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Abstract

A self-stabilizing protocol is one that begins to behave correctly in bounded time, no matter

what state the protocol is started in. Self-stabilization abstracts the ability of a protocol to

tolerate arbitrary faults that stop. We investigate the power and applicability of local checking

and correction for the design of stabilizing network protocols.

A link subsystem is a pair of neighboring nodes and the two links between them. Intuitively,

a protocol P is locally checkable if whenever P is in a bad state, some link subsystem is also in

a bad state. A protocol P is locally correctable if P can be corrected to a good state by locally

correcting link subsystems.

We present four general techniques for designing stabilizing protocols. We �rst show that

every locally checkable and correctable protocol can be stabilized in time proportional to the

height of an underlying partial order. Second, we show that every locally checkable protocol

on a tree can be stabilized in time proportional to the height of the tree. Third, we show that

every locally checkable protocol can be stabilized in time proportional to the number of network

nodes. The third result shows that we can dispense with the need for local correctability or the

need for the underlying topology to be a tree as long as we are willing to pay a higher price

in stabilization time. Fourth, we show that any deterministic synchronous protocol � can be

converted to an asynchronous, stabilizing version of �. The fourth technique is useful because

there are network tasks for which a synchronous protocol exists but for which no asynchronous,

locally checkable solution is known.

We also present two useful heuristics. The �rst heuristic, that of removing unexpected packet

transitions, can often be used to transform a protocol into a locally checkable equivalent. A

number of existing protocols work in a dynamic network model where links can fail and recover.

The second heuristic states that locally checkable protocols for dynamic networks can sometimes

be made locally correctable. The basic idea is to use the link failure and recovery actions of

the original protocol to locally correct link subsystems.

Together our techniques cover a broad range of networking tasks. We use our general

techniques to construct new or improved stabilizing solutions to many speci�c for Mutual

Exclusion, Network Resets, Spanning Trees, Topology Update, Min Cost Flows etc. Many

of our solutions are practical and can be applied to real networks without appreciable loss in

e�ciency. For example, the messages required for local checking can easily be piggybacked on

the "keep-alive" tra�c sent between neighbors in real networks.

Our techniques also help in succinctly understanding existing stabilizing protocols. We
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de�ne a special case of local checking called one-way checking. We show that many existing

protocols implicitly use one-way checking together with two other methods that we call counter

ushing and timer ushing.

In the past, papers on stabilization have avoided message passing models of communication

because of the problems caused by unbounded storage Data links. In a stabilizing setting,

such links can be initialized with an unbounded number of �ctitious packets. Thus almost any

non-trivial network task is impossible in a stabilizing setting in which the links have unbounded

storage and the nodes are restricted to be �nite state machines. We avoid this problem by using

the standard asynchronous message passing model of a computer network except that each link

is what we call a Unit Storage Data Link (UDL) that can store at most one packet. Our UDL

model can be implemented over real physical channels. Our UDL model also generalizes easily

to a Bounded Storage Data Link which can store a constant number of packets.

We introduce a new de�nition of stabilization in terms of the external behavior of a system.

The de�nition allows us to de�ne that an automaton A stabilizes to another automaton B even

though A and B have di�erent state sets. The de�nition also allows a clean statement of a

useful Modularity Theorem. This theorem allows us to prove that a large system is stabilizing

by proving that each of its pieces is stabilizing.

Keywords: Self-Stabilization, Fault-Tolerance, Network Protocols, Distributed Algorithms,

Local Checking and Correction.

Thesis Supervisor: Baruch Awerbuch

Title: Associate Professor

Thesis Co-supervisor: Nancy A. Lynch

Title: Professor
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Chapter 1

Introduction

In physics we often talk about systems that stabilize to a good state after initial

perturbations. For example, a spring eventually stabilizes after being compressed.

More generally, systems can stabilize to good behavior after an initial perturbation,

where a behavior is a description of how the state changes with time. For example,

a missile with a tracking system will continue to move towards its target after it is

momentarily thrown o� course by bad weather. In these examples drawn from physics

and control theory, the states are continuous variables and the state transitions are

described by di�erential equations.

By contrast, in this thesis we will concentrate on computer systems, and especially

systems of computers that are interconnected by networks. In such systems, states are

described by discrete variables and state transitions are described by transition rules,

often in the form of programs. We will focus on the ability of such computer systems

to stabilize to \correct behavior" after arbitrary initial perturbation. This property

was called self-stabilization by Dijkstra [Dij74]. The \self" emphasizes the ability of

the system to stabilize by itself without manual intervention.

1.1 A Door Closing Protocol

A story illustrates the basic idea. Imagine that you live in a house in Alaska in the

middle of winter. You establish the following protocol (set of rules) for people who

enter and leave your house. Anybody who leaves or enters the house must shut the
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door after them. If the door is initially shut, and nobody makes a mistake, then the

door will eventually return to the closed position. Suppose, however, that the door

is initially open or that somebody forgets to shut the door after they leave. Then

the door will stay open until somebody passes through again. This can be a problem

if heating bills are expensive and if several hours can go by before another person

goes through the door. It is often a good idea to make the door closing protocol

self-stabilizing. This can be done by adding a spring (or automatic door closer) that

constantly restores the door to the closed position.

We can model this situation as a state transition system. To keep things simple,

let us assume that the door is only used to leave the house, and another door is used

to enter. The state of the system consists of two Boolean variables, in threshold and

door open. Variable in threshold is true if and only if a person is in the threshold

of the door waiting to go out. Variable door open is true if and only if the door is

open. We use state transitions called Enter Threshold, Open Door and Leave

to model the action of a person entering the threshold, opening the door, and leaving

respectively. We will model errors by allowing the initial values of the two Boolean

variables to be arbitrary.

The code for these routines is described in Figure 1.1. The actions are described

in terms of \preconditions" and \e�ects". Preconditions are the enabling conditions

that must be true before an action can be taken. For instance, we don't allow the

Open Door action to be taken unless there is a person in the threshold. E�ects are

the results of an action. For instance, the Leave action shuts the door. This style of

description is used throughout the thesis.

The code also speci�es that certain actions take place in time t if they are continu-

ously enabled. By this we mean that if the preconditions of the action remain true for

time t, then the action must occur within time t. We will use such timing conditions

throughout the thesis.

Next, we say that the door closing system is correct if whenever the door is open,

there is somebody in the threshold. We write this more formally using the predicate

OK Door � (If door open = true then in threshold = true). For the door closing

system to be self-stabilizing we want OK Door to eventually hold regardless of what

state the system starts in. But it is easy to see that if initially door open = true and

in threshold = false then the predicate OK Door may never hold.
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The state of the system consists of two boolean variables

in threshold and door open

Enter Threshold (*user enters the threshold*)

Preconditions: in threshold = false

E�ects: in threshold := true

Open Door (*user opens the door*)

Preconditions: in threshold = true and door open = false

E�ects: door open := true

Leave (*user leaves through open door*)

Preconditions: in threshold = true and door open = true

E�ects: in threshold := false; door open := false

The Open Door and Leave actions will occur in time t if

they are continuously enabled.

Figure 1.1: Door Closing System
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Restore Door (*shut the door if there is no user waiting*)

Preconditions: in threshold = false and door open = true

E�ect: door open := false

The Restore Door action will occur in time t if it is

continuously enabled.

Figure 1.2: Extra action that models automatic door closing in a Door Closing System.

We can model the addition of an automatic door closer using the actionRestore Door

shown in Figure 1.2. This door closer works by detecting whether there is anybody in

the threshold.

1.2 Self-Stabilization using Domain Restriction

Consider Figures 1.1 and 1.2 again. Some readers may object that we caused the prob-

lem by allowing door open to be an independent variable. Isn't it possible to hardwire

relationships between variables to avoid illegal states? In fact, such a technique is

actually used in a revolving door!

A revolving door (see Figure 1.3) can be modelled as having three states instead of

four. A person enters the revolving door, gets into the middle of the door, and �nally

leaves. It is physically impossible to leave the door open and yet there is a way to exit

through the door.

This technique, which we will call domain restriction, is a simple but powerful

method for removing illegal states in computer systems that contain a single shared

memory. Consider two processes A and B that have access to a common memory

as shown in the �rst part of Figure 1.4. Suppose both processes should not run

concurrently because they can interfere with each other. Thus we would like to provide

mutual exclusion for the two processes. To achieve this we can pass a token between

12



STEP 1: ENTERING STEP 2: MIDDLE OF THE DOOR STEP 3: OUT AT LAST!

Figure 1.3: Exiting through a revolving door.

A and B. A process can \run" only when it has the token.

One way to implement this is to use two boolean variables tokenA and tokenB. The

token variable for a process is set to true whenever the process has the token. To pass

the token, Process A sets tokenA to false and sets tokenB to true. In a self-stabilizing

setting, however, this is not a good implementation. For instance, the system will

deadlock if tokenA = tokenB = false in the initial state. The problem is that we have

some extra and useless states. The natural solution is to restrict the domain to a single

bit called turn, such that turn = 1 when A has the token and turn = 0 when B has

the token. By using domain restriction, 1 we ensure that any possible state is also a

legal state.

In this thesis, we will sometimes use domain restriction to avoid illegal states within

a single node of a computer network. Domain restriction can be implemented in many

ways. The most natural way is by restricting the number of bits allocated to a set

of variables so that every possible value assigned to the bits corresponds to a legal

assignment of values to each of the variables in the set. Another possibility is to

modify the code that reads variables so that only values within the speci�ed domain

are read. Almost all the automata described in this thesis are �nite state machines.

Domain restriction can be performed (for �nite state machines) by enumerating the

legal states and then adding suitable checks to the code.

Unfortunately, domain restriction cannot solve all problems. Consider the same

1In this example, we are really changing the domain. However, we prefer the term domain restriction.
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Figure 1.5: A typical mesh Network

two processes A and B that wish to achieve mutual exclusion. This time, however,

(see Figure 1.4, Part 2) A and B are at two di�erent nodes of a computer network.

The only way they can communicate is by sending token messages to each other. Thus

we cannot use a single turn variable that can be read by both processes. In fact, A

must have at least two states: a state in which A has the token, and a state in which

A does not have the token. B must also have two such states. Thus we need at least

four combined states, of which two are illegal.

Thus domain restriction at each node cannot prevent illegal combinations across

nodes. We need other techniques to detect and correct illegal states of a network. It

should be no surprise that the title of Dijkstra's pioneering paper on self-stabilization

[Dij74] was \Self-Stabilization in spite of Distributed Control."

1.3 Self-Stabilization in Computer Networks

In this thesis, we will explore self-stabilization properties for computer networks. A

computer network consists of nodes that are interconnected by communication chan-

nels. The network topology (see Figure 1.5) is described by a graph. The vertices of

the graph represent the nodes and the edges represent the channels. Nodes commu-

nicate with their neighbors by sending messages along channels. Many real networks

such as the ARPANET, DECNET and SNA can be modelled in this way.

A network protocol consists of a program for each network node. Each program

consists of code and inputs as well as local state. The global state of the network

consists of the local state of each node as well as the messages on network links. We

de�ne a catastrophic fault as a fault that arbitrarily corrupts the global network state,

but not the program code or the inputs from outside the network.
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Self-stabilization formalizes the following intuitive goal for networks: despite a his-

tory of catastrophic failures, once catastrophic failures stop, the system should stabilize

to correct behavior without manual intervention. Thus self-stabilization is an abstrac-

tion of a strong fault-tolerance property for networks. It is an important property of

real networks because:

� Catastrophic faults occur: Most network protocols are resilient to common

failures such as nodes and link crashes. However, many protocols cannot deal

with memory corruption. But memory corruption does happen from time to

time. For example, alpha particles are a common cause of memory corruption.

It is also hard to prevent a malfunctioning device from sending out an incorrect

message that carries erroneous state information. The malfunctioning node can

then crash leaving an incorrect message on a channel.

� Manual intervention has a high cost: In a large decentralized network,

restoring the network manually after a failure requires considerable coordination.

As in the case of the AT&T network, the consequent network shutdown has a

large dollar cost. Thus even if catastrophic faults occur rarely, (say once a year)

there is considerable incentive to make network protocols self-stabilizing. In fact,

a reasonable guideline is what we call Lauck's Principle [Lau90]. This principle

states that the network should stabilize preferably before the user notices and

at least before the user logs a service call. This may seem facetious. However,

service calls are so expensive that this guideline is sometimes used to set timers

for self-stabilizing protocols!

These issues are illustrated by the crash of the original ARPANET protocol ([Ros81]

[Per83]). The designers used a sequence number to distinguish newer topology updates

from older ones. Because the set of sequence numbers was �nite, they used a circularly

ordered number space. Hence, it was possible to have three sequence numbers a; b; c

such that a > b > c > a. The protocol was carefully designed never to enter a state that

contained the three sequence numbers a, b, and c. Unfortunately, a malfunctioning

node injected three such updates into the network and crashed. After this the network

cycled continuously between the three updates. It took days of detective work [Ros81]

before the problem was diagnosed. With hindsight, the problem could have been

avoided by making the protocol self-stabilizing.
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Self-stabilization is also attractive because a self-stabilizing program does not re-

quire initialization. The concept of an initial state makes perfect sense for a single

sequential program. However, for a distributed program an initial state seems to be

an arti�cial concept. How was the distributed program placed in such an initial state?

Did this require another distributed program? Self-stabilization avoids these questions

by eliminating the need for distributed initialization.

Probably the most exciting reason for self-stabilization is that can provide a uni-

form approach towards fault-tolerance, thus leading to simpli�cation as well as strength-

ening of existing fault-tolerant protocols. This is because self-stabilization can subsume

such common fault models as link and node failures. However, in order to so the self-

stabilization recovery mechanisms must be fast enough to provide adequate response

time for such common failures.

There appears to be a hierarchy of faults ranging from very rare faults like memory

corruption (that occur at most once every few days) to fairly common faults like link

and node crashes (that may occur in the order of minutes) to very common faults like

bit errors (that may occur every second). Thus it is adequate to recover from memory

errors in the order of minutes, from link failures in the order of seconds, and from

bit errors in the order of milliseconds. If the self-stabilization mechanism recovers too

slowly (say in the order of minutes, as in [Per83]), then it is necessary to have separate,

faster mechanisms to deal with common failures ([Per83]) like link and node failures.

On the other hand, if the self-stabilizing mechanisms recover in the order of seconds,

then there is no need for separate mechanisms to deal with link and node failures. A

good example of an existing self-stabilizing protocol that meets this criteria is the

IEEE 802.1 bridge spanning tree protocol described in [Per85]. Clearly reducing the

number of separate mechanisms leads to simpler protocols. It should be noted that it is

unlikely that self-stabilization will be e�cient enough to subsume the need for all other

fault-recovery mechanisms; for example, most self-stabilizing protocols will probably

need some retransmission scheme to deal with messages lost due to bit errors. However,

the more mechanisms that can be subsumed, the simpler the resulting protocol.

In this thesis we will investigate methods for designing stabilizing protocols that

have fast recovery times. Such protocols are not just faster and more fault-tolerant but

also (by the arguments in the last paragraph) may be simpler than existing protocols.

The example in Section 1.6.1 should clarify this point.
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1.4 Criticisms of Self-Stabilization

Despite the claims of the previous section, there are several peculiar features of the

self-stabilization model that are often criticized.

� The model allows network state to be corrupted but not program code. Isn't

this distinction arti�cial? After all programs and state variables are stored as

bits in memory.

� The model only deals with catastrophic faults that stop. There are other (e.g.,

Byzantine) models that deal with continuous faults. Aren't models that allow

continuous faults preferable?

� A self-stabilizing program P is only supposed to eventually produce correct be-

havior. In the interim period, P is allowed to make mistakes. How can we make

use of a program that can sometimes make mistakes?

� Most self-stabilizing network protocols require periodic message tra�c. Using

some theoretical measures of message complexity, the message complexity of a

self-stabilizing protocol is unbounded. Thus a theoretician may question whether

such protocols are worth the \cost".

We deal with each criticism in turn:

1.4.1 Distinction between Program Code and State

Program code can be protected against arbitrary corruption of memory by redundancy

since code is rarely modi�ed. Some static input (such as node IDs) can also be pro-

tected in this way and can be considered to be part of the program. Some changing

input (such as the list of neighboring nodes in a network) can be protected by requiring

that such input be the output of another self-stabilizing protocol. On the other hand,

the state of a program is constantly being updated and it is not clear how one can

prevent illegal operations on the memory by using checksums. It is even harder to

prevent a malfunctioning node from sending out incorrect messages.
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1.4.2 Faults that Stop versus Faults that Continue

In the Byzantine [LSP82] fault model, some fraction of faulty nodes can continuously

exhibit arbitrary faulty behavior. By allowing continuous faults, the Byzantine fault

model appears to be stronger than the self-stabilization model. However, network

protocols with Byzantine robustness [Per88] are expensive because they require large

amounts of redundancy in storage, processing, and message tra�c. On the other hand,

it is possible to make many protocols self-stabilizing with a small cost in extra message

tra�c and node processing.

In Byzantine models, only a fraction of nodes are allowed to exhibit arbitrary

behavior. In the self-stabilization model, all nodes are permitted to start with arbitrary

initial states. Thus, neither model subsumes the other. In theory, there is no reason

why a protocol cannot be robust against both Byzantine failures and arbitrary initial

states.

Assuming that faults stop in the self-stabilization model is only a modelling arti-

�ce. In practice, we only need faults to stop for a period long enough for the protocol

to stabilize. Thus the self-stabilization model is especially appropriate for handling

transient errors.

1.4.3 Permitting Initial Errors

A distributed database program cannot tolerate errors that may, for instance, wrongly

credit an account with a million dollars! However, for most of the network protocols

considered in this thesis, errors are not as critical. An example is a network protocol

that computes routes between nodes. The nice thing about a routing protocol is that

even if the network is completely fouled up, the worst thing that can happen is that

network tra�c stops for a while. Most of the stabilizing protocols described in this

thesis are used for routing, scheduling, and resource allocation tasks. For such tasks,

initial errors only result in a temporary loss of service.

1.4.4 Periodic Message Sending in the Self-stabilization Model

It is easy to show that any non-trivial self-stabilizing network protocol must send mes-

sages periodically. Periodic sending of messages may seem extremely ugly. However,
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in real networks, each node periodically sends control messages to its neighbors to de-

tect whether the neighbor is alive. For many of the protocols described in this thesis,

the periodic message sending required for stabilization can be piggybacked on such

\keep-alive" message tra�c without appreciable loss of e�ciency.

In a real implementation, periodic message sending is controlled by timers in order

to keep the overhead bounded. We will not model these timers explicitly. A timer

can be implemented in a self-stabilizing fashion as long as the hardware clock in every

node that's up continues to function. For instance, we can implement a timer using a

counter that is incremented every time the hardware clock ticks. When the counter

reaches its maximum value, the sending of a message is enabled, and the counter is

reset to 0. Assuming that the hardware clock continues to tick is not at all restrictive.

For most computers, if the hardware clock stops, the node has e�ectively crashed!

1.5 Brief History of Self-Stabilization

Self-stabilization was introduced by Dijkstra in a seminal paper [Dij74]. In Dijkstra's

model, a network protocol is modelled using a graph. The nodes of the graph contain

�nite state machines. The protocol is asynchronous, and the asynchrony is modelled

by an adversarial scheduler called a \demon". At each stage, the demon is allowed to

choose an arbitrary node in the graph to make a move. In a single move, a node is

allowed to read the state of its neighbors, compute, and then possibly change its state.

In this setting, Dijkstra described three self-stabilizing mutual exclusion protocols.

After Dijkstra's initial paper, work on self-stabilization languished for many years.

However, in this period, at least three researchers recognized the importance of the con-

cept, and championed its cause. Gouda and his co-workers at the University of Texas

produced a number of papers (e.g., [BGW87],[GM90], [AG90]) in this area. Lam-

port's PODC address ([Lam84]) was probably responsible for awakening the interest

of the theory community in self-stabilization. Independently, Tony Lauck, [Lau90],

who is responsible for the architecture of DECNET, recognized the applicability of

self-stabilization to real networks. At his insistence, self-stabilization was added as a

requirement ([Per83]) for many DECNET protocols.

After Lamport's PODC address, a number of papers began to appear in this area.

The contributions of these papers fall into three categories: re�nements of Dijkstra's
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model, solutions to speci�c tasks, and one general technique.

1.5.1 Re�nements of Dijkstra's model

In Dijkstra's model, a node is allowed to read the state of all its neighbors and change

its own state, all in one move. This level of atomicity is hard to achieve in a real

network. [BGW87] suggest a model in which at each step, the demon can allow

an arbitrary subset of nodes to make a move. Later [DIM90] introduced a model

in which a node communicates with its neighbors by reading or writing to certain

shared registers. Also, in their model, reading and writing of the shared register

(and local computation) are separate atomic steps that can be arbitrarily interleaved.

Other papers [Per83, AB89, GM90, KP90] model communication between nodes by

the explicit sending of messages.

In Dijkstra's model, one node in the graph is assumed to be a \leader" in order to

break symmetry. Dijkstra observed that some form of symmetry breaking is required

for self-stabilizing mutual exclusion. Later models introduced other forms of symmetry

breaking. In [Per83, AKY90], each node is assumed to have a distinct ID. [IJ90]

introduced the use of randomization. Finally, most papers in this area assume the

model is completely asynchronous. No assumptions are made about how long it takes

for actions to be performed. By contrast, [Per83, Per85] assume upper bounds on

message delivery and node processing times.

1.5.2 Existing solutions for Speci�c Tasks

Dijkstra's paper concentrated on the task of mutual exclusion on rings. Subsequent

papers (e.g., [BP89, DIM90, IJ90]) continued to work on self-stabilizing mutual exclu-

sion, but in di�erent models. Solutions to other tasks have also appeared.

[Per83, SG89] describe self-stabilizing routing protocols to compute shortest path

routes between every pair of nodes in a network. [Per85, AG90, AKY90] describe

self-stabilizing protocols to compute a spanning tree in a network. [AB89, GM90]

show how to establish reliable communication between a pair of nodes over a physical

channel. A reset protocol is a protocol that can be used to \reset" a network to a

prespeci�ed initial state; a snapshot protocol can be used to �nd a consistent global
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state of a network. [AG90, KP90] describe self-stabilizing snapshot and reset protocols.

[Spi88a] describes a self-stabilizing virtual circuit protocol.

1.5.3 Existing General Technique

While many fundamental problems have been tackled, there is a lack of general meth-

ods. We know of only one general technique other than the work described in this

thesis. Katz and Perry [KP90] show how to stabilize a large class of distributed algo-

rithms by centralized checking and correction at a leader. The main technical di�culty

in this approach is �nding a self-stabilizing method to do checking and correction. For

this purpose, [KP90] invented a self-stabilizing snapshot protocol. However, the need

for centralized checking makes the performance of this approach rather poor as we see

in the next section.

1.6 Local Checking and Correction: A Preview

The major theme of this thesis is the design of new and e�cient general methods

for making protocols self-stabilizing. All our methods are based on what we call

local checking. Unlike [KP90], our methods are e�cient because checking is local and

decentralized. In this section, we give a preview of our ideas.

1.6.1 Example of Checking and Correcting on a Single Link

Subsystem

To make the notion of local checking and correcting more concrete we quickly describe

an example of a protocol that works between two nodes, a sender node and a receiver

node (Figure 1.6) that are connected by two unidirectional links. The sender sends

messages to the receiver who bu�ers the messages in a �nite sized queue. Any message

that arrives when the queue is full is dropped. A simple credit-based scheme can be

used to prevent messages being dropped during normal operation.

The sender (Figure 1.6) keeps a credit register which stores the current credits

available to the sender. Initially, assume that the receiver queue is empty and that the
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Figure 1.6: Credit Based Flow Control between a Sender and a Receiver

sender's credit register is equal to the size of the receiver queue (say Max). The sender

only sends a message when the credit register is non-zero; after sending a message, the

sender decrements its credit register by one. When the receiver removes a message

from its queue, the receiver sends a CREDIT message back to the sender. When the

sender receives such a CREDIT message, the sender increments its credit register by

one.

It is easy to see that after proper initialization and assuming that no errors occur,

no messages will be dropped. Under such conditions, the following condition (which

we will later call a Local Predicate) holds at every instant. If at any instant we denote

(see Figure 1.6) the value of the credit register by C, the number of messages in ight

by M , the number of messages in the queue as Q and the number of credits in ight

by CR, then it must be true that: C +M +Q + CR = Max. Intuitively, this can be

seen by analogy to two banks that only transfer money between each other; assuming

no errors, the total amount of \money" (credits plus messages) in and between the

two banks must be conserved. This local predicate ensures that there is always room

in the queue for the messages in ight since M +Q � Max.

Unfortunately, this simple credit based scheme runs into trouble if the system is

either improperly initialized or there are errors on the link. Link errors can result

in lost or even (less likely) added credits. Credit loss can result in slowing down the

sender and possibly even deadlock; credit addition can lead to continuous dropping of

messages.

We can make this protocol self-stabilizing by superimposing a periodic check-

ing/correcting process (see Figure 1.7) on the original protocol. This process is trig-

gered by a timer at the sender every few seconds. To initiate a checking phase, the
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Figure 1.7: A Single Phase of Checking/Correction using Snapshots/Resets

sender (see Figure 1.7) sends a Snapshot ([CL85]) request message to the receiver.

While checking, the sender also stops sending any messages on the link. When the

receiver receives such a message, the receiver sends back a response containing the

number of messages in its queue (Q) at the instant it sent the response. When the

sender gets the response, the sender checks whether Q + C = Max, where C is the

value of the credit register at the instant the response is received. If this condition is

false, the sender infers that the local predicate is violated and initiates a reset phase.

To initiate a reset phase, the sender (see Figure 1.7) sends a Reset request message

to the receiver. As in checking, the sender also stops sending any messages on the

link until it gets a response.2 When the receiver receives such a request, the receiver

empties its queue and sends back a response. When the sender gets the response, the

sender reinitializes its credit register to Max. In other words, the receiver reinitializes

its local state on sending the response and the sender reinitializes its local state on

receiving the response. Its not hard to see that if no errors occur during the reset

phase, the local predicate will hold at the end of the reset phase.

Several optimizations can be added to this basic scheme. For example, it is possible

to avoid having the sender stop sending messages during a checking phase by keeping

track of some extra state variables. For this particular example, it is also possible to

avoid a separate reset phase; instead when the sender receives a snapshot response,

the sender can locally correct the credit register to account for any discrepancy.

2Chapter 5 contains details of how this protocol deals with lost request and responses.
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We can now illustrate the point made earlier that self-stabilization can subsume

the need for other fault-tolerance mechanisms. If the checking/correction procedure

is activated fairly often (doing it once every second on a high speed link requires

negligible overhead), then there is no need for separate mechanisms when either the

sender or receiver nodes or the two links crash and recover. For a crash and recovery

we do nothing special. Clearly the local predicate can be violated by such actions.

