times grow to the same limit in both executions.

The following two straightforward lemmas show the relationship between timed execution

fragments and ordinary execution fragments.

Lemma 4.11

Let A be a safe timed I/O automaton. If � 2 frag(A), then there is a timed execution fragment

� 2 t-frag(A) such that � samples �.

Lemma 4.12

Let A be a safe timed I/O automaton. If � 2 t-frag(A), then there is an execution fragment

� 2 frag(A) such that � samples �.

Recall that an execution fragment � is �nite if it is a �nite sequence. Furthermore, in the timed

setting, an execution fragment � is de�ned to be admissible if there is no �nite upper bound

on the :now values of the states in �. Finally, an execution fragment is said to be Zeno if it is

neither �nite nor admissible. We denote by exec�(A), exec1(A), and execZ(A) the sets of �nite,

admissible, and Zeno executions of a safe timed I/O automaton A.

Lemma 4.13

If � samples � then

1. � is �nite i� � is �nite,

2. � is admissible i� � is admissible, and

3. � is Zeno i� � is Zeno.
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It is possible to give a sensible de�nition of the timed trace of an ordinary execution fragment

of a safe timed I/O automaton. Namely, suppose � = s0a1s1a2s2 � � � is an execution fragment of

a safe timed I/O automaton A. First, de�ne ltime(�) to be the supremum of the :now values of

all the states in �. Then let � be the sequence consisting of the actions in � paired with their

times of occurrence:

� = (a1; s1:now)(a2; s2:now) � � � :

Then t-trace(�), the timed trace of �, is de�ned to be the pair

t-trace(�)
4

= (� � (vis(A)� T); ltime(�))

The following lemma shows that the de�nitions of timed traces for execution fragments and

timed execution fragments are properly related:

Lemma 4.14

If � samples � then t-trace(�) = t-trace(�).

4.2.2.2 Sampling Characterization of Liveness Conditions

As mentioned above we will characterize liveness conditions for safe timed I/O automata by a

set of ordinary executions.

Let A be a safe timed I/O automaton and let Ls � exec1(A) be a set of admissible (ordinary)

executions of A. Then Ls is said to be a sampling characterization of the set

L = f� 2 t-exec1(A) j for all �, if � samples �, then � 2 Lsg (4.6)

That is, L contains all those admissible timed executions of A that have all their samplings in

Ls. We say that L is induced by the sampling characterization Ls. Note, that the sampling

characterization Ls may contain \extra" executions that are not samplings of any timed execu-

tions in the set L induced by Ls. (Such an extra execution will be the sampling of some timed

execution �, but since all samplings of � are not in Ls, � is not in L.) If Ls coincides with

the set of all samplings of all timed executions in the set L induced by Ls, i.e., if Ls does not

contain any \extra" executions, then Ls is said to be minimal .

If the set L induced by Ls is a liveness condition for A, Ls is said to be a liveness sampling

characterization for A. Furthermore, if (A;L) is a live timed I/O automaton, i.e., if (A;L [

t-execZt(A)) is environment-free, Ls is said to be environment-free for A.

A liveness sampling characterization for some safe timed I/O automaton A can now be speci�ed

indirectly in exactly the same way we de�ned liveness conditions in the untimed setting using

temporal formulas. Thus, for any temporal formula Q over A we refer to the set

Ls = f� 2 exec1(A) j � j= Qg (4.7)

as the sampling characterization induced by Q. If Ls is a liveness sampling characterization for

A, Q is referred to as timed liveness formula for A. Furthermore, if Ls is environment-free or

minimal, Q is said to be environment-free or minimal , respectively. Finally, if L is induced by

Ls which, in turn, is induced by Q, we say that L is induced by Q.
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4.2.2.3 Operations on Live Timed I/O Automata

As in the untimed setting we now show how the liveness of live timed I/O automata obtained

as results of the operators (parallel composition, action hiding, and action renaming) is induced

by temporal formulas derived from the temporal formulas inducing the liveness of the live timed

I/O automata to which the operators were applied.

We start by looking at parallel composition and for that we need the following result, which

expresses the relationship between sampling and projection (d). We state the result without

proof (except we note that point 3 follows from points 1 and 2).

Lemma 4.15

Let A1; : : : ; AN be compatible safe timed I/O automata, A = A1k � � � kAN , and � 2 t-exec(A).

Then, for all 1 � i � N ,

1. if � samples �, then �dAi samples �dAi,

2. if �i sample �dAi, then there exists an � such that � samples � and �i = �dAi, and

3. f�dAi j � samples �g = f�i j �i samples �dAig.

Lemmas 4.2 and 4.3 above for safe I/O automata are actually valid for safe timed I/O automata

as well. We restate the timed version of Lemma 4.3.

Lemma 4.16

Let A1; : : : ; AN be compatible safe timed I/O automata and Q1; : : : ; QN be stuttering-insensitive

temporal formulas over A1; : : : ; AN , respectively. Let A = A1k � � � kAN and � 2 exec(A). Then,

�dA1 j= Q1 and � � � and �dAN j= QN i� � j= Q1 ^ : : : ^ QN

The main result for parallel composition of live timed I/O automata can now be stated and

proved.

Proposition 4.17

Let (A1; L1); : : : ; (AN ; LN) be compatible live timed I/O automata and Q1; : : : ; QN be stuttering-

insensitive temporal formulas over A1; : : : ; AN , respectively, such that each Li is induced by Qi.

Let (A;L) = (A1; L1)k � � � k(AN ; LN). Then L is induced by Q1 ^ : : : ^ QN .

Proof

In Appendix B.

Attention is now turned to the simpler operations of action hiding and action renaming.
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Proposition 4.18

Let (A;L) be a live timed I/O automaton such that L is induced by the temporal formula Q for

A and let A � local(A). Then the liveness condition of (A;L) n A is induced by Q.

Proof

In Appendix B.

Proposition 4.19

Let (A;L) be a live timed I/O automaton such that L is induced by the temporal formula Q for

A, and let � be an action mapping applicable to (A;L). De�ne �(Q) to be the temporal formula

obtained by applying � to every action function in Q. Then the liveness condition of �((A;L))

is induced by �(Q).

Proof

In Appendix B.

4.2.2.4 Fairness

The fairness formulas (Equations (4.2){(4.5)) presented in the untimed setting also express fair-

ness requirements in the timed setting. However, fairness in the timed setting is not necessarily

environment-free as in the untimed setting.

The problem is that environment-freedom can be jeopardized because the system may col-

laborate with the environment to generate non-Zeno-tolerant outcomes, as explained in Sec-

tion 2.2.2, regardless of the fairness formulas. We do not investigate further if weak and strong

fairness are environment-free for certain classes of safe timed I/O automata.

4.3 Embedding

In Section 2.3 we introduced the patient operator, which takes a safe or live I/O automaton as

argument and returns the corresponding safe or live timed I/O automaton, respectively, that

allows time to pass arbitrarily.

The patient operator on safe I/O automata (cf. De�nition 2.34) adds an extra state compo-

nent representing real time. When describing state spaces using state variables, we shall assume

that the patient operator adds an extra state variable called now (as well as it adds the extra

time-passage action �). Thus, we shall assume that now is not a state variable of any safe I/O

automaton to which we apply patient .

In Section 2.3 we described what it means to untime a timed execution of a patient safe

I/O automaton. A similar de�nition can be given for ordinary executions: let A be a safe I/O

automaton such that now =2 variables(A) and � =2 acts(A), and let Ap = patient(A). Then for

any � 2 exec(Ap), de�ne untime(�) to be the execution of A obtained from � by restricting

every state to the state variables of A and removing every time-passage step (which do not

change the state variables of A). Formally we have

untime(�)
4

= \(� � (variables(A); acts(A)))
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The following lemma, which we state without proof, says that the de�nition of untime(�) is

sensible.

Lemma 4.20

Let A be a safe I/O automaton such that now =2 variables(A) and � =2 acts(A), and let Ap =

patient(A). Then, for any � 2 t-exec(Ap) and � 2 exec(Ap), if � samples �, then untime(�) =

untime(�).

Lemma 4.21

Let A be a safe I/O automaton and let Q be a stuttering-insensitive temporal formula over A.

Furthermore, let Ap = patient(A). Then, for all � 2 exec(Ap),

untime(�) j= Q i� � j= Q

Proof

In Appendix B.

We can now state and prove the main result of this section, namely that stuttering-insensitive

temporal formulas carry over as environment-free liveness formulas when applying the patient

operator.

Proposition 4.22

Let (A;L) be a live I/O automaton with L induced by a stuttering-insensitive temporal formula

Q over A. Furthermore, let (Ap; Lp) = patient(A;L). Then, Lp is induced by Q, and Q is

minimal.

Proof

In Appendix B.

The minimality of Q as implied by the proposition will be important when proving that a live

timed I/O automaton correctly implements the patient version of a live I/O automaton. In fact,

as we shall see in the next chapter, our proof techniques in the timed setting requires liveness

conditions of certain live timed I/O automata to be induced by minimal temporal formulas.

This concludes this chapter. We have described how to specify safe (timed) I/O automata using

a precondition-e�ect language and how to use the temporal logic de�ned in Chapter 3 to specify

liveness. Furthermore, this chapter contains several results which state how operations in the

semantic model are reected in the syntax.

Before we start the protocol veri�cation example in Part II of this report, the next chapter

deals with presenting a number of proof techniques for proving correctness.





Chapter 5

Proof Techniques

The previous chapters have de�ned the general models of timed and untimed systems that we

will use in this work, and described our approach to specifying objects of these models. This

chapter is devoted to presenting a host of proof techniques for proving that one live (timed) I/O

automaton correctly or safely implements another live (timed) I/O automaton.

In Chapter 2 the notions of safe and correct implementation are de�ned. These notions are,

for both untimed and timed systems, based on the (timed) traces that the involved systems

can exhibit. For safe implementation, all (timed) traces are considered, whereas correct imple-

mentation restricts attention to live (timed) traces. The respective implementation notions are

then expressed as the subset relation between the sets of all/live (timed) traces of the involved

systems.

For untimed systems, reasoning about implementation directly in terms of trace inclusion

is not feasible. First of all, traces are de�ned implicitly as the traces of the executions, and

second, the liveness condition is de�ned implicitly as the set of executions that satisfy a certain

temporal formula. Thus, the sets of traces and live traces are not readily available but are

derived from safe I/O automata and temporal formulas. This calls for some proof techniques

that are based on this available information and that are sound with respect to the safe and

correct implementation relations.

The same discussion is valid for timed systems as well. In timed systems there is even an

extra level of indirection since the liveness condition of a live timed I/O automaton is usually

induced by a sampling characterization which, in turn, is induced by a temporal formula.

We �rst present, in Section 5.1, the proof techniques used for untimed systems, and then, in

Section 5.2, these techniques are extended to timed systems. Most of the techniques are taken

from [GSSL93] and are included here to make this report self-contained. We refer to [GSSL93]

for details and proofs.

5.1 Untimed Systems

This section presents a number of techniques for proving the safe implementation relation and

assist in proving the correct implementation relation for live I/O automata. The techniques

are based on simulations between safe I/O automata, which are sound with respect to the safe

implementation relation, i.e., trace inclusion.

However, as shown in [GSSL93], it turns out that a stronger result can be proved for the

simulation techniques: that there is a certain correspondence between the executions of the
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Example of a simulation. The actions a and b are external actions. The rest of the
transitions are thought of as labeled by internal actions.

involved safe I/O automata and not only between their traces. Since the liveness conditions of

live I/O automata are stated in terms of executions and not in terms of traces, this result, which

is called the Execution Correspondence Theorem, can form the basis for the proof of the correct

implementation relation, i.e., live trace inclusion.

Thus, when proving correct implementation between two live I/O automata, �rst a simulation

result between the safe I/O automata parts is proved and then this simulation result and the

Execution Correspondence Theorem are used to prove live trace inclusion.

We proceed by de�ning a number of simulation proof techniques and stating the Execution

Correspondence Theorem. Then we present the proof techniques for proving the safe and correct

implementation relations. Finally, we consider the additional proof technique of adding history

variables .

5.1.1 Simulation Proof Techniques

A simulation from A to B, where A and B are safe I/O automata with the same input and

output actions, is a relation between the states of A and the states of B such that certain

conditions hold. A will be referred to as the concrete, low-level , or implementation safe I/O

automaton, and B as the the abstract , high-level , or speci�cation safe I/O automaton.

Exactly what conditions a simulation must satisfy depend on the kind of simulation. Below

we de�ne notions of, e.g., forward and backward simulations which di�er in few but important

respects. Generally, however, two conditions must be satis�ed: �rst, the start states of the two

safe I/O automata must be related in a certain way, and, second, each step of the low-level safe

I/O automaton must \correspond" to a sequence of steps of the high-level safe I/O automaton.

The second condition is depicted in Figure 5.1. For each step of the low-level safe I/O

automaton, i.e., for each low-level step, there must exist a sequence of (high-level) steps of the

high-level safe I/O automaton between states related|by the simulation relation|to the pre-

and post-state of the low-level step, such that the sequence of high-level steps contains exactly

the same external actions as the low-level step. How the sequence of high-level steps is selected

depends on what kind of simulation is considered.

Below forward simulations, re�nement mappings, and backward simulations are de�ned. We

refer to [GSSL93, LV93a, Jon91] for more details about these simulations.

The simulation techniques use invariants of the safe I/O automata to restrict the steps

needed to be considered. De�ne an invariant of a safe I/O automaton A to be any set of states

of A that is a superset of the reachable states of A. Equivalently, an invariant can be de�ned to

be a state formula over A that is satis�ed by at least all reachable states of A. We will use the



5.1. Untimed Systems 65

two de�nitions interchangeably.

The following notational convention is used: if R is a relation over S1�S2 and s1 2 S1, then

R[s1] denotes the set fs2 2 S2 j (s1; s2) 2 Rg.

De�nition 5.1 (Forward simulation)

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and with invariants

IA and IB , respectively. A forward simulation from A to B, with respect to IA and IB, is a

relation f over states(A)� states(B) that satis�es:

1. If s 2 start(A) then f [s] \ start(B) 6= ;.

2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u 2 f [s]\ IB , then there exists an � 2 frag�(B) with

fstate(�) = u, lstate(�) 2 f [s0], and trace(�) = trace(a).

We write A �F B if there exists a forward simulation fromA toB with respect to some invariants

IA and IB. If f is a forward simulation from A to B with respect to some invariants IA and IB ,

we write A �F B via f .

A re�nement mapping is a special case of a forward simulation where the relation is a function.

Because of its practical importance (cf. [AL91]) we give an explicit de�nition.

De�nition 5.2 (Re�nement mapping)

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and with invariants

IA and IB , respectively. A re�nement mapping from A to B, with respect to IA and IB, is a

function r from states(A) to states(B) that satis�es:

1. If s 2 start(A) then r(s) 2 start(B).

2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and r(s) 2 IB, then there exists an � 2 frag
�(B) with

fstate(�) = r(s), lstate(�) = r(s0), and trace(�) = trace(a).

We write A �R B if there exists a re�nement mapping from A to B with respect to some

invariants IA and IB. If r is a re�nement mapping from A to B with respect to some invariants

IA and IB , we write A �R B via r.

In a forward simulation there has to be a sequence of high-level steps starting from any of

the high-level states related to the low-level pre-state and ending in some state related to the

low-level post-state. The word \forward" thus refers to the fact that the high-level sequence of

steps is constructed from any possible pre-state in a forward direction toward the set of possible

post-states.

In a backward simulation, on the other hand, there has to be a sequence of high-level steps

ending in any state related to the low-level post-state and starting in some state related to the

low-level pre-state. Thus, in a backward simulation the steps are constructed in a backward

direction.
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This di�erence between forward and backward simulations implies that they apply to dif-

ferent situations. In some cases a forward simulation is needed whereas other situations might

require a backward simulation. We shall see examples of this below.

We need the auxiliary de�nition of image-�niteness. A relation R over S1�S2 is image-�nite

if for each s1 2 S1, R[s1] is a �nite set.

De�nition 5.3 (Backward simulation)

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and with invariants

IA and IB , respectively. A backward simulation from A to B, with respect to IA and IB , is a

relation b over states(A)� states(B) that satis�es:

1. If s 2 IA then b[s]\ IB 6= ;.

2. If s 2 start(A) then b[s]\ IB � start(B).

3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u
0 2 b[s]\ IB, then there exists an � 2 frag

�(B) with

lstate(�) = u0, fstate(�) 2 b[s]\ IB, and trace(�) = trace(a).

We write A �B B if there exists a backward simulation from A to B with respect to some

invariants IA and IB. If furthermore the backward simulation is image-�nite, we write A �iB B.

If b is a backward simulation from A to B with respect to some invariants IA and IB , we write

A �B B (or A �iB B when b is image-�nite) via b.

In [LV93a] abstract notions of history variables [OG76, AL91] and prophecy variables [AL91] are

given in terms of history relations and prophecy relations. Below, in Section 5.1.5, we consider

history and prophecy variables and show how history variables can be added to a speci�cation.

5.1.2 Execution Correspondence

This subsection introduces the Execution Correspondence Theorem (ECT). The ECT states that

if any of the simulations from above has been proven from a low-level safe I/O automaton A to

a high-level safe I/O automaton B, then for any execution of A, there exists a \corresponding"

execution of B. In order to formalize this notion of correspondence, the notions of R-relation

and index mapping are �rst introduced.

De�nition 5.4 (R-relation and index mappings)

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R be

a relation over states(A) � states(B). Furthermore, let � and �0 be executions of A and B,

respectively.

� = s0a1s1a2s2 � � �

�0 = u0b1u1b2u2 � � �

We say that � and �0 are R-related , written (�; �0) 2 R, if there exists a total, nondecreasing

mapping1 m : f0; 1; : : : ; j�jg ! f0; 1; : : : ; j�0jg such that

1If, e.g., � is in�nite (j�j = 1), then the set f0; 1; : : : ; j�jg is supposed to denote the set of natural numbers

(not including 1), and i � j�j lets i range over all natural numbers but not 1.
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1. m(0) = 0,

2. (si; um(i)) 2 R for all 0 � i � j�j,

3. trace(bm(i�1)+1 � � �bm(i)) = trace(ai) for all 0 < i � j�j, and

4. for all j, 0 � j � j�0j, there exists an i, 0 � i � j�j, such that m(i) � j.

The mapping m is referred to as an index mapping from � to �0 with respect to R.

We write (A;B) 2 R if for every execution � of A, there exists an execution �0 of B such that

(�; �0) 2 R.

Thus, an index mapping maps indices of states in the low-level execution to indices of states in the

high-level execution. E�ectively, an index mapping maps low-level states to corresponding high-

level states such that the start states correspond (Condition 1), corresponding states are related

by R (Condition 2), and the external actions between two consecutive pairs of corresponding

states are the same at both the low level and the high level (Condition 3). Condition 4 ensures

that the high-level execution (�0) is not \too long", i.e., �0 must not extend beyond the last

state of �0 corresponding to a state in � (if such a state exists). (Note, that if � is �nite, then

�0 must also be �nite. However, even if � is in�nite, �0 can be �nite if the index mapping is

constant for indices above some bound.)

The Execution Correspondence Theorem of [GSSL93] is now stated. The theorem states that

if a relation S has been proved to be a forward simulation, re�nement mapping, or image-

�nite backward simulation from A to B, then for any execution of A, there exists an S-related

execution of B.

Theorem 5.5 (Execution Correspondence Theorem)

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B). Assume for

X 2 fF;R; iBg that A �X B via S. Then (A;B) 2 S.

5.1.3 Proving Safe Implementation

The simulation proof techniques presented above are sound proof techniques for the safe imple-

mentation relation. Before we state this result, we �rst show two results relating the traces of

R-related executions.

Lemma 5.6

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R be a

relation over states(A)� states(B). Assume that (�; �0) 2 R and let m be any index mapping

from � to �0 with respect to R. Then, for all 0 � i � j�j, trace(ij�) = trace(m(i)j�
0).

Since for any execution �, 0j� = � and any index mapping maps 0 to 0, the following corollary

is a direct consequence of Lemma 5.6.
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Corollary 5.7

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R be a

relation over states(A)� states(B). If (�; �0) 2 R, then trace(�) = trace(�0).

Using this corollary and ECT, soundness of the simulation techniques can be proved.

Theorem 5.8 (Soundness of simulations w.r.t. safe implementation)

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out (B). Assume for some

X 2 fF;R; iBg that A �X B. Then A vS B.

5.1.4 Proving Correct Implementation

A proof strategy for proving that a live I/O automaton (A;L) correctly implements another live

I/O automaton (B;M) is now described.

Lemma 5.9

Let (A;L) and (B;M) be live I/O automata with in(A) = in(B) and out(A) = out(B). Also,

let L and M be induced by the temporal formulas QL and QM , respectively. Assume for some

X 2 fF;R; iBg that A �X B via S. If, for all � 2 exec(A) and �0 2 exec(B) with (�; �0) 2 S,

� j= QL implies �0 j= QM , then (A;L) vL (B;M).

Proof

This lemma follows directly from a similar result in [GSSL93] and our de�nition of a liveness

condition being induced by a temporal formula.

Thus, we have the following proof strategy to prove that (A;L) is a correct implementation of

(B;M):

1. Prove a simulation S from A to B with respect to some invariants.

2. Assume � and �0 are arbitrary executions of A and B, respectively, and assume that

(�; �0) 2 S and � is live (i.e., � j= QL).

3. Prove that �0 is also live (i.e., �0 j= QM).

This will usually be a proof by contradiction. That is, assume that �0 is not live and show

that this leads to a contradiction. This strategy gives a nice way of splitting the proof

into cases since being live usually means satisfying a conjunction of conditions such that

not being live means not satisfying one (at least) of these conditions. Thus, each of the

conditions can be considered separately.

It is evident that this proof strategy needs a way to go from temporal formulas satis�ed by the

high-level execution �0 to temporal formulas satis�ed by the low-level execution �. For this

purpose we have identi�ed the following two basic lemmas which will prove very useful in the

veri�cation examples in Part II of this report.
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Lemma 5.10

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R be

a relation over states(A) � states(B). Furthermore, let � and �0 be executions of A and B,

respectively, such that (�; �0) 2 R. Finally, let C be a set of external actions (from the common

set of external actions). Then

� j= 32:hCi i� �0 j= 32:hCi

Proof

In Appendix B.

Lemma 5.11

Let A and B be safe I/O automata with in(A) = in(B) and out(A) = out(B) and let R

be a relation over states(A) � states(B). Furthermore, let � and �0 be executions of A and

B, respectively, such that (�; �0) 2 R. Assume P and Q are state formulas over A and B,

respectively, such that for all (s; u) 2 R, if u j= Q, then s j= P . Then,

if �0 j= 32Q then � j= 32P

Proof

In Appendix B.

5.1.5 History and Prophecy Variables

In [AL91] history and prophecy variables (together called auxiliary variables) are considered.

It is shown that even though it is not possible to �nd a re�nement mapping from A to B, by

adding appropriate auxiliary variables to A to obtain Aaux it is in most cases possible to �nd

a re�nement mapping from Aaux to B. Then, since A can be shown to be equivalent to (i.e.,

to have the same traces as) B, the soundness of re�nement mappings implies that A safely

implements B.

History variables are only allowed to record the past history of the system. Thus, history

variables are allowed in each step to be assigned a value based on all variables in the system, but

must not a�ect the enabledness of actions or the changes made to other (ordinary) variables.

As we shall see below, it is easy to syntacticly de�ne how to add a history variable to a system.

Prophecy variables, on the other hand, are much more complicated since they are allowed

to constrain the future behavior of the system. It is not possible to give a general syntactic

characterization of prophecy variables.

In [GSSL93] and [LV93a] abstract notions of history and prophecy variables are given in terms

of history relations and prophecy relations . A system Ah is then said to be obtained from A

by adding history variables if there exists a history relation from A to Ah, and similarly for

prophecy variables.

The motivation for adding, e.g., history variables to a speci�cation A to obtain Ah is to

ensure that a re�nement mapping from Ah to some high-level speci�cation B can be devised.

But since the existence of a history relation from A to Ah implies that there exists a forward
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simulation from A to Ah, it is clear that it is possible to de�ne a forward simulation directly

from A to B and thereby avoid mentioning Ah at all. (The forward simulation from A to B

would be the composition of the forward simulation from A to Ah and the re�nement mapping

from Ah to B.)

Similarly, instead of adding prophecy variables toA to get Ap such that a re�nement mapping

from Ap to B can be devised, it is possible to de�ne a backward simulation directly from A to

B.

Now, since history variables can be de�ned using simple syntactic constraints, they are almost

free to use, as opposed to prophecy variables. Thus, the approach we take is to use history

variables whenever possible (which allows us to use re�nement mappings instead of the more

complicated notion of forward simulations) but to use backward simulations instead of having

to deal with prophecy variables. Whether to use prophecy variables or backward simulations is

a matter of taste and probably amounts to the same e�ort. When using backward simulations

the complexity lies in showing that the relation is in fact a backward simulation, and when

using prophecy variables the complexity lies in showing that the variables are in fact prophecy

variables (which is done in a proof that actually has the avor of a backward simulation).

Syntactically Adding History Variables

Let there be given a syntactic description of a safe I/O automaton A. Then a history variable

h (=2 variables(A)) can be added to A to get Ah as follows:

1. To the list of state variables of A, append a line with h, the type of h, and the initial value

of h.

2. To each step rule of the form

name

Precondition:

P

E�ect:

E

an assignment to h may be added

name

Precondition:
P

E�ect:

E

h := e

where e is an expression that may mentions h as well as other variables. Note, that

the assignment to h may appear in an if-then-else statement, and that it may be moved

anywhere in the e�ect clause since this does not a�ect the assignment of values to any of

the other variables (but of course could a�ect the value assigned to h).

For step rules for input actions, which have no precondition, the assignment to the history

variable can be added to the e�ect clause similarly.
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We say that Ah is obtained from safe I/O automaton A by adding the history variable h if the

syntactic speci�cation of Ah can be obtained from that of A by 1) and 2). In this case, clearly Ah

is a safe I/O automaton and variables(Ah) = variables(A) [ fhg. The following simple lemma

states the close correspondence between the steps of A and Ah.

Lemma 5.12

Let Ah be obtained from A by adding history variable h. Then,

1. for each (s; a; s0) 2 steps(A) and each sh 2 states(Ah) with sh � variables(A) = s, there

exists a step (sh; a; s
0
h) 2 steps(Ah) such that s0h � variables(A) = s0, and

2. for each (sh; a; s
0
h) 2 steps(Ah), (sh � variables(A); a; s

0
h � variables(A)) 2 steps(A).

Lemma 5.13

Let Ah be obtained from A by adding history variable h. Then,

1. for each execution � 2 exec(A), there exists an execution �h 2 exec(Ah) such that �h �A =

�, and

2. for each execution �h 2 exec(Ah), �h �A 2 exec(A).

Proof

In Appendix B.

Instead of proving the existence of a history relation from A to Ah we directly prove that A

safely implements Ah and vice versa.

Lemma 5.14

Let Ah be obtained from A by adding history variable h. Then A vS Ah and Ah vS A.

Proof

In Appendix B.

We now turn attention to live I/O automata. Let (A;L) be a live I/O automaton and let Ah be

a safe I/O automaton obtained from A by adding history variable h. De�ne

Lh
4

= f�h 2 exec(Ah) j �h �A 2 Lg

Then (Ah; Lh) is a live I/O automaton since any environment-free strategy (g; f) for (A;L) can

be trivially extended to an environment-free strategy (gh; fh) for (Ah; Lh) by letting gh and fh
be like g and f except that they make arbitrary (possible) assignments to the history variable.

We say that (Ah; Lh) is a live I/O automaton obtained from (A;L) by adding history variable

h.
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Lemma 5.15

Let (Ah; Lh) be obtained from (A;L) by adding history variable h. Then (A;L) vL (Ah; Lh) and

(Ah; Lh) vL (A;L).

Proof

In Appendix B.

The �nal lemma of this section deals with liveness formulas.

Lemma 5.16

Let (Ah; Lh) be obtained from (A;L) by adding history variable h, and assume that L is induced

by Q. Then Lh is induced by Q.

Proof

In Appendix B.

We can now turn attention to similar techniques to be used in the timed setting.

5.2 Timed Systems

The structure of this section is similar to the structure of Section 5.1.

5.2.1 Timed Simulation Proof Techniques

There are only two minor di�erences between the simulation relations presented here and the

simulation relations from the untimed case. First, states related by a simulation relation must

have the same time. Second, since the trace operator on execution fragments does not adequately

abstract from time-passage actions, the simulation techniques below use a notion of visible trace.

For any timed automaton A and any execution fragment � of A, de�ne the visible trace of

�, written vis-traceA(�), or just vis-trace(�) when A is clear from context, to be � � vis(A).

Similarly, given any sequence of actions �, de�ne the visible trace of �, written vis-traceA(�),

or just vis-trace(�) if A is clear from context, to be � � vis(A).

We now introduce the notions of timed forward simulations, timed re�nement mappings, and

timed backward simulations.

De�nition 5.17 (Timed forward simulation)

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and with

invariants IA and IB , respectively. A timed forward simulation from A to B, with respect to IA
and IB, is a relation f over states(A)� states(B) that satis�es:

1. If u 2 f [s] then u:now = s:now .

2. If s 2 start(A) then f [s] \ start(B) 6= ;.
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3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u 2 f [s]\ IB , then there exists an � 2 frag�(B) with

fstate(�) = u, lstate(�) 2 f [s0], and vis-trace(�) = vis-trace(a).

Write A �tF B if there exists a timed forward simulation from A to B with respect to some

invariants IA and IB . If f is a timed forward simulation from A to B with respect to some

invariants IA and IB, we write A �tF B via f .

De�nition 5.18 (Timed re�nement mapping)

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and with

invariants IA and IB , respectively. A timed re�nement mapping from A to B, with respect to

IA and IB , is a function r from states(A) to states(B) that satis�es:

1. r(s):now = s:now .

2. If s 2 start(A) then r(s) 2 start(B).

3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and r(s) 2 IB, then there exists an � 2 frag�(B) with

fstate(�) = r(s), lstate(�) = r(s0), and vis-trace(�) = vis-trace(a).

Write A �tR B if there exists a timed re�nement mapping from A to B with respect to some

invariants IA and IB. If r is a timed re�nement mapping from A to B with respect to some

invariants IA and IB, we write A �tR B via r.

De�nition 5.19 (Timed backward simulation)

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and with

invariants IA and IB , respectively. A timed backward simulation from A to B, with respect to

IA and IB , is a relation b over states(A)� states(B) that satis�es:

1. If u 2 b[s] then u:now = s:now .

2. If s 2 IA then b[s]\ IB 6= ;.

3. If s 2 start(A) then b[s]\ IB � start(B).

4. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u0 2 b[s0] \ IB , then there exists an � 2 frag
�(B)

with lstate(�) = u0, fstate(�) 2 b[s]\ IB , and vis-trace(�) = vis-trace(a).

Write A �tB B if there exists a timed backward simulation from A to B with respect to

some invariants IA and IB. If furthermore the timed backward simulation is image-�nite, write

A �itB B. If b is a timed backward simulation from A to B with respect to some invariants IA
and IB , we write A �tB B (or A �itB B when b is image-�nite) via b.
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5.2.2 Execution Correspondence

As in the untimed case, the simulation relations imply a certain correspondence between the

ordinary executions of the involved timed automata. The following de�nition formalizes this

correspondence, called timed R-relation, and de�nes a notion of timed index mapping . The

de�nition is similar to De�nition 5.4 in the untimed model; the only di�erences are that the R

relation must relate states with the same time and that the de�nition below deals with visible

traces as opposed to traces, i.e., the same di�erences as in the simulations.

De�nition 5.20 (Timed R-relation and timed index mappings)

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B), and

let R be a relation over states(A) � states(B) such that if (s; u) 2 R, then s:now = u:now .

Furthermore, let � and �0 be (ordinary) executions of A and B, respectively.

� = s0a1s1a2s2 � � �

�0 = u0b1u1b2u2 � � �

Let � and �0 be timed R-related , written (�; �0) 2t R, if there exists a total, nondecreasing

mapping m : f0; 1; : : : ; j�jg ! f0; 1; : : : ; j�0jg such that

1. m(0) = 0,

2. (si; um(i)) 2 R for all 0 � i � j�j,

3. vis-trace(bm(i�1)+1 � � � bm(i)) = vis-trace(ai) for all 0 < i � j�j, and

4. for all j, 0 � j � j�0j, there exists an i, 0 � i � j�j, such that m(i) � j.

The mapping m is referred to as a timed index mapping from � to �0 with respect to R.

Write (A;B) 2t R if for every execution � of A, there exists an execution �0 of B such that

(�; �0) 2t R.

Now the Execution Correspondence Theorem for the timed case [GSSL93] can be stated.

Theorem 5.21 (Execution Correspondence Theorem)

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out (B). Assume

for X 2 ftF; tR; itBg that A �X B via S. Then (A;B) 2t S.

5.2.3 Proving Safe Timed Implementation

Due to the fact that timed R-related executions have the same time in related states and have

a correspondence between the their visible traces, it is possible to prove that timed R-related

executions have the same timed traces.

Lemma 5.22
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Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and let R

be a relation over states(A)� states(B) such that if (s; u) 2 R then s:now = u:now. Then, if

(�; �0) 2t R, then t-trace(�) = t-trace(�0).

The soundness of the timed simulations with respect to the timed safe preorders can now be

stated.

Theorem 5.23 (Soundness of timed simulations w.r.t. safe timed implementation)

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B). Assume

for some X 2 ftF; tR; itBg that A �X B. Then A vSt B.

5.2.4 Proving Correct Timed Implementation

We can prove the following result which is similar to Lemma 5.9 in the untimed setting. This

lemma will form the basis of any proof of correct implementation in the timed setting.

Lemma 5.24

Let (A;L) and (B;M) be live timed I/O automata with in(A) = in(B) and out (A) = out(B).

Also, let L and M be induced by QL and QM, respectively, and assume that QM is minimal.

Assume for some X 2 ftF; tR; itBg that A �X B via S. If, for all � 2 exec1(A) and �0 2

exec1(B) with (�; �0) 2 S, � j= QL implies �0 j= QM , then (A;L) vLt (B;M).

Proof

This lemma directly follows from a similar result in [GSSL93] and our de�nition of a sampling

characterization being induced by a temporal formula.

Lemma 5.24 can be used to prove the correct timed implementation relation between two live

timed I/O automata in a manner similar to the way Lemma 5.9 is used in the untimed model.

However, one must �rst prove that the high-level liveness condition is induced by a minimal

timed liveness formula.

The following lemmas correspond to Lemmas 5.10 and 5.11 above.

Lemma 5.25

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out (B) and let R be

a relation over states(A)� states(B) such that if (s; u) 2 R, then s:now = u:now. Furthermore,

let � and �0 be executions of A and B, respectively, such that (�; �0) 2 R. Finally, let C be a

set of visible actions (from the common set of visible actions). Then

� j= 32:hCi i� �0 j= 32:hCi
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Proof

Similar to the proof of Lemma 5.10.

Lemma 5.26

Let A and B be safe timed I/O automata with in(A) = in(B) and out(A) = out(B) and let R be

a relation over states(A)� states(B) such that if (s; u) 2 R, then s:now = u:now. Furthermore,

let � and �0 be executions of A and B, respectively, such that (�; �0) 2 R. Assume P and Q are

state formulas over A and B, respectively, such that for all (s; u) 2 R, if u j= Q, then s j= P .

Then,

if �0 j= 32Q then � j= 32P

Proof

Similar to the proof of Lemma 5.11.

5.2.5 History and Prophecy Variables

As in the untimed setting it is possible to add history variables to safe and live timed I/O au-

tomata. As above we only deal with history variables and adhere to timed backwards simulations

instead of using prophecy variables.

Syntactically Adding History Variables

The syntactic rules for adding history variables to a safe timed I/O autoamaton are equal to

the same rules in the untimed setting. However, in the timed setting, we do not allow history

variables to be updated in time-passage steps since otherwise the resulting object would not

necessarily be a safe timed I/O automaton (that is, the trajectory axiom S5 of De�nition 2.17

could be violated). Thus, a history variable h (=2 variables(A)) can be added to a safe timed

I/O automaton A to get Ah by following the two rules in Section 5.1.5 with the restriction

that h must not be changed in the step rule for the time-passage action �. We say that Ah is

obtained from A by adding the history variable h. Clearly Ah is a safe timed I/O automaton

and variables(Ah) = variables(A)[ fhg.

In previous chapters we have de�ned how to restrict ordinary executions to subsets of state

variables and actions. Below we need a similar result for timed executions, however, we need

only deal with restriction to a subset of the state variables. So, let � = !0a1!1a2!2 � � � be a timed

execution of a safe timed I/O automaton A. Then, for any set V � variables(A), de�ne � �V to

be the sequence !00a1!
0
1a2!

0
2 � � �, where for each index i and each t 2 dom(!i), !

0
i(t) = !i(t) � V .

Thus, informally � �V is obtained from � by restricting all states in the range of all trajectories

to V . If Ah is obtained from A by adding history variable h and �h 2 t-exec(Ah), we let �h �A

be a shorthand for �h � variables(A).

As in the untimed case, we have the following lemmas.

Lemma 5.27

Let Ah be obtained from A by adding history variable h. Then,
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1. for each (s; a; s0) 2 steps(A) and each sh 2 states(Ah) with sh � variables(A) = s, there

exists a step (sh; a; s
0
h) 2 steps(Ah) such that s0h � variables(A) = s0, and

2. for each (sh; a; s
0
h) 2 steps(Ah), (sh � variables(A); a; s

0
h � variables(A)) 2 steps(A).

Lemma 5.28

Let Ah be obtained from A by adding history variable h. Then,

1. for each timed execution � 2 t-exec(A), there exists a timed execution �h 2 t-exec(Ah)

such that �h �A = �, and

2. for each timed execution �h 2 t-exec(Ah), �h �A 2 t-exec(A).

Proof

In Appendix B.

These lemmas allow us to prove that a safe timed I/O automaton A is a safe implementation of

any safe timed I/O automaton Ah obtained by adding history variable h to A, and vice versa.

Lemma 5.29

Let Ah be obtained from A by adding history variable h. Then A vSt Ah and Ah vSt A.

Proof

Similar to the proof of Lemma 5.14 by using Lemma 5.28.

Now, let (A;L) be a live timed I/O automaton and let Ah be a safe timed I/O automaton

obtained from A by adding history variable h. De�ne

Lh
4

= f�h 2 t-exec1(Ah) j �h �A 2 Lg

Then (Ah; Lh) is a live timed I/O automaton since any environment-free strategy (g; f) for (A;L[

t-execZt(A)) can be trivially extended to an environment-free strategy (gh; fh) for (Ah; Lh [

t-execZt(Ah)) by letting gh and fh be like g and f except that they make arbitrary (possible)

assignments to the history variable. We say that (Ah; Lh) is a live timed I/O automaton obtained

from (A;L) by adding history variable h.

Lemma 5.30

Let (Ah; Lh) be obtained from (A;L) by adding history variable h. Then (A;L) vLt (Ah; Lh) and

(Ah; Lh) vLt (A;L).

Proof

Similar to the proof of Lemma 5.15 by using Lemma 5.28.
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Before we can prove the �nal lemma, which deals with timed liveness formulas, we state the

following trivial result without proof.

Lemma 5.31

Let Ah be obtained from A by adding history variable h. Furthermore let �h and �h range

over exec(Ah) and t-exec(Ah), respectively, and let � and � range over exec(A) and t-exec(A),

respectively. Then,

1. if �h samples �h then �h �A samples �h �A, and

2. if � samples �h �A, then there exists an �h such that � = �h �A and �h samples �h.

Lemma 5.32

Let (Ah; Lh) be obtained from (A;L) by adding history variable h, and assume that L is induced

by Q. Then Lh is induced by Q.

Proof

In Appendix B.

This concludes the theoretical part of the report. We now turn attention to the veri�cation

example of proving correctness of two solutions to the at-most-once message delivery problem.
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Chapter 6

Speci�cation S

This chapter describes the top-level speci�cation of the \at-most-once message delivery" prob-

lem. The speci�cation will be given in terms of a live I/O automaton. The objective of the S

level is to give a clear, easy-to-understand speci�cation that can easily be checked to have the

desirable behavior.

The at-most-once message delivery problem is that of delivering a sequence of messages

submitted by a user at one location to another user at another location. Ideally, we would like

to insist that all messages be delivered in the order in which they are sent, each exactly once,

and that an acknowledgement be returned for each delivered message.1

Unfortunately, it is expensive to achieve these goals in the presence of failures (e.g., node

crashes). In fact, it is impossible to achieve them at all unless some change is made to the

stable state (i.e., the state that survives a crash) for each message. To permit less expensive

solutions, we weaken the statement of the problem slightly. We allow some messages to be lost

when a node crash occurs; however, no messages should otherwise be lost, and those messages

that are delivered should not be reordered or duplicated. (The speci�cation is weakened in this

way because message loss is generally considered to be less damaging than duplicate delivery.)

Now it is required that the user who sent the message receive either an acknowledgement that

the message has been delivered, or in the case of crashes, an indication that the message might

have been lost.

Even though our speci�cation S is centralized (i.e., has no distributed structure), the external

actions of S can be partitioned into actions connected to the user at the sender side and actions

connected to the user at the receiver side. This user interface, which will be the same for all

subsequent implementations, is depicted in Figure 6.1, where the speci�cation S is shown as a

\black box".

A user can send a messagem to the system by issuing a send msg(m) action, and the system

can pass a message m to the user at the receiver end by means of a receive msg(m) action.

Crashes at the sender and receiver sides are modeled as inputs crashs and crashr , respectively
2 ,

and the corresponding recovery actions are outputs recovers and recoverr . If a crashs but not

yet a recovers action has occurred, we say the the sender side is crashed or equivalently that

it is in recovery phase. Correspondingly for the receiver side. During a crash messages can be

lost. This is in S modeled by a lose(I) actions (not depicted in Figure 6.1 since it is internal).

1Our de�nition of at-most-once message delivery is di�erent from what some people call at-most-once message

delivery in that we include acknowledgements and require messages to be delivered in order.
2We will use subscripts s and r on actions and state variables to indicate which are related to the sender and

receiver sides, respectively.
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Figure 6.1

The speci�cation S as a "black box"

Finally, there is a simple acknowledgement mechanism incorporated into the speci�cation.

An action ack(b), where b is a Boolean, noti�es the user at the sender side about the status of

the last message sent. If acknowledgements are needed for each message, the user must wait for

acknowledgement before sending the next message. Our simpler acknowledgement mechanism

reects the way typical low-level protocols work. Thus, if the user sends a sequence of messages

m1; : : : ; mn without waiting for acknowledgement between each pair of messages, a subsequent

acknowledgement will be for message mn. Ideally, an ack(true) should be issued if the last

message sent has been successfully delivered to the receiver, and an ack(false) should be issued

if the last message has been lost during a crash. This is, again, impossible to obtain in a

distributed implementation unless some changes are made to the stable state for each message,

so we will use a weaker acknowledgement mechanism: if an ack(true) is issued, the last message

has been successfully receiver. If, on the other hand, an ack(false) is issued, the only thing the

user can infer is that a crash has occurred. Thus, even in the case of negative acknowledgement,

the last message might have been successfully delivered since all messages are not necessarily

lost during crashes.

6.1 The Speci�cation of S

We now de�ne the live I/O automaton representing the speci�cation S. We will let S represent

both the name of this level of development and the name of the live I/O automaton.

We specify S by de�ning its components (cf. De�nitions 2.1 and 2.8). We refer to the safe

I/O automaton part of S by AS, and to the liveness part by LS. Thus, S = (AS; LS). LS will be

speci�ed implicitly by an environment-free liveness formula QS for AS.

6.1.1 States and Start States

In S and the lower level protocols we assume that messages are taken from a setMsg. We require

that nil =2 Msg but assume no other properties of Msg .

The state space of S is made up of four state variables as shown in the following table, which

furthermore shows the types and initial values of the state variables. The status variable ranges
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over the set

Stat
4

= Bool [ f?g

Variable Type Initially Description

queue Msg� " The list of messages sent but not yet delivered.

recs Bool false true i� the sender side has crashed and not yet

recovered.

recr Bool false true i� the receiver side has crashed and not yet

recovered.

status Stat false Indicates the status of the last message sent. The

special value '?' indicates that the last message

sent is still in queue and no crashes have occurred

since it was sent.

6.1.2 Actions

The set of actions of S consists of the input and output actions from Figure 6.1 plus the internal

lose(I) action.

Input:
send msg(m), m 2 Msg

crashs

crashr
Output:

receive msg(m), m 2Msg

ack(b), b 2 Bool

recovers

recoverr
Internal:

lose(I), I � N

6.1.3 Steps

The transition relation steps(AS) will be speci�ed using the precondition-e�ect style presented

in Section 4.1.1.

send msg(m)

E�ect:

queue := queue ^m
status := ?

ack(b)

Precondition:
status = b

E�ect:

none

receive msg(m)

Precondition:

queue 6= " ^

head(queue) = m

E�ect:

queue := tail(queue)
if queue = " ^ status = ? then

status := true

crashs

E�ect:

recs := true

crashr

E�ect:

recr := true
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lose(I)
Precondition:

(recs = true _ recr = true) ^ I � dom(queue)

E�ect:
if queue 6= " ^ maxidx(queue) 2 I

status := false

else
optionally status := false

queue := delete(queue; I)

recovers
Precondition:

recs = true

E�ect:
recs := false

recoverr
Precondition:

recr = true

E�ect:
recr := false

The function delete in the step rule for lose(I) deletes messages with indices in I from queue .

Formally, for any list q and any set I � dom(q), de�ne

delete(q; I)
4

= hq[i] j i 2 dom(q) ^ i =2 Ii

The notation to the right of
4

= is de�ned in Appendix A.

The handling of queue , recs, and recr in the step rules is self-explanatory. The handling of

status is a bit more complicated: when a new message m is sent to the system (modeled by

send msg(m) steps), status is changed to ? to indicate that the last message sent is in queue .

When a message is delivered to the receiver (modeled by receive msg(m) steps) and queue

thereby becomes empty, status should be changed to true , but only if the message delivered

is in fact the last message sent and not another message, which happens to be last on queue

because the last message sent has been lost in a crash. Thus, at any point a status value of ?

indicates that the message at the end of queue is actually the last message sent by the sender.

This explains the receive msg(m) steps. The lose(I) action then records if the message at the

end of queue is lost by changing status to false. (If the message at the end of queue is not the

last message sent, status would already be false). On the other hand, if the message at the end

of queue is not deleted, we are still allowed to change status to false according to our informal

description of the acknowledge mechanism given in the introduction to this chapter.

Note, that it is possible for the system to output a positive acknowledgement for a message

and then \change its mind" and start issuing negative acknowledgements. However, this change

of mind can only happen during a crash. (In such a situation the user knows that the last

message has been delivered since she has received a positive acknowledgement.)

Another thing to note is the fact that the ack(b) steps do not disable themselves. Thus, once

status becomes true or false, acknowledgements can be sent continuously until a new message

is put into queue by a send msg(m) step. (Actually, with the liveness restrictions we present

below, acknowledgements must be issued in�nitely often if status stays true or false, and no

crashes occur.) A remedy to this situation would be to introduce an additional ag, which is

set when status is changed from ? to a Boolean, and reset when an acknowledgement is issued.

Acknowledgements should then only be enabled when this ag is set. We have chosen not to

introduce the ag since it would only add few interesting aspects to the implementations.
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6.1.4 Liveness

We now present the environment-free liveness formula QS for AS, which induces the liveness

condition LS. The liveness we specify for S is weak fairness to four sets of locally-controlled

actions. Two of these sets have associated forcing conditions. Note, that lose(I) actions are not

in any set since we do not want to force the system to lose anything. Informally, the sets and

forcing conditions are.

1. ack(b) actions

Forcing condition: recs = recr = false

2. receive msg(m) actions

Forcing condition: recs = recr = false

3. recovers

4. recoverr

With these liveness restrictions we guarantee that in the absence of crashes, messages in queue

will be delivered and acknowledgements for the last message will be issued unless new messages

are sent to the system. Furthermore, both the sender side and the receiver side are guaranteed

to recover after a crash. (This requirement on recovery could be removed from all levels of

abstraction without a�ecting other liveness properties. All interesting liveness properties are, in

fact, conditioned by the assumption that no new crashes occur.)

The liveness requirements can be formalized in the following way. Let

CS;1
4

= fack(true); ack(false)g

CS;2
4

= freceive msg(m) j m 2 Msgg

CS;3
4

= frecoversg

CS;4
4

= frecoverrg

Then the formalization of QS is

QS
4

= WF (CS;1; recs = false ^ recr = false) ^

WF (CS;2; recs = false ^ recr = false) ^

WF (CS;3) ^

WF (CS;4)

By Lemma 4.7, QS is an environment-free liveness formula for AS. Thus, S = (AS; LS) is a live

I/O automaton. Furthermore, by Lemma 4.8, QS is stuttering-insensitive.

This concludes the formal speci�cation of the at-most-once message delivery problem.





Chapter 7

Delayed-Decision Speci�cation D

In our speci�cation S, presented in Chapter 6, we saw that it is allowed to lose any number of

messages in the system, but only if either recs or recr is true , i.e., we can only lose messages

between crash and recovery. In the low-level protocols we consider, the choice whether or not

to lose a message because of a crash may be postponed until after recovery and the choice

is dependent on certain race-conditions on the network channels: a message m traveling on a

channel and the receiver have no way of knowing if the sender has crashed, so even if the sender

has crashed, the message might still be successfully received by the receiver. But, if the sender

recovers and sends a new message on the channel, the reception of this new message before m

(our channels are not FIFO) will lead to the discartion of m when it is eventually received (since

otherwise messages could be reordered).

This postponing of nondeterministic choices suggests that we at one point have to rely on a

backward simulation to prove correctness of the low-level protocols. In a �rst attempt, a timed

backward simulation was proved directly from the Clock-Based Protocol C to S (or rather the

patient version of S). A lot of this work would have had to be repeated in a backward simulation

from the Five-Packet Handshake Protocol H to S, so after having designed the Generic Protocol

G, we proved a backward simulation from G to S, and could then do with a timed re�nement

from C to patient(G) and a re�nement from H to G.

Still, the proof from G to S was very large and comprehensive. It is our experience that

backward simulations are generally di�cult to deal with, mainly because they are not so intuitive

as forward simulations. This observation led us to try to \limit" the backward simulation to

a development step as small as possible. Generally, one should always try to �nd steps of

development that are intuitive, and remember that a series of steps (with proofs) are generally

easier to comprehend than is one big proof, even though the combined length of the small proofs

might exceed the length of the big proof.

So, as an intermediate level between S and G we came up with the Delayed-Decision Spec-

i�cation D, which looks very much like S, but instead of deleting messages between crash and

recovery, D marks arbitrary messages, and marked messages can then be lost at any point. D

also deals with postponing of losing (i.e., changing to false) the status as the result of a crash.

When we describe the steps of D, we will further explain the di�erences between S and D.

It should be noted, that even though we postpone the decision about which messages to lose,

only messages which were in the system between crash and recovery can be lost. A system that

did not satisfy this restriction could not, of course, implement S.

The rest of this chapter is organized as follows. First, in Section 7.1, we present D and then, in
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Section 7.2, we prove that D correctly implements S.

7.1 The Speci�cation of D

We specify D = (AD; LD) as a live I/O-automaton using the notation introduced in Chapter 4.

LD will be speci�ed implicitly by the environment-free liveness formula QD for AD.

7.1.1 States and Start States

The marks we put on messages and status are taken from the following set:

Flag
4

= fOK; markedg

Variable Type Initially Description

queue (Msg � Flag)� " The list of messages in the system. Each

message has an associated ag . If the ag

value is marked, the message might be lost

in a subsequent drop(I) action.

recs Bool false true i� the sender has crashed and not yet

recovered.

recr Bool false true i� the receiver has crashed and not yet

recovered.

status Stat � Flag (false; OK) Indicates the status of the last message sent.

If the associated ag is marked, the status

might be changed to false in a subsequent

drop(I) action.

We use the normal record notation to extract components of a value or variable. For instance,

status :stat and status :ag extract the status value and status ag from status .

We say that status is marked if status :ag = marked, and correspondingly an element e of

queue is marked if e:ag = marked. If en element of queue or the status is not marked, it is said

to be OK or \not marked".

7.1.2 Actions

The input and output actions, i.e., the user interface, of AD is, of course, the same as for AS.

AD has the internal actions mark (I), unmark (I), and drop(I).

Input:

send msg(m), m 2Msg

crashs

crashr

Output:
receive msg(m), m 2Msg

ack(b), b 2 Bool

recovers
recoverr

Internal:
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mark(I), I � N

unmark(I), I � N

drop(I), I � N

7.1.3 Steps

Here we present the steps of AD. An explanation of the steps is o�ered below.

send msg(m)
E�ect:

queue := queue ^ (m;OK)

status := (?;OK)

ack(b)

Precondition:

status:stat = b

E�ect:

status:ag = OK

receive msg(m)
Precondition:

queue 6= " ^

(head(queue)):msg =m

E�ect:

queue := tail(queue)

if queue = " ^ status:stat = ? then
status:stat := true

crashs
E�ect:

recs := true

crashr
E�ect:

recr := true

mark(I)
Precondition:

(recs = true _ recr = true) ^ I � dom(queue)

E�ect:
queue := mark(queue; I)

optionally status:ag := marked

recovers
Precondition:

recs = true

E�ect:
recs := false

recoverr
Precondition:

recr = true

E�ect:
recr := false

unmark(I)

Precondition:

I � dom(queue)
E�ect:

queue := unmark(queue; I)

optionally status:ag := OK

drop(I)

Precondition:

I � fi j i 2 dom(queue) ^ queue[i]:ag = markedg

E�ect:

if queue 6= " ^ maxidx(queue) 2 I then
status := (false;OK)

else if status:ag = marked then

optionally status := (false;OK)
queue := delete(queue; I)

In the step rule for drop we use the function delete, which was de�ned in Chapter 6 and used in

the de�nition of lose(I) at the S level. The precondition of drop(I) guarantees that only marked

messages are deleted. The step rule for mark uses a function mark , which is intended to mark
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messages with indices in I . Formally, for any queue q 2 (Msg �Flag)� and any set I � dom(q),

de�ne

mark(q; I)
4

= h(if i 2 I then (q[i]:msg; marked) else q[i]) j i 2 dom(q)i

Similarly, the step rule for unmark uses the function unmark de�ned as

unmark(q; I)
4

= h(if i 2 I then (q[i]:msg; OK) else q[i]) j i 2 dom(q)i

Furthermore, note that when a new message is put into queue (by send msg(m)), the message

and status get the ag OK to indicate that they cannot be lost (yet). In the de�nition of the

receive msg(m) steps it is seen that a message might be successfully delivered to the receiver

even though it is marked. This is because a marked message only has the possibility of being

deleted.

Recall from the de�nition of S that there are two ways in which status can be lost (i.e., get a

status value of false), and both ways are described in the de�nition of lose(I) in AS: 1) if the

element at the end of the queue is deleted, then the status is required to be lost, and 2) in any

lose(I) step the status may be lost.

In AD a status ag of marked corresponds to point 2), i.e., that status may be lost. In

the mark(I) steps of AD permission is given to lose some messages and maybe status . Then

in drop(I) steps of AD, which does the actual deleting performed by lose(I) in AS, status is

required to be lost if the element at the end of queue is deleted, even though status is OK. This

corresponds to point 1) above, where status is required to be lost. Steps labeled by drop(I) is,

of course, always allowed to lose a marked status .

The e�ect clause in the de�nition of the ack(b) steps is explained as follows: suppose status:stat =

? and that status :ag has been changed to marked during a crash (by mark(I)). In a subse-

quent receive msg(m) step that empties queue , status :stat is changed to true which enables

an ack(true) action. After the receive msg(m) step, status = (true; marked), so there is still

a possibility of losing status . However, once a positive acknowledgement has been issued, the

system must not lose status and start issuing negative acknowledgements. Remember from the

S level that the system is only allowed to change its mind in this respect during a crash. Thus,

by changing status :ag to OK in the ack steps, we disallow this change of mind. Note, that it

would be too restrictive to change status to (true; OK) in receive msg(m) since we want AD to

be as nondeterministic as possible, to allow as many implementations as possible.

Another point where we have made AD very nondeterministic is in the way messages (and

status) are marked and deleted. In a mark (I) step some messages are marked and in an

unmark (I) step, which can happen at any time, some of the marked messages can be made

OK again, and �nally in a drop(I) step, some of the marked messages are deleted.

Here, again, the point is that we want AD to be as nondeterministic as possible. Of course

the e�ect of marking some elements could be obtained by a \deterministic" mark that marks

everything followed by unmark (I). However, when performing simulation proofs from lower

levels of abstraction, it is desirable, for clarity, to have as nondeterministic actions of AD as

possible. Thus, by removing nondeterminism fromAD, which could not jeopardize its correctness

with respect to AS, we might rule out some implementations and make the correctness proofs

of other implementations more cumbersome.
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7.1.4 Liveness

As at the S level, we specify liveness in terms of fairness. Speci�cally, the liveness condition LD

at the D level will be speci�ed implicitly as an environment-free liveness formula QD for AD.

QD will be stated as a conjunction of four weak fairness formulas, two of which have associated

forcing conditions. We do not require fairness on the actions mark(I), unmark(I), and drop(I).

Informally, we have the four weak fairness conjuncts:

1. ack(b) actions

Forcing condition: recs = recr = false

2. receive msg(m) actions

Forcing condition: recs = recr = false

3. recovers

4. recoverr

This ensures the same liveness as at the S level. Formally, let

CD;1
4

= fack(true); ack(false)g

CD;2
4

= freceive msg(m) j m 2 Msgg

CD;3
4

= frecoversg

CD;4
4

= frecoverrg

Then the formalization of QD is

QD
4

= WF (CD;1; recs = false ^ recr = false) ^

WF (CD;2; recs = false ^ recr = false) ^

WF (CD;3) ^

WF (CD;4)

By Lemma 4.7, QD is an environment-free liveness formula for AD. Thus, D = (AD; LD) is a live

I/O automaton. Furthermore, by Lemma 4.8, QD is stuttering-insensitive.

This concludes the Delayed-Decision Speci�cation of the at-most-once message delivery problem

and attention is now turned towards proving that D correctly implements S.

7.2 Correctness of D

In this section we prove that D = (AD; LD) is a correct implementation of our speci�cation

S = (AS; LS). First we give some invariants of AD. Then we prove, by means of an image-�nite

backward simulation, that AD safely implements AS, and �nally we use this simulation result to

prove that D correctly implements S.

7.2.1 Invariants

We only need one invariant in the proof. The invariant should be understood as the conjunction

of the two parts.
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Invariant 7.1

1. if status:stat = ? then queue 6= "

2. if status:stat = true then queue = "

Proof

By a simple inductive argument, it is easily proven that all reachable states of AD satisfy the

two parts of the invariant, so we omit the proof here. At the lower levels of abstraction we will

give examples of proofs of more interesting invariants.

Below, we refer to this invariant by ID.

7.2.2 Safety

To show that AD safely implements AS, we show the existence of an image-�nite backward

simulation from AD to AS with respect to some invariants. However, before we can do this we

need a few preliminary de�nitions and lemmas.

Below we let qD be a queue at the D level, i.e., qD 2 (Msg �Flag)�, and let qS be a queue at the

S level, i.e., qS 2 Msg�.

De�nition 7.2 (Explanation)

De�ne an explanation from qS to qD to be any mapping f : dom(qS) ! dom(qD) that satis�es

the following four conditions

1. f is total

2. f is strictly increasing

3. 8i 2 dom(qD) n rng(f) : qD[i]:ag = marked

4. 8i 2 dom(qS) : qD[f(i)]:msg = qS[i]

Basically, if there exists an explanation from qS to qD, this means that qS can be obtained from

qD by �rst deleting some of the marked elements of qD and then removing the ags from the

remaining elements.

Lemma 7.3

Let f be an explanation from qS to qD. Then jqSj � jqDj.

Proof

Suppose jqSj > jqDj. Then it is impossible to �nd a mapping from dom(qS) to dom(qD) that is

total and strictly increasing, thus Conditions 1 and 2 of De�nition 7.2 are violated. Hence, we

can conclude jqSj � jqDj.
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Now, de�ne #OK(qD) to be the number of elements e of qD with e:ag = OK. Thus, formally

#OK(qD)
4

= jqD � (Msg � fOKg)j

Lemma 7.4

Let f be an explanation from qS to qD. Then jqSj � #OK(qD).

Proof

Suppose jqSj < #OK(qD). Then Conditions 1 and 2 of De�nition 7.2 give us that jrng(f)j =

jqSj(< #OK(qD)), so there must exist indices i in qD such that qD[i]:ag = OK and i =2 rng(f).

But this contradicts Condition 3 of De�nition 7.2. Hence, we can conclude jqSj � #OK(qD).

We are now ready to de�ne a relation BDS over states(AD)� states(AS). In Lemma 7.11 below

we prove that BDS is an image-�nite backward simulation from AD to AS.

However, before we give the actual de�nition of BDS, it might be appropriate to discuss how

to de�ne a backward simulation in general. What states should be related? Let us give some

guide-lines in terms of AD and AS in this example.

Recall that a backward simulation is needed when an implementation postpones some non-

determinism of the speci�cation. The deletion of messages during a crash in AS can in AD be

postponed until after recovery, which indicates that we need a backward simulation from AD to

AS. (It is impossible to �nd a forward simulation from AD to AS. See, e.g., [LV92] for details.)

This situation is shown|in a simpli�ed way|in the following picture.

D level - - -
HHHHHHj

��
��
��*

s0 s1 s2

s31

s32

s33

mark recovers

drop

drop

drop

S level
HHHHHHj

��
��
��*

-

-

-

-

u0

u11

u12

u13

u21

u22

u23

lose

lose

lose

recovers

recovers

recovers

The mark step of AD marks some messages, and after recovery some of the marked messages

can be deleted by the nondeterministic drop steps. In this simpli�ed example we assume that

there are three ways of deleting messages, leading to states s31, s32, and s33.
1 In AS this scenario

corresponds to lose having the \same" three ways of deleting messages, leading to states u11,

u12, and u13, followed by recovery.

1When dealing with two levels of abstraction, we always let s range over the states of the concrete level and
u over the states of the abstract level.
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It seems fairly intuitive that BDS should relate s3i to u2i for 1 � i � 3. But what about s2?

Well, s2 is the state right after AD has recovered, so it should be related to states after AS has

recovered. Thus, we are down to u21, u22, and u23. Now the point is that s2 actually corresponds

to all of these states. In some sense BDS o�ers an explanation of the nondeterminism occurring

after s2 by saying that this nondeterminism corresponds to some previous nondeterminism of

AS, which has led to one of the states u21, u22, or u23.

To check that BDS is a backward simulation from AD to AS we have, among other things,

to verify that each step of AD corresponds to a sequence of steps of AS with the same trace.

More speci�cally, consider, e.g., the step (s2; drop; s32) of AD. According to Condition 3 of

De�nition 5.3, we have to verify that for each state of AS that is related to s32, here only u22,

there exists a state u of AS such that there is a sequence of steps from u to u22 with an empty

trace (since drop is internal). But here we can just choose u to be u22. This makes the sequence

of steps in AS empty which certainly has an empty trace.

For s1 we can use similar arguments and �nd that s1 should be related to all of the states

u11, u12, and u13. Now, consider the step (s1; recovers; s2) of AD. Again, we have to consider

every state that is related to s2. Let this state be u2i for some arbitrary 1 � i � 3. We then have

to �nd some state u related to s1 such that there is a sequence of steps from u to u2i with the

trace recovers. But here we just choose u = u1i, and since, for all 1 � i � 3, (u1i; recovers; u2i)

is a step of AS, we are done.

Finally, of course, s0 should be related to u0.

The above example o�ers some guide-lines when de�ning backward simulations, and even though

the realBDS fromAD toAS is more complicated|mainly because of the nondeterminism involved

with the status and the connection between queue and status|the recipe is the same:

To any state s of AD, we have to relate all states u of AS that could have resulted

from some nondeterminism of AS that \corresponds" to nondeterminism that may

happen after state s of AD.

Of course, one has to use ones intuition about the safe I/O automata in question in order to

identify the \corresponding" nondeterminism.

BDS can now be de�ned and motivated.

De�nition 7.5 (Image-Finite Backward Simulation from AD to AS)

If s 2 states(AD) and u 2 states(AS), then de�ne that (s; u) 2 BDS if there exists an explanation

f from u:queue to s:queue such that the following conditions hold:

1. u:recs = s:recs and u:recr = s:recr

2. u:status 2

if s:status:ag = OK ^ (s:queue = " _ (last(s:queue)):ag = OK) then fs:status:statg

else fs:status:stat ; falseg

3. if u:status = ? ^ s:queue 6= " then maxidx (s:queue) 2 rng(f)

We say that an explanation from u:queue to s:queue is a valid explanation from u to s provided

that Conditions 1{3 are satis�ed.
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Note, that (s; u) 2 BDS i� there exists a valid explanation from u to s.

The requirement that there has to be an explanation from u:queue to s:queue in order for

(s; u) 2 BDS is a generalization of the example above. Thus, all states u related to s have queues

that can be obtained by deleting some marked messages from s:queue and removing the ags

from the remaining elements.

Condition 1 gives the straight-forward correspondence between the rec ags of AD and AS.

Condition 2 deals with the status. In AD there are two ways of losing status (i.e., changing

status:stat to false), and both situations are described in the speci�cation of the drop steps of AD:

either the element at the end of queue gets deleted, in which case status must be lost, or status

is marked, in which case status may be lost. Alternatively, we can say that if status :ag = OK

and either queue is empty or its last element is OK, the status cannot be changed by a drop

step. Thus, in this case we are not in a situation where AD is \waiting" to perform some

nondeterminism on status , which has already been performed by AS. If, on the other hand,

status is marked or the last element on queue is marked, drop may lead to loss of status , and

this corresponds to a loss at the S level, which has already occurred in a lose step of S. Thus,

in this situation BDS should allow the corresponding state at the S level to have status = false.

This explains Condition 2.

Finally, Condition 3 in the de�nition of BDS is a consistency condition between the explana-

tion f and the value chosen for u:status. The condition should intuitively ensure that whenever

the last element of s:queue is not in the range of f , i.e., when f states that u describes a situ-

ation where the last element of queue has been lost, then u:status must reect this by having

the value false. Thus, the condition should limit the number of legal combinations of u:queue

and u:status due to the fact that these values are not always independent. The condition could

initially be written as

if s:queue 6= " ^ maxidx (s:queue) =2 rng(f) then u:status = false

Taking the contrapositive of this condition gives us

if u:status 6= false then s:queue = " _ maxidx (s:queue) 2 rng(f)

Now, if u:status = true then Condition 2 gives us that also s:status :stat = true . Invariant 7.1

Part 2 then implies that s:queue is empty. Thus, if u:status = true , the condition is trivially

satis�ed. So we only need to deal with the case where u:status = ? and this is exactly Condition

3 of the de�nition in a slightly rewritten form.

Note, that in de�ning BDS we have used our intuition about AS and AD. It is not at all sure that

a �rst attempt to de�ne a simulation relation is correct. However, any errors in the de�nition

will be caught in the subsequent simulation proof and lead to a revised de�nition, and so on.

For instance, the consistency condition (Condition 3) in the de�nition of BDS was added during

a proof attempt that failed. In Lemma 7.11 below we prove that BDS is in fact an image-�nite

backward simulation from AD to AS.

The following lemmas make the main simulation proof shorter.

Lemma 7.6

Let s 2 states(AD) and q 2 Msg� such that there exists an explanation from q to s:queue. Then

there exists a state u 2 states(AS) with u:recs = s:recs, u:recr = s:recr, u:queue = q, and

(s; u) 2 BDS.
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Proof

Let f be an arbitrary explanation from q to s:queue and let u:recs = s:recs, u:recr = s:recr,

and u:queue = q. We must show that we can de�ne u:status such that Conditions 1{3 of

De�nition 7.5 are satis�ed.

Condition 1 is trivially satis�ed.

We now consider cases, in each case de�ning u:status and showing that Conditions 2 and 3 are

satis�ed.

1. s:queue = "

De�ne u:status = s:status:stat . Then Conditions 2 and 3 are vacuously satis�ed.

2. s:queue 6= "

(a) (last(s:queue)):ag = marked

De�ne u:status = false. This satis�es Conditions 2 and 3, the latter vacuously.

(b) (last(s:queue)):ag = OK

De�ne u:status = s:status:stat . Then Condition 2 is vacuously satis�ed.

Now, assume that maxidx (s:queue) =2 rng(f). Then Condition 3 of De�nition 7.2 of

an explanation says that s:queue [maxidx (s:queue)]:ag = marked which is the same

as (last(s:queue)):ag = marked, but this contradicts the assumptions in this sub-

case. Hence we have that maxidx (s:queue) 2 rng(f). Thus Condition 3 is satis�ed.

Now, de�ne the total function maxqueue : (Msg � Flag)� ! Msg� such that for any queue

qD in the domain, maxqueue(qD) is de�ned to be the queue qS obtained by removing all ag

components from qD. Formally, we have

qS = maxqueue(qD) i� jqSj = jqDj and 8i 2 dom(qD) : qS[i] = qD[i]:msg

Lemma 7.7

The identity mapping f from dom(qD) to dom(qD) is an explanation from maxqueue(qD) to qD.

Proof

We check Conditions 1{4 of De�nition 7.2 of an explanation. Since the identity mapping is both

total and strictly increasing Conditions 1 and 2 are satis�ed. Condition 3 is vacuously satis�ed

since rng(f) = dom(qD). From the de�nition of maxqueue we directly see that also Condition 4

is satis�ed.

Lemma 7.8

Let s 2 states(AD). Then there exists a state u 2 states(AS) with u:recs = s:recs, u:recr = s:recr,

and u:queue = maxqueue(s:queue), such that (s; u) 2 BDS.
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Proof

Let qS = maxqueue(s:queue). Then by Lemma 7.7 there exists an explanation (namely the

identity mapping) from qS to s:queue . Lemma 7.6 then gives us the existence of a state u with

u:recs = s:recr , u:recr = s:recr, and u:queue = qS such that (s; u) 2 BDS. That su�ces.

Corollary 7.9

Let s 2 states(AD). Then there exists a state u 2 states(AS) such that (s; u) 2 BDS.

Proof

Immediate from Lemma 7.8.

We state the following trivial lemma without proof.

Lemma 7.10

Let qD be an element of (Msg � Flag)�. Then, any element qS of Msg�, such that there exists

an explanation from qS to qD, can be obtained from maxqueue(qD) by deleting some elements.

We can now state and prove the main result of this section, namely that the relation BDS

de�ned in De�nition 7.5 is an image-�nite backward simulation from AD to AS (with respect to

ID (Invariant 7.1) and true). The style of the proof is careful mathematical reasoning.

Lemma 7.11

AD �iB AS via BDS.

Proof

We prove that BDS is an image-�nite backward simulation from AD to AS with respect to ID
and true . We �rst show that BDS is image-�nite and then check the three conditions (which we

call nonemptiness, base case, and inductive case, respectively) of De�nition 5.3.

Image-Finiteness

Let s be an arbitrary state of AD. We must show that there exists only �nitely many states

u of AS such that (s; u) 2 BDS. Since recs, recr, and status can only take on �nitely many

values in AS these variables cannot give rise to problems. It now remains to be shown that for

a �xed but arbitrary s also queue (in S) can only take on �nitely many values. For (s; u) to

be in BDS there must exist an explanation from u:queue to s:queue . Lemma 7.3 gives us that

ju:queuej � js:queue j, thus there are only a �nite number of lengths to choose from (since s:queue

is a �nite queue). Also, there exists only a �nite number of mappings (explanations) between

two �nite domains. Condition 4 of De�nition 7.2 �nally gives us that the elements of the possible

u:queue values are uniquely determined by s:queue and the (�nitely many) explanations. Hence,

u:queue can only take on �nitely many values given s. That su�ces.
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Nonemptiness

Corollary 7.9 immediately gives the result.

Base Case

Let s0 be the (unique) start state of AD. Then if (s; u) 2 BDS, then u:recs = s:recs = false,

u:recr = s:recr = false, u:status = s:status :stat = false (since s:status :ag = OK and s:queue =

"), and u:queue = " (since the existence of an explanation from u:queue to s:queue and the

fact that s:queue = " implies that u:queue = ".) Thus, u is the unique start state of AS. That

su�ces.

Inductive Case

Assume (s; a; s0) 2 steps(AD) such that s and s0 satisfy ID (Invariant 7.1), and let u0 be an

arbitrary state ofAS such that (s
0; u0) 2 BDS. Below we consider cases based on a (and sometimes

sub-cases of each case) and for each (sub)case we de�ne a �nite execution fragment � of AS

with lstate(�) = u0, (s; fstate(�)) 2 BDS, and trace(�) = trace(a). In this particular proof all

execution fragments will be of length zero or one. Thus, in each (sub)case we will either

� de�ne an action b 2 acts(AS) and a state u 2 states(AS), such that (u; b; u0) 2 steps(AS),

(s; u) 2 BDS, and trace(b) = trace(a), or

� show that (s; u0) 2 BDS and a is internal.

In the former case, we show that (u; b; u0) 2 steps(AS) by showing that all four state variables

of AS are related in u and u0 according to the de�nition of the b steps of AS.

In the proof, when we refer to Conditions 1{3, we mean Conditions 1{3 of De�nition 7.5 of BDS

unless otherwise speci�ed.

a = send msg(m)

In this case we show that we can de�ne u such that (u; send msg(m); u0) 2 steps(AS) and

(s; u) 2 BDS. Clearly the step has the right trace.

We have s0:queue = s:queue ^(m; OK) and s0:status = (?; OK). Lemma 7.4 implies u0:queue 6= ".

De�ne u:recs = s:recs
u:recr = s:recr
u:queue = init(u0:queue)

First we �nd an explanation from u:queue to s:queue . Let f 0 be a valid explanation from

u0 to s0. (Such a valid explanation exists since (s0; u0) 2 BDS). Since last(s0:queue):ag =

OK, we have from Lemma 7.4 and Conditions 1{3 of De�nition 7.2 of an explanation that

f 0(maxidx (u0:queue)) = maxidx (s0:queue). Then f = f 0 � dom(u:queue) is clearly an expla-

nation from u:queue to s:queue .

Now, by Lemma 7.6, de�ne u:status such that (s; u) 2 BDS.

It remains to show that (u; send msg(m); u0) 2 steps(AS):

recs and recr :

From the de�nition of the send msg(m) steps of AD, the de�nition of u, and the fact that

(s0; u0) 2 BDS, we have that u
0:recs = s0:recs = s:recs = u:recs and correspondingly for recr.

This is as required by the de�nition of the send msg(m) steps of AS.
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status:

Since (s0; u0) 2 BDS, Condition 2 implies that u0:status = ?. No matter what the value of

u:status is, this is as required by the de�nition of the send msg(m) steps of AS.

queue :

We have u0:queue 6= " (by Lemma 7.4) and last(u0:queue) = m (by use of De�nition 7.2 of

an explanation). Then, by de�nition, we have u0:queue = init(u0:queue) ^ last(u0:queue) =

u:queue ^m. Again, this is as required by the de�nition of the send msg(m) steps of AS.

a = crashs

De�ne u:recs = s:recs
u:recr = u0:recr
u:status = u0:status

u:queue = u0:queue

Then it is easy to see that (s; u) 2 BDS (any valid explanation from u0 to s0 is also a valid

explanation from u to s) and that (u; crashs; u
0) 2 steps(AS).

a = crashr

Similar to the case a = crashs.

a = receive msg(m)

In this case we de�ne u such that (u; receive msg(m); u0) 2 steps(AS) and (s; u) 2 BDS. Clearly

the step has the right trace.

From the de�nition of the receive msg(m) steps of AD we have that s:recr = s0:recr, s:recs =

s0:recs, s:queue 6= " with (head(s:queue)):msg = m and s0:queue = tail(s:queue).

De�ne u:recs = s:recs
u:recr = s:recr
u:queue = m^u0:queue

We �rst �nd an explanation from u:queue to s:queue . Let f 0 be any valid explanation from u0

to s0 (we know it exists), and de�ne f in the following way:

f = [(i+ 1) 7! (f 0(i) + 1) j i 2 dom(f 0)][ [0 7! 0]

Intuitively f relates the same elements in u:queue and s:queue that were related by f 0 in u0:queue

and s0:queue (these elements all have their indices increased by one because of the new elements

at the head of the queues), and relates these new messages m. Based on the fact that f 0 is an

explanation from u0:queue to s0:queue, it is easy to check that f is an explanation from u:queue

to s:queue .

We consider cases, in each case de�ning u:status, showing (s; u) 2 BDS by showing that Condi-

tions 2{3 hold (Condition 1 clearly holds) and showing that (u; receive msg(m); u0) 2 steps(AS).

For the latter part it is easy to see that a receive msg(m) step is enabled in u and that recs,

recr and queue are handled correctly. So all we need to do is to show that also status is handled

correctly in the receive msg(m) step of AS.
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1. s:status :stat = true

Invariant 7.1 Part 2 implies that this situation cannot occur.

2. s:status :stat = false

De�ne u:status = false.

Then clearly (s; u) 2 BDS (Conditions 2 and 3 are vacuously satis�ed)

status :

Since s:status:stat = false, we have s0:status = s:status, so u0:status = false. Leaving

status = false unchanged is permitted by the de�nition of the receive msg(m) steps in

AS.

3. s:status :stat = ?

(a) u0:queue 6= "

Then also s0:queue 6= " (by Lemma 7.3) so from the de�nition of receive msg(m) in

AD we have s0:status = s:status .

De�ne u:status = u0:status.

Condition 2:

Since (s0; u0) satis�es Condition 2, also (s; u) satis�es that condition. (Neither the

emptiness of queue , status:ag , nor the ag of the last element in queue are changed

in the step in AD).

Condition 3:

Assume that u:status(= u0:status) = ?. Since s:queue 6= ", we must show that

maxidx (s:queue) 2 rng(f). Since s0:queue 6= ", and (s0; u0) and f 0 satisfy Condition

3, we have maxidx (s0:queue) 2 rng(f 0), so from the construction of f , it is easy to

see that maxidx (s:queue) 2 rng(f).

status :

Leaving status unchanged is as required by the de�nition of receive msg(m) in AS

since we assume that u0:queue 6= ".

(b) u0:queue = "

i. s0:queue = "

Then the de�nition of receive msg(m) in AD implies that s0:status:stat = true and

s0:status:ag = s:status :ag. Then, by de�nition of BDS, u
0:status is either true or

false. We consider cases.

A. s0:status:ag = OK or (s0:status:ag = marked and u0:status = true)

If s0:status:ag = OK, then by Condition 2 we also have u0:status = true since

s0:status:stat = true .

De�ne u:status = ? (= s:status :stat).

Condition 2:

Vacuously satis�ed by (s; u).

Condition 3:

Since s0:queue = ", we have js:queuej = 1. Now, since f(0) = 0, we have

maxidx (s:queue) 2 rng(f) as required.

status :

Changing status from ? to true when u0:queue = " is as required by the de�-

nition of receive msg(m) in AS.

B. s0:status:ag = marked and u0:status = false

De�ne u:status = false.

Condition 2:
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Since s:status :ag = s0:status:ag = false, we have that (s; u) satis�es Condi-

tion 2.

Condition 3:

Vacuously satis�ed.

status :

Leaving status = false unchanged is allowed by receive msg(m) in AS.

ii. s0:queue 6= "

The de�nition of receive msg(m) in D implies s0:status:stat = s:status :stat = ?

and s0:status :ag = s:status :ag . Since u0:queue = ", s0:queue 6= ", and (s0; u0)

and f 0 satisfy Condition 3, we get that u0:status 6= ? (f 0 must be empty). Note,

that this is one of the two places in the entire proof where we need the consistency

condition (Condition 3). Condition 2 now gives us that u0:status = false and that

either s0:status:ag = marked or (last(s0:queue)):ag = marked.

De�ne u0:status = false.

Condition 2:

Since s:status :ag = s0:status:ag , (last(s0:queue)):ag = (last(s:queue)):ag,

and one of these ag values is marked, we see that (s; u) satis�es Condition 2.

Condition 3:

Vacuously satis�ed.

status :

Leaving status = false unchanged is allowed by the de�nition of receive msg(m)

in AS.

a = ack(b)

In this case we de�ne u such that (u; ack(b); u0) 2 steps(AS) and (s; u) 2 BDS. Clearly the step

has the right trace.

From the de�nition of ack(b) in AD, we have that s:status :stat = b and that s0 = s except that

s0 and s may di�er on the value of status :ag, which is set to OK in the step.

We consider cases based on the value of b.

1. b = false

Then u0:status = false.

De�ne u = u0.

It is now easy to see that (s; u) 2 BDS. (The fact that s and s0 may di�er on the value of

status:ag could only cause troubles in Condition 2 but this is seen not to be the case since

s:status:stat = false implies that the only choice for u:status is false as we have de�ned it

to be.)

Now, since u0 = u, we have u:status = false, Thus, an ack(b) step is enabled in u. Again

since u = u0, we now see that (u; ack(b); u0) is a step of AS as required.

2. b = true

Since s:status:stat = s0:status:stat = true , Invariant 7.1 Part 2 gives us that s0:queue = "

and s:queue = ". Furthermore, since s0:status:ag = OK, we get from Condition 2 that

u0:status = true .

De�ne u = u0.

As in the previous case clearly (s; u) 2 BDS and (u; ack(b); u0) 2 steps(AS).
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a = recovers

De�ne u:recs = false

u:recr = u0:recr
u:status = u0:status

u:queue = u0:queue

Since u:recs = s:recs = false, it is easy to see that (s; u) 2 BDS (any valid explanation from u0

to s0 is also a valid explanation from u to s) and that (u; recovers; u
0) 2 steps(AS) (and clearly

has the right trace).

a = recoverr

Similar to the case a = recovers.

a = mark(I)

In this case we de�ne u and I 0 such that (u; lose(I 0); u0) 2 steps(AS) and (s; u) 2 BDS. Clearly

the step has the right trace (the empty trace).

From the de�nition of the mark steps in AD we have s0:recs = s:recs, s
0:recr = s:recr, and either

s:recs = true or s:recr = true .

De�ne u:recs = s:recs
u:recr = s:recr
u:queue = maxqueue(s:queue)

u:status = s:status:stat

By Lemma 7.7 the identity mapping f is an explanation from u:queue to s:queue, and it is easy

to show that f is a valid explanation from u to s. Thus, (s; u) 2 BDS.

To show that (u; lose(I 0); u0) 2 steps(AS), we �rst observe that since (s; u) 2 BDS we have

u:recs = true or u:recr = true , so a lose(I 0) step is enabled in u.

recs and recr :

u0:recs = s0:recs = s:recs = u:recs and similarly for recr. This is as required by the de�nition

of lose(I 0) in AS.

queue :

First observe that maxqueue(s:queue) = maxqueue(s0:queue). Then, since by de�nition we

have u:queue = maxqueue(s:queue), Lemma 7.10 implies that u0:queue can be obtained from

u:queue by deleting some (possibly zero) elements. Thus, we can de�ne I 0 accordingly, and

this is as required by the de�nition of lose(I 0) in AS.

status :

First note that since we might have s0:status:ag = marked, we also might have u0:status =

false by Condition 2, but since lose(I 0) can always change status to false in AS, this situation

does not cause troubles.

The situation that could cause troubles is if u0:status 6= false but the lose(I 0) step is required

to change status to false because the element at the end of u:queue must be deleted in order

to treat queue correctly. We must show that this situation is impossible.

Assume that u0:status 6= false. Then Condition 2 and the de�nition of mark (I) in AD give

u0:status = s0:status:stat = s:status :stat 6= false. We consider cases.
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1. u0:status = s0:status :stat = s:status :stat = true .

Invariant 7.1 Part 2 implies s:queue = s0:queue = ". Then Lemma 7.3 implies that

u:queue = u0:queue = ". Thus I 0 = ;. That su�ces.

2. u0:status = s0:status :stat = s:status :stat = ?.

(a) s:queue = "

Similar to Case 1.

(b) s:queue 6= "

Then Condition 3 and De�nition 7.2 imply f(maxidx (u:queue)) = maxidx (s:queue).

It is now easy to see that u0:queue can be obtained by deleting some elements, but

not the element at the end, from u:queue. That su�ces.

a = unmark (I)

In this case we show that unmark (I) in AD corresponds to an empty step in AS (remember that

unmark(I) is internal). Thus, we show that (s; u0) 2 BDS.

From the de�nition of the unmark(I) steps of AD, we have that s
0:queue is obtained from s:queue

by changing some (maybe zero) ag values from marked to OK. Now, let f 0 be a valid explanation

from u0 to s0. Then by De�nition 7.2 it is easy to see that f 0 is also an explanation from u0:queue

to s:queue . (The only interesting case is Condition 3 of De�nition 7.2 but since messages that

are marked in s0:queue cannot be OK in s:queue , this case is easily checked).

We show that f 0 is a valid explanation from u0 to s by checking Conditions 1{3.

Condition 1:

This condition is satis�ed since the unmark(I) step does not change recs and recr .

Condition 2:

The unmarking of status and message ags might lead to the requirement that u0:status =

s0:status:stat (by Condition 2). But then obviously also (s; u0) satis�es Condition 2 since both

the \then" and the \else" in this condition allow u0:status = s:status :stat(= s0:status:stat).

The important thing to note here is that unmark(I) cannot lead from a situation where the

\then" clause must be chosen to a situation where the \else" clause must be chosen.

Condition 3:

Since Condition 3 does not mention any ag values, it is seen that (s; u0) and f 0 satisfy this

condition.

a = drop(I)

In this case we show that drop corresponds to an empty step of AS, i.e., that (s; u
0) 2 BDS (recall

that drop(I) is internal).

Let f 0 be an arbitrary valid explanation from u0 to s0. We now construct an explanation f from

u0:queue to s:queue : I contains the indices of the elements of s:queue that were deleted in the

drop(I) step. Then jdom(s0:queue)j = jdom(s:queue) n I j. Now, let g be the (unique) bijective,

strictly increasing mapping from dom(s0:queue) to dom(s:queue) n I . Informally g maps indices

of elements in s0:queue to the indices the same elements had in s:queue .

De�ne f = g � f 0. To check that f is an explanation from u0:queue to s:queue , we check

Conditions 1{4 of De�nition 7.2:

Conditions 1{2 of De�nition 7.2:
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Since f 0 is total and strictly increasing from dom(u0:queue) to dom(s0:queue) and g is total and

strictly increasing from dom(s0:queue) to dom(s:queue) n I , f is total and strictly increasing

from dom(u0:queue) to dom(s:queue).

Condition 3 of De�nition 7.2:

We have that dom(s:queue) n rng(g � f 0) = I [ g�1(dom(s0:queue) n rng(f 0)). This informally

states if an element of s:queue is not \hit" by f then this is because either the element is

one of the elements that are deleted in the drop(I) step or because the \corresponding" (by

g) element in s0:queue is not \hit" by f 0. Now, all elements in s:queue with indices in I are

marked (by the precondition of drop(I)). Since f 0 is an explanation, all elements of s0:queue

with indices in dom(s0:queue) n rng(f 0) are marked, and since g and then also g�1 maps the

index of an element to the index of the same element, we have that all elements of s:queue

with indices in g�1(dom(s0:queue n rng(f 0))) are marked. That su�ces.

Condition 4 of De�nition 7.2:

By the fact that f 0 is an explanation (and therefore satis�es Condition 4) and the fact that

g maps the index of an element to the index of the same element, it directly follows that f

satis�es Condition 4 of De�nition 7.2.

Thus, f is an explanation from u0:queue to s:queue .

It now remains to show that f is a valid explanation from u0 to s, i.e., we must check Conditions

1{3.

Condition 1:

Condition 1 is clearly satis�ed (since neither recs nor recr are changed in the drop(I) step and

(s0; u0) 2 BDS).

Condition 2:

We consider the ways status can change in the if-statement in the de�nition of the drop(I)

step.

Assume that the element at the end of s:queue is deleted in the drop(I) step. Then s0:status =

(false; OK) which implies u0:status = false. But in order to be able to delete the element at the

end of s:queue we have that s:queue 6= " and (last(s:queue)):ag = marked, so (s; u0) satis�es

Condition 2.

Then assume that the element at the end of s:queue is not deleted but that u0:queue is

changed to (false; OK) since s:status:ag = marked. Again we have u0:status = false, and since

s:status :ag = marked, we have that (s; u0) satis�es Condition 2.

The last possibility is that status is not changed at all in the drop(I) step, but then obviously

(s; u0) satis�es Condition 2 since (s0; u0) satis�es it.

Condition 3:

Assume u0:status = ? and s:queue 6= ". Since u0:status = ? we must have s0:status:stat = ?

and then from the de�nition of the drop(I) step we infer s:status = s0:status.

Then the element at the end of s:queue is not deleted in the drop(I) step (i.e.,maxidx (s:queue) =2

I) since otherwise s0:status = (false; OK). Thus, also s0:queue 6= ". Since f 0 is a valid explana-

tion from u0 to s0, Condition 3 gives usmaxidx (s0:queue) 2 rng(f 0), and sincemaxidx (s:queue) =2

I we must have g(maxidx(s0:queue)) = maxidx (s:queue) since otherwise g could not be bijec-

tive and strictly increasing. All in all we get maxidx (s:queue) 2 rng(f), as required.

This concludes the simulation proof.
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We can now prove that AD safely implements AS.

Theorem 7.12 (AD safely implements AS)

AD vS AS

Proof

Directly by Lemma 7.11 and the soundness of image-�nite backward simulations with respect

to the safe implementation relation (Lemma 5.8).

7.2.3 Correctness

Before we can prove the main theorem of this chapter | that D is a correct implementation of

S | we need to prove some basic lemmas about S and D. In the remainder of this chapter we

use the following abbreviations.

SM = fsend msg(m) jm 2 Msgg

RM = freceive msg(m) jm 2 Msgg

From the safe I/O automata AS and AD we get the following lemmas.

Lemma 7.13

AS j= 2(2(status 2 Bool) =) 2:hSM i)

Proof

Immediate from the de�nition of AS since any send msg(m) step would change status to ?.

Lemma 7.14

1. AD j= 2(2:hSM i =) 2(jqueue�j � jqueue j))

2. AD j= 2(hRM i =) jqueue�j = jqueuej � 1)

Proof

Immediate from the de�nition of AD since only send msg(m) steps can add elements to queue ,

and receive msg(m) steps remove one element from queue .

The following two lemmas prove properties of live executions of D. The lemmas deal with live

executions where, from some point on, no send msg(m) actions occur and neither the sender nor

the receiver is in recovery phase. Then, in the �rst lemma, we prove that eventually elements will

be removed from queue , which, in the second lemma, is used to prove that queue is eventually

emptied.

The proofs of the lemmas introduce the way we write structured proofs of temporal properties

of our systems. The proof style is due to Lamport. The following description is taken from

[AL92b]:
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We use hierarchically structured proofs. The theorem to be proved is statement

h0i1. The proof of statement hiij is either an ordinary paragraph-style proof or the

sequence of statements hi+ 1i1, hi+ 1i2, : : :and their proofs. : : : . Within a proof,

hkil denotes the most recent statement with that number. A statement has the form

Assume: Assump Prove: Goal

which is abbreviated to Goal if there is no assumption. The assertion Q.E.D. in

statement number hi+1ik of the proof of statement hiij denotes the goal of statement

hiij. The statement

Case: Assump

is an abbreviation for

Assume: Assump Prove: Q.E.D.

Within the proof of statement hiij, Assumption hii denotes that statement's assump-

tion, and Assumption hii:k denotes the assumption's kth item.

Lemma 7.15

LD j= 8k : 2(2(:hSM i ^ recs = false ^ recr = false) =)

((jqueuej = k ^ k > 0); jqueuej < k))

Proof

Assume: � 2 LD

Prove: � j= 8k : 2(2(:hSM i ^ recs = false ^ recr = false) =)

((jqueuej = k ^ k > 0); jqueue j < k))

h1i1. Assume: k � 0

Prove: � j= 2(2(:hSM i ^ recs = false ^ recr = false) =)

((jqueuej = k ^ k > 0); jqueue j < k))

h2i1. Assume: �1 is an arbitrary su�x of �

Prove: �1 j= 2(:hSM i ^ recs = false ^ recr = false) =)

((jqueuej = k ^ k > 0); jqueue j < k)

h3i1. Assume: �1 j= 2(:hSM i ^ recs = false ^ recr = false)

Prove: �1 j= (jqueuej = k ^ k > 0); jqueuej < k

h4i1. �1 j= 2:hSM i =) 2(jqueue�j � jqueuej)

Proof: By Lemma 7.14 Part 1, Lemma 3.5 Part 1 and Rule Par.

h4i2. �1 j= 2(jqueue
�j � jqueue j)

Proof: By h4i1, Assumption h3i, and Rule MP.

h4i3. �1 j= 2((jqueuej = k ^ k > 0) =) (jqueuej = k W jqueue j < k))

Proof: By h4i2.

h4i4. � j=WF (RM; recs = false ^ recr = false)
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Proof: By proof assumption (� 2 LD) and de�nition of QD, which

induces LD.

h4i5. � j= 23:(recs = false ^ recr = false ^ jqueue j > 0) _ 23hRMi

Proof: By h4i4, the de�nition of WF , and noting that enabled(RM ) =

(jqueuej � 0).

h4i6. �1 j= 23:(recs = false ^ recr = false ^ jqueuej > 0) _ 23hRMi

Proof: By h4i5, Lemma 3.5 Part 1, and de�nition of disjunction.

h4i7. �1 j= 3:(recs = false ^ recr = false ^ jqueuej > 0) _ 3hRMi

Proof: By h4i6, Rule Par, and the de�nition of disjunction.

h4i8. �1 j= 2(recs = false ^ recr = false ^ jqueue j > 0) =) 3hRMi

Proof: By rewriting h4i7.

h4i9. �1 j= 2(jqueuej > 0) =) 3hRMi

Proof: By Assumption h3i, h4i8, and Rule MP.

h4i10. �1 j= (jqueuej = k ^ hRM i); jqueue j < k

Proof: Implied by Lemma 7.14 Part 2.

h4i11. Q.E.D.

Proof: By h4i3, h4i9, h4i10, and Rule Pro2.

h3i2. Q.E.D.

Proof: By h3i1 and the de�nition of implication.

h2i2. Q.E.D.

By h2i1 and Lemma 3.5 Part 2.

h1i2. Q.E.D.

Proof: By h1i1 and Lemma 3.5 Part 5.

Lemma 7.16

LD j= 2(2(:hSM i ^ recs = false ^ recr = false) =) 32(queue = "))

Proof

Assume: � 2 LD

Prove: � j= 2(2(:hSM i ^ recs = false ^ recr = false) =) 32(queue = "))

h1i1. Assume: �1 is an arbitrary su�x of �

Prove: �1 j= 2(:hSM i ^ recs = false ^ recr = false) =) 32(queue = ")

h2i1. Assume: �1 j= 2(:hSM i ^ recs = false ^ recr = false)

Prove: �1 j= 32(queue = ")

h3i1. �1 j= 8k : ((jqueuej = k ^ k > 0); jqueuej < k)
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Proof: By Lemma 7.15, Lemma 3.5 Parts 1, 5, and 6, and Rules Par and

MP.

h3i2. �1 j= 8k : (k > 0 =) 9k0 : (k0 < k ^ (jqueue j = k ; jqueuej = k0)))

Proof: By h3i1 and Lemma 3.5 Part 7.

h3i3. �1 j= 3(jqueuej = 0)

Proof: By h3i2 and Rule Pro1.

h3i4. �1 j= 2:hSM i =) 2(jqueue�j � jqueue j)

Proof: By Lemma 7.14 Part 1, Lemma 3.5 Part 1 and Rule Par.

h3i5. �1 j= 2(jqueue
�j � jqueue j)

Proof: By h3i4, Assumption h2i, and Rule MP.

h3i6. �1 j= 8k : 2(jqueuej = k =) (jqueue j = kW jqueuej < k))

Proof: By h3i5.

h3i7. �1 j= 2(jqueuej = 0 =) (jqueuej = 0W jqueuej < 0))

Proof: By h3i6 and Lemma 3.5 Part 6.

h3i8. �1 j= 2(jqueuej = 0 =) 2(jqueuej = 0))

Proof: By h3i7, the fact that jqueuej < 0 is always false, and the de�nition

of 2.

h3i9. �1 j= 32(jqueuej = 0)

Proof: By h3i3, h3i8, and Rule MP1.

h3i10. Q.E.D.

Proof: Directly by h3i9.

h2i2. Q.E.D.

Proof: By h2i1 and de�nition of implication.

h1i2. Q.E.D.

Proof: By h1i1 and Lemma 3.5 Part 2.

An important advantage of this way of writing structured proofs of temporal properties is that

at a �rst reading, one can concentrate on the �rst outermost levels of the proof. Once that has

been understood, the details at lower levels can be considered.

The next lemma contains the main part of the proof that D correctly implements S. It

states that for any BDS-related executions of AD and AS, if the execution of AD satis�es QD (the

temporal formula which induces the liveness condition LD), then the execution of AS satis�es

QS (the temporal formula which induces the liveness condition LS). The proof will be a proof

by cases based on a proof by contradiction: if we assume the execution of AS is not live, this

means that the execution does not satisfy one of the weak fairness formulas in the de�nition of

QS. By considering the weak fairness formulas one by one and deriving a contradiction in each

case, the result follows.
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Lemma 7.17

Let � 2 exec(AD) and �0 2 exec(AS) be arbitrary executions of AD and AS, respectively, with

(�; �0) 2 BDS. Assume � j= QD. Then �0 j= QS.

Proof

We prove the conjecture by contradiction. Thus,

Assume: �0 6j= QS

Prove: False

h1i1. �0 j= :WF (CS;1; recs = false ^ recr = false) _

:WF (CS;2; recs = false ^ recr = false) _

:WF (CS;3) _

:WF (CS;4)

Proof: Immediate by the Assumption, de�nition of QS, and the Boolean operators.

h1i2. Case: �0 j= :WF (CS;1; recs = false ^ recr = false)

h2i1. �0 j= 32:hCS;1i ^ 32(recs = false ^ recr = false ^ status 2 Bool)

Proof: From Case Hypothesis h1i by expanding WF and noting the fact that

enabledAS(CS;1) = (status 2 Bool).

h2i2. �0 j= 32:hCS;1i ^ 32:hSM i ^ 32(recs = false ^ recr = false ^ status 2 Bool)

Proof: By h2i1, Lemma 7.13, and MP1.

h2i3. � j= 32:hCS;1i ^ 32:hSM i ^ 32(recs = false ^ recr = false)

Proof: By Lemmas 5.10 and 5.11 since CS;1 consists of external actions and De�ni-

tion 7.5 of BDS implies that for all (s; u) 2 BDS, if u j= (recs = false ^ recr = false)

then s j= (recs = false ^ recr = false).

h2i4. � j= 32:hCS;1i ^ 32(recs = false ^ recr = false ^ queue = ")

Proof: By h2i3, Lemma 7.16, and MP1.

h2i5. � j= 32:hCS;1i ^ 32(recs = false ^ recr = false ^ status 2 Bool)

Proof: By h2i4 and Invariant 7.1 Part 1.

h2i6. � j= :WF (CD;1; recs = false ^ recr = false)

Proof: By h2i5, the de�nition of WF , the fact that CS;1 = CD;1 and the fact that

enabledAD(CD;1) = (status 2 Bool).

h2i7. Q.E.D.

Proof: By h2i6, the assumption that � j= QD, and the de�nition of QD.

h1i3. Case: �0 j= :WF (CS;2; recs = false ^ recr = false)

h2i1. �0 j= (32:hCS;2i ^ 32(recs = false ^ recr = false ^ queue 6= "))

Proof: By expanding WF and noting that enabledAS(CS;2) = (queue 6= ").

h2i2. � j= 32:hCS;2i ^ 32(recs = false ^ recr = false ^ queue 6= ")

Proof: By Lemmas 5.10 and 5.11 since CS;2 consists of external actions and De�ni-

tion 7.5 of BDS and Lemma 7.3 imply that for all (s; u) 2 BDS, if u j= (recs = false ^
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recr = false ^ queue 6= ") then s j= (recs = false ^ recr = false ^ queue 6= ").

h2i3. � j= :WF (CD;2; recs = recr = false)

Proof: By h2i2, the de�nition of WF , the fact that CS;2 = CD;2 and the fact that

enabledAD(CD;2) = (queue 6= ").

h2i4. Q.E.D.

Proof: By h2i3, the assumption that � j= QD, and the de�nition of QD.

h1i4. Case: �0 j= :WF (CS;3)

h2i1. Q.E.D.

Proof: Similar to Case h1i3.

h1i5. Case: �0 j= :WF (CS;4)

h2i1. Q.E.D.

Proof: Similar to Case h1i3.

h1i6. Q.E.D.

Proof: By h1i1 and the exhaustive cases h1i2{h1i5.

Finally, we can prove that D correctly implements S.

Theorem 7.18

D vL S

Proof

Immediate from Lemmas 7.11, 7.17, and 5.9.

The total proof of correctness of D has been partitioned into three parts. First, some invariants

were proved. Then, a relation was de�ned and proved to be an image-�nite backward simulation

from AD to AS. Note, that it is usually during the simulation proof that one realizes which

invariants are needed. Thus, when performing the proof there is usually not this clear distinction

between de�ning invariants and proving the simulation result, but for presentation purposes, we

make the split.

The third and �nal part of the proof is the liveness proof which, in conjunction with the

simulation proof, allows us to conclude correctness. In the proofs at lower levels of abstraction,

the same partition into three parts is found.

The Generic Protocol G is de�ned and proved correct in the next chapter.



Chapter 8

The Generic Protocol G

We can now start to introduce a more distributed view of the system. Both low-level protocols

H and C consist of several parallel components: a sender, a receiver, two channels connecting

the sender and receiver, and, for C, a clock subsystem. The G level consists of three parallel

processes: a sender/receiver process and two channels. This is depicted in Figure 8.1. The

sender/receiver process of G can intuitively be viewed as \partly" distributed. It contains state

variables which are intuitively manipulated by a sender part of the sender/receiver process

and state variables which are intuitively manipulated by a receiver part. However, some state

variables are manipulated by both the sender part and the receiver part of the sender/receiver

process. These \centralized" variables describe aspects which will be implemented di�erently

by H (using handshakes) and C (using timing assumptions). The \distributed" variables, on the

other hand, will basically reoccur in both H and C, and will be manipulated similarly in G, H,

and C.

Thus, we have developed G to be as distributed as possible according to H and C, and to

contain an abstract handling of the crucial aspects of choosing good identi�ers, where H and C

use di�erent methods. By looking a little bit forward at H and C, we can make the following

more detailed introduction to G:

As mentioned in Chapter 1, solutions to the at-most-once message delivery problem work by

tagging each message with a unique identi�er and sending it repeatedly over the channel. The

receiver will only accept messages which are marked with \good" identi�ers.

Thus, the two protocols H and C both go through three major phases during normal opera-

tion.

Sender/Receiver G
s=r

\Sender" \Receiver"

Channel Chrs

Channel Chsr

-

-

�

�

-

-

�

- -

� �recovers

crashs

ack(b)

send msg(m)

recoverr

crashr

receive msg(m)

receive pktrs(p) send pkt
rs
(p)

send pkt
sr
(p) receive pktsr(p)

Figure 8.1

The Generic Protocol G.
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Choosing a message identi�er The sender picks an identi�er id that is within the set of

identi�ers that the receiver is willing to accept. In C time bounds are used to choose a

good identi�er; in H an initial handshake between the sender and the receiver is used.

Sending the message and getting acknowledgement This phase is similar in both H and

C. The sender (re)transmits the current message with the chosen id , until it receives an

acknowledgement packet for that id .

Cleaning up Here again, C uses time bounds (in particular timeouts) whereas H uses a hand-

shake to determine when some \old" information may be discarded.

Our Generic Protocol G is designed to capture these three phases in an abstract way that both H

and C implement. The key abstractions incorporated into the protocol G are two \centralized"

variables, good s and good r. The variable good s represents the identi�ers that the sender might

shortly assign to messages, and good r represents the identi�ers that the receiver is willing to

accept. Four actions of G deal with \growing" and \shrinking" good s and good r, respectively.

The preconditions of the grow and shrink actions are designed to preserve certain key invari-

ants. We actually allow more freedom in these actions than is actually needed by H and C. This

leaves open the possibility that other low-level protocols, other than H and C, can be proved to

be correct implementations of G.

The rest of this chapter is organized as follows. Section 8.1 introduces the set of message

identi�ers. Section 8.2 then formally de�nes the channels in G. Then, in Section 8.3, we present

the sender/receiver process, and in Section 8.4 we show how G is obtained from the subprocesses.

Finally, in Section 8.5 we consider the proof that G correctly implements D.

8.1 Message Identi�ers

In G and the lower level protocols we need a set of identi�ers in order to label the messages

communicated over the channels. In C the identi�ers are timestamps ranging over the non-

negative reals; in H the identi�ers are just taken from some in�nite set of elements. In G we

use a set ID on which we place some constraints. When proving correct implementation for

a lower-level protocol, ID is then instantiated with the set used at that lower level, and this

set must satisfy the constraints on ID . Thus, G can be seen to be parameterized with ID . G

correctly implements S for any proper value of ID ; the low-level protocols correctly implement

G for particular proper values of ID . The constraints on ID are:

1. ID is in�nite.

2. nil =2 ID . We need nil as a special value.

8.2 The Channels

As depicted in Figure 8.1, the G level contains two channels: a channel Chsr intuitively for

sending packets1 from the sender part to the receiver part of the sender/receiver process, and a

channel Chrs in the other direction (for acknowledgements).

1Here and elsewhere, we use the term \packet" to denote objects sent over the channels; we reserve the term

\message" for the \higher-level", user-meaningful messages that appear, e.g., in the speci�cation.
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Below we specify the Chsr channel as a live I/O automaton (ACh;sr ; LCh;sr). The Chrs =

(ACh;rs ; LCh;rs) channel is similar and can be obtained from the de�nition of Chsr by replacing

the state variable sr by rs and actions send pkt sr(p) and receive pktsr(p) by send pkt rs(p) and

receive pkt rs(p).

8.2.1 States and Start States

Chsr has only one state variable which contains the packets (including duplicates) currently in

the channel. We let Chsr be parameterized with a set P of possible packets.

Variable Type Initially Description

sr B(P ) ; The packets (including duplicates) in the

channel.

8.2.2 Actions

The channel only has two types of actions: send pkt sr(p), which represents the input of packet

p from the environment, and receive pkt sr(p) which represents the output of packet p from the

channel.

Input:
send pkt

sr
(p), p 2 P

Output:

receive pktsr(p), p 2 P

Internal:

none

8.2.3 Steps

The channel is not reliable. This means that it may remove or duplicate packets. We have

chosen to model this unreliability at the time of a send pkt sr(p) step.

send pkt
sr
(p)

E�ect:

add a �nite number of p to sr

receive pktsr(p)

Precondition:

p 2 sr

E�ect:

sr := sr n fpg (� remove one copy �)

In the speci�cation, \a �nite number" could mean 0. Note, that we could have modeled the

unreliability of the channel by having internal lose and duplicate actions which could remove

or duplicate packets at any time. However, such a channel can be shown to be equivalent to

our channel, so by our substitutivity results, we will be able to substitute the channels for each

other.

8.2.4 Liveness

The receive pkt sr(p) steps of ACh;sr allow all received packets to be lost. With such a channel we

cannot, of course, guarantee any liveness of the composed system, so we shall require that if we

keep sending the same packet to the channel, then in�nitely many will get through. Thus, if a
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packet is sent in�nitely often, then it is also received in�nitely often. Furthermore we impose the

natural requirement that if a packet has succeeded in being put into the channel, then eventually

it will be delivered.

Then the liveness condition LCh;sr for the channel is induced by the following liveness formula:

QCh;sr
4

= 8p : 23hsend pktsr(p)i =) 23hreceive pkt sr(p)i ^

8p :WF (receive pktsr(p))

We do not prove formally thatQCh;sr is an environment-free liveness formula forACh;sr . However,

we provide some intuition by informally describing an environment-free strategy (g; f) for Chsr
(cf. De�nitions 2.5 and 2.7): the g function of the strategy should on every input send pkt sr(p)

add one copy of p to sr . This means that when we are playing the game against the environment,

whenever a send pktsr(p) input arrives, receive pktsr(p) will stay enabled at least until it is

executed.

The f function of the strategy, i.e., the function that determines the moves of the channel,

should then work as follows: when the game commences after some �nite execution, there

are only �nitely many packets in sr . The strategy can order these and use its �rst moves on

outputting the packets. In the meantime send pktsr(p) actions occur. When the strategy has

�nished outputting initial packets it should start matching each send pkt sr(p) action with a

receive pkt sr(p) action. Since f has access to the history of the game so far, it should simply at

its �rst move after having output initial packets perform receive pkt sr(p1) if the �rst input action

of the game was send pkt sr(p1), and generally at its nth move perform receive pkt sr(pn) if the

nth input action of the game was send pkt sr(pn). Even though the environment may provide

several (but only a �nite number of) input actions at each move and, thus, might be \faster"

than the channel, at any point in time the channel only has �nitely many \unmatched" inputs

which it will eventually have matched. The point is that the environment can never have sent

in�nitely many copies of the same packet without the channel having output in�nitely many

copies of the same packet, and all packets put into the channel will eventually be output. If f

has matched all inputs, it should simply return the empty move ? since in this case the channel

is empty.

Note that, by Proposition 3.4, QCh;sr is stuttering-insensitive.

8.3 The Sender/Receiver Process

We specify the sender/receiver process as a live I/O automaton Gs=r = (AG;s=r ; LG;s=r).

8.3.1 States and Start States

As mentioned in the introduction to this chapter, AG;s=r intuitively consists of a sender part

and a receiver part such that some state variables are only manipulated by the sender part,

some state variables are only manipulated by the receiver part, and some state variables are

manipulated by both parts. Thus, the state variables of AG;s=r are consequently grouped into

the following three classes. (When we write \sender" below, we refer to the sender part of the

sender/receiver process. Similarly for \receiver".)
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Variable Type Initially Description

modes fidle;

needid;

send, recg

idle The mode of the sender. Mode idle indi-

cates that the sender is not in the process of

sending a packet over the channel, needid

indicates that the sender is ready to choose

an identi�er for the current message, and

send indicates that the sender is sending

(repeatedly) the current packet (consisting

of current message with identi�er) over the

channel. Mode rec denotes that the sender

is in recovery phase.

buf s Msg� " The list of messages at the sender side.

useds ID� " A list containing all identi�ers assigned to

messages in the past. These identi�ers will

never be used again. The list induces a par-

tial order on identi�ers (see below).

current-msgs Msg [ fnilg nil When modes 2 fneedid; sendg, this vari-

able contains the \current" message, i.e.,

the message about to be or being sent. In

the other modes current-msgs is not used

and is set to nil.

lasts ID [ fnilg Any value When modes = send this variable contains

the identi�er chosen for the current mes-

sage. In all other modes its value is not

used. Due to requirements in low-level pro-

tocols (where lasts could, e.g., be a time-

stamp), lasts is allowed to assume arbitrary

values when it is not used.

current-ack s Bool false Acknowledgement from the receiver.
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moder fidle, rcvd,

ack, recg

idle The mode of the receiver. Mode idle indi-

cates that the receiver has delivered all re-

ceived messages to the user, rcvd indicates

that messages have been accepted but not

yet delivered to the user, ack indicates that

the receiver is sending positive acknowl-

edgements for the last message accepted to

the sender. Mode rec denotes that the re-

ceiver is in recovery phase.

buf r Msg� " The list of messages accepted by the re-

ceiver but not yet delivered.

lastr ID [ fnilg nil Contains the identi�er of the last message

accepted. When its value is not used, it is

assigned the special value nil.

issuedr P(ID) Any superset

of good r such

that

jID n issuedrj

=1

Includes everything that was ever accept-

able by the receiver, i.e., in good r. Thus,

issuedr is used to guarantee that \old" iden-

ti�ers do not show up in good r again, which

could otherwise lead to duplicate delivery.

nack-buf r ID� " A list of identi�ers for which a negative ac-

knowledgement will be issued.

good s P(ID) Any set When modes = needid this set contains all

the identi�ers that the sender might choose

for the current message. In all other modes

its value is not used.

good r P(ID) Any set At any time this set contains the identi�ers

the receiver will accept from the channel.

current-ok Bool false If current-ok = true the identi�er chosen

for the current message is considered good

by the receiver, but the current message has

not been accepted by the receiver yet.