However, after the next checking and correction phase the ow control scheme will

begin working correctly. In the interim, messages may be lost but this is comparable

to the time most protocols take to reinitialize after a link recovers; during this period

the protocol is not providing service to the user. Thus the �nal scheme is both simple

and fault-tolerant.

This fault-tolerant credit based scheme was proposed by us (for use on high speed

links) at Digital Equipment Corporation ([CSV89]). Recently, we proposed a variant

of this scheme for hop-by-hop ow control on ATM3 at the ATM Forum meeting in

Aug 1993. Local checking and correction is practical!

1.6.2 Extending the Idea to a General Network

Briey, the rest of this thesis can be described as an extension (of the simple link

checking and correction scheme described in the last subsection) to general network

protocols.

So consider a network as shown in Figure 1.5. Recall that in the method of [KP90]

there is a leader that periodically checks the network. If the leader discovers that the

network is in an illegal state, the leader corrects the network by resetting it into a

good state. Intuitively, centralized checking and correction is slow. It also has high

message complexity.

Instead, we divide the network into a number of overlapping link subsystems as

shown in Figure 1.8. A link subsystem consists of a pair of neighboring nodes and the

channels between them. We wish to replace the global, centralized checking of [KP90]

with local, decentralized checking. The intent, of course, is to allow each link subsystem

to be checked in parallel. This results in faster stabilization.

3ATM stands for Asynchronous Transfer Mode. In ATM, messages are �xed sized \cells". There can

also be multiple \circuits" per link each of which must be independently ow-controlled and checked.
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Figure 1.8: An Example of Two Overlapping Link Subsystems in a Network

We describe su�cient conditions under which these methods can be applied. In-

tuitively, a network protocol is locally checkable if whenever the protocol is in a bad

state, some link subsystem is also in a bad state. Thus if the protocol is in a bad

state, some link subsystem will be able to detect this fact locally. As in [KP90], we

can correct a locally checkable protocol by doing (what we call) global correction of the

network. However, in some cases we can do even better if the protocol is also locally

correctable.

Intuitively, a network protocol is locally correctable if the network can be corrected

to a good state by each link subsystem independently correcting itself to a good state.

Clearly, this is non-trivial because link subsystems overlap (see Figure 1.8) at nodes.

In the �gure, the correction of link subsystem S1 may cause subsystem S2 to become

incorrect.

1.6.3 Examples of Local Checking and Correction

We will go through three simple examples to make these notions clearer. The �rst

example is not locally checkable, the second is locally checkable but does not appear

to be locally correctable, and the third is both locally checkable and locally correctable.

For the �rst example, consider a token passing protocol in a line graph as shown

in Figure 1.9. The line is oriented such that A is at the leftmost end and X is at
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A B C X
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Figure 1.9: Token Passing in an Oriented Line Graph is not Locally Checkable

Red Blue Blue Orange

Figure 1.10: Coloring a Cycle is Locally Checkable but not Locally Correctable

the rightmost end. In normal operation, a single token is passed from left to right

(i.e.. from A to X), and then back from right to left (i.e., from X back to A). Thus

each node in the line will receive the token periodically. This protocol is not locally

checkable if the graph has at least 3 nodes. Consider a typical link subsystem, for

example the subsystem between neighbors B and C in Figure 1.9. Clearly, in normal

operation it is possible for there to be no token at either B, C, or the channels between

them. Thus having no tokens in a link subsystem is a legal state of a link subsystem.

But this means that if there is no token in the entire network, no subsystem can detect

this fact locally. Remember that subsystem checking is not coordinated.

For the second example, consider a protocol that colors the nodes of a cycle as

shown in Figure 1.10. We require that the color of each node be either red, blue

or green. We also require that the color of each node be di�erent from that of its

neighbors. Assume that in one atomic step a node can read the state of its neighbors

and change its own state. However, steps of nodes can be arbitrarily interleaved.

Then the protocol is locally checkable. Suppose that node A has the same color as

a neighbor B. Then, this can be detected within the link subsystem containing A and

B.

However, it is not clear how to make this protocol locally correctable. Suppose
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that all nodes are initially red. Then by the symmetry of the initial state, it appears

that local corrections (or any corrections) are insu�cient to correct the system to a

good state. We could break symmetry with randomization. However, in this thesis we

will only consider deterministic local correction procedures.

Consider the same problem of coloring the nodes of a graph, except that the graph

is an oriented line graph as shown in Figure 1.9. Then the protocol is locally checkable

and locally correctable. Suppose that that two nodes in a link subsystem (say B and

C) have the same color. Then to correct the link subsystem, the color of the right node

(i.e., C) is changed to any legal color di�erent from the color of left node (i.e., B).

Assume that correction actions occur in bounded time after they are enabled. Then

within bounded time, node B will have a color di�erent from that of A and will never

change its color from this point on. Then within bounded time after node B's color

stabilizes, node C will have a color di�erent from that of B and will never change

its color from this point on. By induction, we can show that all nodes are colored

correctly in bounded time.

1.6.4 Why Local Checking is Useful

It is perhaps surprising that a number of useful network protocols are both locally

checkable and locally correctable. In subsequent chapters we will describe locally

checkable and correctable protocols for mutual exclusion, network resets, and end-

to-end communication across an unreliable network. It may seem from the simple

examples that our method is con�ned to acyclic graphs; this is not true: both the end-

to-end and reset protocols work on arbitrary topologies. It also appears (see Chapter

7) that other existing protocols that work in dynamic networks (in which the topology

can change due to link failures and recovery) are locally correctable. Protocols that

are both locally checkable and correctable can be stabilized very quickly.

Protocols that are locally checkable but work on a tree topology can be stabilized

in time proportional to the height of the tree. Thus we can remove the need for

local correctability if the underlying topology is a tree. Another way to remove the

need for local correctability (without restricting the topology to a tree) is to pay

a price in stabilization time. Protocols that are locally checkable but not locally

correctable can be made self-stabilizing by doing global correction using the network

reset protocol developed in this thesis. The price for using global correction is that
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the stabilization time now becomes proportional to the number of nodes. We describe

stabilizing spanning tree and topology update protocols that use local checking and

global correction.

We will also describe two compilers that can compile any deterministic synchronous

protocol � into a self-stabilizing asynchronous version of �. The �rst compiler is

stabilized by using local checking and correction, while the second compiler is stabilized

using local checking and global correction. The signi�cance of the compilers is that

there are some network tasks (for example, computing a minimal spanning tree) for

which a synchronous protocol exists but for which no locally checkable solution is

known. Hence the compilers extend the range of our general techniques.

Thus while local checking cannot be used to solve every problem, there are a large

number of useful protocols that can be e�ciently stabilized using this notion. There

are several bene�ts to this approach:

� The resulting protocols are e�cient and stabilize quickly.

� The approach allows us to understand how to design self-stabilizing protocols

in a systematic fashion. In fact, we will show that some existing self-stabilizing

protocols can easily be understood in this framework.

� The approach allows us to prove self-stabilization properties of protocols in a

modular way. This is because we limit ourselves to proving properties of link

subsystems instead of arguing about global states.

� As a side bene�t, local checking provides a useful debugging tool. Recall that

each link subsystem periodically checks whether the subsystem is in a good

state. Thus any violations can be logged for further examination. In a trial

implementation of our reset procedure on the Autonet [MAM+90], local checking

discovered bugs in the protocol code. In the same vein, local checking can provide

a record of catastrophic, transient faults that are otherwise hard to detect.

1.7 Thesis Organization

The thesis is organized into three major parts as illustrated in Figure 1.11. The �rst

part consists of three chapters on basic de�nitions and examples. The second part
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Basic Definitions and Examples
(Chapters 2 - 4)

Local Checking and Correction
(Chapters 5-7)

Local Checking and Global Correction
(Chapters 8-9)

Conclusions and Appendices

MAJOR RESULTS

Modularity Theorem

Local Correction Theorem

Tree Correction Theorem

Global Correction Theorem

Synchronous Protocol Compiilers

Figure 1.11: Thesis Organization

contains three chapters on local checking and local correction. The third part consists

of two chapters on local checking and global correction. The �nal chapter presents our

conclusions and contains a list of open questions. There are also several appendices.

The �rst appendix is a list of frequently used notation. Next, there are appendices

containing some details of proofs that were omitted in the main text for clarity. Finally,

there is an index of commonly used terms and de�nitions. Figure 1.11 also summarizes

the major results of the thesis.

We now describe each of the major parts in more detail below.

1.7.1 Basic De�nitions and Examples: Chapters 2 - 4

Chapter 2 describes our model of computation, a variant of the timed Input/Output

automata model ([MMT91], [LT89]. The model is basically a state machine model

except that transitions are labelled with action names. By separating actions into

internal and external actions, it is possible to de�ne the correctness of an automaton

in terms of its external behavior, where a behavior is a sequence of external actions.
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Chapter 3 contains our de�nitions of stabilization. Roughly, we say that an au-

tomaton A stabilizes to some target set P of behaviors if every behavior of A has a

su�x that is in P . The intuition is that the behaviors of A eventually begin to \look

like" the behaviors in P . The actual de�nitions are slightly more complex in order

to de�ne what it means to stabilize in bounded time. Our behavior de�nitions are

in contrast to previous de�nitions (e.g., [KP90] which are in terms of the states and

executions of a system. We do have a de�nition of stabilization that corresponds to the

standard de�nition; we use the behavior de�nition for speci�cation and the standard

de�nition for proofs.

Chapter 3 also contains our �rst important result. This is a Modularity Theorem

that allows us to prove facts about the stabilization of a large system by proving facts

about the stabilization of the system components. The theorem formalizes a \building

block" approach to designing stabilizing protocols that we use throughout the thesis.

Chapter 3 also describes a technique for proving stabilization properties. Chapter 3 is

joint work with Nancy Lynch.

Chapter 4 contains a quick example of local checking and correction in the simpli�ed

shared memory model introduced by Dijkstra in [Dij74]. Because Dijkstra's model is

so simple, it allows us to strip away extraneous detail and focus on the main ideas

behind local checking and correction. However, readers who wish to concentrate on

results for more realistic network models should skip Chapter 4 and go directly to

Chapter 5. From Chapter 5 onwards, we use a network model suitable for modelling

real networks. Chapter 4 is based on work done by the author. Independently, Anish

Arora and Mohamed Gouda from the University of Texas at Austin have obtained

similar results. Joint publication is planned.

1.7.2 Local Checking and Correction: Chapters 5 - 7

Chapter 5 begins by introducing our network model. Our network model is basically

the standard asynchronous message passing model except for one important twist:

each link is restricted to store at most one packet at a time. We argue that bounded

storage link models are essential in a stabilizing context. We also argue our network

model can be easily implemented in real networks. The network model of Chapter 5

is used for the reset of the thesis.
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The concept of local checking and correction was introduced in [APV91b], and

is joint work with Baruch Awerbuch and Boaz Patt. While these concepts are used

throughout the thesis, [APV91b] did not present a formal description of the method.

Instead [APV91b] described the method informally and showed how it could be used

to stabilize two important protocols, one for end-to-end message delivery and one for

network reset.

Chapter 5 gives a formal basis for the method of local checking and correction in

message passing systems. The chapter contains formal de�nitions of local checkability

and local correctability in a network model. These de�nitions are used to state the

main result of the chapter, the Local Correction Theorem. This theorem shows that

any locally checkable and correctable protocol can be transformed into an equivalent

stabilizing protocol. The stabilization time of the resulting system is proportional to

the height of a certain partial order that is used in the de�nition of local correctability.

Chapter 5 is joint work with Nancy Lynch.

Chapter 6 applies the method of local checking to a simple mutual exclusion proto-

col. Chapter 6 also contains an important result, the Tree Correction Theorem. This

theorem states that any locally checkable protocol on a tree can be e�ciently stabilized

in time proportional to the height of the tree. In other words, if the underlying topol-

ogy is a tree we can dispense with the need for local correctability. The proof of this

theorem is only sketched because we prove a corresponding tree correction theorem

for shared memory systems in Chapter 4.

Chapter 7 links the second and third parts of the thesis by describing a stabilizing

network reset protocol. Intuitively, a network reset protocol is a protocol that can

be used by some other protocol P in order to restore P to a good state. Protocol

P is given interfaces to make reset requests; the network reset protocol responds by

providing reset signals at each network node. If each node (that implements P ) locally

initializes its state at the instant it receives a signal, then P will be restored to a good

state.

In order to use such a network reset protocol as a tool for building other stabilizing

protocols (as we do in the third part of the thesis) the network reset must itself be

stabilizing. Chapter 7 applies the method of local checking and correction to create a

stabilizing network reset protocol as described in [APV91b]. Chapter 7 is joint work

with Baruch Awerbuch and Boaz Patt.

32



Chapter 7 also explores an interesting heuristic connection between locally cor-

rectable protocols and protocols that work in dynamic networks where links can fail

and recover. The heuristic states that locally checkable protocols for dynamic networks

can sometimes be made locally correctable. The basic idea is to use the link failure

and recovery actions of the original protocol to locally correct link subsystems. This

heuristic is the key to the proof of local correctability for our network reset protocol.

1.7.3 Local Checking and Global Correction: Chapters 8 - 9

The last part of the thesis contains two applications of global correction.

In Chapter 8 we prove another major result, the Global Correction theorem. This

theorem states that any locally checkable protocol can be stabilized in time propor-

tional to the number of network nodes. The Global Correction theorem shows that

we can dispense with the need for local correctability and the need for the underlying

topology to be a tree as long as we are willing to pay a higher price in stabilization

time. The height of the underlying partial order in the local correction method and the

height of the tree in in the tree correction method are typically smaller than the num-

ber of network nodes. Thus it pays to use local correction or tree correction wherever

possible.

We present stabilizing protocols for computing a spanning tree and solving the

topology update problem as examples of Global Correction. The spanning tree and

topology update protocols are based on joint work with Baruch Awerbuch and Boaz

Patt that is also described in [APV91a]. The protocols in Chapter 7 and 8 are both

e�cient and practical and can be applied to real networks.

Chapter 9 develops two compilers that can convert any synchronous protocol � into

a self-stabilizing asynchronous version of �. The main compiler, the Resynchronizer,

works by �rst applying the synchronizer protocol of [Awe85] to create an asynchronous

version of �. Next we use global correction to make the resulting protocol stabilizing.

This can be done by using a stabilizing reset protocol to periodically restart an asyn-

chronous version of protocol �. The proof of the current version of the Resynchronizer

protocol is incomplete. However, we have a proof of a much more complicated version

of the Resynchronizer protocol that was originally reported in [AV91]. The construc-

tion in this thesis is much simpler than our original construction in [AV91] but its
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proof is incomplete. Thus chapter 9 is best regarded as a set of useful ideas that need

polishing. Chapter 9 is joint work with Baruch Awerbuch

1.8 Reading the Thesis

Most chapters and long sections contain a roadmap at the start that explains the

organization of the chapter or section. Similarly most chapters end with a summary

of the important ideas in the chapter. Since it is easy to forget a piece of notation or

a de�nition, the reader may also wish to consult the notation appendix and the index.

Whenever the proof of a theorem or lemma is too long, we give an intuitive expla-

nation of why the theorem or lemma works in the main text, and provide more details

later or in the appendix. On a �rst reading, the reader is advised to skip the details.

We believe that self-stabilization is useful and practical and hope that systems

readers can also read this thesis. Chapter 2 is written to help readers unfamiliar

with formal methods to get comfortable with the formalism we use. A systems reader

wishing to get a quick summary of the results can read the introduction, summary and

main theorems in each chapter. Once the reader gets comfortable with our method of

describing protocols it should also be easy to read the actual code of the protocols. The

complicated (and important) pieces of code are heavily commented and are preceded

by informal descriptions.
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Chapter 2

The I/O Automaton Model

A formal description of an algorithm is a precise and unambiguous description of the

algorithm. Formal descriptions of sequential algorithms have proved to be useful.

Distributed algorithms are more complicated than sequential algorithms because they

have to deal with parallelism, asynchrony, and fault-tolerance. Thus we will often give

a formal presentation of the protocols in this thesis.

By describing algorithms formally, we hope to describe them precisely so as to

avoid ambiguity and to permit careful proofs of correctness. However, it is often hard

to do so and yet convey the important ideas. We will try to combat this by providing

intuitive explanations along with formal descriptions.

To describe algorithms precisely, we use an underlying mathematical model. The

idea is that after we model a real-life distributed algorithm, we can study the algorithm

purely in terms of its mathematical properties. Despite this, we will often return to

what these mathematical symbols represent.

In this chapter we will describe the computation model used to describe the dis-

tributed algorithms in this thesis. The �rst section of this chapter is an intuitive

introduction to the I/O automaton model. This section is written for readers unfa-

miliar with the I/O automaton model. The second section of the chapter contains a

formal description of the variant of the I/O automaton model that we use in the rest

of the thesis. Readers already familiar with the I/O automaton model may wish to

only read the formal description in Section 2.2.
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2.1 The I/O Automaton Model

Our model of computation is a variant of the timed Input/Output automaton model

[MMT], which in turn is based on the Input/Output automaton model of Lynch and

Tuttle [LT89]. We will omit the word \timed" in what follows. For instance, we will

refer to a timed I/O automaton simply as an automaton.

2.1.1 Why use the I/O Automaton Model?

We wish to model systems of processes that compute but also communicate with

other processes. The processes do not have a common clock and so communication is

asynchronous. A sequential algorithm computes some function of its input and then

halts. By contrast, our processes can continuously receive input from and react to

their environment.

Consider the example of a token passing ring. Such rings are the basis of a number

of local area networks that interconnect computers in o�ces and on college campuses.

A token passing ring consists of a number of processes, say 0 to n � 1, connected

together in a ring. To prevent more than one process from transmitting at the same

time, a token packet is passed from process to process. A process can transmit only

when it has a token. A process passes its token to its clockwise neighbor a bounded

time after it �nishes transmitting. It is easy to see that the system works correctly if

there is exactly one token in the system initially.

The simplest model of the token passing system is a big state machine. Each node is

a state machine that sends and receives packets and so are the channels between nodes.

The state of a channel is the sequence of packets stored in the channel. Unfortunately,

such monolithic models often do not have a property we call compositionality. A model

is said to be compositional if we can infer the behavior of the system from the behavior

of its components. This allows modular speci�cation and modular proofs.

The I/O automaton model is essentially a state machine model. However, it has a

few extra features that make it a compositional model.
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Figure 2.1: The Interface to Process i and the Channel between Process i and Process i + 1 in a token

passing system

2.1.2 Four Important Features of the I/O Automaton Model

In the I/O automaton model, both systems and processes are modelled by an I/O

automaton. An I/O automaton is an automaton (i.e., a state machine) with the

following additional features.

First, all state transitions of the automaton are labelled with names that are known

as actions. Further, all actions are classi�ed into three categories: input, output,

and internal. Intuitively, input actions are actions caused by the external world or

environment and to which the automaton must respond. Output actions are actions

caused by the automaton and to which the environmentmust respond. Finally, internal

actions are transitions that are neither input or output actions: such actions only

change the internal state of the automaton.

As an example, Figure 2.1 shows a single process in the token passing system, say

Process i. Of course, Process i must have interfaces to send and receive packets. We

can model these interfaces using an input action Receivei(p) to receive a packet p

and an output action Sendi(p) to send a packet p. In the �gure, we have not shown

any internal actions. Figure 2.1 also shows the external interface to a channel between

Process i and Process i+1. Notice that Sendi(p) is an input action and Receivei+1(p)

is an output action for this channel. Intuitively, this corresponds to the fact that when

Process i sends a packet as an output action, that packet must simultaneously be

stored in the channel using a channel input action.

The classi�cation of actions allows a simple scheme for \plugging" together au-

tomata so that they can can communicate. The formal name for this scheme is compo-

sition. Composition is based on an idea we have already alluded to. When automata
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Figure 2.2: The token passing system formed by composition of processes and channels

are composed, the output actions of the automata are identi�ed with input actions

of other automata that share the same name. As an example, suppose we compose

Process i with the channel between Process i and Process i+1. Then the output action

Sendi(p) of Process i gets identi�ed with the input action Sendi(p) of the channel.

When we run the new composed automaton, whenever Process i performs a Sendi(p)

action, the channel will simultaneously perform a Sendi(p) action. Thus the second

feature of the I/O automaton model is that automata communicate by simultaneous

performance of shared actions.

Continuing our example, we can compose the automata for Process i; 0 � i � n�1

and the channels between them to form a new automaton that represents the token

passing system. This is shown in Figure 2.2. We assume that all arithmetic on process

indices is mod n.

Suppose an automaton A wishes to perform an output action � that is also an input

action of another automaton B. Some models allow automaton B to block its inputs in

certain states. If B can block input actions, then A must somehow \handshake" with

B before A can perform action �. This in turn implies that action � is jointly controlled

by A and B. In the I/O automaton model, things are much simpler because of a third

feature of the model. Input actions are enabled in every state of an automaton. Thus

there is no need for handshaking, and an action is controlled solely by the originator

of the action.

The assumption that inputs cannot be blocked is extremely natural for the message

passing systems studied in this thesis. In real message passing systems, a process must

be prepared to receive packets in any state. Of course, a process may choose to drop

a packet when it receives it. On top of this basic model, processes may choose to

implement a ow control scheme to prevent senders from sending to receivers when
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the receivers are unable to process packets. However, such \ow control" is not part

of the basic I/O automaton model.

Output and internal actions of an automaton A are under the control of A; hence

they are also called locally controlled actions. Typically, we need to specify certain

\liveness" guarantees on the performance of locally controlled actions. For example,

in the token passing system we need to specify that a node holds the token for a

bounded amount of time. We specify such guarantees using a fourth feature of timed

automata. The locally controlled actions of an automaton are partioned into a number

of equivalence classes. Each class c in this partition has a time tc which represents an

upper bound on the performance of an action in class c.

Intuitively, each class represents the set of actions under the control of one system

component. The automaton will guarantee \fair turns" to the enabled actions in each

class. Suppose some action of class c is enabled at time t. One can think of the

automaton as having a scheduler that checks every class at time periods of at least

tc. If some action of class c is enabled when the scheduler checks the class, then some

action in the class is performed. More precisely, we require that either some action

of class c will be performed by time t + tc, or no action of class c is enabled in some

state that occurs before time t + tc. Returning to our example, we specify that each

Sendi(p) action at Process i is in a separate class with associated class time, say tn.

We do so because each Process i is a distinct system component that controls the

sending of its own messages.

When we compose automata, the state set of the resulting automaton is the cross

product of the state sets of the the component automata. More interestingly, the

timing partition of the new automaton is the union of the timing partitions of the

component automata. Thus composition preserves the timing guarantees of the con-

stituent automata.

2.1.3 Specifying Correctness in the I/O Automaton Model

How do we specify the correctness of an automaton? We take the token passing system

as an example. Our �rst attempt may be to specify correctness in terms of a set of

legal states: a token passing system is correct if in any state there is exactly one token.

But this allows implementations in which the token always remains at Process 1. Thus
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we also need to specify that every process receives a token within a bounded amount

of time. To do this, we need to describe executions of the system and to model how

time passes.

To model how time passes, we use the concept of a timed state and a timed action.

Intuitively, a timed state is a pair (s; t) where s is a state of the automaton and t is a

time; t is read as the time associated with state s. Similarly, a timed action is a pair

(a; t) where a is an action of the automaton.

When an automaton \runs", it generates a string representing an execution of the

system the automaton models. This string is simply an alternating sequence of timed

states and timed actions, that begins with a timed start state. An execution must

respect the state transition rules of the automaton and the timing guarantees speci�ed

by each class of the automaton. Section 2.2 contains a more precise description.

Using this de�nition of an execution, we can say that a token passing system S is

correct if for every execution � of S:

� There is exactly one token in any state of �.

� Within a bounded time after any state of �, Process i receives a token.

Specifying correctness using a set of legal executions is a reasonable solution that

we will use sometimes. However, the correctness speci�cation refers to the state of the

implementing system. Ideally, we should treat the implementing system as a \black

box" and describe its correctness in terms of its externally visible behavior.

Suppose we wished our token passing system to be used by other applications. Then

we need to specify additional actions to act as an interface to such client applications.

To do so we add two additional actions to each Process i. The �rst is an output action

Deliver Tokeni and the second is an input action Return Tokeni. This is shown

in Figure 2.3. Intuitively, Deliver Tokeni is used by Process i to deliver a token to

the external client; Return Tokeni is used by the external client to return the token

to Process i. Suppose we now compose all process and channel automata. Next, we

reclassify all actions of the composition as internal actions except theDeliver Token

and Return Token actions. Such a reclassi�cation can be done formally using a

\hide" operator.
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Figure 2.3: Process i with additional interfaces to an external client

DELIVER_

TOKEN

RETURN_

0
TOKEN

0

DELIVER_

TOKEN

RETURN _

TOKEN
n-1 n-1

TOKEN PASSING SYSTEM WITH INTERNAL DETAILS HIDDEN

Figure 2.4: A modular token passing system and its external interface to clients

The resulting automaton is shown in Figure 2.4. It essentially reects the interface

between the token passing system and its clients. A natural question is: can we specify

correctness of the system solely in terms of the external interface to the clients?

To answer this question, we �rst de�ne an external behavior (or behavior for short)

of an automaton. A behavior corresponding to an execution � is the subsequence of

� consisting only of timed input and output actions, together with a start time. The

start time of the behavior is equal to the time associated with the �rst state of �. A

sequence � is said to be a behavior of automaton A if � is the behavior corresponding

to some execution of A. Clearly any behavior of the automaton in Figure 2.4 will

consist only of Deliver Token and Return Token actions.

Using the notion of a behavior, we can de�ne the \external" correctness of the

token passing system as follows. A token passing system S is said to be correct if for

any behavior � of S the following two properties hold in the sequence �:

� There must be a Return Tokeni between any

Deliver Tokeni and a later Deliver Tokenj for any i; j.
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� Suppose that in �, a Return Tokeni occurs in bounded time after every

Deliver Tokeni for all i. Then for any j and any su�x  of �, a

Deliver Tokenj will occur in bounded time after the start of .

The �rst condition is a \safety" property. It guarantees that Process j will not

receive the token until all processes that have received the token before j have returned

the token. The second property is a \liveness property". It ensures that Process j

will get the token periodically. However, we can only guarantee this property if all

external clients return the token in bounded time after a token is delivered to them.

Notice a modelling trick that is being used here. While an I/O automaton A must

allow all possible inputs, we can specify that A exhibit correct behavior only on certain

\well-formed" inputs.

2.2 Formal Summary of the I/O Automaton Model

We summarize our discussion so far. In this thesis, we will use the following model

which is a special case of the model in [MMT91]. However, our terminology is slightly

di�erent from that of [MMT91].

An automaton A consists of �ve components:

� a �nite set of actions actions(A) that is partitioned into three sets called the set

of input, output, and internal actions. The union of the set of input actions and

the set of output actions is called the set of external actions. The union of the

set of output and internal actions is called the set of locally controlled actions.

� A �nite set of states called states(A).

� A nonempty set start(A) � states(A) of start states.