8.3.2 Partial Order of Identi�ers

In the G protocol we need an ordering of all the identi�ers used as ids on messages sent by

the sender. As we shall see below, an identi�er id is chosen in a choose id(id) step, so if a

choose id(id) step has occurred before a choose id(id 0) step, we will require that id is less than

id 0 in this ordering. Since we collect|as we shall see|all the ids used by the sender in used s,

we use the following partial order derived from the state of G:

If used s contains distinct elements and id precedes id 0 in useds, then id <u id
0

In arbitrary states of G the same identi�er might occur several times in used s; however, below

we shall prove an invariant (Invariant 8.2 Part 2 on Page 125), which states that the elements

of useds are all distinct, which then implies that all identi�ers ever used by the sender during
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execution are related by <u. Since identi�ers of ID can be tested for equivalence (=), the

de�nition of <u trivially extends to �u.

8.3.3 Actions

Input:

send msg(m), m 2 Msg

receive pktsr(m; id), m 2Msg, id 2 ID

receive pktrs(id; b), id 2 ID, b 2 Bool

crashs
crashr

Output:

receive msg(m), m 2Msg

ack(b), b 2 Bool

send pkt
sr
(m; id), m 2 Msg, id 2 ID

send pkt
rs
(id; b), id 2 ID, b 2 Bool

recovers

recoverr

Internal:
prepare

choose id(id), id 2 ID

shrink goods(ids), ids � ID

shrink goodr(ids), ids � ID

grow goods(ids), ids � ID

grow goodr(ids), ids � ID

cleanupr

8.3.4 Steps

Before we formally de�ne steps(AG;s=r) we provide some intuition. During normal operation the

sender goes through the cycle idle{needid{send{idle of modes. When the sender is in mode

idle and buf s is non-empty, a prepare step moves to mode needid and makes the message at

the head of buf s the current message. Now \good" identi�ers must be put into goods. Exactly

how this is done will be discussed below. An identi�er id for the current message is chosen from

goods in a choose id(id) step. In such a step the sender enters send mode in which it repeatedly

sends the current message m with associated current identi�er id in send pktsr(m; id) steps.

The sender will stay in this mode until it receives a positive (b = true) or negative (b = false)

acknowledgement receive pkt rs(id ; b) for the current identi�er. In this case the sender moves to

mode idle again from where acknowledgements ack(b) can be issued to the user (but only of

buf s is empty since otherwise the sender is not acknowledging the last message sent, as required).

If the receiver receives a packet (m; id) in a receive pkt sr(m; id) step, it checks to see whether

id is in good r. If this is the case it accepts
2 the message m, adds it to the end of buf r and enters

mode rcvd (if it was not there already). Mode rcvd indicates that the receiver has messages in

buf r and is in the process of delivering these messages to the user. Once the last message in buf r
has been delivered in a receive msg(m) step, the receiver enters ack mode in which it will issue

positive acknowledgements in send pkt rs(id ; true) steps for the identi�er id of the last message

accepted from the sender (and thus the last message delivered to the user). These positive

acknowledgements will be issued repeatedly to overcome the unreliability of the channel.

2We say that a packet (or the associated message) is \successfully received" or \accepted" when the associated

identi�er is in goodr at the time of receipt.
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The above discussion has focused on the normal modes of operation of the sender and receiver,

where no crashes have occurred. After the formal de�nition of steps(AG;s=r), we explain what

can happen when sender or receiver crashes occur.

We now look at the manipulation of the good sets. When a prepare step is performed, the goods
set is emptied. The sender is now in needid mode, waiting to perform a choose id(id) step.

Since id must be taken from good s, this set must be \grown" with identi�ers. Two types of

steps can change good s: shrink good s(ids) removes identi�ers from good s and grow goods(ids)

adds identi�ers to good s. When the receiver has not been in recovery phase \recently", i.e.,

after the prepare step was performed, the sender and receiver should be in agreement about

which identi�ers are considered good. This situation is indicated by the special ag current-ok

being true . In this situation grow good s(ids) can only add elements from goodr to good s, and

the shrink good r(ids) steps, which can remove elements from good r, must not remove elements

which are already in good s. In this way we preserve the key invariant that if current-ok = true ,

then good s � good r, and, thus, the current packet is guaranteed to be accepted by the receiver

(unless new crashes occur). A detail is that identi�ers put into good s might immediately be

\shrunk" away by a shrink good s(ids) step that empties goods. (If we look forward at C, only

the value of the local sender clock is considered a good identi�er. Thus, whenever the clock

ticks, this corresponds, in G, to the old clock value being removed from goods, and the new

value being added to good s.) When we deal with liveness below, we show how to guarantee that

the sender will not grow and shrink goods forever but will eventually choose an identi�er in a

choose id(id) step.

If crashes occur, the low-level implementations H and C have no way of keeping good s a

subset of goodr . This must at the G level be reected in the grow and shrink steps. We have

designed these steps such that they preserve certain key invariants presented below. The steps

actually allow more freedom than is needed by the implementations H and C, but in this way

we have the possibility that other low-level implementations implement G. If, for instance,

current-ok = false, it turns out to be necessary to allow shrink goodr to remove elements from

good r which are already in goods. If, furthermore, moder = rec, good s can be grown fairly

arbitrarily. It is in this situation possible to add elements to good s which have never been issued

by the receiver. This may give rise to a situation where the current identi�er is not in good r
when the current packet is sent, but is added to good r during transmission over the channel.

(For this reason we shall, in the proofs below, introduce a derived variable good-ids containing

identi�ers from goodr and identi�ers not issued yet. Packets with identi�ers in good-ids have a

chance of being accepted by the receiver.)

Other preconditions on the grow and shrink steps deal with guaranteeing that the sender

and receiver do not reuse identi�ers in their good sets. In particuler, the set issuedr , which

\survives" a crash (and thus has to be implemented in stable storage in the implementations),

contains all identi�ers that were ever in good r. No identi�ers in issuedr can ever be put in good r.

In this way it is guaranteed that the receiver will never|not even in the case of crashes|accept

the same packet twice. Similarly, the sender will never choose an identi�er which is in useds.

We now de�ne steps(AG;s=r). To increase readability we keep the de�nition of the steps of

the sender in the left column and the de�nition of the steps of the receiver in the right column.

Furthermore, we align the de�nition of the send-pkt steps with the de�nition of the corresponding

receiver-pkt steps.
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send msg(m)
E�ect:

if modes 6= rec then

buf s := buf s ^m

prepare

Precondition:

modes = idle ^ buf s 6= "

E�ect:

modes := needid

goods := ;

current-msgs := head(buf s)

buf s := tail(buf s)

if moder 6= rec then
current-ok := true

choose id(id)

Precondition:
modes = needid ^ id 2 goods

E�ect:

modes := send

lasts := id

useds := useds ^ id

send pkt
sr
(m; id)

Precondition:

modes = send ^ lasts = id ^

current-msgs = m

E�ect:

none

receive pktsr(m; id)
E�ect:

if moder 6= rec then

if id 2 goodr then
moder := rcvd

buf r := buf r ^m

lastr := id

goodr := goodr n fid
0 j id 0 �u idg

if id = lasts ^ modes = send then

current-ok := false

else if id 6= lastr then

if modes = send ^ id = ids then

nack-buf r := nack-buf r ^ id
else

optionally nack-buf r := nack-buf r ^ id

else if moder = idle then
moder := ack

receive msg(m)

Precondition:

moder = rcvd ^ buf r 6= " ^ head(buf r) = m

E�ect:
buf r := tail(buf r)

if buf r = " then

moder := ack
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receive pktrs(id; b)
E�ect:

if modes = send ^ lasts = id then

modes := idle

current-acks := b

lasts := arbitrary value

current-msgs := nil

ack(b)

Precondition:

modes = idle ^ buf s = " ^

current-acks = b

E�ect:

none

send pkt
rs
(id; true)

Precondition:

moder = ack ^ lastr = id

E�ect:
optionally moder := idle

send pkt
rs
(id; false)

Precondition:
moder 6= rec ^ nack-buf r 6= " ^

head(nack-buf r) = id

E�ect:
nack-buf r := tail(nack-buf r)

crashs

E�ect:

modes = rec

current-ok := false

recovers
Precondition:

modes = rec

E�ect:
modes := idle

lasts := arbitrary value

buf s := "

current-msgs := nil

current-acks := false

crashr

E�ect:

moder = rec

current-ok := false

recoverr
Precondition:

moder = rec

E�ect:
moder := idle

lastr := nil

buf r := "

nack-buf r := "

issuedr := any superset of

issuedr [ useds [ goods
such that afterwards

jID n issuedrj =1

grow goods(ids)
Precondition:

modes 6= needid _

((moder 6= rec =) ids � issuedr) ^
(current-ok = true =) ids � goodr) ^

(ids \ useds = ;))

E�ect:
goods := goods [ ids

grow goodr(ids)
Precondition:

ids \ issuedr = ; ^

jID n (ids [ issuedr)j =1

E�ect:

goodr := goodr [ ids

issuedr := issuedr [ ids

shrink goods(ids)
Precondition:

none

E�ect:
goods := goods n ids

shrink goodr(ids)
Precondition:

current-ok = false _

((modes = needid=) ids \ goods = ;) ^
(modes = send =) lasts =2 ids))

E�ect:

goodr := goodr n ids

cleanupr
Precondition:

moder 2 fidle;ackg ^

(modes = send =) lasts 6= lastr)

E�ect:

moder := idle

lastr := nil
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Note that most locally-controlled steps of the sender and receiver are conditioned by modes and

moder , respectively, not being rec. Also, inputs (except crashs and crashr) do not lead to state

changes when the side at which they occur is crashed. Thus, G is \dead" when it is crashed.

Furthermore, crashes and subsequent recoveries have the e�ect of resetting all state variables

(except issuedr and useds) at the side at which they occur. For instance, even if the sender is

about to issue a positive acknowledgement to the user when a sender crash occurs, the sender

has forgotten about this when it recovers. These choices about the way G behaves with respect

to crashes are motivated by the low-level protocols H and C.

We now discuss certain special situations that can arise mainly due to crashes or recoveries.

Assume that the sender is in send mode with (m1; id1) as the current packet. If a crashs occurs,

the sender forgets, among other things, everything about (m1; id1). However, before it crashed,

the sender might have succeeded in placing (m1; id1) in the channel. Since we do not assume

any time bounds on channel delays, (m1; id1) might travel very slowly on the channel. In the

meantime the sender recovers, receives a new message m2 in a send msg(m2) step, assigns the

identi�er id2 tom2, and starts sending (m2; id2) to the channel. Now both (m1; id1) and (m2; id2)

are traveling on the channel, and both id1 and id2 might be in good r. (The receiver has no way of

knowing that the sender has been crashed.) In general, if crashes have occurred, several packets

(m1; id1); : : : ; (mk; idk) with identi�ers in good r might be traveling on the channel. This gives

rise to a race condition between the packets. Assume (mi; id i) is the �rst packet that reaches

the receiver and gets accepted. Then the receiver is not allowed subsequently to accept any of

the packets (m1; id1); : : : ; (mi; id i) since then either the receiver would accept the same message

twice or it would reorder messages (since m1; : : : ; mi�1 were sent before mi). The messages

m1; : : : ; mi�1 are thus e�ectively lost, but since they were in the system during crashes, this

is allowed by the Delayed-Decision Speci�cation D (and consequently by the speci�cation S).

This explains the manipulation of good r in the de�nition of the receive pktsr(m; id) steps. If the

sender crashes in needid mode, the same kind of race condition does not arise since the current

packet has not been placed in the channel yet. However, messages get lost but, again, this is

allowed by D.

If the receiver receives a packet (m; id) and id is not in goodr it will not accept the packet.

Now, two situations must be considered (which correspond to the two \else-if" cases in the

de�nition of receive pkt sr(m; id) above).

1. If id 6= lastr, we are not just receiving another copy of the last packet accepted.

� if modes = send and id = lasts, we are, due to crashes, in a situation where the

sender is in send mode with a \bad" identi�er. The receiver must inform the sender

about this situation since otherwise the sender would be stuck forever. Thus, the

receiver adds id to nack-buf r which will lead to a send pktrs(id ; false) step. Note,

that since only one send pkt rs(id ; false) will be performed, there is no guarantee that

the packet will actually be put into the channel (which is unreliable). However, the

sender continues to send (m; id), so packets will continue to get through (due to

channel liveness) to the receiver. Every time this happens, the receiver will add id to

nack-buf r, so (id ; false) will continue to be issued. By channel liveness in the other

direction the sender will eventually receive (id ; false) and thereby be dislodged.

� if modes 6= send or id 6= lasts, the received packet (m; id) is not the current packet

of the sender but instead some old packet from the channel. The low-level protocols

we consider cannot always identify this situation|mainly because the receiver in a
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distributed implementation does not have access to modes and lasts. The C protocol

can in some situations make some safe guesses, but generally a low-level protocol has

to assume the worst case and thus add id to nack-buf r. The G protocol leaves this

possibility open.

2. If id = lastr , we are receiving a new copy of the last packet accepted. In this situation

moder could be idle, in which case it should be changed to ack. The situation is explained

as follows.

Due to requirements in the low-level implementations, a send pktrs(id ; true) step must

have the possibility of changing moder to idle, which disables further send pkt rs(id ; true)

steps. Thus, due to the unreliability of the channels, we are not sure that (id ; true)

actually arrives to inform the sender that the current packet was successfully received.

But the sender will then continue to send (m; id) packets, and the (inevitable) receipt of

some of these by the receiver will lead to mode change to ack, which, in turn, leads to

send pktrs(id ; true) steps. As above, channel liveness ensures that a receive pkt rs(id ; true)

step will eventually occur as required.

Some of this discussion has dealt with liveness. We now turn to the formal de�nition of the

liveness condition for Gs=r .

8.3.5 Liveness

Let

CG;s=r1
4

= fprepare; ack(true); ack(false); recoversg [

fsend pktsr(m; id) jm 2 Msg ^ id 2 IDg

CG;s=r2
4

= fchoose id(id) j id 2 IDg

CG;s=r3
4

= frecoverrg [

freceive msg(m) j m 2 Msgg [

fsend pktrs(id ; true) j id 2 IDg

CG;s=r4
4

= fsend pktrs(id ; false) j id 2 IDg

The liveness condition LG;s=r for AG;s=r is now induced by the following temporal formula.

QG;s=r
4

= WF (CG;s=r1) ^

2(2(modes = needid ^ moder 6= rec) =) 3hCG;s=r2i) ^

WF (CG;s=r3) ^

WF (CG;s=r4)

The �rst, third, and fourth conjunct express normal weak fairness to some locally-controlled

actions of the sender and receiver, respectively.

The second conjunct looks more complicated but simply states that it is always the case

that if the sender stays in mode needid and the receiver does not crash, then eventually a

choose id(id) step occurs. Thus, in�nite growing and shrinking of the good sets are avoided.

Note, that this kind of liveness condition is more high-level than, e.g., weak fairness, but it
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exactly captures the intuitive requirement to the execution of the system, and the general model

of live I/O automata allows such general liveness requirements.

As for the liveness formula for the channel Chsr above, we do not formally prove that QG;s=r is

an environment-free liveness formula for AG;s=r but instead provide some intuition as to how an

environment-free strategy (g; f) could be de�ned: on inputs, the g function can choose arbitrarily

between nondeterministic choices. The f function should deal with the four conjuncts of QG;s=r

in a round-robin fashion: if it dealt with the �rst conjunct last time, it should deal with the

second conjunct now, and so on. If it is time to deal with one of the weak-fairness formulas,

f simply performs some step from the appropriate set if possible. The second conjunct needs

more attention. Here f should do the following if modes = needid and moder 6= rec, and do

nothing otherwise:

1. If goods 6= ;, then perform a choose id(id) step.

2. Else, if good r 6= ;, perform a grow goods(ids) step (with ids nonempty). Such a step is

always possible when good r 6= ;.

3. Else, perform a grow goodr(ids) step with ids nonempty. Such a step is always possible

since it is true that there are always in�nitely many unused identi�ers left.

If Part 3 was performed, then Part 2 will be performed next time the second conjunct of QG;s=r

is dealt with. If Part 2 was performed, then Part 1 will be chosen next time. This is under

the assumption that the sender stays in mode needid and the receiver does not crash in the

meantime, but if this is not satis�ed, then the second conjunct does not restrict the execution

at all.

Another thing to note is that, by Lemma 4.8 and Proposition 3.4, QG;s=r is stuttering-insensitive.

8.4 The Speci�cation of G

As depicted in Figure 8.1, G consists of the sender/receiver process and the two channels. So,

�rst de�ne G0 = (A0
G; L

0
G) to be the following live I/O automaton

G0 4

= Gs=rkChsrkChrs

where the set P of possible packets of the channels is instantiated with the packets that Gs=r

can send and receive, i.e., packets of the form (m; id) and (id ; b). Thus, G0 is the parallel

composition of the sender/receiver process and the channels. Since QG;s=r , QCh;sr , and QCh;rs

are all stuttering-insensitive, Proposition 4.4 implies that L0G is induced by

QG
4

= QG;s=r ^ QCh;sr ^ QCh;rs

By De�nition 2.2 the channel actions send pkt sr(m; id), receive pktsr(m; id), send pkt rs(id ; b),

and receive pkt rs(id ; b) are output actions of G0. Thus, to get G = (AG; LG) we hide these

actions. Let

AG
4

= fsend pkt sr(m; id) jm 2 Msg ^ id 2 IDg [

freceive pktsr(m; id) jm 2 Msg ^ id 2 IDg [

fsend pkt rs(id ; b) j id 2 ID ^ b 2 Boolg [

freceive pktrs(id ; b) j id 2 ID ^ b 2 Boolg
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Then, de�ne

G
4

= G0 n AG

By Proposition 4.5, LG is induced by QG.

We can now turn attention to proving that G correctly implements D.

8.5 Correctness of G

In this section we consider the proof that G = (AG; LG) correctly implements D = (AD; LD).

This will be done in terms of a re�nement mapping from AG to AD and a subsequent liveness

proof. We perform the re�nement proof in all detail, but only sketch the liveness proof. We

refer to the formal liveness proof at the H level for a similar|but formal|liveness proof.

First, we state some invariants of AG.

8.5.1 Invariants

As mentioned in Chapter 7, during the process of performing a simulation proof, it usually

becomes clear that certain invariants are needed: some situation in the proof is impossible to

solve but it turns out that the state in which the situation occurs is not reachable. Thus, an

invariant that avoids these \bad" states is found. In this section we present the invariants

we need in the re�nement mapping proof from AG to AD. The proofs of the invariants are

deferred to Appendix C, where we furthermore consider the general way to prove invariants of

safe (timed) I/O automata.

In the invariants we use a derived variable good-ids de�ned as follows: in any state s of AG,

de�ne

s:good-ids
4

= s:good r [ s:issuedr

where s:issuedr is the complement of s:issuedr with respect to ID . A message assigned an id in

s:good-ids might still be received successfully, i.e, accepted by the receiver.

The �rst invariant has two parts which state simple properties of the state when the sender is

in send mode. (Recall from Appendix A that lasts 2 used s is shorthand notation for lasts 2

elems(useds). Similar notation will be used below.)

Invariant 8.1

1. If modes = send then lasts 2 useds

2. If modes = send then lasts 6= nil

When the sender is in needid mode, it can never choose among identi�ers that have been used

before (since such identi�ers cannot be put into good s again). As a consequence useds contains

distinct elements.

Invariant 8.2

1. If modes = needid then used s \ good s = ;



8.5. Correctness of G 125

2. All elements of used s are distinct

As expected a receiver mode of rcvd indicates that there are some messages in the receiver

bu�er which have not yet been delivered to the user.

Invariant 8.3

1. If moder = rcvd then buf r 6= "

The following invariant is a key invariant. It states relationships between and properties of the

di�erent sets of identi�ers in AG.

In this invariant and other invariants below, we use the following de�nition: de�ne in any

state s of AG ids(sr) to be the set of id components of the packets in the sr channel. Formally,

we have

ids(sr)
4

= fid jm 2 Msg ^ (m; id) 2 srg

Similarly,

ids(rs)
4

= fid j b 2 Bool ^ (id ; b) 2 rsg

Invariant 8.4

1. issuedr � good s if modes = needid ^ moder 6= rec

2. issuedr � good r

3. issuedr � used s if moder 6= rec

4. used s � ids(sr) [ (if modes = send then flastsg else ;)

5. used s � nack-buf r

6. used s � ids(rs)

7. lastr =2 good-ids

8. If lastr 6= nil then lastr 2 useds

The following invariant states the fact that for any two packets in sr (possibly including the

current packet), if the packets have the same identi�er, then the packets are equal (and thus

represent two copies of the same packet).

Invariant 8.5

1. Let pkts = sr [ (if modes = send then f(current-msgs; lasts)g else ;), and

let (m; id) 2 pkts and (m0; id
0) 2 pkts . Then

If id = id 0 then m = m0
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The next invariant states properties of reachable states where current-ok = true . Recall that

current-ok intuitively is a ag which is true whenever the sender is in the process of sending the

next message (packet), the receiver has not been in recovery phase since the last prepare action,

and the current packet has not been received yet. Thus, current-ok = true indicates that the

sender and receiver are synchronized and in agreement about which identi�ers to use.

Invariant 8.6

1. If current-ok = true then modes 2 fneedid; sendg

2. If current-ok = true then moder 6= rec

3. If current-ok = true ^ modes = send then lasts 6= lastr

4. If current-ok = true ^ modes = send then (lasts; b) =2 rs

5. If current-ok = true ^ modes = needid then goods � goodr

6. If current-ok = true ^ modes = send then lasts 2 good r

7. If current-ok = true ^ modes = send then lasts =2 nack-buf r

In certain situations current-ok is guaranteed to be false. For instance, if the sender is in send

mode and the current packet has been accepted by the receiver (indicated by either lasts = lastr
or the fact that an acknowledgement for lasts is in rs).

Invariant 8.7

1. If modes = send ^ lasts = lastr then current-ok = false

2. If modes = send ^ (lasts; b) 2 rs then current-ok = false

We now state properties of the identi�ers in sr . Part 1 states that each identi�er in sr has

been chosen before (or is equal to) the current identi�er when modes = send. This is expressed

using the ordering <u induced by used s. Parts 2{4 state that if either (2) the current packet

has been accepted by the receiver, (3) the receiver has sent positive acknowledgement for the

current packet to rs, or (4) the sender has received the positive acknowledgement, then none of

the identi�ers in sr (possibly including the current identi�er lasts) can never become \good",

i.e., can never reappear in goodr . (These invariants among other things guarantee that AG can

never reorder messages or accept the same packet twice.)

Invariant 8.8

1. If modes = send ^ id 2 ids(sr) then lasts �u id

2. If modes = send ^ lasts = lastr then (flastsg [ ids(sr))\ good-ids = ;

3. If modes = send ^ (lasts; true) 2 rs then (flastsg [ ids(sr)) \ good-ids = ;
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4. If modes = idle ^ current-ack s = true then ids(sr)\ good-ids = ;

In certain situations buf r is guaranteed to be empty. Part 1 of the following invariant states

that if moder = idle then buf r is empty. This situation occurs if the receiver has just sent

acknowledgement after having delivered the last message to the user, or if the receiver has just

recovered. Parts 2{4 deal with the situation where the current message is being acknowledged

over rs . Either (2) the receiver is sending positive acknowledgements for the last message

received (and passed on to the user), (3) the receiver has succeeded in placing the positive

acknowledgement in rs, or (4) the sender has already received the positive acknowledgement.

Invariant 8.9

1. If moder = idle then buf r = "

2. If moder = ack then buf r = "

3. If modes = send ^ (lasts; true) 2 rs then buf r = "

4. If modes = idle ^ current-ack s = true then buf r = ".

The following invariant states that identi�ers for which the receiver will or has sent negative

acknowledgements can never (again) be considered \good" by the receiver.

Invariant 8.10

1. nack-buf r \ good-ids = ;

2. ids(rs) \ good-ids = ;

Furthermore, the receiver can never issue negative acknowledgements for the current identi�er

if it has accepted the current packet (unless new crashes have occurred).

Invariant 8.11

1. If modes = send ^ lasts 2 nack-buf r then lasts 6= lastr.

2. If modes = send ^ (lasts; false) 2 rs then lasts 6= lastr .

Our �nal invariant states that there are always \enough" (read: in�nitely many) identi�ers

left that have not been issued. This is an important invariant since it ensures that a message

to be sent can always be associated with an identi�er. The invariant will not be used in the

safety proof since not being able to choose an identi�er does not violate any safety requirement.

Instead the invariant is essential for the system to guarantee any liveness requirements.



128 8. The Generic Protocol G

Invariant 8.12

1. jID n issuedrj =1

The conjunction of all invariants above (which is itself an invariant) will be referred to by IG.

8.5.2 Safety

In this section we show the existence of a re�nement mapping from AG to AD. However, �rst

we need some preliminary de�nitions.

Let s be any state of AG which satis�es IG. De�ne the possible pairs in s in the following

way

s:pos-pairs
4

= f(m; id) 2 s:sr j id 2 s:good-ids ^ (s:modes = send =) id 6= s:lasts)g

The pairs in s:pos-pairs represent the \old" packets in sr that still have a chance of being

successfully received by the receiver. Note, that we do not count (s:current-msgs; s:lasts) as a

possible pair when s:modes = send. Thus, the set of possible pairs in a state consists of packets

for which the sender never stayed around to receive acknowledgement because of sender crashes.

If no crashes have ever occurred the set is empty.

We want to order the possible pairs of a state into a list reecting the order in which the

pairs were sent. For this reason we|for any state s of AG which satis�es IG|de�ne a total order

on the packets in s:sr based on the partial order on ids imposed by s:useds (see Section 8.3.2):

(m0; id 0) <u (m
00; id 00) if id 0 <u id

00

Invariant 8.4 Part 4 and Invariant 8.5 Part 1 imply that the order is indeed total on all packets

in s:sr for reachable states s of AG.

Now, for any state s of AG which satis�es IG, de�ne the possible list , written s:pos-list,

to be the list obtained by ordering the elements of s:pos-pairs according to the ordering just

introduced. (The closer to the head of the list the smaller the value according to the ordering).

Thus, s:pos-list is the list of those packets (excluding the current packet) that still might be

successfully received, and is ordered according to the order in which the packets were sent, with

older packets occurring towards the head of the list. For all states s of AG not satisfying IG,

de�ne s:pos-list to be ".

De�ne the function messages to extract the list of messages from a list of packets of sr .

Thus, if l = h(m1; id1); : : : ; (mn; idn)i then messages(l)
4

= hm1; : : : ; mni.

When the mode of the sender is either needid or send, the value of current-msgs is the message

to be sent to the receiver. (This message has already been removed from buf s). Now, the destiny

of this message might be unknown if there has been a crash, because then the id that has been

(or is to be) assigned to the message might not be in good-ids or it might be removed from

good-ids before the message is received. The variable current-ok in AG is precisely what we need

to state this uncertainty. So, the ag (OK or marked) to be associated with the current message

in the re�nement mapping below is then derived from current-ok in state s in the following way:

s:current-ag
4

= (if s:current-ok then OK else marked)
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We now de�ne the current queue, i.e., the part of the queue at the D level that corresponds to

the current message at the G level, as follows

s:current-queue
4

= if s:modes = needid _ (s:modes = send ^ s:lasts 2 s:good-ids)

then h(s:current-msgs; s:current-ag)i

else "

When the mode of the sender is send and lasts 2 good-ids we denote by current pair the set

containing the pair (current-msgs; lasts). In all other states this set is empty. Thus

s:current-pair
4

= if s:modes = send ^ s:lasts 2 s:good-ids

then f(s:current-msgs; s:lasts)g

else ;

We de�ne a function RGD from states(AG) to states(AD). This function will in Lemma 8.14 be

proved to be a re�nement mapping from AG to AD with respect to IG and ID. In the de�nition,

when we write e.g. \buf r paired with OK", we mean the element of (Msg �Flag)� obtained from

buf r by pairing every message with OK.

De�nition 8.13 (Re�nement Mapping From AG to AD)

If s 2 states(AG) then de�ne RGD(s) to be the state u 2 states(AD) such that

1. u:recs = (s:modes = rec)

u:recr = (s:moder = rec)

2. u:queue is the concatenation of

� s:buf r paired with OK

� messages(s:pos-list) paired with marked

� s:current-queue

� s:buf s paired with OK

3. u:status =

(false; OK) if s:modes = rec A

else (?; OK) if s:buf s 6= " B

else (?; s:current-ag) if s:modes = needid C(i)

(?; s:current-ag) if s:modes = send ^ s:lasts 2 s:good-ids C(ii)

(?; OK) if s:modes = send ^ s:lasts = s:lastr ^ s:buf r 6= " C(iii)

(true ; OK) if s:modes = send ^ s:lasts = s:lastr ^ s:buf r = " C(iv)

(true ; marked) if s:modes = send ^ s:lasts 6= s:lastr ^

(s:lasts; true) 2 s:rs C(v)

(false; OK) if s:modes = send ^ s:lasts =2 s:good-ids ^

s:lasts 6= s:lastr ^

(s:lasts; true) =2 s:rs C(vi)

(s:current-ack s; OK) if s:modes = idle C(vii)
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It is easy to see that the cases in Part 3 of the de�nition are exhaustive. However, the cases

C(ii){C(vi) are overlapping in some non-reachable states (where s:lasts 2 s:good-ids ^ (s:lasts =

s:lastr _ (s:lasts; true) 2 s:rs), cf. Invariants 8.4 Part 7 and 8.10 Part 2). Since we shall only

be interested in the image of states satisfying the invariants, this is not a problem in practice.

However, to make RGD a mapping from all states of AG to states of AD, we adopt the convention

that in cases C(ii){C(vi) the �rst case (from top to bottom) that is satis�ed by a given state is

chosen.

The intuition behind RGD is as follows: When either the sender or receiver in AG is in mode

rec this, of course, corresponds to AD having either recs or recr set to true , respectively. This

is captured in Part 1.

Part 2 associates ags with the messages between the sender and the receiver. The messages in

buf s and buf r all get paired with the ag OK. That is because these messages are \safe" as long

as no new crashes occur. If a crash occurs at, e.g., the sender side, then of course the elements

in buf s will be deleted, but this corresponds in AD to marking these elements and dropping

them. So, the ag associated with a message (or the status below) should indicate the situation

for that message (or status) here and now.

The messages in pos-list are all paired with marked. As explained above, when pos-list

was de�ned, all elements of pos-list are \old" packets that still might be successfully received.

However, elements of pos-list lose this possibility (i.e., are removed from pos-list) if a packet with

higher id is successfully received by the receiver (since otherwise AG could rearrange messages).

Thus, messages in pos-list might be lost without any crashes occurring. For this reason these

messages are paired with marked in RGD.

In current-queue the ag is current-ag . If the receiver has not been in rec mode (which

in this situation implies current-ok = true) since the last prepare action, we know that the id

assigned (or to be assigned) to the current message is in goodr (cf. Invariant 8.6 Parts 5 and

6). Unless crashes occur this will be the case until the current message is successfully received.

(Note, that the successful receipt of a message from pos-list cannot cause the id of the current

message to be removed from good r since all messages in pos-list have ids less that this id). So, in

this situation current-ag = OK. On the other hand, if a crash has occurred the current message

might still be successfully received but it could be lost. In this case current-ag = marked as

required.

Part 3 deals with the status . First, recall that in AD status records the status of the last message

sent to the system.

Case A deals with the situation where the sender has crashed. In this situation the last

message sent can only cause a negative acknowledgement to the user. Therefore status =

(false; OK).

In Case B, modes 6= rec and buf s 6= ". Thus, the last element sent is, for now, sitting safely

in buf s. For this reason we have status = (?; OK).

C(i) and C(ii) describe to the situation where the last element sent is in current-queue . Here

status = (?; current-ag), where current-ag = marked is there has been a crash so that it is

permitted to \lose" status (i.e., change it to (false; OK)).

In C(iii) the last message sent has been received by the receiver and is sitting safely in buf r.

In C(iv) this message has been passed on to the user and the receiver is in the process of

sending positive acknowledgements to the sender. This is a sure positive status, thus, status =

(true ; OK).
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Case C(v) then describes the situation where a positive acknowledgement has been sent by

the receiver, but where the receiver subsequently has crashed. In this situation the positive

acknowledgement might eventually be successfully received by the sender, but, since the sender

keeps on sending its current packet until it receives an acknowledgement, the receiver might issue

negative acknowledgements for the current message and these negative acknowledgements could

pass the positive acknowledgements in rs such that the sender receives a negative acknowledge-

ment for the current message. The latter situation corresponds in AD to status being lost. This

explains why status = (true ; marked) in case C(v). Note, that in the situation just explained,

the current message has been successfully delivered to the user, but a subsequent crash could

cause status to be lost anyway (recall that this is allowed by the speci�cation).

Case C(vi) actually describes two situations: (a) the id assigned to the current message is

such that the current message can never be successfully received by the receiver. Thus, the

receiver can only issue negative acknowledgements for this message. The other situation is: (b)

the current message has been successfully received, but the receiver crashed before successfully

placing a positive acknowledgement on the channel rs. Again, only negative acknowledgements

can be received by the sender. This explains status = (false; OK).

Finally, case C(vii) reects the acknowledgement received by the sender for the (last) current

message.

After having used our knowledge and intuition about AG and AD to de�ne RGD, we still need

to verify that RGD is in fact a re�nement mapping from AG to AD (with respect to IG and ID).

The following lemma states that this is the case.

Lemma 8.14

AG �R AD via RGD.

Proof

We prove that RGD is a re�nement mapping from AG to AD with respect to IG and ID. We check

the two conditions (which we call base case and inductive case, respectively) of De�nition 5.2.

Base Case

It is easy to see that for any start state s of AG, RGD(s) is a start state of AD.

Inductive Case

Assume (s; a; s0) 2 steps(AG) such that s and s
0 satisfy IG and RGD(s) satis�es ID (Invariant 7.1).

Below we consider cases based on a (and sometimes subcases of each case) and for each (sub)case

we de�ne a �nite execution fragment � of AD of the form (RGD(s); a
0; u00; a00; u000; : : : ; RGD(s

0))

with trace(�) = trace(a). For brevity we let u denote RGD(s) and u0 denote RGD(s
0).

Unless otherwise stated we let Part 1{3 refer to the three parts of De�nition 8.13.

a = send msg(m)

We consider cases based on s:modes.

1. s:modes 6= rec

Then, it is easy to see that (u; send msg(m); u0) is a step of AD and thus a �nite execution

fragment with the right trace.
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2. s:modes = rec

Then s0 = s, so also u0 = u.

We show that (u; send msg(m); u00;mark(I); u000; drop(I); u0), where u00, u000, and I are de-

�ned below, is a �nite execution fragment of AD by showing that (u; send msg(m); u00),

(u00;mark(I); u000), and (u000; drop(I); u0) are steps of AD. Clearly the execution fragment

has the right trace.

De�ne u00:recs = u:recs
u00:recr = u:recr
u00:queue = u:queue ^(m; OK)

u00:status = (?; OK)

Then obviously (u; send msg(m); u00) 2 steps(AD).

De�ne u000:recs = u:recs (= true)

u000:recr = u:recr
u000:queue = u:queue ^ (m; marked)

u000:status = u00:status

Thus the only di�erence between u00 and u000 is that the element at the end of queue is

marked in u000. De�ne I = fmaxidx (u00:queue)g. Then, since u000:recs = true , obviously

(u00;mark(I); u000) 2 steps(AD).

Finally, we have to show that (u000; drop(I); u0) 2 steps(AD). First note that drop is enabled

in u000 since I contains the index of the last element of u000:queue and this element is marked

by explicit construction. It now su�ces that the four state variables of AD are handled

correctly.

recs and recr :

We have (by construction and the fact that u0 = u) u000:recs = u0:recs and u000:recr =

u0:recr as required by the de�nition of drop(I) in AD.

queue :

We have (again by construction and the fact that u0 = u) u000:queue = u0:queue ^

(m; marked). Thus, since drop(I) requires the last element of queue to be deleted, queue

is handled correctly.

status :

Since the element at the end of queue is deleted, the de�nition of drop(I) requires that

u0:status = (false; OK), but this is the case since u:status = (false; OK) (from the de�nition

of RGD) and u0 = u.

a = receive msg(m)

We show that (u; receive msg(m); u0) 2 steps(AD). The step clearly has the right trace.

From the precondition of the receive msg(m) steps in AG we have that s:moder = rcvd,

s:buf r 6= ", and head(s:buf r) = m. The de�nition of RGD then implies that u:queue 6= "

and head(u:queue) = (m; OK). Thus, from the de�nition of the receive msg(m) steps in AD we

see that receive msg(m) is enabled in u. It now su�ces to show that the four state variables of

AD are handled correctly.

recs, recr, and queue :

It is easy to see that u0:recs = u:recs, u
0:recr = u:recr, and u0:queue = tail(u:queue), as

required by the de�nition of receive msg(m) in AD.

status :
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We consider cases based on which condition (A, B, C(i){C(vii)) s satis�es in Part 3.

Suppose s satis�es the condition in case A, C(v), C(vi), or C(vii). Then s0 satis�es the same

condition, so u:status = u0:status. Since in all cases u:status :stat 6= ?, leaving status unchanged

is permitted by the de�nition of receive msg(m) in AD.

Suppose s satis�es the condition in case B, C(i), or C(ii). Then s0 satis�es the same condition,

so u:status = u0:status . In all three cases it is easy to see that u0:queue 6= " so it is allowed by

the de�nition of receive msg(m) in AD to leave status unchanged.

Suppose s satis�es the condition in case C(iii). If s0:buf r 6= " then s0 also satis�es this condition

but in this case u0:queue 6= " so it is permitted by the de�nition of receive msg(m) in D to leave

status unchanged. So, assume s0:buf r = ". Then s0 satis�es the condition in case C(iv). Thus,

u:status = (?; OK) and u0:status = (true ; OK). Also, s0:buf s = " and Invariant 8.8 Part 2 implies

that both s0:pos-list = " and s0:current-queue = ". Then, since s0:buf r = ", u:queue = ". Thus,

changing status from (?; OK) to (true ; OK) is as required by receive msg(m) in AD.

Finally, the precondition of receive msg(m) in AG implies that s cannot satisfy the condition

in case C(iv).

a = ack(b)

We show that (u; ack(b); u0) 2 steps(AD). The step clearly has the right trace.

By de�nition of ack(b) in AG we have s0 = s so also u0 = u.

From the precondition of ack(b) in AG we have s:modes = idle, s:buf s = ", and s:current-ack s =

b. Then u:status = (s:current-ack s; OK) = (b; OK) (by case C(vii) of Part 3). Thus, ack(b) is

enabled in u.

Since u:status :stat = OK, it is now easily seen that (u; ack(b); u0) is a step of D.

a = crashs

We show that (u; crashs; u
00;mark(I); u000; drop(I 0); u0), where u00, u000, I , and I 0 are de�ned below,

is a �nite execution fragment of AD by showing that (u; crashs; u
00), (u00;mark(I); u000), and

(u000; drop(I 0); u0) are steps of AD. Clearly the execution fragment has the right trace.

De�ne u00:recs = true

u00:recr = u:recr
u00:queue = u:queue

u00:status = u:status

Then clearly (u; crashs; u
00) 2 steps(AD).

First let icq = js:buf rj+ js:pos-listj. Then, de�ne
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u000:recs = u00:recs
u000:recr = u00:recr

(u000:queue; I; I 0) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(u00:queue; ;; ;) if s:modes 2 fidle; recg _

(s:modes = send ^

s:lasts =2 s:good-ids)

(q; ficqg; ;) if s:modes = send ^

s:lasts 2 s:good-ids ^

(s:current-msgs; s:lasts) 2 s:sr

where q = mark (u00:queue; ficqg)

(q; ficqg; ficqg) otherwise

where q = mark (u00:queue; ficqg)

u000:status = (u00:status :stat ; marked)

Since u00:recs = true , clearly mark(I) is enabled in u00. To prove that (u00;mark(I); u000) 2

steps(AD) it now su�ces to show that all four state variables of AD are handled correctly.

recs and recr :

Leaving recs and recr unchanged is as required by the de�nition of mark(I) in AD.

queue :

By explicit construction of u000:queue and I , it is easy to see that queue is handled correctly.

AD.

status :

Marking status is allowed by the de�nition of mark(I) in AD.

Thus, (u00;mark ; u000) 2 steps(AD).

Finally, we must show that (u000; drop(I 0); u0) 2 steps(AD). Slearly drop(I 0) is enabled in u000, so

it su�ces to show that the four state variables of AD are handled correctly.

recs and recr :

We have u0:recs = true = u000:recs and u0:recr = u:recr = u000:recr. Leaving recs and recr
unchanged is as required by the de�nition of drop(I 0) in AD.

status :

We have u0:status = (false; OK) since s0:modes = rec, and this is allowed by the de�nition of

drop(I 0) in AD.

queue :

First, assume s:modes 2 fidle; recg or s:modes = send ^ s:lasts =2 s:good-ids. Then it is

easy to see that u0:queue = u000:queue = u:queue . Leaving queue unchanged is as required by

the de�nition of drop(I 0) in AD since in this case I 0 = ;.

Next, assume (s:modes = send ^ s:lasts 2 s:good-ids ^ (s:current-msgs; s:lasts) =2 s:sr) or

s:modes = needid. Then we have s:current-queue = h(s:current-msgs; s:current-ag)i and

s0:current-queue = ". But the other three (buf r , buf s, and pos-list) parts that make up the

abstraction of a queue in AD are unchanged. (Note, in the de�nition of u000:queue is this case

that the element in u00:queue that corresponds to s:current-queue has index icq). Then, it is

easy to see that u0:queue = delete(u000:queue ; ficqg). Thus, by explicit construction of I 0 and

the de�nition of drop(I 0) it is seen that queue is handled as required.

Finally, assume (s:modes = send ^ s:lasts 2 s:good-ids ^ (s:current-msgs; s:lasts) 2 s:sr).

Again, we have s:current-queue = h(s:current-msgs; s:current-ag)i and s0:current-queue = ".

But in this case we have s0:pos-pairs = s0:pos-pairs [ (s:current-msgs; s:lasts). Then Invari-

ant 8.8 Part 1 implies that s0:pos-list = s:pos-list ^ (s:current-msgs; s:lasts). We now have

that the only di�erence between u0:queue and u:queue is that one of the elements (the one
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corresponding to (s:current-msgs; s:lasts)) in u0:queue is marked (which it might not be in

u:queue). But this gives us u0:queue = u000:queue , and since I 0 = ; in this case, it is seen that

queue is handled as required by the de�nition of drop(I 0) in AD.

Thus, (u000; drop; u0) 2 steps(AD) as required.

a = crashr

We show that (u; crashr ; u
00;mark(I); u0), where u00 and I are de�ned below, is a �nite execution

fragment of AD by showing that (u; crashr ; u
00) and (u00;mark(I); u0) are steps of AD. Clearly

the execution fragment has the right trace.

De�ne u00:recr = true

u00:recs = u:recs
u00:queue = u:queue

u00:status = u:status

Clearly (u; crashr; u
00) 2 steps(AD).

De�ne,

I =

(
fjs:buf r j+ js:pos-listjg if s:modes = needid _ (s:modes = send ^ s:lasts 2 s:good-ids)

; otherwise

We now show that (u00;mark(I); u0) 2 steps(AD). First note that since u00:recr = true , the

de�nitions of I and RGD imply that mark (I) is enabled in u00. It thus su�ces to show that the

four state variables of AD are handled correctly.

recs and recr:

We have u0:recr = true = u00:recr and u0:recs = u:recs = u00:recs. Leaving recs and recr
unchanged is as required by the de�nition of mark(I) in AD.

queue and status :

First assume s:modes = needid or s:modes = send ^ s:lasts 2 s:good-ids . In this case the

only di�erence in states s and s0 of the four components that make up the abstraction of a

queue in Part 2 is that the element in current-queue is marked in s0 whereas it might be OK

in s. So, the only di�erence between u00:queue(= u:queue) and u0:queue is that the element

with index js:buf r j+ js:pos-listj has changed its ag to marked, but by de�nition of I in this

case, this is as required by the de�nition of mark (I) in AD. For status , if s:buf s 6= " then

u:status = u0:status = (?; OK) by Part 3B. But leaving status unchanged is allowed by the

de�nition of mark (I) in AD. If s:buf s = " then s satis�es either Part 3C(i) or 3C(ii) and s0

satis�es the same part. In this case status might change its ag from OK to marked but again

this is allowed by the de�nition of mark(I) in AD.

Finally, in all other cases u:queue = u0:queue and u:status = u0:status so mark(I) should be a

no-op, but again this is allowed by the de�nition of mark (I) in AD since in this case I = ;.

a = recovers

We show that (u;mark(I); u00; drop(I); u000; recovers; u
0), where u00, u000, and I are de�ned below,

is a �nite execution fragment of AD by showing that (u;mark(I); u00), (u00; drop(I); u000), and

(u000; recovers; u
0) are steps of D. Clearly the execution fragment has the right trace.

De�ne I = fi j maxidx (u:queue)� (js:buf sj � 1) � i � maxidx (u:queue)g.

Thus, I contains the indices of the last js:buf sj elements in u:queue.
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De�ne u00:recs = u:recs
u00:recr = u:recr
u00:queue = mark(u:queue ; I)

u00:status = u:status

Since s:modes = rec we have u:recr = true so the de�nition of I implies that mark(I) is enabled

in u. Then it is easy to see that (u;mark(I); u00) 2 steps(AD).

De�ne u000:recs = u00:recs
u000:recr = u00:recr
u000:queue = delete(u00:queue; I)

u000:status = (false; OK)

The de�nitions of I and u00:queue implies that drop(I) is enabled in u00. Now, to show that

(u00; drop(I); u000) 2 steps(AD), it su�ces to show that the four state variables of AD are handled

correctly.

recs and recr :

Leaving recs and recr unchanged is as required by the de�nition of drop(I) in AD.

queue :

By explicit construction of u000:queue , clearly queue is handled correctly.

status :

Since drop(I) is always allowed to change status to (false; OK), status is handled correctly.

Thus, (u00; drop(I); u000) 2 steps(AD).

Finally, we prove that (u000; recovers; u
0) 2 steps(AD). Since u

000:recs = u00:recs = u:recs = true ,

we have that recovers is enabled in u000. We show that the four state variables of AD are handled

correctly.

recs and recr :

Leaving recr unchanged and changing recs from true to false is as required by the de�nition

of recovers in AD.

queue :

Note that s:current-queue = s0:current-queue = ", s:pos-list = s0:pos-list, and s:buf r =

s0:buf r. So, since buf s is emptied in the recovers step of AG, the only di�erence between

u:queue and u0:queue is that the last js:buf sj elements of u:queue are missing in u0:queue.

Thus, u0:queue = u000:queue as required by the de�nition of recovers in AD.

status :

Since s0:modes = idle, s0:buf s = ", and s0:current-ack s = false, we have u0:status = (false; OK)

by Part 3(vii). Thus, u0:status = u000:status as required by the de�nition of recovers in AD.

Thus, (u000; recovers; u
0) 2 steps(AD).

a = recoverr

We show that (u;mark(I); u00; drop(I); u000; recoverr ; u
0), where u00, u000, and I are de�ned below,

is a �nite execution fragment of AD by showing that (u;mark(I); u00), (u00; drop(I); u000), and

(u000; recoverr; u
0) are steps of AD. Clearly the execution fragment has the right trace.

First, de�ne u00:recs = u:recs
u00:recr = u:recr
u000:recs = u00:recs
u000:recr = u00:recr
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Below we de�ne I so that it contains indices of u:queue and indices of marked elements in

u00:queue. Then, since s:moder = rec we have u:recr = true , so mark(I) is enabled in u, drop(I)

is enabled in u00, and �nally recoverr is enabled in u000 since we also have u000:recr = true .

We now show that the four state variables in AD are handled correctly by all steps in the

execution fragment.

recs and recr:

As in the case a = recovers above it is easy to see that recs and recr are handled correctly.

queue :

Note that s0:good-ids � s:good-ids since issuedr might be extended in the recoverr step of

AG. This leads to the observations that (a) either s0:current-queue = s:current-queue or

s0:current-queue = ", and (b) s0:pos-pairs � s:pos-pairs so that s0:pos-list can be obtained

from s:pos-list by deleting some elements. Also we have s:buf s = s0:buf s and s0:buf r = ".

Thus, u0:queue can be obtained from u:queue by deleting some elements. By letting I be the

indices of these elements, the elements are marked in the mark (I) step and then deleted in

the drop(I) step. Thus, queue is handled correctly.

status:

We consider cases based on which condition in Part 3 is satis�ed by s.

Suppose s satis�es condition A. Then so does s0 so we have u:status = u0:status = (false; OK)

which is allowed by the execution fragment of AD.

If s satis�es condition B, then so does s0 so we have u:status = u0:status = (?; OK). This is

allowed by the execution fragment of AD provided that the element at the end of u:queue was

not deleted in the drop(I) step but this is the case (that it was not deleted) since s:buf s =

s0:buf s 6= ".

Also, if s satis�es C(i) then so does s0 (with s:current-ag = s0:current-ag), and this is

allowed since s:buf s = s0:buf s = " and s:current-queue = s0:current-queue 6= " so the last

element of u:queue was not deleted in the drop(I) step.

If s satis�es C(ii) then s:lasts = s0:lasts =2 ids(s:rs) = ids(s0:rs) (by Invariant 8.10 Part 2)

and s:lasts 6= nil (by Invariant 8.1 Part 2). Now, if s0:lasts 2 s0:good-ids then s0 satis�es

C(ii) so s:current-queue = s0:current-queue 6= ". As for case C(i) we see that this is allowed.

If s0:lasts =2 s0:good-ids then, since s0:lastr = nil 6= s0:lasts, s
0 satis�es condition C(vi), so

u0:status = (false; OK) which is allowed by the execution fragment.

Now, suppose s satis�es C(iii). Then Invariant 8.4 Part 7 implies s:lasts =2 s:good-ids which

again implies s0:lasts =2 s0:good-ids since s0:good-ids � s:good-ids . Invariant 8.9 Part 3 im-

plies (s:lasts; true) =2 s:rs , i.e., (s0:lasts; true) =2 s0:rs. Thus, s0 satis�es condition C(vi), so

u:status = (false; OK) which is allowed by the execution fragment of AD.

If s satis�es C(iv) we consider two subcases. If (s:lasts; true) =2 s:rs the case is similar to case

C(iii) above. So assume (s:lasts; true) 2 s:rs. Then s0 satis�es C(v) so u:status = (true ; OK)

and u0:status = (true ; marked). This marking of status is allowed by mark(I) in AD. Then

total change of status is allowed is the element at the end of u0:queue is not deleted in the

drop(I) step. Invariant 8.8 Part 2 implies that s:current-queue = s:pos-list = " so u:queue = ",

thus there is no last element to be deleted. That su�ces.

If s satis�es C(v), then so does s0 (Invariant 8.1 Part 2 implies s0:lasts 6= nil = s0:lastr). Thus,

s:status = s0:status = (true ; marked). This is allowed since u:queue = " (so the last element of

the queue cannot be deleted in the drop(I) step). To see why u:queue = ", we have from C(v)

that s:buf s = " and Invariants 8.8 Part 3 and 8.9 Part 3 imply s:current-queue = s:pos-list =

s:buf r = ". That su�ces.
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If s satis�es condition C(vi) then so does s0 (arguments as above). Thus, u:status = u0:status =

(false; OK) which is allowed by the execution fragment.

Finally, if s satis�es condition C(vii), then so does s0. We then have u:status = u0:status =

(s:current-ack s; OK). This is easily seen to be allowed if s:current-ack s = false. So, assume

s:current-ack s = true . Then having u:status = u0:status = (true; OK) is allowed provided the

element at the end of u:queue is not deleted in the drop(I) step. A su�cient condition is

to show u:queue = ". From C(vii) we have s:buf s = s:current-queue = " and Invariants 8.8

Part 4 and 8.9 Part 4 imply s:pos-list = s:buf r = ". Thus, u:queue = ".

a = prepare

We consider two cases

� s:moder = rec

We show that (u;mark(I); u0) 2 steps(AD), where I = js:buf rj+ js:pos-list j. This step (and

execution fragment) clearly has the right trace (the empty trace).

Since s:moder = rec, we have u:recr = true , so clearly mark(I) is enabled in u.

We show that the four state variables of AD are handled correctly.

recs and recr :

We have s:modes = idle and s0:modes = needid, so u:recs = u0:recs = false which is as

required by the de�nition of mark(I) in AD. From the case hypothesis and the de�nition

of prepare in AG, we have s:moder = s0:moder = rec, so u:recr = u0:recr = true which is

also as required by the de�nition of mark(I).

queue :

Note that the element at the head of buf s is moved to current-msgs in the prepare step of

AG. From the de�nition of RGD we have that this element goes from being OK when it was

in buf s to being marked (s:moder = rec implies, by Invariant 8.6 Part 2, s0:current-ok =

false which in turn implies s0:current-ag = marked) when it is in current-queue . Neither

buf r nor pos-list are changed in the prepare step. Thus, u0:queue is the same as u:queue

except that the message at position js:buf rj+ js:pos-listj is marked in u:queue and OK in

u:queue . This is as required by the de�nition of mark(I) in AD.

status :

We have u:status = (?; OK) since s:buf s 6= " (from the precondition of the prepare step).

Either state s0 satis�es Condition 3B in which case u0:status = (?; OK) or s0 satis�es

condition C(i) in which case u0:status = (?; false). Both of these situations are allowed

by the de�nition of mark(I) in AD.

Thus, (u;mark(I); u0) 2 steps(AD).

� s:moder 6= rec

Here we have s0:current-ag = OK from the e�ect of the prepare step, so with arguments

similar to those used in the previous case it is easy to show show that u0 = u. Thus, the

execution fragment consisting of only the state u has the right trace. That su�ces.

a = choose id(id)

We consider two cases
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� s0:lasts =2 s0:good-ids

We show that (u; drop(I); u0) 2 steps(AD), where I = fjs:buf r j + js:pos-listjg. This step

(and �nite execution fragment) clearly has the right trace (the empty trace).