� A transition relation R(A) � states(A)�actions(A)�states(A) with the property

that for every state s and input action a there is a transition (s; a; ~s) 2 R(A).

� An equivalence relation part(A) partitioning the set of locally controlled actions

into equivalence classes, such that for each class c in part(A) we have a positive

real upper bound tc. (Intuitively, tc denotes an upper bound on the time to

perform some action in class c.)

42



An action a is said to be enabled in state s of automaton A if there exist some

~s 2 states(A) such that (s; a; ~s) 2 R(A). An action a is disabled in state s of automaton

A if it is not enabled in that state. Since one action may occur multiple times in a

sequence, we often use the word event to denote a particular occurrence of an action

in a sequence.

To model the passage of time we use a time sequence. A time sequence t0; t1; t2; . . .

is a non-decreasing sequence of non-negative real numbers; also the numbers grow

without bound if the sequence is in�nite. A timed element is a tuple (x; t) where t is a

non-negative real and x is an element drawn from an arbitrary domain. A timed state

for automaton A is a timed element (s; t) where s is a state of A. A timed action for

automaton A is a timed element (a; t) where a is an action of A.

Let X = (x0; t0); (x1; t1); . . . be a sequence of timed elements. We will also use

xj :time (which is read as the time associated with element xj) to denote tj.

We say that element xj occurs within time t of element xi if j > i and xj :time �

xi:time+ t. We will use X:start (which is read as the start time of X) to denote t0.

De�nition 2.2.1 An execution � of automaton A is an alternating sequence of timed

states and actions of A of the form (s0; t0); (a1; t1); (s1; t1); (a2; t2); (s2; t2); . . . such that

the following conditions hold:

1. s0 2 start and (si; ai+1; si+1) 2 R for all i � 0.

2. The sequence can either be �nite or in�nite, but if �nite it must end with a timed

state.

3. The sequence t0; t1; t2; . . . is a time sequence.

4. If any action in any class c is enabled in any state si of � then within time

si:time+ tc either some action in c occurs or some state sj occurs in which every

action in c is disabled.

Notice that the time assigned to any event ai in � (i.e., ai:time) is equal to the

time assigned to the next state (i.e., si:time). Notice also that we have ruled out the

possibility of so-called \Zeno executions" in which the execution is in�nite but time

stays within some bound.
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De�nition 2.2.2 Consider an execution � of A. Let  be the subsequence of � con-

sisting of timed external actions, and let t0 be the start time of �. The behavior �

corresponding to � is the sequence � = t0; .

Notice that the start time of a behavior is the start time of the corresponding

execution. The behaviors of automaton A are the behaviors corresponding to the

executions of A.

Notice that a behavior is not the same \type" of sequence as an execution since a

behavior consists of a start time followed by a sequence of timed actions. Formally,

a behavior sequence � is a sequence t0; (a1; t1); (a2; t2); . . . such that each ai is drawn

from some set of actions and such that t0; t1; t2; . . . is a time sequence. Note that any

behavior of an automaton is a behavior sequence. We will use �:start to denote the

�rst element in �; �:start can be read as the start time of behavior sequence �. As

before, we will use aj:time to denote tj.

Consider an execution � = (s0; t0); (a1; t1); (s1; t1); (a2; t2); . . .. The untimed ex-

ecution corresponding to � is the sequence s0; a1; s1; a2; s2; . . .. For brevity, we will

frequently describe execution � by the corresponding untimed execution s0; a1; s2; . . ..

By our notation, the time associated with any state si (or action aj) in � is si:time

(or aj :time).

Similarly consider a behavior � = t0; (b1; t1); (b2; t2); . . . The untimed behavior cor-

responding to � is the sequence b1; b2; . . .. We will often describe behavior � using the

corresponding untimed behavior b1; b2; . . .. Once again by our notation, the start time

of � is �:start and the time associated with any action bj in � is bj:time.

Notice that the time associated with the �rst state of an execution, s0:time, is

allowed to be an arbitrary non-negative real number. As we see below, this assumption

allows a clean statement of an important lemma about stabilizing automata. In the

timed automaton model [MMT91], each class also has an associated lower bound. In

our model, the lower bound associated with each class is implicitly assumed to be zero.

These two assumptions (or lack of assumptions) restrict us to modelling systems in

which the value of time is not used by the protocol. In the protocols we describe later,

we will use time only to model liveness guarantees and to measure time complexity.

The following lemma is useful later.
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Lemma 2.2.3 Consider any execution � of an automaton A. Any su�x of � that

starts with a timed start state is also an execution of A.

Proof: In essence, the lemma follows because we have no lower bounds on the time

between actions.

2.2.1 Composition and Hiding

To describe a collection of automata we will use a �nite index set, say I. For example,

an index set could be the set of vertices in a graph, or the set of edges in a graph.

Thus we often speak of a collection fAi; i 2 Ig of automata, where I is an index set.

Often we are interested in composing such a collection of automata.

Before automata can be composed they must obey certain restrictions. Clearly,

the automata cannot share internal or output actions without violating the principle

that each action is controlled by exactly one automaton. A collection of automata

fAi; i 2 Ig is said to be compatible if the collection is �nite, the output actions of all

automata are disjoint, and the internal actions of any automaton are disjoint from the

actions of any other automaton. Notice that this allows several automata to have a

common input action. This can be used, for instance, to model a broadcast from one

automaton to several other automata.

Let I be a �nite index set. The composition of a compatible collection fAi; i 2 Ig

is denoted by A = �i2IAi. A is the automaton formed as follows:

� An action � is an input action of A if � is the input action of some Ai in the

collection and is not the output action of some other Aj in the collection. The set

of output actions of A is the union of the output actions of the collection. The

set of internal actions of A is the union of the internal actions of the collection.

� The set of states of A is the cross-product of the state sets of the automata in

the collection. The set of initial states of A is the cross-product of the initial

state sets of the automata in the collection.

� Let sji denote the projection of some state s of A onto automaton Ai. Then the

transitions of A are the triples (s; a; ~s) such that for any i 2 I:
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{ If a is an action of Ai then (sji; a; ~sji) is a transition of Ai.

{ If a is not an action of Ai then sji = ~sji.

� The partition of A is the union of the partitions in the collection. Thus if an

action a belongs to some class c of any Ai, then a belongs to class c in A. The

upper bound corresponding to class c in A is the upper bound corresponding to

class c in Ai.

Note: Suppose we simply took the set of input actions of A to be the union of

the set of input actions of the components. Then any action that is an input action of

say Ai and an output action of say Aj will be classi�ed both as an input and output

action of A. It is to avoid this problem that the input actions of A are de�ned the way

they are. Notice also that any action of the component automata is also an action of

the composition.

We return to our claim that the I/O automaton model is compositional. We would

like to show that the behavior of a composition can be inferred from the behavior of

its components. We translate the following two lemmas from [MMT].

We use �jAi to represent the projection of a behavior � of A on to some constituent

automatonAi. The projection is the subsequence of � containing actions ofAi. We also

assume that �jAi inherits the times of � in the natural way. Thus the time associated

with any action in �jAi is the time associated with the corresponding action in �, and

the start time of �jAi is the start time of �.

The �rst lemma shows how we can \cut" a behavior of the composition into be-

haviors of each of the pieces. The second lemma shows how we can \paste" a sequence

of behaviors of the pieces into a behavior of the composition.

Lemma 2.2.4 Cut Lemma Let fAi; i 2 Ig be a compatible collection of automata

and let A = �i2IAi. Let � be any behavior of A. Then �jAi is a behavior of Ai for

every i 2 I.

Lemma 2.2.5 Paste Lemma Let fAi; i 2 Ig be a compatible collection of automata

and let A = �i2IAi. Let � be a behavior sequence such that each action in � is an

external action of A. If �jAi is a behavior of Ai for every i 2 I, then � is a behavior

of A.
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Finally, there is a hiding operator on automaton A with respect to some subset �

of the actions of A. The result of this operation is to to create a new automaton that

is identical to A except that all actions in � are reclassi�ed as internal actions.

2.2.2 Useful Notation

In all the automata that we will describe in this thesis, the state of an automaton

consists of values assigned to a set of variables. We use record notation to extract the

values of speci�c variables in the state. We say that a variable x has a value v in state

s if s:x = v. We sometimes omit the state s if it is clear by context which s we mean.

When we refer to the state si in execution � we mean the i-th state in the sequence

�. An interval of an execution � is a contiguous subsequence of � that starts and ends

with a timed state. The duration of an interval [si; sj ] is sj :time� si:time. An interval

of a behavior � is a contiguous subsequence of �.

A predicate of automaton A is a subset of the states of A. A predicate S is described

by a Boolean formula on variables; a state s 2 S i� the values of the variables of A

in state s satisfy the Boolean formula. Thus if S is x = 3 then s 2 S i� s:x = 3. We

also say that S holds in state s or S is true in state s to mean s 2 S. We say that a

predicate S remains true for time t after state si in execution � if for all states sj that

occur within time t of si in �, sj 2 S.

2.2.3 Modelling Asynchronous Protocols

In this thesis we will study \asynchronous" protocols. We wish such protocols to work

regardless of timing assumptions. This is typically done using \fairness assumptions"

instead of timing assumptions. However, we can model essentially the same thing by

ensuring that our protocols work regardless of the value of tc assigned to any class c.

The advantage of using parameterized upper bounds for classes comes in measuring

time complexity. In the standard approach, after �rst proving correctness using \fair"

executions, time complexity is then measured using the the assumption that the class

times tc are constants like 1 or 0. Often the time complexity arguments are extremely

similar to the liveness arguments used in the proof of correctness. In our approach

there is no need for this double e�ort; we replace liveness arguments by showing time
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bounds on certain events occurring. These time bounds are parameterized in terms

of the class times tc. Thus to obtain time complexity measures, we simply substitute

particular values for tc.
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Chapter 3

Stabilization: De�nitions and

Properties

In this chapter we will describe the basic de�nitions of stabilization we will use for

the rest of the thesis. We begin in the �rst section with a state-based de�nition of

stabilization that corresponds to the standard de�nitions in the literature. In the next

section we describe a new de�nition of stabilization in terms of external behaviors. In

Section 3.4 we describe a two stage proof technique for proving stabilization properties.

Then in Section 3.5 we describe a modularity result. This result shows that (under

certain conditions) we can prove facts about the stabilization of a big system by proving

facts about the stabilization of each of its parts.

3.1 De�nitions of Stabilization based on Executions

All the existing de�nitions of stabilization are in terms of the states and executions

of a system. We will begin with a de�nition of stabilization that corresponds to the

standard de�nitions (for example, that of Katz and Perry [KP90]). In the next section,

we will describe another de�nition of stabilization in terms of external behaviors. We

believe that the de�nition of behavior stabilization is appropriate for large systems

that require modular proofs. However, the de�nition of execution stabilization given

below is essential in order to prove results about behavior stabilization. We begin with

the de�nition of execution stabilization since it is also the de�nition that most readers
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are familiar with.

Suppose we de�ne the correctness of an automaton in terms of a set C of legal

executions. For example, recall that for the token passing system of Chapter 2 we

de�ned the legal executions to be those in which there is exactly one token in every

state, and in which every process periodically receives a token.

What do we mean when we say that an automaton A stabilizes to the executions

in set C in time t? Intuitively, we mean that within time t, all executions of A begin to

\look like" an execution in set C. For example, suppose C is the set of legal executions

of a token passing system. Then in the initial state of A there may be zero or more

tokens. However, the de�nition requires that within time t of the start of any execution

of A, there is exactly one token in any state.

To formalize this, we begin with the de�nition of a t-su�x of an execution �.

Intuitively, this is a su�x of � whose �rst element occurs no more than time t after

the start of �. Although we will apply this de�nition only to executions, we will state

the de�nition in terms of an arbitrary sequence of timed elements. Recall from Chapter

2 that a timed element is a tuple (x; t) where x is either a state or an action, and t is

a time.

De�nition 3.1.1 Consider any two sequences of timed elements � and �
0. We say

that �0 is a t-su�x of execution � if:

� �
0
:start� �:start � t and

� �
0 is a su�x of �.

We can now formally de�ne execution stabilization to a set of executions:

De�nition 3.1.2 Let C be a set of sequences of timed elements. We say that automa-

ton A stabilizes to the executions in C in time t if for every execution � of A there is

some t-su�x of execution � that is in C.

We also make the accompanying de�nition of execution stabilization to another

automaton:

50



De�nition 3.1.3 We say that automaton A stabilizes to the executions of automaton

B in time t if for every execution � of A there is some t-su�x of execution � that is

an execution of B.

So far, we have not made any assumptions about the automaton A that stabilizes

to the executions speci�ed by a set C or another automaton B. However, recall

that in Dijkstra's original de�nition, an automaton is \self-stabilizing" if regardless of

what state it starts in, an automaton \eventually" produces \legal" executions. Our

de�nitions are more general than Dijkstra's de�nitions. To see this, we now extend

Dijkstra's notion of \self-stabilization" to our timed setting.

As a stepping stone, for any automaton A we de�ne U(A) (which can be read as

the unrestricted version of A) to be the automaton that is identical to A except that

any state of A can be a start state of U(A).

De�nition 3.1.4 For any automaton A, we let U(A) denote the automaton that is

identical to A except that start(U(A)) = states(A).

Next, we can say that an automaton A \self-stabilizes" in time t if the following

holds: even if we start A in a state other than one of it's start states, the resulting

execution will begin to \look like" a properly initialized execution of A within time t.

Formally:

De�nition 3.1.5 We say that an automaton A self-stabilizes in time t if U(A) stabi-

lizes to the executions of A in time t.

The following simple lemma shows that execution stabilization is transitive. This

is an important lemma because it allows to prove execution stabilization in several

stages.

Lemma 3.1.6 If automaton A stabilizes to the executions of automaton B in time t1

and B stabilizes to the executions of automaton C in time t2, then A stabilizes to the

executions of C in time t1 + t2.
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3.2 De�nitions of Stabilization based on External

Behavior

In Chapter 2, we argued that a major theme of the I/O Automaton model [LT89] is

the focus on external behaviors of an automaton. For instance, the correctness of an

automaton is speci�ed in terms of its external behaviors. In Chapter 2 for instance, we

showed how to specify the correctness of a token passing system without any reference

to the state of the system. We did this by specifying the ways in which token delivery

and token return actions can be interleaved

Thus it natural to look for a de�nition of stabilization in terms of external behav-

iors. We would also hope that such a de�nition would allow us to modularly \compose"

results about the stabilization of parts of a system to yield stabilization results about

the whole system.

Typically, the correctness of an IOA is speci�ed by a set of legal behaviors P . An

IOAA is said to solve P if the behaviors ofA are contained in P . For stabilization, how-

ever, it is reasonable to weaken this de�nition and ask only that an automaton exhibit

correct behavior after some �nite time. In most of this thesis, we will use the behavior

stabilization de�nitions for specifying the stabilization properties of a system.

As in the case of execution stabilization, we begin with the de�nition of a t-su�x

of a behavior �. Intuitively, this is a portion of � that starts at time no more than t

after the start of �. However, this is not as easy as de�ning a t-su�x of an execution.

Recall that a behavior � = (t0; ) consists of two components: a start time t0 and a

sequence of timed actions . Thus we cannot simply de�ne a t-su�x of � to be a su�x

of � as we did in the case of an execution. We would also like a t-su�x of � to be a

behavior sequence: thus the t-su�x must have a start time as well as a sequence of

timed actions.

Figure 3.1 is a pictorial view of a behavior �. The second row represents the

sequence of actions of the behavior and the �rst row represents the times corresponding

to each action as well as the start time of the behavior. The dashed line to the right of

the start time represents an instant of time that occurs no more than time t after the

start of the behavior. Now consider the behavior that starts at the time corresponding

to the dashed line and consisting of all actions to the right of the dashed line. We

will call such a behavior a t-su�x of behavior �. Intuitively, as we said before, this
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Figure 3.1: A pictorial view of a t-su�x of a behavior

represents a portion of �. However the portion starts at time no more than t after the

start of �. Formally:

De�nition 3.2.1 Consider any two behavior sequences � = t0;  and �
0 = t

0
0; 

0. We

say that �0 is a t-su�x of behavior � if:

� �
0
:start� �:start � t.

� 
0 is a su�x of  containing all actions in � that occur at times strictly greater

than �
0
:start.

Note that the de�nition allows 0 to contain some, none, or all of the actions in

� that occur at times equal to �
0
:start = t

0
0. Note that the de�nition is similar but

yet di�erent from the de�nition of a t-su�x of an execution. Using this, we can now

de�ne behavior stabilization analogous to execution stabilization:

De�nition 3.2.2 Let P be a set of behavior sequences. An IOA A stabilizes to the

behaviors in P in time t if for every behavior � of A there is a t-su�x of behavior �

that is in P .

An automaton is said to solve another automaton B if every behavior of A is a

behavior of B. Similarly, we can specify that A stabilizes to the behaviors of some

other automaton B.
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De�nition 3.2.3 An automaton A is said to stabilize to the behaviors of another

automaton B in time t if for every behavior � of A there is a t-su�x of behavior �

that is a behavior of B.

The following lemmas are \obvious" in that they are what we expect to be true.

Lemma 3.2.4 Every automaton stabilizes to its own behaviors in time 0.

Lemma 3.2.5 If every behavior of automaton A is a behavior of automaton B, then

A stabilizes to the behaviors of B in time 0.

The next lemma is a transitivity result for behavior stabilization. It allow us to

prove behavior stabilization results in stages.

Lemma 3.2.6 If automaton A stabilizes to the behaviors of automaton B in time t1

and B stabilizes to the behaviors of automaton C in time t2, then A stabilizes to the

behaviors of C in time t1 + t2.

Another obvious consequence of our de�nition is:

Lemma 3.2.7 If automaton A stabilizes to the behaviors of an automaton B in time

t and ~t � t then A stabilizes to the behaviors of B in time ~t.

The previous lemmamotivates a natural complexity measure called the stabilization

time from A to B. Intuitively, this is the smallest time after which we are guaranteed

that A will behave like B. However, since we are dealing with a potentially in�nite

set of behaviors we have to be a little more careful.

De�nition 3.2.8 The stabilization time from A to B is the in�mum of all t such that

A stabilizes to the behaviors of B in time t.

The next lemma is simple but important because it ties together the execution and

behavior stabilization de�nitions. It states that execution stabilization implies behav-

ior stabilization. In fact, the only method we know to prove a behavior stabilization

result is to �rst prove a corresponding execution stabilization result, and then use this

lemma. Thus the behavior and execution stabilization de�nitions complement each

other in this thesis: the former is typically used for speci�cation and the latter is often

used for proofs.
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Lemma 3.2.9 If automaton A stabilizes to the executions of automaton B in time t

then automaton A stabilizes to the behaviors B in time t.

Proof: Let � be any behavior of A. Let � be some execution of A corresponding to

�. From the hypothesis, there is some �0 that is a t-su�x of execution � and is also

an execution of B. Consider the behavior �0 of B corresponding to execution �
0 of B.

From the de�nitions, we can verify that that �0 is a t-su�x of behavior �.

3.3 Discussion on the Stabilization De�nitions

First, notice that we have de�ned what it means for an arbitrary IOA to stabilize to

some target set or automaton. For most of the thesis we will be interested in proving

stabilization properties only for a special kind of automata: unrestricted automata.

An unrestricted IOA (see Section 3.5) is one in which all states of the automaton are

also start states. Such an IOA models a system that has been placed in an arbitrary

initial state by an arbitrary initial fault. However, (this important observation is due

to Arora and Gouda [AG92]), we might also be interested in modelling the response

of a system to more restricted kinds of initial faults. Such restricted faults initially

place a system A in some subset L of the states of A. After the initial fault, we

would like A to behave like some other automaton B. Thus our general de�nitions of

stabilization are applicable to other, more restricted forms of initial faults. While we

will not mention this explicitly from this point on, many of the techniques developed

in this thesis can also be applied to more restricted initial fault models.

Next, it is reasonable to ask whether our de�nitions are su�cient to cover all cases

that arise in practice? They do cover all the examples in this thesis. There are two

places we can weaken our de�nitions. The �rst is that instead of requiring that all

behaviors (or executions) of A stabilize in time t, we might only that certain \well-

formed" behaviors (or executions) of A stabilize. A \well-formed" behavior (execution)

is a behavior (execution) with certain restrictions on the input actions. For instance, if

A can pass a token to the external environment E, we might only require stabilization

for those behaviors (executions) in which E returns the token to A in bounded time.

The second possible modi�cation (which is sometimes needed, though again not

in this thesis) is to only require (in De�nitions 3.2.2 and 3.1.2) that the t-su�x of
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a behavior (execution) be a su�x of a behavior (execution) of the target set. One

problem with this modi�ed de�nition is that we know of no good proof technique to

prove that the behaviors (executions) of an automaton are su�xes of a speci�ed set of

behaviors (executions).1By contrast, it is much easier to prove that every behavior of

an automaton has a su�x that is in a speci�ed set.

Thus we prefer to use the simpler de�nitions for this thesis.

3.4 Proof Technique

We begin by de�ning an extremely useful piece of notation that is used extensively in

this thesis. This notation allows us to specify an IOA that is identical to another IOA

except for start states. This is roughly the inverse of the U(A) notation that creates

an unrestricted version of automaton A without start states.

De�nition 3.4.1 For any automaton A and any subset L of states(A), we denote by

AjL the automaton that is identical to A except that start(AjL) = L.

There has been a great deal of work in designing ordinary automata that have

speci�c start states to solve speci�c problems. It would be nice to gain leverage from

this existing body of work. Suppose we are given an IOA A that solves a set of

behaviors P and we now wish to design an IOA B that stabilizes to the behaviors in

P . Our goals are:

� We would like to use as much of the design of A as possible to design B.

� We would like to use as much of the proof that A solves P as possible to prove

that B stabilizes to the behaviors in P .

We now describe one way in which these goals can be achieved. The following

lemma is immediate from the de�nitions.

1Such proofs seem to involve arguments about reachable states. Familiar inductive proof techniques

(such as invariant arguments, progress metrics etc.) do not seem to su�ce for this purpose.
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Lemma 3.4.2 Consider an automaton A, L � states(A), and a problem P . Suppose

the following conditions are true:

� A stabilizes to the behaviors of AjL in time t.

� Any behavior of AjL is in P .

Then A stabilizes to the behaviors in P in time t.

In the next two subsections, we describe the techniques used in this thesis for

proving the two items on the list.

3.4.1 Proving that an Automaton Solves a Problem

To prove that any behavior of some automaton A is a behavior contained in some

problem P , it su�ces to prove that every behavior of A is a behavior of some other

automaton B, and that every behavior of B is in P .

There are well-known techniques (e.g., [LT89]) to show any behavior of an au-

tomaton A is a behavior of another automaton B. A commonly used technique is a

re�nement mapping. The basic idea is to establish a suitable mapping f between a

state of A and a state of B. Given an execution � of A, we use f to construct a

mapped execution of B that has the same external behavior as �.

Theorem 3.4.3 Re�nement Mapping: Let A and B be automata with the same

set of external actions. Let tc be the upper bound on the time to perform actions in

any class c of B. Let f be a mapping from the states of A to the states of B such that:

1. For any start state s of A, f(s) is a start state of B.

2. For all transitions (s; �; ~s) of A, either

� � is an action of B and (f(s); �; f(~s)) is a transition of B OR

� � is not an action of B and f(s) = f(~s).

3. For any class c of B and any execution � of A, suppose some action in c is

enabled in f(s). Then within tc time of s in � either:
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� Some action in class c occurs OR

� Some state ~s occurs such that no action in class c is enabled in f(~s).

Then every behavior of A is a behavior of B

Proof: Consider any execution � of A. We extend the function f to map executions

as well as states in the following way. Let f(�) be the sequence formed from � by:

� Removing every timed action in � that is not a timed action of B and the timed

state following such an action.

� Replacing every timed state (s; t) in the remaining sequence by (f(s); t).

Since we retain every action of B, the behavior corresponding to f(�) is the be-

havior corresponding to �.

Next, we verify that f(�) is an execution of B. To do so we check the four

conditions in De�nition 2.2.1. Let � = (s0; t0); (a1; t1); (s1; t1) . . .. Clearly, by con-

struction, f(�) is an alternating sequence of timed states and actions of B. Let

f(�) = (s00; t
0
0)(a

0
1; t

0
1)(s

0
1; t

0
1) . . ..

We check the four conditions in turn:

1. First s00 = f(s0) 2 start(B) by hypothesis. Next consider (s0i; a
0
i+1; s

0
i+1) for all

i � 0. Let ak be the i + 1'st action of B in �. Intuitively, ak is the action in �

that generated a
0
i+1 in f(�). Clearly, ak = a

0
i+1.

Next, consider the smallest j < k such that all actions between sj and sk�1 in �

are not actions of B. Then by construction, f(sj ) = s
0
i and f(sk) = s

0
i+1. Also

by the hypothesis, f(sj) = f(sk�1) and (f(sk�1); ak; f(sk)) is a transition of B.

Thus (s0i; a
0
i+1; s

0
i+1) is a transition of B.

2. The second condition follows trivially from the construction.

3. The third condition follows because any subsequence of a time sequence is a time

sequence.
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4. Suppose some action in some class c of B is enabled in some state s0i of f(�).

Then, by construction there is a corresponding state sj in � such that if  is the

su�x of � starting with sj , then f() is the su�x of f(�) starting with s
0
i. Then,

by hypothesis, either:

� Some action in class c of B occurs within tc time of sj in �. But by

construction, the same action occurs within tc time of s
0
i in f(�).

� Some state sk occurs within tc time of sj in � and such that all actions in

class c are disabled in f(sk). Let k be the smallest index such that this is

true for sk. Now if ak is not an action of B, then since f(sk�1) = f(sk) this

contradicts the assumption that k is the smallest index with this property.

Thus ak is an action of B and hence, by construction, (f(sk); sk:time) occurs

in f(). Thus there is a state that occurs within tc time of s
0
i in f(�) and

such that no action of c is enabled in this state.

3.4.2 Proving that an Automaton Stabilizes to another Au-

tomaton

We give one such technique in the following de�nition and theorem. The technique

is similar to techniques used for proving liveness properties (e.g., [OL82, MP91]) of

concurrent programs. Our theorem is a small generalization of a theorem for proving

stabilization properties that was previously proposed in [GM90].

Let L be a closed predicate of automaton A { once L is true in an any execution

of A, L remains true for the rest of the execution. We would like to prove that in

any execution of A, L becomes (and stays) true in bounded time. This implies that A

stabilizes to the executions of AjL in bounded time. We will describe a proof rule for

this purpose. Intuitively, instead of proving directly that the goal L eventually holds

we prove that a number of subgoals Li (each of which is a predicate of A) become and

stay true. The Li are chosen so that L is true if all the individual Li are true.

Each subgoal Li can be intuitively thought of as \depending" on some other set of

subgoals. This dependence relation is formalized by a partial order <. If j < i, then

(intuitively) Li \depends" on Lj. Suppose we could show that if all the subgoals that
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Li depend on become and stay true, then Li becomes and stays true. Then we can

concude that eventually all subgoals (and hence L) become and stay true. Intuitively,

this follows because the dependency relation is acyclic since it is formalized using a

partial order.