We show that the four state variables of AD are handled correctly.

recs and recr:

We have s:modes = needid, s0:modes = send, and s:moder = s0:moder which implies

u:recs = u0:recs and u:recr = u0:recr as required by the de�nition of drop(I) in AD.

queue :

We note that s0:buf s = s:buf s, s
0:pos-list = s:pos-list , and s0:buf r = s:buf r. However,

s0:current-queue = " but s:current-queue 6= ". Thus, u0:queue can be obtained from

u0:queue by deleting the element that corresponds to s:current-queue . From the case

hypothesis and the de�nition of choose id(id) in AG we have s:good s 6� s:good-ids (note,

s0:good-ids = s:good-ids). Now, since s:modes = needid, Invariant 8.6 Part 5 implies

s:current-ok = false which again implies s:current-ag = marked. Thus, the ag of

the element s:current-queue is marked. Now, s:current-queue corresponds to position

js:buf r j+ js:pos-listj in u:queue. Since this element is marked, drop(I) is enabled in u.

Furthermore, it is easy to see that queue is handled correctly.

status:

If s:buf s 6= " then also s0:buf s 6= " so both s and s0 satisfy condition 3B. Thus, u:status =

u0:status = (?; OK). This is allowed by drop(I) since the element at the end of queue is not

deleted because s:buf s = s0:buf s 6= ". Now, if s:buf s = ", s satis�es condition 3C(i), i.e.,

u:status = (?; false) since s0:current-ag = marked (see the discussion for queue above).

We show that s0 satis�es 3C(vi) such that u0:status = (false; OK) which is allowed by

drop(I). This amounts to showing s0:lasts 6= s0:lastr and (s0:lasts; true) =2 s0:rs since the

case hypothesis and the de�nition of choose id(id) give us the rest:

From the de�nition of choose id(id) we get id = s0:lasts 2 s:good s. Invariant 8.2 Part 1

then implies s0:lasts =2 s:used s. Also, s
0:lasts 6= nil by Invariant 8.1 Part 2. Invariant 8.4

Part 8 implies (since s:lastr = s0:lastr) that s
0:lastr = nil or s0:lastr 2 s:used s. Thus,

we get s0:lasts 6= s0:lastr as required. Also, since s0:lasts =2 s:used s, Invariant 8.4 Part 6

implies (s0:lasts; true) =2 s:rs = s0:rs as required.

Thus, (u; drop(I); u0) 2 steps(AD).

� s0:lasts 2 s0:good-ids

We show u0 = u by comparing the four state variables of AD in u and u0. The execution

fragment u then has the right properties.

recs and recr:

We have s:modes = needid, s0:modes = send, and s:moder = s0:moder which implies

u:recs = u0:recs and u:recr = u0:recr as required.

queue :

Her we have s0:current-queue = s:current-queue . Then it is easy to see that u0:queue =

u:queue.

status:

We have that either both s and s0 satisfy condition 3B, or s satis�es 3C(i) and s0 satis�es

3C(ii). In both cases u0:status = u:status as required.

a = send pkt sr(m; id)

We show u = u0 by comparing the four state variables of AD in u and u0. The execution fragment
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u then has the right properties.

recs and recr :

We have s:modes = s0:modes and s:moder = s0:moder which implies u:recs = u0:recs and

u:recr = u0:recr as required.

queue :

We have s0:buf s = s:buf s, s
0:current-queue = s:current-queue and s0:buf r = s:buf r. The

send pkt sr(m; id) step might add some copies of (m; lasts) to the channel sr . However, since

modes = send, this does not change the value of pos-pairs, so s0:pos-list = s:pos-list. Thus,

u0:queue = u:queue .

status :

Whatever condition in Part 3 of De�nition 8.13 s satis�es, s0 satis�es the same. This implies

u0:status = u:status.

a = receive pktsr(m; id)

Since this step may remove the last copy of (m; id) from the channel sr (a multiset), we generally

have s0:pos-pairs � s:pos-pairs . (Note, that the ordering of pairs is unchanged since useds is

unchanged). Also, we have s0:buf s = s:buf s.

We consider cases.

� s:moder = rec

In this case the only change in the step of AG is the above mentioned change of the channel

sr . We show (u; drop(I); u0) 2 steps(AD), where I is de�ned below. This step (and �nite

execution fragment) clearly has the right trace (the empty trace).

De�ne I =

(
; if (m; id) =2 s:pos-list _ (m; id) 2 s0:pos-list

fjs:buf rj+ ig otherwise, where s:pos-list [i] = (m; id)

Clearly drop(I) is enabled in u (elements in pos-list correspond to marked elements in

u:queue). We show that all four state variables of AD are handled correctly.

recs and recr :

It is easy to see that we have u0:recs = u:recs and u0:recr = u:recr(= false) as required

by the de�nition of drop(I) in AD.

queue :

We have s0:current-queue = s:current-queue , s0:buf s = s:buf s, and s0:buf r = s:buf r.

Then the de�nition of I implies that queue is handled as required by the de�nition of

drop(I) in AD.

status :

We have from Part 3 that u0:status = u:status since none of the variables occurring in

Part 3 are changed in the step of AG. This is allowed by drop(I) provided either the value

of status is (false; OK) or the element at the end of queue was not deleted. For conditions

A, B, C(i), C(ii), and C(vi) this is obvious. For C(ii) and C(iii) we get from Invariant 8.8

Part 2 that pos-list = ", so u0:queue = u:queue which su�ces. For C(iv) Invariant 8.8

Part 3 implies in the same way that u0:queue = u:queue. Finally, for C(vii) only the case

where current-ack s = true is of interest. But again we get u0:queue = u:queue. This time

because of Invariant 8.8 Part 4.

� s:moder 6= rec

We consider cases based on the if-statement in the de�nition of receive pktsr(m; id) in

AG;s=r .
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{ id 2 s:good r
This implies id 2 s:good-ids .

We show that (u; drop(I); u00; unmark(I 0); u0), where u00, I , and I 0 are de�ned below, is

a �nite execution fragment of AD. The execution fragment clearly has the right trace

(the empty trace).

recs and recr:

It is easy to see that we have u0:recs = u:recs and u0:recr = u:recr(6= false). De�ne

u00:recs = u:recs and u
00:recr = u:recr. Leaving recs and recr unchanged is as required

by the de�nitions of drop(I) and unmark(I 0) in AD.

queue :

Since id 2 s:good-ids we have that (m; id) 2 s:pos-pairs [ s:current-pair where, by

de�nition, s:pos-pairs and s:current-pair are disjoint (all ids are di�erent).

First, assume (m; id) 2 s:pos-pairs. The e�ect of receiving this pair is to remove

from goodr (and thus from good-ids) all ids less than or equal id . This corresponds

to removing an initial pre�x of s:pos-list up to and including (m; id). And at the same

timem is moved to the end of buf r . Invariant 8.8 Part 1 and the fact that s:pos-pairs

and s:current-pair are disjoint gives us s:current-queue = s0:current-queue . Thus,

u0:queue can be obtained from u:queue by deleting some elements corresponding to

the initial pre�x of s:pos-list and changing the ag of the element corresponding to

(m; id) to OK (since now this element is in buf r). Then clearly I and I
0 can be de�ned

so that the change in queue is as required by the de�nition on drop(I) and drop(I 0)

in AD

If (m; id) 2 s:current-pair a similar argument gives us that u0:queue can be obtained

from u:queue by deleting all elements corresponding to elements in s:pos-list and

setting the ag of the element corresponding to s:current-queue to OK. In this case

s0:current-queue = ". Again, I and I 0 can be de�ned.

status:

If s satis�es condition A, B, or C(i) of Part 3 then so does s0. This is allowed by

drop(I) and unmark(I 0) since either u0:status = (false; OK) or the element at the end

of u:queue was not deleted.

If s satis�es C(ii) then s0 satis�es either C(ii) or C(iii). In both cases the element

end of u:queue was not deleted (as required) and the possible ag change of status

to OK is allowed by unmark(I 0).

s cannot satisfy C(iii), C(iv), or C(v) since then Invariant 8.8 Parts 2 and 3 would

imply that no packets in s:sr could be received successfully which contradicts the

assumption that id 2 s:good r.

If s satis�es C(vi) then so does s0. This is allowed by drop(I) and unmark(I 0) in AD.

Finally, assume s satis�es C(vii). Then s:current-ack s = false since we otherwise

would have a contradiction with Invariant 8.8 Part 4. Thus, u0:status = u:status =

(false; OK) which is allowed by drop(I) and unmark (I) in AD.

{ id =2 s:good r
Then (u; drop(I); u0) 2 steps(AD).

The proof is similar to the proof in case s:moder = rec above.

a = send pkt rs(id ; b)

Here it is easy to see that that u = u0. That su�ces since then the execution fragment u of AD

has the right properties.
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a = receive pktrs(id ; b)

We consider cases

� s:modes = send ^ s:lasts = id

We show that (u; drop(;); u00; unmark(;); u0), where u00 is de�ned below, is a �nite execution

fragment of AD. The execution fragment clearly has the right trace (the empty trace).

De�ne u00:recs = u:recs
u00:recr = u:recr
u00:queue = u:queuer

We will de�ne u00:status below when we consider cases.

First note that drop(;) and unmark(;) are enabled in u and u00, respectively, since these

actions have no precondition. We show that all four state variables of AD are handled

correctly by the two steps in the execution fragment.

recs and recr :

We obviously have u0:recs = u:recs = u00:recs and u0:recr = u:recr = u00:recr. Leaving

recs and recr unchanged is as required by the de�nitions of drop(;) and unmark(;) in

AD.

queue :

First observe that s0:buf s = s:buf s and s0:buf r = s:buf r. Since (s:lasts; b) 2 s:rs, In-

variant 8.10 Part 2 implies that s:lasts =2 s:good-ids thus s:current-queue = ". Also

s0:current-queue = " since s0:modes = idle. The receive pkt rs(id ; b) step in AG might

cause (s:current-msgs; s:lasts) to be added to pos-pairs (the pair might have been put onto

sr but did not �gure in s:pos-pairs because s:modes = send). (s:current-msgs; s:lasts)

is, however, not added to pos-pairs since s:lasts =2 s:good-ids as explained above. Thus,

we have s0:pos-list = s:pos-list. All in all we have u0:queue = u:queue . Leaving queue

unchanged is as required by the de�nitions of drop(;) and unmark (;) in AD.

status :

State s cannot satisfy conditions A, C(i), and C(vii) of Part 3 because s:modes = send.

If s satis�es condition B then so does s. By de�ning u00:status = u:status we have that

status is unchanged in the execution fragment which is allowed by the de�nitions of

drop(;) and unmark (;) in AD.

State s cannot satisfy condition C(ii) since s0:lasts =2 s:good-ids as explained above.

Also, s cannot satisfy condition C(iii). If b = true then Invariant 8.9 Part 3 implies

s:buf r = " which contradicts condition C(iii). If b = false then Invariant 8.11 Part 2

implies s:lasts 6= s:lastr which is also a contradiction.

Assume s satis�es condition C(vi). Then u:status = (true; OK). From the discussion in

the previous condition C(iii), we have b = true . Now, s:current-ack s = b = true and

s0:modes = idle so s0 satis�es condition C(vii). Thus, also u0:status = (true ; OK). By

de�ning u00:status = (true; OK) we have that status is unchanges in the execution fragment

which is allowed by the de�nitions of drop(;) and unmark(;) in AD.

Next, assume s satis�es condition C(v). Then u:status = (true ; marked). If b = true

then by condition C(vii) we have u0:status = (true ; OK). This is allowed by drop(;)

and unmark(;) by de�ning u00:status = u:status. If b = false then, again, by condition

C(vii) u0:status = (false; OK) which is allowed by drop(;) and unmark(;) by de�ning

u00:status = u0:status .

Finally, if s satis�es C(vi) then b must be false since the condition states (s:lasts; true) =2
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s:rs. Thus, u:status = (false; OK) and by condition C(vii) also u0:status = (false; OK).

So, by de�ning u00:status = u:status, we leave status unchanged, which is allowed by the

de�nition of drop(;) and unmark(;) in AD.

� s:modes 6= send _ s:lasts 6= id

Then the only di�erence between s0 and s is that s0 has one less copy of (m; id) in the

channel rs .

We show that u0 = u. Then the execution fragment u clearly has the right properties. We

check the state variables of AD.

recs, recr, and queue :

Obviously recs, recr, and queue are the same in u and u0.

status:

No matter which condition in Part 3 s satis�es, s0 satis�es the same condition, thus,

u0:status = u:status. The only interesting case is if s satis�es condition C(v). The

condition states that s:modes = send, so the case hypothesis gives us that id 6= s:lasts.

Thus, (m; id) 6= (s:lasts; true). Then, since (s:lasts; true) 2 s:rs by condition C(v) we

also have (s0:lasts; true) 2 s0:rs. Thus, also s0 satis�es condition C(v).

a 2 fshrink good s(ids); grow good s(ids)g

Changing good s clearly does not change anything in the mapping RGD. Thus, u
0 = u. Then the

�nite execution fragment u clearly has the right properties.

a = shrink good r(ids)

This step removes elements from good r, thus, s
0:good-ids � s:good-ids.

We consider cases

� s:current-ok = false

We show (u; drop(I); u0) 2 steps(AD), where I is de�ned below. Clearly the step (and �nite

execution fragment) has the right trace (the empty trace).

recs and recr:

We clearly have u0:recs = u:recs and u0:recr = u:recr as required by the de�nition of

drop(I) in AD.

queue :

By shrinking good-ids we might remove elements from pos-list and current-queue . But,

the elements in u:queue corresponding to these elements are all marked (for current-queue

remember that s:current-ok = false implies s:current-ag = marked), so by de�ning I to

be the indices of these elements we both get that drop(I) is enabled in u and that queue

is handled correctly.

status:

Assume s satis�es condition A, B, or C(i) in Part 3. Then so does s0, so u0:status =

u:status. This is allowed by drop(I) since in the cases (B and C(i)) where status 6=

(false; OK) the element at the end of u:queue is not deleted.

If s satis�es C(ii) then either s0 also satis�es C(ii) which is allowed since the element at

the end of u:queue (which corresponds to current-queue is no deleted), or s0 satis�es C(vi)

(it cannot satisfy C(iii){C(v) because of Invariant 8.4 Part 7 and Invariant 8.10 Part 2)

which is allowed by drop(I) since s:current-ok = false implies u:status:ag = marked.
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If s satis�es C(iii){C(v), then so does s0, so u0:status = u:status. But this is allowed by

since we in these cases have u0:queue = u:queue.

If s satis�es C(v) then so does s0. In this situation the element at the end of u:queue

might have been deleted (corresponding to elements being removed from pos-list, but

since status = (false; OK), status is handled correctly.

Finally, if s satis�es C(vii) then so does s0. If current-ack s = false then u0:status =

u:status = (false; OK) which is allowed by drop(I). If current-ack s = true then Invari-

ant 8.8 Part 4 implies that u0:queue = u:queue . Thus the element at the end of u:queue

is not deleted, so it is permitted to leave status unchanged at (true ; OK).

Thus, (u; drop(I); u0) 2 steps(AD).

� s:current-ok = true

Again we claim that (u; drop(I); u0) 2 steps(AD).

The argument is similar to the previous case except that since current-ok = true , we have

current-ag = OK, so it is not allowed to lose an element in current-queue or lose status in

case C(ii). However, the precondition to shrink good r(ids) ensures that these requirements

are met.

a = grow goodr(ids)

The precondition ids \ issuedr = ; and the e�ect of grow good r(ids) ensures that s
0:good-ids =

s:good-ids .

Then it is easy to see that u0 = u. Thus, the execution fragment u has the right properties.

a = cleanupr

We show that u0 = u. Then the execution fragment u has the right properties. We consider the

four state variables of AD.

recs, recr, and queue :

We obviously have u0:recs = u:recs, u
0:recr = u:recr, and u0:queue = u:queue .

status :

Here the only problem would be that lastr is changed. The variable lastr only occurs in the

conditions of Part 3 when modes = send, so assume s:modes = send. Then s:lasts 6= s:lastr
from the precondition. Since also s0:modes = send, Invariant 8.1 Part 2 gives us s0:lasts 6= nil.

Now, since s0:lastr = nil, we also have s0:lasts 6= s0:lastr. It is now easy to see that whatever

condition in Part 3 that s satis�es, s0 satis�es the same condition. Thus, u0:status = u:status.

This concludes the simulation proof.

We can now prove that AG safely implements AD.

Theorem 8.15 (AG safely implements AD)

AG vS AD

Proof

Directly by Lemma 8.14 and the soundness of re�nement mappings with respect to the safe

implementation relation (Lemma 5.8).
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8.5.3 Correctness

We do not give a formal proof that G correctly implements D. Instead we provide some intuitive

justi�cation and refer to the formal proof that H correctly implements G which is similar.

We �rst give two key lemmas about the live executions of G. We use our temporal logic to

state the results but we only give informal proofs. These lemmas are then use to prove that G

correctly implements D.

The �rst lemma says that if we are in a situation where no crashes occur in the future, then

whenever modes = send, eventually the sender will move to idle mode. Note, that due to

previous crashes the sender and the receiver do not necessarily agree on what identi�ers to use.

So, in some situations, the sender moves to idle mode because of negative acknowledgements

from the receiver, in which case the current message might have been lost.

Lemma 8.16

LG j= 2(2(modes 6= rec ^ moder 6= rec) =) (modes = send; modes = idle))

Proof

Assume: 1. � 2 LG

2. �1 is an arbitrary su�x of �

3. �1 j= 2(modes 6= rec ^ moder 6= rec)

4. �2 is an arbitrary su�x of �1.

5. �2 j= modes = send

Prove: �2 j= 3(modes = idle)

We consider what happens in �2. Note that since modes = send and no crashes occur, modes will

stay send unless one of the actions receive pkt rs(lasts; true) or receive pkt rs(lasts; false) occurs,

in which case modes changes to idle. Furthermore, while modes = send, lasts is unchanged

and the sender keeps performing send pkt sr(m; lasts). The latter is due to weak fairness to the

set CG;s=r1 containing send pkt sr(m; lasts) since all other actions in the set are never enabled.

Now, it su�ces to show that eventually receive pktrs(lasts; true) or receive pktrs(lasts; false)

occurs.

h1i1. Case: �2 j= lasts =2 good-ids

h2i1. Case: �2 j= (lasts; true) 2 rs

Proof: By the fairness of the rs channel, eventually a receive pktrs(lasts; true)

action occurs. That su�ces.

h2i2. Case: �2 j= (lasts; true) =2 rs ^ lasts = lastr

Proof: In this situation the receiver has received the current packet but not yet

sent positive acknowledgements.

If buf r 6= ", weak fairness to the set CG;s=r3 implies that eventually buf r = ".

Furthermore, buf r stays empty as long as the sender does not leave send mode.

Now, when buf r = ", we have moder 2 fidle; ackg. If moder = idle, it changes

to ack when a receive pktsr(m; lasts) occurs. Since the sender keeps on sending

(m; lasts) packets, some will continue to get through (by channel liveness), so if

moder = idle, eventually moder = ack. When moder = ack the receiver will

continue to perform send pktrs(lastr; true). Such a step can, however, change moder
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to idle, but from above we have that eventually moder = ack again and new

send pkt rs(lastr ; true) steps will be performed.

By channel liveness, eventually receive pktrs(lastr; true) occurs, and since lastr =

lasts, the result follows.

h2i3. Case: �2 j= (lasts; true) =2 rs ^ lasts 6= lastr

Proof: This case actually describes two situations: in the �rst situation the current

packet never has been and never can be successfully received by the receiver. In the

second situation the current packet has been successfully received but the receiver

crashed before placing a positive acknowledgement in the channel. Both situations

are dealt with in the same way.

Every time a receive pktsr(m; lasts) step occurs, lasts is placed into nack-buf r, which

leads to a send pktrs(lasts; false) action (by fairness to the send pkt rs(id ; false) ac-

tions). Since receive pktsr(m; lasts) continues to occur, send pkt rs(lasts; false) con-

tinues to occur. By channel liveness eventually receive pkt rs(lasts; false) occurs.

That su�ces.

h2i4. Q.E.D.

Proof: By the exhaustive cases h2i1{h2i3.

h1i2. Case: �2 j= lasts 2 good-ids

Proof: Then either always lasts =2 goodr or eventually lasts 2 goodr .

If always lasts =2 goodr , then the situation is as described by the case above where �2 j=

lasts =2 good-ids ^ (lasts; true) =2 rs ^ lasts 6= lastr.

If eventually lastr 2 good r, then still the receiver might have issued send pktrs(lasts; false)

actions in the meantime, and these packets could have gotten through to the sender in

which case the result follows. So, if this is not the case, eventually (m; lasts) is successfully

received in which case the situation is as described by the case above where �2 j= lasts =2

good-ids ^ (lasts; true) =2 rs ^ lasts = lastr .

h1i3. Q.E.D.

Proof: By the exhaustive cases h1i1{h1i2.

The result now follows from Lemma 3.5 and the de�nition of ;.

The next lemma states that if there are elements in the four parts that make up the abstraction

of a queue in AD (cf. De�nition 8.13), then eventually a receive msg(m) action occurs. Thus,

messages cannot be blocked in the G protocol.

Below we use the notation receive msg( ) to denote the set freceive msg(m) jm 2 Msgg.

Lemma 8.17

LG j= 2(2(modes 6= rec ^ moder 6= rec ^

(buf r 6= " _ pos-list 6= " _ current-queue 6= " _ buf s 6= ")) =) 3hreceive msg( )i)

Proof

Assume: 1. � 2 LG

2. �1 is an arbitrary su�x of �
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3. �1 j= 2(modes 6= rec ^ moder 6= rec ^

(buf r 6= " _ pos-list 6= " _ current-queue 6= " _ buf s 6= "))

Prove: �1 j= 3hreceive msg( )i

h1i1. Case: �1 j= buf r 6= "

Proof: The result follows by weak fairness to the set CG;s=r3.

h1i2. Case: �1 j= pos-list 6= "

Proof: The packets in pos-list represent \old" packets in the sr channel that might still

successfully be received by the receiver since the packets all have identi�ers in good-ids .

Due to channel liveness (the weak fairness requirement on each packet), the packets in

pos-list will eventually be received. Two situations can occur.

First, a packet from pos-list is accepted because it has an identi�er in goodr at the time

it is received. In this case the message of the packet is placed in buf r, and h1i1 gives the

result.

Second, no packets from pos-list are ever accepted. Then eventually pos-list becomes

empty (no new packets can be added to pos-list since no crashes occur, and each packet in

pos-list has only �nitely many copies in sr and these will eventually all be received (but

not accepted) and thus removed from sr). However, then one of the other disjuncts in

Part 3 of the Assumption must be satis�ed, so we refer to the other cases.

h1i3. Case: �1 j= current-queue 6= "

h2i1. Case: �1 j= current-ok = true

Proof: In this situation the sender either will (because of liveness on choose id(id)

actions) or has chosen a current identi�er lasts which is in good r (and stays there until

the current packet is accepted). The sender will send the current packet repeatedly,

so by channel liveness it will eventually be received and thus accepted. The message

will be placed into buf r and Case h1i1 gives the result.

h2i2. Case: �1 j= current-ok = false

Proof: Here, due to the fact that the receiver was crashed during the last prepare

action, the sender may choose an identi�er which is not in good r. The sender will

send the current packet repeatedly, and two things can happen.

Either, the current packet will be accepted at some point by the receiver because

lasts was in good-ids initially and has been added to goodr in the meantime. Then

the message is placed in buf r and Case h1i1 gives the result.

Or, the current packet will never be accepted by the receiver. However, since the

current packet will keep on being received by the receiver (due to channel liveness),

the receiver will keep on issuing negative acknowledgements for the current iden-

ti�er lasts. By channel liveness such a negative acknowledgement will eventually

get through and move the sender to idle mode. This has the e�ect of emptying

current-queue , so one of the other disjuncts in Part 3 of the Assumption must be

satis�ed, so we refer to the other cases.

h2i3. Q.E.D.

Proof: By exhaustive cases h2i1 and h2i2.

h1i4. Case: �1 j= buf s 6= "
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Proof: By Fairness to the set CG;s=r1, eventually a prepare action will occur. Since

moder 6= rec, the sender ends up in needid mode with current-ok = true . The result is

now implied by the �rst subcase of Case h1i3.

h1i5. Q.E.D.

Proof: By exhaustive cases h1i1{h1i4.

The result now follows from Lemma 3.5.

With the two lemmas above we can prove the main ingredient in our liveness proofs, namely, if

� is a live execution of G and �0 is an execution of AD such that (�; �0) 2 RGD, then �0 is live.

We prove the result by contradiction (cf. the similar lemma (Lemma 7.17) in the proof that D

correctly implements S). Thus, we assume that �0 is not live and then derive a contradiction

with the fact that � is live.

Lemma 8.18

Let � 2 exec(AG) and �0 2 exec(AD) be arbitrary executions of AG and AD, respectively, with

(�; �0) 2 RGD. Assume � j= QG. Then �0 j= QD.

Proof

We prove the conjecture by contradiction. Thus,

Assume: �0 6j= QD

Prove: False

h1i1. �0 j= :WF (CD;1; recs = false ^ recr = false) _

:WF (CD;2; recs = false ^ recr = false) _

:WF (CD;3) _

:WF (CD;4)

Proof: Immediate by the Assumption, de�nition of QD, and the Boolean operators.

h1i2. Case: �0 j= :WF (CD;1; recs = false ^ recr = false)

h2i1. �0 j= 32(status:stat 2 Bool ^ recs = false ^ recr = false) ^

32:hfack(true); ack(false)gi

Proof: By Assumption h1i, the de�nitions ofWF and CD;1, and the fact that ack(b)

actions are enabled when status :stat 2 Bool.

h2i2. � j= 32(modes 6= rec ^ moder 6= rec ^ buf s = " ^

((modes = send ^ lasts = lastr ^ buf r = ") _

(modes = send ^ lasts 6= lastr ^ (lasts; true) 2 rs) _

(modes = send ^ lasts 6= lastr ^ (lasts; true) =2 rs ^ lasts =2 good-ids) _

(modes = idle))) ^

32:hfack(true); ack(false)gi

Proof: By h2i1, Lemmas 5.10 and 5.11, the de�nition of RGD, and the fact that

ack(b) actions are external.

h2i3. � j= 32(modes = idle ^ buf s = ") ^ 32:hfack(true); ack(false)gi
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Proof: By h2i2, Lemma 8.16, and the fact that when modes becomes idle, it stays

idle since no crashes occur and no prepare action can occur (since buf s = " forever).

h2i4. � j= 32(modes = idle ^ buf s = ") ^ 32:hCG;s=r1i

Proof: By h2i3 since the ack(b) actions are in CG;s=r1 and no other actions in CG;s=r1

can occur when modes = idle and buf s = ".

h2i5. � j= :WF (CG;s=r1)

Proof: By h2i4, the de�nition of WF , and the fact that modes = idle ^ buf s = "

implies the enabling condition of CG;s=r1.

h2i6. Q.E.D.

Proof: h2i5 contradicts the assumption that � is live.

h1i3. Case: �0 j= :WF (CD;2; recs = false ^ recr = false)

h2i1. �0 j= 32(queue 6= " ^ recs = false ^ recr = false) ^ 32:hreceive msg( )i

Proof: By Assumption h1i, the de�nitions of WF and CD;2, and the fact that CD;2

is enabled when queue 6= ".

h2i2. � j= 32(modes 6= rec ^ moder 6= rec ^

(buf r 6= " _ pos-list 6= " _ current-queue 6= " _ buf s 6= ")) ^

32:hreceive msg( )i

Proof: By h2i1, Lemmas 5.10 and 5.11, the de�nition of RGD, and the fact that

receive msg(m) actions are external.

h2i3. Q.E.D.

Proof: h2i2 contradicts Lemma 8.17.

h1i4. Case: �0 j= :WF (CD;3)

h2i1. �0 j= 32(recs = true) ^ 32:hrecoversi

Proof: By expanding WF in Assumption h1i.

h2i2. � j= 32(modes = rec) ^ 32:hrecoversi

Proof: By h2i1, Lemmas 5.10 and 5.11, the de�nition of RGD, and the fact that

recovers is external.

h2i3. � j= 32(modes = rec) ^ 32:hCG;s=r1i

Proof: From h2i2 since recovers 2 CG;s=r1 and none of the other actions in CG;s=r1

are enabled when modes = rec.

h2i4. � j= :WF (CG;s=r1)

Proof: From h2i3, the de�nition of WF and the fact that modes = rec implies the

enabling condition for CG;s=r1.

h2i5. Q.E.D.

Proof: h2i4 contradicts the assumption that � is live.

h1i5. Case: �0 j= :WF (CD;4)

Proof: Similar to h1i4.
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h1i6. Q.E.D.

Proof: By h1i1 and the exhaustive cases h1i2{h1i5.

Finally, we can show that G correctly implements D.

Theorem 8.19

G vL D

Proof

Immediate by Lemmas 8.14, 8.18, and 5.9.

We are now ready to consider the two low-level protocols: the Five-Packet Handshake Protocol

H and the Clock-Based Protocol C. The next chapter deals with H and then, in Chapter 10, we

consider C.



Chapter 9

The Five-Packet Handshake Protocol

H

We have now reached the point where we can present the �rst of the low-level protocols we

consider, namely, the Five-Packet Handshake Protocol of Belsnes [Bel76], which in this work is

denoted by H. The H protocol is entirely distributed: it consists of a sender process, a receiver

process, and two channels as depicted in Figure 9.1.

H is the standard protocol for setting up network connections, used in TCP, ISO TP-4,

and many other transport protocols. During normal operation it goes through three phases (cf.

Figure 9.2):

Agree on identi�er: The sender picks an identi�er, called jd to distinguish it from the identi-

�er id used below for the actual communication of the message, and sends it in a needid

packet. On receipt of this packet, the receiver pairs jd with a new identi�er id , and sends

the pair (jd ; id) back to the sender. On receipt of this pair, the sender knows that it should

associate id to the current message.

Send and acknowledge: This phase is similar to the send/acknowledge phase of G. The

sender sends the current packet in send packets, and the receiver acknowledges the receipt

with ack packets.

Clean up: When the sender has received the acknowledgement, it issues a done packet in order

to inform the receiver that it may forget about the last message accepted.

Sender Hs Receiver Hr

Channel Chrs

Channel Chsr

-

-

�

�

-

-

�

- -

� �recovers

crashs

ack(b)

send msg(m)

recoverr

crashr

receive msg(m)

receive pktrs(p) send pkt
rs
(p)

send pkt
sr
(p) receive pktsr(p)

Figure 9.1

The Five-Packet Handshake Protocol H.
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? ?

XXXXXXXXXXXz

XXXXXXXXXXXz

XXXXXXXXXXXz

�����������9

�����������9

needid

accept

send

ack

done

Sender Receiver9>=>; Agree on identi�er

9>=>; Send and acknowledge

�
Clean up

Figure 9.2

The phases of H.

Below we look at di�erent abnormal situations which can arise due to crashes. H is sometimes

called the three-way handshake, because only three packet types are needed for message delivery

(the �rst three in Figure 9.2).

The rest of this chapter is organized as follows. Section 9.1 considers the channels in H. Then,

in Section 9.2, we present the sender and receiver processes, and in Section 9.3 we show how H

is obtained from the subprocesses. Finally, in Section 9.4 we prove that H correctly implements

G.

9.1 The Channels

We use the same channels as at the G level (cf. Section 8.2). However, the actual packets that

are communicated are di�erent in H and G. This only means that in H we should instantiate

the set P of possible packets with a di�erent set of packets than in G.

9.2 The Sender and the Receiver

In this section we specify the sender and receiver processes as two live I/O automata Hs =

(AH;s; LH;s) and Hr = (AH;r; LH;r), respectively. In the subsection de�ning steps(AH;s) and

steps(AH;r) below, we provide more intuition about the H protocol.

9.2.1 States and Start States

The sender and receiver processes both contain a stable set of used identi�ers. This means that

these sets should survive crashes when implemented on a physical machine. Speci�cally, we

model the stability of a state variable by not resetting it on recovery.

For instance, the stable set issuedr includes all identi�ers ever considered \good" by the

receiver. Thus, every time the receiver issues a new identi�er id (to be sent to the sender in an

accept packet) this should be remembered forever by adding id to issuedr. This is an expensive
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solution since it requires updates to a stable variable for every message. The �x to this problem

would be to introduce a normal volatile (i.e., non-stable) variable unusedr which is �lled with

new (i.e., non-issued r) identi�ers now and then in steps that update the stable variable issuedr
by adding these new identi�ers. Then, for each message, the identi�er can be chosen from

unusedr and no updates to stable variables need to be performed. Of course, unused r will be

lost in crashes, so it should not be kept too big, but on the other side, the less identi�ers it

contains, the more frequently updates to the stable variable issuedr needs to be performed.

This is a typical trade-o�.

We do not consider the addition of the variable unusedr to Hr, but the changes needed are

both few and simple.

Sender

The sender chooses identi�ers jd from the set JD . This set is similar to the set ID introduced in

Section 8.1. We call it JD to distinguish it from ID , which are identi�ers chosen by the receiver.

Variable Type Initially Description

modes fidle;

needid;

send, recg

idle The mode of the sender. Similar to the

mode of the sender at the G level.

buf s Msg� " The list of messages at the sender side.

jds JD [ fnilg nil The jd chosen for the current message

by the sender.

jd-useds S P(JD) ; A set including all the jds ever used by

the sender.

ids ID [ fnilg nil The id received from the receiver. Sim-

ilar to lasts at the G level.

current-msgs Msg [ fnilg nil The message about to be sent to the

receiver. Same as at the G level.

current-ack s Bool false Acknowledgement from the receiver.

Same as at the G level.

done-buf s ID�
" A list of ids for which the sender must

issue an done packet to the receiver.

S = Stable
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Receiver

Variable Type Initially Description

moder fidle;

accept;

rcvd, ack;

recg

idle The mode of the receiver. Similar to

the receiver mode at the G level, except

for the extra accept mode. In mode

accept the receiver is sending accept

packets, which contain the chosen mes-

sage identi�er.

buf r Msg� " The list of messages accepted. Same as

at the G level.

jd r JD [ fnilg nil The jd received from the receiver.

id r ID [ fnilg nil The id chosen for the received jd .

lastr ID [ fnilg nil This variable contains (when non-nil)

the id of the last packet accepted.

issuedr S P(ID) " A set including all ids ever issued by

the receiver. Same as at the G level.

nack-buf r ID� " A list of ids for which the receiver

will issue negative acknowledgements.

Same as at the G level.

S = Stable

9.2.2 Actions

Sender

Input:

send msg(m), m 2Msg

crashs
receive pktrs(accept; jd; id), jd 2 JD , id 2 ID

receive pktrs(ack; id; b), id 2 ID, b 2 Bool

Output:
ack(b), b 2 Bool

recovers
send pkt

sr
(needid; jd), jd 2 JD

send pkt
sr
(send;m; id), m 2Msg, id 2 ID

send pkt
sr
(done; id), id 2 ID

Internal:

choose jd(jd), jd 2 JD

grow-jd-useds(jds), jds 2 P(JD)

Receiver

Input:

crashr
receive pktsr(needid; jd), jd 2 JD

receive pktsr(send;m; id), m 2Msg, id 2 ID

receive pktsr(done; id), id 2 ID

Output:

receive msg(m), m 2Msg

recoverr
send pkt

rs
(accept; jd; id), jd 2 JD , id 2 ID
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send pkt
rs
(ack; id; b), id 2 ID, b 2 Bool

Internal:

grow-issuedr(ids), ids 2 P(ID)

9.2.3 Steps

We now formally de�ne steps(AH;s) and steps(AH;r). As at the G level we increase readability

by listing the de�nition of steps(AH;s) in the left column and the de�nition of steps(AH;r) in the

right, and by aligning send-pkt with the corresponding receive-pkt.

After the de�nition, we provide more intuition about how H works.

send msg(m)
E�ect:

if modes 6= rec then
buf s := buf s ^m

choose jd(jd)

Precondition:
modes = idle ^ buf s 6= " ^

jd =2 jd-useds
E�ect:

modes := needid

jds := jd

jd-useds := jd-useds [ fjdg

current-msgs := head(buf s)

buf s := tail(buf s)

send pkt
sr
(needid; jd)

Precondition:

modes = needid ^ jds = jd

E�ect:
none

receive pktsr(needid; jd)
E�ect:

if moder = idle then

moder := accept

choose an id not in issuedr

jdr := jd

idr := id

issuedr := issuedr [ fidg

receive pktrs(accept; jd ; id)
E�ect:

if modes 6= rec then

if modes = needid ^ jds = jd then

modes := send

ids := id

else if ids 6= id then

done-buf s := done-buf s ^ id

send pkt
rs
(accept; jd; id)

Precondition:

moder = accept ^ jdr = jd ^ idr = id

E�ect:

none

send pkt
sr
(send;m; id)

Precondition:
modes = send ^ current-msgs = m ^ ids = id

E�ect:

none

receive pktsr(send;m; id)

E�ect:
if moder 6= rec then

if moder = accept ^ idr = id then

moder := rcvd

buf r := buf r ^m

lastr := id

else if lastr 6= id then
nack-buf r := nack-buf r ^ id
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receive msg(m)
Precondition:

moder = rcvd ^ buf r 6= " ^

head(buf r) = m

E�ect:

buf r := tail(buf r)

if buf r = " then
moder := ack

receive pktrs(ack; id; b)

E�ect:

if modes 6= rec then
if modes = send ^ ids = id then

modes := idle

current-acks := b

jds := nil

ids := nil

current-msgs := nil

if b = true then

done-buf s := done-buf s ^ id

send pkt
rs
(ack; id; true)

Precondition:

moder = ack ^ lastr = id

E�ect:

none

send pkt
rs
(ack; id; false)

Precondition:

moder 6= rec ^ nack-buf r 6= " ^

head(nack-buf r) = id

E�ect:

nack-buf r := tail(nack-buf r)

send pkt
sr
(done; id)

Precondition:

modes 6= rec ^ done-buf s 6= " ^

head(done-buf s) = id

E�ect:

done-buf s := tail(done-buf s)

receive pktsr(done; id)

E�ect:

if (moder = accept ^ idr = id) _
(moder = ack ^ lastr = id) then

moder := idle

jdr := nil

idr := nil

lastr := nil

ack(b)
Precondition:

modes = idle ^ buf s = " ^

current-acks = b

E�ect:

none

crashs

E�ect:
modes := rec

recovers
Precondition:

modes = rec

E�ect:
modes := idle

jds := nil

ids := nil

buf s := "

current-msgs := nil

current-acks := false

done-buf s := "

crashr

E�ect:
moder := rec

recoverr
Precondition:

moder = rec

E�ect:
moder := idle

jdr := nil

idr := nil

lastr := nil

buf r := "

nack-buf r := "

grow-jd-useds(jds)

Precondition:
jJD n (jd-useds [ jds)j =1

E�ect:

jd-useds := jd-useds [ jds

grow-issuedr(ids)

Precondition:
jID n (issuedr [ ids)j =1

E�ect:

issuedr := issuedr [ ids
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The following note about the receive pkt sr(needid; jd) steps should be made: AH;r is required

to be input-enabled and therefore we do not specify preconditions for input actions. However,

in the e�ect clause of receive pkt sr(needid; jd) we must choose an id not in issuedr . But this

is only possible if issuedr 6= ID . However, Invariant 9.11 Part 8.12 below states that this is

indeed the case for all reachable states. However, since there exists (non-reachable) states with

issuedr = ID , AH;r is not input-enabled. This is not a problem in practice, but to make AH;r

input-enabled we interpret the de�nition of receive pktsr(needid; jd) such that an arbitrary id

is chosen if issuedr = ID .

We �rst describe the normal mode of operation: the sender performs a choose jd(jd) action

(which corresponds to prepare of G) and moves to mode needid, where it repeatedly sends

(needid; jd) to the receiver. By channel liveness these packets will continue to get through.

One of the major problems in the liveness proof below is to show that eventually the receiver

will be in idle mode. When this happens, the receiver accepts (needid; jd), associates a new

identi�er id with jd , and moves to accept mode, where it repeatedly issues (accept; jd ; id)

packets. Again by channel liveness, such a packet gets through and since jd is equal to the

current jd (kept in jd s) of the sender, the sender accepts this packet. The value jd is no longer

needed, but id is used for the actual communication.

On receipt of (accept; jd ; id) the sender moves to mode send. Note how the accept packets

work as acknowledgements for the needid packets. In send mode the sender repeatedly sends

the current packet (send; m; id). When one gets through, it is accepted since the id in the packet

corresponds to the current id (kept in id r) of the receiver. The message m is placed in buf r
and the identi�er id for which the receiver shall eventually issue positive acknowledgements is

remembered in the lastr variable. (Note the di�erence between idr and lastr: id r remembers

the identi�er that the receiver will accept, whereas lastr remembers the identi�er for which the

receiver must issue positive acknowledgements. Due to this di�erence the identi�ers are kept in

separate variables.) Now, eventually m is delivered to the user and the receiver moves to ack

mode. Note how the send packets work as acknowledgements for the accept packets.

In ack mode the receiver repeatedly sends positive acknowledgements in (ack; id ; true) pack-

ets. When one gets through, the sender leaves sendmode and issues a positive acknowledgement

ack(b) to the user at the sender side.

The receiver has no knowledge of whether an (ack; id ; true) packet has gotten through yet

or not, so it continues to issue the packets. Somehow the receiver must be informed that the

sender has received the acknowledgement. The done packets are used for this purpose. It

would not work if the sender entered a mode where it repeatedly issued done packets because

then the receiver would have to acknowledge the receipt of a done packet, and so on. Instead,

every time the sender receives (ack; id ; true) it adds id to done-buf s, and this leads to one

send pkt sr(done; id) being issued. There is no guarantee that the packet is not lost, but if it

is, the sender will eventually receive another (ack; id ; true) packet, which gives rise to another

send pkt sr(done; id) step. This cannot go on forever because of channel liveness, so eventually

the receiver will receive (done; id) and since id is equal to lastr , the receiver leaves ack mode

and moves to idle mode, where it is allowed to forget everything about jd r, id r , and lastr.

The above discussion has concentrated on normal mode of operation, where the sender and

receiver are synchronized. However, because both the sender and the receiver have modes where

they repeatedly send certain packets and await acknowledgements, they would be very vulnerable

to crashes of the other node if we did not have some means of informing the node about crashes.

The \bad" modes are accept for the receiver and send for the sender.
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First consider a situation where the receiver is in accept mode but where the sender due to

crashes is not in the expected needid mode with jd s = jd r . The sender could be in idle mode

or even in needid mode with a new jd identi�er such that jds 6= jd r. Now, every time the sender

receives a bad accept packet, it places the associated identi�er id in done-buf s which leads to a

send pkt sr(done; id) step, which may or may not succeed in putting the packet into the channel.

If it succeeds, the packet will eventually be received and the receiver will be dislodged (cf. the

de�nition of the receive pktsr(done; id) steps of the receiver). If it does not succeed, the sender

will eventually receive another accept packet, which gives rise to another send pktsr(done; id)

step. This cannot go on forever because of channel liveness, so eventually the receiver will

receive (done; id). Thus, the done packets are used to inform the receiver to leave a bad accept

mode in the same way done packets were used during normal mode of operation to inform the

receiver that the sender has received the positive acknowledgement. An additional problem

arises because the receiver immediately could receive an old needid packet and thus reenter a

bad accept mode. However, there can only be �nitely many such old needid packets in the

channel, so this cannot go on forever. Below we shall see how this is proved formally.

Another \bad" situation occurs when the sender is in send mode but where the receiver

due to crashes is not in the expected accept mode with id r = id s. The receiver could be in

idle mode or it could have received an old needid packet and thus be in accept mode with

id r 6= id s. Now, every time the receiver receives a (send; m; id) packet it will, since id 6= id r,

add id to nack-buf r , which leads to send pkt rs(ack; id ; false). This continues, as for the done

packets above, until (ack; id ; false) is receiver by the sender and at that point the sender resets

to idle mode.

The actions grow-jd-used s(jds) and grow-issuedr(ids) allow identi�ers to be added to the sets of

used identi�ers of the sender and receiver, respectively, as long as there are still \enough" (i.e.,

in�nitely many) unused identi�ers left. These actions are not required for the correctness of H

but allow a �nal implementation on a physical machine to throw away some identi�ers. This is

typically required by algorithms for generating unused identi�ers.

It may seem strange that the sender and receiver need to engage in the initial needid/accept

handshake. Why don't they just agree on using, say, the natural numbers in increasing order

as identi�ers? Then the receiver will only accept a message if the associated identi�er is greater

than the identi�er of the last message accepted. The answer is that H is designed so that the

receiver can use the same set of identi�ers for several senders. Thus, as de�ned, the sender does

not have to remember (in stable storage!) the last identi�er used by each individual sender. We

do not in this report show how the receiver should work for several senders.

The discussion above has partly been based on liveness assumptions on the sender and receiver.

We now consider how to specify this liveness formally.

9.2.4 Liveness

Sender

We de�ne the following two sets of the locally-controlled actions of the sender:

CH;s1
4

= fack(true); ack(false); recoversg [

fsend pkt sr(needid; jd) j jd 2 JDg [
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fsend pktsr(send; m; id) jm 2 Msg ^ id 2 IDg

CH;s2
4

= fsend pktsr(done; id) j id 2 IDg

The liveness formula QH;s that induces the liveness condition LH;s for AH;s is now de�ned as

QH;s
4

= WF (CH;s1) ^WF (CH;s2)

Note, that the reason we need weak fairness to CH;s2 separately is that sending of done packets

can occur at any time. Then, if we only had weak fairness to CH;s1 [ CH;s2, there would be no

requirement to issue done packets if the sender is in send mode and keeps sending send packets.

This would not lead to correct operation of H.

Thus, Hs can intuitively be seen as consisting of two parallel processes: one dealing with

the actions in CH;s1 and one dealing with issuing done packets. Since the liveness requirements

are weak fairness, the liveness of Hs can be implemented on a physical machine by a scheduler

giving fair turns to the two parallel processes.

By Lemma 4.7, QH;s is an environment-free liveness formula for AH;s. Thus, Hs is a live I/O

automaton. Furthermore, by Lemma 4.8, QH;s is stuttering-insensitive.

Receiver

We de�ne the following two sets of locally-controlled actions of the receiver:

CH;r1
4

= frecoverrg [

freceive msg(m) j m 2 Msgg [

fsend pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDg [

fsend pkt rs(ack; id ; true) j id 2 IDg

CH;r2
4

= fsend pkt sr(ack; id ; false) j id 2 IDg

The liveness formula that induces the liveness condition for the receiver of H can now be ex-

pressed as

QH;r
4

= WF (CH;r1) ^WF (CH;r2)

The reason why we need weak fairness to two sets of actions is similar to the reason given above

for the sender.

By Lemma 4.7, QH;r is an environment-free liveness formula for AH;r. Thus, Hr is a live I/O

automaton. Furthermore, by Lemma 4.8, QH;r is stuttering-insensitive.

9.3 The Speci�cation of H

As depicted in Figure 9.1, H consists of the sender and receiver processes and the two channels.

So, �rst de�ne H00 = (A00
H; L

00
H) to be the following live I/O automaton.

H00 4

= HskHrkChsrkChrs

Since QH;s, QH;r, QCh;sr , and QCh;rs are all stuttering-insensitive, Proposition 4.4 implies that

L00H is induced by

QH
4

= QH;s ^ QH;r ^ QCh;sr ^ QCh;rs
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By De�nition 2.2 the channel actions send pkt sr(: : :), receive pkt sr(: : :), send pkt rs(: : :), and

receive pkt rs(: : :) are all output actions of H
00. We need to hide these in order to get a live I/O

automaton with the same external actions as S.

However, recall from Lemma 5.10 that the existence of an index mapping between execu-

tions at two levels of abstraction allows one to conclude certain properties of the (common)

external actions of the executions. Thus, the more external actions of two levels, the stronger

the correspondence between the executions.

At the G level we de�ned G0 to be the system where channel communication is external, i.e.,

G0 was simply the parallel composition of the sender/receiver process and the channels|similar

to H00 above. Now, the actions send pkt sr(m; id), receive pktsr(m; id), send pkt rs(id ; b), and

receive pkt rs(id ; b) of G
0 correspond to the send pkt sr(send; m; id), receive pktsr(send; m; id),

send pkt rs(ack; id ; b), and receive pkt rs(ack; id ; b) actions at the H level. Thus, the channel

actions at the H level which deal with needid, accept, and done packets do not correspond to

any external actions of G0. Thus, we �rst hide these actions from H00 to get H0. Let

A0
H

4

= fsend pktsr(needid; id) j id 2 IDg [

freceive pkt sr(needid; id) j id 2 IDg [

fsend pktrs(accept; jd ; id) j jd 2 JD ^ id 2 IDg [

freceive pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDg [

fsend pktsr(done; id) j id 2 IDg [

freceive pkt sr(done; id) j id 2 IDg

Then H0 = (A0
H; L

0
H) is de�ned as

H0 4

= H00 n A0
H

By Proposition 4.5, L0H is induced by QH.

Finally, to get the H protocol, we hide the remaining channel actions. Let

AH
4

= fsend pktsr(send; m; id) jm 2 Msg ^ id 2 IDg [

freceive pkt sr(send; m; id) jm 2 Msg ^ id 2 IDg [

fsend pktrs(ack; id ; b) j id 2 ID ^ b 2 Boolg [

freceive pkt rs(ack; id ; b) j id 2 ID ^ b 2 Boolg

Thus, H = (AH; LH) is de�ned as

H
4

= H0 n AH

Again, by Proposition 4.5, LH is induced by QH.

Now, in the proof below we prove that H0 correctly implements G0 (or actually a slightly di�erent

version of G0 in which the channel actions are renamed to completely match the (remaining)

external channel actions of H0). Then the substitutivity results of Proposition 2.16 are used to

infer that H correctly implements G.

9.4 Correctness of H

The correctness of H with respect to G is now considered. We �rst add history variables to H0

to get Hh0 = (Ah
H

0
; LhH

0
) as described in Section 5.1.5. Then we state some invariants of Ah

H

0
and

show the existence of a re�nement mapping from Ah
H

0
to A�

G

0
, where A�

G

0
is a slightly modi�ed
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version of A0
G obtained by renaming some channel actions. This re�nement mapping is then

used to show that Hh0 correctly implements G�0, which, in turn, allows us to conclude that H

correctly implements G.

9.4.1 Adding History Variables to H0

We add three history variables to H0 and denote the resulting live I/O automaton by Hh0 =

(Ah
H

0
; LhH

0
).

Variable Type Initially Description

useds H ID� " A history variable giving the list of ids

ever used by the sender (and thus ac-

cepted in accept packets from the re-

ceiver). Same as at the G level.

seenr H P(JD � ID) ; A history variable consisting of all the

(jd ; id) pairs the receiver has ever seen.

current-ok H Bool false A history variable describing the state

of the current message. Same as at the

G level.

H = History

By the results in Section 5.1.5, we are allowed to change the history variables anywhere in the

e�ect clauses of the step rules de�ning the steps of A0
H. The e�ect clauses of step rules of A0

H

are, in turn, de�ned by the corresponding e�ect clauses of the components of H0 as described

in Section 4.1.1.1. We show where the changes to the history variables should be placed in the

e�ect clauses. We omit the assignments to the original variables (by writing : : : instead) but

outline the if-then-else statements.

choose jd(jd)

Precondition:
(� Precondition from Hs �)

: : :

E�ect:

(� E�ect clause from Hs �)

: : :

if moder 6= rec then

current-ok := true

receive pktsr(needid; jd)

Precondition:
(� Precondition from Chsr �)

: : :

E�ect:
(� E�ect clause from Chsr �)

: : :

(� E�ect clause from Hr �)
if modes = idle then

: : :

seenr := seenr [ f(jdr ; idr)g
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receive pktrs(accept; jd; id)
Precondition:

(� Precondition from Chrs �)

: : :

E�ect:

(� E�ect clause from Chrs �)

: : :

(� E�ect clause from Hs �)

if modes 6= rec then

if modes = needid ^ jds = jd then
: : :

useds := useds ^ id

else if ids 6= id then
: : :

receive pktsr(send;m; id)

Precondition:
(� Precondition from Chsr �)

: : :

E�ect:
(� E�ect clause from Chsr �)

: : :

(� E�ect clause from Hs �)
if moder 6= rec then

if moder = accept ^ idr = id then

: : :

if id = ids then

current-ok := false

else if lastr 6= id then
: : :

crashs
E�ect:

(� E�ect clause from Hs �)

: : :

current-ok := false

crashr
E�ect:

(� E�ect clause from Hr �)

: : :

current-ok := false

From Lemma 5.16 we know that LhH
0
is induced by QH.

9.4.2 Invariants

To help us in the re�nement mapping proof below, we state some invariants ofAh
H

0
without proofs.

The proofs could be performed similarly to the proofs of the AG invariants in Appendix C.

The �rst invariant states properties of issuedr.

Invariant 9.1

1. If id r 6= nil then id r 2 issuedr

2. If lastr 6= nil then lastr 2 issuedr

3. If (accept; jd ; id) 2 rs then id 2 issuedr

4. useds � issuedr
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De�ne in any state of Ah
H

0
jds(sr) to be the set of jd components of the packets in the sr channel.

Formally, since only needid packets have jd components in the sr channel, we have

jds(sr) = fjd j (needid; jd) 2 srg

Similarly,

jds(rs) = fjd j (accept; jd ; id) 2 rsg

The following invariant then states that all jds in the system are used by the sender.

Invariant 9.2

1. jd s 2 jd-used s if jd s 6= nil

2. jds(sr) � jd-used s

3. jd r 2 jd-used s if jdr 6= nil

4. jds(rs) � jd-used s

The following invariants state simple properties.

Invariant 9.3

1. If moder 2 fidle; acceptg then lastr = nil

Invariant 9.4

1. If moder = accept then id r 6= nil

Invariant 9.5

1. If modes = rec _ moder = rec then current-ok = false

Invariant 9.6

1. If id s 6= nil then modes 2 fsend; recg

The next invariant states the identi�ers in the system are in most cases registered in the history

variable used s.

Invariant 9.7

1. If id s 6= nil then id s 2 used s

2. If (send; m; id) 2 sr then id 2 useds
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3. If moder = rcvd then lastr 2 useds

4. If moder = ack then lastr 2 used s

5. If (ack; id ; b) 2 rs then id 2 used s

The identi�ers for which the sender will issue or has issued done packets can never be equal to

the current identi�er of the sender.

Invariant 9.8

1. If id 2 done-buf s then id 6= id s

2. If (done; id) 2 sr then id 6= ids

The history variable seenr records all the (jd ; id) pairs the receiver has ever seen. Thus, when

the receiver associates an identi�er id to a received jd , the pair (jd ; id) is added to seenr. Due

to crashes the receiver might associate two di�erent id identi�ers to the same jd identi�er.

However, it can never happen that the receiver associates the same id to di�erent jds.

Invariant 9.9

1. If id r 6= nil then (jdr; idr) 2 seenr

2. If (jd ; id) 2 seenr ^ (jd 0; id) 2 seenr then jd = jd 0

3. If (accept; jd ; id) 2 rs then (jd ; id) 2 seenr

Invariant 9.10

1. If modes = needid ^ moder = accept ^ jd s = jd r then

(send; ; idr) =2 sr ^ (done; idr) =2 sr

The �nal invariant corresponds to Invariant 8.12 at the G level. It states that there are always

enough unused ids and jds left.

Invariant 9.11

1. jID n issuedrj =1

2. jJD n jd-used sj =1

Below we refer to the conjunction of the invariants by IHh.
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9.4.3 Safety

The safe I/O automata Ah
H

0
and A0

G do not agree on their input and output actions. The

di�erence is however very small: Ah
H

0
adds packets to the channel in send pkt sr(send; m; id)

steps, whereas the corresponding steps in A0
G are send pktsr(m; id). There is a similar di�erence

with respect to send pktrs(ack; id ; b) steps and the corresponding receive pktsr and receive pktrs
steps. So, de�ne the following action mapping:

�
4

= [send pktsr(m; id) 7! send pktsr(send; m; id) jm 2 Msg ^ id 2 ID ] [

[receive pktsr(m; id) 7! receive pkt sr(send; m; id) jm 2 Msg ^ id 2 ID ][

[send pktrs(id ; b) 7! send pktrs(ack; id ; b) j id 2 ID ^ b 2 Bool] [

[receive pktrs(id ; b) 7! receive pktrs(ack; id ; b) j id 2 ID ^ b 2 Bool] [

[a 7! a j a 2 acts(A0
G) n AG]

where AG is de�ned in Section 8.4 and contains all the actions which are not being renamed by

�. Clearly � is applicable to G0, so de�ne G�0 = (A�
G
0
; L

�
G
0
) as follows.

G�0 4

= �(G0)

By Proposition 4.6, L�G
0
is induced by �(QG).

We now de�ne a function from states(Ah
H

0
) to states(A�

G
0
). Below, in Lemma 9.13, this function

is proved to be a re�nement mapping from Ah
H

0
to A�

G
0
with respect to IHh and IG. (Note, that

the invariant IG of AG is also an invariant of A�
G
0
.)

De�nition 9.12 (Re�nement Mapping from Ah
H

0
to A�

G
0
)

If s 2 states(Ah
H

0
) then de�ne RHG(s) to be the state u 2 states(A�

G
0
) such that

1. u:modes = s:modes
u:buf s = s:buf s
u:useds = s:useds
u:current-msgs = s:current-msgs
u:current-ack s = s:current-ack s
u:lastr = s:lastr
u:buf r = s:buf r
u:issuedr = s:issuedr
u:nack-buf r = s:nack-buf r
u:current-ok = s:current-ok

2. u:lasts = s:id s

3. u:goods = (if s:modes = needid then

fid j (accept; s:jds; id) 2 s:rsg [

(if s:moder = accept ^ s:jd r = s:jds then fs:idrg else ;)

else ;)

4. u:moder = (if s:moder = accept then idle else s:moder)

5. u:goodr = (if s:moder = accept then fs:idrg else ;)

6. The packets in each channel in u are exactly the send and ack packets in the same channel

in s.
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Lemma 9.13

Ah
H

0
�R A�

G
0
via RHG.

Proof

We prove that RHG is a re�nement mapping from Ah
H

0
to A�

G
0
with respect to IHh and IG. We

check the two conditions (which we call base case and inductive case, respectively) of De�ni-

tion 5.2.

Base Case

It is easy to see that for the start state s of Ah
H

0
, RGD(s) is a start state of A�

G
0
.

Inductive Case

Assume (s; a; s0) 2 steps(Ah
H

0
) such that s and s0 satisfy IHh and RHG(s) satis�es IG. Below

we consider cases based on a (and sometimes subcases of each case) and for each (sub)case we

de�ne a �nite execution fragment � of A�
G
0
of the form (RHG(s); a

0; u00; a00; u000; : : : ; RHG(s
0)) with

trace(�) = trace(a). For brevity we let u denote RHG(s) and u0 denote RHG(s
0).

Unless otherwise stated we let Part 1{6 refer to the three parts of De�nition 9.12.

a 2 fsend msg(m); receive msg(m); ack(b); recoversg

Then it is easy to see that (u; a; u0) 2 steps(A�
G
0
).

a = crashs

We show that (u; crashs; u
00; shrink good s(I); u

0), where u00 and I are de�ned below, is a �nite

execution fragment of A�
G
0
by showing that (u; crashs; u

00) and (u00; shrink goods(I); u
0) are steps

of A�
G
0
. Clearly the execution fragment has the right trace.

De�ne u00 to be the same as u0 except that u00:goods = u:goods. Then it is easy to see that

(u; crashs; u
00) 2 steps(A�

G
0
).

Now, if s:modes = needid then u00:goods might be nonempty whereas u0:good s = ; according

to RHG. So, de�ne I = u00:goods. (Note, I = ; if s:modes 6= needid.) Then, obviously,

(u00; shrink good s(I); u
0) 2 steps(A�

G
0
).

a = crashr

We show that (u; crashr ; u
00; shrink good r(I); u

0), where I = u:good r and u00 is de�ned below, is

a �nite execution fragment of A�
G
0
by showing that (u; crashr ; u

00) and (u00; shrink goodr(I); u
0)

are steps of A�
G

0
. Clearly the execution fragment has the right trace.

De�ne u00 to be the same as u0, except that u00:goodr = u:goodr .

It is easy to see that (u; crashr; u
00) 2 steps(A�

G
0
). The only interesting case is to show that

good r is handled correctly but from the de�nition of u00 we have u00:good r = u:goodr, which is as

required.
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Since u0:moder = rec, we get from Invariant 9.5 that u0:current-ok and then also u00:current-ok

are false, so shrink goodr(I) is enabled in u00. The only di�erence between u00 and u0 is the value

of goodr . We have u00:goodr = I and u0:goodr = ; since s0:moder = rec 6= accept. This change

in goodr is as required by the de�nition of shrink goodr(I) in A�
G
0
.

a = recoverr

We show that (u; recoverr ; u
0) 2 steps(A�

G
0
). This step (and �nite execution fragment) clearly

has the right trace.

First note that recoverr is enabled in u. We then carry out a case-by-case check to see that all

state variables change appropriately. The only interesting cases are goodr and issuedr.

Both u:goodr = ; and u0:good r = ; by the de�nition of RHG since moder 6= accept in s and s0.

Thus, the value of good r is unchanged as required by the de�nition of recoverr in A
�
G
0
.

From the de�nition of recoverr in Ah
H

0
and RHG we have that u:issuedr = u0:issuedr. To show

that it is allowed by recoverr in A�
G
0
to leave issuedr unchanged, we must show that u:useds �

u:issuedr and u:good s � u:issuedr. But both of these requirements follow directly from the

de�nition of RHG and Invariant 9.1.

a = choose jd(jd)

We show that (u; prepare; u0) 2 steps(A�
G
0
). This step (and �nite execution fragment) clearly

has the right trace.

Since choose jd(jd) is enabled in s and u = RHG(s), it is immediate that prepare is enabled in u.

A case analysis on the variables of A�
G
0
shows that all are modi�ed properly; the only interesting

case is that of good s. There, the de�nition of prepare in A�
G
0
requires that u0:goods = ;. We

must show that that is the case:

First, assume s:jd r = nil. By the de�nition of choose jd(jd) in Ah
H

0
we have s0:jds 6= nil, so

since s0:jdr = s:jd r , we have s
0:jd s 6= s0:jdr .

Now assume s:jd r 6= nil. Then Invariant 9.2 gives us that s:jdr 2 s:js-useds and since s0:jd r =

s:jdr we have s0:jd r 2 s:js-useds. By the de�nition of choose jd(jd) in Ah
H

0
we have s0:jds =2

s0:jd-useds, so also in this case we get s0:jd s 6= s0:jdr .

From Invariant 9.2 we get jds(s:rs) � s:jd-used s. By the de�nition of choose jd(jd) in Ah
H

0
we

have s0:jds(s0:rs) = jds(s:rs) and s0:jd s =2 s:jd-used s, so we get s0:jds =2 jds(s0:rs).

Finally, since s0:jd s 6= s0:jdr and s0:jds =2 jds(s0:rs), we get from the de�nition of RHG that

u0:good s = ; as required.

a = send pkt sr(needid; jd)

We show that u0 = u. Then the execution fragment u of A�
G
0
clearly has the right properties.

The only di�erence between s and s0 is that s contains an additional needid message in the

sr channel. But this does not a�ect the values of any of the variables of A�
G

0
according to the

de�nition of RHG.

a = receive pkt sr(needid; jd)

We consider two cases.
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1. s:moder 6= idle.

Then the only di�erence between s and s0 is that the latter is missing one needid packet

from the sr channel. But this does not a�ect the values of any variables of A
�
G

0
, so that

u0 = u. Then the execution fragment u of A�
G
0
clearly has the right properties.

2. s:moder = idle.

There are two subcases.

(a) s:modes 6= needid or jd 6= s:jds.

We show that (u; grow good r(fidg); u
0) 2 steps(A�

G), where id is the identi�er chosen

in the step of Ah
H

0
, i.e., id = s0:idr . Clearly the step has the right trace (the empty

trace).

The de�nition of the step in Ah
H

0
implies that id =2 s:issuedr . From the de�nition of

RHG we have u:issuedr = s:issuedr, so that grow goodr(fidg) is enabled in u.

We consider the state changes. From the de�nition of RHG we have u:good r = ;

and u0:good r = fidg. This is the change to goodr speci�ed by the de�nition of

grow good r(fidg). Also, the step of Ah
H

0
explicitly adds id to issuedr, which is as

required by the de�nition of grow goodr(fidg) in A
�
G
0
.

We claim that all variables of A�
G
0
other than good r and issuedr have the same values

in u and u0. This is immediate for modes, buf s, used s, current-msgs, current-ack s,

buf r , lastr nack-buf r , current-ok , and lasts. For moder, we have a change at the H

level, from idle to accept. But both of these correspond to idle at the G level.

We now show that u:goods = u0:good s. We make a case analysis based on the de�nition

of this case. First assume s:modes 6= needid. Then also s0:modes 6= needid so from

the de�nition of RHG we have u:goods = u0:good s = ; as needed.

Now, assume s:modes = needid and jd 6= s:jd s. Since s0:jd r = jd and s0:jds = s:jd s
we get s0:jds 6= s0:jdr , so even though moder changes to accept in Ah

H

0
, it is easy to

see from the de�nition of RHG that u:goods = u0:goods.

Finally, the only di�erence between the channels in s and s0 is that the sr channel in

s0 is missing one needid packet. But then the values of the channels in u and u0 are

the same.

(b) s:modes = needid and jd = s:jd s.

We show that (u; grow good r(fidg); u
00; grow goods(fidg); u

0), where u00 is de�ned be-

low and id = s0:idr , is a �nite execution fragment of A�
G

0
. We do this by showing

that (u; grow good r(fidg); u
00) and (u00; grow good s(fidg); u

0) are steps of A�
G
0
. The

execution fragment clearly has the right trace.

De�ne u00 to be the same as u0, except that u00:goods = u0:goods n fidg.

The argument that (u; grow good r(fidg); u
00) is a step of A�

G
0
is the same as the argu-

ment for the previous case, except for the part about good s. Here, u:goods = u00:goods
by explicit construction.

To show that (u00; grow goods(fidg); u
0) is a step of A�

G
0
, it su�ces to note that id 2

u00:issuedr , id 2 u00:goodr , and id =2 u00:used s. (This latter claim uses Invariant 9.1.)

a = send pktrs(accept; jd ; id)

We show that u0 = u. Then the execution fragment u of A�
G
0
clearly has the right properties.

The only di�erence between s and s0 is that s0 contains an additional accept message in the sr

channel. We claim that this does not a�ect the values of any of the A�
G

0
variables.
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The only interesting case to check is the value of good s. The only way the step can modify

this variable according to RHG is to add an id to good s, by putting idr to goods, by putting

an (accept; s0:jd s; id) message into the rs channel. By de�nition of the step in H, it must be

that s0:jd s = s:jd r and id = s:id r . Since s:jds = s0:jd s, it follows that s:jd s = s:jd r. But then

id 2 u:goods. This contradicts the assumption that the step modi�ed this variable.

a = receive pkt rs(accept; jd ; id)

There are two cases.

1. s:modes = rec

In this case the only di�erence between s0 and s is that s has an extra (accept; id ; jd)

packet on rs, but from the de�nition of RHG we see that this does not a�ect any of the

variables in A�
G
0
since s:modes 6= needid. Thus u0 = u. The the execution fragment u of

A
�
G
0
has the right properties.

2. s:modes 6= rec

We consider cases

(a) s:modes 6= needid or jd 6= s:jd s.

We show that u0 = u. The the execution fragment u of A�
G
0
has the right properties.

The only di�erence between s and s0 is that s0 removes a single accept message in

the sr channel and that done-buf s might be updated. We claim that this does not

a�ect the values of any of the A�
G
0
variables; the only interesting case to check is that

of good s, and there, the fact that s:modes 6= needid or jd 6= s:jd s implies that good s
has the same value in u and u0.

(b) s:modes = needid and jd = s:jd s.

We show that (u; choose id(id); u00; shrink goods(I); u
0), where I = u:goods and u00 is

de�ned below, is an execution fragment of A�
G
0
by showing that (u; choose id(id); u00)

and (u00; shrink goods(I); u
0) are steps of A�

G
0
. Clearly the execution fragment has the

right trace.

De�ne u00 to be the same as u0 except that u00:good s = I .

First consider (u; choose id(id); u00). Since s:modes = needid, we have u:modes =

needid. Then, to prove that choose id(id) is enabled in u, we need to show that

id 2 u:goods. In s, we have (accept; id ; jd) in the rs channel, and moreover jd = s:jd s.

Thus, from the de�nition of RHG we have id 2 u:goods as needed.

Now we consider the e�ects on the variables in A
�
G
0
. A case analysis shows that the

changes reected in u00 are as speci�ed by the step of A�
G
0
. The only interesting case is

that of good s, where the de�nition of u00:goods = I = u:goods ensures that the value is

unchanged, as required by the de�nition of choose id(id) in A�
G
0
.

To see that (u00; shrink good s(I); u
0) is a step of A�

G

0
, note that u0:goods = ;. Therefore,

the changes are as required by the de�nition of shrink good s(I) in A�
G
0
.

a = send pkt sr(send; m; id)

Then it is easy to see that (u; send pktsr(m; id); u0) 2 steps(A�
G

0
). This step (and execution

fragment) clearly has the right trace.
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a = receive pktsr(send; m; id)

We show that (u; receive pktsr(m; id); u0) 2 steps(A
�
G

0
). This step (and execution fragment) has

the right trace.

We consider four (exclusive and exhaustive) cases.

1. s:moder = rec.

Then the only change from s to s0 is the removal of the single message from the sr channel.

Since also u:moder = rec, this corresponds to the right change in A
�
G

0
.

2. s:moder = accept and id = s:id r.

Then, from the de�nition of RHG we have that u:moder = idle and id 2 u:goodr, such that

the required state change of the receiver variables of A�
G

0
is described by the �rst alternative

in the nested if-then-else construct in the step rule for receive pkt sr(m; id). A case analysis

shows that all variables of A�
G
0
are handled correctly. The interesting cases are current-ok

and goodr .

For current-ok , we consider two cases.

First, if id = s:id s, then we have id = u:lasts. Moreover, s:modes 2 fsend; recg by

Invariant 9.6. If s:modes = rec then Invariant 9.5 implies that s:current-ok is already false,

so setting it to false in Ah
H

0
is a no-op, as required by the step in A

�
G
0
. If s:modes = send

both algorithms set current-ok to false.

On the other hand, if id 6= s0:id s, then also id 6= u:lasts. Thus in this case neither level

changes current-ok .

For good r, note that u:good r = fs:id rg since s:moder = accept and u0:goodr = ; since

s0:moder 6= accept. Since id = s:idr , this change is as required by the de�nition of

receive pkt sr(m; id) of A�
G
0
.

3. s:moder 6= rec and (s:moder 6= accept or id 6= s:idr)

We show that the required state changes of the receiver variables ofA�
G
0
are not described by

the �rst alternative inside the nested if-then-else construct. First, if s:moder 6= accept then

u:good r = ; which gives the result. Next, if s:moder = accept we have u:goodr = fs:idrg,

but from the de�nition of this case we must have id 6= s:id r, so again the result follows.

We now consider two cases

(a) id 6= s:lastr
Then we have s0:nack-buf r = s:nack-buf r ^ id . Since id 6= u:lastr, by the de�nition of

RHG, we also have u0:nack-buf r = u:nack-buf r ^ id . It is now easy to see that all state

variables of A�
G
0
are handled correctly.

(b) id = s:lastr
In this case, the Ah

H

0
level makes no changes (that is, the only di�erence between s and

s0 is that the latter has the one message deleted from the sr channel). We must thus

show that all variables but sr of A�
G
0
have the same values in u and u0.

First we note that the A
�
G
0
step does not choose the second alternative inside the

nested if-then-else construct since the de�nition of this case and RHG gives us that

id = u:lastr .

We must show that A�
G

0
does not choose the third alternative. The only way A�

G

0
can

choose the third alternative is if u:moder = idle. From the de�nition of RHG we see

that this is the case if s:moder 2 fidle; acceptg. Now, Invariant 9.3 gives us that
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s:lastr = nil, but this contradicts the de�nition of this case (id = s:lastr), thus, we

cannot have u:moder = idle which again implies that A�
G
0
does not choose the third

alternative.

That su�ces.

a = send pkt sr(done; id)

This step of Ah
H

0
changes done-buf s and may change the channel sr , but from the de�nition of

RHG we see that this does not change any of the variables in A�
G
0
, so we have u = u0. Thus, the

�nite execution fragment u clearly has the right properties.

a 2 fsend pktrs(ack; id ; b); receive pktrs(ack; id ; b)g

Then it is easy to see that (u0; send pkt rs(id ; b); u) and (u0; receive pkt rs(id ; b); u), respectively,

are steps of A�
G
0
.

a = receive pkt sr(done; id)

We consider cases.

1. s:moder = accept and id = s:id r .

There are two subcases.

(a) s:modes 6= needid or

(s:modes = needid and s:jd r 6= s:jd s) or

(s:modes = needid and s:jd r = s:jd s and (accept; s:jds; s:idr) 2 s:rs)

We show that (u; shrink good r(fidg); u
0) 2 steps(A�

G
0
). This step (and execution frag-

ment) clearly has the right trace.

First, we show that shrink good r(fidg) is enabled in u.

i. s:modes 6= needid

Then the precondition of shrink good r(fidg) is satis�ed by u. The only interesting

case is if s:modes = send. In this case we must show that u:lasts 6= id , i.e., that

s:id s 6= id . Since (done; id) 2 s:sr , Invariant 9.8 gives the result.

ii. s:modes = needid and s:jdr 6= s:jd s
Here, it su�ces to show that id =2 u:goods. From RHG we get that u:good s = fid 0 j

(accept; s:jds; id
0)g. From Invariant 9.9 Part 3 we get that u:goods is a subset of

the set S de�ned as S = fid 0 j (s:jd s; id
0) 2 s:seenrg, so it su�ces to show that

id =2 S. Since s:id r = id 6= nil, we get from Invariant 9.9 Part 1 that (s:jdr ; id) 2

s:seenr and Part 2 of the same invariant then implies that (s:jds; id) =2 s:seenr
since s:jd s 6= s:jd r in the case we consider here. Thus, the result follows.

iii. s:modes = needid and s:jdr = s:jd s and (accept; s:jds; s:idr) 2 s:rs

Invariant 9.10 implies that this situation cannot occur.

We now show that the variable changes are allowed by the step of A�
G
0
.

First, we show that goodr is handled correctly. By de�nition of this case and RHG, we

get that u:goodr = fidg and u0:goodr = ;. Thus, good r changes in a way allowed by

shrink goodr(fidg) in A�
G

0
.

We must show that no other variables have di�erent values in u0 and u. The interesting

cases are moder , lastr , and goods.
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For moder we have s:moder = accept and s0:moder = idle, but then RHG gives us

u0:moder = u:moder = idle, as needed.

For lastr we have u:lastr = nil from Invariant 9.3 since s:moder = accept, and

u0:lastr = nil from the de�nition of the Ah
H

0
step. Thus, lastr is unchanged as needed.

Finally, we consider good s
i. s:modes 6= needid

Then, since also s0:modes 6= needid, RHG gives us u0:good s = u:good s(= ;) as

needed.

ii. s:modes = needid and s:jd r 6= s:jd s
Since s0:modes = needid, we have s0:jds 6= nil (easy invariant), so since s0:jdr =

nil we have s0:jd r 6= s0:jd s. Now, since jd s and rs are unchanged in the Ah
H

0
step,

we clearly get from RHG that u0:goods = u:goods as needed.

iii. s:modes = needid and s:jd r = s:jd s and (accept; s:jds; s:idr) 2 s:rs

Again, Invariant 9.10 implies that this situation cannot occur.

(b) s:modes = needid, s:jd r = s:jd s, and (accept; s:jds; s:idr) =2 s:rs

We show that (u; shrink good s(fidg); u
00; shrink good r(fidg); u

0), where u00 is de�ned

below, is an execution fragment of A�
G
0
by showing that (u; shrink good s(fidg); u

00)

and (u00; shrink good r(fidg); u
0) are steps of A�

G
0
. The execution fragment clearly has

the right trace.

De�ne u00 to be the same as u except that u00:good s = u:goods n fidg.

Then obviously (u; shrink good s(fidg); u
00) 2 steps(A�

G
0
).

We show that also (u00; shrink good r(fidg); u
0) 2 steps(A�

G
0
).

Since u00:modes = u:modes = needid and id =2 u00:goods, shrink goodr(fidg) is enabled

in u00.

We show that all variables are handled correctly.

For all other variables than good s the arguments are as in the case above.

We show that u00:good s = u0:goods. We have s0:jdr = nil 6= s0:jds (since s
0:modes =

needid), so the de�nition of RHG and u00 gives us:

u00:goods = (fid 0 j (accept; s:jds; id
0) 2 s:rsg [ fidg) n fidg and

u0:goods = fid
0
j (accept; s0:jds; id

0) 2 s0:rsg.

Since jd s and rs are unchanged, it su�ces to show id =2 fid 0 j (accept; s:jds; id
0)g, but

since id = s:id r, this follows directly from the de�nition of this subcase.

That su�ces.

2. s:moder = ack and id = s:lastr .

We show that (u; cleanupr ; u
0) 2 steps(A�

G
0
). This step (and execution fragment) clearly

has the right trace.

Since (done; id) 2 s:sr we get from Invariant 9.8 that id 6= s:id s, so from the de�nition

of RHG and the hypothesis we get u:lasts 6= u:lastr. Also, since s:moder = ack, we have

u:moder = ack. Thus, cleanupr is enabled in u.

All variables are handled correctly. The changes to lastr and moder in Ah
H

0
clearly are as

required by the de�nition of cleanupr in A�
G
0
. Since moder 6= accept we have u:goodr =

u0:goodr(= ;) as needed. The only other interesting case is goods. But since moder 6=

accept and jd s and rs are unchanged by the step in Ah
H

0
, we get from RHG that u0:goods =

u:good s as needed.

3. Otherwise

Then we claim that u0 = u.
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The only di�erence between s and s0 is the removal of the done packet from the sr channel.

This does not a�ect any of the A�
G
0
variables.

a = grow-jd-used s(jds)

This step adds some elements to jd-used s, but since jd-used s is not used in the mapping RHG,

we have u = u0. Thus, the execution fragment u has the right properties.

a = grow-issued r(ids)

This transition adds elements to issuedr in Ah
H

0
.

We show that (u; grow good r(I); u
00; shrink goodr(I); u

0), where u00 is de�ned below and I =

s0:issuedr n s:issuedr , is an execution fragment of A
�
G
0
by showing that (u; grow good r(I); u

00)

and (u00; shrink goodr(I); u
0) are steps of A�

G
0
. The execution fragment clearly has the right

trace.

De�ne u00 to be the same as u0 except that u00:good r = u:goodr [ I .

From the de�nition ofRHG we get that I = u0:issuedrnu:issuedr which implies that I\u:issuedr =

;. Thus, grow good r(I) is enabled in u. Now, the only di�erence between u and u00 is that

u00:goodr = u:goodr[I (by explicit construction) and u
00:issuedr = u:issuedr[I (by the de�nition

of grow-issued r, RHG and u00), but this is as required by grow goodr(I) in A�
G
0
.

We now consider (u00; shrink good r(I); u
0). To show that shrink goodr(I) is enabled in u00, we

show that I \ u00:goods = ; and that u00:lasts =2 I .

First, consider the claim that I \ u00:goods = ;. Since u00:goods = u:goods we must show that

I \ u:goods = ;. From Invariant 9.1 and RHG we get that u:goods � s:issuedr , but since

I \ s:issuedr = ; (by the de�nition of I) the result follows directly.

Then, consider the claim that u00:lasts =2 I . Since u00:lasts = u:lasts = s:id s, we must show that

s:ids =2 I . If s:id s = nil this is obvious, so assume s:id s 6= nil. Then Invariant 9.7 gives us that

s:ids 2 s:useds, and Invariant 9.1 implies that s:id s 2 s:issuedr. Again, since I \ s:issuedr = ;,

we get the result.

Thus, shrink good r(I) is enabled in u00.

The only di�erence between u00 and u0 is by the de�nition of u00 that u00:good r = u:goodr [ I =

u0:good r [ I . (The latter equality uses the de�nitions of grow-issuedr and RHG to see that

u0:good r = u:goodr). To satisfy the requirements in A�
G
0
we must show that u0:goodr = u00:good r n

I . This is only the case if u0:goodrnI = u0:good r, i.e., if u
0:good r\I = ;. Now, either u0:good r = ;

in which case this result follows directly or u0:good r = fs0:id rg (with s
0:idr 6= nil). In the latter

case we observe that s0:id r = s:id r, so Invariant 9.1 implies that u0:good r � s:issuedr , and since

I \ s:issuedr = ;, we get that u0:goodr \ I = ;, as needed.

This concludes the simulation proof.

With this simulation result we can prove that AH safely implements AG.

Theorem 9.14 (AH safely implements AG)

AH vS AG
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Proof

By Lemma 9.13 and the soundness of re�nement mappings (Lemma 5.8) we get Ah
H

0
vS A�

G

0
,

and from Lemma 5.14 we get A0
H vS A

h
H

0
. Thus,

A0
H vS A

�
G

0

which by substitutivity (Lemma 2.16) implies

A0
H n AH vS A

�
G

0
n AH

Then, by the de�nition of �, AH, and AG we get

A0
H n AH vS A

�
G

0
n �(AG)

Now, since � only renames actions which are subsequently hidden, this implies

A0
H n AH vS A

0
G n AG

which �nally, by de�nition, yields the result

AH vS AG

9.4.4 Correctness

We can now turn attention to formally proving that Hh0 correctly implements G�0, which, in

turn, then allows us to prove that H correctly implements G.

We start out by giving some basic results about Ah
H

0
. The �rst results (Lemma 9.15 and

Lemma 9.16) describe certain possible steps of Ah
H

0
in the absence of crashes. The lemmas

have one part for each mode in the system and each part is furthermore divided into two sub-

parts. The �rst subpart states that if the system reaches a certain state, then it will stay in

that state at least until a certain action (or certain actions) occur(s). The second subpart then

states the resulting state if such an action indeed occurs.

In the remainder of this section we use notation like send pkt rs(accept; ; ) to denote the

action function fsend pkt(accept; jd ; id) j jd 2 JD ^ id 2 IDg. Similarly, the expression, e.g.,

send pkt rs(accept; ; ids) denotes the action function fsend pkt(accept; jd ; ids) j jd 2 JDg.

Lemma 9.15

Ah
H

0
satis�es each of the following formulas

1. (a) 2(2(modes 6= rec) ^ modes = idle =) (modes = idleWi hchoose jd( )i))

(b) 2(modes = idle ^ hchoose jd( )i =) mode�s = needid)

2. (a) 8jd : 2(2(modes 6= rec) ^ modes = needid ^ jd s = jd =)

(modes = needid ^ jd s = jd Wi hreceive pktrs(accept; jd ; )i))

(b) 2(modes = needid ^ hreceive pktrs(accept; jds; )i =) mode
�
s = send)

3. (a) 8jd : 8id : 2(2(modes 6= rec) ^ modes = send ^ jd s = jd ^ id s = id =)

(modes = send ^ jd s = jd ^ id s = id Wi hreceive pkt rs(ack; id ; )i))

(b) 2(modes = send ^ hreceive pkt rs(ack; ids; )i =) mode�s = idle)

Proof

Easy by careful inspection of the steps of Ah
H

0
.
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Lemma 9.16

Ah
H

0
satis�es each of the following formulas

1. (a) 2(2(moder 6= rec) ^ moder = idle =)

(moder = idleWi hreceive pkt sr(needid; )i))

(b) 8jd : 2(moder = idle ^ hreceive pkt sr(needid; jd)i =)

mode
�
r = accept ^ jd

�
r = jd)

2. (a) 8jd : 8id : 2(2(moder 6= rec) ^ moder = accept ^ jd r = jd ^ idr = id =)

(moder = accept ^ jd r = jd ^ id r = id Wi

hreceive pkt sr(send; ; id)i _ hreceive pkt sr(done; id)i))

(b) 2(moder = accept ^ hreceive pktsr(send; ; idr)i =) mode�r = rcvd)

2((moder = accept ^ hreceive pkt sr(done; idr)i) =) mode�r = idle)

3. (a) 8id : 2(2(moder 6= rec) ^ moder = rcvd ^ lastr = id =)

(moder = rcvd ^ lastr = id Wi hreceive msg( )i ^ buf �r = "))

(b) 2(moder = rcvd ^ hreceive msg( )i ^ buf �r = " =) mode�r = ack)

4. (a) 8id : 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)

(moder = ack ^ lastr = id Wi hreceive pktsr(done; id)i))

(b) 2(moder = ack ^ hreceive pkt sr(done; lastr)i =) mode
�
r = idle)

Proof

Easy by careful inspection of the steps of Ah
H

0
.

In the proofs below we furthermore need the following simple lemma.

Lemma 9.17

Ah
H

0
j= 2(modes = needid ^ moder = accept ^ jd s = jd r =)

:hreceive pktsr(send; ; idr)i ^ :hreceive pkt sr(done; idr)i)

Proof

Directly by Invariant 9.10.

We now turn attention to more interesting results about the live executions of Hh0. The �rst

lemma states that if the sender stays in needid mode, then it will issue in�nitely many needid

packets. This result is actually a simple consequence of weak fairness to the set CH;s1. We give

the proof in all formal detail.

Lemma 9.18 (needid liveness)

LhH
0
j= 8jd : 2(2(modes = needid ^ jd s = jd) =) 23hsend pkt sr(needid; jd)i)

Proof

Assume: � 2 LhH
0
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Prove: � j= 8jd : 2(2(modes = needid ^ jd s = jd) =) 23hsend pktsr(needid; jd)i)

h1i1. Assume: jd is arbitrary

Prove: � j= 2(2(modes = needid ^ jd s = jd) =) 23hsend pkt sr(needid; jd)i)

h2i1. Assume: �1 is an arbitrary su�x of �

Prove: �1 j= 2(modes = needid ^ jd s = jd) =) 23hsend pkt sr(needid; jd)i

h3i1. Assume: �1 j= 2(modes = needid ^ jd s = jd)

Prove: �1 j= 23hsend pkt sr(needid; jd)i

h4i1. �1 j= WF (CH;s1)

Proof: By the assumption � 2 LhH
0
we have � j= WF (CH;s1). Then

Assumption h2i and Lemma 3.5 Part 1 give the result.

h4i2. �1 j= 32(modes 2 frec; needid; sendg _

(modes = idle ^ buf s = ")) =)

23hCH;s1i

Proof: From h4i1 by expanding WF and noting that enabled(CH;s1) =

(modes 2 frec; needid; sendg _ (modes = idle ^ buf s = ")).

h4i3. �1 j= 2(modes 2 frec; needid; sendg _

(modes = idle ^ buf s = ")) =)

23hCH;s1i

Proof: Directly from h4i2.

h4i4. �1 j= 23hCH;s1i

Proof: By Assumption h3i, h4i3, and Rule MP.

h4i5. Q.E.D.

Proof: By h4i4 since Assumption h3i yields that send pkt sr(needid; jd)

is the only action in CH;s1 which is enabled anywhere in �1.

h3i2. Q.E.D.

Proof: By h3i1 and the de�nition of implication.

h2i2. Q.E.D.

Proof: By h2i1 and Lemma 3.5 Part 2.

h1i2. Q.E.D.

Proof: By h1i1 and Lemma 3.5 Part 5.

The following lemmas (Lemmas 9.19{9.23) state similar basic results about the live executions

of Hh0.

Lemma 9.19 (done liveness)

1. LhH
0
j= 8id : (2(modes 6= rec) ^ id 2 done-buf s); hsend pkt sr(done; id)i

2. LhH
0
j= 8id : 2(2(modes 6= rec) ^ 23hreceive pktrs(ack; id ; true)i =)

23hsend pkt sr(done; id)i
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3. LhH
0
j= 8jd : 8id : 2(2(modes = needid ^ jds 6= jd) ^

23hreceive pktrs(accept; jd ; id)i =)

23hsend pktsr(done; id)i)

Proof

We sketch the proof.

1. Consider an arbitrary su�x of a live execution of Hh0 and assume that the sender is never

crashed in this su�x. In the �rst state of the su�x, let id be an arbitrary element of

done-buf s and id 0 the �rst element of done-buf s. Then send pkt sr(done; id
0) is enabled

(since 2(modes 6= rec)) and by fairness eventually send pkt sr(done; id
0) occurs and id 0 is

removed from done-buf s. By repeating this argument, we get that eventually id is �rst on

done-buf s and then eventually send pkt sr(done; id) occurs.

2. Here id will in�nitely often be put into done-buf s by the receive pkt rs(ack; id ; true) events

since 2(modes 6= rec). Then Part 1 of this lemma implies the result.

3. Similar to Part 2. When modes = needid, Invariant 9.6 implies id s = nil. Then,

since jd s 6= jd , the each receive pkt rs(accept; jd ; id) step leads to id being inserted into

done-buf s. Part 1 of this lemma then implies the result.

Lemma 9.20 (accept liveness)

1. LhH
0
j= 8jd : 8id :

2(2(moder = accept ^ jd r = jd ^ id r = id) =) 23hsend pkt rs(accept; jd ; id)i)

2. LhH
0
j= 8jd : 8id : 2(2(moder 6= rec) ^ moder = accept ^ jdr = jd ^ id r = id =)

3hreceive pktsr(send; ; id)i _

3hreceive pktsr(done; id)i _

23hsend pktrs(accept; jd ; id)i)

Proof

1. Similar to the proof of Lemma 9.18.

2. Assume: 1. � 2 LhH
0

2. jd and id are arbitrary

3. �1 is an arbitrary su�x of �

Prove: �1 j= 2(moder 6= rec) ^ moder = accept ^ jd r = jd ^ id r = id =)

3hreceive pktsr(send; ; id)i _

3hreceive pktsr(done; id)i _

23hsend pktrs(accept; jd ; id)i

h1i1. �1 j= 2(moder = accept ^ jd r = jd ^ idr = id) =) 3hsend pkt rs(accept; jd ; id)i

Proof: From Part 1 of this lemma, the Assumptions, and Lemma 3.5.

h1i2. �1 j= 2(2(moder 6= rec) ^ moder = accept ^ jd r = jd ^ idr = id =)

((moder = accept ^ jdr = jd ^ id r = id)Wi

(hreceive pktsr(send; ; id)i _ hreceive pktsr(done; id)i)))
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Proof: By Lemma 9.16 Part 2(a), The Assumptions, and Lemma 3.5.

h1i3. Q.E.D.

Proof: By h1i1, h1i2, and Rule Unl1.

By Lemma 3.5 the result follows.

Lemma 9.21 (rcvd; ack)

LhH
0
j= 2(2(moder 6= rec) =) (moder = rcvd; moder = ack))

Proof

We only sketch this proof. During any live execution of Hh0, if the receiver is in rcvd mode

and never crashes, then, by the de�nition of steps(Ah
H

0
), the only mode change of the receiver

is a mode change to ack in a receive msg(m) step that empties buf r . Furthermore, when

moder = rcvd no messages can be put into buf r (which actually implies that buf r will always

contain zero or one element). Then, by fairness to receive msg(m) steps, buf r will eventually

be emptied and hence the result follows.

Lemma 9.22 (ack liveness)

1. LhH
0
j= 8id : 2(2(moder = ack ^ lastr = id) =) 23hsend pktrs(ack; id ; true)i)

2. LhH
0
j= 8id : 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)

3hreceive pkt sr(done; id)i _ 23hsend pkt rs(ack; id ; true)i)

Proof

Similar to the proof of Lemma 9.20.

Lemma 9.23 (ack; idle)

LhH
0
j= 2(2(modes 6= rec ^ moder 6= rec) =) (moder = ack; moder = idle))

Proof

By Lemma 3.5 the following proof su�ces.

Assume: 1. � 2 LhH
0

2. �1 is an arbitrary su�x of �

3. id is arbitrary

4. �1 j= 2(modes 6= rec ^ moder 6= rec)

Prove: �1 j= moder = ack; moder = idle

h1i1. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)

3hreceive pkt sr(done; id)i _ 23hsend pkt rs(ack; id ; true)i)

Proof:By Lemma 9.22 Part 2, the Assumptions, and Lemma 3.5.
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h1i2. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)

3hreceive pktsr(done; id)i _ 23hreceive pktrs(ack; id ; true)i)

Proof: By h1i1 and Channel Liveness (QCh;rs).

h1i3. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)

3hreceive pktsr(done; id)i _ 23hreceive pktsr(done; id)i)

Proof:By h1i2, Lemma 9.19 Part 2, Rule MP, and Channel Liveness (QCh;sr).

h1i4. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)

3hreceive pktsr(done; id)i)

Proof: Directly from h1i3.

h1i5. �1 j= 2(2(moder 6= rec) ^ moder = ack ^ lastr = id =)

((moder = ack ^ lastr = id) Ui 3hreceive pktsr(done; id)i))

Proof: By h1i4, Lemma 9.16 Part 4(a), and the de�nition of Ui.

h1i6. �1 j= 2(moder = ack ^ lastr = id =)

3(moder = ack ^ lastr = id ^ hreceive pkt sr(done; id)i))

Proof: By h1i5, The Assumptions, Rule MP, and the de�nition of Ui.

h1i7. �1 j= moder = ack ^ lastr = id ;

moder = ack ^ lastr = id ^ hreceive pkt sr(done; id)i

Proof: Directly from h1i6 and the de�nition of ;.

h1i8. �1 j= (moder = ack ^ lastr = id); moder = idle

Proof: By h1i7, the ; property implied by Lemma 9.16 Part 4(b), and transitivity of

;.

h1i9. Q.E.D.

Proof: Directly from h1i8.

We are now ready to state and prove a very important result about the live executions of Hh0. In

Section 9.2.3 we provided some intuitive justi�cation of the mode of operation of the H protocol.

One bad situation that we touched upon was when the sender is in needidmode but the receiver

is in some \bad" mode other than idle. We argued that eventually, due to done packets, the

receiver would always be reset to idle but that it immediately could enter a bad accept mode

again as a result of receiving an old needid packet (i.e., a needid packet (needid; jd) for which

jd 6= jds) from the channel. However, since each channel step can only add a �nite number of

packets to a channel, at any point during execution there are only �nitely many packets|and

consequently only �nitely many old needid packets|in the sr channel. Therefore, since the

sender only adds new needid packets to sr , the receiver can only enter a bad accept state �nitely

many times. Thus, sooner or later either the receiver receives a new needid packet (even though

there are still old ones in the channel) or all old needid packets have been received, in which

case the receiver will eventually be reset to idle mode and thereafter receive a new needid

packet. This is formalized in the following lemma. In the proof we use the induction rule Ind.

First, we need the following de�nition: in any state where modes = needid, de�ne the num-

ber of old needid packets, written #oldneedid, to be the number of needid packets (including

duplicates) in the sr channel with jd 6= jd s.
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Lemma 9.24

LhH
0
j= 8jd : 2(2(modes = needid ^ jds = jd ^ moder 6= rec) =)

3(moder = accept ^ jd r = jd))

Proof

Assume: � 2 LhH
0

Prove: � j= 8jd : 2(2(modes = needid ^ jd s = jd ^ moder 6= rec) =)

3(moder = accept ^ jd r = jd))

h1i1. Assume: 1. jd is arbitrary

2. �1 is an arbitrary su�x of �

3. �1 j= 2(modes = needid ^ jd s = jd ^ moder 6= rec)

Prove: �1 j= 3(moder = accept ^ jd r = jd)

h2i1. Case: �1 j= moder = accept ^ jd r = jd

h3i1. Q.E.D.

Proof: Case Assumption h2i implies the goal.

h2i2. Case: �1 j= :(moder = accept ^ jd r = jd)

h3i1. �1 j= 3(moder = idle)

h4i1. Case: �1 j= moder = idle

h5i1. Q.E.D.

Proof: Assumption h4i implies the goal.

h4i2. Case: �1 j= moder = ack

h5i1. Q.E.D.

Proof: By Assumptions h4i and h1i.3, and Lemma 9.23.

h4i3. Case: �1 j= moder = rcvd

h5i1. Q.E.D.

Proof: By Assumptions h4i and h1i.3, and Lemmas 9.21 and 9.23.

h4i4. Case: �1 j= moder = accept ^ jd r 6= jd

h5i1. �1 j= moder = accept ^ jd r 6= jd ^ jdr = jd
0
^ id r = id

Proof: From Assumption h4i by letting jd
0 and id be the values

of jd r and id r, respectively, in the �rst state of �1.

h5i2. �1 j= 3hreceive pkt sr(send; ; id)i _ 3hreceive pkt sr(done; id)i _

23hsend pkt rs(accept; jd
0
; id)i

Proof: By Lemma 9.20 Part 2, Lemma 3.5, h5i1, Assumption

h1i.3, and Rule MP.

h5i3. �1 j= 3hreceive pkt sr(send; ; id)i _ 3hreceive pkt sr(done; id)i _

23hreceive pkt sr(done; id)i

Proof: By h5i2, Channel Liveness (QCh;sr and QCh;rs), Lemma

9.19 Part 3, the Assumptions, Lemma 3.5, and Rule 3.5.
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h5i4. �1 j= 3hreceive pktsr(send; ; id)i _ 3hreceive pktsr(done; id)i

Proof: Directly by h5i3.

h5i5. �1 j= moder = accept ^ jdr = jd 0 ^ idr = id Ui
hreceive pktsr(send; ; id)i _ hreceive pktsr(done; id)i

Proof: By h5i4, Lemma 9.16 Part 2(a), Lemma 3.5, the Assump-

tions, and Rule MP.

h5i6. �1 j= 3(moder = accept ^ jd r = jd 0 ^ id r = id ^

hreceive pkt sr(send; ; id)i) _

3(moder = accept ^ jd r = jd
0
^ id r = id ^

hreceive pkt sr(done; id)i)

Proof: Implied by h5i5.

h5i7. �1 j= 3(moder = rcvd) _ 3(moder = idle)

Proof: By h5i6, Lemma 9.16 Part 2(b), the Assumptions, Lemma

3.5, and Rule MP.

h5i8. Q.E.D.

Proof: By h5i7, Lemmas 9.21 and 9.23, and the Assumptions.

h4i5. Q.E.D.

Proof: By Assumption h2i and the exhaustive cases h4i1{h4i4.

h3i2. �1 j= 2(#oldneedid
� � #oldneedid)

Proof: By Assumption h1i.3, #oldneedid is de�ned in all states of �1 and

jd s does not change in �1. Then, since the only actions that can add needid

packets to sr add packets with jd 6= jd s, the result follows.

h3i3. Base Case

�1 j= (moder = idle ^ #oldneedid = 0); (moder = accept ^ jd r = jd)

h4i1. Assume: 1. �2 is an arbitrary su�x of �1
2. �2 j= moder = idle ^ #oldneedid = 0

Prove: �2 j= 3(moder = accept ^ jd r = jd)

h5i1. �2 j= 2(#oldneedid = 0)

Proof: By h3i2 and Assumption h4i.2.

h5i2. �2 j= 2:hfreceive pktsr(needid; jd
0) j jd 0 6= jdgi

Proof: By h5i1, Assumption h1i.2, Lemma 3.5 Part 1, and the

de�nition of the steps of Ah
H

0
.

h5i3. �2 j= moder = idleWi hreceive pktsr(needid; )i

Proof: From Lemma 3.5 Part 1, the fact that �2 is a su�x of

� (Assumptions h1i.2 and h4i.1), Lemma 9.16 Part 1(a), Assump-

tions h1i.3 and h4i.2, and Rule MP.

h5i4. �2 j= moder = idleWi hreceive pktsr(needid; jd)i

Proof: By h5i2 and h5i3.

h5i5. �2 j= 3hreceive pktsr(needid; jd)i
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Proof: From Lemma 9.18, Channel Liveness QCh;sr , Assump-

tion h1i.3, and Rule MP.

h5i6. �2 j= moder = idle Ui hreceive pkt sr(needid; jd)i

Proof: By h5i4, h5i5, and the de�nition of Ui.

h5i7. �2 j= 3(moder = idle ^ hreceive pktsr(needid; jd)i)

Proof: By h5i6 and the de�nition of Ui.

h5i8. Q.E.D.

Proof: By h5i7, Lemma 9.16 Part 1(b), andMP1 (and, as always,

Lemma 3.5 Part 1 and the assumption that �2 is a su�x of �).

h4i2. Q.E.D.

Proof: h3i3, the de�nition of implication, and Lemma 3.5 Part 2 gives

�1 j= 2(moder = idle ^ #oldneedid = 0 =) 3(moder = accept ^

jd r = jd)) which, by de�nition of ;, immediately gives the result.

h3i4. Inductive Case

�1 j= 8k : (k > 0 =)

9l : (l < k ^

(moder = idle ^ #oldneedid = k;

(moder = idle ^ #oldneedid = l) _

(moder = accept ^ jd r = jd))))

h4i1. Assume: 1. k is an arbitrary positive number

2. �2 is an arbitrary su�x of �1
3. �2 j= moder = idle ^ #oldneedid = k

Prove: �2 j= 3((moder = idle ^ #oldneedid < k) _

(moder = idle ^ jd r = jd))

h5i1. �2 j= moder = idleWi

(hreceive pkt sr(needid; jd)i _

hfreceive pktsr(needid; jd
0) j jd 0 6= jdgi)

Proof: By Lemma 9.16 Part 1(a), Assumptions h1i.3 and h4i.3,

and Rule MP.

h5i2. �2 j= 3hreceive pkt sr(needid; jd)i

Proof: By Lemma 9.18, Assumption h1i.3, Rule MP, and Chan-

nel Liveness QCh;sr .

h5i3. �2 j= moder = idle Ui

(hreceive pkt sr(needid; jd)i _

hfreceive pktsr(needid; jd
0) j jd 0 6= jdgi)

Proof: By h5i1, h5i2, and the de�nition of Ui.

h5i4. �2 j= 3(moder = idle ^ hreceive pktsr(needid; jd)i) _

3(moder = idle ^ hfreceive pkt sr(needid; jd
0) j jd 0 6= jdgi ^

#oldneedid � k)

Proof: By h5i3, the de�nition of Ui, Assumption h4i.3, and h3i2.
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h5i5. �2 j= 3(moder = accept ^ jd r = jd) _

3(moder = accept ^ jd r 6= jd ^ #oldneedid < k)

Proof: By h5i4, Lemma 9.16 Part 1(b) and the fact that receiving

an old needid packet reduces #oldneedid by one.

h5i6. 3(moder = accept ^ jd r = jd) _

3(moder = idle ^ #oldneedid < k)

Proof: Similar to Case �1 j= (moder = accept ^ jd r 6= jd) of

h3i1 above (and h3i2).

h5i7. Q.E.D.

Proof: Directly from h5i6.

h4i2. Q.E.D.

Proof: From h4i1, The de�nition of ;, and Lemma 3.5.

h3i5. �1 j= 8n : 2(moder = idle ^ #oldneedid = n =)

3(moder = accept ^ jd r = jd))

Proof: By h3i3, h3i4, Rule Ind, and the de�nition of ;.

h3i6. For some number n0,

�1 j= 3(moder = idle ^ #oldneedid = n0)

Proof: Directly from h3i1 when we let n0 be the value of #oldneedid in some

state of �1 where moder = idle.

h3i7. �1 j= 2(moder = idle ^ #oldneedid = n0 =)

3(moder = accept ^ jdr = jd))

Proof: By h3i5 and Lemma 3.5 Part 6.

h3i8. Q.E.D.

Proof: By h3i6, h3i7, and Rule MP1.

h2i3. Q.E.D.

Proof: By the exhaustive cases h2i1 and h2i2.

h1i2. Q.E.D.

Proof: By h1i1 using the de�nition of implication and Lemma 3.5 Parts 2 and 5.

Now, since the receiver will eventually enter accept mode with the right jd r, eventually the

sender will receive a (accept; jds; id) packet as formalized by the following lemma.

Lemma 9.25

LhH
0
j= 8jd : 2(2(modes = needid ^ jd s = jd ^ moder 6= rec) =)

3hreceive pkt rs(accept; jd ; )i)

Proof

Assume: � 2 LhH
0

Prove: � j= 8jd : 2(2(modes = needid ^ jd s = jd ^ moder 6= rec) =)
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3(hreceive pktrs(accept; jd ; )i))

h1i1. Assume: 1. jd is arbitrary

2. �1 is an arbitrary su�x of �

3. �1 j= 2(modes = needid ^ jd s = jd ^ moder 6= rec)

Prove: �1 j= 3hreceive pktrs(accept; jd ; )i

h2i1. �1 j= 3(moder = accept ^ jd r = jd)

Proof: By Lemma 9.24, Assumption h1i, Lemma 3.5, and Rule MP.

h2i2. Assume: 1. �2 is a su�x of �1 such that

2. �2 j= moder = accept ^ jdr = jd ^ id r = id

Prove: �2 j= 3hreceive pkt rs(accept; jd ; )i

h3i1. �2 j= (moder = accept ^ jdr = jd ^ id r = id)Wi

(hreceive pktsr(send; ; id)i _ hreceive pktsr(done; id)i)

Proof: By Lemma 9.16 Part 2(a), Lemma 3.5, Assumptions h1i and h2i, and

Rule MP.

h3i2. �2 j= 2(moder = accept ^ jdr = jd ^ id r = id)

Proof: By h3i1, Lemma 9.17, Lemma 3.5, and Rule Unl.

h3i3. �2 j= 23hsend pktrs(accept; jd ; id)i

Proof: By h3i2, Lemma 9.20 Part 1, Lemma 3.5, and Rule MP.

h3i4. �2 j= 23hreceive pkt rs(accept; jd ; id)i

Proof: The form of QCh;rs implies that since � j= QCh;rs (� is live) and �2 is

a su�x of �, then �2 j= QCh;rs . This and h3i3 together with Rule MP give

the result.

h3i5. Q.E.D.

Proof: Directly from h3i4.

h2i3. Q.E.D.

Proof: By h2i1 and h2i2.

h1i2. Q.E.D.

Proof: By h1i1, the de�nition of implication, and Lemma 3.5.

Lemma 9.26

Ah
H

0
j= 2(2(modes = needid ^ moder 6= rec) =) 3(modes = send))

Proof

Directly from Lemma 9.25 and Lemma 9.15 Part 2(b).

We are now ready to prove the main part of the liveness proof that Hh0 correctly implements

G�0, namely, if � is a live execution of Hh0 and �0 is an execution of G�0 such that (�; �0) 2 RHG,
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then �0 is live. As usual, we prove this result by contradiction. Thus, we assume that �0 is not

live and then derive a contradiction with the fact that � is live.

Lemma 9.27

Let � 2 exec(Ah
H

0
) and �0 2 exec(A�

G

0
) be arbitrary executions of Ah

H

0
and A�

G

0
, respectively, with

(�; �0) 2 RHG. Assume � j= QH. Then �0 j= �(QG).

Proof

We prove the conjecture by contradiction. Thus,

Assume: �0 6j= �(QG)

Prove: False

h1i1. �0 j= :WF (�(CG;s=r1)) _

:2(2(modes = needid ^ moder 6= rec) =) 3h�(CG;s=r2)i) _

:WF (�(CG;s=r3)) _

:WF (�(CG;s=r4)) _

:8p : (23hsend pktsr(p)i =) 23hreceive pktsr(p)i) _

:8p :WF (receive pkt sr(p)) _

:8p : (23hsend pktrs(p)i =) 23hreceive pktrs(p)i) _

:8p :WF (receive pkt sr(p))

Proof: Immediate by the Assumption, de�nition of �(QG), and the Boolean operators.

h1i2. Case: �0 j= :WF (�(CG;s=r1))

h2i1. �0 j= 32(modes 2 fidle; send; recg) ^ 32:h�(CG;s=r1)i

Proof: From Case Hypothesis h1i by noting that enabled(�(CG;s=r1)) = (modes 2

fidle; send; recg) and by expanding WF .

h2i2. � j= 32(modes 2 fidle; send; recg) ^ 32:h�(CG;s=r1) n fpreparegi

Proof: From h2i1 by de�nition of RHG and by Lemmas 5.10 and 5.11.

h2i3. � j= 32(modes 2 fidle; send; recg) ^

32:h�(CG;s=r1) n fpreparegi ^

32:hfsend pktsr(needid; jd) j jd 2 JDgi

Proof: By h2i2 there is a su�x of � where alwaysmodes 2 fidle; rec; sendg. Thus

we get that no send pkt sr(needid; ) actions occur in that su�x, since such actions

are only enabled when modes = needid.

h2i4. � j= 32(modes 2 fidle; send; rec; needidg) ^

32:h(�(CG;s=r1) n fprepareg) [ fsend pktsr(needid; jd) j jd 2 JDgi

Proof: By h2i3 by noting that if modes is in fidle; send; recg, it is also in the

bigger set fidle; send; rec; needidg.

h2i5. � j= :WF (CH;s1)

Proof: From h2i4 by using the de�nitions of WF and CH;s1.

h2i6. Q.E.D.

Proof: h2i5 contradicts the assumption that � j= QH.
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h1i3. Case: �0 j= :2(2(modes = needid ^ moder 6= rec) =) 3h�(CG;s=r2)i)

h2i1. �0 j= 3(2(modes = needid ^ moder 6= rec) ^ 2:h�(CG;s=r2)i)

Proof: Directly from Assumption h1i.

h2i2. �0 j= 32(modes = needid ^ moder 6= rec) ^ 32:h�(CG;s=r2)i

Proof: Directly from h2i1.

h2i3. � j= 32(modes = needid ^ moder 6= rec)

Proof: From h2i2 by Lemma 5.11 and the de�nition of RHG.

h2i4. There exists a su�x �1 of � such that

�1 j= 2(modes = needid ^ moder 6= rec)

Proof: From h2i3 using Lemma 3.5 Part 3.

h2i5. �1 j= 2(modes = needid ^ moder 6= rec) =) 3(modes = send)

Proof: By Lemma 9.26, Lemma 3.5 Part 1, and Rule Par.

h2i6. �1 j= 3(modes = send)

Proof: By h2i4, h2i5, and Rule MP.

h2i7. Q.E.D.

Proof: h2i6 contradicts h2i4.

h1i4. Case: �0 j= :WF (�(CG;s=r3))

h2i1. �0 j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^

32:h�(CG;s=r3)i

Proof: By Assumption h1i and the de�nitions of WF and enabled(�(CG;s=r3)).

h2i2. � j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^

32:h�(CG;s=r3)i

Proof: From h2i1 by de�nition of RHG, the fact that �(CG;s=r3) contains external

actions only, and Lemmas 5.10 and 5.11.

h2i3. � j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^

32:h�(CG;s=r3)i ^

32:hfsend pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDgi

Proof: Since, by h2i2, there is a su�x of � where always moder 2 frec; rcvd; ackg

we get that no send pkt rs(accept; ; ) actions occur in that su�x, since such actions

are only enabled when moder = accept.

h2i4. � j= 32((moder = rcvd ^ buf r 6= ") _ moder 2 frec; ack; acceptg) ^

32:h�(CG;s=r3) [ fsend pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDgi

Proof: By h2i3 by noting that if eventually moder is always in frec; rcvd; ackg,

then it is eventually always in the bigger set frec; rcvd; ack; acceptg.

h2i5. � j= :WP(CH;r1)

Proof: By h2i4 using the de�nition of WF and the fact that CH;r1 = �(CG;s=r3) [

fsend pkt rs(accept; jd ; id) j jd 2 JD ^ id 2 IDg.

h2i6. Q.E.D.
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Proof: h2i5 contradicts the assumption that � j= QH.

h1i5. Case: �0 j= :WF (�(CG;s=r4))

h2i1. �0 j= 32(moder 6= rec ^ nack-buf r 6= ") ^ 32:h�(CG;s=r4)i

Proof: From Assumption h1i by using the de�nition of WF , and the fact that

enabled(�(CG;s=r4)) = (moder 6= rec ^ nack-buf r 6= ").

h2i2. � j= 32(moder 6= rec ^ nack-buf r 6= ") ^ 32:h�(CG;s=r4)i

Proof: By h2i1, the de�nition of RHG, the fact that �(CG;s=r4) consists of external

actions only, and Lemmas 5.10 and 5.11.

h2i3. � j= :WF (CH;r2)

Proof: By h2i2 using the de�nition of WF and the fact that CH;r2 = �(CG;s=r4).

h2i4. Q.E.D.