We can extend this idea to a timed setting to show that L will become true in time

proportional to the maximum length of a \dependency chain". A dependency chain is

formalized using the standard concept of a chain in a partially ordered set. Consider

a set fLi; i 2 Ig where (I;<) is a �nite partially ordered set. A chain is simply a

sequence L1 < L2 < . . . < Li.

The preceding discussion motivates the following de�nition and theorem.

De�nition 3.4.4 We say that an automaton A is stabilized to predicate L using pred-

icate set L and time constant t if:

1. L = fLi; i 2 Ig of sets of states of A, where (I;<) is a �nite, partially ordered

index set. We let height(L) denote the maximum length chain in the partial

order.

2. \i2ILi � L.

3. For all i 2 I and for all steps (s; �; ~s) of A, if s belongs to \j�iLj, then ~s belongs

to Li.

4. For every i 2 I and every execution � of A and every state s in � the following

is true. Suppose that either s 2 \j<iLj or there is no Lj < Li. Then there is

some state ~s 2 Li that occurs within time t of s in �.

The �rst condition says there is a partial order on the predicates in L. The second

says that L becomes \true", when all the predicates in L become true. The third is

a stability condition. It says that any transition of A leaves a predicate Li true, if all

the predicates less than or equal to Li are true in the previous state. Finally the last

item is a liveness condition. It says that if all all the predicates strictly less than Li

are true in a state, then within time t after this state, Li will become true.

We de�ne height(Li), the height of a predicate Li 2 L, to be the maximum length

of a chain that ends with Li in the partial order. The value of height(L) is, of course,
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the maximum height of any predicate Li 2 L. By the liveness condition, within time

t all predicates with height 1 become true; these predicates stay true for the rest of

the execution because of the third stability condition. In general, we can prove by

induction that within time i � t all predicates with height i become and stay true. This

leads to a simple but useful theorem:

Theorem 3.4.5 Execution Convergence: Suppose that automaton A is stabilized

to predicate L using predicate set L and time constant t. Then, A stabilizes to the

executions of AjL in time height(L) � t.

Proof: By induction on h; 0 � h � height(L), in the following inductive hypothesis.

Inductive Hypothesis: There is some state s that occurs within time h � t of the

start of � such that s 2 Li for all Li 2 L with height(Li) � h.

The inductive hypothesis implies that there is some state s that occurs within time

h � height(L) of the start of � and such that s 2 L. The theorem follows from this fact

taken together with Lemma 2.2.3.

Base Case, h = 0: Follows trivially since there is no Li 2 L with height(Li) = 0.

Inductive Step, 0 � h � height(L) � 1: Assume it is true for h. Then there is

some state si that occurs within time h � t of the start of � and such that for all Li 2 L

with height(Li) � h, si 2 Li. Consider any Lj 2 L with height(Lj) = h + 1. By the

fourth condition in De�nition 3.4.4, we know there must some state sf(j) 2 Lj that

occurs within time t of si in �. Let k = Maxff(j) : height(Lj) = h+ 1g. Then from

the third condition in De�nition 3.4.4, we see that sk occurs within time (h+ 1) � t of

the start of � and such that for all Li 2 L with height(Li) � h+ 1, si 2 Li.

3.5 Modularity Theorem

We will mostly deal with stabilization properties of a special class of automata called

unrestricted automata or UIOA. Intuitively, a UIOA models a system that can start

in an arbitrary state.

De�nition 3.5.1 A UIOA A is an automaton such that start(A) = states(A) (i.e.,

all states are start states).
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However, we will often show that a UIOA A stabilizes to the behaviors of a second

special kind of automaton called a Closed I/O Automaton or a CIOA . We de�ne the

reachable states of an automaton A to be the states that can occur in executions of A.

De�nition 3.5.2 A CIOA is an automaton such that every reachable state is also a

start state.

It is easy to see that:

Lemma 3.5.3 Every UIOA is a CIOA .

The two following lemmas are extremely convenient and are used often below with-

out explicit reference. It is the reason we allow executions and behaviors to start with

arbitrary values of time. Also, the next two lemmas depend crucially on the fact that

there are no lower bounds on the time between actions.

Lemma 3.5.4 Consider any execution � of a CIOA A. Any su�x of � that starts

with a timed state is also an execution of A.

Proof: Follows directly from Lemma 2.2.3 and the de�nition of a CIOA.

Suppose we begin to view an automaton after it has \run for a while" and the

resulting behavior is indistinguishable from an ordinary behavior of the automaton.

Then, intuitively, we say that the automaton is su�x-closed. More formally:

De�nition 3.5.5 We say that an automaton A is su�x-closed if for every behavior

� of A and every time t � 0, every t-su�x of behavior � is a behavior of A.

A remarkable number of interesting automata we will study in this thesis are su�x-

closed. This fact is explained by the following lemma:

Lemma 3.5.6 Any CIOA A is su�x-closed.
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Figure 3.2: Obtaining the su�x of an execution corresponding to a t-su�x of the behavior of the execution.

Proof: We will only sketch the main idea of the proof. Consider any behavior � of A

and any t � 0. Let �0 be any t-su�x of behavior �. Consider any execution � of A

such that the behavior of � is �. The proof consists of using � to construct another

execution �0 of A such that the behavior of �0 is b0; �0 is essentially a su�x of � whose

start time is adjusted to match the start time of �0.

The behavior � and corresponding execution � are sketched in Figure 3.2. By

de�nition, for every action in � there is a corresponding external action in � which

occurs at the same time. This is sketched by drawing the action in the behavior directly

above the corresponding action in the execution. (However, since the execution will, in

general, have internal actions not included in the behavior, the indices of the actions

will not necessarily match. Thus in the �gure a1 in � corresponds to ap in �.)

The t-su�x �0 can be sketched using a line that contains all actions in � occuring

to the right of the line (see Figure 3.2). The line is drawn between two actions in �

because the start time of �0 may occur in between the times of two actions in �.

We need a su�x �0 of � whose behavior is equal to �
0. Thus we look for a state

sx in � corresponding to the vertical time line drawn in Figure 3.2. But we may not

have a state in � whose time is equal to the start time of �0. So (intuitively) we choose

sx to be the �rst state that occurs to the \left" of the vertical time line. Then we

choose �0 to be the su�x of � starting with sx and with the time of sx adjusted to

be equal to �
0
:start. This works for two reasons. First, by de�nition of a CIOA, sx

is a start state of A. Second, we have no lower bounds on the time between actions

in A. Thus increasing the time of the initial state of an execution (and such that the

resulting time is no greater than the time of the �rst action) still leaves us with a legal
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execution.

The su�x-closed property is not just a interesting curiousity. It also provides the

basis for the following important Modularity Theorem that we discuss next.

Our Modularity Theorem about the stabilization of composed automata may seem

\obvious". We would expect that if each pieceAi of a composed system stabilizes to the

behaviors of say Bi, then the composition of the Ai should stabilize to the composition

of the Bi. Sadly, this is not quite true. There is a counterexample described in Section

3.5.1 which shows that if we allow some of the Bi to be arbitrary automata, then this

statement is false.

The main problem is that for a given behavior of the system A, the component

automata Ai may stabilize at di�erent times. But if each of the Ai begin to \look

like" the corresponding Bi at di�erent times, then it may not be possible to paste the

resulting behavior into a behavior that \looks like" a behavior of B. However, this

problem does not arise if each of the Bi is su�x-closed. Thus we have the following

result.

Theorem 3.5.7 Modularity: Let I be a �nite index set. Let AI = fAi; i 2 Ig be a

compatible set of automata and BI = fBi; i 2 Ig be a second set of compatible, su�x-

closed automata. Suppose also that for all i 2 I, Ai stabilizes to the behaviors of Bi in

time t. Let A = �i2IAI and B = �i2IBI . Then A stabilizes to the behaviors of B in

time t.

Proof: The proof relies on the Cut Lemma (Lemma 2.2.4) that allows us to dis-

sect a behavior of a system into its component behaviors, and the Paste Lemma

(Lemma 2.2.5) that allows us to paste component behaviors into a system behavior.

Consider any behavior � of A. Consider the �0 that is a t-su�x of behavior � and

such that:

� �
0
:start = t+ �:start.

� Any actions in �
0 occur at times strictly greater than t.

We can verify that such a �
0 exists from the de�nition of a t-su�x of a behav-

ior. Intuitively, �0 is chosen so that all component behaviors are guaranteed to have

stabilized in �
0.
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Now consider any i 2 I. By the Cut Lemma (Lemma 2.2.4), �jAi is a behavior

of Ai. But because Ai stabilizes to the behaviors of Bi in time t, there must be some

t
0 � t and some �i such that:

� �i is a t
0-su�x of �jAi and is also a behavior of Bi.

� �i:start = t
0 + �:start.

Next consider �0jAi. It can be veri�ed that �0jAi is a t
00-su�x of �i for some t

00.

Thus by the fact that Bi is su�x-closed, �
0jAi is a behavior of Bi. Thus �0jAi is a

behavior of Bi for all i. Hence by the Paste Lemma (Lemma 2.2.5), �0 is a behavior

of B. The theorem follows since �0 is a t-su�x of behavior �.

3.5.1 Discussion of the Modularity Theorem

In the hypothesis of the modularity theorem, we assumed that each of the Bi was su�x-

closed. We show a counterexample to show that if the Bi are allowed to be arbitrary

automata, then the theorem is false. Consider the speci�cation of automaton Bi shown

in Figure 3.3. Let Ai be a UIOA which is identical to Bi except that the start states of

Ai are unrestricted (i.e., the initial value of counti in A can be any value in the range

f0; . . . ; 2g).

It is easy to see that Ai stabilizes to the behaviors of Bi in time 3t because within

that time the value of counti must reach 0. After such a state, any behavior of Ai

is a behavior of Bi. Now consider an index set I = f1; 2g. Consider A which is the

composition of A1 and A2 and B which is the composition of B1 and B2. We claim

that A does not stabilize to B in time 3t (or in fact in any �nite time).

To see this, we start with the following observation. In any behavior of B in which

the actions of B1 andB2 strictly alternate, the counter values output in such a behavior

will be of the form 0; 0; 1; 1; 2; 2; 0; 0; . . .. Now consider the behavior corresponding to

an execution of A in which count1 = 0 initially and count2 = 2 initially and the actions

of A1 and A2 strictly alternate starting with A1. Then the counter values output in

such a execution will be of the form 0; 2; 1; 0; 2; 1; 0; 2 . . .. From the earlier observation,

it follows that there is no su�x of this behavior of A that is a behavior of B.
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The state of Bi consists of an integer variable counti 2 f0; . . . ; 2g

The initial value of counti = 0 (* i.e., B is not a UIOA *)

Incrementi(k) (*output action, outputs counter value using parameter k*)

Precondition: k = counti

E�ect: counti := (counti + 1) mod 3

Any Incrementi action is in a separate class with upper bound t.

Figure 3.3: Speci�cation for Automaton Bi

Suppose we weakened the de�nition of stabilization to allow any t-su�x of A to be a

su�x of a behavior of B. With this weaker de�nition, the counterexample disappears.2

Thus the su�x-closed requirement may be a consequence of our (stronger) stabilization

de�nition. However, we did not �nd a way to prove the modularity theorem using

the weaker de�nition. Without the su�x-closed requirement it is di�cult to \paste"

together behavior su�xes of the Bi's to create a behavior of B. A possible research

direction would be to look for weaker conditions (than the Bi being su�x-closed)

under which the modularity theorem would work. Another research direction would

be to extend these results to systems with non-zero lower bounds on the time between

actions.

3.6 Summary

The two main contributions of this chapter are the de�nitions of stabilization in terms

of external behaviors (De�nitions 3.2.2 and 3.2.3) and the modularity theorem (The-

orem 3.5.7).

The de�nitions of stabilization in terms of external behaviors are di�erent from

2I am grateful to Robert Gallager and Victor Luchanko of MIT for pointing this out.
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previous de�nitions that are in terms of the states and executions of the underlying

automaton. The external behavior de�nition allow us to de�ne that automaton A

stabilizes to another automaton B even though A and B have di�erent state sets.

This is most useful when A is a low level model (e.g., an implementation) and B is a

high level model (e.g., a speci�cation).

The modularity theorem gives us a formal basis for a building-block approach: it

allows us to prove facts about the stabilization of a big system by proving facts about

the stabilization of each of its parts. The requirement that each of the target automata

be su�x-closed may seem restrictive. However, in a stabilizing setting this is not the

case. Most interesting speci�cations (for problems such as message delivery, routing,

and scheduling) are either su�x-closed or can be rephrased so they are su�x-closed.

We have already seen that any UIOA (an automaton for whom every state is a start

state) is su�x-closed. Similarly, any CIOA (an automaton for whom every reachable

state is a start state) is su�x-closed. In a stabilizing setting the basic building blocks

are UIOAs since they model systems that can start in an arbitrary state. The methods

developed in this thesis, on the other hand, tend to construct automata that are

CIOAs.3 Thus we can build stabilizing solutions modularly in several stages. In the

�rst stage we compose s set of UIOAs to yield a CIOA. In the next stage, the resulting

CIOAs are composed with other UIOAs to yield more CIOAs. This process can be

repeated inde�nitely to build a complex stabilizing solution to a problem. Since all the

pieces used are su�x-closed, the modularity theorem can be used at each stage. As

an example, the stabilizing spanning tree protocol of Chapter 8 is constructed using

the stabilizing reset protocol of Chapter 7 which in turn can be constructed using a

stabilizing Data Link implementation. Thus, despite its restrictions, the modularity

theorem is extremely useful in this thesis.

We also have a de�nition of stabilization in terms of executions that corresponds

to the standard de�nition ( De�nition 3.1.2). This de�nition in terms of executions is

used in this thesis for two reasons. First, it is sometimes useful in its own right when

the alternative would entail adding many superuous actions.4 Second, the de�nition

3Our methods construct automata that stabilize to a speci�cation automaton of the form AjL. If L

is a closed predicate of A { i,e., no transition of A can falsify L { then AjL is a CIOA.
4For example, the correctness of a spanning tree protocol is easily de�ned in terms of a parent

variable at each node. For correctness, we could specify that the graph induced by the parent variables

be a spanning tree of the network. An external behavior speci�cation would require additional output
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in terms of executions is essential for proving results about stabilization of behaviors

because our main tool for proving such results is Lemma 3.2.9.

The de�nitions we use give us several nice properties that we believe any de�nition

of stabilization should provide. The properties we believe to be important are: transi-

tivity for both behavior and execution stabilization (Lemma 3.2.6 and Lemma 3.1.6),

the fact that execution stabilization implies behavior stabilization (Lemma 3.2.9), the

fact that stabilization in time t implies stabilization in time greater than t (Lemma

3.2.7), and the Modularity theorem (Theorem 3.5.7).

The index contains pointers to the de�nitions given in the last two chapters. The

appendix also contains a list of commonly used notation for easy reference.

actions to report the value of the parent variables at each node.
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Chapter 4

Local Checking and Correction in a

Shared Memory Model

In Dijkstra's [Dij74] model, a network protocol is modelled using a graph of �nite

state machines. In a single move, a single node is allowed to read the state of its

neighbors, compute, and then possibly change its state. In a real distributed system

such atomic communication is impossible. Typically communication has to proceed

through channels. Such channels must be be modelled explicitly as state machines that

can store messages sent from one node to another. Also, in message passing models, the

channel state machine is essentially �xed (with actions to send and deliver packets) but

the node state machines can be arbitrarily speci�ed by the protocol designer. However,

in Dijkstra's model all state machines are node state machines and can be arbitrarily

speci�ed by the protocol designer.

While Dijkstra's original model is not very realistic, it is probably the simplest

model of an asynchronous distributed system. This simple model provided an ideal

vehicle for introducing [Dij74] the concept of stabilization without undue complexity.

For this chapter only, we will use Dijkstra's original model to introduce the method of

local checking and correction. In later chapters, we will use a more realistic message

passing model. Thus the goals of this chapter are:

� To describe some simple examples of local checking and correction that are more

interesting than than the trivial examples given in Chapter 1.
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� To show that existing work in [Dij74] and [AG90] can be understood very suc-

cinctly using the framework of local checking and correction.

The main result of the chapter is a theorem (Theorem 4.3.1) that states that

any locally checkable protocol on a tree can be e�ciently stabilized. To motivate this

theorem, we begin in Section 4.2 with a reset protocol [AG90] due to Arora and Gouda.

We examine the behavior of the Arora-Gouda protocol in a good state and conclude

that the protocol is in a good state when all link subsystems are in a good state. Then

we show how to add correction actions to the protocol such that if a link subsystem

is in a bad state, it can be corrected to a good state. We also determine an order

in which link subsystems can be corrected so as to ensure that the correction process

converges.

In Section 4.3 we generalize the procedure followed in Section 4.2 to obtain The-

orem 4.3.1. Then in Section 4.4 we show how one of Dijkstra's protocols [Dij74] can

easily be understood using Theorem 4.3.1.

4.1 Modelling Shared Memory Protocols

We will use the version of the timed I/O Automaton model [MMT91] described in

Chapter 2. How can we map Dijkstra's model into this model? Suppose each node in

Dijkstra's model is a separate automaton. Then in the Input/Output automata model,

it is not possible to model the simultaneous reading of the state of neighboring nodes.

The solution we use is to dispense with modularity and model the entire network as a

single automaton. All actions, such as reading the state of neighbors and computing,

are internal actions. The asynchrony in the system, which Dijkstra modelled using a

\demon", is naturally a part of our model. Also, we will describe the correctness of

Dijkstra's systems in terms of executions of the automaton.

4.2 A Reset Protocol on a Tree

Before describing the reset protocol due to Arora and Gouda [AG90], we �rst describe

the network reset problem.
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Recall that we have a collection of nodes that communicate by reading the state

of their neighbors. The interconnection topology is described by an arbitrary graph.

Assume that we are given some application protocol that is being executed by the

nodes. We wish to superimpose a reset protocol over this application such that when

the reset protocol is executed the application protocol is \reset" to some \legal" global

state. A \legal" global state is allowed to be any global state that is reachable by the

application protocol after correct initialization. The problem is called distributed reset

because reset requests may arrive at any node.

A simple and elegant network reset protocol is due to Finn [Fin79]. In this protocol

each node i running the application protocol has a session number. When the reset

protocol is not running, the session numbers at every node are the same. When a node

receives a reset request, it resets the local state of the application (to some prespeci�ed

initial state) and increments its session number by 1. When a node sees that a neighbor

has a higher session number, it changes its session number to the higher number and

resets the application. Finally, the application protocol is modi�ed so that a node

cannot make a move until its session number is the same as that of its neighbors. This

check prevents older instances of the application protocol from \communicating" with

newer instances of the protocol. This protocol is shown to be correct [Fin79] if all the

session numbers are initially zero and the session numbers are allowed to grow without

bound.

We rule out the use of unbounded session numbers as unrealistic. Also, in a stabi-

lizing setting, having a \large enough" size for a session number does not work. This

is because the reset protocol can be initialized with all session numbers at their max-

imum value. Thus, we are motivated to search for a reset protocol that uses bounded

session numbers. Suppose we could design a a reset protocol with unbounded numbers

in which the di�erence between the session numbers at any two nodes is at most one in

any state. Suppose also that for any pair of neighboring nodes u and v that compare

session numbers, the session number of one of the nodes (say u) is always no less than

the session number of the other node. Then, since the session numbers are only used

for comparisons, it su�ces to replace the session numbers by a single bit that we call

sbiti. This is the �rst idea in Arora and Gouda's reset protocol [AG90].

To realize this idea, we cannot allow a node to increment its session number as

soon as it gets a reset request. Otherwise, multiple reset requests at the same node

will cause the di�erence in session numbers to grow without bound. Thus nodes must
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coordinate before they increment session numbers.

In Arora and Gouda's reset protocol [AG90], the coordination is done over a rooted

tree. Arora and Gouda �rst show how to build a rooted tree in a stabilizing fashion.

In what follows we will assume that the tree has already been built. Thus every node

i has a pointer called parent(i) that points to its parent in the tree and the parent of

the root is a special value nil.

Given a tree, an immediate idea is to funnel all reset requests to the root. On receipt

of a request, the root could send reset grants down the tree. Nodes could increment

their session number on receiving a grant. Unfortunately, this does not work either

because a node A in the tree may send a reset request and receive a grant before some

other node B in the tree receives a grant. After getting its �rst grant, A may send

another request and receive a second grant before B gets its �rst grant. Assuming

that the session numbers are unbounded, the di�erence in the session numbers of A

and B can grow without bound.

Instead, the reset task is broken into three phases. In the �rst phase, a node sends

a reset request up the tree towards the root. In the second phase, the root sends a

reset wave down the tree. In the third phase, the root waits until the reset wave has

reached every node in the tree before starting a new reset phase. This ensures that

after the system stabilizes,1 the use of three phases will guarantee that a single bit

sbiti is su�cient to distinguish instances of the application protocol.

The three phases are implemented by a mode variable mode i at each node i. The

mode at node i has one of three possible values: init; reset, and normal. All nodes are

in the normal mode when no reset is in progress. To initiate a reset, a node i sets

mode i to init (this can be done only if both i and its parent are in normal mode). A

reset request is propagated upwards by the action Propagate Requesti which sets

the mode of the parent to init when the mode of the child is init. A reset wave is begun

by the root by the action Start Reset which sets the mode of the root to reset. The

reset wave propagates downwards by Propagate Reseti which sets the mode of a

child to reset if the mode of the parent is reset. When a node changes its mode to

reset, it ips its session number bit, and resets the application protocol. Finally, the

completion wave is propagated by the action Propagate Completioni which sets a

node's mode to normal when all the node's children have normal mode.

1in this chapter, we will always use the execution stabilization de�nitions
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The automaton code for this implementation is shown in Figure 4.1 and Figure 4.2.

Notice that besides the actions we have already described, there is a Correcti action

in Figure 4.2. This action was used in an earlier version [AG90] to ensure that the

reset protocol was stabilizing.

Informally, the reset protocol is stabilizing if after bounded time, any reset requests

will cause the application protocol to be properly reset. The correction action in

Figure 4.2 [AG90] ensures stabilization in a very ingenious way. However, the proof of

stabilization is somewhat di�cult and not as intuitive as one might like. The reader

is referred to [AG90] for details. Instead, we will use local checking and correction to

describe another correction procedure that is very intuitive. As a result, the proof of

stabilization becomes transparent.

We start by writing down the \good" states of the reset system in terms of link

predicates Li;j. We say that the system is in a good state if for all neighboring nodes

i and j, the predicate Li;j holds, where Li;j is the conjunction of the two predicates:

� If (parent(i) = j) and (mode j 6= reset) then (mode i 6= reset) and (sbiti = sbitj)

� If (parent(i) = j) and (mode j = reset) then either:

{ (mode i 6= reset) and (sbiti 6= sbitj) OR

{ (sbiti = sbitj)

The predicates can be understood intuitively as describing states that occur when

the reset system is working correctly. The �rst predicate says that if the parent's mode

is not reset, then the child's mode is not reset and the two session bits are the same.

This is true when the system is working correctly because of two reasons. First, the

child enters reset mode only when its parent is in that mode, and the parent does not

leave reset mode until the child has left reset mode. Second, if the parent changes its

session bit, the parent also goes into reset mode; and the child only changes its session

bit when the parent's mode is reset.

The second predicate describes the correct states during the second and third

phases of the reset until the instant that the completion wave reaches j. It says

that if the parent's mode is reset, then there are two possibilities. If the child has

not \noticed" that the parent's state is reset, then the child's bit is not equal to the
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The state of the system consists of two variables for every process in the tree:

mode i 2 finit; normal; resetg

sbiti, a bit

Propagate Requesti (*internal action to propagate a reset request upwards *)

Preconditions:

mode i = normal

i = parent(j) and modej = init

E�ects: mode i := init

Start Reseti (*internal action at root to start a reset wave*)

Preconditions: mode i = init and parent(i) = nil

E�ects:

mode i := reset; (*also reset application state at this node*)

sbiti :=� sbiti; (*ip bit*)

Propagate Reseti (*internal action to propagate reset downwards*)

Preconditions:

mode i 6= reset

j = parent(i) and modej = reset and sbitj 6= sbiti

E�ects:

mode i := reset; (*also reset application state at this node*)

sbiti :=� sbiti; (*ip bit*)

Propagate Completioni (*internal action to propagate completion wave upwards *)

Preconditions:

mode i = reset

For all children j of i: modej = normal and sbiti = sbitj

E�ects: mode i := normal

Every action is in a separate class with upper bound equal to

tn

Figure 4.1: Normal Actions at node i in Arora and Gouda's Reset Protocol.[AG90]
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Correcti (*extra internal action for correction at node i*)

Preconditions:

j = parent(i) 6= nil

(modej = mode i) and (sbiti 6= sbitj)

E�ects: sbiti := sbitj

Every action is in a separate class with upper bound equal to

tn

Figure 4.2: Original correction action in Arora and Gouda's Reset Protocol [AG90].

parent's bit. (This follows because when the parent changes its mode to reset, the

parent also changes its bit; and just before such an action the second predicate assures

us that the two bits are the same.) On the other hand, if the child has noticed that the

parent's state is reset, then the two bits are the same. (This follows because when the

child notices that the parent's mode is reset, the child sets its bit equal to the parent's

bit and does not change its bit until the parent changes its mode.)

Suppose that in some state s these link predicates hold for all links in the tree.

Then [AG90] show that the system will execute reset requests correctly in any state

starting with s. This is not very hard to believe. But it means that all we have to

do is to add correction actions so that all link predicates will become true in bounded

time.

The tree topology once again suggests a simple strategy. We remove the old ac-

tion Correcti in Figure 4.2 and add a new action Correct Childi as shown in

Figure 4.3. Basically, Correct Childi checks whether the link predicate on the link

between i and its parent is true. If not, i changes its state such that Li;j becomes true.

Notice that Correct Childi leaves the state of i's parent unchanged. Suppose j is

the parent of i and k is the parent of j. Then Correct Childi will leave Lj;k true if

Lj;k was true in the previous state.

Thus we have an important stability property: correcting a link does not a�ect the
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Correct Childi (*modi�ed correction action at nodes*)

Preconditions:

j = parent(i) 6= nil

Li;j does not hold

E�ects:

sbiti := sbitj

mode i := modej

All actions are in a separate class with upper bound tn.

Figure 4.3: Modi�ed Correction action for Arora and Gouda's Reset Protocol. All other actions are as in

Figure 4.1.

correctness of links above it in the tree. Using this we can show that in bounded time,

all links will be in a good state and so the system is in a good state. Rather than

prove that this modi�ed automaton stabilizes, we will prove a more general result in

the next section: that any locally checkable tree automaton can be locally corrected

into a good global state.

We will return to the network reset problem in Chapter 7. Our stabilizing reset

protocol is more e�cient than the reset protocol of [AG90] and is also designed to

work in a message passing model.

4.3 Tree Correction for Shared Memory Systems

In the last section, we described informally the problem of stabilizing a reset protocol

on a tree. We also suggested a technique of adding correction actions to every node.

That example motivates us to ask whether there is a general result for trees. To

describe and prove such a general result, we start with the following de�nitions.

We will continue to model a network as a single automaton in which a node can
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read and write the state of its neighbors in a single move using an internal action.

Formally:

A shared memory network automaton N for graph G = (E;V ) is an automaton in

which:

� The state of N is the cross-product of a set of node states, Su(N ), one for each

node u 2 V . For any state s of N , we use sju to denote s projected onto Su.

This is also read as the state of node u in global state s.

� All actions of N are internal actions and are partitioned into sets, Au(N ), one

for each node u 2 V

� Suppose (s; �; ~s) is a transition of N and � belongs to Au(N ). Consider any state

s
0 of N such that s0ju = sju and s

0jv = sjv for all neighbors v of u. Then there

is some transition (s0; �; ~s0) of N such that ~s0jv = ~sjv for u and all u's neighbors

in G.

� Suppose (s; �; ~s) is a transition of N and � belongs to Au(N ). Then sjv = ~sjv

for all v 6= u.

Informally, the third condition requires that the transitions of a node u 2 V only

depend on the state of node u and the states of of the neighbors of u in G. The fourth

condition requires that the e�ect of a transition assigned to node u 2 V can only be

to change the state of u.

A shared memory tree automaton is a shared memory network automaton where G

is a rooted tree. Thus for any node i in a tree automaton, we assume there is a value

parent(i) that points to the parent of node i in the tree. There is also a unique root

node r that has parent(r) = nil. For our purposes, it is convenient to model the parent

values as being part of the code at each node. More generally, the parent pointers

could be variables that are set by a stabilizing spanning tree protocol as shown in

[AG90].

In this chapter, we will often use the phrase \tree automaton" to mean a \shared

memory tree automaton" and the phrase \network automaton" 2 to mean a \shared

memory network automaton".

2In all subsequent chapters, the terms tree and network automaton have di�erent meanings.
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A closed predicate 3 of an automaton A is a predicate L such that for any transition

(s; �; ~s) of A, if s 2 L then ~s 2 L.

A link subsystem of a tree automaton is an ordered pair (u; v), such that u and

v are neighbors in the tree. To distinguish states of the entire automaton from the

states of its subsystems we will sometimes use the word global state to denote a state

of the entire automaton. For any global state s of a network automaton, we de�ne

(sju; sjv) to be the state of the (u; v) link subsystem. Thus the state of the (v; u) link

subsystem in global state s is (sjv; sju).

A local predicate Lu;v of a tree automaton is a subset of the states of a (u; v) link

subsystem.

A link predicate set L for a tree automaton is a set that contains exactly one pred-

icate for every link subsystem in the tree and which satis�es the following symmetry

condition: for each pair of neighbors u and v, if (a; b) 2 Lu;v, then (b; a) 2 Lv;u. (i.e.,

while a link predicate set has two link predicates for each pair of neighbors, these two

predicates are identical except for the order in which the states are written down.) We

will also assume that every link predicate set is non-trivial in that there is at least one

global state s such that (sju; sjv) 2 Lu;v for all link subsystems (u; v) in the tree.

A tree automaton is locally checkable for predicate L if there is some link predicate

set L = fLu;vg such that:

L � fs : (sju; sjv) 2 Lu;v for all link subsystems (u; v) in the tree.g

In other words, the global state of the automaton satis�es L if every link subsystem

(u; v) satis�es Lu;v.

Recall the de�nition of stabilization in terms of executions and the de�nition of

an unrestricted automaton from Chapter 3. Recall that we use AjL to denote the

automaton that is identical to A except that the start states of AjL are the states in

set L. For any rooted tree T , we let height(T ) denote the maximum length of a path

between the root and a leaf in T .

We can now state a simple theorem.

3This is often called a stable predicate. We avoid this phrase because of potential confusion with

stabilization.
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Theorem 4.3.1 Tree Correction in Shared Memory Systems: Consider any

tree automaton T for tree T that is locally checkable for predicate L. Then there exists

an unrestricted tree automaton T + for T such that T + stabilizes to the executions of

T jL in time proportional to height(T ).

Thus after a time proportional to the height of the tree, any execution of the new

automaton T + will \look like" an execution of T that starts with a state in which L

holds. To prove this theorem we �rst describe how to construct T + from T and then

show that T + satis�es the requirements of the theorem.

Assume that T is locally checkable for predicate L using link predicate set L =

fLu;vg. We start by de�ning the set of global states that satisfy all local predicates.

Let L0 = fs : (sju; sjv) 2 Lu;v for all link subsystems (u; v) in the tree.g. Clearly

L � L
0. Also because of the non-triviality of the link predicate set, L0 is not the empty

set. To construct T + from T we do the following:

� We �rst normalize all node states in T . Intuitively, we remove all states in the

state set of a node u that are not part of a global state that satis�es L0. Thus

Su(T
+) := fsju : s 2 L

0g. The state set of T + is just the cross-product of the

normalized state sets of all nodes. Intuitively, this rules out useless node states

that never occur in global states that satisfy all local predicates.

� We retain all the actions of T but we add an extra precondition (i.e., an extra

guard) to each action au 2 Au of T as shown in Figure 4.4. Intuitively, this extra

guard ensures that a normal action of T is not taken at node u unless all links

adjacent to u are in \good states". All actions of T remain in the same classes

in T +.

� We add an extra correction action Correctu for every node u in the tree that

is not the root. Correctu is also described in Figure 4.4. Intuitively, this extra

action \corrects" the link between node u and its parent if this link is not in

a \good" state. Each Correctu action is put in a separate class with upper

bound equal to tn.

We outline a proof of the theorem by a series of lemmas. The �rst thing a care-

ful reader needs to be convinced about is that the code in Figure 4.4 is realizable.
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The state of T + is identical to T except that the state set

of each node is normalized to fsju : s 2 L0g

Modified Action au; au 2 Au (*modi�cation of action au in T *)

Preconditions:

Exactly as in au except for the additional condition:

For all neighbors v of u: (sju; sjv) 2 Lu;v

E�ects:

Exactly as in au

Correctu (*extra correction action for all nodes except the root*)

Preconditions: (parent(u) = v) and ((sju; sjv) 62 Lu;v)

E�ects:

Let a be any state in Su(T
+) such that (a; sjv) 2 Lu;v

Change the state of node u to a

Each Correctu action is in a separate class with upper bound tn

Figure 4.4: Augmenting T to create T +
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The careful reader will have noticed that we made two assumptions. First, in the

Correctu action, we assumed that for any link subsystem (u; v) of T + and any state

b of node v there is some a such that (a; b) 2 Lu;v. Second, we assumed that when

a modi�ed action au is taken at node u, the resulting state of node u has not been

removed as part of the normalization step.

We will begin with a lemma showing that the �rst assumption is a safe one. We

show that the second assumption is safe later.

Lemma 4.3.2 For any link subsystem (u; v) of T + and for any state a of node u there

is some b such that (a; b) 2 Lu;v.

Proof: We know that for any state a of v there is some state s 2 L
0 such that sju = a.

This follows because all node states have been normalized and because L0 is not empty.

Then we choose b = sjv.

The next lemma shows a local extensibility property. It says that if any node u and

its neighbors have node states such that the links between u and its neighbors are in

good states, then this set of node states can be extended to form a good global state.

Lemma 4.3.3 Consider a node u and some global state s of T + such that for all

neighbors v of u, (sju; sjv) 2 Lu;v. Then there is some global state s0 2 L
0 such that

s
0ju = sju and s

0jv = sjv for all neighbors v of u.

Proof: We create a global state s0 by assigning node states to each node in the tree

such that for every link subsystem (u; v), the state of the subsystem is in Lu;v. Start

by assigning node state sju to u and sjv to all neighbors v of u. At every stage of the

iteration we will label a node x that has not been assigned a state and is a neighbor

of a node y that has been assigned a state. But, by Lemma 4.3.2, we can do this such

that the state of the subsystem containing x and y is in Lx;y. Eventually we label all

nodes in the tree and the resulting global state is in L0. Once again, this is because for

every link subsystem (u; v), the state of the (u; v) subsystem is in Lu;v. The labelling

procedure depends crucially on the fact that the topology is a tree.

To prove the theorem, we will use the Execution Convergence Theorem (3.4.5).

However, to apply that theorem we have to work with predicates of T + (i.e., sets of
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states of T +) and not link predicates of T + (i.e., sets of states of link subsystems of

T +). This is just a technicality that we deal with as follows. For each link subsystem

(u; v), we de�ne the predicate L0
u;v = fs : (sju; sjv) 2 Lu;vg. Clearly, L

0 = \L0
u;v

Next consider some u; v;w such that v = parent(u) and w = parent(v). We assume

that v 6= nil. (But v may be the root in which case w is nil.) The next lemma states

an important stability property. It states that if L0
u;v holds in some global state s of

T + it will remain true in any successor state of s if either:

� v is the root OR

� L
0
v;w is also true in s.

Lemma 4.3.4 Consider some u; v;w such that v = parent(u) 6= nil and w = parent(v).

Suppose there is some global state s of T + such that s 2 L
0
u;v and (w 6= nil)! s 2 L

0
v;w.

Then for any transition (s; �; ~s), ~s 2 L
0
u;v.

Proof: It su�ces to consider all possible actions � that can be taken at either u or v

in state s. It is easy to see that we don't have to consider correction actions because,

by assumption, neither the Correctu or the Correctv action is enabled in state s.

Consider a modi�ed action au of T + that is taken at node u. Suppose action au

occurs in state s and results in a state ~s. By the preconditions of action au, for all

children x of u, (sjx; sju) 2 Lx;u. But in that case by Lemma 4.3.3 there is some other

global state s0 2 L
0 such that: s0ju = sju, s0jv = s

0jv and s0jx = sjx for all children x of

u. Thus by the third property of a network automaton, the action au is also enabled in

s
0 and, if taken in s0, will result in some state say ~s0. But since L0 is closed, ~s0 2 L

0 and

hence (~s0ju; ~s0jv) 2 Lu;v. But by the third property of a network automaton, ~sju = ~s0ju

and ~sjv = ~s0jv. Thus ~s 2 L
0
u;v.

The case of a modi�ed action at v is similar.

The previous lemma also shows that our second assumption is safe. If a modi�ed

action is taken at a node u, resulting in state ~s then ~s 2 L
0
u;v for some v. Thus by

Lemma 4.3.3 there is some other state ~s0 2 L
0 such that ~s0ju = ~sju. Thus ~sju cannot

have been removed as part of the normalization step.

The next lemma states an obvious liveness property. If L0
u;v does not hold in some

global state of T +, then after at most tn time units we will eventually reach some
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global state ~s in which L0
u;v holds. Clearly this is guaranteed by the correction actions

(either Correctu or Correctv depending on whether u is the child of v or vice

versa) and by the timing guarantees.

Lemma 4.3.5 For any any (u; v) link subystem and any any execution � of T + and

any state si of �, if si 62 L
0
u;v then there is some later state sj 2 L

0
u;v that occurs within

tn time units of si.

Proof: Suppose not. Then either Correctu (if u is the child of v) or Correctv (if

v is the child of u) is continuously enabled for tn time units after si. But then by the

timing guarantees, either Correctu or Correctv must occur within tn time after si,

resulting in a state in which L
0
u;v (and, of course, L

0
v;u) holds.

We now return to the proof of the theorem. First we de�ne a natural partial order

on the predicates L0
u;v. For any link subsystem (u; v), de�ne the child node of the

subsystem to be u if parent(u) = v and v otherwise. De�ne the ordering < such that

L
0
u;v < L

0
w;x i� the child node of the (u; v) subsystem is an ancestor (in the tree T ) of

the child node of of the (w; x) subsystem.

Using this partial order and Lemmas 4.3.4 and 4.3.5, we can apply the Execution

Convergence Theorem (Theorem 3.4.5), to show that T + stabilizes to the executions

of T +jL0 in time height(T ) � tn. But any execution � of T +jL0 is also an execution

of T jL. This follows from three observations. First, since L0 is closed for T , L0 is

closed for T +. Second, if L0 holds in all states of an execution � of T +jL0, then no

correction actions can occur in �. Third, any execution of T jL0 is also an execution

of T jL because L � L
0. Thus we conclude that T + stabilizes to the executions of T jL

in time height(T ) � tn.

This theorem can be used as the basis of a design technique. We start by designing

a tree automaton T that is locally checkable for some L. Next we use the construction

in the theorem to convert T into T +. T + stabilizes to the executions of T jL even when

started from an arbitrary state.

4.3.1 Weakening the Fairness Requirement

In the previous subsection, we assigned each Correctu action to a separate class. Ac-

tually the theorem only requires a property we call eventual correction: if a Correctu

action is continuously enabled, then a Correctu action occurs within bounded time.
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It is interesting that the protocols in [Dij74, AG90] only require that some enabled

action in the entire network occur in bounded time. In other words, all the actions in

the entire automaton can be placed in a single class. How can we ensure the eventual

correction property in a model in which the only guarantee is that some enabled

action (in the entire network) will occur in bounded time? To make sure the eventual

correction property holds in such a model, we need to show that it is impossible to

remain for an unbounded amount of time in a state in which Lu;v does not hold and

in which some other action other than Correctu is enabled. This property can be

established4 quite easily for the protocols in [Dij74] and [AG90].

4.4 Rediscovering Dijkstra's Protocols

In this section, we will begin by reconsidering the second example in [Dij74]. This

protocol is essentially a token passing protocol on a line of nodes with process indices

ranging from 0 to n� 1. Imagine that the line is drawn vertically so that process 0 is

at the bottom of the line (and hence is called \bottom") and Process n � 1 is at the

top of the line (and called \top"). This is shown in Figure 4.5. The down neighbor

of Process i is Process i � 1 and the up neighbor is Process i+ 1. Process n � 1 and

Process 0 are not connected.

Dijkstra observed that it is impossible (without randomization) to solve mutual

exclusion in a stabilizing fashion if all processes have identical code. To break symme-

try, he made the code for the \top" and \bottom" processes di�erent from the code

for the others.

Dijkstra's second example is modelled by the automaton D2 shown in Figure 4.6.

Each process i has a boolean variable upi, and a bit xi. Roughly, upi is a pointer

at node i that points in the direction of the token, and xi is a bit that is used to

implement token passing. Figure 4.5 shows a state of this protocol when it is working

correctly. First, there can be at most two consecutive nodes whose up pointers di�er

in value and the token is at one of these two nodes. If the two bits at the two nodes

are di�erent (as in the �gure) then the token is at the upper node; else the token is at

the lower node.

4I am grateful to Anish Arora for pointing this out to me.
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Figure 4.5: Dijktra's protocol for token passing on a line

For the present, assume that all processes start with xi = 0. Also, initially assume

that upi = false for all processes other than process 0. We will remove the need for

such initialization below. We start by understanding the correct executions of this

protocol when it has been corectly initialized.

A process i is said to have the token when any action at Process i is enabled. As

usual the system is correct when there is at most one token in the system. Now, it is

easy to see that in the initial state only Move Up0 is enabled. Once node 0 makes

a move, then Move Up1 is enabled followed by Move Up2 and so on as the \token"

travels up the line. Finally the token reaches node n � 1, and we reach a state s in

which xi = xi+1 for i = 0 . . .n � 3 and xn�1 6= xn�2. Also in state s, upi = true

for i = 0 . . .n � 2 and upn�1 = false. Thus in state s, Move Downn�1 is enabled

and the token begins to move down the line by executing Move Downn�2 followed

by Move Downn�3 and so on until we reach the initial state again. Then the cycle

continues. Thus in correct executions, the \token" is passed up and down the line.

In the good states for Dijktra's second example, the line can be partitioned into two

bands as shown in Figure 4.7. All bit and pointer values within a band are equal. (If a

node within a band has upi = false we sketch it as a pointer that points downwards).

All nodes within the upper band point downwards and all nodes within the lower band
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The state of the system consists of a boolean variable

upi and a bit xi, one for every process in the line.

We will assume that up0 = true and upn�1 = false by de�nition

In the initial state xi = 0 for i = 0 . . .n� 1 and upi = false for i = 1 . . .n� 1

Move Up0 (*action for the bottom process only to move token up*)

Precondition: x0 = x1 and up1 = false

E�ect: x0 :=� x0

Move Downn�1 (*action for top process only to move token down*)

Precondition: xn�2 6= xn�1

E�ects:

xn�1 := xn�2;

Move Upi; 1 � i � n� 2 (*action for other processes to move token up*)

Precondition: xi 6= xi�1

E�ects:

xi := xi�1;

upi := true; (*point upwards in direction token was passed*)

Move Downi; 1 � i � n� 2 (*action for other processes to move token down*)

Precondition: xi = xi+1 and upi = true and upi+1 = false

E�ect: upi := false; (*point downwards in direction token was passed*)

All actions are in a single class with upper bound tn.

Figure 4.6: Automaton D2: a version of Dijkstra's second example with initial states. The protocol does

token passing on a line using nodes with at most 4 states.
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Figure 4.7: In the good states for Dijktra's second example, the line can be partitioned into 2 bands with

the token at the boundary.

point upward. The token is at the boundary between the two bands. If the bit value

X of the upper band is equal to the bit value Y of the lower band, the token is moving

downwards; if the two bit values are unequal the token is moving downwards.

We describe these \good states" of D2 (that occur in correct executions) in terms

of local predicates. In the shared memory model, a local predicate is any predicate

that only refers to the state variables of a pair of neighbors. Intuitively, we see that if

two neighboring nodes have the same pointer value, then their bits are equal; also if a

node is pointing upwards, then so is its lower neighbor. Thus in a good state of D2 ,

two properties are true for any Process i other than 0:

� If upi�1 = upi then xi�1 = xi.

� If upi = true then upi�1 = true.

First, we prove that if these two local predicates hold for all i = 1 . . .n � 1, then

there is exactly one action enabled. Intuitively, since upn�1 = false and up0 = true, we

can start with process n�1 and go down the line until we �nd a pair of nodes i and i�1

such that upi = false and upi�1 = true. Consider the �rst such pair. Then the second

predicate guarantees us that there is exactly one such pair. The �rst predicate then
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guarantees that all nodes j < i � 1 have xj = xi�1 and all nodes k > i have xk = xi.

Thus only one action is enabled. If xi = xi�1 and i� 1 6= 0 then only Move Downi�1

is enabled. If xi = xi�1 and i � 1 = 0 then only Move Up0 is enabled. If xi 6= xi�1

and i 6= n � 1 then only Move Upi is enabled. If xi 6= xi�1 and i = n � 1 then only

Move Downn�1 is enabled.

A similar argument shows that if there is exactly one action enabled, then both

local predicates hold for all i = 1 . . .n� 1.

Let L be the predicate of D2 which consists of the states of D2 in which exactly

one action is enabled. It is easy to see that D2 is a tree automaton that is locally

checkable for L. Then we can use Theorem 4.3.1 to convert D2 into a new automaton

D2+ which stabilizes to executions in which there is exactly one token in each state.

The correction actions we add are once again di�erent from the original actions in

[Dij74]. However, the corrections actions we add (and consequently the proofs) are

much more transparent than the original version.

Dijkstra also described two more stabilizing mutual exclusion protocols, one using

K-state machines, where K is greater than the number of processes, and a solution

using 3-state machines. In both solutions the topology is assumed to be a ring (i.e.,

the bottom and top processes are connected). The �rst protocol is easily seen to be

locally checkable. Unfortunately it is no longer a tree automaton and hence Theorem

4.3.1 does not apply directly. However, with some extra work it is possible to derive

the �nal protocol as a basic protocol augmented with correction actions that ensure

that each link predicate becomes true. An even simpler way is to derive the K-state

protocol using an idea that we call counter ushing (see Chapter 10 and Appendix E).

Dijkstra's three state protocol uses a di�erent idea altogether. The protocol is not

even locally checkable. This protocol seems extremely speci�c to the ring topology

used. There are two main ideas. First, tokens are passed up and down a line in

normal operation just as in the second example. Thus if there is more than one token

and tokens must keep moving, the tokens must eventually \collide" at some node.

This node can then destroy one of the tokens. This idea seems limited to a line/ring

topology. The �rst idea, however, is not su�cient to detect a situation in which there

are no tokens. The second idea is to exploit the neighbor relation between the top

and bottom processes to detect the presence of no tokens. The states of the system

are such that if there are no tokens, then all processes will have the same state. In
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normal operation, the states of the top and bottom nodes are always di�erent. Thus

the absence of tokens can be \suspected" locally if the state of the bottom node is

not equal to that of the top node. In that case, a token is manufactured. The actual

protocol can be understood using these ideas.

4.5 Summary

Much of the initial work in self-stabilization was done in the context of Dijkstra's

shared memory model of networks. Later, the work on local checking and correction

was introduced [APV91b] in a message passing model. The main contribution of this

chapter is to show that existing work in the shared memory model can be under-

stood crisply in terms of local checking and correction. Protocols that appeared to be

somewhat ad hoc are shown to have a common underlying principle.

However, as we have argued at the beginning of this chapter, we believe that

message passing models are more useful and realistic. For the rest of the thesis we will

concentrate on message passing models. The de�nitions of network automata, local

predicates, local checkability, local correctability, and link subsystems that we used in

this chapter are speci�c to shared memory systems. In the next chapter (Chapter 5) we

will introduce de�nitions of these concepts for networks in which nodes communicate

by message passing. The de�nitions in Chapter 5 will be used for the remainder of the

thesis.

The main theorem in this chapter states that any locally checkable protocol that

uses a tree topology can be e�ciently stabilized. As the reader might expect, there is a

corresponding Tree Correction theorem for message passing systems that is described

at the end of Chapter 6.

89



Chapter 5

Local Checking and Correction for

Network Protocols

In Chapter 4 we introduced a method of local checking and correction using a shared

memory model taken from [Dij74]. Recall that in such a model, nodes communicate

with their neighbors by reading the state of all neighbors in one atomic action. Thus

there is no need to model channels between nodes. The shared memory model allowed

us to introduce local checking and correction in a fairly simple way. However, it is not

very realistic because of the high degree of atomicity that it assumes. In this chapter,

and for the rest of the thesis, we will model communication between nodes by explicit

message passing through links. However, we will restrict ourselves to a special type of

link called a Unit Storage Data Link or UDL.

We begin in Section 5.1 by describing our model of a network protocol. We do so by

modelling the network topology, the links between nodes by Unit Storage links, and the

nodes themselves. Our model of a Unit Storage Link is new, and so in Section 5.2 we

argue that such links can be implemented in real-life networks. Section 5.3 introduces

the important concept of locality in network protocols: some key concepts such as

local subsystems, local checkability, and local correctability are de�ned in this section.

While many of the ideas are similar to the ideas in Chapter 4 (that were developed

for shared memory systems), the new de�nitions are slightly more complex because of

the presence of channels between nodes. The de�nitions in this chapter are used for

the remainder of the thesis.

In Section 5.4 we state the main result of this chapter, the Local Correction Theo-
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rem. In essence, this result states that any locally correctable protocol can be stabilized

using a simple transformation. The transformation involves the addition of extra ac-

tions to do local checking and correction. Section 5.4 also contains a formal description

of the transformation. The next two sections contains a proof of the Local Correction

Theorem. We �rst provide an intuitive \proof" that presents the main ideas and then

present a formal proof. The formal proof is important because it shows how we use

the proof techniques of Chapter 4 to formally prove stabilization results. The proofs

of the Tree and Global Correction theorems in later chapters are much more intuitive;

the formal proof in this chapter provides an important example of how such intuitive

proofs can be formalized.

Finally, Section 5.7 argues that the method of local checking and correction (that

is formalized by the Local Correction Theorem) is practical, and can be added to real

networks without an appreciable loss in e�ciency.

5.1 Modelling Network Protocols

For the rest of this thesis, we will restrict ourselves to proving stabilization properties

for network protocols and network automata. To model a network protocol, we need

to model the network topology, the links between nodes, and the nodes themselves.

Our model is essentially the standard asynchronous message passing model except for

three di�erences:

� The major di�erence is that links are restricted to store at most one packet at a

time.

� The nodes are restricted to use a certain stylized discipline for sending packets

on unit storage links.

� We assume that for every pair of neighbors, there is some a priori way of assigning

one of the two nodes as the \leader" of the pair.

We will argue that even with these di�erences our model can be implemented in

real networks.
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5.1.1 Modelling Network Topology

We use a directed graph G to specify the network topology. For any two neighboring

nodes u and v, there are two edges (u; v) and (v; u). The network automaton will have

a undirectional channel corresponding to each directed edge.

In addition, we require that G satis�es the following property: there is a function

that for any pair of neighboring nodes u and v in G assigns one of the two nodes as

the \leader" of the edges (u; v) and (v; u). Thus we are really requiring a way to break

symmetry between neighboring nodes in G.

It is possible to remove this assumption (of having a leader function) at the cost of

some increased complexity in the protocols. However this assumption is not restrictive

in practice. In a real implementation, if every node has a unique ID then a simple

stabilizing protocol can elect the minimum ID node as leader. Each node can period-

ically transmit its ID to its neighbor and both nodes choose the minimum ID. If the

nodes do not have IDs then an equally simple randomized protocol can elect a leader

on every link. We prefer to encode the leader function directly in the graph G instead

of presenting these simple protocols explicitly.

In summary, the nodes and edges of G correspond to the actual physical topology

of the network, while the leader function describes a way to break symmetry between

neighboring nodes. Formally:

We will call a directed graph (V;E) symmetric if for every edge (u; v) 2 E there is

an edge (v; u) 2 E.

De�nition 5.1.1 A topology graph G = (V;E; l) is a symmetric, directed graph

(V;E) together with a leader function l such that for every edge (u; v) 2 E, l(u; v) =

l(v; u) and either l(u; v) = u or l(u; v) = v.

We use E(G) and V (G) to denote the set of edges and nodes in G. If it is clear

what graph we mean we sometimes simply say E and V . As usual, if (u; v) 2 E we

will call v a neighbor of u.

The following de�nition of a leader edge is useful later. Of the two possible edges

between two neighbors, it produces the edge directed away from the leader.

De�nition 5.1.2 We call (u; v) a leader edge of G if (u; v) 2 E and l(u; v) = u.
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5.1.2 Modelling Network Links

Traditional models of a data link have used what we call Unbounded Storage Data

Links that can store an unbounded number of packets. Now, real physical links do

have bounds on the number of stored packets. However, the unbounded storage model

is a useful abstraction in a non-stabilizing context.

Unfortunately, this is no longer true in a stabilizing setting. If the link can store

an unbounded number of packets, it can have an unbounded number of \bad" packets

in the initial state. It has been shown [DIM91a] that almost any non-trivial task is

impossible in such a setting. Thus in a stabilizing setting it is necessary to de�ne Data

Links that have bounded storage.

A network automaton for topology graph G consists of a node automaton for every

vertex in G and one channel automaton for every edge in G. We will restrict ourselves

to a special type of channel automaton, a unit storage data link or UDL for short.