Proof: h2i3 contradicts the assumption that � j= QH.

h1i6. Case: �0 j= :8p : (23hsend pkt sr(p)i =) 23hreceive pkt sr(p)i)

h2i1. �0 j= 9p : (23hsend pkt sr(p)i ^ 32:hreceive pktsr(p)i)

Proof: Directly from Assumption h1i.

h2i2. There exists m 2 Msg and id 2 ID such that

�0 j= 23hsend pkt sr(send; m; id)i ^ 32:hreceive pktsr(send; m; id)i

Proof: By h2i1 and Lemma 3.5 Part 8.

h2i3. � j= 23hsend pktsr(send; m; id)i ^ 32:hreceive pkt sr(send; m; id)i

Proof: By h2i2, Lemma 5.10, and the fact that the actions send pkt sr(send; m; id)

and receive pkt sr(send; m; id) are external.

h2i4. � j= 9p : (23hsend pkt sr(p)i ^ 32:hreceive pktsr(p)i)

Proof: By h2i3 and Lemma 3.5 Part 7. (Note that the bound variable p ranges

over all packets of the form (needid; id), (send; m; id), and (done; id), whereas the

bound variable in h2i1 only ranges over packets of the form (send; m; id).)

h2i5. � j= :8p : (23hsend pktsr(p)i =) 23hreceive pkt sr(p)i)

Proof: Directly from h2i4.

h2i6. Q.E.D.

Proof: h2i5 contradicts the assumption that � j= QH.

h1i7. Case: �0 j= :8p :WF (receive pktsr(p))

h2i1. �0 j= 9p : :WF (receive pktsr(p))

Proof: Directly from Assumption h1i.

h2i2. For some packet p (of the form (send; m; id)),

�0 j= 32:hreceive pktsr(p)i ^ 32(p 2 sr)

Proof: By h2i1, Lemma 3.5 Part 8, the de�nition of WF and since receive pktsr(p)

is enabled when p 2 sr .

h2i3. � j= 32:hreceive pkt sr(p)i ^ 32(p 2 sr)
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Proof: By h2i2, Lemmas 5.10 and 5.11, and the facts that receive pktsr(p) is exter-

nal, and if (s; u) 2 RHG and u j= (p 2 sr), then s j= (p 2 sr) (recall that p has the

form (send; m; id)).

h2i4. � j= :8p :WF (receive pktsr(p))

Proof: Directly from h2i3, Lemma 3.5 Part 7 and the de�nition of WF .

h2i5. Q.E.D.

Proof: h2i4 contradicts the assumption that � j= QH.

h1i8. Case: �0 j= :8p : (23hsend pktrs(p)i =) 23hreceive pktrs(p)i)

Proof: Similar to h1i6.

h1i9. Case: �0 j= :8p :WF (receive pktrs(p))

Proof: Similar to h1i7.

h1i10. Q.E.D.

Proof: By h1i1 and the exhaustive cases h1i2{h1i9.

With this result, the simulation result of the previous section, and Lemma 5.9 we can prove that

Hh0 correctly implements G�0.

Lemma 9.28

Hh0 vL G
�0

Proof

Immediate by Lemmas 9.13, 9.27, and 5.9.

And, �nally, we can prove that H correctly implements G.

Theorem 9.29

H vL G

Proof

By Lemma 9.28 and Lemma 5.15 we get

H0 vL G
�0

which by substitutivity (Lemma 2.16) implies

H0 n AH vL G
�0 n AH

Then, by the de�nition of �, AH, and AG we get

H0 n AH vL G
�0 n �(AG)

Now, since � only renames actions which are subsequently hidden, this implies

H0 n AH vL G
0 n AG

which �nally, by de�nition, yields the result

H vL G
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Due to the fact that the correct implementation relation vL is a preorder, we get the overall

result that H correctly implements S and thus solves the at-most-once message delivery problem.

Theorem 9.30

H vL S

Proof

By Theorems 7.18, 8.19, and 9.29, and the fact that the subset relation, and thus the correct

implementation relation (cf. De�nition 2.15), is transitive.

We now move to the timed setting to consider the Clock-Based Protocol C.





Chapter 10

The Clock-Based Protocol C

The second and last low-level protocol we consider in this work is the Clock-Based Protocol of

[LSW91], which in this work is denoted by C. As the name suggests the functionality of the

protocol depends on the sender and receiver having access to certain clocks. Speci�cally, the

sender and the receiver each has a local clock which is required to deviate from real time by at

most some constant amount, called the clock skew . The C protocol thus consists of a sender, a

receiver, two channels, and a special clock subsystem that guarantees that the local clocks are

almost synchronized with real time. This structure is depicted in Figure 10.1. We model the

clock subsystem as a live timed I/O automaton that issues ticks to the sender and the receiver.

Exactly how to implement a clock subsystem in a distributed system falls outside the scope of

this work [LMS85].

C is a timed protocol. Besides having the clock subsystem, we shall assume that channel

delays and the maximum time di�erence between certain process steps are bounded. Thus, each

component of C is speci�ed as a live timed I/O automaton, and consequently C itself is a live

timed I/O automaton.

The speci�cation S is modeled as an (untimed) live I/O automaton since the problem state-

ment did not mention time at all. In Section 2.3 we discussed what it means to implement

an untimed speci�cation by a timed implementation. The idea was to to consider the untimed

speci�cation as a timed system that allows tome to pass arbitrarily as long as possible liveness

assumptions are satis�ed. For this reason the operator patient on safe and live I/O automata

was introduced.

We could have removed all liveness assumptions from C and used timing assumptions instead.

However, then it would have been di�cult to see which timing requirements were actually needed

to guarantee the correctness of C and which were just additional timing requirements. Thus,

we introduce the minimum timing requirements and otherwise use liveness to guarantee the

progress of the system. This means that all external actions of C, which are subject to liveness

requirements in S, will be given liveness requirements in C, whereas certain internal actions,

like channel communication, will be given timing requirements. With this approach we cannot,

of course, prove any maximum response time on, e.g., acknowledgements ack(b) but if such a

response time is important, it should have been speci�ed in S. Instead S just assumes that the

�nal implementation is \fast enough".

The rest of the chapter is organized as follows. First, in Section 10.1, we present the clock

subsystem. In Section 10.2 we specify timed versions of the channels. Then, in Section 10.3, we

specify the sender and receiver and furthermore intuitively describe how the C protocol works.

191
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Figure 10.1

The Clock-Based Protocol C.

Section 10.4 shows how C is obtained from its subprocesses and Section 10.5 then considers the

correctness of C. Section 10.6 discusses a \weak" version of C, where the timing assumptions

are removed, and �nally Section 10.7 considers a version of C that works for a single receiver

but multiple senders.

10.1 The Clock Subsystem

The clock subsystem is speci�ed as a live timed I/O automaton Cl = (ACl; LCl). We use the

explicit speci�cation style (cf. Section 4.2.1) to specify ACl and specify LCl by an environment-

free timed liveness formula QCl for ACl.

10.1.1 States and Start States

ACl contains three state variables: now is as usual real time (ranging over T which equals the

nonnegative real number), and ctimes and ctimes remember the last clock value sent to the

sender and receiver, respectively.

Variable Type Initially Description

now T 0 Real time

ctimes T 0 Last clock value sent to the sender.

ctimer T 0 Last clock value sent to the receiver.

10.1.2 Actions

Input:
none

Output:

ticks(t), t 2 T

tickr(t), t 2 T

Internal:

none
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Time-passage:
�

10.1.3 Steps

The clock subsystem is responsible just for performing outputs of the form tick s(t) and tick r(t).

This clock subsystem is constrained to produce ticks that have the property that, at any real

time now , the most recent tick at either station has value within � of now . Thus, �, which is

positive, denotes the clock skew. In addition, each local clock is nondecreasing, that is, successive

ticks(t) events have nondecreasing values of t, and similarly for successive tickr(t) events.

ticks(t)

Precondition:

ctimes � t ^

jt� nowj � �

E�ect:

ctimes := t

tickr(t)

Precondition:
ctimer � t ^

jt� nowj � �

E�ect:
ctimer := t

� (time-passage)

Precondition:

now < t ^

jctimes � tj � � ^

jctimer � tj � �

E�ect:
now := t

It is easy to see that ACl is in fact a safe timed I/O automaton, i.e., that is satis�es the �ve

axioms in De�nition 2.17. Clearly S1 is satis�ed and since the tick s(t) and tick r(t) do not change

the value of now , also S2 is satis�ed. S3 is satis�ed since the �rst conjunct in the precondition

of the step rule for � explicitly requires real time to increase in time-passage steps. Also clearly,

if (s; �; s0) and (s0; �; s00) are steps, then (s; �; s00) is a steps, so S4 is satis�ed. For the trajectory

theorem S5, assume that (s; �; s0) is a step. Then s:ctimes = s0:ctimes and s:ctimer = s0:ctimer .

So, the mapping from the interval [s:now ; s0:now ] to states, which to each time t returns the

state [now 7! t; ctimes 7! s:ctimes; ctimer 7! s:ctimer] is a trajectory from s to s0.

10.1.4 Liveness

We need no liveness restriction (other that normal admissibility). Thus, LCl should consist of

all admissible timed executions of ACl. This is speci�ed by an environment-free timed liveness

formula QCl for ACl as follows.

QCl
4

= true

It is easy to see that true actually induces the liveness condition consisting of all admissible

timed executions of ACl. However, generally it is not the case that true is an environment-free

timed liveness formula for a safe timed I/O automaton. However, for the clock subsystem it is

the case. The proof obligation is to show that there exists a (timed) strategy de�ned on ACl

such that any outcome of the strategy can only consist of admissible and Zeno-tolerant timed

executions. But this is clearly the case. First of all the clock subsystem has no inputs. So,

the f function of the strategy should simply be de�ned to provide one tick s(t) step and one

tickr(t) step every � time units (remember that � is positive). Then any outcome will consist of

admissible timed executions only.
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10.2 The Timed Channels

The channels we use to connect the sender and the receiver in C are basically the same as the

channels we used in G and H. That is, an attempt to send a packet on a channel leads to zero

or more copies (a �nite number) of the packet being put into the channel. The channels we used

in G and H furthermore had some liveness restrictions: if we made in�nitely many attempts to

send a packet, then in�nitely many copies would get through.

Now, the C protocol needs certain timing assumptions about the channels. Not only should

the channel delay|once a packet has been successfully placed in the channel|be bounded; it is

also necessary to assume an upper bound on the number of attempts needed before a packet has

been successfully placed in the channel. Thus, the timed channels should satisfy the following

properties.

1. For each packet p1, if k attempts (for some positive channel retry number k) are made to

send p1, then at least one copy of p1 is put in the channel|even though the k attempts

may be interspersed with attempts to send other packets p2.

2. When a copy of a packet is successfully put in the channel, the copy will be delivered at

the other end of the channel after at most the positive channel delay time d.

We give an explicit speci�cation of the timed channel Chtsr = (ACht
sr

; LCht
sr

). The speci�cation

of the other channel Chtrs = (ACht
rs

; LCht
rs

) is similar (and obtained by replacing sr with rs).

10.2.1 States and Start States

The timed channel needs, as usual, a now variable to specify real time. As before the main state

variable is a multiset sr . However, in order to specify that each packet must leave the channel

at most time d after it entered the channel, we need to mark each packet with a send time (not

to be confused with the identi�er timestamp we associate with messages). Thus, the multiset

contains elements of the form (p; t), where p is a packet and t is the real time when p entered

the channel. Furthermore, to specify that after at most k attempts to send a packet, the packet

has been successfully put into the channel, we have for each packet p a variable countsr(p) which

counts the number of unsuccessful attempts to send p.

Variable Type Initially Description

now T 0 Real time

sr B(P � T) ; A multiset of packets together with the time

when the packets were sent.

countsr(p) N 0 For each p 2 P , countsr(p) contains the

number of unsuccessful attempts to send p

since last successful attempt.

De�ne packets(sr) to be the multiset of packets in sr , i.e., the multiset obtained by removing

all send times t0 from all elements (p; t0) in sr .
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10.2.2 Actions

Input:
send pkt

sr
(p), p 2 P

Output:

receive pktsr(p), p 2 P

Internal:

none

Time-passage:
�

10.2.3 Steps

send pkt
sr
(p)

E�ect:
let ps be a �nite multiset of (p;now) such that

ps 6= ; if countsr (p) = k � 1
sr := sr [ ps

if ps 6= ; then

countsr (p) := 0
else

countsr (p) := countsr (p) + 1

receive pktsr(p)

Precondition:
(p; t) 2 sr

E�ect:
sr := sr n f(p; t)g

� (time-passage)

Precondition:

t > now ^

8 (p; t0) 2 sr : (t � t0 + d)

E�ect:
now := t

Note, that the operators [ in send pktsr(p) and n in receive pkt sr(p) are operators on multisets ,

e.g., sr n f(p; t)g removes one copy of (p; t) from sr .

As for the clock subsystem it is easy to see that ACht
sr

is in fact a safe timed I/O automaton.

10.2.4 Liveness

We need no liveness restriction (other that normal admissibility). Thus, LCht
sr

should consist of

all admissible timed executions of ACht
sr

. This is speci�ed by an environment-free timed liveness

formula QCht
sr

for ACht
sr

as follows.

QCht
sr

4

= true

QCht
sr

clearly is an environment-free timed liveness formula for ACht
sr

. The g function of a (timed)

strategy could be de�ned to add one copy to sr every time send pkt sr(p) occurs. The f function

of the strategy should then simply be de�ned to wait the maximum time (d) before outputting

a packet again. In this way (since d is positive), if the environment provides Zeno input, the

resulting outcome will be Zeno-tolerant. In all other cases the outcome will consist of admissible

timed executions only. That su�ces.

10.3 The Sender and the Receiver

Above we have speci�ed the clock subsystem and the timed channels explicitly as live time

I/O automata. To specify the sender and receiver processes in C, we use the implicit approach
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introduced in Section 4.2.1. That is, we describe the automaton part of both the sender and re-

ceiver live timed I/O automaton as MMT-speci�cations (cf. De�nition 4.9) AMMT ;s and AMMT ;r,

respectively.

When formally de�ning steps(AMMT ;s) and steps(AMMT ;r) below, we furthermore provide an

intuitive description of the functionality of C.

10.3.1 States and Start States

Sender

The identi�ers used to tag messages at the C level are taken from the sender's local clock and

are thus also called timestamps . Thus, the domain of the variable lasts, which contains the

current timestamp, is T. The sender's local clock is contained in times. This variable must be

stable, i.e., it must survive a crash.

Variable Type Initially Description

modes fidle, send,

recg

idle The mode of the sender. Compared

to G, the sender does not need a spe-

cial needid mode. Instead the sender

enters send mode directly from idle

mode.

buf s Msg� " The list of messages at the sender side.

Same as at the G level.

times S T 0 The sender's local clock.

current-msgs Msg [ fnilg nil The message about to be sent to the

receiver. Same as at the G level.

lasts T 0 The timestamp chosen for the current

message. Same as at the G level.

current-ack s Bool false Acknowledgement from the receiver.

Same as at the G level.

S = Stable

Receiver

The receiver's local clock is called timer and as for the sender's local clock, it must be stable.

The receiver also contains the variables lower r and upper r, both ranging over T. The role of

these variables is to delimit the interval of timestamps that the receiver will accept. The variable

upper r, which is stable, is initialized to the special timing constant �. Exactly how lower r and

upper r are manipulated and what the properties of � must be will be described below. The �nal

new variable is rm-timer . This variable holds the timestamp of the last message delivered to the

user and is used to calculate when the receiver can safely clean up its state. This mechanism is

also described below.
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Variable Type Initially Description

moder fidle, rcvd,

ack, recg

idle The mode of the receiver. Same as at

the G level.

buf r Msg� " The list of messages accepted. Same as

at the G level.

timer S T 0 The receiver's local clock.

lastr T 0 The timestamp of the last message

accepted.

lower r T 0 A lower bound on the timestamp of a

new message that can be accepted.

upper r S T � An upper bound on such a timestamp

rm-timer T [ f1g 1 Remembers the value of the local clock

when the last message accepted was

delivered to the user. Is used for clean-

up purposes.

nack-buf r T� " The list of timestamps for which

the receiver will issue a negative

acknowledgement.

S = Stable

10.3.2 Actions

Sender

Input:
send msg(m), m 2 Msg

crashs

receive pktrs(t; b), t 2 T, b 2 Bool

ticks(t), t 2 T

Output:

ack(b), b 2 Bool

recovers

send pkt
sr
(m; t), m 2Msg, t 2 T

Internal:
choose id(t), t 2 T

Receiver

Input:

crashr

receive pktsr(m; t), m 2 Msg, t 2 T

tickr(t), t 2 T

Output:

receive msg(m);m 2Msg

recoverr

send pkt(t; b), t 2 T, b 2 Bool

Internal:

increase-lowerr(t), t 2 T

increase-upperr(t), t 2 T

cleanupr
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10.3.3 Steps

We now provide the formal de�nition of the steps of the underlying automata in the MMT-

speci�cations of the sender and receiver. As always we list the de�nition of the steps of the

sender in the left column and the de�nition of the steps of the receiver in the right column.

However, �rst we provide the intuition behind the functionality of C.

Informally C works as follows during normal mode of operation. The sender associates in a

choose id(t) step the timestamp t with the next message it wishes to transmit. The timestamp

is obtained from the sender's local clock times, so the precondition for choose id(t) guarantees

that the local clock has advanced since the last time a timestamp was chosen (lasts). The sender

is now in send mode and starts to transmit repeatedly the current packet over the channel to

the receiver. The time between every retry, as we shall see formally in Section 10.3.6, is at most

the constant ls. Based on this constant and the channel characteristics, it is possible to derive

the maximum delay before the current packet is received.

The receiver now uses the associated timestamp to decide whether or not to accept a received

message|roughly, it will accept a message provided that the associated timestamp is greater

than the timestamp of the last message that was accepted, which is kept in lastr. However, the

receiver does not always remember the timestamp of the last accepted message: it might forget

this information because of a crash, or simply because a long time has elapsed since the last

message was accepted and it is no longer e�cient to remember it (see below). Therefore, the

receiver uses safe time estimates determined from its own local clock (timer) to decide when

to accept a message. The estimates are kept in lower r and upper r ; the receiver accepts if the

message's timestamp is in the interval (lower r; upper r].

The lower r bound is designed to be at least as big as the time of the last message accepted. It

can be bigger, however, but in this case is must be su�ciently less than the receiver's local time

(at least a maximum one-way message delay (plus a double clock skew) less). This is because

the receiver should not accidentally fail to accept a valid message that takes the maximum time

to arrive. We note that the reason why we do not want to remember just the last timestamp is

that we envision using this protocol in parallel for many users, and a single lower r bound could

be used for all users that have not sent messages for a long while. The special timing constant

� signi�es the amount by which lower r must be kept smaller than timer when incremented in

increase-lowerr(t) steps. In Section 10.3.6 we show how � should be related to the other timing

constants of the system.

The upper r bound is chosen to be big enough so that the receiver still accepts the most recent

messages, even if they arrive very fast. That is, it should be somewhat larger than the current

time (at least a double clock skew larger). But this bound is kept in stable storage, and therefore

should not be updated very often. Thus, it will generally be set to be a good deal larger than the

current local time. When we present the timing constraints in Section 10.3.4 below, we show that

at most some time l0r elapses between every time upper r is increased (in an increase-upperr(t)

step). The timing constant �, which occurs in the de�nition of increase-upper r(t) below, then

has to be properly related to l0r in order to guarantee that upper r is always big enough.

Unlike the H protocol, C will not continuously issue positive acknowledgements for the last

packet successfully received. Instead it only issues one positive acknowledgement and returns

to idle mode (cf. the de�nition of the send pkt rs(t; true) steps below). If this packet is lost

in the channel, eventually the receiver will receive another copy of the current packet; this will

change moder to ack and a new positive acknowledgement will be issued. After at most k retries,

(t; true) is successfully placed in the bu�er and after at most d time units thereafter, the sender
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will receive the acknowledgement. Once send pkt rs(t; true) is enabled, it must occur within lr
time units unless it is disabled in the meantime. This upper bound will be important in order

to specify when the receiver is allowed to clean up its state.

This completes a normal cycle of the sender and receiver. After the formal de�nition of the

steps, we return to the description of the special cleanupr action and what can happen due to

crashes and recoveries.

send msg(m)
E�ect:

if modes 6= rec then

buf s := buf s ^m

choose id(t)

Precondition:
modes = idle ^

buf s 6= " ^

times = t ^

t > lasts

E�ect:

modes := send

lasts := t

current-msgs := head(buf s)

buf s := tail(buf s)

send pkt
sr
(m; t)

Precondition:

modes = send ^

current-msgs =m ^

lasts = t

E�ect:
none

receive pktsr(m; t)

E�ect:

if moder 6= rec then
if lowerr < t � upperr then

moder := rcvd

buf r := buf r ^m
lastr := t

rm-timer :=1

lowerr := t

else if lastr < t � lowerr then

nack-buf r := nack-buf r ^ t

else if moder = idle ^ lastr = t then
moder := ack

receive msg(m)

Precondition:
moder = rcvd ^

buf r 6= " ^

head(buf r) =m

E�ect:

buf r := tail(buf r)

if buf r = " then

moder := ack

rm-timer := timer
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receive pktrs(t; b)
E�ect:

if modes = send ^ lasts = t then

modes := idle

current-acks := b

current-msgs := nil

ack(b)
Precondition:

modes = idle ^

buf s = "

current-acks = b

E�ect:

none

send pkt
rs
(t; true)

Precondition:

moder = ack ^

lastr = t

E�ect:

moder := idle

send pkt
rs
(t; false)

Precondition:

moder 6= rec ^

nack-buf r 6= " ^

head(nack-buf r) = t

E�ect:

nack-buf r := tail(nack-buf r)

crashs
E�ect:

modes := rec

crashr
E�ect:

moder := rec

recovers

Precondition:

modes = rec

E�ect:

modes := idle

lasts := times
buf s := "

current-msgs := nil

current-acks := false

recoverr

Precondition:

moder = rec ^

upperr + 2� < timer

E�ect:

moder := idle

lastr := 0

rm-timer :=1

buf r := "

lowerr := upperr
upperr := timer + �

nack-buf r := "

increase-lowerr(t)

Precondition:
moder 6= rec ^

lowerr � t < timer � �

E�ect:
lowerr := t

increase-upperr(t)
Precondition:

moder 6= rec ^

upperr � t = timer + �

E�ect:

upperr := t

cleanupr
Precondition:

moder 2 fidle;ackg ^

timer > rm-timer + �

E�ect:

moder := idle

lastr := 0

rm-timer :=1

ticks(t)

E�ect:

times := t

tickr(t)

E�ect:

timer := t
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All that needs to be kept in stable storage is just the local clocks times and timer , plus the

one variable upper r of the receiver. When the receiver side crashes and recovers again (cf. the

de�nition of recoverr above), it resets its lower r bound to the old upper r bound, to be sure

that it will not accept, and thus deliver, any message twice. This explains why we cannot just

set upper r to in�nity. It also explains another detail: the precondition for the recoverr steps

requires the local clock to grow beyond upper r + 2� before recovery can take place. This is

because otherwise the new lower r bound would be too big compared to timer which could lead

to the rejection of a very fast message sent to the system after the recovery of the receiver. If

we were to allow such a rejection, C would not correctly (or even safely) implement S since S

only allows the loss of messages which are in the system between crash and recovery.

The way the receiver informs the sender that the sender is in a bad send state is similar

to the way this is done at the G level: when the receiver receives a packet (m; t) where t is

not between lower r and upper r, it should issue a negative acknowledgement for t. However,

if t < lastr , the receiver has already successfully received a message with a later timestamp,

so (m; t) cannot be the current packet of the sender. In this situation the receiver does not

issue the negative acknowledgement. (Note, that due to crashes or clean-ups (see below), the

receiver may forget lastr . However, in this case lastr = 0, and the receiver will issue negative

acknowledgements for all \bad" timestamps and, in particular, the current one.)

Finally we consider the clean-up mechanism of the sender. When a long time has elapsed

since the receiver started to issue positive acknowledgements for the last packet accepted, it can

be sure that the sender has received the acknowledgement, and is thus allowed to forget lastr
and move to idle mode. This is speci�ed in the de�nition of cleanupr above. Section 10.3.6

describes how large the timing constant � occurring in the precondition should be.

10.3.4 Timing Constraints

We can now specify sets(AMMT ;s), boundmap(AMMT ;s), sets(AMMT ;r), and boundmap(AMMT ;r)

and thus complete the MMT-speci�cations of the sender and the receiver.

Sender

The correctness of C depends on an upper bound on the send pkt sr(m; t) actions of the sender.

Thus, sets(AMMT ;s) contains only one set of locally-controlled actions and boundmap(AMMT ;s)

then associates a lower and upper bound on this set. Formally we have

Ct
C;s

4

= fsend pkt sr(m; t) j m 2 Msg ^ t 2 Tg

and

bl(C
t
C;s)

4

= 0

bu(C
t
C;s)

4

= ls

where ls is a positive real.

Receiver

Similarly, as mentioned above we put bounds on two sets of locally-controlled actions of the

receiver. The two constants lr and l0r are both positive reals.

Ct
C;r1

4

= fsend pkt rs(id ; true) j id 2 IDg

Ct
C;r2

4

= fincrease-upperr(t) j t 2 Tg
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and

bl(C
t
C;r1) = 0

bu(C
t
C;r1) = lr

bl(C
t
C;r2) = 0

bu(C
t
C;r2) = l0r

10.3.5 The Sender and Receiver Safe Timed I/O Automata

The safe timed I/O automata of the sender and receiver processes in C are now given by (cf.

De�nition 4.10)

AC;s
4

= time(AMMT ;s)

AC;r
4

= time(AMMT ;r)

10.3.6 Derived Timing Constants

Before we specify the liveness requirements for the sender and receiver processes of C, we return

to the three timing constants �, �, and � occurring in the de�nition of the steps of the sender

and receiver, and show how they should be related to the other timing constants. We give the

intuition behind the constants, and in the proofs in Section 10.5 we show that the properties of

the constants actually guarantee correctness. We �rst repeat the other timing constants, which

are all positive reals:

� The maximum clock skew from real time (at both the sender and receiver side).

ls An upper time bound between retransmissions of message packets (m; t) from the sender.

lr An upper time bound between retransmissions of positive acknowledgement packets (t; true)

from the receiver.

l0r An upper bound between increase-upperr(t) steps of the receiver. (This upper bound will

usually be bigger than lr since increase-upper r(t) writes to stable storage.)

d An upper bound on channel delay.

Furthermore, the channel retry number k is a �xed positive integer, which represents the number

of retries that will guarantee delivery of a packet.

We consider �, �, and � one by one.

The Timing Constant �

The timing constant � occurs in the de�nition of the increase-upperr(t) steps above and indicate

the amount by which upper r should be set bigger than timer. Assume that the sender's local

time is � ahead of real time and the receiver's time is � behind. If the sender picks a timestamp

for the current message and this message arrives very fast (in fact arbitrarily fast since we have

no lower bounds in the system) at the receiver, the timestamp of this message will be 2� larger

than the receiver's local time. Since the message must be accepted, upper r must be at least 2�
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larger than timer at any moment (where the receiver is not crashed). When increase-upperr(t)

has occurred, it will recur before l0r time units. Thus, � should satisfy

� � 2�+ l0r

Note, the smaller � is, the more often increase-upper r(t) steps (and thus writes to stable storage)

are required to happen. On the other hand, if � is chosen too big, recovery will be delayed (cf.

the de�nition of recoverr).

The Timing Constant �

The timing constant � occurs in the de�nition of the increase-lowerr(t) steps above and indicate

the amount by which lower r must be smaller than timer. The � bound should guarantee that

very slow messages from the sender will still be accepted. Assume the sender's local time is �

behind real time and the receiver's local time is � ahead. By the time the sender associates a new

timestamp t with the current message, t = timer � 2�. Now, the sender will succeed in placing

the current packet in the channel after at most k retries and the delay between each retry is at

most ls. Thus, after kls time units, from the time the timestamp was chosen, the current packet

must have been placed in the channel, and after at most d time units the packet will be received.

Thus, during the time of transmission, the receiver's local time has increased by at most kls+ d

time units (it cannot have increased by more since it was already the maximum amount ahead

of real time). We �nally get that the timestamp t will be timer � kls + d + 2� at the time of

receipt in this worst case. Thus,

� � kls + d+ 2�

The Timing Constant �

We �nally consider � which occurs in the de�nition of cleanupr . Clearly, � is the most compli-

cated of the timing constants.

There is no bound on how fast new packets can arrive at the receiver, nor are there bounds

on how fast the receiver delivers accepted messages to the user. The � bound has to indicate

the �rst time by which it is no longer necessary to remember lastr. This bound thus has to be

calculated from the time the last message accepted (i.e., the message for which lastr gives the

timestamp) is delivered.

We consider a situation where neither the sender nor the receiver crashes.

Let now rm be a real time when receive msg(m) occurs and buf r becomes empty, and let

timer;rm be the corresponding value of timer. Also, let nowsend-ack;i denote the real time when

the receiver performs its ith send pktrs(t; true) step for the current timestamp t (contained in

lastr). We have,

now send-ack;1 � nowrm + lr

The maximum delay until the receiver receives (m; t) again is kls + d. (Just before the receiver

performed send pkt rs(t; true) the sender might have succeeded in putting a copy of (m; t) into

the channel, and this copy could be fast such that it arrives with no delay at the receiver, i.e.,

just before send pktrs(t; true). Since such copies are not bu�ered by the receiver, the receiver

has to wait for the next copy which arrives after at most kls + d time units.) Thus,

now send-ack;2 � now send-ack;1 + (kls + d+ lr)

= now rm + lr + (kls + d+ lr)
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And for the kth send pktrs(t; true),

now send-ack;k � now send-ack;k�1 + (kls + d+ lr)

= now send-ack;k�2 + 2(kls + d+ lr)

= : : :

= now send-ack;1 + (k � 1)(kls + d+ lr)

= now rm + lr + (k � 1)(kls + d+ lr)

Now, let nowack-rcvd be the real time when (t; true) is received by the sender and let timer;ack-rcvd
be the corresponding value of timer .

nowack-rcvd � nowsend-ack;k + d

= nowrm + lr + (k � 1)(kls+ d+ lr) + d

= nowrm + k(lr + d) + (k � 1)kls

Since timer � � � now and timer + � � now , we have

timer;ack-rcvd � � � nowack-rcvd

� nowrm + k(lr + d) + (k � 1)kls

� timer;rm + �+ k(lr + d) + (k � 1)kls

Thus,

timer;ack-rcvd � timer;rm + k(lr + d) + (k � 1)kls + 2�

Since the state variable rm-timer of the receiver is set to timer;rm at the time of the last

receive msg(m) step, we see from the de�nition of cleanupr that � should satisfy

� � k(lr + d) + (k � 1)kls + 2�

Note that

� � depends on k2 (but fortunately not on k2d).

� the 2� in � is actually not obtained as the maximum di�erence between sender and receiver

clocks but as two times the maximum receiver clock skew.

10.3.7 Liveness

The liveness requirements to the sender and receiver processes of C are weak fairness to sets of

locally-controlled actions.

Sender

Let

CC;s
4

= fack(true); ack(false); recoversg [

fchoose id(t) j t 2 Tg [

fsend pktsr(m; id) jm 2 Msg ^ id 2 IDg
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Then the liveness condition LC;s is induced by

QC;s
4

= WF (CC;s)

Note, that it is actually not necessary to add the send pktsr(m; id) actions to CC;s since these

actions are already constrained by the stronger timing requirements.

In the untimed setting weak fairness to locally-controlled actions is trivially environment-free.

This is not necessarily the case in the timed setting. The problem is that even with the simple

weak fairness requirements, the system might still collaborate with a Zeno environment and

generate outcome timed executions that are not Zeno-tolerant. However, QC;s is environment-

free for AC;s. Intuitively, consider a strategy that for actions in C
t
C;s always waits the maximum

delay ls before performing an action in Ct
C;s. The actions in CC;s should then be handled

similarly with some arbitrary positive real number as bound. If the sets Ct
C;s and CC;s becomes

disabled, there are no requirements so the strategy should just let time pass forever. With this

strategy, if the environment is not Zeno, each outcome timed execution will be in LC;s, and if

the environment is Zeno, each outcome timed execution will be Zeno-tolerant.

Finally note that, by Proposition 3.4, QC;s is stuttering-insensitive.

Receiver

Similarly, let

CC;r1
4

= frecoverrg [ freceive msg(m) j m 2 Msgg [

fsend pkt rs(id ; true) j id 2 IDg

CC;r2
4

= fsend pkt rs(t; false) j t 2 Tg

Then LC;r is induced by

QC;r
4

= WF (CC;r1) ^

WF (CC;r2)

As for the sender, QC;r is stuttering-insensitive and environment-free for AC;r.

10.4 The Speci�cation of C

C is the parallel composition of sender, receiver, two channels, and clock subsystem. First de�ne

C00 = (A00
C; L

00
C) as,

C00
4

= CskCrkCh
t
srkCh

t
rskCl

By Proposition 4.17, L00C is induced by QC, which is de�ned as

QC
4

= QC;s ^ QC;r ^ QCht
sr

^ QCht
rs

^ QCl

C00 has channel communication as well as ticks from the clock subsystem as external (output)

actions. To obtain a speci�cation where the ticks are hidden, de�ne

A0
C

4

= fticks(t) j t 2 Tg [ fticks(t) j t 2 Tg

Then C0 = (A0
C; L

0
C) is de�ned as

C0
4

= C00 n A0
C
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By Proposition 4.18, L0C is induced by QC.

Finally, to get C, we hide the channel actions. First de�ne

AC
4

= fsend pkt sr(m; t) jm 2 Msg ^ t 2 Tg [

freceive pkt sr(m; t) j m 2 Msg ^ t 2 Tg [

fsend pkt rs(t; b) j t 2 T ^ b 2 Boolg [

freceive pkt rs(t; b) j t 2 T ^ b 2 Boolg

Then the speci�cation of C = (AC; LC) is given by

C
4

= C0 n AC

Again, by Proposition 4.18, LC is induced by QC.

We now turn to proving the correctness of C. This involves, among other things, use of the

Embedding Theorem of Section 2.3.

10.5 Correctness of C

The objective of this section is to prove correctness of C|not with respect to G but with respect

to the patient version of G. Then the Embedding Theorem of Chapter 2 will allow us to conclude

that C correctly implements patient(S).

First, recall that the G protocol uses a set ID of identi�ers that has to satisfy certain

conditions (cf. Section 8.1). We instantiate this set with the time domain T, which clearly

satis�es the conditions. Thus, we set ID = T in the proofs below.

Next, recall from Section 9.4 that we �rst proved that H0 correctly implements G0, where

H0 and G0 are the versions of H and G with channel communication as external actions. This

was because the Execution Correspondence Theorem gives a stronger result the more external

actions the systems have in common. The same motivation leads us �rst to consider the proof

that C0 correctly implements patient(G0). Thus, let Gp0 = (Ap
G
0
; L

p
G
0
) be de�ned as

Gp0 4

= patient(G0)

By Proposition 4.22, LpG
0
is induced by QG and QG is minimal.

In order to prove that C0 correctly implements Gp0, we �rst enhance C0 with history variables

and thereby obtain Ch0 = (Ah
C

0
; LhC

0
). We then prove several invariants of Ah

C

0
and show the

existence of a timed re�nement mapping from Ah
C

0
to Ap

G
0
. Finally, this re�nement result is used

to prove that Ch0 correctly implements Gp0 and, in turn, that C correctly implements patient(S).

10.5.1 Adding History Variables

We add two history variables to C0 and denote the resulting live timed I/O automaton by

Ch0 = (Ah
C

0
; LhC

0
).

Variable Type Initially Description

used s H T� " The list of timestamps used by the

sender. Same as at the G level.

deadline H T [ f1g 1 An estimated deadline on arrival of the

current packet.

H = History
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We now show how the history variables should be updated (cf. Section 9.4.1 where history

variables are added at the H level). We refer to Section 5.2.5 for a description on how we are

allowed to manipulate the history variables.

choose id(t)

Precondition:

(� Precondition from Cs �)
: : :

E�ect:

(� E�ect clause from Cs �)
: : :

useds := useds ^ t
if moder 6= rec then

deadline := now + kls + d

receive pktsr(m; t)
Precondition:

(� Precondition from Cht
sr
�)

: : :

E�ect:

(� E�ect clause from Cht
sr
�)

: : :

(� E�ect clause from Cr �)

if moder 6= rec then

if lowerr < t � upperr then
: : :

if t = lasts ^ modes = send then

deadline :=1

else if lastr < t � lowerr then

: : :

else if moder = idle ^ lastr = t then
: : :

crashs

E�ect:
(� E�ect clause from Cs �)

: : :

deadline :=1

crashr

E�ect:
(� E�ect clause from Cr �)

: : :

deadline :=1

By Lemma 5.32, LhC
0
is induced by QC.

10.5.2 Invariants

In this section we state the invariants of Ah
C

0
we need below. The proofs are deferred to Ap-

pendix C.

The �rst invariant deals with the local clocks of the sender and receiver in Ah
C

0
and states

that the maximal clock skew for these is �, which then implies that times and timer can di�er

by at most 2�.

Invariant 10.1

1. times = ctimes

2. timer = ctimer
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3. jtimes � now j � �

4. jtimer � now j � �

5. jtimes � timerj � 2�

When the receiver is not in recovery mode, upper r is updated regularly to ensure that timestamps

chosen by the sender are never \too big". This is expressed by the following invariant.

Invariant 10.2

1. If moder 6= rec then upper r � now + �

2. If moder 6= rec then upper r � times

3. If moder 6= rec then upper r � timer

The following invariant deals with lasts. Since the local clock times can never decrease and due

to the facts that the current timestamp is taken from times, and lasts gets reset to times after a

crash, it is the case that lasts is always greater than or equal to times. Furthermore, the current

timestamp (i.e., the value of lasts when modes = send) can never be 0.

Invariant 10.3

1. lasts � times

2. If modes = send then lasts > 0

The state variable lastr contains the timestamp of the last message accepted by the receiver (or

0 right after recovery or cleanup). The next invariant states that the value of lastr can never be

considered a good timestamp by the receiver. (Otherwise the receiver could accidentally accept

the same packet twice). Speci�cally, lastr is always less than or equal to lower r . Furthermore,

lower r is always less than or equal to upper r.

Invariant 10.4

1. lastr � lower r

2. lower r � upper r

The next invariant states that the number of unsuccessful attempts (since the last successful

attempt) to send a packet (m; t), where t > lasts, is always 0. Actually, no attempts can ever

have been made to transmit (m; t) since the sender cannot yet have issued the timestamp t.

Furthermore, the number of unsuccessful attempts (since last successful attempt) to send any

packet can never be greater than or equal to k (the channel retry number).
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Invariant 10.5

1. If t > lasts then countsr(m; t) = 0

2. countsr(m; t) � k � 1

The following invariant is a key invariant and states properties of timestamps associated with

messages and acknowledgements in the channels.

Invariant 10.6

1. If (m; t) 2 packets(sr) then t � lasts

2. If (m; lasts) 2 packets(sr) ^ modes = send then m = current-msgs

3. lastr � lasts

4. If (t; true) 2 packets(rs) then t � lasts

5. If t 2 nack-buf r then t � lower r

6. If (t; b) 2 packets(rs) then t � lower r

Properties of the relationship between lower r and lasts are stated in the following invariant.

Invariant 10.7

1. lower r � times

2. If lasts < times then lower r < times

The sender chooses increasing timestamps as indicated by the next invariant.

Invariant 10.8

1. If t precedes t0 in useds then t < t0

Due to the way the channels deal with the maximum channel delay d, the following invariant

holds.

Invariant 10.9

1. If ((m; t); t0) 2 sr then t0 � now + d
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To state the next invariant, we need a few de�nitions. De�ne the function mintime with the

following signature

mintime : P � (B(P � T))! T

in the following way

mintime(p; ch)
4

=

(
t if (p; t) 2 ch ^ 8(p; t0) 2 ch : (t0 � t)

0 otherwise

Thus, mintime(p; ch) gives the minimal send time associated with the packet p in ch (and

defaults to 0 if p =2 packets(ch)). Remember from the way we model the channels sr and rs that

each element in the channels has two times associated with it: one is a timestamp chosen by

the sender; the other represents the real time when the element was put into the channel and is

called the send time of the packet. The function mintime returns send times.

For any state s of Ah
C

0
we de�ne s:bound in the following way, where we use m and t as

shorthands for s:current-msgs and s:lasts, respectively.

s:bound
4

=

8>>>>><>>>>>:

1 if s:modes 6= send

d+mintime((m; t); s:sr) if s:modes = send ^

(m; t) 2 packets(s:sr)

s:last(Ct
C;s) + (k� 1� s:countsr(m; t))ls+ d if s:modes = send ^

(m; t) =2 packets(s:sr)

Thus, s:bound represents an estimated time of arrival for the current packet. With this de�nition

we can prove very important properties of the history variable deadline.

Invariant 10.10

1. bound � deadline

2. now � bound

3. now � deadline

4. If deadline 6=1 then deadline � lasts + �+ kls + d

5. If deadline 6=1 then now � lasts + �+ kls + d

6. If deadline 6=1 then lasts > lower r

7. If deadline 6=1 then modes = send ^ moder 6= rec

The receiver is allowed to clean up its state, i.e., to forget the timestamp of the last message

accepted and move to idle mode, when a su�ciently long time has elapsed since the message

was delivered to the user. This is because by then the receiver can be certain that the sender

has received a positive acknowledgement packet for the current packet. In the speci�cation of

the receiver, � indicates how long time the receiver must wait before cleaning up. The following

invariant captures the fact that � is properly de�ned. We do not prove the invariant but note

that it can be proved in a fashion similar to the proof of Invariant 10.10.
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Invariant 10.11

1. If modes = send ^ moder 6= rec ^ timer > rm-timer + � then lasts 6= lastr

The �nal two invariants are trivial and state that any timestamps occurring in the channels are

positive.

Invariant 10.12

1. If (m; t) 2 packets(sr) then t > 0

Invariant 10.13

1. If (t; b) 2 packets(rs) then t > 0

We refer to the conjunction of the invariants above by ICh .

10.5.3 Safety

We now de�ne a function from states(Ah
C

0
) to states(Ap

G
0
). Below, in Lemma 10.15, this function

is proved to be a timed re�nement mapping from Ah
C

0
to Ap

G
0
with respect to ICh and IG. (Note,

that the invariant IG of AG is clearly also an invariant of Ap
G
0
.)

Below we use the notation (t1; t2] to denote both the left-open interval from a to b and the

set ft j t1 < t � t2g. Similar notation is used for the other kinds of intervals.

De�nition 10.14 (Re�nement Mapping from Ah
C

0
to Ap

G
0
)

If s 2 states(Ah
C

0
) then de�ne RCG(s) to be the state u 2 states(Ap

G
0
) such that

1. u:now = s:now

u:modes = s:modes
u:buf s = s:buf s
u:current-msgs = s:current-msgs
u:current-ack s = s:current-ack s
u:useds = s:useds
u:moder = s:moder
u:buf r = s:buf r
u:nack-buf r = s:nack-buf r

2. u:lasts = (if s:lasts = 0 then nil else s:lasts)

u:lastr = (if s:lastr = 0 then nil else s:lastr)

3. u:good s = fs:timesg n fs:lastsg

4. u:good r = (s:lowerr ; s:upperr ]

5. u:issuedr = (0; s:upperr]

6. u:current-ok = (s:deadline 6=1)
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7. u:sr = packets(s:sr)

u:rs = packets(s:rs)

Note how the values of most variables at the G level correspond directly to the value of the same

variables at the C level as expressed by Part 1. Part 2 gives the trivial correspondence for the

lasts and lastr variables. Parts 3{5 contain the interesting aspects of the mapping: good s|the

timestamps the sender can associate to messages|consists of the value of times, but only if

the clock has increased since the last timestamp was chosen; otherwise good s is empty; good r
is, as expected, the left-open interval from lower r to upper r; �nally, the receiver has issued all

timestamps up to and including upper r. The correspondence in Part 6 between current-ok at

the G level and deadline at the C level is obvious. Finally, Part 7 states that each channel at

the G level is obtained from the corresponding channel at the C level by removing the send time

components of all elements.

We now prove that RCG is in fact a timed re�nement mapping from Ah
C

0
to Ap

G
0
(with respect

to ICh and IG).

Lemma 10.15

Ah
C

0
�tR Ap

G
0
via RCG.

Proof

We prove that RCG is a timed re�nement mapping from Ah
C

0
to Ap

G
0
with respect to ICh and IG.

We check the three conditions (which we call real time correspondence, base case, and inductive

case, respectively) of De�nition 5.18.

Real Time Correspondence

From the de�nition of RCG we see that for all states s of C, RCG(s):now = s:now as required.

Base Case

For the initial condition, let s be the start state of C. Then it is easy to check that RCG(s) is a

start state of Ap
G
0
.

Inductive Case

Assume (s; a; s0) 2 steps(Ah
C

0
) such that s and s0 satisfy ICh and RHG(s) satis�es IG. Below

we consider cases based on a (and sometimes subcases of each case) and for each (sub)case we

de�ne a �nite execution fragment � of Ap
G
0
of the form (RCG(s); a

0; u00; a00; u000; : : : ; RCG(s
0)) with

vis-trace(�) = vis-trace(a). For brevity we let u denote RHG(s) and u0 denote RHG(s
0).

a = �

Then (u; �; u0) 2 steps(Ap
G
0
): the only change in going from s to s0 is that the now variable

increases, thus, by de�nition of RCG, the only di�erence between u and u0 is that the now

variable of Ap
G
0
increases and all such changes are allowed in A

p
G
0
.
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a 2 fsend msg(m); receive msg(m); ack(b)g

Then it is easy to see that (u; a; u0) 2 steps(A
p
G

0
). This step (and �nite execution fragment)

clearly has the right visible trace.

a 2 fcrashs; crashrg

Then it is easy to see that (u; a; u0) 2 steps(Ap
G

0
). This step (and �nite execution fragment)

clearly has the right visible trace.

The only thing to note here is the handling of deadline. The step of Ah
C

0
changes deadline to 1

but this corresponds, according to the de�nition of RCG, to changing current-ok to false in Ap
G

0

as required by the de�nition of the crash actions in Ap
G
0
.

a = recovers

We show that (u; recovers; u
00; shrink good s(s:times); u

0), where u00 is de�ned below, is a �nite

execution fragment of Ap
G
0
by showing that (u; recovers; u

00) and (u00; shrink good s(s:times); u
0)

are steps of Ap
G
0
. Clearly the execution fragment has the right visible trace.

De�ne u00:modes = idle

u00:lasts = s:times
u00:buf s = "

u00:current-msgs = nil

u00:current-acks = false

u00:x = u:x for the remaining state variables x

First, consider (u; recovers; u
00). From the de�nition of recover s in Ah

C

0
we have that s:modes =

rec which implies, by the de�nition of RCG, that also u:modes = rec. Thus, recovers is enabled

in u. Then, by de�nition of u00 and recover s in A
p
G
0
, clearly (u; recovers; u

00) 2 steps(Ap
G
0
).

Next, consider (u00; shrink goods(s:times); u
0). The de�nition of shrink good s in Ap

G
0
has no

precondition, so shrink good s(s:times) is enabled in u00. From the de�nitions of u00 and RCG we

have that u00:goods = u:goods � fs:timesg.

We must show that the di�erences between u00 and u0 are allowed by the de�nition of the

shrink goods(s:times) steps in A
p
G
0
. This amounts, by the de�nition of shrink good s(s:times) in

Ap
G
0
, to showing that u0:good s = u00:goods n fs:timesg and that all other state variables of Ap

G
0

have the same values in u00 and u0.

For good s we have that u0:goods = ; (since s0:times = s0:lasts), but from above we have

u00:goods � fs:timesg, so u
0:good s = u00:good s n fs:timesg as required.

It is easy to check that the rest of the state variables of Ap
G
0
have the same values in u00 and u0.

� = recoverr

We show that

(u; shrink goodr((s:lowerr; s:upper r]); u
00; grow good r((s:upper r; s:timer + �]); u000; recoverr; u

0),

where u00 and u000 are de�ned below, is a �nite execution fragment of Ap
G

0
by showing that

(u; shrink goodr((s:lowerr; s:upper r]); u
00), (u00; grow goodr((s:upper r; s:timer + �]); u000), and

(u000; recoverr ; u
0) are steps of Ap

G
0
. The execution fragment clearly has the right visible trace.
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De�ne u00:good r = ;

u00:x = u:x for the remaining state variables x

First, consider (u; shrink good r((s:lowerr ; s:upperr ]); u
00). From the precondition of the recoverr

steps in Ah
C

0
and the de�nition of RCG we have that u:moder = s:moder = rec. Then In-

variant 8.6 Part 2 implies that u:current-ok = false, thus, shrink good r((s:lowerr ; s:upperr ]) is

enabled in u. Since the de�nition of RCG implies that u:goodr = (s:lowerr ; s:upperr ], it is easy

to see that (u; shrink goodr((s:lowerr; s:upper r]); u
00) 2 steps(A

p
G

0
).

De�ne u000:issuedr = (0; s:timer + �]

u000:goodr = (s:upper r ; s:timer + �]

u000:x = u00:x for the remaining state variables x

Next, consider (u00; grow goodr((s:upperr ; s:timer + �]); u000). By de�nition of u00 and RCG we

have that u00:issuedr = u:issuedr = (0; s:upperr ]. So, (s:upper r ; s:timer + �] and u00:issuedr do

not intersect. Also, by adding (s:upper r; s:timer + �] to issuedr we still have in�nitely many

unused timestamps left in T. Thus, grow good r((s:upper r; s:timer + �]) is enabled in u00. Since

u00:goodr = ; by de�nition, it is easy to see that the change in good r is as required by the

de�nition of the grow goodr((s:upper r; s:timer + �]) steps in Ap
G
0
. To show that also issuedr is

handled correctly, we must show that u000:issuedr = u00:issuedr [ (s:upper r; s:timer + �], i.e., we

must show that (0; s:timer + �] = (0; s:upperr ] [ (s:upper r ; s:timer + �]. A su�cient condition

for this to hold is that s:timer + � � s:upper r , but this is implied by the precondition of the

recoverr step in Ah
C

0
. To leave all other state variables unchanged is also as required by the

de�nition of grow good r((s:upper r; s:timer + �]) in A
p
G
0
.

Finally, consider (u000; recoverr ; u
0). We have u000:moder = u:moder = s:moder = rec, so recoverr

is enabled in u000. We show that all state variables are handled according to the de�nition of

recoverr in A
p
G
0
. The only interesting cases are issuedr and good r.

For issuedr we have u
000:issuedr = (0; s:timer+�] by de�nition of u

000 and furthermore u0:issuedr =

(0; s0:upper r] = (0; s:timer + �] by de�nition of RCG and the recoverr step in Ah
C

0
. Thus,

u000:issuedr = u0:issuedr and this is allowed by the de�nition of recoverr in A
p
G
0
if jTns0:issuedrj =

1 which is clearly satis�ed and if u0:issuedr includes a) u
000:issuedr, b) u

000:useds, and c) u
000:good s.

Case a) is clearly satis�ed. For b) we have u000:useds = u:used s = (0; s:lasts]. Thus, we must show

that s:lasts � s:timer + �, but this follows from s:lasts � s:times � s:timer + 2� � s:timer + �,

where the �rst inequality follows from Invariant 10.3 Part 1, the second inequality follows from

Invariant 10.1 Part 5, and the third inequality follows from the de�nition of �. For c) we have

u000:goods = u:goods = fs:timesg n fs:lastsg. It su�ces to show that s0:times � s0:upper r (since

s0:times = s:times and s0:upper r = s:timer + �), but that follows from Invariant 10.2 Part 2.

Thus, issuedr is handled correctly.

For good r we have u
000:good r = (s:upper r; s:timer + �] and u0:good r = (s0:lower r; s

0:upper r ] but

since s0:lower r = s:upper r and s
0:upper r = s:timer +�, by de�nition of the recoverr step in Ah

C

0
,

we have that u000:good r = u0:good r as required by the de�nition of recoverr in Ap
G
0
.

a 2 fsend pkt sr(m; t); send pkt rs(t; true); send pktrs(t; false)g

It is straightforward to show that (u; a; u0) 2 steps(Ap
G
0
). This step (and �nite execution frag-

ment) clearly has the right visible trace.

a = receive pktsr(m; t)

We consider cases.
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1. s:moder 6= rec and s:lower r < t � s:upper r.

We show that (u; receive pkt sr(m; t); u00; shrink good r((s:lower r; t]); u
0), where u00 is de�ned

below, is a �nite execution fragment of Ap
G

0
by showing that (u; receive pkt sr(m; t); u00) and

(u00; shrink goodr((s:lower ; t]); u
0) are steps of Ap

G
0
. Clearly the execution fragment has the

right visible trace.

De�ne u00:goodr = u:goodr n ft
0 j t0 �u tg

u00:x = u0:x for the remaining state variables x

First, consider (u; receive pkt sr(m; t); u00). By the case assumption and the de�nition of

RCG, we have u:moder 6= rec and t 2 u:goodr. Then, by de�nition of receive pktsr(m; t) in

A
p
G
0
and u00 it is easy to see that (u; receive pkt sr(m; t); u00) 2 steps(A

p
G
0
).

Then consider (u00; shrink good r((s:lower r; t]); u
0). We show that shrink goodr((s:lowerr; t])

is enabled in u00. Assume u00:current-ok = true (otherwise shrink good r((s:lowerr ; t]) is

trivially enabled). Then, by de�nition of receive pktsr(m; t) in Ap
G
0
we have u00:lasts 6= t or

u00:modes 6= send. By the precondition of shrink goodr((s:lowerr; t]), we must show two

conditions.

1) First, since modes ranges over fidle; send; recg in A
h
C

0
, we have u:modes(= u00:modes) 6=

needid. Thus, the �rst condition is satis�ed.

2) Second, assume u00:modes = send. We must show that u00:lasts =2 (s:lower r; t]. From

above we have u00:lasts 6= t. Then since s0:lastr = u:lastr = u00:lastr = t, Invariant 10.6

Part 3 implies t < u00:lasts. That su�ces.

Thus, shrink good r((s:lower r; t]) is enabled in u00.

We must show that all state variables of Ap
G
0
are handled correctly. This is easy for all

variables other than good r by explicit de�nition of u00.

For good r we must show that u0:goodr = u00:goodr n (s:lower r; t]. Since s0:lower r = t and

s0:upper r = s:upper r , the de�nitions of RCG and u00 imply u00:goodr = (s:lower r; s
0:upper r ]n

ft0 j t0 �u tg and u0:goodr = (t; s0:upper r). Thus, it su�ces to show that if t0 �u t, then

t0 � t, but that follows directly from Invariant 10.8 Part 1. That su�ces.

2. s:moder = rec or :(s:lower r < t � s:upper r)

We show that (u; receive pkt sr(m; t); u0) 2 steps(Ap
G
0
). This step (and execution fragment)

clearly has the right trace.

We consider subcases.

(a) moder = rec.

In this case the only di�erence between s and s0 is that s0:sr is missing one element

((m; t); t00) compared to s:sr . Thus, the only di�erence between u and u0 is, by de�nition

of RCG, that u
0:sr is missing one packet (m; t) compared to u:sr .

Since s:moder = rec we have u:moder = rec, so in this case it is easy to see that

(u; receive pkt sr(m; t); u0) 2 steps(Ap
G

0
).

(b) moder 6= rec, :(s:lower r < t � s:upper r), and lastr < t � lower r.

In this case the only di�erence between s and s0 is that s0:nack-buf r = s:nack-buf r ^ t

and s0:sr is missing one element ((m; t); t00) compared to s:sr . Then the de�nition of

RCG implies that u0 and u are the same except that u0:nack-buf r = u:nack-buf r ^t and

u0:sr is missing one packet (m; t) compared to u:sr .

Now, the de�nition of RCG implies that u:moder 6= rec and t =2 u:good r, and since

s:lastr < t, u:lastr 6= t. Thus, by de�nition of receive pkt sr(m; t) in A
p
G
0
, it is easy to

see that (u; receive pkt sr(m; t); u0) 2 steps(Ap
G
0
).
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(c) moder 6= rec, :(s:lower r < t � s:upper r), :(lastr < t � lower r), moder = idle, and

lastr = t.

In this case the only di�erence between s and s0 is that s0:moder = ack and s0:sr is

missing one element ((m; t); t00) compared to s:sr . Then the de�nition of RCG implies

that u0 and u are the same except that u:moder = idle, s:moder = ack and u0:sr is

missing one packet (m; t) compared to s:sr .

We have, by de�nition of RCG that u:moder = idle and t =2 u:good r. Furthermore,

the case assumption and Invariant 10.12 imply that s:lastr > 0, so, by the de�nition of

RCG, u:lastr = s:lastr = t. Then, by de�nition of receive pkt sr(m; t) in Ap
G
0
, it is easy

to see that (u; receive pktsr(m; t); u0) 2 steps(Ap
G

0
).

(d) moder 6= rec, :(s:lower r < t � s:upper r), :(lastr < t � lower r), and (moder 6= idle

or lastr 6= t).

In this case the only di�erence between s and s0 is that s0:sr is missing one element

((m; t); t00) compared to s:sr . Thus, the only di�erence between u and u0 is, by de�nition

of RCG, that u
0:sr is missing one packet (m; t) compared to u:sr .

We must show that the de�nition of receive pkt sr(m; t) in Ap
G
0
allows all state variables

except sr to be unchanged. (The change to sr is as required by receive pkt sr(m; t).)

As in the previous case we have u:moder 6= rec and t =2 u:good r. Thus, according to

the de�nition of receive pktsr(m; t) for the receiver of Ap
G
0
, the required changes to the

state variables are not given by the �rst alternative in the embedded if-statement.

Now assume t 6= s:lastr (cf. the case assumption). Then also t 6= u:lastr. Then,

by de�nition of receive pktsr(m; t) in Ap
G
0
, we see that in order for Ap

G
0
to allow

u0:nack-buf r = u:nack-buf r it su�ces to show that t 6= u:lasts. By the case assumption

and Invariant 10.2 Part 2, Invariant 10.3 Part 1, and Invariant 10.6 Part 1, t < s:lastr.

Thus, u:lastr = s:lastr > t. That su�ces.

Finally, assume that t = s:lastr and moder 6= idle. Then it is clearly the case that

(u; receive pkt sr(m; t); u0) 2 steps(Ap
G
0
).

a = receive pktrs(t; b)

We show that (u; receive pkt rs(t; b); u
0) 2 steps(Ap

G
0
). This step (and �nite execution fragment)

clearly has the right visible trace.

Since (t; b) 2 packets(s:rs), the de�nition of RCG gives (t; b) 2 u:rs. Thus, receive pkt rs(t; b) is

enabled in u.

We consider cases based on the if-statement in the de�nition of receive pktsr(t; b) of the sender

in Ah
C

0
. In both cases a ((t; b); t0) element of s:rs gets removed and this corresponds, by the

de�nition of RCG, to removing a (t; b) element from u:rs, but this is as required by the de�nition

of receive pktrs(t; b) in A
p
G
0
. Below we consider the remaining state variables of Ap

G
0
.

Assume s:modes 6= send or s:lasts 6= t. Then the only di�erence between s and s0 is the

change in the channel rs as described above, so the only di�erence between u0 and u is the

corresponding change in sr (according to RCG). Now, the de�nition of RCG implies that

u:modes 6= send or u:lasts 6= t so we see, from the de�nition of receive pkt sr(t; b) in A
p
G

0
,

that (u; receive pkt rs(t; b); u
0) 2 steps(Ap

G
0
).

Then, assume s:modes = send and s:lasts = t. From Invariant 10.13 we have t > 0, so the

de�nition of RCG implies that u:modes = send and u:lasts = t. Thus, the condition of the

if-statement in A
p
G

0
is satis�ed. It is now easy to see that the changes made by Ah

C

0
correspond



10.5. Correctness of C 217

to allowed changes in Ap
G

0
. (Note that u:lasts = u0:lasts but this is allowed by the de�nition of

receive pkt rs(t; b) in Ap
G
0
).

a = choose id(t)

We show that (u; prepare; u00; grow good s(t); u
000choose id(t); u0000; shrink goods(t); u

0), where u00,

u000, and u0000 are de�ned below, is an execution fragment of Ap
G
0
by showing that (u; prepare; u00),

(u00; grow goods(t); u
000), (u000; choose id(t); u0000), and (u0000; shrink good s(t); u

0) are steps of Ap
G

0
.

Clearly the execution fragment has the right visible trace.

De�ne u00:modes = needid

u00:goods = ;

u00:current-msgs = head(u:buf s)

u00:buf s = tail(u:buf s)

u00:current-ok = (if u:recr 6= rec then true else u:current-ok)

u00:x = u:x for the remaining state variables x

We �rst consider (u; prepare; u00). From the precondition of the choose id(t) steps in Ah
C

0
we have

that s:modes = idle and s:buf s 6= ". This implies, by the de�nition of RCG, that u:modes =

idle and u:buf s = s:buf s 6= ". Thus,prepare is enabled in u (and furthermore the de�nition of

u00 is well-de�ned). Now, by de�nition of u00, clearly (u; prepare; u00) 2 steps(Ap
G
0
).

De�ne u000:goods = ftg

u000:x = u00:x for the remaining state variables x

Next, consider (u00; grow goods(t); u
000). We have, from the de�nition of u00, that u00:modes =

needid, so from the de�nition of grow good s(t) in Ap
G
0
we have to show three conditions in

order to show that grow goods(t) is enabled in u00. First, assume u00:moder 6= rec. We must

show t 2 u00:issuedr . We have u00:issuedr = u:issuedr = (0; s:upperr] (by de�nition of u00 and

RCG) and t = s:times > s:lasts (from the precondition of choose id(t) in Ah
C

0
), so we must

show that s:times � s:upper r but that follows from Invariant 10.2 Part 2. Second, assume

u00:current-ok = true . We must show t 2 u00:goodr , thus since u00:good = u:goodr , we must

show times 2 (s:lower r; s:upper r]. The lower bound follows from Invariant 10.7 Part 2 since the

precondition of the choose id(t) step in Ah
C

0
implies that s:lasts < s:times. The upper bound

is already shown in the treatment of the �rst part of the precondition above. Third, we must

show that t =2 u00:useds, thus we must show that s:times =2 (0; s:lasts] but that follows from the

precondition of the choose id(t) steps in Ah
C

0
. Thus, we have shown that grow goods(t) is enabled

in u00. Now, by de�nition of u000 and since u00:goods = ;, obviously (u00; grow goods(t); u
000) 2

steps(Ap
G
0
).

De�ne u0000:modes = send

u0000:lasts = t

u0000:useds = u000:useds ^ t

u0000:x = u000:x for the remaining state variables x

Next, consider (u000; choose id(t); u0000). By the de�nitions of u00, u000, and RCG we have that

u000:modes = needid and t 2 u000:goods (= ftg). Thus, choose id(t) is enabled in u000. By

de�nition of u0000 and choose id(t), clearly (u000; choose id(t); u0000) 2 steps(Ap
G
0
).

Finally, consider (u0000; shrink good s(t); u
0). From the de�nition of shrink good s(t) in Ap

G
0
we see

that we must show that u0000 and u0 are the same except that u0:goods = u0000:goodsnftg. From the

de�nition of RCG and the choose id(t) step of Ah
C

0
we have u0:goods = fs0:timesgnfs

0:lastsg = ;.
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Thus, since u0000:goods = u000:goods = ftg, the condition on goods is satis�ed. It is trivial to check

that all other state variables of Ap
G
0
are handled correctly.

a = increase-lowerr(t)

We show that (u; shrink good r((0; t]); u
0) 2 steps(Ap

G
0
). This step (and �nite execution fragment)

clearly has the right visible trace.

From the precondition of increase-lowerr(t) in Ah
C

0
we have s:moder 6= rec and s:lower r � t <

s:timer � �.

We �rst show that shrink good r((0; t]) is enabled in u. If u:current-ok = false then this

is obvious. So assume u:current-ok = true . We must check two conditions. First assume

u:modes = needid. Then we must show that (0; t] \ u:goods = ; which, by de�nition of RCG,

amounts to showing (0; t] \ (fs:timesg n fs:lastsg) = ;. Thus, it su�ces to show t < s:times
which, by de�nition of increase-lowerr(t) in Ah

C

0
, is the same as showing s0:lowerr < s0:times,

but this is implied by Invariant 10.3 Part 1 and Invariant 10.10 Part 6, where the latter in-

variant applies since u:current-ok = true implies s:deadline 6= 1 which again, by de�nition of

increase-lowerr(t), implies s:deadline 6= 1. For the second condition in the precondition we

must show, under the assumption that u:modes = send, that u:lasts 6= t, which is implied by

proving s0:lasts 6= s0:lower r. Again, Invariant 10.10 Part 6 gives the result.

Thus, shrink good r((0; t]) is enabled in u.

To show that (u; shrink good r((0; t]); u
0) 2 steps(Ap

G
0
) we must �nally show that u0:goodr =

u:good r nftg and that all other state variables in A
p
G
0
have the same values in u and u0. By de�ni-

tion of RCG and increase-lowerr(t) we have u:goodr = (s:lower ; s:upper r ] = (s:lowerr ; s
0:upper r]

and u0:goodr = (t; s0:upper r], so since t � s:lower r, by the precondition of increase-lowerr(t),

it is easy to see that the condition for good r is satis�ed. Since the increase-lowerr(t) step of

Ah
C

0
only changes lower r and lower r is only used in the de�nition of RCG to de�ne good r, it is

obvious that all state variables, but good r, of A
p
G
0
have the same values in u and u0.

a = increase-upperr(t)

We show that then (u; grow goodr((s:upperr ; t]); u
0) 2 steps(Ap

G
0
). This step (and �nite execution

fragment) clearly has the right visible trace.

Since, by de�nition of RCG, u:issuedr = (0; s:upperr ], it is obvious that u:issuedr\(s:upper r ; t] =

; and that jTn (u:issuedr[ (s:upper r ; t])j =1. Thus, a grow goodr((s:upper r; t]) step is enabled

in u.

Now we �rst show that u0:issuedr = u:issuedr[(s:upper r; t] and u
0:goodr = u:goodr[(s:upper r; t],

as required by the de�nition of grow good r((s:upper r; t]) in A
p
G
0
. For issuedr we have u:issuedr =

(0; s:upperr ] and u
0:issuedr = (0; s0:upper r] = (0; t]. Now, since t � s:upper r, by the precondition

of increase-upperr(t), the condition for issuedr is clearly satis�ed. For good r we similarly have

u:good s = (s:lower r; s:upper r] and u0:goodr = (s0:lower r; s
0:upper r ] = (s:lower r; t]. Thus, the

condition for good r is also satis�ed.

We must �nally show that all other state variables in A
p
G
0
have the same values in u and u0, but

this is obvious since the increase-upperr(t) step of Ah
C

0
only changes upper r , and upper r is only

used in RCG to de�ne good r and issuedr.
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a = cleanupr

We show that (u; cleanupr; u
0) 2 steps(Ap

G
0
). This step (and �nite execution fagment) clearly

has the right visible trace.

By the precondition of cleanupr we have s:moder 2 fidle; ackg and s:timer > s:rm-timer + �.

By the de�nition of RCG and Invariant 10.10, we have u:moder 2 fidle; ackg and u:modes =)

u:lasts 6= u:lastr. Thus, cleanupr is enabled in u.

It is now easy to see that the variable changes speci�ed by the cleanupr step of Ah
C

0
correspond

to the required variable changes of the cleanupr step of A
p
G

0
. (The change of rm-timer in Ah

C

0

does not a�ect any of the variables of Ap
G
0
). Thus, (u; cleanupr; u

0) 2 steps(Ap
G
0
).

a = tick s

We consider cases.

1. s0:times = s:times

In this case clearly s0 = s and thus u0 = u. Then the �nite execution fragment u of Ap
G
0

has the right properties.

2. s0:times 6= s:times

We show that (u; shrink goods(s:times); u
00; grow good s(s

0:time); u0), where u00 is de�ned

below, is a �nite execution fragment of Ap
G
0
by showing that (u; shrink good s(s:times); u

00)

and (u00; grow goods(s
0:time); u0) are steps of Ap

G
0
. Clearly this execution fragment has the

right visible trace.

De�ne u00:goods = ;

u00:x = u:x for the remaining state variables x

First, consider (u; shrink good s(s:times); u
00). Note that trivially shrink good s(s:times) is

enabled in u. We check that all state variables of Ap
G
0
are handled correctly. By the

de�nition of RCG we have u:goods � fs:timesg. Then, since u
00:goods = ;, good s is handled

correctly. By de�nition all other variables of Ap
G
0
have the same values in u and u00, which

is also as required by the de�nition of shrink goods(s:times) in Ap
G
0
.

Then, consider (u00; grow good s(s
0:time); u0). By de�nition of RCG (and the fact that modes

ranges over fidle; send; recg in Ah
C

0
), we have u:modes 6= needid and consequently, by

de�nition of u00, u00:modes 6= needid. This shows that grow good s(s
0:time) is enabled in

u00.

By Invariant 10.3 Part 1, s:lasts � s:times. The Case Assumption together with the

precondition of the tick s steps of the clock subsystem implies that s0:times > s:times.

Then since s0:lasts = s:lasts, we have s0:times 6= s0:lasts. This implies, by de�nition of

RCG that u0:good s = fs0:timesg. Thus, good s is handled as required by the de�nition of

grow good s(s
0:time) in Ap

G
0
. It is easy to see that all the remaining variables of Ap

G
0
have the

same values in u00 and u0 which is also as required by the de�nition of grow goods(s
0:time)

in A
p
G

0
. That su�ces.

a = tick r

We show that u0 = u. Then the �nite execution fragment u clearly has the right properties.

Now, clearly u0 = u since the tick r step of A
h
C

0
only changes timer and ctimer, and these variables

are not mentioned in the de�nition of RCG.
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This concludes the simulation proof.

This simulation result allows us to prove that Ah
C

0
safely implements Ap

G
0
, and, in turn, that AC

safely implements Gp.

Lemma 10.16

Ah
C

0
vSt A

p
G
0

Proof

Immediate by Lemmas 10.15 and 5.23.

Theorem 10.17

AC vSt patient(AG)

Proof

By Lemma 10.16 and Lemma 5.29 we get

A0
C vSt patient(A

0
G)

which by substitutivity (Lemma 2.33) implies

A0
C n AC vSt patient(A

0
G) n AC

which, by de�nition of AG and AC, gives

A0
C n AC vSt patient(A

0
G) n AG

By Proposition 2.38 we then get

A0
C n AC vSt patient(A

0
G n AG)

which �nally, by de�nition of AC and AG, gives the result

AC vSt patient(AG)

10.5.4 Correctness

The liveness proof presented in this section is signi�cantly simpler than the liveness proof in

the proof of correctness of H. The reason is that the sender and receiver processes are very

similar in C and G, and that the packets sent to the channels at the two levels are of the same

type. Recall that at the H level, additional packet types (needid, accept, and done) made the

liveness proof very complex.

Actually, the only preliminary lemmas we need, express the fact that the timing requirements

of the timed channels are su�cient to guarantee the liveness requirements speci�ed for the

untimed channels used at the G level.

Lemma 10.18

1. exec1(Ah
C

0
) j= 8p : (23hsend pkt sr(p)i =) 23hreceive pktsr(p)i)

2. exec1(Ah
C

0
) j= 8p :WF (receive pktsr(p))
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Proof

We only sketch the proofs.

1. Consider any packet p and assume � is an admissible execution of Ah
C

0
such that � j=

23hsend pktsr(p)i, thus, send pkt sr(p) occurs in�nitely often in �. For every k occurrences

of send pkt sr(p) at least one element of the form (p; t), where t is the send time for p, is

placed in sr . By the maximum channel delay d, we have that not later than real time t+d

a receive pktsr(p) action occurs. Then, since � is admissible, for every k occurrences of

send pkt sr(p) in � there is at least one occurrence of receive pkt sr(p). Thus, since there

are in�nitely many occurrences of send pkt sr(p), there are in�nitely many occurrences of

receive pkt sr(p), i.e, � j= 23hreceive pktsr(p)i. That su�ces.

2. Consider any packet p and assume � is an admissible execution of Ah
C

0
such that for some

su�x �1 of �, �1 j= 2(p 2 packets(sr)) (the enabling condition for receive pktsr(p) is

(p 2 packets(sr))). Then, for any time t, a receive pkt sr(p) action occurs not later than

time t + d since all packets much have left the channel after at most the channel delay

time d. Then, since � is admissible, in�nitely many occurrences of receive pkt sr(p) occur

in �1. Thus, �1 j= 23hreceive pktsr(p)i. That su�ces by de�nition of WF .

Lemma 10.19

1. exec1(Ah
C

0
) j= 8p : (23hsend pkt rs(p)i =) 23hreceive pkt rs(p)i)

2. exec1(Ah
C

0
) j= 8p :WF (receive pkt rs(p))

Proof

Similar to the proof of Lemma 10.18.

We can now show the main part of the liveness proof, namely, if � is a live execution of Ch0 and

�0 is an execution of Gp0 such that (�; �0) 2 RCG, then �0 is live. As usual, we prove this result

by contradiction. Thus, we assume that �0 is not live and then derive a contradiction with the

fact that � is live.

Lemma 10.20

Let � 2 exec1(Ah
C

0
) and �0 2 exec1(Ap

G
0
) be arbitrary admissible executions of Ah

C

0
and A

p
G
0
,

respectively, with (�; �0) 2 RCG. Assume � j= QC. Then �0 j= QG.

Proof

We prove the conjecture by contradiction. Thus,

Assume: �0 6j= QG

Prove: False
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h1i1. �0 j= :WF (CG;s=r1) _

:2(2(modes = needid ^ moder 6= rec) =) 3hCG;s=r2i) _

:WF (CG;s=r3) _

:WF (CG;s=r4) _

:8p : (23hsend pktsr(p)i =) 23hreceive pkt sr(p)i) _

:8p : WF (receive pkt sr(p)) _

:8p : (23hsend pktrs(p)i =) 23hreceive pkt rs(p)i) _

:8p : WF (receive pkt sr(p))

Proof: Immediate by the Assumption, the de�nition of QG, and the Boolean operators.

h1i2. Case: �0 j= :WF (CG;s=r1)

h2i1. �0 j= 32(modes 2 fidle; send; recg) ^ 32:hCG;s=r1i

Proof: From Case Hypothesis h1i by noting that enabled(CG;s=r1) = (modes 2

fidle; send; recg) and by expanding WF .

h2i2. � j= 32(modes 2 fidle; send; recg) ^ 32:hCG;s=r1 n fpreparegi

Proof: From h2i1 by de�nition of RCG and by Lemmas 5.25 and 5.26.

h2i3. � j= 32(modes 2 fidle; send; recg) ^

32:hCG;s=r1 n fpreparegi ^

32:hfchoose id(t) j t 2 Tgi

Proof: By h2i2 and the de�nition of Ah
C

0
. Consider a su�x �1 of � that satis�es

�1 j= 2:hCG;s=r1 nfpreparegi. Then if modes is send it will stay send unless a crash

occurs, in which case modes changes to rec. However, once in mode rec, the sender

will stay there since no recovers occurs in �1. Now, choose id(t) actions can only

occur if modes = idle. However, then the sender never returns to mode idle again,

as we have just seen. Thus, there is at most one occurrence of a choose id(t) action

in �1. This gives the result.

h2i4. � j= 32(modes 2 fidle; send; recg) ^ 32:hCC;si

Proof: By h2i3 and the de�nition of CC;s.

h2i5. � j= :WF (CC;s)

Proof: From h2i4 by using the de�nitions of WF and CC;s.

h2i6. Q.E.D.

Proof: h2i5 contradicts the assumption that � j= QC.

h1i3. Case: �0 j= :2(2(modes = needid ^ moder 6= rec) =) 3hCG;s=r2i)

h2i1. �0 j= 32(modes = needid ^ moder 6= rec) ^ 32:hCG;s=r2i

Proof: Directly by Assumption h1i.

h2i2. � j= 32(modes =2 fidle; send; recg)

Proof: By h2i1, the de�nition of RCG, and Lemma 5.26.

h2i3. Q.E.D.

Proof: h2i2 contradicts the fact that always modes 2 fidle; send; recg at the C

level.
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h1i4. Case: �0 j= :WF (CG;s=r3)

h2i1. �0 j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^

32:hCG;s=r3i

Proof: By Assumption h1i and the de�nitions of WF and enabled(CG;s=r3).

h2i2. � j= 32(moder = rec _ (moder = rcvd ^ buf r 6= ") _ moder = ack) ^

32:hCG;s=r3i

Proof: From h2i1 by de�nition of RCG, the fact that CG;s=r3 contains external

actions only, and Lemmas 5.25 and 5.26.

h2i3. � j= :WP (CC;r1)

Proof: By h2i2 using the de�nition of WF , the fact that CC;r1 = CG;s=r3, and the

de�nition of enabled(CC;r1).

h2i4. Q.E.D.

Proof: h2i3 contradicts the assumption that � j= QC.

h1i5. Case: �0 j= :WF (CG;s=r4)

h2i1. Q.E.D.

Proof: Similar to Case h1i4 we get � j= :WF (CC;r2), which contradicts the as-

sumption that � j= QC.

h1i6. Case: �0 j= :8p : (23hsend pkt sr(p)i =) 23hreceive pkt sr(p)i)

h2i1. �0 j= 9p : (23hsend pkt sr(p)i ^ 32:hreceive pktsr(p)i)

Proof: Directly from Assumption h1i.

h2i2. � j= 9p : (23hsend pkt sr(p)i ^ 32:hreceive pktsr(p)i)

Proof: By h2i2, Lemma 3.5 Parts 7 and 8, and Lemma 5.25.

h2i3. � j= :8p : (23hsend pktsr(p)i =) 23hreceive pkt sr(p)i)

Proof: Directly from h2i2.

h2i4. Q.E.D.

Proof: h2i3 contradicts Lemma 10.18 Part 1.

h1i7. Case: �0 j= :8p :WF (receive pktsr(p))

h2i1. �0 j= 9p : :WF (receive pktsr(p))

Proof: Directly from Assumption h1i.

h2i2. �0 j= 9p : 32(p 2 sr) ^ 32:hreceive pktsr(p)i

Proof: By h2i1 and the de�nition of WF .

h2i3. � j= 9p : 32(p 2 packets(sr)) ^ 32:hreceive pktsr(p)i

Proof: By h2i2, Lemma 3.5 Parts 7 and 8, the de�nition of RCG, and Lemmas 5.25

and 5.26.

h2i4. � j= :8p : WF (receive pkt sr(p))

Proof: Directly from h2i3 and the de�nition of WF .
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h2i5. Q.E.D.

Proof: h2i4 contradicts Lemma 10.18 Part 2.

h1i8. Case: �0 j= :8p : (23hsend pktrs(p)i =) 23hreceive pktrs(p)i)

Proof: Similar to h1i6 using Lemma 10.19 Part 1.

h1i9. Case: �0 j= :8p :WF (receive pktrs(p))

Proof: Similar to h1i7 using Lemma 10.19 Part 2.

h1i10. Q.E.D.

Proof: By h1i1 and the exhaustive cases h1i2{h1i9.

With this result, the timed re�nement mapping result of the previous section, and Lemma 5.24

we can prove that Ch0 correctly implements Gp0.

Lemma 10.21

Ch0 vLt G
p0

Proof

Immediate by Lemmas 10.15, 10.20, and 5.24.

This lemma allows us to prove that H correctly implements patient(G).

Theorem 10.22

C vLt patient(G)

Proof

By Lemma 10.21 and Lemma 5.30 we get

C0 vLt patient(G
0)

which by substitutivity (Lemma 2.33) implies

C0 n AC vLt patient(G
0) n AC

which, by de�nition of AG and AC, gives

C0 n AC vLt patient(G
0) n AG

By Proposition 2.38 we then get

C0 n AC vLt patient(G
0 n AG)

which �nally, by de�nition of C and G, gives the result

C vLt patient(G)

Finally, we can state and prove the main result, namely that C correctly implements patient(S).

Theorem 10.23

C vLt patient(S)
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Proof

By Theorems 7.18 and 8.19 and the fact that vL is transitive, we have G vL S. Then the

Embedding Theorem (Theorem 2.37) implies patient(G) vLt patient(S). This, Theorem 10.22,

and the fact that vLt is transitive �nally give the result.

10.6 A \Weak" Clock-Based Protocol

In the previous section we have considered the Clock-Based Protocol C and shown that it

correctly implements the patient version of the speci�cation S. In the speci�cation of C we have

made some timing assumptions. Speci�cally, we have assumed a certain channel retry number

k and a maximum channel delay d. Now, what if these assumptions are somehow violated in a

physical implementation of the C protocol? What if a communication wire is damaged during

some construction work and rerouting leads to a transmission delay greater than d for some

packet p? Could the C protocol then suddenly reorder or duplicate messages? The answer is

\no". C is in [LSW91] designed to guarantee ordered at-most-once delivery even if all the timing

assumptions are violated. However, in case of timing violation the system might lose messages

even if no crashes occur, but message loss is generally considered less damaging than duplication.

We suspect that this scenario is general for timing-based communication protocols: without

timing assumptions the protocols satisfy some minimal requirements (like at-most-once message

delivery), and with timing assumptions the protocols satisfy additional properties (like exactly-

once message delivery in the absence of crashes).

Our proofs above do not indicate that C guarantees at-most-once delivery even if the timing

assumptions are violated. A formal proof of this property would show that a \weak" version of

C with no timing assumptions safely implements a \weak" version of S that allows messages to

be lost at any time. Note, that the reason why we only need to prove safe implementation as

opposed to correct implementation is that \at-most-once message delivery" is a safety property.

In order not to have to redo many of the proofs above when performing the proof between

the weak versions of the protocols, we think that the proofs should be structured as follows:

�rst prove that the weak version of C safely implements the weak version of S. Then add the

additional assumptions, prove additional invariants, and extend the �rst proof to prove correct

implementation.

In a temporal logic setting, like TLA [Lam91], \additional assumptions" are added as new

conjuncts to the speci�cations. Proof of safe implementation, which is expressed as implication

in the logic, should then use the new conjuncts of the speci�cation to prove the new conjuncts

of the implementation. Exactly how this should be performed in our setting is left for future

research.

10.7 The Clock-Based Protocol With One Receiver and Multi-

ple Senders

Consider the situation depicted in Figure 10.2. The picture shows a situation where several

receivers|each interacting with a single sender|are placed on the same node. Thus, n copies

of the sender, receiver, and channels from above are put in parallel. Instead of implementing n

identical copies of the receiver on the receiver node, a single optimized process can be designed
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Figure 10.2

The Clock-Based Protocol with several receivers on the same node.

that implements the parallel composition of the receivers. Then, due to the substitutivity results

for live timed I/O automata (Proposition 2.33), such a multiple-sender receiver senders (called

the ms-receiver) will work in concert with the n senders. Below, we let ss-receiver denote the

single-sender receiver from above.

In [LSW91], the receiver of the Clock-Based Protocol is in fact designed to handle multiple

senders. This receiver has a structure very similar to the ss-receiver. However, it is optimized so

that only one single upper r variable is needed. This is important since upper r variables must be

kept stable and stable updates are expensive. Furthermore, \old" lower r variables, i.e., lower r
variables for senders that have not sent messages for a long time, can be cleaned up such that

su�cient information about these old variables can be kept in a single common lower r variable.

This section discribes the design of the ms-receiver of [LSW91] and sketches the proof that it

implements the parallel composition of n ss-receiver. It turns out that because of the similarities

between the ms-receiver and the ss-receiver, the proof is very simple.

Figure 10.3 shows the visible actions of the ms-receiver. There are n versions of the channel

actions, receive message actions, and recovery actions but only one of both crashr and tick r.

This user interface is then the same as one would get by composing n copies of the ss-receiver in

parallel after indexing all locally-controlled actions with the index of the ss-receiver. It may seem

strange to have a recovery action for each index; however, since the ms-receiver should implement

and, thus, have the same user interface as the parallel composition of n (renamed) ss-receivers,

and since live timed I/O automata cannot synchronize on output actions (like recovery), it is

inevitable that the ms-receiver has n recovery actions. One should, thus, think of the ms-receiver

as o�ering recovery of its n parts, one by one.

Let Cms;r be a live timed I/O automaton modeling the ms-receiver. It should, then, be

proved that

Cms;r vLt Cr;1k � � � kCr;n

where Cr;i
4

= �i(Cr) and the function �i maps each locally-controlled action of Cr to an indexed
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Figure 10.3

The visible actions of the ms-receiver.

version of the same action, and is the identity mapping for the remaining actions. For instance,

�i maps receive pkt sr(p) to receive pktsr;i(p). (Actually, the processes Cr;1; : : : ;Cr;n are not

compatible in the strong sense where the ordinary state variable names of di�erent processes

are required to be non-overlapping. So, for present purposes, assume that all state variables of

Cr;i (except now) are indexed with i.)

We do not de�ne Cms;r completely formally but sketch how it works. First, recall that in Cr,

lower r indicates a lower bound on timestamps that the receiver will accept. Every time a new

message is accepted, lower r is advanced to the timestamp of that message. Furthermore, special

increase-lowerr steps are in Cr allowed to increase lower r as long as it is kept small enough to

allow very slow messages from the sender to be accepted.

Cms;r contains n versions (lower r;1; : : : ; lower r;n) of lower r|one for each sender|and each

variable lower r;i remembers the last timestamp received from the ith sender in order to ensure

that only messages with later timestamps will be accepted from that sender in the future.

In Cms;r, lower r;i is only advanced when packets are accepted from the ith sender, i.e., in

receive pkt sr;i(p) steps.

Now, Cms;r furthermore contains a common-lower r variable. This variable is increased in

special increase-common-lowerr steps, and whenever it advances past the value of a lower r;i
variable, this lower r;i variable is changed to nil, i.e., is cleaned up. Thus, common-lower r
captures all relevant information about the timestamps that must be accepted from senders

that have not sent for a while, as long as common-lower r is kept su�ciently small.

Also, Cms;r only needs a single upper r variable, which gives the upper bound on timestamps

that can be accepted from any sender.

Figure 10.4 shows how an increase-common-lowerr step changes a lower r;i variable to nil. In

situation a), Cms;r will accept timestamps in the interval (common-lower r ; upperr ] from sender
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Figure 10.4

The di�erence between situation a) and b) is that an increase-common-lowerr step of Cms;r

has advanced common-lowerr and thereby has cleaned up lowerr;3 (by changing it to nil).

2 and timestamps in the interval (lower r;i; upper r] from sender i 2 f1; 3g. In situation b),

lower r;1 has been cleaned up and Cms;r will consequently now only accept timestamps in the

interval (common-lowerr ; upper r] from sender 1. However, this is safe since common-lower r is

kept su�ciently small (in the same way the lower r variable is kept su�ciently small in Cr).

All other variables of Cr, except timer, have n versions in Cms;r. For instance, Cms;r has the n

bu�ers buf r;1; : : : ; buf r;n. However, of course, only one local receiver clock timer is needed.

We only specify the most interesting steps of Cms;r. These are the steps labeled with

receive pkt sr;i(m; t) or increase-common-lowerr(t) actions.

receive pkt
sr ;i(m; t)

E�ect:

if moder;i 6= rec then

if (lowerr;i 6= nil ^ lowerr;i < t � upperr) _
(lowerr;i = nil ^ common-lowerr < t � upperr) then

moder;i := rcvd

buf r;i := buf r;i ^m

lastr;i := t

rm-timer;i :=1

lowerr;i := t

else if (lowerr;i 6= nil ^ lastr;i < t � lowerr;i) _
(lowerr;i = nil ^ lastr;i < t � common-lowerr) then

nack-buf r;i := nack-buf r;i ^ t

else if moder;i = idle ^ lastr;i = t then

moder;i := ack

increase-common-lowerr(t)

Precondition:
8i : (moder;i 6= rec) ^

common-lowerr � t < timer � �

E�ect:
common-lowerr := t

for all i with lowerr;i 6= nil:

if common-lowerr � lowerr;i then
lowerr;i := nil

Note, that the timing constant �, which occurs in the de�nition of increase-common-lowerr
steps, is the same constant as for the ss-receiver above.
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Steps labeled by crashr should in Cms;r change all moder;i variables to rec.

It requires a timed re�nement mapping to verify that Cms;r correctly implements Cr;1k � � �kCr;n.

This re�nement mapping Rms maps most variables one-to-one. Let s be any state of Cms;r.

Then Rms(s) is the state u that for all i satis�es

� u:upper r;i = s:upper r.

� u:timer;i = s:timer.

� u:lower r;i = (if s:lower r;i 6= nil then s:lower r;i else s:common-lower r).

� u:x = s:x for the remaining variables x.

It is fairly straightforward to verify that Rms actually is a timed re�nement mapping. The way

lower r;i is de�ned in the mapping implies that a receive pkt sr;i(m; t) step of Cms;r directly corre-

sponds to a receive pktsr;i(m; t) step of Cr;1k � � � kCr;n. In fact, there is the same one-to-one cor-

respondence for all other actions, except for increase-common-lower r(t) and increase-upper r(t).

A increase-common-lowerr(t) step of Cms;r may change several lower r;i variables to nil.

This corresponds at the abstract level to these lower r;i variables being advanced. Thus, an

increase-common-lowerr(t) step of Cms;r corresponds to a series of increase-lowerr;i(t)|one for

each process identi�er i for which lower r;i = nil in Cms;r after the increase-common-lowerr(t)

step.

An increase-upperr(t) step simply corresponds a sequence of steps labeled increase-upper r;1(t),

: : : , increase-upperr;n(t).

We do not complete the modeling of Cms;r in this report but leave this and the complete simu-

lation and liveness proofs for future work.





Chapter 11

Conclusion

11.1 Summary

This report contains two parts. Part I describes the formal models of [GSSL93] for timed and

untimed systems, and the associated simulation-based proof techniques. Also, an extended tem-

poral logic is developed, in which temporal formulas evaluate over executions of alternating states

and actions and, thus, are well-suited for describing and reasoning about liveness conditions|in

the timed setting via sampling characterizations of timed executions. It is furthermore shown

how application of the semantic operators of parallel composition, action hiding, and action

renaming is reected in the syntax.

The proof techniques are used to prove that one system correctly implements a more abstract

system. A proof generally consists of three parts. First, several invariants of the systems are

proved. Then, secondly, a relation is de�ned and proved to be a simulation relation from the

concrete to the abstract system. During this process, one generally has to go back and prove

additional invariants. Finally, a liveness proof builds on top of the simulation result.

Part II presents a case study intended to check the adequacy of the formal framework on

large examples. In particular, two practical protocols for solving the at-most-once message

delivery problem on channels that may delete, duplicate, and reorder packets are considered.

One protocol is the Five-Packet Handshake Protocol of [Bel76], which is the standard protocol for

setting up network connections, used in TCP, ISO TP-4, and many other transport protocols.

The other protocol is the Clock-Based Protocol of [LSW91], which relies on certain timing

assumptions. Both protocols are su�ciently complicated that it seems that formal proof is the

only means by which their correctness can be veri�ed.

Both the speci�cation S of the at-most-once message delivery problem and the Five-Packet

Handshake Protocol, which we call H, are formalized as live I/O automata, however at very

di�erent levels of abstraction. The speci�cation S corresponds closely the the informal descrip-

tion of the at-most-once message delivery problem, and is easily checked to have the desirable

behavior. H is expressed as the parallel composition of several components.

The Clock-Based Protocol, which we call C, is formalized as a live timed I/O automaton. A

special MMT-speci�cation style is used to specify the sender and receiver in a clear way since

the timing restrictions on these components are of the simple form: if a set of actions becomes

enabled (or stays enabled after being executed), then an action from the set must be executed

after some lower time bound and before some upper time bound, unless the set is disabled in the

meantime. C is formalized in the timed model and S in the untimed model. It is argued that

in this case correctness of C should be expressed with respect to the patient version of S, i.e.,

231
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the object of the timed model that behaves just like S, except that it allows arbitrary passage

of time.

Instead of proving directly that H and C correctly implement S and patient(S), respectively, the

correctness proof is split into smaller parts by introducing intermediate levels of abstraction. In

particular, both H and C can be seen as implementations of an (untimed) Generic Protocol G.

By introducing intermediate levels of abstraction, not only do we get the advantage of splitting

complicated proofs into smaller parts, we also avoid that proofs of similar parts will have to be

repeated in the correctness proofs for both H and C; instead these similar parts are captured

in G and in the proof that G correctly implements S. In fact, we believe that G is su�ciently

general so that other practical protocols can be proved to be correct implementations of G.

A direct proof that G correctly implements S is still very complicated since it involves a

backward simulation, and backward simulations seem to be inherently di�cult. Thus, to limit

the backward simulation to a development step as small as possible, the Delayed-Decision Spec-

i�cation D was de�ned. In this way the correctness proof for D requires a backward simulation,

whereas the correctness proofs for lower levels of abstraction only require the use of the simpler

(timed) re�nements (plus the use of history variables).

The report contains full proof of correctness for the protocols. However, some of the proofs

are only sketched, when similar formal proofs are found elsewhere in the report.

11.2 Evaluation

The operational models of live (timed) I/O automata, the syntax for describing these, and the

proof techniques have proved to provide a powerful formal framework within which both untimed

and timed distributed systems can be formalized and proved correct. The abstract speci�cation

is close to the informal problem statement and the formalism o�ers a clear, intuitive, and modular

approach to the description of the low-level protocols. In particular, for timed systems, where

the only timing restrictions are lower and upper time bounds on progress, the MMT-style o�ers

a clear notation.

It should be noted, however, that the example presented in this report only proves correctness

of a timed protocol with respect to the patient version of an (untimed) speci�cation. This means

that the timing assumptions of the timed protocol are only used to prove certain invariants,

whereas the handling of time the simulation proofs is almost trivial. [LA91] deals with timed

simulation proofs (with non-patient speci�cations) for MMT-style systems.

Some aspects of performing the correctness proofs are intellectually challenging. In particular,

de�ning simulation relations involves a lot of insight and intuition about the systems, and also

�nding the sequence of abstract steps that corresponds to a given concrete step requires key

intuition. In fact these two aspects of the proofs provide important documentation of the

functionality of systems and can be used to convey intuition about these.

However, in a simulation proof one must prove that the sequence of abstract steps has the

right properties. This involves checking that the steps are in fact steps of the abstract system,

which, in turn, amounts to checking that each variable is handled according to the abstract

transition relation. This part of the proof involves a lot of tedious details, and forms a quite

sizable part of the total proof. Because of the details, the proof is very di�cult to maintain;

sometimes, during a proof attempt, one has to go back and change either the abstract or the

concrete speci�cation, which may lead to a need to change part of the proof already done.

Unless extreme care is taken, such changes are likely to introduce inconsistencies in the proof.
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Apart from this, simulation proof techniques scale well to large examples and impose a nice case

structure on the proof.

Liveness proofs are also challenging. They, too, require insight into the way the protocols

work. The temporal logic o�ers an expressive way formalize liveness conditions and an ad hoc set

of rules. Our liveness proofs are not proofs of validity of temporal formulas, but instead proofs

of satisfaction, i.e., that certain executions satisfy the temporal formulas. In the proof steps

temporal rules, which have the form of valid implications, meta rules, and semantic reasoning

are used. This seems to provide a straightforward way of performing careful liveness proofs by

hand.

Live (timed) I/O automata, temporal logic, and simulation-based proof techniques are good

tools for formally specifying and verifying timed and untimed communication protocols.

The embedding results of the model tie the untimed and timed models together in a very

general and useful coordinated framework that allows proving that a timed system correctly

implements an untimed speci�cation.

11.3 Further Work

There is a considerable amount of further work remaining. We have already begun the work of

automating simulation proofs in the untimed model, by proving the equivalence of versions of

S and D using the Larch Prover [SGG+93, GG91]. We have been pleased with the preliminary

results: the prover has not only been able to check our hand proofs, but in fact has been able to

�ll in many of the details. Current research tries to use the same approach on a timed forward

simulation. Future research should consider automation of more complicated simulation proofs.

Second, if the timing assumptions on C are weakened or removed, the resulting algorithm

still will not deliver any message more than once; however, it may lose messages even in the

absence of a crash. It remains to formulate the weaker speci�cation and prove that the weaker

version of C satis�es it.

Third, there are other algorithms that solve the at-most-once message delivery problem, for

example, using bounded identi�er spaces or cryptographic assumptions. We would like also to

verify these, preferably reusing as much of our proofs as possible.

Finally, future research should deal with the extended temporal logic developed in this work,

and try to �nd a basic set of rules that is adequate for the liveness proofs of typical distributed

systems. The rules presented in this report, which are speci�cally tailored for the case study,

seem to be a good starting point for such an investigation.

11.4 Conclusions

We can draw several conclusions:

� Live (timed) I/O automata, temporal logic, and simulation-based proof techniques provide

a powerful coordinated framework for formally specifying and verifying timed and untimed

communication protocols.

� The proof techniques, especially simulation proofs, scale well and are not too di�cult

to use. It is challenging and requires insight and key intuition to �nd, e.g., the right

simulation relations, and a lot of detailed work to verify these choices. For large proofs,
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computer assistance is essential to help with the details; however, the insight will always

be required.

� Backward simulation proofs are much harder to do than re�nement mapping and forward

simulation proofs but are necessary in certain situations. It seems to be worthwhile to try

to limit the use of backward simulations to as small a development step as possible.

� Many practical protocols can be treated as implementations of a common abstract protocol.

� Verifying a coordinated collection of protocols, rather than just a single isolated protocol,

is extremely valuable. It leads to the discovery of useful abstractions, and tends to make

the proofs more elegant.

� Doing proofs for realistic communication protocols is feasible now. We predict that it will

become more so, and will be of considerable practical importance.
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Appendix A

Basic De�nitions

This appendix gives basic de�nitions used in this report.

A.1 Record Notation

If a variable or value is of tuple type, e.g., X�Y �Z, we will use the normal record notation to

extract the sub-values. For example if d has type X�Y �Z, d:x will extract the �rst component

of the tuple, etc.

A.2 Sets

We use standard notation for sets. A set consisting of the elements e1; e2; : : : we write as

fe1; e2; : : :g

and a notation like

ff(i) j i 2 N ^ g(i) = 4g

is used to denote the set of all elements f(i), where i is a natural number such that g(i) = 4.

A singleton set with the element e is sometimes written e instead of feg. As usual we use

2 to express set membership, and � and � to express the proper subset and subset relations,

respectively. The empty set is denoted by ;. Furthermore we use the normal operators on sets

[ Union

\ Intersection

Complement (with respect to some given set)

n Set minus

Set Type

For any set S, denote by P(S) the set of all (�nite or in�nite) subsets of S.

Cardinality

The cardinality of a set S, written jSj, is de�ned as

jSj
4

=

(
n if S has n elements

1 if S has in�nitely many elements
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A.3 Bags (Multisets)

For bags we use the following operators from the previous section:

jsj;\;[;2

jsj counts the total number of elements (including duplicates) of s.

Bag Type

For any set S, denote by B(S) the set of all (�nite or in�nite) bags with elements from S.

A.4 Lists and Sequences

In this report we use the terms \sequence", \list", and \queues" synonymously.

A list l consisting of the elements e1; e2; : : : we will write in one of the ways

l = he0; e1; : : :i

l = e0; e1; : : :

l = e0e1 : : :

We denote by " the empty list.

List Type

For any set S, denote by S� the set of all �nite lists of elements in S.

Length

The length of a list l = he0; e1; : : :i, written jlj, is de�ned as

jlj
4

=

(
n if l is �nite and ends in en�1
1 if l is in�nite

Head, Tail, Last, and Init

If l = he0; e1; e2; : : :i is nonempty, de�ne

head(l)
4

= e0

tail(l)
4

= he1; e2; : : :i

If furthermore l is �nite and ends in en�1, then de�ne

last(l)
4

= en�1

init(l)
4

= he0; e1; : : : ; en�2i

Concatenation

Concatenation of two lists l1 and l2, written l1^ l2 or sometimes l1l2, is de�ned when l1 is �nite.

If l1 = he0; : : : ; en�1i and l2 = hen; en+1; : : :i, then de�ne

l1 ^ l2
4

= he0; : : : ; en�1; en; en+1; : : :i
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List Construction

Let I = fi1; i2; : : :g be a set of totally ordered elements with i1 < i2 < � � �. Then de�ne

hf(i) j i 2 I ^ P (i)i
4

= ei1 ^ei2 ^ � � �

where f is a function, P is a predicate, and

eik =

(
f(ik) if P (ik)

" otherwise

Indexing

If l = he0; e1; : : :i, then de�ne for all i with 0 � i < jlj

l[i]
4

= ei

We let dom(l) denote the set of indices of any list l. Thus,

dom(l)
4

= fi j 0 � i < jljg

We also let elems(l) be the set of elements in l. Thus,

elems(l)
4

= fl[i] j i 2 dom(l)g

If l is nonempty, we denote by maxidx (l) the maximum index in l. Thus,

maxidx (l)
4

= jlj � 1

Restriction

If l is a list and S is a set, we let l �S denote the restriction of l to S. For example, h1; 3; 2; 5; 4i�

f2; 3; 4; 7g= h3; 2; 4i. Formally,

l � S
4

= hl[i] j i 2 dom(l) ^ l[i] 2 Si

Set Operations on Lists

As notational convention we allow set operators like 2, �, etc., to operate on lists l. This should

just be thought of as a shorthand notation for the same operators operating on elems(l). For

instance, e 2 l means e 2 elems(l) and l � S means elems(l) � S for some set S.

A.5 Functions and Mappings

We use the terms \function" and \mapping" synonymously. We use standard notation for

function de�nition and application. When explicitly de�ning the mapping from elements to

elements we use notation like

[ 1 7! 1;

2 7! 4;

3 7! 9;

: : :

9 7! 81 ]

or equivalently

[i 7! i2 j 1 � i � 9]
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Function Type

A function f mapping elements from S1 to S2 has the type

S1 ! S2

We shall only deal with total functions, i.e., f(s) is de�ned for all elements s 2 S1. S1 is referred

to as the domain of f and S2 as the codomain of f .

Domain and Range

For any function f , dom(f) denotes the domain of f . The range (or image) of f is de�ned as

rng(f)
4

= ff(e) j e 2 dom(f)g

Operations on Functions

For function f : A! B and g : C ! D with B � C, de�ne the composition f � g : A! D such

that for all a 2 A,

(f � g)(a) = f(g(a))

For any function f : A! B and set S, denote by f nS the function with type (A nS)! B such

that for all a 2 A n S,

(f n S)(a) = f(a)

Similarly f � S denotes the function of type (A \ S)! B such that for all a 2 A \ S

(f � S)(a) = f(a)

For functions fi : Ai ! Bi, 1 � i � k, with disjoint domains, denote by f1[ � � �[ fk the function

of type (A1 [ � � � [ Ak)! (B1 [ � � � [Bk) such that for all a 2 (A1 [ � � � [Ak)

(f1 [ � � � [ fk)(a) = fi(a) if a 2 Ai
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Proofs from Part I

B.1 Proofs in Chapter 3

Proof of Lemma 3.1:

Let � be an arbitrary execution over (V ;A).

If � is in�nite, then b� = � and the result trivially follows.

Now, assume � is �nite and let � = s0a1s1a2s2 � � �ansn. Furthermore, let j � 0 an arbitrary

natural number. Let ai = � and si = sn for all i > n. Then b� = s0a1s1a2s2 � � �. We prove the

lemma by structural induction over P .

Base Case: P is a step formula

(�; j) j= P

i� (by de�nition)

(0 � j < n and (sj; aj+1; sj+1) j= P ) or

(j � n and (sn; �; sn) j= P )

i� (by de�nition of si and ai for i > n)

0 � j and (sj ; aj+1; sj+1) j= P

i� (by de�nition)

(b�; j) j= P

Inductive Step:

Assume as induction hypothesis that Q is a temporal formula over (VQ;AQ) such that for all

�Q over (VQ;AQ) and all jQ � 0

(�Q; jQ) j= Q i� (c�Q; jQ) j= Q

Assume a similar induction hypothesis for R. We consider the di�erent possibilities for P (cf.

Section 3.5).

� P =Q

(�; j) j=Q

i� (by de�nition)

(�; j + 1) j= Q

241



242 B. Proofs from Part I

i� (by the induction hypothesis)

(b�; j + 1) j= Q

i� (by de�nition)

(b�; j) j=Q

� P = QW R

Similar to case P =Q.

� P = 8x : Q

Since P is a temporal formula over (V ;A), Q is a temporal formula over (V [ fxg;A).

(�; j) j= 8x : Q

i� (by de�nition)

for all values v, (�xv ; j) j= Q

i� (by the induction hypothesis)

for all values v, (c�xv ; j) j= Q

i� (by de�nition of b and �xv)

for all values v, (b�xv ; j) j= Q

i� (by de�nition)

(b�; j) j= 8x : Q

� P = 9x : Q

Similar to case P = 8x : Q.

� P = Q =) R

Similar to case P =Q.

� P = :Q

Similar to case P =Q.

Proof of Lemma 3.2:

This lemma holds for our temporal logic since we do not have any past operators, i.e., operators

that can reference previous positions in an executions. For instance, some temporal logics (see,

e.g., [MP92]) have a previous operator, which is dual to our next operator  and is de�ned

such that previous P holds at position j in an execution if P holds at position j � 1 in that

execution. Since our logic lacks this possibility of referencing previous positions, the question

whether P holds at position j in � only depends on the su�x sjaj+1sj+1 � � � of �, i.e., j j�.

Similarly, the question whether P holds at position i in j�ij� only depends on ij(j�ij�), and

since ij(j�ij�) = j j�, the result follows.

Formally, the result can be proven by structural induction over P .
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Proof of Lemma 3.3:

Let � = s0a1s1a2s2 � � � and �0 = s00a
0
1s
0
1a
0
2s
0
2 � � �. We de�ne inductively a nondecreasing mapping

m : N ! N such that kj� ' m(k)j�
0. Furthermore, for each k we de�ne a mapping mk :

f0; : : : ; m(k) � 1g ! f0; : : : ; k � 1g, such that for all 0 � i0 < m(k), mk(i0)j� ' i0 j�
0. This

inductive de�nition is clearly su�cient to prove the lemma.

Base Case: k = 0

De�ne m(0) = 0. Then, by assumption, 0j� = � ' �0 = m(0)j�
0, as required.

Let m0 be the empty mapping. Then, vacuously, for all 0 � i0 < m(0), m0(i0)j� ' i0 j�
0

Inductive Step:

Assume as induction hypothesis that kj� ' m(k)j�
0 and that, for all 0 � i0 < m(k), mk(i0)j� ' i0 j�

0.

We consider cases.

� ak+1 = �.

De�ne m(k + 1) = m(k). Then, clearly, k+1j� ' kj� ' m(k)j�
0 = m(k+1)j�

0.

De�ne mk+1 = mk. By the induction hypothesis and the de�nition of m(k+1) and mk+1,

for all 0 � i0 < m(k + 1), mk+1(i0)j� ' i0 j�
0.

� ak+1 = a 6= �.

Then, since kj� ' m(k)j�
0 (induction hypothesis), there must be a unique number k0 > m(k)

such that s0m(k)a
0
m(k)+1s

0
m(k)+1 � � �a

0
k0s

0
k0 = s0m(k)�s

0
m(k) � � �as

0
k0 . Thus, the �rst non-stuttering

action in �0 after position m(k) must be a.

De�ne m(k + 1) = k0. Then the induction hypothesis, the de�nition of k0, and the case

assumption imply k+1j� ' kj� ' m(k)j�
0 = m(k+1)j�

0.

De�ne mk+1 to coincide with mk for all 0 � i0 < m(k), and de�ne mk+1(i
0) = k, for

all m(k) � i0 < m(k + 1). Then the induction hypothesis and the de�nition of mk+1

give, for all 0 � i0 < m(k), mk+1(i0)j� ' i0 j�
0. For m(k) � i0 < m(k + 1) we have,

mk+1(i0)j� = kj� ' m(k)j�
0 ' i0 j�

0, where the last stuttering-equivalence follows from the

fact that i0 j�
0 only di�ers from m(k)j�

0 by having less stuttering in the start.

This concludes the proof.

Proof of Proposition 3.4:

Let �1 = s1;0a1;1s1;1a1;2s1;2 � � � and �2 = s2;0a2;1s2;1a2;2s2;2 � � � be arbitrary executions such that

�1 ' �2.

1. Let P be a state predicate.

�1 j= P

i� (by de�nition)

s1;0 j= P
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i� (since �1 ' �2 implies s1;0 = s2;0)

s2;0 j= P

i� (by de�nition)

�2 j= P

This proves that P is stuttering-insensitive.

2. Let P be a state transition predicate, and assume that (s; �; s) j= P (which implies

(s; s)[[P ]] = true) for all state s.

�1 j= P

i� (by de�nition)

(s1;0; s1;1)[[P ]] = true

implies (since �1 ' �2 implies either (s1;0; s1;1) = (s2;0; s2;1) or (s1;0; s1;1) = (s2;0; s2;0))

(s2;0; s2;1)[[P ]] = true or (s2;0; s2;0)[[P ]] = true

i� (since (s2;0; s2;0)[[P ]] = true by assumption)

(s2;0; s2;1)[[P ]] = true

i� (by de�nition)

�2 j= P

A symmetric argument gives the implication in the other direction. This proves that P is

stuttering-insensitive.

3. Let f be an action function.

�1 j= 3hfi

i� (by de�nition)

there is a step (s1;i; a1;i+1; s1;i+1) in �1 such that a1;i+1 2 (s1;i; s1;i+1)[[f ]]

i� (since � can never be in the range of an action function)

there is a step (s1;i; a1;i+1; s1;i+1) in �1 such that a1;i+1 6= � and a1;i+1 2 (s1;i; s1;i+1)[[f ]]

implies (by de�nition of ')

there is a step (s2;j; a2;j+1; s2;i+1) = (s1;i; a1;i+1; s1;i+1) in �2 such that

a2;j+1 2 (s2;j; s2;j+1)[[f ]]

i� (by de�nition)

�2 j= 3hfi

A symmetric argument gives the implication in the other direction. This proves that 3hfi

is stuttering-insensitive.