Intuitively, a UDL can only store at most one packet at any instant. Node automata

communicate by sending packets to the UDLs that connect them. In the next section,

we will argue that a UDL can be implemented over real physical channels.

We �x a packet alphabet P . We assume that P = Pdata [ Pcontrol consists of two

disjoint packet alphabets. These correspond to what we call data packets and control

packets. The speci�cation for a UDL will allow both data and control packets to be

sent on a UDL.

De�nition 5.1.3 We say that Cu;v is the UDL corresponding to ordered pair (u; v)

and with link delay t if Cu;v is the UIOA de�ned in Figure 5.1.

By the convention we have established, Cu;v is a UIOA since we have not de�ned

any start states for Cu;v. The external interface to Cu;v includes an action to send a

packet at node u (Sendu;v(p)), an action to receive a packet at node v (Receiveu;v(p)),

and an action Freeu;v to tell the sender that the link is ready to accept a new packet.

The state of Cu;v is simply a single variable Qu;v that stores a packet or has the default

value of nil.

Notice two points about the speci�cation of a UDL. The �rst is that if the UDL

has a packet stored, then any new packet sent will be dropped. Second, the Free

action is enabled continuously whenever the UDL does not contain a packet.
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Each p belongs to the packet alphabet P de�ned above.

The state of the automaton consists of a single variable Qu;v 2 P [ nil.

Sendu;v(p) (*input action*)

E�ect:

If Qu;v = nil then Qu;v := p;

Freeu;v (*output action*)

Precondition: Qu;v = nil

E�ect: None

Receiveu;v(p) (*output action*)

Precondition: p = Qu;v 6= nil

E�ect: Qu;v := nil;

The Free and Receive actions are in separate classes with an upper

bound called the link delay which is equal to t for both classes.

Figure 5.1: Unit Storage Data Link automaton
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5.1.3 Modelling Network Nodes

Next we specify node automata. We do so using a set that contains a node automaton

for every node in the topology graph. For every edge incident to a node u, a node

automaton Nu must have interfaces to send and receive packets on the channels cor-

responding to that edge. However, we will go further and require that nodes obey a

certain stylized convention in order to receive feedback from and send packets on links.

In the speci�cation for a UDL if a packet p is sent when the UDL already has a

packet stored, then the new packet p is dropped. We will prevent packets from being

dropped by requiring that the sending node keep a corresponding free variable for the

link that records whether or not the link is free to accept new packets. The sender sets

the free variable to true whenever it receives a Free action from the link. We require

that the sender only send packets on the link when the free variable is true. Finally,

whenever the sender sends a packet on the link, the sender sets its free variable to

false.

We wish the interface to a UDL to stabilize to \good behavior" even when the

sender and link begin in arbitrary states. Suppose the sender and the link begin in

arbitrary states. Then we can have two possible problems. First, if free = true but

the UDL contains a packet, then the �rst packet sent by the sender can be dropped.

However, it is easy to see that all subsequent packets will be accepted and delivered

by the link. This is because after the �rst packet is sent, the sender will never set free

to true unless it receives a Free noti�cation from the link. But a Free noti�cation

is delivered to the sender only when the link is empty. The second possible problem

is deadlock. Suppose that initially free = false but the channel does not contain a

packet. To avoid deadlock, the UDL speci�cation ensures that the Free action is

enabled continuously whenever the link does not contain a packet.

Thus we will require that each sending node u keep a corresponding freeu[v] variable

for each neighbor v. By our convention, u can only send packets to v when freeu[v] =

true. Thus we will also require that u enqueue packets that it wants to send to v in an

outbound queue for the link called queueu[v]. When freeu[v] becomes true, the packet

at the head of the outbound queue is sent on the link. The use of the queuing and

free disciplines is quite natural for a UDL; more importantly, these conventions make

it easy to transform a node automaton to do local checking. This will become clearer

in a few sections.
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The preceding paragraphs motivate the following formal de�nition.

De�nition 5.1.4 We say that an automaton N is a node automaton for node u in

graph G = (V;E; l) and with node delay t if:

� N has an output action Sendu;v(p) and input actions Receivev;u(p) and Freeu;v

for each p 2 Pdata and for each neighbor v of u.

� N has a boolean variable freeu[v] and a queue variable queueu[v] for every v

such that (u; v) 2 E. The queue variable queueu[v] is a queue of bounded size

consisting of packets drawn from the data packet alphabet Pdata.
1

� Actions of N other than Sendu;v(p) can only change queueu[v] by adding packets

(drawn from alphabet Pdata) to the tail of queueu[v]. Of course, such actions can

leave the queue unchanged.

� The code for the output action Sendu;v(p) and the input action Freeu;v at node

N is as shown in Figure 5.2.

� Each Sendu;v(p) action in N is in its own class with upper bound called the node

delay that is equal to t for all classes.

In particular, note that every Sendu;v(p) action at a node is a locally controlled

action. Also, in all the network automata described in this thesis, the transitions

in automaton Nu will only depend on the state of u, the leader function l, and the

identities of the neighbors v of u. In other words, Nu will use only local information

available to u about the graph G. We prefer not to formalize this requirement as

part of the de�nition of a network automaton. Instead, we will use this as an informal

criterion to rule out trivial solutions (to some problems) in whichNu encodes the entire

graph.

1The reader may be puzzled by the fact that the links accept both data and control packets but the

node automata only send data packets. In a few sections, we will create augmented node automata by

adding actions to ordinary node automata. These extra actions are used to send and receive control

packets for the purposes of local checking/correction.
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Sendu;v(p) (*output action to send packet at head of outbound queue*)

Precondition: freeu[v] = true and p is head of queueu[v]

E�ect: freeu[v] := false; Remove p from head of queueu[v]

Freeu;v (*input action*)

E�ect: freeu[v] := true; (*record that link is free*)

Figure 5.2: Code at a node automaton to send a data packet and to respond to a free signal from a link

5.1.4 Network Automata

Now we are ready to de�ne a network automaton. Naturally, it is the composition of

a set of node and channel automata.

De�nition 5.1.5 Let G = (V;E; l) be a topology graph. Let N be a set containing

exactly one node automaton Nu, for every u 2 V and such that each Nu has node

delay t. Let Cu;v be a UDL for each (u; v) 2 E such that every UDL has link delay
~t. Then Net(G;N; t; ~t), the network automaton with node delay t and link delay ~t,

is the composition of the automata Nu for all u 2 V with the automata Cu;v for all

(u; v) 2 E.

For the most part we will deal with network automata in which the node and link

delays are �xed. Thus we let tn denote the default node delay and tl denote the

default link delay. If we do not explicitly mention the node and link delays, then

the node and link delays are assumed to be tn and tl respectively. Thus we will use

Net(G;N) to denote Net(G;N; tn; tl). We will sometimes say that a time t is a constant

if t = c1tn + c2tl, where c1 and c2 are some real scalar constants. We use \constant

time" to emphasize that the time does not depend on the size of the network but only

on the node and link delays.
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SEND (p)
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RECEIVE (p)

Figure 5.3: Implementing a UDL over a physical channel

5.2 Implementing Our Model in Real Networks

In a real network implementation, the physical channel connecting any two neighboring

nodes would typically not be a UDL. For example, a telephone line connecting two

nodes can often store more than one packet. The physical channel may also not deliver

a free signal. Instead, an implementation can construct a Data Link protocol on top

of the physical channel such that the resulting Data Link protocol stabilizes to the

behaviors of a UDL (e.g. [AB89], [Spi88a]).

Figure 5.3 shows the structure of such a Data Link protocol over a physical link.

The sender end of the Data Link protocol has a queue that can contain a single packet.

When the queue is empty, the Free signal is enabled. When a Send(p) arrives and

the queue is empty, p is placed on the queue; if the queue is full, p is dropped. If

there is a packet on the queue, the sender end constantly attempts to send the packet.

When the receiving end of the Data Link receives a packet, the receiver sends an ack

to the sender. When the sender receives an ack for the packet currently in the queue,

the sender removes the packet from the queue.

If the physical channel is initially empty and the physical channel is FIFO (i.e.,

does not permute the order of packets), then a standard stop and wait or alternating

bit protocol [BSW69] will implement a UDL. However, if the physical channel can

initially store packets, then the alternating bit protocol is not stabilizing [Spi88a].

There are two approaches to creating a stabilizing stop and wait protocol. Suppose

the physical channel can store at most X packets in both directions. Then [AB89]
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suggest numbering packets using a counter that has at least X + 1 values. Suppose

instead that no packet can remain on the physical channel for more than a bounded

amount of time. [Spi88a] exploits such a time bound to build a stabilizing Data Link

protocol. The main idea is to use either numbered packets or timers to \ush" the

physical channel of stale packets.

A stop and wait protocol is not very e�cient over physical channels that have a high

transmission speed and/or high latency. It is easy to generalize a UDL to a Bounded

Storage Data Link or BDL that can store more than one packet. For instance, the

Free signal for a BDL should be modi�ed to include the number of packets currently

stored in the BDL. It is also easy to implement a BDL over a physical channel with

either bounded storage or bounded delay using the techniques described in [AB89] and

[Spi88a]. We prefer to use a UDL for the rest of this thesis as it provides a simple

and elegant interface. However, the reader concerned about e�ciency should be aware

that all the protocols in this thesis can be modi�ed (slightly) to work with BDLs.

Finally, there is one last concern about UDLs. We have seen that real implemen-

tations will use Data Links that stabilize to a UDL. However, in our model every link

is assumed to actually be a UDL. Let S be a network in which each link stabilizes to

the behaviors of a UDL and such that every node automaton is a UIOA. Let ~S be the

same network except that every link is replaced by a UDL. Now a UDL is a UIOA and

hence is su�x-closed. Thus a nice consequence of Theorem 3.5.7 is that if ~S stabilizes

to the behaviors in some problem P , then so does S. Thus, to prove a stabilization

result about S it su�ces to prove the stabilization result about ~S. This is an example

of why the modularity theorem (Theorem 3.5.7) is important.

5.3 Locality

In this section, we reconsider the de�nitions of local checkability that we introduced in

Chapter 4. Our new de�nitions will be slightly more complex because of the presence

of channels between nodes. These new de�nitions will be used for the rest of the thesis.
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5.3.1 Link Subsystems and Local Predicates

Consider a network automaton with graph G. Roughly speaking, a property is said

to be local to a subgraph G
0 of G if the truth of the property can be ascertained

by examining only the components speci�ed by G
0. For now we will concentrate on

link subsystems that consist of a pair of neighboring nodes u and v and the channels

between them. In Chapter 10, we will discuss how our methods can be generalized to

arbitrary subsystems.

In the following de�nitions, we �x a network automaton N = Net(G;N).

De�nition 5.3.1 We de�ne the (u; v) link subsystem of N as the composition of Nu,

Cu;v, Cv;u, and Nv.

For any state s of N : sju denotes s projected on to node Nu and sj(u; v) denotes

s projected onto Cu;v. Thus when N is in state s, the state of the (u; v) subsystem is

the 4-tuple: (sju; sj(u; v); sj(v; u); sjv).

A predicate L of N is a subset of the states of N . Let (u; v) be some edge in graph

G of N . A local predicate Lu;v of N for edge (u; v) is a subset of the states of the (u; v)

subsystem in N . We use the word \local" because Lu;v is de�ned in terms of the (u; v)

subsystem.

The following de�nition provides a useful abbreviation. It describes what it means

for a local property to hold in a state s of the entire automaton.

De�nition 5.3.2 We say that a state s of N satis�es a local predicate Lu;v of N i�

(sju; sj(u; v); sj(v; u); sjv) 2 Lu;v.

We will make frequent use of the concept of a closed predicate. Intuitively, a

property is closed if it remains true once it becomes true. In terms of local predicates:

De�nition 5.3.3 A local predicate Lu;v of network automaton N is closed if for all

transitions (s; �; ~s) of N , if s satis�es Lu;v then so does ~s.

The following de�nitions provide two more useful abbreviations. The �rst gives a

name to a collection of local predicates, one for each edge in the graph. The second,
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the conjunction of a collection of \local properties", is the property that is true when

all local properties hold at the same time. As in Chapter 4, we will require that the

conjunction of the local properties is non-trivial { i.e., there is some global state that

satis�es all the local properties.

De�nition 5.3.4 L is a link predicate set for N = Net(G;N) if for each (u; v) 2 G

there is some Lu;v such that:

� If (a; b; c; d) 2 Lu;v then (d; c; b; a) 2 Lv;u. (i.e., Lu;v and Lv;u are identical except

for the way the states are written down.)

� L = fLu;v; (u; v) 2 Gg

� There is at least one state s of N such that s satis�es Lu;v for all Lu;v 2 L.

De�nition 5.3.5 The conjunction of a link predicate set L is the predicate fs : s

satis�es Lu;v for all Lu;v 2 Lg. We use Conj(L) to denote the conjunction of L.

Note that Conj(L) cannot be the null set by the de�nition of a link predicate set.

5.3.2 Local Checkability

Suppose we wish a network automaton N to satisfy some property. An example would

be the property \all nodes have the same color". We can often specify a property of

N formally using a predicate L of N . Intuitively, N can be locally checked for L if we

can ascertain whether L holds by checking all link subsystems of N . The motivation

for introducing this notion is performance: in a distributed system we can check all

link subsystems in parallel in constant time. We formalize the intuitive notion of a

locally checkable property as follows.

De�nition 5.3.6 A network automaton N is locally checkable for predicate L using

link predicate set L if:

� L is a link predicate set for N and L � Conj(L).

� Each Lu;v 2 L is closed.
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The �rst item in the de�nition requires that L holds if a collection of local properties

all hold. The second item is perhaps more surprising. It requires that each local

property also be closed.

We add this extra requirement because in an asynchronous distributed system it

appears to be impossible to check whether an arbitrary local predicate holds all the

time. What we can do is to \sample" the local subsystem periodically to see whether

the local property holds. Suppose the network automaton consists of three nodes u, v

and w and such that v is the neighbor of both u and w. Suppose the property L that

we wish to check is the conjunction of two local predicates Lu;v and Lv;w. Suppose

further that exactly one of the two predicates is always false, and the predicate that is

false is constantly changing. Then whenever we \check" the (u; v) subsystem we might

�nd Lu;v true. Similarly whenever we \check" the (v;w) subsystem we might �nd Lv;w

true. Then we may never detect the fact that L does not hold in this execution. We

avoid this problem by requiring that Lu;v and Lv;w be closed.

5.3.3 Local Correctability

The motivation behind local checking was to e�ciently ensure that some property L

holds for network automaton N . We would also like to e�ciently correct N to make

the property true. We have already set up some plausible conditions for local checking.

Can we �nd some plausible conditions under which N can be locally corrected?

To this end we de�ne a local reset function f . This is a function with three

arguments: the �rst argument is a node say u, the second argument is any state of

node automaton Nu, and the second argument is a neighbor v of u. The function

produces a state of the node automaton corresponding to the �rst argument. Let s

be a state of N ; recall that sju is the state of Nu. Then f(u; sju; v) is the state of Nu

obtained by applying the local reset function at u with respect to neighbor v. We will

abuse notation by omitting the �rst argument when it is clear what the �rst argument

is. Thus we prefer to write f(sju; v) instead of the more cumbersome f(u; sju; v).

We will insist that f meet two requirements so that f can be used for local correc-

tion (De�nition 5.3.7).

Assume that the property L holds if a local property Lu;v holds for every edge

(u; v). The �rst requirement is that if any (u; v) subsystem does not satisfy Lu;v, then
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applying f to both u and v should result in making Lu;v hold. More precisely, let us

assume that by some magic we have the ability to simultaneously:

� Apply f to Nu with respect to v;

� Apply f to Nv with respect to u;

� Remove any packets stored in channels Cu;v and Cv;u.

Then the resulting state of the (u; v) subsystem should satisfy Lu;v. Of course, in a

real distributed system such simultaneous actions are clearly impossible. However, we

will achieve essentially the same e�ect by applying a so-called \reset" protocol to the

(u; v) subsystem. We will describe a stabilizing local reset protocol for this purpose in

the next section.

The �rst requirement allows nodes u and v to correct the (u; v) subsystem if Lu;v

does not hold. But other subsystems may be correcting at the same time! Since

subsystems overlap, correction of one subsystem may invalidate the correctness of an

overlapping subsystem. For example, the (u; v) and (v;w) subsystems overlap at v. If

correcting the (u; v) subsystem causes the (v;w) subsystem to be incorrect, then the

correction process can \thrash". To prevent thrashing, we add a second requirement.

In its simplest form, we might require that correction of the (u; v) subsystem leaves

the (v;w) subsystem correct if the (v;w) subsystem was correct in the �rst place.

However, there is a more general de�nition of a reset function f that turns out to

be useful. Recall that we wanted to avoid thrashing that could be caused if correcting

a subsystem causes an adjacent subsystem to be incorrect. Informally, let us say

that the (u; v) subsystem depends on the (v;w) subsystem if correcting the (v;w)

subsystem can invalidate the (u; v) subsystem. If this dependency relation is cyclic,

then thrashing can occur. On the other hand if the dependency relation is acyclic then

the correction process will eventually stabilize. Such an acyclic dependency relation

can be formalized using a partial order < on unordered pairs of nodes: informally, the

(u; v) subsystem depends on the (v;w) subsystem if fv;wg < fu; vg.

Using this notion of a partial order, we present the formal de�nition of a local reset

function:
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De�nition 5.3.7 We say f is a local reset function for network automaton N =

Net(G;N) with respect to link predicate set L = fLu;vg and partial order <, if for any

state s of N and any edge (u; v) of G:

� Correction: (f(sju; v);nil;nil; f(sjv; u)) 2 Lu;v.

� Stability: For any neighbor w of v,

If (sju; sj(u; v); sj(v; u); sjv) 2 Lu;v and fv;wg 6< fu; vg then

(sju; sj(u; v); sj(v; u); f(sjv;w)) 2 Lu;v.

Notice that in the special case where all the link subsystems are independent, no

edge is \less" than any other edge in the partial order.

Using the de�nition of a reset function, we can de�ne what it means to be locally

correctable.

De�nition 5.3.8 A network automaton N is locally correctable to L using link pred-

icate set L, local reset function f , and partial order < if:

� N is locally checkable for L using L.

� f is a local reset function for N with respect to L and <.

Intuitively, if we have a reset function f with partial order < we can expect the

local correction to stabilize in time proportional to the maximum chain length in the

partial order. Recall that a chain is a sequence a1 < a2 < a3 . . . < an. Thus the

following piece of notation is useful.

De�nition 5.3.9 For any partial order <, height(<) is the length of the maximum

length chain in <.

5.4 Local Correction Theorem

5.4.1 Overview

In the previous section, we set up plausible conditions under which a network automa-

ton can be locally corrected to achieve a property L. We claimed that these conditions
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could be exploited to yield local correction. In this section we make these claims

precise. We show how to take a network automaton N that can be locally corrected

to L, and transform it into a new automaton N+. The new automaton N+ has the

property that in all its executions, property L holds after a bounded amount of time.

More precisely, N+ stabilizes to the behaviors of NjL in a bounded amount of time.

The next subsection contains a formal statement of this result.

To transform N into N+ we will add actions and states to N . These actions will

be used to send and receive snapshot packets (that will be used to do local checking

on each link subsystem) and reset packets (that will be used to do local correction on

each link subsystem). For every link (u; v), the leader l(u; v) initiates the checking and

correction.2

5.4.2 Precise Statement of the Result

To state the result formally, we need the following de�nitions. First, when we augment

a network automaton the resulting automaton should have the same topology and

also be an unrestricted automaton (UIOA) that can start in any state. The topology

restriction rules out trivial \centralized" solutions. We also require that the links

remain UDLs. To formalize these requirements, we de�ne a new type of automaton.

De�nition 5.4.1 Let G = (V;E; l) be a topology graph. An automaton for graph

G is the composition of an automaton for each u 2 V , together with Cu;v for each

(u; v) 2 E. We assume that all automata being composed are compatible.

Notice that any network automaton for graph G is also an automaton for graph

G. However, an automaton for graph G need not be a network automaton because a

network automaton has additional constraints (such as having outbound queues and

free variables for each link) on the node automata.

A UIOA for graph G is an automaton for graph G that is also a UIOA. Recall

that we used AjL to denote the automaton identical to A except that its start states

belong to set L. The following piece of shorthand is useful for a concise statement of

the theorem.

2Without this assumption, we have to complicate the code and proof to deal with simultaneous

checking and correction actions by both ends of a link. This can actually be done, thereby getting rid

of the requirement for a leader on links. But it isn't worth the increased complexity.
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De�nition 5.4.2 Let N denote a network automaton. We will use N (t) to denote

the automaton that is identical to N except that the link and node delays in N (t) are

equal to t.

Now (�nally!) we can state our theorem. Intuitively, it states that if N is locally

correctable to L using local reset function f and partial order<, then we can transform

N into N+ such that N+ satis�es the following property: in time proportional to

height(<), every behavior of N+ will \look like" a behavior of N in which L holds and

in which the node and link delays are increased by some constant factor.

Theorem 5.4.3 Local Correction: Consider any network automaton N = Net(G;N)

that is locally correctable to L using link predicate set L, local reset function f , and

partial order <. Then there exists some N+ that is a UIOA for graph G and constants

c and ~c such that N+ stabilizes to the behaviors of N (c)jL in time ~c � height(<).

5.4.3 Overview of the Transformation Code

For those familiar with snapshot protocols, the structure of our local snapshot protocol

is slightly di�erent from the well-known Chandy-Lamport snapshot protocol [CL85]. It

is easy to show that the Chandy-Lamport scheme cannot be used without modi�cations

over unit storage links. Briey, the reason is as follows. The correctness proof of

the algorithm in [CL85] is based on reordering executions while preserving causality

constraints. The only causality constraint for a link in [CL85] is that any action

that sends a packet p on link L cannot be reordered to come after an action that

receives p on link L. However, a UDL has an additional causality constraint. A free

signal delivered by link L after delivering packet p cannot be reordered to come before

the action that delivers packet p. The Chandy-Lamport scheme was not designed to

incorporate this extra causality constraint. As a result, if the Chandy-Lamport scheme

is used unmodi�ed over a network with UDLs, the snapshot may (incorrectly) return

a state in which there is more than one packet on a UDL!

Our local snapshot/reset protocol works roughly as follows. Consider a (u; v) sub-

system. Assume that l(u; v) = u { i.e., u is the leader on link (u; v). A single snapshot

or reset phase has the structure shown in Fig 5.4.
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Node u Node v

TIME 
REQUEST

RESPONSE

Figure 5.4: The structure of a single phase of the local snapshot/reset protocol

A single phase of either a snapshot or reset procedure consists of u sending a request

that is received by v, followed by v sending a response that is received by u. During

a phase, node u sets a ag (phaseu[v]) to indicate that it is checking/correcting the

(u; v) subsystem. While this ag is set, no packets other than request packets can be

sent on link Cu;v. Since a phase completes in constant time, this does not delay the

data packets by more than a constant factor.

In what follows, we will use the basic state at a node u to mean the part of the state

at u \corresponding" to automaton Nu. To do a snapshot, node u sends a snapshot

request to v. A snapshot request is identi�ed by a mode variable in the request packet

that carries a mode of snapshot. If v receives a request with a mode of snapshot, Node

v then records its basic state (say s) and sends s in a response to u.

When u receives the response, it records its basic state (say r). Node u then records

the state of the (u; v) subsystem as x = (r;nil;nil; s). If x 62 Lu;v (i.e., local property

Lu;v does not hold) then u initiates a reset.

To do a reset, node u sends a reset request to v. A reset request is identi�ed by

a mode variable in the request packet that carries a mode of reset. Recall that f

denotes the local reset function. After v receives the request, v changes its basic state

to f(v; s; u), where s is the previous value of v's basic state. Node v then sends a

response to u. When u receives the response, u changes its basic state to f(u; r; v),

where r is the previous value of u's basic state.

Of course, the local snapshot and reset protocol must also be stabilizing. However,

the protocol we just described informally may fail if requests and responses are not
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properly matched. This can happen, for instance, if there are spurious packets in the

initial state of N+. To make the snapshot and reset protocols stabilizing, we number

all request and response packets. Thus each request and response packet carries a

number count. Also, the leader u keeps a variable countu[v] that u uses to number all

requests sent to v within a phase. At the end of the phase, u increments countu[v].

Similarly, the responder v keeps a variable countv[u] in which v stores the number of

the last request it has received from u. Node v weeds out duplicates by only accepting

requests whose number is not equal to countu[v].

Clearly the count values can be arbitrary in the initial state and the �rst few phases

may not work correctly. However, numbering and a few easy checks ensure that in

constant time a response will be properly matched to the correct request. Because the

links are unit storage, we will see that a space of 4 numbers is su�cient. Our use of

numbering is taken from the stabilizing global snapshot protocol of [KP90]. However,

our protocol is simpler and more e�cient because we are restricted to a single link

subsystem.

Besides properly matching requests and responses, we must also avoid deadlock

when the local snapshot/reset protocol begins in an arbitrary state. To do so, when

phaseu[v] is true (i.e., u is in the middle of a phase), u continuously sends requests.

Since v weeds out duplicates this does no harm and also prevents deadlock. Similarly,

v continuously sends responses to the last request v has received. Once the responses

begin to be properly matched to requests, this does no harm, because u discards such

duplicate responses.

An irritating issue that we have to deal with in creatingN+ is the issue of scheduling

packets to be sent on links. Notice that the checking and correction protocols are going

on concurrently with the protocol corresponding to N . To make Theorem 5.4.3 work,

we need to ensure that any data packets that are placed on the queue for channel Cu;v

are sent in constant time. On the other hand, the checking process also needs to send

request and response packets that are encoded as control packets.

We build a simple stabilizing scheduler that ensures fair access to the link for each

of three packet types: requests, responses and data packets. First we notice that at

the leader end of a link, only requests and data packets need to be sent. At the other

end, only responses and data packets need to be sent.

Consider the leader end of a link �rst. Suppose l(u; v) = u. We know that data

108



packets should never be sent while a snapshot or reset phase is in progress. Now, we

have a variable phaseu[v] at u which is set to true whenever a phase is in progress.

The phase ends when a matching response is received and phaseu[v] is set to false.

At the end of a phase, the oldest data packet is sent, and a new phase is begun after

the data packet is sent. The scheduler is stabilizing because if there is no data packet

waiting to be sent, we allow a new phase to begin immediately after the previous phase

ends. The net e�ect is that if there are data packets waiting, we send one data packet

between consecutive checking/correction phases. If a problem is discovered during a

snapshot phase, we do not do a reset until the next phase, after sending any waiting

data packet.

Now consider the end of a link that is not the leader. Suppose l(u; v) = v. To give

\fair turns" to the response packets we use a variable turnu[v] that has only two values

data (for data packets), and response (which is the value of turn for response packets).

No packet can be sent until either its turn arrives or there is no packet of the other

type. After a packet of a particular type is sent, the turn is \toggled" to the other

type.