4. Assume that P and Q are stuttering-insensitive temporal formulas.

(a) P W Q

�1 j= P W Q

i� (by de�nition)

there exists a k � 0 such that (�1; k) j= Q and for every 0 � i < k, (�1; i) j= P ,

or else, for all i � 0, (�1; i) j= P

i� (by Lemma 3.1)
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there exists a k � 0 such that (c�1; k) j= Q and for every 0 � i < k, (c�1; i) j= P ,

or else, for all i � 0, (c�1; i) j= P

i� (by Lemma 3.2)

there exists a k � 0 such that kjc�1 j= Q and for every 0 � i < k, ijc�1 j= P ,

or else, for all i � 0, ijc�1 j= P

implies (by Lemma 3.3 and the fact that P and Q are stuttering-insensitive)

there exists a k0 � 0 such that k0 jc�2 j= Q and for every 0 � i0 < k0, i0 jc�2 j= P ,

or else, for all i0 � 0, i0 jc�2 j= P

i� (by Lemma 3.2)

there exists a k0 � 0 such that (c�2; k0) j= Q and for every 0 � i0 < k0, (c�2; i0) j= P ,

or else, for all i0 � 0, (c�2; i0) j= P

i� (by Lemma 3.1)

there exists a k0 � 0 such that (�2; k
0) j= Q and for every 0 � i0 < k0, (�2; i

0) j= P ,

or else, for all i0 � 0, (�2; i
0) j= P

i� (by de�nition)

�2 j= P W Q

A symmetric argument gives the implication in the other direction. This proves that

P W Q is stuttering-insensitive.

(b) 8x : P

Since �1 ' �2, we have, for all values v, (�1)
x
v ' (�2)

x
v .

�1 j= 8x : P

i� (by de�nition)

for all values v, (�1)
x
v j= P

i� (since P is stuttering-insensitive and (�1)
x
v ' (�2)

x
v)

for all values v, (�2)
x
v j= P

i� (by de�nition)

�2 j= 8x : P

This proves that 8x : P is stuttering-insensitive.

(c) 9x : P

Similar to case 8x : P .

(d) :P

�1 j= :P

i� (by de�nition)

�1 6j= P

i� (by the fact that P is stuttering-insensitive)

�2 6j= P

i� (by de�nition)

�2 j= :P

This proves that :P is stuttering-insensitive.

(e) P =) Q

Similar to case :P .
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B.2 Proofs in Chapter 4

B.2.1 Untimed Systems

Proof of Lemma 4.1:

Let (V ;A) be an arbitrary pair with V 0 � V and A0 � A and let � = s0a1s1a2s2 � � � be an

arbitrary execution over (V ;A). Furthermore, let �0 = � � (V 0;A0) = s00a
0
1s
0
1a
0
2s
0
2 � � �. Then

s0k = skdV
0 and a0k =

(
ak if ak 2 A

0

� otherwise

We prove the lemma by structural induction on P .

Base Case:

In the base case P is a step formula over (V 0;A0). We consider the two kinds of step formulas:

� P = hfi, where f is an action function over (V 0;A0).

(�0; j) j= hfi

i� (by de�nition)

(0 � j < j�0j and (s0j; a
0
j+1; s

0
j+1) j= hfi) or

(j � j�0j and (s0j�0j; �; s
0
j�0j) j= hfi)

i� (by de�nition and the fact that � can never be in the range of an action function)

(0 � j < j�0j and a0j+1 2 (s0j; s
0
j+1)[[f ]]) or

(j � j�0j and false)

i�

(0 � j < j�0j and a0j+1 2 (s0j; s
0
j+1)[[f ]])

i� (step 4; see below)

(0 � j < j�j and aj+1 2 (sj ; sj+1)[[f ]])

i�

(0 � j < j�j and aj+1 2 (sj ; sj+1)[[f ]]) or

(j � j�j and false)

i� (since � can never be in the range of an action function)

(0 � j < j�j and aj+1 2 (sj ; sj+1)[[f ]]) or

(j � j�j and � 2 (sj�j; sj�j)[[f ]])

i� (by de�nition)

(0 � j < j�j and (sj ; aj+1; sj+1) j= hfi) or

(j � j�j and (sj�j; �; sj�j) j= hfi)

i� (by de�nition)

(�; j) j= hfi

Step 4 above is justi�ed as follows: �rst, j�0j = j�j by de�nition of �. Next, since s0j =

sjd(V
0;A0), s0j+1 = sj+1d(V

0;A0), and f is an action function over (V 0;A0), we have that

(s0j; s
0
j+1)[[f ]] = (sj ; sj+1)[[f ]]. Finally, if a0j+1 = �, then aj+1 =2 A0 by de�nition of �,

and since f is an action function over (V 0;A0), we have a0j+1 2 (s0j ; s
0
j+1)[[f ]]) i� aj+1 2

(sj; sj+1)[[f ]]). If a
0
j+1 6= �, then a0j+1 = aj+1. That su�ces.

� P is a state transition predicate over (V 0;A0).
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(�0; j) j= P

i� (by de�nition)

(0 � j < j�0j and (s0j ; a
0
j+1; s

0
j+1) j= P ) or

(j � j�0j and (s0j�0j; �; s
0
j�0j) j= P )

i� (by de�nition)

(0 � j < j�0j and (s0j ; s
0
j+1)[[P ]] = true) or

(j � j�0j and (s0j�0j; s
0
j�0j)[[P ]] = true)

i� (step 3; see below)

(0 � j < j�j and (sj; sj+1)[[P ]] = true) or

(j � j�j and (sj�j; sj�j)[[P ]] = true)

i� (by de�nition)

(0 � j < j�j and (sj; aj+1; sj+1) j= P ) or

(j � j�j and (sj�j; �; sj�j) j= P )

i� (by de�nition)

(�; j) j= P

Step 3 is justi�ed as follows: �rst, j�0j = j�j, by de�nition of �. Then, since P is a state

transition predicate over (V 0;A0) and s0k = skd(V
0;A0) for all k, the result directly follows.

Inductive Step:

Let Q be an arbitrary temporal formula over (V 0Q;A
0
Q) and assume as induction hypothesis that

for all pairs (VQ;AQ) with V
0
Q � VQ and A0

Q � AQ, all executions �Q over (VQ;AQ), and all

jQ � 0,

(�Q � (V 0Q;A
0
Q); jQ) j= Q i� (�Q; jQ) j= Q

Assume a similar induction hypothesis for the temporal formula R over (V 0R;A
0
R). We consider

the di�erent possibilities for P (cf. Section 3.5).

� P =Q

(� � (V 0;A0); j) j=Q

i� (by de�nition)

(� � (V 0;A0); j + 1) j= Q

i� (by the induction hypothesis)

(�; j + 1) j= Q

i� (by de�nition)

(�; j) j=Q

� P = QW R

Similar to case P =Q.

� P = 8x : Q

(� � (V 0;A0); j) j= 8x : Q

i� (by de�nition)

for all values v, ((� � (V 0;A0))xv; j) j= Q
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i� (by de�nition of � and substitution)

for all values v, (�xv � (V
0 [ fxg;A0); j) j= Q

i� (by the induction hypothesis)

for all values v, (�xv ; j) j= Q

i� (by de�nition)

(�; j) j= 8x : Q

� P = 9x : Q

Similar to case P = 8x : Q.

� P = (Q =) R)

Similar to case P =Q.

� P = :Q

Similar to case P =Q.

Proof of Lemma 4.3:

=): Assume �dAi j= Qi for all i. Then since �dAi ' � �Ai and Qi is stuttering-insensitive, we

have � �Ai j= Qi, for all i. Then by Lemma 4.2, � j= Qi, for all i, and thus � j= Q1 ^ : : : ^ QN .

(=: Assume � j= Q1 ^ : : : ^ QN . Then � j= Qi, for all i, and Lemma 4.2 implies that

� �Ai j= Qi, for all i. Again, since �dAi ' � �Ai and Qi is stuttering-insensitive, it follows that

�dAi j= Qi, for all i.

Proof of Proposition 4.4:

By De�nition 2.9 we have L = f� 2 exec(A) j �dA1 2 L1; : : : ; �dAN 2 LNg. By de�nition of

d we know that if � 2 exec(A), then �dAi 2 exec(Ai), for all i. Thus, since Li is induced by

Qi, we get L = f� 2 exec(A) j �dA1 j= Q1; : : : ; �dAN j= QNg. By Lemma 4.3 we �nally get

L = f� 2 exec(A) j � j= Q1 ^ : : : ^ QNg which proves that L is induced by Q1 ^ : : : ^ QN .

Proof of Proposition 4.5:

Let (AA; LA) = (A;L) n A. The proof is trivial since, by De�nitions 2.3 and 2.10, exec(AA) =

exec(A) and LA = L.

Proof of Proposition 4.6:

Let (A�; L�) = �((A;L)). By De�nition 2.11 we have (A�; L�) = (�(A); f�(�) j � 2 Lg).

First note that since Q is a temporal formula over A, De�nition 2.4 implies that �(Q) is a

temporal formula over A�.

Now, it is clear that � j= Q i� �(�) j= �(Q). Since also exec(A�) = f�(�) j � 2 exec(A)g, it

follows that L� = f� 2 exec(A�) j � j= �(Q)g, which proves that L� is induced by �(Q).
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B.2.2 Timed Systems

Proof of Proposition 4.17:

Let Li;s, for each 1 � i � N , be a sampling characterization of Li such that Li;s is induced by

Qi. We have

L
1
= f� 2 t-exec1(A) j �dA1 2 L1; : : : ;�dAN 2 LNg
2
= f� 2 t-exec1(A) j (8�1 samples �dA1 : �1 2 L1;s); : : : ;

(8�N samples �dAN : �1 2 LN;s)g
3
= f� 2 t-exec1(A) j 8� samples � : �dA1 2 L1;s; : : : ; �dAN 2 LN;sg

where Step 1 follows from De�nition 2.26, Step 2 follows from the de�nition of sampling char-

acterizations, and Step 3 follows from Lemma 4.15 Part 3.

This proves (using Lemma 4.13 Part 2) that L is induced by Ls = f� 2 exec1(A) j �dA1 2

L1;s; : : : ; �dAN 2 LN;sg, and we have

Ls
1
= f� 2 exec1(A) j �dA1 j= Q1; : : : ; �dAN j= QNg
2
= f� 2 exec1(A) j � j= Q1 ^ � � � ^ QNg

where Step 1 follows from the de�nition of sampling characterization being induced by temporal

formulas and Step 2 follows from Lemma 4.16.

This proves that Ls and, in turn, L are induced by Q1 ^ : : : ^ QN .

Proof of Proposition 4.18:

Let (AA; LA) = (A;L) n A. The proof is trivial since, by De�nitions 2.19 and 2.27, exec(AA) =

exec(A), t-exec(AA) = t-exec(A), and L = LA.

Proof of Proposition 4.19:

Let (A�; L�) = �((A;L)) and let Ls be a sampling characterization of L such that Ls is induced

by Q. By De�nition 2.28 we have (A�; L�) = (�(A); f�(�) j � 2 Lg).

First note that since Q is a temporal formula over A, De�nition 2.20 implies that �(Q) is a

temporal formula over A�.

Now, it is clear that exec(A�) = f�� j � 2 exec(A)g and that � j= Q i� �(�) j= �(Q). Thus,

L�;s = f�(�) j � 2 Lsg is induced by �(Q). Since also t-exec(A�) = f�� j � 2 t-exec(A)g and �

samples � i� �(�) samples �(�), we immediately get that L� is induced by L�;s. That su�ces.

B.2.3 Embedding

Proof of Lemma 4.21:

Since Q is a temporal formula over A, � is an execution over Ap, variables(A) � variables(Ap),

and acts(A) � acts(Ap), Lemma 4.1 yields

(� � (variables(A); acts(A))) j= Q i� � j= Q (�)



250 B. Proofs from Part I

Furthermore, by de�nition of untime(�) we have untime(�) ' (� � (variables(A); acts(A))), and

since Q is stuttering-insensitive we have

untime(�) j= Q i� (� � (variables(A); acts(A))) j= Q (��)

Then (�) and (��) imply the result.

Proof of Proposition 4.22:

First note that since variables(A) � variables(Ap) and acts(A) � acts(Ap), Q is a temporal

formula over Ap. We have

Lp
1
= f� 2 t-exec1(Ap) j untime(�) 2 Lg
2
= f� 2 t-exec1(Ap) j untime(�) j= Qg
3
= f� 2 t-exec1(Ap) j for all �, if � samples �, then untime(�) j= Qg
4
= f� 2 t-exec1(Ap) j for all �, if � samples �, then � j= Qg

where Step 1 follows from De�nition 2.35, Step 2 follows from the fact that L is induced by

Q (and untime(�) 2 exec(A) by de�nition of untime), Step 3 follows Lemma 4.20, and Step 4

follows from Lemma 4.21.

This proves, by Lemma 4.13 Part 2, that Lp is induced by Q.

We show that Q is minimal. Thus, for arbitrary admissible execution � of Ap with � j= Q, we

must show the existence of a timed execution � 2 Lp such that � samples �.

Let � be an arbitrary admissible execution � of Ap such that � j= Q. Let � be a timed

execution of Ap such that � samples �. By Lemmas 4.11 and 4.13 � exists and is admissible. By

Lemma 4.20 untime(�) = untime(�) and Lemma 4.21 gives untime(�) j= Q. Thus, untime(�) j=

Q, which implies untime(�) 2 L. Then, by de�nition of Lp (De�nition 2.35), � 2 Lp. That

su�ces.

B.3 Proofs in Chapter 5

B.3.1 Untimed Systems

Proof of Lemma 5.10:

Let m be an arbitrary index mapping from � to �0 with respect to R.

=): Assume � j= 32:hCi. Then, by Lemma 3.5 Part 3, there exists an index i such that

ij� j= 2:hCi. Thus, no actions in C occur in trace(ij�). By Lemma 5.6 and the fact that C

contains external actions only, no actions in C occur in the su�x m(i)j�
0. Thus, m(i)j�

0 j= 2:hCi,

which, by Lemma 3.5 Part 4, implies that �0 j= 32:hCi. That su�ces.

(=: Assume �0 j= 32:hCi. Then, by Lemma 3.5 Part 3, there exists an index j such that

j j�
0 j= 2:hCi. Now, by Condition 4 of De�nition 5.4, there exists an i � j�j such that m(i) � j.

Then m(i)j�
0 is a su�x of j j�

0, and consequently, by Lemma 3.5 Part 1, m(i)j�
0 j= 2:hCi.

Thus, no actions in C occur in trace(m(i)j�
0). By Lemma 5.6 and the fact that C contains

external actions only, no actions in C occur in the su�x ij�. Thus, ij� j= 2:hCi, which, by

Lemma 3.5 Part 4, implies that � j= 32:hCi. That su�ces.
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Proof of Lemma 5.11:

Let m be an arbitrary index mapping from � to �0 with respect to R.

Assume �0 j= 32Q. Then, by Lemma 3.5 Part 3, there exists an index j such that jj�
0 j= 2Q.

Thus, for each state u in jj�
0, we have u j= Q. Now, by Condition 4 of De�nition 5.4 and the

fact that m is nondecreasing, we get the existence of an index i such that for all i � k � j�j,

m(k) � j. Then, for each state s of � with index k (i � k � j�j) we have s j= P since (by

Condition 2 of De�nition 5.4) there exists some u in jj�
0 such that (s; u) 2 R.

This gives us, for all k > 0, (ij�; k) j= P . (Even if ij� is �nite this is true since P holds in

the stuttering step that stutters the last state since it holds in the last state.). Thus, ij� j= 2P ,

which �nally, by Lemma 3.5 Part 4, � j= 32P .

Proof of Lemma 5.13:

1. Let � = s0a1s1a2s2 � � �. Let sh0 2 start(Ah) be such that sh0 � variables(A) = s0. De�ne

�h0 = sh0. Then �h0 � (variables(A); acts(A)) = s0.

De�ne �hn inductively as follows. Assume �h(n�1) = sh0a1sh1a2sh2 : : :an�1sh(n�1) is an

execution of Ah such that �h(n�1) � (variables(A); acts(A)) = �jn�1. Then, by Lemma 5.12

Part 1, there exists a step (sh(n�1); an; shn) 2 steps(Ah).

De�ne �hn = sh0a1sh1a2sh2 : : : an�1sh(n�1)anshn. Then �hn �(variables(A); acts(A)) = �jn.

Then, �h = limn!j�j�hn has the required property.

2. Directly from Lemma 5.12 Part 2.

Proof of Lemma 5.14:

A vS Ah: Let � 2 traces(A) and let � 2 exec(A) be such that trace(�) = �. By Lemma 5.13

Part 1 there exists an execution �h 2 exec(Ah) such that �h �(variables(A); acts(A)) = �. Then,

since ext(A) = ext(Ah), we have trace(�h) = trace(�) = �. Thus, � 2 traces(Ah). That su�ces.

Ah vS A: Let � 2 traces(Ah) and let �h 2 exec(Ah) be such that trace(�h) = �. By Lemma 5.13

Part 2, �h �A 2 exec(A). Then, since ext(A) = ext(Ah), we have trace(�h) = trace(�h �A) = �.

Thus, � 2 traces(A). That su�ces.

Proof of Lemma 5.15:

(A;L) vL (Ah; Lh): Let � 2 traces(L) and let � 2 L be such that trace(�) = �. By Lemma 5.13

Part 1 there exists an execution �h 2 exec(Ah) such that �h �A = �. Thus, by de�nition of Lh
we have �h 2 Lh, and since ext(A) = ext(Ah) we �nally get trace(�h) = trace(�) = �, and thus,

� 2 traces(Lh). That su�ces.

(Ah; Lh) vL (A;L): Let � 2 traces(Lh) and let �h 2 Lh be such that trace(�h) = �. By

de�nition of Lh, �h �A 2 L. Then, since ext(A) = ext(Ah), we have trace(�h) = trace(�h �A) =

�. Thus, � 2 L. That su�ces.
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Proof of Lemma 5.16:

We have

Lh = f�h 2 exec(Ah) j �h �A j= Qg

= f�h 2 exec(Ah) j �h j= Qg

where the �rst equality follows from the de�nition of Lh and Lemma 5.13 Part 2, and the last

equality follows from Lemma 4.1. This shows that Lh is induced by Q.

B.3.2 Timed Systems

Proof of Lemma 5.28:

1. Let � = !0a1!1a2!2 � � �. De�ne h0 to be a value of h such that (fstate(!) [ [h 7! h0]) 2

start(Ah). De�ne, for all t 2 dom(!0), !h0(t) � variables(A) = !0(t) and !h0(t):h = h0.

Then !h0 is a trajectory of Ah.

Now we de�ne !hn inductively. By the properties of timed executions, (!n�1; an; !n) 2

steps(A). Then by Lemma 5.27 Part 1 where exists a value hn such that (!n�1 [ [h 7!

hn�1]; an; !n [ [h 7! hn]) 2 steps(Ah). Then, for all t 2 dom(!n), de�ne !hn(t) �

variables(A) = !0(t) and !hn(t):h = hn.

Then, �h = !h0a1!h1a2!h2 � � � is a timed execution of Ap and �h � variables(A) = �.

2. Directly from Lemma 5.27 Part 2.

Proof of Lemma 5.32:

Let Ls be a sampling characterization of L such that Ls is induced by Q and de�ne

Lh;s
4

= f�h 2 exec1(Ah) j �h �A 2 Lsg

Similar to the proof of Lemma 5.16 it is easy to see that Lh;s is induced by Q. It now su�ces

to show that Lh is induced by Lh;s. We must check two conditions.

1. Assume �h 2 Lh. We must show that for all �h that samples �h, �h 2 Lh;s. So, assume

�h samples �h. Since �h is admissible, also �h is admissible by Lemma 4.13. Thus, by

de�nition of Lh;s it su�ces to show that �h �A 2 Ls.

Since �h 2 Lh, we have �h �A 2 L. Lemma 5.31 Part 1 gives �h �A samples �h �A. Then

�h �A 2 Ls since Ls is a sampling characterization of L. That su�ces.

2. Assume �h 2 t-exec1(Ah) and for all �h samples �h, �h 2 Lh;s. We must show that

�h 2 Lh. By de�nition of Lh it su�ces to show that �h �A 2 L.

Let � be an arbitrary execution of A such that � samples �h �A. Then Lemma 5.31 Part

2 gives the existence of an execution �h of Ah such that � = �h �A and �h samples �h.

Thus, the assumption for this case implies �h 2 Lh;s. By Lemma 4.13 �h is admissible.

Then the de�nition of Lh;s implies that � 2 Ls. Since � was arbitrary, the de�nition of

sampling characterization implies that �h �A 2 L. That su�ces.

That concludes the proof.



Appendix C

Invariance Proofs

In this chapter we prove the invariants stated in the G and C speci�cations. We use the normal

proof technique:

� Show that the invariant is satis�ed in every initial state.

� Assume the invariant and all previously proved invariants hold in a state s, and for all

steps (s; a; s0) show that the invariant holds in s0.

Many of the invariants consist of several parts. We prove that the conjunction of these parts is

an invariant. It follows that each conjunct (part) is then itself an invariant. All the parts of the

invariants are of the form

If C then P

where, in some cases, C = true . For the sake of brevity we consider only, in the second part

of the proof technique above, the steps that can change C from false to true or make P false

while C is true since these are the only steps that might invalidate the invariant. We refer to

such steps as the critical steps for the invariant (part).

C.1 Proof of Invariants at the G Level

Proof of Invariant 8.1

� Since modes = idle in the initial states of G, it follows that both parts of the invariant

are satis�ed in the initial states.

� We now consider the two parts separately

1. We consider the critical steps. (Note that none of the steps in G can remove elements

from useds)

a = choose id(id ; m)

This step changes modes to send but at the same time the new value of lasts is

appended to the end of used s, so Part 1 holds after the step.

a 2 freceive pkt rs(id ; b); recoversg

Both of these steps can change lasts but at the same time modes is changed to non-

send, so Part 1 holds after the steps.

253
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2. The proof of this part follows directly from the proof of Part 1 and the fact the useds
is a queue of IDs. (Remember that nil =2 ID).

Proof of Invariant 8.2

� Since modes = idle and useds = " in initial states of G, both parts of the invariant hold

in the initial states.

� We assume that both parts hold in state s. For each part we consider the critical steps of

the form (s; a; s0).

1. a = prepare

This step changes modes to needid but at the same time goods is changed to ;, so

Part 1 holds in s0.

a = choose id(id ; m)

This step adds an id to used s but at the same time modes is changed to send, so Part

1 holds in s0.

a = grow good s(ids)

We consider this case when s:modes = needid. The step adds identi�ers to used s but

since s:modes = needid the step can only add ids that do not intersect with s:used s.

Thus, since Part 1 is assumed to hold in s, it also holds in s0.

2. a = choose id(id ; m)

This step adds the element id from s:goods to used s but since s:modes = needid, the

assumption that Part 1 holds in s gives us that id =2 s:useds. Thus Part 2 holds in s0.

Proof of Invariant 8.3

� Initially moder = idle so the invariant holds.

� Assume that the invariant holds in s. We now consider all the critical steps of the form

(s; a; s0).

1. a = receive pkt sr(m; id)

If this step changes moder to rcvd, it also adds an element to buf r, so Part 1 holds in

s0.

a = receive msg(m)

This step can make buf r empty, but in this case, moder is changed to ack, so Part 1

holds in s0.

Proof of Invariant 8.4

� Part 1 holds initially because modes = idle. issuedr is initially a superset of goodr thus

satisfying Part 2. For Parts 3, 4, 5, and 6 the sets that are supposed to be subsets are

initially empty, so the result follows. Since lastr is initially nil, Parts 7 and 8 are also

satis�ed.
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� For each part of the invariant we consider the critical steps (s; a; s0), where we assume that

all parts of this invariant hold in s, and that previously proved invariants hold in both s

and s0. (For Parts 1, 2, and 3, note that issuedr can never shrink, and for Parts 4, 5, 6,

and 8, note that useds can never shrink.)

1. a = prepare

This step changes modes to needid, but at the same time good s is made empty, so

Part 1 holds in s0.

a = recoverr

This step changes moder from rec to nonrec (idle) but at the same time issued r is

changed to some superset of good s, so Part 1 holds in s0.

a = grow good s(ids)

We consider the case where s:modes = needid and s:moder 6= rec. The step adds

some elements to good s, but in the case we consider, the elements that are added are

all in s:issuedr . So, since we assume Part 1 holds in s, it also holds in s0.

2. a = grow good r(ids)

This step adds elements to good r but at the same time the same elements are added

to issuedr. So, since we assume that Part 2 holds in s, it also holds in s0.

3. a = recoverr

This step changes moder from rec to non-rec, but at the same time issuedr is changed

to some superset of useds, so Part 3 holds in s0.

a = prepare

Consider this step when s:moder 6= rec. We add an element id from s:good s to useds.

From Part 1 we get that id belongs to s:issuedr so adding id to useds does not violate

Part 3.

4. In the proof, we let id-set denote the set ids(sr) [ (if modes = send then flastsg) in

any state of G.

a = choose id(id ; m)

This step changes modes to send so s
0:lasts gets added to id-set , but from Invariant 8.1

Part 1 we get that s0:lasts 2 s0:useds, so Part 4 is not violated.

a = send pkt sr(m; id)

This step might add a packet to the channel (sr), but since a precondition for the step

is s:modes = send, the id on the packet is already in id-set , thus this step does not

change id-set . So, since Part 4 holds in s, it also holds in s0.

5. a = receive pktsr(m; id)

This is the only step that may add an identi�er to nack-buf s. The identi�er id added

is in ids(s:sr), so since we assume that Part 4 holds in state s we get that id 2 s:useds,

so Part 5 is not violated.
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6. a = send pkt rs(id ; true)

This step can add a packet with identi�er s:last to the return channel rs . The action

is only possible if s:lastr 2 ID , i.e., if s:lastr 6= nil. But then Part 8 gives us that

s:lastr 2 s:used s, thus this step cannot violate Part 6.

a = send pkt rs(id ; false)

This step can add a packet with an identi�er from s:nack-buf to rs . From Part 5 in

state s we get that this identi�er is in s:useds, so the step cannot violate Part 6.

7. a = receive pkt sr(m; id)

This step can change lastr to id which belongs to s:good r. However, at the same time

id is removed from good r. It remains to be shown that id =2 s0:issuedr. Since we

assume that all parts of this invariant hold in s, Part 2 gives us that id 2 s:issuedr
and since issuedr is not changed in the step, we get id 2 s0:issuedr . The result follows

directly.

a = recoverr

This step changes lastr to nil. But since good-ids is a set of elements from ID and

nil =2 ID , Part 7 holds in state s0.

a = grow good r(ids)

This step does not change good-ids , so Part 7 holds in state s0.

8. a = receive pkt sr(m; id)

This is the only step that can change lastr to non-nil. lastr is changed to an identi�er

id in a packet in s0:sr . From Part 4 in state s we get that id 2 s:useds, so since useds
does not change in the step, Part 8 holds in state s0.

Proof of Invariant 8.5

� Initially sr = ; and modes 6= send, so the invariant holds.

� We consider the critical steps (s; a; s0), where we assume that this invariant hold in s,

and that previously proved invariants hold in both s and s0. Note that no step can

change current-msgs and end up in a state with modes = send. Also, no step, except

choose id(id ; m) can change lasts and end up in a state with modes = send.

1. a = choose id(id ; m)

This step changes modes from needid to send. From Invariant 8.4 Part 4 we get that

s:useds � ids(s:sr). From Invariant 8.2 Part 1 and the de�nition of choose id(id ; m)

we then get that s0:lasts =2 ids(s0:sr), so this step does not invalidate the invariant.

Proof of Invariant 8.6

� Initially current-ok = false, so all parts of the invariant hold.
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� For each part of the invariant we consider the critical steps (s; a; s0), where we assume that

all parts of this invariant hold in s, and that previously proved invariants hold in both

s and s0. Note, for the Parts 3, 4, 6, and 7, that no step, except choose id(id ; m), can

change lastr without also changing modes to something other that send.

1. a = prepare

This changes current-ok to true if s:moder 6= rec, but at the same time modes is

changed to needid, so Part 1 holds in state s0.

a = receive pktrs(id ; b)

In order for this step to change modes to idle, we must have s:modes = send and

(s:lasts; b) 2 s:rs . In that case the step can only violate Part 1 if s:current-ok = true ,

but this cannot be the case since we assume that Part 4 holds in state s. Thus, the

step cannot violate Part 1.

a = crashs

This step can change modes from needid or send to rec, but at the same time

current-ok is set to false, so Part 4 holds in state s

2. a = prepare

This step changes current-ok to true , but only if moder 6= rec, so Part 2 holds in s.

a = crashr

This is the only step that can change moder from non-rec to rec but at the same

time current-ok is made false, so Part 2 holds in s.

3. a = choose id(id ; m)

This is the only step that can change the condition in Part 2 from false to true . This

happens if s:current-ok = true . Since s:modes = needid, Part 5 which we assume

holds in s gives us that s0:lasts 2 s:good r which again implies that s0:lasts 2 s0:goodr .

From Invariant 8.4 Part 7 we get that s0:lastr =2 s0:goodr . Thus s
0:lasts 6= s0:lastr, so

Part 3 holds in s0.

a = receive pktsr(m; id)

This step can make s0:lasts = s0:lastr but in this case curremt-ok is changed to false,

so Part 3 holds in s0.

a = recoverr

Consider this step when modes = send and current-ok = true . The step changes lastr
to nil but from Invariant 8.1 Part 2 we have s0:modes 6= nil, so Part 3 holds in s0.

4. a = choose id(id ; m)

This is the only step that can change the condition in Part 2 from false to true . This

happens if s:current-ok = true , so assume this. In state s we get from Invariant 8.4

Part 6 that all ids on s:rs are in s:useds. From Invariant 8.2 Part 1 we get that s0:lasts =2

s:useds. Since rs is not changed in the step, we �nally conclude that (s
0:lasts; b) =2 s0:rs,

so Part 4 holds in state s0.
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a = send pkt rs(id ; true)

Consider this action when modes = send and current-ok = true . (s:lastr; true) might

be added to rs, but from Part 3 we get that Part 4 is not violated.

a = send pkt rs(id ; false)

Consider this action when modes = send and current-ok = true . A packet with an id

from s:nack-buf r might be added to rs, but from Part 7 (which we assume holds in s)

we get that Part 4 is not violated.

5. a = prepare

This step can make current-ok = true and modes = needid but at the same time

goods is made empty, so Part 5 holds in state s0.

a = grow good s(ids)

This step can only add elements from goodr to good s when current-ok = true and

modes = needid, so Part 5 holds in state s0.

a = shrink good r(ids)

This step can only remove elements not in good s from good r when current-ok = true

and modes = needid, so Part 5 holds in state s0.

6. a = choose id(id ; m)

Consider this step when s:current-ok = true . The step changes modes to send and

changes lasts to a value from s:good s. Since s:modes = needid, Part 5 gives us that

s0:lasts 2 s:good r, so since good r is not changed in the step, Part 6 holds in s0.

a = shrink good r(ids)

When current-ok = true and modes = send, this step cannot remove s:lasts from

goodr , so Part 6 holds in s0.

7. a = choose id(id ; m)

Consider this step when s:current-ok = true . The step changes modes to send and

changes lasts to a value from s:good s. Since s:modes = needid, Invariant 8.2 Part 1

gives us that s0:lasts =2 s:useds. From Invariant 8.4 Part 5 we then get that s0:lasts =2

s:nack-buf r which again implies s0:lasts =2 s0:nack-buf r since nack-buf r is not changed

in the step. So, Part 7 holds in state s0.

a = receive pkt sr(m; id)

This step can add an identi�er to nack-buf r. Assume s:current-ok = true and

s:modes = send. We must show that s:lasts (= s0:lasts) cannot be added to nack-buf r
under these assumptions. From Part 6 we have that that s:lasts 2 s:good r, so from the

de�nition of receive pktsr(m; id) we get that nack-buf r is not changed. Thus, Part 7

holds in state s0.

Proof of Invariant 8.7

Parts 1 and 2 are reformulations of Invariant 8.6 Parts 3 resp. 4.
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Proof of Invariant 8.8

� Since initially modes = idle and current-ack s = false, all parts hold.

� For each part of the invariant we consider the critical steps (s; a; s0), where we assume that

all parts of this invariant hold in s, and that previously proved invariants hold in both s

and s0. Note, for the Parts 1, 2, and 3 that no step, except choose id(id ; m), can change

lastr without also changing modes to something other that send. Note also that no steps

can make good-ids grow. good-ids can only shrink.

1. a = choose id(id ; m)

This step changes modes to send. In state s we get from Invariant 8.4 Part 4 that

s:useds � ids(sr). From the de�nition of choose id(id ; m) we see that s0:lasts is placed

at the end of used s, thus by the de�nition of the partial order of identi�ers we see that

Part 1 holds in s0.

a = send pkt sr(m; id)

This step might add (m; s:lasts) to sr while modes = send. But since Part 1 is assumed

to hold in s, it is obvious that it also holds in s0.

2. a = choose id(id ; m)

Although this step changes modes from needid to send, it does not make lasts = lastr .

To see why this is so, note that either s0:lastr = nil in which case the result follows

directly (since s0:lasts 6= nil by Invariant 8.1 Part 1) or s0:lastr = s:lastr 6= nil in

which case Invariant 8.4 Part 8 implies that s0:lastr 2 s:useds and Invariant 8.2 Part 1

implies that s0:lasts =2 s:useds, so again the result follows. Thus, Part 2 holds in s0.

a = receive pktsr(m; id)

Consider the case where s:modes = s0:modes = send, id = s:lasts = s0:lasts 2 s:goodr ,

and s:moder = s0:moder 6= rec. In this case we get s0:lasts = s0:lastr . We must

show that (fs0:lastsg [ ids(s0:sr)) \ s0:good-ids = ;. From Invariant 8.4 Parts 3 and

4 we get that s0:issuedr � fs0:lastsg [ ids(s0:sr). So what remains to be shown is

that (fs0:lastsg [ ids(s0:sr)) \ s:good r = ;. From Part 1 we get that id � (fs:lastsg [

ids(s:sr)). Since we remove all identi�ers less than or equal to id from good s in this

step, and since Invariant 8.4 Part 4 ensures that all packets in sr have identi�ers that

are related to id , the result follows. Thus, Part 2 holds in s0.

a = send pkt sr(m; id)

This step can change sr , but only with a packet with the identi�er s:lasts. Since we

assume that this Part 2 holds in s, it follows that it also holds in s0.

3. a = choose id(id ; m)

Although this step changes modes from needid to send, it does not make the packet

(s0:lasts; true) belong to s0:rs. We show why this is so. Since rs is not changed in the

step, we get from Invariant 8.4 Part 6 that s:useds � ids(s0:rs). Invariant 8.2 Part 1

together with the de�nition of choose id(id ; m) gives us s0:lasts =2 s:used s. Thus we

get s0:lasts =2 ids(s0:rs) which gives the result. So, Part 3 holds in s0.



260 C. Invariance Proofs

a = send pkt rs(id ; true)

Consider this step while s:modes = s0:modes = send and id = s:lastr = s:lasts =

s0:lasts. The step might succeed in putting the packet (s0:lasts; true) into the channel.

We show that (fs0:lastsg [ ids(s0:sr)) \ s0:good-ids = ;. From Part 2 we get that

(fs:lastsg[ids(s:sr))\s:good-ids = ;. Since neither lasts, sr , nor good-ids are changed

in the step, the result follows directly. So, Part 3 holds in s0.

a = send pkt sr(m; id)

This step can change sr , but only with a packet with the identi�er s:lasts. Since we

assume that this Part 2 holds in s, it follows that it also holds in s0.

4. a = receive pkt rs(id ; b)

This step can change modes to idle and current-ack s to true if b = true and id =

s:lasts, thus, (s:lasts; true) must be on s:rs. Then Part 3 implies that ids(s:sr) \

good-ids = ;. It now directly follows that Part 4 holds in state s0.

Proof of Invariant 8.9

� Since initially buf r = ", all parts of the invariant hold.

� For each part of the invariant we consider the critical steps (s; a; s0), where we assume that

all parts of this invariant hold in s, and that previously proved invariants hold in both s

and s0.

1. a = recoverr

This step changes moder to idle but at the same time buf r is made empty, so Part 1

holds in s0.

a = send pkt rs(id ; true)

This step can change moder to idle, but from Part 2 in state s we get buf r = ", so

Part 1 holds in s0.

a = cleanupr

This step changes moder to idle but since s:moder 2 fidle; ackg from the precondi-

tion, this part and Part 2 imply that buf r was already empty. Thus, Part 1 holds in

s0.

2. a = receive pkt sr(m; id)

We consider this step in two di�erent situations

{ The step can make buf r nonempty but at the same time moder is changed to

rcvd.

{ The step can change moder from idle to ack, but then Part 1 implies that buf r
was already false.

So, Part 2 holds in state s0.
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a = receive msg(m)

This step can change moder to ack but this only happens if s0:buf r = ", so Part 2

holds in state s0.

3. a = choose id(id ; m)

Although this step makes modes = send, it does not make the packet (s0:lasts; true)

belong to s0:rs. The argument is the same as for the corresponding case in the proof

of Invariant 8.8 Part 3. So, Part 3 holds in state s0.

a = send pkt rs(id ; true)

This step can put (s0:lasts; true) into rs but since s:moder = ack, Part 2 gives us that

s:buf r(= s0:buf r) = ". So, Part 3 holds in state s0.

a = receive pktsr(m; id)

This step might add an element to buf r. We show that this cannot happen while

modes = send and (lasts; true) 2 rs. If an element is added to buf r in the step, then

id 2 s:good r, i.e., ids(s:sr) [ s:good-ids 6= ; but this contradicts Invariant 8.8 Part 3.

So, Part 3 holds in state s0.

4. a = receive pktrs(id ; true)

Consider this step when id = s:lasts. Then (s:lasts; true) 2 s:rs. Since s:modes =

send, Part 3 implies that s:buf r = " which in turn implies that s0:buf r = ". So, Part 4

holds in state s0.

a = receive pktsr(m; id)

This step might add an element to buf r. The argument that this cannot happen while

modes = idle and current-ack s = true is similar to the argument in the corresponding

case in the proof of Part 3, only in this case we get a contradiction with Invariant 8.8

Part 4. So, Part 4 holds in state s0.

Proof of Invariant 8.10

� Initially nack-buf r = " and rs = ;, so the parts hold.

� For each part of the invariant we consider the critical steps (s; a; s0), where we assume that

all parts of this invariant hold in s, and that previously proved invariants hold in both s

and s0. Note, that no steps can make good-ids grow.

1. a = receive pktsr(m; id)

Consider this step when s:moder 6= rec and id =2 s:goodr . Then id might be added to

nack-buf r. Since id =2 s:good r and goodr is unchanged in the step we get s0:nack-buf r\

s0:goodr = ; (since we assume that this Part 1 holds in s). From Invariant 8.4 Parts 3

and 5 it follows that s0:nack-buf r \ s0:issuedr = ;. So, Part 1 holds in state s0.

2. a = send pkt rs(id ; true)

This step might add (lastr ; true) to rs but from Invariant 8.4 Part 7 we get that

lastr =2 good-ids , so this step cannot violate Part 2.
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a = send pkt rs(id ; false)

Then id 2 s:nack-buf r, so Part 1 directly gives us that this step cannot violate Part 2.

Proof of Invariant 8.11

� Initially modes = idle so both parts hold.

� For each part of the invariant we consider the critical steps (s; a; s0), where we assume that

both parts of this invariant hold in s, and that previously proved invariants hold in both s

and s0. Note, no action, except choose id(id ; m), can change lasts without also changing

modes to non-send. Also, from Invariant 8.1 Part 2 we get that all steps that change lastr
to nil are not critical.

1. a = choose id(id ; m)

Although this step changes modes to send, it does not make the packet s0:lasts belong

to s0:nack-buf r . We show why this is so. Invariant 8.2 Part 1 implies that s0:lasts =2

s:useds. From Invariant 8.4 Part 5 and the fact that nack-buf r is not changed in the

step, we get that s:used s � s0:nack-buf r , which gives the result. So, Part 1 holds in

state s0.

a = receive pkt(m; id)

We consider two cases.

{ Consider the step when id = lasts. Then lasts can be added to nack-buf r but this

can only happen if lasts 6= lastr, so Part 1 is not violated.

{ Consider the step when s:moder 6= rec, id = lasts, and lasts 2 s:goodr . Then

s0:lasts = s0:lastr . We show that then s:lasts =2 s:nack-buf r (which is the same as

showing s0:lasts =2 s0:nack-buf r). First assume s:lasts 2 s:nack-buf r. Then Invari-

ant 8.10 Part 1 implies that s:lasts =2 s:good r, but this contradicts the assumption

that lasts 2 s:good r. Thus, Part 1 holds in state s0.

2. a = choose id(id ; m)

Although this step changes modes to send, it does not make the packet (s0:lasts; false)

belong to s0:rs. The argument that this is so is similar to the argument in the corre-

sponding case in the proof of Invariant 8.8 Part 3. So, Part 2 holds in state s0.

a = send pkt rs(id ; false)

Consider this step when id = lasts, i.e., lasts is �rst on s:nack-buf r. Then Part 1

implies that s:lasts 6= s:lastr, so, since neither lasts nor lastr change in the step,

Part 2 holds in state s0.

a = receive pkt sr(m; id)

Assume s:moder 6= rec and lasts = id 2 s:good r. Then s0:lastr = s0:lasts. We show

that then (lasts; false) =2 rs. First assume (lasts; false) 2 rs. Then Invariant 8.10

Part 2 implies that lasts =2 s:good-ids , but this contradicts the assumption that lasts 2

s:goodr . Thus, Part 2 holds in state s0.
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Proof of Invariant 8.12

� The invariant is explicitly required to hold in all start states.

� We consider the critical steps (s; a; s), where we assume that the invariant holds in s0, and

that previously proved invariants hold in both s0 and s.

1. a = recoverr or a = shrink goodr(ids)

These steps explicitly require the invariant to hold in s.

C.2 Proof of Invariants at the C Level

In this section we prove the invariants of Ah
C

0
presented in Section 10.5.2. As above we prove

the invariants by induction, proving that they hold in the (unique) start state and that all steps

preserve the invariants. As above, in the inductive step of the inductive arguments we only

consider \critical steps" that might invalidate the invariant.

In the proofs the steps have the form (s; a; s0).

Proof of Invariant 10.1

� Initially all the involved variables are 0, so all parts hold.

� 1. a = ticks(t)

This step changes both ctimes and times to t.

2. a = tickr(t)

This step changes both ctimer and timer to t.

3. a = �

The precondition on the time-passing steps of the clock subsystem (and thus on all of

C) ensures that js0:ctimes � s0:now j � �. Part 1 then gives the result.

4. a = �

The precondition on the time-passing steps of the clock subsystem (and thus on all of

C) ensures that js0:ctimer � s0:now j � �. Part 2 then gives the result.

5. Parts 3 and 4 directly implies the result.

Proof of Invariant 10.2

� Initially upper r = � � 2� + l0r � 2�. Since initially now = times = timer = 0, all the

invariants hold.

� 1. a = recoverr

This makes s0:moder 6= rec but at the same time s0:upper r = s0:timer+� � s0:timer+

2�+ l0r � s0:now + �+ l0r, where the last inequality follows from Invariant 10.1 Part 4.

a = increase-upperr(t)

As for the previous case, s0:upper r � s0:now + �+ l0r.
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a = �

Assume s:moder 6= rec. From the upper time bound on the class Ct
C;r2 consist-

ing of all increase-upper r(t) actions we have s0:now � s:last(Ct
C;r2). The variable

last(Ct
C;r2) is set to now + l0r whenever a recoverr step occurs (since then Ct

C;r2 be-

comes enabled) or a increase-upperr(t) step occurs (since then increase-upperr(t) be-

comes reenabled). Now, since we assume s:moder 6= rec, let now0 and upper r;0 denote

real time and upper r right after the last recoverr or increase-upperr(t) step. Then

s0:now � s:last(Ct
C;r2) = now0 + l0r, so, now0 � s0:now � l0r. Now, from the recoverr

and increase-upper r(t) cases above we �nally get s
0:upper r = upper r;0 � now0+�+l

0
r �

(s0:now � l0r) + �+ l0r = s0:now + �.

Note: We are here actually departing from our normal way of proving invariants

since we use more information, like now0, than is available in s. What we could have

done was to introduce a history variables now0 that is set to now in recoverr and

increase-upperr(t) steps. We could then easily have proved the invariants

If moder 6= rec then last(Ct
C;r2) = now0 + l0r and now � now0 + l0r

s0:upper r � now0 + � + l0r

from which the result would follow.

We go through the same arguments but have chosen, for brevity, to avoid explicitly

introducing the extra history variable.

2. This part follows directly from Part 1 and Invariant 10.1 Part 3.

3. This part follows directly from Part 1 and Invariant 10.1 Part 4.

Proof of Invariant 10.3

� Initially lasts = times = 0 and modes = idle, so both parts hold.

� 1. a 2 fchoose id(t); recovers; ticks(t)g

All such steps clearly preserve this part.

2. a = choose id(t)

Changes modes to send but also explicitly sets s0:lasts = t > s:lasts � 0.

Proof of Invariant 10.4

Straightforward.

Proof of Invariant 10.5

Straightforward.

Proof of Invariant 10.6

Straightforward.
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Proof of Invariant 10.7

� Initially lower r = times = lasts = 0, so both parts of the invariant hold.

� 1. No steps can make times smaller, so we need only check the steps that make lower r
bigger.

a = recoverr

Then s0:lowerr = s:upper r and s:upper r + 2� < s:timer. Therefore, s0:lower r <

s:timer � 2� � s:times = s0:times, where we have used Invariant 10.1 Part 5.

a = increase-lowerr(t)

Then s0:lowerr < s:timer � � � s:timer � (kls + d + 2�) � s:timer � 2� � s:times =

s0:times, where we again have used Invariant 10.1 Part 5.

a = receive pktsr(m; t)

The only way for lower r to increase is for s
0:lower r = t but then, since ((m; t); ) 2 s:sr ,

Invariants 10.6 Part 1 and 10.3 Part 1 imply that s0:lower r � s:lasts � s:times =

s0:times.

2. a 2 frecoverr ; increase-lowerr(t)g

Same argument as for the previous part.

a = receive pktsr(m; t)

Assume s0:lasts < s0:times. Since s:lasts = s0:lasts and s:times = s0:times, we also

have s:lasts < s:times. The only way for lower r to increase is for s0:lowerr = t but

then, since ((m; t); ) 2 s:sr , Invariants 10.6 Part 1 implies that s0:lower r � s:lasts <

s:times = s0:times.

a = ticks(t)

Assume s0:lasts < s0:times. From Invariant 10.3 Part 1 we have s:lasts � s:times. We

consider cases:

{ s:lasts < s:times
Then s:lower r < s:times by the inductive hypothesis, so we have s0:lower r =

s:lower r < s:times � s0:times, as needed, where the last inequality follows from

the de�nition of tick s(t).

{ s:lasts = s:times
Then since s:lasts = s0:last < s0:times we have s:time < s0:time. Since s0:lower r =

s:lower r, and s:lower r � s:times by Part 1, we have s
0:lower < s0:times, as needed.

Proof of Invariant 10.8

Straightforward.

Proof of Invariant 10.9

Straightforward.
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Proof of Invariant 10.10

� Initially deadline = 1 and now = 0, and since modes = idle we have bound = 1, so all

parts hold.

� 1. a = choose id(t)

Then s0:lasts = t. Let m = s0:current-msgs.

If s:moder = s0:moder = rec then s0:deadline = s:deadline and the induction hypoth-

esis Part 7 implies that s:deadline =1, so we are done.

So, assume s:moder 6= rec. From the precondition of choose id(t) we have t >

s:lasts. Now Invariants 10.5 Part 1 and 10.6 Part 1 imply, since s0:countsr(m; t) =

s:countsr(m; t) and s0:rs = s:rs , that s0:countsr(m; t) = 0 and (m; t) =2 packets(s0:sr).

Now, since Ct
C;s becomes reenabled in s0 we have s0:last(Ct

C;s = s0:now + ls. Thus,

s0:bound = s0:last(Ct
C;s) + (k � 1� s0:countsr(m; t))ls+ d

= s0:now + ls + (k � 1)ls + d

= s0:deadline

That su�ces.

a = send pkt sr(m; t)

We consider cases

{ (m; t) 2 packets(s:sr)

Then s0:bound = s:bound since the mintime of the (p; t) packets does not change.

Since also s0:deadline = s:deadline, the result follows.

{ (m; t) =2 packets(s:sr)

� (m; t) =2 packets(s0:sr)

Then s0:countsr(m; t) = s:countsr(m; t) + 1. We now have

s0:bound = s0:last(Ct
C;s) + (k � 1� s0:countsr(m; t))ls+ d

= s0:now + ls + (k � 1� s0:countsr(m; t))ls+ d

= s0:now + (k � 1� s:countsr(m; t))ls+ d

� s:last(Ct
C;s) + (k� 1� s:countsr(m; t))ls+ d

= s:bound

The induction hypothesis Part 1 now implies

s0:deadline = s:deadline � s:bound � s0:bound

� (m; t) 2 packets(s0:sr)

Then s0:bound = d+ s0:now and

s:bound = s:last(Ct
C;s) + (k � 1� s:count sr(m; t))ls+ d

� s:last(Ct
C;s) + d

� s0:now + d

= s0:bound

where the �rst inequality follows from Invariant 10.5 Part 2 and the second

inequality follows from facts that time cannot pass beyond any last(C) variable

and s0:now = s:now .

The induction hypothesis Part 1 now implies

s0:deadline = s:deadline � s:bound � s0:bound
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a = receive pktsr(m; t)

For such a step to change either bound or deadline, i.e., for such a step to be able to

invalidate the invariant part under consideration, we must have s:modes = send (=

s0:modes) and t = s:lasts (= s0:lasts). Invariant 10.6 Part 2 then implies that m =

s:current-msgs (= s0:current-msgs).

If s:deadline =1, then also s0:deadline =1 and the result follows.

So, assume s:deadline 6=1. The induction hypothesis Part 7 then implies s:moder 6=

rec.

We now show that s:lower r < t � s:upper r.

The lower bound follows from the induction hypothesis Part 6 and the fact that

t = s:lasts.

For the upper bound we have from Invariants 10.2 Part 2 and 10.3 Part 1 that

s:upper r � s:times � s:lasts = t.

Then from the de�nition of receive pktsr(m; t) we see that s0:deadline = 1, and the

result follows.

a = receive pktrs(t; b)

For such a step to be able to invalidate the invariant part under consideration, we

must have s:modes = send and s:lasts = t.

Then Invariant 10.6 Part 6 implies that s:lasts = t � s:lower r , but then the induction

hypothesis Part 6 implies that s0:deadline = s:deadline =1. That su�ces.

2. a = choose id(t)

Then Invariant 10.5 Part 1 and the de�nitions of bound and last(Ct
C;s) imply that

s0:bound = s0:now + ls + (k � 1)ls + d � s0:now

a = send pkt sr(m; t)

We consider cases

{ (m; t) 2 packets(s0:sr)

� (m; t) 2 packets(s:sr) Then s0:bound = s:bound (uses the fact that Invari-

ant 10.9 Part 1 implies that mintime((m; t); s0:sr) = mintime((m; t); s:sr)), so

the result follows from the induction hypothesis.

� (m; t) =2 packets(s:sr) Then s0:bound = s0:now + d � s0:now .

{ (m; t) =2 packets(s0:sr) Then s0:last(Ct
C;s) = s0:now + ls, so Invariant 10.5 Part 2

implies

s0:bound = s0:now + ls + (k � 1� s0:countsr(m; t))ls+ d � s0:now

receive pktsr(m; t)

For such a step to change bound we must have s:modes = send, s:lasts = t, and

s:current-msgs = m. In all other cases the induction hypothesis immediately gives the

result.

The step removes ((m; t); t0), for some t0, from sr . If t0 6= mintime((m; t); s:sr) then

s0:bound = s:bound , and again the induction hypothesis gives the result. So, assume

t0 = mintime((m; t); s:sr).

We consider cases
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{ (m; t) 2 packets(s0:sr

Then mintime((m; t); s0:sr) � mintime((m; t); s:sr) which implies that s0:bound �

s:bound and the result follows.

{ (m; t) =2 packets(s0:sr

Then, since s0:last(Ct
C;s) � s0:now we have (with a little help from Invariant 10.5

Part 2)

s0:bound = s0:last(Ct
C;s) + (k � 1� s0:countsr(m; t))ls+ d � s0:now

a = �

If s:modes = s0:modes 6= send, then s0:bound = 1 and the result follows. So, assume

s:modes = s0:modes = send

Let m = s:current-msgs = s0:currnet-msgs and t = s:lasts = s0:lasts. We consider

cases

{ (m; t) 2 packets(s:sr)

Then ((m; t);mintime((m; t); s:sr)) 2 s:sr and from the precondition of the time

passing steps of the channel sr we have s0:now � mintime((m; t); s:sr). Thus,

since s0:sr = s:sr ,

s0:now � mintime((m; t); s:sr) � mintime((m; t); s0:sr) + d = s0:bound

{ (m; t) =2 packets(s:sr)

Then, since s0:last(Ct
C;s) � s0:now we have (with a little help from Invariant 10.5

Part 2)

s0:bound = s0:last(Ct
C;s) + (k � 1� s0:countsr(m; t))ls+ d � s0:now

3. This part follows directly from Parts 1 and 2.

4. a = choose id(t)

If s:moder = rec then s0:deadline = s:deadline = 1, by the induction hypothesis

Part 7, so the result follows.

So, assume s:moder � rec. Then s0:deadline = s0:now+kls+d and s
0:lasts = s0:times.

Invariant 10.1 Part 3 then implies that s0:deadline � s0:lasts + � + kls + d.

a = recovers

Then the induction hypothesis Part 7 implies that s:deadline =1, and since we have

s0:deadline = s:deadline, the result follows.

5. This part follows directly from Parts 3 and 4.

6. a 2 frecovers; recoverrg

Then by the induction hypothesis Part 7 we have s0:deadline = s:deadline =1. That

su�ces.

a = choose id(t)

Then s0:lasts = s0:times = s:times > s:lasts, by de�nition of choose id . By Invari-

ant 10.7 Part 2, s:lower r < s:times. But since s0:lower r = s:lower r and s:times =

s0:lasts, we have s
0:lower r < s0:lasts, as needed.
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a = increase-lowerr(t)

We only need to check such steps when s0:deadline = s:deadline 6=1.

By de�nition of increase-lowerr(t), we have s0:lower r < s0:timer � � � s0:timer �

(kls + d + 2�). It su�ces to show that this is less than or equal to s0:lasts. Since

s0:deadline 6=1, Part 5 implies that s0:now � s0:lasts+ �+ kls+ d. By Invariant 10.1

Part 4, we know that s0:timer � s0:now+�. Therefore, s0:timer � s0:lasts+kls+d+2�.

This su�ces.

a = receive pktsr(m; t)

This increases lower r if s:moder 6= rec and s:lower r < t � s:upper r .

If s:deadline =1 then also s0:deadline =1 and the result follows.

So assume s:deadline 6=1. Then induction hypothesis Part 7 implies that s:modes =

send. Now, if t = s:lasts then s0:deadline = 1 and the result follows. If t 6= s:lasts,

then Invariant 10.6 Part 1 implies that t < s:lasts. Then, since s0:lower r = t and

s0:lasts = s:lasts, we get s
0:lowerr < s0:lasts, as needed.

7. Straightforward except for the case a = receive pktrs(t; b).

a = receive pktrs(t; b)

This may invalidate the invariant by changing modes to idle if we have t = s:lasts
and s:modes = send.

Invariant 10.6 Part 6 implies that s:lasts � s:lower r. From the induction hypothesis

Part 6 we then get s:deadline = 1, and since s0:deadline = s:deadline the result

follows.

Proof of Invariant 10.12

Straightforward.

Proof of Invariant 10.13

Straightforward.