5.4.4 Constructing Augmented Automata: Formal Descrip-

tion

To transform N into N+ we will show how to transform each node automaton Nu in

N into a new, augmented node automaton N+
u . Finally, N

+ is the composition of the

new node automata and the (unchanged) channel automata.

Assume that network automaton N = Net(G;N) can be locally corrected to L

using link predicate set L = fLu;vg and local reset function f . We create N+ =

Augment(N ;L; f) by adding states and actions to each node automaton Nu as follows:

� We add the following new variables and their domain speci�cations, to the state

of Nu, one for each neighbor v of u as shown below:.

{ countu[v] 2 f0 . . . 3g (used to number request and response packets to ensure

proper matching. The magic number 3 arises because a link subsystem can

store at most three distinct counter values on the sending link, receiving

link, and at the receiver node.)
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{ modeu[v] 2 freset; snapshotg (used to keep track of whether the current

phase is a snapshot or reset phase.)

{ phaseu[v] is a Boolean (set to true during a reset or snapshot phase. It is

used by the leader node to inhibit data packets from being sent during a

phase.)

{ freequ[v] is a Boolean (set to true after any packet is sent and set to false

after any packet is removed from the link. The original variable freeu[v]

will be set to true after a data packet is sent and set to false after a data

packet is removed from the link. We could have optimized by using just one

free variable but keeping two variables makes the projection and the proof

easier.)

{ turnu[v] 2 fresponse; datag (used to keep track of whether a data packet or

a response packet has the next turn to be sent.)

� We add two new packet types to N+. Recall that there are two basic types of

packets, data packets and control packets. We will encode request and response

packets as control packets. We will use the symbols pdata, preq, and presp to denote

data, request and response packets respectively. The format of a data packet is

de�ned by automaton N . The encoding of the other two packets is:

Request : (Control;Request; count;mode), where count is an integer from 0 . . . 3,

and mode is either reset or snapshot.

Response : (Control;Response; count;mode ;node state), where count is an in-

teger from 0 . . . 3, mode is either reset or snapshot, and node state is a state

of a node automaton Nu in N .

As usual, we use record notation to extract �elds of a packet. Thus preq:count is

the count �eld in a request packet.

� We modify the Sendu;v(p) (for data packets p) and Freeu;v actions of the original

automaton Nu as shown in Figure 5.5. This code contains modi�cations for both

the leader and responder ends in one piece of code; however, some parts of the

code applies only to leaders and some parts only apply to responders.

If node u is the leader on link (u; v), then we enable sending data packets only

when phaseu[v] = false indicates a phase is not in progress. After the data packet
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Sendu;v(p) (*output action for p 2 Pdata only*)

Preconditions:

freequ[v] := true and freeu[v] := true

p is head of queueu[v]

((l(u; v) = u) and (phaseu[v] = false)) OR ((l(u; v) = v) and turnu[v] = data))

E�ect:

freequ[v] := false and freeu[v] := false;

Remove p from head of queueu[v]

turnu[v] = response (* give response packets a turn; only a�ects responders*)

phaseu[v] = true (* start a new checking/correction phase; only a�ects leaders*)

Freeu;v (*input action*)

E�ect: freequ[v] := true and freeu[v] := true;

Figure 5.5: Code for the modi�ed Sendu;v(p) actions at a modi�ed node N+
u .

is sent, we set phaseu[v] = true. If node u is not the leader on link (u; v), then we

enable sending data packets only when turnu[v] = data. Also immediately after

sending a data packet, we set turnu[v] = response, which allows the response

packets to get a fair turn. We use the freequ[v] variable to keep track of whether

there is some packet (either data or control) on Cu;v while freeu[v] keeps track of

whether there is a data packet on Cu;v. The code appears to have some redundant

checks (for example, the code checks both free variables before sending a data

packet) but these extra checks do make the proof easier.

� We add the actions shown in Figures 5.6 and 5.7 to Nu for each neighbor v of u.

These actions only apply to control packets. We use the following notation. Let

s denote the current state of N+ when an action is performed. Let sju denote

the current state of N+
u projected onto the original automaton Nu. In order to

project s to sju we do the following. All variables of Nu take the same values as

the corresponding variables in N
+
u .
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Sendu;v(preq) (*output action: u repeatedly sends a request till it gets a response*)

Precondition:

l(u; v) = u (*u is the leader of link subsystem*)

(phaseu[v] = true) or (queueu[v] is empty) (*phase in progress or no data packets waiting*)

freequ[v] = true (* no packet in transit on link to v *)

preq:count = countu[v]; (*count in packet is count of phase*)

preq:mode = modeu[v]; (*mode in packet is mode of phase*)

E�ect:

freequ[v] = false (* set to false until link says it is free*)

phaseu[v] := true; (*remains true until matching response returns*)

Receivev;u(preq) (*input action, receive request at u from v*)

E�ect:

If preq :count 6= countu[v] and l(u; v) = v then (* not a duplicate or invalid packet*)

countu[v] := preq:count; (*remember count*)

modeu[v] := preq:mode; (*remember mode*)

Figure 5.6: Code to send and receive request packets at node u.

When we apply f to the projected state by setting sju to f(sju; v) we a�ect

only the projected variables. Thus, for instance, the value of freequ[v] remains

unchanged.

� We add two extra classes for every neighbor v of u to Nu. Each output action of

the form Sendu;v(Control;Request; �) is added to a new partition class. Similarly,

each output action of the form Sendu;v(Control;Response; �) is added to a new

partition class. The time associated with all new classes is still the node delay

tn.

� We hide all actions of N+ that are not actions of N .

112



Sendu;v(presp) (*output action: u repeatedly sends a response to last request*)

Precondition:

l(u; v) = v (*u is not the leader of link subsystem*)

(turn = response) or (queueu[v] is empty) (*response's turn or no data packets waiting*)

freequ[v] = true (* no packet in transit on link to v *)

presp:count = countu[v];

If modeu[v] = snapshot then presp:node state = sju else presp:node state := f(sju; v)

E�ect:

If modeu[v] = reset then sju := f(sju; v) (*reset node u's state locally*)

modeu[v] := snapshot (* return to default mode of snapshot*)

turnu[v] := data (*give data packets a turn*)

freequ[v] := false (* set to false until link says its free*)

Receivev;u(presp) (*input action to receive response at u from v*)

E�ect:

If (countu[v] = presp:count) and (phaseu[v] := true) and (l(u; v) = u) then

If modeu[v] = snapshot then

If (sju; nil; nil; presp:node state) 62 Lu;v then modeu[v] := reset

Else if modeu[v] = reset then sju = f(sju; v) (*reset node u's state locally*)

phaseu[v] := false; (*end of phase*)

countu[v] := (countu[v] + 1) mod 4;

Figure 5.7: Code to send and receive response packets at node u.
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5.5 Intuitive Proof of Local Correction Theorem

In the previous section we described how to transform a locally correctable automaton

N into an augmented automaton N+ We have to prove that in time proportional to

the height of the partial order every behavior of N+ (described in the last section) is

a behavior of N in which all local predicates hold.

The basic intuition behind the proof is sketched in Figure 5.8 and Figure 5.9. Con-

sider some (u; v) subsystem in which u is the leader. We describe the intuition behind

the use of a counter to ensure proper request-response matching, and the intuition

behind the local snapshot and reset procedures.

5.5.1 Intuition Behind Counter Based Matching

Recall that in the augmented automaton, both local snapshots and local responses are

implemented using a request-response protocol. As we will see below, both the local

snapshot and reset procedures will only work correctly if the response from v is sent

following the receipt of the request at u. The diagram on the left of Figure 5.8 shows

a scenario in which requests are matched incorrectly to \old" responses that were sent

in previous phases. Thus we need each phase to eventually follow the structure shown

in the right of Figure 5.8.

The code of the augmented automaton ensures that correct matching will occur

after at most 5 phases by numbering requests and responses. Thus the code uses a

counter in the range 0::3. The signi�cance of the number 3 will be seen below. The

sender u keeps a counter countu[v] to number requests and the receiver v keeps a

counter countv[u] to number responses. Node v accepts a new request numbered c

only if c 6= countv[u]. When v accepts this request, v also sets countv[u] to be equal

to c. Finally, node u accepts a response numbered c only if c = countu[v]. When u

accepts this response, u also increments countu[v] mod 4. This is implemented in the

code and illustrated in the diagram on the right of Figure 5.8.

In the �rst two phases, packets sent by u and v may be dropped by the links because

the links may have packets stored in the initial state. However, it is easy to see from

the properties of a UDL, that after at most two phases, the links in both directions are

drop-free { i.e., any packets sent from that point on will be delivered. Thus we need
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Incorrect Matching Matching using a Counter
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TIME 
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REQ(c)

RESP(c)
c = c + 1
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RESP

Figure 5.8: Using counter ushing to ensure that request-response matching will work correctly within a

small number of phases.

to show that within the next three phases, the request-response matching will begin

to work correctly. This follows from a simple paradigm that we call counter ushing.

Counter ushing is a general technique that is quite versatile. Chapter 10 describes

some more applications of counter ushing. In our case, the counter ushing argument

runs as follows:

� There can be at most 3 counter values stored in the two links (i.e., the link from

u to v and the link from v to u) and the receiver. This is the signi�cance of the

number 3.

� The sender retransmits till it gets a response and so the sender counter will keep

being incremented.

� Within 3 increments of the sender counter, the sender counter will reach a \fresh"

counter value that is not present in the links and the receiver. This is because

the counter space has 4 values, and new counter values can only be created by

the sender.

� Suppose the sender sends a request numbered c where c is a fresh value that is not

present in the receiver or on the two links. Then when a later response numbered
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c is received, this response is a matching response because no aliasing is possible.

Also, by the time the sender receives the matching response, the only counter

value stored in the two links and the receiver is c. In other words, a freshly

numbered request and its matching response will \ush" the (u; v) subsystem of

outdated counter values. Hence the term counter ushing.

� After all old counter values have been ushed, we say that the (u; v) subsystem

is clean. It is easy to show that all subsequent phases follow the structure shown

in the diagram on the right of Figure 5.8.

5.5.2 Intuition Behind Local Snapshots

The diagram on the left of Figure 5.9 shows why a snapshot works correctly if the

response from v is sent following the receipt of the request at u. Let a0 and b be the

state of nodes u and v respectively just before the response is sent. Let a and b
0 be

the state of nodes u and v respectively just after the response is delivered. This is

sketched in Figure 5.9.

From the code we know that node u does not send any data packets to v during

a phase. Also v cannot send another data packet to u from the time the response is

sent until the response is delivered. This is because the link from v to u is a UDL that

will not give a free indication until the response is received. Recall that nil denotes

the absence of any packet on a link. Thus the state of the (u; v) subsystem just before

the response is sent is (a0;nil;nil; b). Similarly, the state of the (u; v) subsystem just

after the response is delivered is (a;nil;nil; b0).

We claim that it is possible to construct some other execution of the (u; v) subsystem

which starts in state (a0;nil;nil; b), has an intermediate state equal to (a;nil;nil; b) and

has a �nal state equal to (a;nil;nil; b0). This is because we could have �rst applied

all the actions that changed the state of node u from a
0 to a, which would cause the

(u; v) subsystem to reach the intermediate state. Next, we could apply all the actions

that changed the state of node v from b to b0, which will cause the (u; v) subsystem to

reach the �nal state. Note that this construction is only possible because u and v do

not send data packets to each other between the time the response is sent and until

the time the response is delivered.

Thus the state (a;nil;nil; b) recorded by the snapshot is a possible successor of the
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Figure 5.9: Local Snapshots and Resets work correctly if requests and responses are properly matched.

state of (u; v) subsystem when the response is sent. The recorded state is also a a

possible predecessor of the state of (u; v) subsystem when the response is delivered.

But Lu;v is a closed predicate { it remains true once it is true. Thus if Lu;v was true

just before the response was sent, then the state recorded by the snapshot must also

satisfy Lu;v. Similarly, if Lu;v is false just after the response is delivered, then the

state recorded by the snapshot does not satisfy Lu;v. Thus the snapshot detection

mechanism will not produce false alarms if the local predicate holds at the start of the

phase. Also the snapshot mechanism will detect a violation if the the local predicate

does not hold at the end of the phase.

5.5.3 Intuition Behind Local Resets

The diagram on the right of Figure 5.9 shows why a local reset works correctly if the

response from v is sent following the receipt of the request at u. Let b be the state

of node v just before the response is sent. Let a and b
0 be the state of nodes u and v

respectively just before the response is delivered. This is sketched in Figure 5.9.

The code for an augmented automaton will ensure that just after the response

is sent, node v will locally reset its state to f(b; u). Similarly, immediately after

it receives the response, node u will locally reset its state to f(a; v). Using similar
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arguments to the ones used for a snapshot, we can show that there is some execution

of the (u; v) subsystem which begins in the state (f(a; v);nil;nil; f(b; u)) and ends in

the state (f(a; v);nil;nil; b0). But the latter state is the state of the (u; v) subsystem

immediately after the response is delivered. But we know, from the correction property

of a local reset function, that (f(a; v);nil;nil; f(b; u)) satis�esLu;v. SinceLu;v is a closed

predicate, we conclude that Lu;v holds at the end of the reset phase.

5.5.4 Intuition Behind Local Correction Theorem

We can now see intuitively why the augmented automaton will ensure that all local

predicates hold in time proportional to the height of the partial order. Consider a

(u; v) subsystem where fu; vg 6< fw; xg for any pair of neighbors w; x { i.e., fu; vg is

a minimal element in the partial order. Then, within 5 phases of the (u; v) subsystem

the request-response matching will begin to work correctly. If the sixth phase of the

(u; v) subsystem is a snapshot phase, then either Lu;v will hold at the end of the phase

or the snapshot will detect a violation. But in the latter case, the seventh phase will

be a reset phase which will cause Lu;v to hold at the end of the seventh phase.

But once Lu;v remains true, it remains true. This is because Lu;v is a closed

predicate of the original automatonN and the only extra actions we have added to N+

that can a�ect Lu;v are actions to locally reset a node using the reset function f . But by

the stability property of a local reset function, any applications of f at u with respect

to some neighbor other than v cannot a�ect Lu;v. Similarly, any applications of f at v

with respect to some neighbor other than u cannot a�ect Lu;v. Thus in constant time,

the local predicates { corresponding to link subsystems that are minimal elements in

the partial order { will become and remain true.

Now suppose that the local predicates for all subsystems with height � i hold from

some state si onward. By similar arguments, we can show that in constant time after

si, the local predicates for all subsystems with height i + 1 become and remain true.

Once again, the argument depends crucially on the stability property of a local reset

function. The intuition is that applications of the local reset function to subsystems

with height � i do not occur after state si. But these are the only actions that can

falsify the local predicates for subsystems with height i+ 1. The net result is that all

local predicates become and remain true within time proportional to the height of the

partial order <.
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5.6 Formal Proof of Local Correction Theorem

The reader who is satis�ed with the \intuitive proof" given above should skip this

section. However, there are a number of details glossed over in the intuitive proof that

are spelled out in the formal proof. The formal proof also provides a good example

of the proof techniques of Chapter 3. Formal proofs for other major theorems in

this thesis like the Tree Correction theorem (Chapter 6) and the Global Correction

Theorem (Chapter 8) can be constructed along similar lines.

5.6.1 Overview of Formal Proof

We wish to prove the local correction theorem, Theorem 5.4.3. Thus we have to prove

that in time proportional to height(<), every behavior ofN+ will \look like" a behavior

of N in which L holds and in which the node and link delays are increased by some

constant factor.

The formal proof is based on the proof technique described in Chapter 3 in Lemma 3.4.2.

Thus the proof consists of two major parts:

� We �rst de�ne a predicate Q (more details below) and show that any execution

of N+ stabilizes to the executions of N+jQ. We prove this using the Execution

Convergence theorem, Theorem 3.4.5.

� We show that any behavior of N+jQ is also a behavior of N (c)jL, for some

constant c. We prove this using the Re�nement Mapping theorem, Theorem

3.4.3

We now present a more detailed roadmap of each part of the formal proof.

The �rst part of the proof is described in Sections 5.6.2 to 5.6.4. To show that N+

stabilizes to the executions of N+jQ we use another two step process:

� In Section 5.6.3 we formally de�ne the concept of a clean link alluded to earlier.

Intuitively, a link is clean if the snapshot numbering scheme is working correctly,

meaning that requests and responses will properly be matched. We use the

predicate C to denote the fact that all links are clean. At the end of Section
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5.6.3, in Theorem 5.6.14 we prove that N+ stabilizes to the executions of N+jC

in constant time. The proof is based on the counter ushing intuition we have

described earlier.

� In Section 5.6.4 we de�ne another important concept called a quiet link. Recall

that our intent is to make the local predicate Lu;v hold for every link. Intuitively,

a link (u; v) is quiet if two properties hold. First, Lu;v holds. Second, if all links

less than (u; v) in the partial order are also quiet, then there will be no more

reset actions on that link. We use the predicate Q to denote the fact that all

links are quiet. At the end of Section 5.6.4, in Theorem 5.6.22 we prove that

N+jC stabilizes to the executions of N+jQ in time proportional to the height of

the partial order.

The second part of proof (Section 5.6.5, (Lemma 5.6.23)) shows that any behavior

of N+jQ is also a behavior of N (c)jL, for some constant c. This is done using the

Re�nement Mapping theorem, Theorem 3.4.3. In order to use this theorem we must

derive a projected state of N from a state of N+. We have already seen how to derive

a projected state sju of a node Nu from a state s of N+
u . To complete our job, we need

to state how to project the state of the channels in N+ to N .

Consider the problem of projecting the channel state. Intuitively, in N+, the

original automaton N is \sharing" each channel with request and response packets.

Let's look at the behavior of N+. When a control packet is on the channel Cu;v, we can

pretend that, as far N goes, the channel is really empty. There are two consequences

of this. First, if the projected Nu has a data packet to send, it can take longer before

the data packet is sent. Second, it can take longer before a free signal is delivered

by the link. This can happen if there is a control packet on the link. We model this

by saying that in the projected behavior the node and link delays are increased by a

constant factor. This is the source of the increased link and node delays in Theorem

5.4.3.

De�nition 5.6.1 For any state s of N+, we de�ne Proj (s), the state of N+ projected

onto N , as follows:

� For any two neighboring nodes u and v: if s:Qu;v 2 Pdata then Proj (s):Qu;v =

s:Qu;v; else Proj (s):Qu;v = nil. (i.e., if there is a data packet p in channel Cu;v
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in the original state, then p is also present in the projected state; if not, Cu;v is

considered empty in the projected state.)

� All other variables of N have the same values in state Proj (s) as in state s.

We complete the second part of the proof (Lemma 5.6.23) using the Re�nement

Mapping theorem and using the mapping function Proj . Notice that is not as simple

as it might appear. If all actions of N+ that change the projected state are actions

of N , then it would be quite easy. Unfortunately we have a complication. There are

actions of N+ that can cause a local reset. An example is the receipt of a presp packet

with presp:mode = reset. Such actions change the projected state but are not actions

of N . However, we will show that such actions cannot appear in executions of N+jQ.

This is because Q is a strong enough predicate to ensure not only that property L

holds in the projected state, but also that no local reset actions are enabled.

We continue to let sju denote the current state of N+
u projected onto the original

automaton Nu. We also use sj(u; v) to denote the state of Cu;v projected onto the

original automaton N . In other words sj(u; v) = Proj (s):Qu;v .

5.6.2 Phases

We formally de�ne a phase (see Figure 5.4) on a link, as an interval during which

the checking/correction procedure works on that link. As we have seen, the check-

ing/correction procedure works by setting phaseu[v] = true, and attempting to send

out a numbered request packet. If a response is received with a matching number then

phaseu[v] is set to false. We make this more precise below.

De�nition 5.6.2 A (u; v) phase for execution � is any interval  of � such that

� u = l(u; v)

�  begins with a state si of � such that si:phaseu[v] = false and si+1:phaseu[v] =

true.

�  ends with the �rst state sj; j > i of � in which sj :phaseu[v] = false.
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Notice that a (u; v) phase is only de�ned for a leader edge (u; v).

The de�nition of a phase allows the last state of a phase to overlap the �rst state

of the next phase. Clearly we can divide an execution � into consecutive (u; v) phases

as well as intervals that lie between (u; v) phases. Thus we can speak of the i-th (u; v)

phase in � in this division.

Our �rst lemma states that in between phases, at most one data packet is sent on

Cu;v. Thus we can think of an execution (from the point of view of any link Cu;v) as

alternating between a phase during which requests are sent and responses are received,

followed by a period where at most one data packet is sent on Cu;v.

Lemma 5.6.3 Between two consecutive (u; v) phases on link (u; v) at most one

Sendu;v(pdata) event can occur.

Proof: The �rst Sendu;v(pdata) event after the i-th (u; v) phase will set phaseu[v] = true

which begins the i+ 1-st phase.

The proofs of the next two lemmas are quite tedious and are relegated to the

appendix. The �rst lemma states that a single phase completes in constant time.

Intuitively, the time taken to complete a phase consists of the time to start a phase

(which may involve the sending of a data packet) followed by the time to send a

request and receive a matching response. The second lemma shows that data packets

are sent out on a link in a bounded time after they are placed on the queue for the

link. Intuitively, this is because a phase takes constant time to complete and if the

data queue is non-empty, the code sends at least one data packet between consecutive

phases.

Before we state these lemmas, we de�ne a quantity tp. Intuitively, tp is the the

time it takes to complete a phase.

De�nition 5.6.4 We let tp = 6tn + 12tl.

The major components of the time to complete a phase are sketched in Figure 5.10.

Since the free variables may be incorrect in the initial state, the �rst packet sent on

a link can be dropped. However, in constant time, the links stop dropping packets.

Then, after the possible sending of data packet, a request is sent out by u in constant

time. Next, after the possible sending of a data packet, a response is sent by v in

constant time. The appendix contains more details.
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Figure 5.10: The major components of the time required to complete a phase.

Lemma 5.6.5 Phase Rate: For all � and any leader edge (u; v) and any integer x,

at least x (u; v) phases will have completed within (x+1) � tp time units after the start

of �.

Proof: From Lemma B.3.4 and Lemma B.3.5 in Section B.3 of the appendix. The

reason why we need (x+ 1) � tp time (instead of x � tp time) to complete x phases is as

follows. Suppose in the initial state of �, phaseu[v] = true; it may take tp time before

phaseu[v] becomes false. Thus, the �rst (u; v) phase in � may be a \partial phase".

However, the de�nition of a phase does not allow us to consider a \partial phase" as

a phase.

Lemma 5.6.6 Data Packet Rate: For any � = s0; a1; . . . and any (u; v), if

s0:jqueueu[v]j > 0 then a Sendu;v(pdata) occurs within tp time units after s0.

Proof: At the end of Section B.3 in appendix.

5.6.3 Clean Phases

We know that a link can drop packets if a packet is sent when the link already has a

packet. To be sure that packets will not be dropped, the sender must never think that
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u v

respcount(u,v) is the count carried in a response

count  [v] is the count at sender

reqcount(u,v) is the count carried in a request

count  [u] is the count at receiver

phase  [v] is set to true

during a phase
u

vu

Figure 5.11: The key variables used in the de�nition of a clean link: countset(u; v) is the union of the

count at the receiver and any count values in request and response packets. A clean link ensures that

between phases, the sender count value is not in countset.

a link is free when it isn't. In this case, we say the link is \drop-free".

De�nition 5.6.7 Let Fu;v denote the predicate of N+ de�ned by: (freequ[v] = true)!

(Qu;v = nil). We also say that (u; v) is drop-free in state s of N+ if s 2 Fu;v.

In the appendix, we show that once a link is drop-free, it remains drop-free. In-

tuitively, this is because the sender will not record the link as free unless it receives

a free signal from the link, which means that there is no packet on the link. In the

appendix, we also show a link (u; v) becomes drop-free in constant time { in fact, after

the �rst packet sent on the link. This follows because after the �rst packet is sent

on the link, the sender records the link as being busy, and this trivially satis�es the

drop-free predicate.

Before studying the structure of phases, we introduce some notation to denote the

set of counter values in a (u; v) subsystem. These include counters in any request or

response packets, and the counter stored at node v. These variables are sketched in

Figure 5.11.

De�nition 5.6.8 For any state s we de�ne the derived variables reqcount(u; v),

respcount(u; v) and countset(u; v) as follows:

1. If Qu;v = preq then reqcount(u; v) = preq:count; otherwise reqcount(u; v) = unde�ned
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2. If Qv;u = presp then respcount(u; v) = presp:count; otherwise respcount(u; v) =

unde�ned.

3. countset(u; v) is the set formed by the union of the values in respcount(u; v);

reqcount(u; v) and countv[u]

In order for a (u; v) phase to work correctly, we need the phase to follow the

structure describe in Figure 5.4. For this to happen, when a numbered request is

�rst sent during a phase, the number of the request should not already present at

the receiver or in the channels. If this is not the case, it is possible for an incorrect

response to be accepted in the phase. We formalize this notion of a link and a phase

being \clean" using �ve conditions. The second condition is the crucial condition;

the other four are supporting conditions required to ensure that the clean predicate is

closed.

De�nition 5.6.9 We say that a leader edge (u; v) is clean in state s of N+ i� all the

following predicates are true in s:

1. (v; u) and (u; v) are drop-free.

2. If phaseu[v] = false then countu[v] 62 countset(u; v)

3. If phaseu[v] = true then reqcount(u; v) = countu[v] or reqcount(u; v) = unde�ned

4. If phaseu[v] = true and respcount(u; v) = countu[v] then respcount(u; v) = countv[u].

5. If countv[u] = countu[v] then Qu;v 62 Pdata.

The �rst condition ensures that the links in both directions are drop-free. The

second condition ensures that when a numbered request is �rst sent during a phase,

the number of the request is not already present at the receiver or in the channels.

This is the important property of a clean link.

The third condition states that during a phase, any requests must carry the sender's

number. The fourth condition states that during a phase if there is a matching response

on the channel from the receiver to the sender, then the receiver has the same number

as the sender. The �fth condition says that if during a phase the sender and receiver
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numbers are the same, then there can be no data packet in transit from the sender to

the receiver. The �fth condition (as we will see below) follows from the fact that the

sender will not send a data packet during a phase.

De�nition 5.6.10 A (u; v) phase p is clean if (u; v) is clean in the �rst state of p.

Intuitively, a clean phase will contain an action to send a request packet at, u

followed by the receipt of this packet at v followed by the sending of a response by

u followed by the receipt of the response at u. The receipt of the matching response

ends the phase. This is shown in Figure 5.4. Thus a clean phase will ensure that the

response received at node u will correspond to the requesting information at node u.

A nice property is that once an edge becomes clean, it remains clean.

Lemma 5.6.11 For any transition (s; �; ~s) and any leader edge (u; v), if (u; v) is clean

in s then (u; v) is clean in ~s.

Proof: See Section B.4 in the appendix. However, it is not hard to see informally see

why this is true. First, as we have seen before, once a link is drop-free, it remains

drop-free. Next, we know from the fourth condition that a matching response can

only be received if the receiver has the same number as the sender. Also from the

second condition, any requests present during a phase must have the same number as

the sender. Now the sender always increments its number after receiving a matching

response. Thus after a phase is over, the number of the sender must be di�erent from

any of the numbers present in the receiver or channels: this is the second condition.

The third condition follows from the fact that a phase begins by sending a request

with the sender's number, and subsequent retransmissions of requests carry the same

number. Next, if a matching response is present, it must have been sent by the receiver

during the phase. But, by the third condition, the receiver cannot change its number

after it sent the response. Thus if there is a matching response, the number of the

receiver must be the same as the sender, which is the fourth condition.

The �fth condition follows because the sender never sends a data packet during

a phase. By the second condition, at the start of the phase the receiver number is

not equal to the sender number; thus the two numbers become the same only after

the receiver has received a request. But the receipt of this request \ushes" out any
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data packets that were in transit from sender to receiver at the start of the phase.

This (taken together with the fact that the sender never sends a data packet during a

phase) is what makes the �fth condition hold.

The following lemma explains why the request-response matching procedure is

stabilizing.

Lemma 5.6.12 A leader edge (u; v) is clean in all states after the �fth (u; v) phase

in any execution �.

Proof: (Idea) We �rst show that after at most two phases (v; u) and (u; v) are both

drop-free. This follows (see Claim B.2.2 in the appendix) since some packet (i.e., at

least one request and at least one response) must have been sent on either link by

this time. Next consider the end of the second phase. In this state, there must be

some c 2 f0; . . . ; 3g such that c 62 countset(u; v). This follows because, by de�nition,

countset(u; v) has a maximum of three elements. Now consider the �rst time after the

end of the second phase that countu[v] = c. This must occur at the end of a phase

because countu[v] is only incremented at the end of a phase. Also this must occur at

or before the end of the �fth phase because countu[v] increases by 1 mod 4 at the end

of each phase.

It is easy to see using Claim B.4.1 that when countu[v] �rst becomes equal to c,

c 62 countset(u; v). Thus at or before the end of the �fth phase, phaseu[v] = false and

countu[v] 62 countset(u; v). Thus at or before the end of the �fth phase, edge (u; v) is

clean. Finally, by Claim 5.6.11, (u; v) is clean in all subsequent states of �.

Now we have reached the goal of this subsection. First we de�ne:

De�nition 5.6.13 Let C be the predicate of N+ such that for all leader edges (u; v),

(u; v) is clean in all states in C.

Recall that N+jC is the automaton that is identical to N+ except that all leader

edges are clean in any initial state.

Theorem 5.6.14 N+ stabilizes to the executions of N+jC in time 6tp.
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Proof: Follows directly from Lemma 5.6.11, Lemma 5.6.12 and Lemma 5.6.5 and the

Execution Convergence theorem, Theorem 3.4.5. Lemma 5.6.11 shows that each leader

edge becomes clean after at most 5 phases which by Lemma 5.6.5 takes at most 6tp

time. Lemma 5.6.11 shows that once a leader edge is clean it remains clean. Then the

Execution Convergence theorem (Theorem 3.4.5) shows that all leader edges become

clean in at most 6tp time.

5.6.4 Quiet Links: Establishing Link Predicates

Clean phases are only useful because they allow local predicates to be established as

we show in this section. We know from the last section that every execution has a

su�x that is clean. When we say that Lu;v holds in a state s of N+, we mean that

(sju; sj(u; v); sj(v; u); sjv) 2 Lu;v.

Recall that < is the partial order on edges associated with reset function f . Con-

sider a link (u; v) such that there is no other link fw; xg < fu; vg. We will show that

if in the �rst state of a clean (u; v) phase modeu[v] = snapshot then at the end of the

phase, a true snapshot of the (u; v) subsystem is obtained. In particular, it is possible

at the end of such a phase to determine whether Lu;v holds at the end of the phase. If

it does not hold, modeu[v] is changed to reset. In a similar fashion, we can show that

any clean phase whose initial state has modeu[v] = reset will guarantee that Lu;v holds

at the end of the phase. The net e�ect is that Lu;v holds by end of the second (u; v)

phase of a \clean" execution.

However, we want to show not only that Lu;v holds by end of the second (u; v)

phase but also that no more \reset" actions can occur after this point so that Lu;v will

remain true. This motivates the following de�nitions of a quiet link. Please refer to

Figure 5.12 for an intuitive explanation.

De�nition 5.6.15 We say that a leader edge (u; v) is quiet in state s of N+ i� the

following predicates hold in s:

1. (u; v) is clean.

2. (sju; sj(u; v); sj(v; u); sjv) 2 Lu;v

3. (modeu[v] 6= reset) and (modev[u] 6= reset).
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LEADER 

u v

Any Request that is not outdated must not be a reset request

Any Response will not cause leader to change mode to reset

Leader mode should
not be reset

Responder mode should
not be reset

Figure 5.12: A leader edge is quiet if it clean, its local predicate holds, and it satis�es the conditions

sketched in the �gure.

4. If Qu;v = preq and preq:mode = reset then preq:count = countv[u].

5. If Qv;u = presp and presp:count = countu[v] then (sju;nil;nil; presp:node state) 2

Lu;v

Notice that the fourth condition above ensures that there is no reset request on the

link that could be accepted by the receiver at a later state. The �fth condition ensures

that any snapshot information in a matching response will not cause the sender to

change its mode to reset.

Our goal is to show that eventually all links are quiet.

De�nition 5.6.16 Let Q be the predicate set consisting of the following predicate for

each leader edge in G. The predicate for each leader edge (u; v) is that (u; v) is quiet.

Let Q be the predicate that is the intersection of all predicates in Q.

We will extend the partial order < (which was de�ned on undirected pairs of

nodes) to leader edges by assuming that that leader edge (u; v) < leader edge (w; x)

i� fu; vg < fw; xg. Next, we will use the Execution Convergence theorem (Theorem

3.4.5) to show that N+ stabilizes to the executions of N+jQ. We know that N+

stabilizes to the executions of N+jC. Thus it is su�cient to show that N+jC is

stabilized to Q using predicate set Q and partial order <. To show this, we will �rst

show two lemmas:
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First we state the required stability condition: that a leader edge (u; v) will remain

quiet as long as all leader edges less than or equal to (u; v) are quiet.

Lemma 5.6.17 Consider a leader edge (u; v). If every leader edge (w; x) � (u; v) is

quiet in some state s of N+jC, then for any transition (s; �; ~s), (u; v) is quiet in state

~s.

Proof: In Section B.5 in the appendix. However, the basic idea is simple. We have

already seen that the clean predicate is stable. We also know from the de�nition of

local checkability that Lu;v is closed for all the actions of the original automaton N .

However, in N+ we added additional actions to send requests and responses. It is

easy to verify that the sending of snapshot requests and responses do not a�ect Lu;v.

However, Lu;v is a�ected by actions that send reset requests and responses on edges

to neighbors that are less than (u; v) in the partial order. (If such \reset" actions

occur on edges to neighbors that are not less than (u; v) in the partial order, then the

de�nition of the local correction function ensures that Lu;v remains true.) But such

\reset actions" cannot occur on edges less than (u; v) in the partial order, because

such edges are quiet by hypothesis.

Next, if Lu;v holds, and the snapshot information in matching responses is always

correct, the sender will never change its mode to reset. But if the sender never changes

its mode to reset, the sender will never send a reset request. And if the receiver never

receives a reset request, the receiver will never change its mode to reset.

Next we state the required liveness condition: that a leader edge (u; v) will become

quiet in bounded time if all leader edges less than (u; v) are already quiet.

Lemma 5.6.18 Consider a leader edge (u; v) and some execution � of N+jC. If every

leader edge (w; x) < (u; v) is quiet in some state si of �, then (u; v) is quiet in some

state that occurs within 3 � tp of si in �.

Proof: In In Section B.5 in the appendix. However, the basic idea is simple. Consider

the �rst complete (u; v) phase after si. If it is a snapshot phase, and Lu;v does not hold

at the end of the phase, this will be detected and the next phase will become a reset

phase. Thus either the �rst or second complete phase after si will be a reset phase.

At the end of the reset phase, (u; v) will become quiet because all the links that (u; v)
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depends on are already quiet. The upshot is that within two complete phases, (u; v)

becomes quiet. But this can take up to 3tp time (where tp is the time to complete a

single phase) because the �rst phase after si can be an incomplete phase.

The last two lemmas immediately give us:

Lemma 5.6.19 N+jC is stabilized to Q using predicate set Q and time constant 3tp.

Thus applying the Execution Convergence Theorem (3.4.5) and using the last

lemma, we get:

Lemma 5.6.20 N+jC stabilizes to the executions of N+jQ in time height(f) � 3tp.

For convenience we de�ne a quantity tq which intuitively can be thought of as the

time after which any execution of N+ becomes quiet.

De�nition 5.6.21 We let tq = 6tp + height(f) � 3tp;

Thus we have the major result of this section:

Lemma 5.6.22 N+ stabilizes to the executions of N+jQ in time tq.

Proof: Follows directly from Lemmas 5.6.14 and 5.6.19 and transitivity (Lemma 3.1.6).

5.6.5 Projecting Behaviors of NjQ

In this subsection, we prove that if all leader edges are quiet in the initial state of

some execution � of N+, then the external behavior corresponding to � is a behavior

of NjL. Intuitively, this is not very hard to believe. This is because for every leader

edge (u; v), Lu;v holds in every projected state of �. We also know that there will be

no reset transitions in �. Formally:

Lemma 5.6.23 Every behavior of N+jQ is a behavior of N (tp)jL
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Proof: Follows by using a re�nement mapping (Theorem 3.4.3) using the mapping

function Proj (De�nition 5.6.1).

First, for any state s of N+jQ, and any leader edge (u; v), we know (from the

de�nition of Q) that (sju; sj(u; v); sj(v; u); sjv) 2 Lu;v. Thus Proj (s) 2 L. Thus for

any state s of N+, Proj (s) is a start state of N (tp)jL

Next consider any transition, (s; �; ~s) of N+jQ. We know from the de�nition

of Q that there are no reset transitions in N+jQ. Suppose � is a Sendu;v(preq) ,

Receiveu;v(preq) , Sendv;u(presp) , or Receivev;u(presp) for any (u; v). Then it is easy

to see that Proj (s) = Proj (~s). But such actions are not actions of N .

If � is a Sendu;v(pdata) action for some edge (u; v), then it must be that pdata is at

the the head of s:queueu[v] and s:freeu[v] = true. Since Proj (s):queueu[v] = s:queueu[v]

and Proj (s):freeu[v] = s:freeu[v], the Sendu;v(pdata) event is also enabled in Proj (s).

Also, ~s:Qu;v = Proj (~s):Qu;v = pdata, since (u; v) is drop-free in s. Thus (Proj (s),

Sendu;v(pdata) , Proj (~s)) is a transition ofN (tp)jL. Similarly if � is a Receiveu;v(pdata)

action for some edge (u; v), then it must be that s:Qu;v = pdata and ~s:Qu;v = nil.

Thus Proj (s):Qu;v = pdata and Proj (~s):Qu;v = nil. and (Proj (s), Receiveu;v(pdata) ,

Proj (~s)) is a transition of N (tp)jL. Next if � is a Freeu;v action for some edge (u; v),

then it must be that s:Qu;v = nil and ~s:Qu;v = nil. Thus Proj (s):Qu;v = nil and

Proj (~s):Qu;v = nil and (Proj (s);Freeu;v;Proj (~s)) is a transition of N (tp)jL.

Finally suppose that � is any other action of N (tp)jL. (For example, this category

would include internal actions of N (tp)jL.) Then such actions remain unmodi�ed and

the values of all node variables are identical in s andProj (s). Thus (Proj (s); �;Proj (~s))

is a transition of NjL(tp).

Finally consider the timing properties. Suppose a Sendu;v(pdata) event is enabled

in Proj (s) for any edge (u; v). Then s:jqueueu[v]j > 0. Thus by Lemma 5.6.6, a

Sendu;v(pdata) event occurs within tp time after s. Suppose a Receiveu;v(pdata) event

is enabled in Proj (s) for any edge (u; v). Then s:Qu;v = pdata 6= nil. From the timing

properties of N+jQ we know that a Receiveu;v(pdata) will occur in tl time, and tl � tp.

Consider a Freeu;v action for any edge (u; v). Within tl time units after s, either

a Freeu;v action will occur or there is a state s0 such that s0:Qu;v 6= nil. Consider

the second case. From Claim B.3.1, within tl time units after s
0, there is a state s00

such that s00:Qu;v = nil. Since (u; v) is drop-free in all states of �, s00:freequ[v] = false.

Thus Qu;v = nil will remain true until a Freeu;v action occurs within time tl after s
00.
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Thus a Freeu;v action will occur within 3tl time units after state s. In particular, this

means that a Freeu;v action will occur within tp time units of any state s such that

Freeu;v is enabled in Proj (s).

Finally suppose that � is any other locally controlled action of N (tp)jL. Thus �

is an internal action of N (tp)jL. Notice that � is in the same class say c (with upper

bound equal to tc) in both N+jQ and N (tp)jL. Suppose that � is enabled in Proj (s).

Then � is enabled in s. Then in tc time of s in � either some action in class c occurs or

there is some state ~s such that no action in class c is enabled in Proj (~s). This follows

because if no action in class c is enabled in ~s, then no action in class c is enabled in

Proj (~s), and vice versa.

5.6.6 Tying up the Proof

We now return to the proof of the Local Correction Theorem, Theorem 5.4.3. It follows

from Lemma 5.6.23 and Lemma 5.6.22 and Theorem 3.4.2.

5.7 Implementing Local Checking in Real Networks

In this chapter, we described a stabilizing snapshot and reset protocol for link sub-

systems. This protocol was used to transform an automaton N that was locally cor-

rectable to some predicate L into a UIOA N+ that stabilizes to the behaviors ofN (c)jL

for some constant c. To make the snapshot/reset protocol stabilizing we numbered

snapshot requests and responses; we also relied on the fact that each link was a UDL. In

practice, however, there is an even simpler way of making the snapshot/reset protocol

stabilizing. This can be done using timers.

Suppose there is a known bound on the length of time a packet can be stored

in a link and a known bound on the length of time between the delivery of a request

packet and the sending of a matching response packet. Then by controlling the interval

between successive snapshot/reset phases it is easily possible to obtain a stabilizing

snapshot protocol. The interval is chosen to be large enough such that all packets from

the previous phase will have disappeared at the end of the interval. This solution was

advocated by us in [APV91a] and was implemented in a trial implementation on the

Autonet [MAM+90].
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To keep our model simple, however, we have assumed that all lower bounds (on

the time between events) are zero. Thus we have no way to model timers, which are

needed to control the interval between phases. While we will not describe the timer

based scheme formally, the reader interested in practical applications should be aware

of the simplicity of a timer based scheme. Notice also that the maximum value of the

timer need only be some small multiple of the worst-case round trip delay on a single

link. We call such timers local timers.

In most real networks, each node sends \keep-alive" packets periodically on every

link in order to detect failures of adjacent links. If no keep-alive packet arrives before

a local timer expires, the link is assumed to have failed. Thus, it is common practice

to assume time bounds for the delivery and processing of packets. Note also that the

snapshot and reset packets used for local checking can be \piggy-backed" on these

keep-alive packets without any appreciable loss in e�ciency.

5.8 Summary

The two main contributions of this chapter are the de�nition of Unit Storage Data

Links in Section 5.1.2, and the notion of local checking and correction (Section 5.3 and

Local Correction theorem, Theorem 5.4.3).

In a stabilizing setting it is necessary to de�ne Data Links that have bounded

storage. First, such models correspond to physical reality. Second, they avoid the

theoretical problems with unbounded storage links. We have chosen unit storage links

(UDLs) because they are practical (see Section 5.2) and they can be modelled elegantly.

We have also de�ned a stabilizing interface to a UDL. This is done by having the link

periodically deliver a free signal (to avoid deadlock) and by having the sender keep a

variable that indicates whether the link is free. We hope the UDL model will be used

by others.

Intuitively, a protocol is locally checkable if whenever the protocol is in a bad state,

some pair of neighbors can detect this fact. Intuitively, a protocol is locally correctable

if the protocol can be corrected to a good global state by independently correcting the

states of each link subsystem. A link subsystem is just a pair of neighboring nodes

and the links between them.
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Local checkability is not a very new or surprising idea. For example, many authors

have proposed local methods for detecting termination and deadlocks. In a stabilizing

setting, the intuitive notion of local checkability was �rst referred to in a paper by

[AKY90]. However, their reference to this concept (during the description of a spanning

tree protocol) was brief and intuitive.

Our contribution has been to make precise the notion of local checkability, and

to show that this is a useful and pervasive concept. Our de�nition (De�nition 5.3.6)

has some subtle aspects: for example, the requirement that each local predicate be

closed may not be immediately obvious. Also, we have implemented local checking by

doing a snapshot of each link subsystem. Now, a number of practical, self-stabilizing

protocols (e.g., [Per85]) do what essentially amounts to local checking in the following

way. Periodically each node sends its state to all its neighbors. However, (as we will

show in Chapter 8) such periodic sending of state is not always su�cient to do local

checking. Periodic sending is su�cient if all local predicates can be separated into

what we call (see Chapter 8) one-way predicates. In the general case, a snapshot is

required.

The idea of local correction is more unusual. It is perhaps surprising that there

are non-trivial protocols with this property. As we will see in Chapter 6, an easy way

to ensure local correction is to �rst build a spanning tree of the network and then do

local correction using the tree. Luckily, there is another class of protocols that are

locally correctable: these are protocols that work in dynamic networks in which links

can fail and recover. We will see an important example of such protocols in Chapter

7.

Local checking and correction is practical. In most real networks, each node sends

\keep-alive" packets periodically on every link. The packets used for local checking

and correction can be \piggy-backed" on these keep-alive packets.
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Chapter 6

Stabilizing Mutual Exclusion and

Tree Correction

The main result of Chapter 5 was the Local Correction theorem, Theorem 5.4.3. In this

chapter we will consider a simple application of the Local Correction theorem to the

problem of mutual exclusion. Section 6.1 gives an overview of our stabilizing mutual

exclusion protocol. Section 6.2 formally de�nes our mutual exclusion protocol as a

network automaton. Section 6.3 describes how local checking and correction is added

to the automaton to create a stabilizing solution to the mutual exclusion solution.

The last two sections of this chapter extract some general principles from the

example of stabilizing mutual exclusion. In Section 6.4, we discuss a weaker notion of

local checkability called weak local checkability. We show that in certain cases, a simple

heuristic of removing unexpected packet transitions can be used to transform a protocol

that is weakly locally checkable into a locally checkable protocol. This heuristic has

proved to be quite useful, and is used in later chapters.

Finally, in Section 6.5, we show (informally) an important result, the Tree Cor-

rection theorem. This theorem states that any locally checkable protocol on a tree

topology can be e�ciently stabilized. In other words, if the underlying topology is a

tree we can dispense with the need for the (stronger) local correctability condition.

This theorem is the counterpart to a similar theorem proved in Chapter 4 for shared

memory systems.
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6.1 Overview of Token Passing Protocol

Token passing is one way of ensuring mutual exclusion in a network. If there is only

one token in a network, a node can go into the critical region when it receives a token.

In the I/O automaton model this is typically modelled by adding an output action to

every node by which the node can give permission to some external user to go into

the critical section, and adding an input action that tells the node when the user has

�nished with the critical section. For simplicity we ignore this extra piece of modelling

which is important for providing a modular interface to other subsystems.

Token protocols that stabilize in time proportional to the height of the tree have

been described before by [DolevIM90] in a sharedmemory setting. However, we believe

our protocol is simpler and more transparent. While the mutual exclusion protocol is

very simple, its simplicity makes it a good candidate to understand how the general

method of local correction developed in Chapter 5 can be applied.

Stabilizing spanning tree protocols have been well studied [AKY90],[AG90],[AV91].

Thus we can reduce the problem of token passing on an arbitrary connected network

to that of token passing on a tree. Instead of modelling the interface to the network

automaton that computes the tree, we will (for simplicity) assume that the network

graph is a tree. Thus we are dealing with a network automaton of the form N =

Net(G;N) where G is a tree graph. Formally:

De�nition 6.1.1 A tree graph T is a topology graph such that:

� T is a rooted tree. (i.e, there is a distinguished node called the root and there is

a unique path between any node and the root.)

� For every edge (u; v) in G, the leader function l(u; v) = u if u is the parent of v

in the tree, and l(u; v) = v if v is the parent of u in the tree.

De�nition 6.1.2 A tree automaton is a network automaton whose topology graph is

a tree graph.

For a tree graph we will refer to the leader function l as parent for obvious reasons.

The simplest mutual exclusion algorithm is to pass a token along some tour (e.g.,

DFS) of the tree; a node can go \critical" when it has the token. But such a protocol
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Token

Figure 6.1: Adding a pointer to each node makes token passing on a tree locally checkable.

is not locally checkable; if there are two tokens at two links, each link subsystem may

not locally detect a problem.

Once we see this, it is easy to add a small amount of state to make the token protocol

locally checkable. We add a pointer, pointeru to each node i such that pointeru points

to where the token is in the tree; also if the token is at node u, then pointeru = nil.

This is shown in Figure 6.1.

6.2 Speci�cation of Token Passing Protocol

Our stabilizing token passing protocol is based on this idea and is speci�ed by N =

Net(T;N) where:

� T is a tree graph.

� Each u 2 V is a UIOA of the form described in in Figure 6.2.

We assume that there is a function neighborSet(u) that lists the set of neighboring

nodes of node u. (Recall that we allowed node automata to depend on the set of

neighboring nodes and the leader function.) We assume there is some �xed circular

ordering on neighborSet(u) and that there is a function Succu which when given a

neighbor v as its argument produces the next neighbor in the ordering. The only

packet sent by this automaton is a token packet token 2 Pdata. We use the following

additional variables:
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� pointeru 2 neighborSet(u) [ nil (*pointer to token*)

� lastu 2 neighborSet(u) (*last neighbor u received token from*)

� queueu[v] (*queue that either contains exactly one token packet or is empty.*)

� freeu[v] : boolean (*true if no packet in transit on link to v *).

Note that we can use domain restriction to ensure that the outbound queue for a

link either contains a token or is empty. This can be done by using a single value to

encode the queue that is either token or nil. We use a queue to keep the de�nition of

Nu compatible with the de�nition of a node automaton in Chapter 5. To make the

token passing automaton a node automaton, we also have to pass the token by �rst

enqueueing the token in the outbound queue for a link. Then, a second separate action

is required to send the token from the queue to the link. However, by making Nu a

node automaton, we can apply the Local Correction Theorem of Chapter 5.

Notice the code we have given does not specify start states because each Nu is a

UIOA .

Lemma 6.2.1 N = fNu; u 2 Tg is a set of node automata for T with Pdata = ftokeng.

. Proof: Simple checking of the de�nitions given earlier.

6.3 Adding Local Checking and Correction

To add local checking and correction, we need to de�ne a link predicate set L for

N = Net(T;N). And to de�ne L we need to de�ne a link predicate, Lu;v, for each

edge (u; v) in T . Let havetoken(u; v) be the boolean condition that is true i� there

is a token in either queueu[v], Qu;v, queuev[u], or Qv;u. (Informally, havetoken(u; v) is

true i� there is a token stored on any of the links between u and v or on the outbound

queues for such links.)

Intuitively, Lu;v should describe the legal states of the (u; v) subsystem when N is

behaving properly and there is exactly one token in the system. Consider such a good

state and suppose the pointer at u is pointing to v. Then either the token is in transit

between u and v OR the pointer at v is pointing away from u.
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Enqueueu;v (*output action to enqueue token in queue for neighbor v*)

Preconditions:

pointeru = nil; (* u has token?*)

v = Succu(lastu); (* v is the next neighbor after last ?*)

E�ect:

pointeru := v (* point towards where token is sent*)

Add token to queueu[v] (*store token in outbound queue*)

Sendu;v(token) (*output action to send token to neighbor v*)

Preconditions:

freeu[v] = true (* link to v free?*)

token is head of queueu[v]

E�ect:

freeu[v] = false (* set to false until link says its free*)

Remove token from head of queueu[v] (*empty outbound queue*)

Freeu;v (*link to v says it is free, input action*)

E�ect:

freeu[v] = true

Receivev;u(token) (*input action, token received from neighbor v*)

E�ect:

If pointeru = v then (* token received on expected link?*)

pointeru := nil (* accept token*)

lastu := v (* update last*)

All actions are in a separate class with upper bound tn.

Figure 6.2: Actions for a node u with respect to a neighbor v in the stabilizing token passing protocol.
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De�nition 6.3.1 Local Predicates for Mutual Exclusion: We de�ne the local

predicate Lu;v of N to hold i� all the following conditions hold in the (u; v) subsystem:

� Exactly one of (pointeru 6= v) or havetoken(u; v) or (pointerv 6= u) is true.

� There can be at most one token packet in the combination of queueu[v], Qu;v,

queuev[u] and Qv;u.

Let L be the link predicate set that consists of Lu;v for each edge (u; v) in T . Let L

denote Conj(L).

Then we can show that:

Lemma 6.3.2 The network automaton N = Net(T;N) is locally checkable for L using

link predicate set L.

Proof: By de�nition L = Conj(L). We also need to show that each Lu;v is a closed

predicate. Recall that we say that a state s ofN satis�es Lu;v i� (sju; sj(u; v); sj(v; u); sjv) 2

Lu;v. Thus we need to show that for any transition (s; �; ~s) of N , if s satis�es Lu;v,

then so does ~s. So assume that s satis�es Lu;v.

Clearly we need only consider actions at nodes u and v since only such actions can

a�ect variables of the (u; v) subsystem. Also we need only consider actions at node u,

because the argument for actions at node v is symmetrical.

Suppose � is a Enqueueu;x event. Then in s, pointeru = nil. Thus we can infer that

in s, havetoken(u; v) = false and pointerv = u. If x = v, then in ~s, havetoken(u; v) =

true and pointeru = v and pointerv = u. Also in ~s there is no token in Qu;v, queuev[u]

andQv;u. On the other hand, if x 6= v, then in ~s, havetoken(u; v) = false and pointeru 6=

v and pointerv = u. In either case, ~s satis�es Lu;v.

Suppose � is a Sendu;x(token) event. If x 6= v, then this action does not a�ect any

of the concerned variables. So suppose x = v. Then in s, token is the head of queueu[v].

Thus we can infer that in s, pointeru = x, havetoken(u; v) = true, and pointerv = u.

Also in s there is no token in Qu;v, queuev[u] and Qv;u. All this action does is to move

the token from queueu[v] to Qu;v. Thus ~s satis�es Lu;v.
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Empty queueu[v] (*remove any token stored in queue*)

If u is the parent of v then

If pointeru = v then pointeru = nil (* take away token from child subtree*)

Else (*v is parent of u*)

pointeru = v (* point towards parent*)

Figure 6.3: Code for f(sju; v), the reset function applied at node u with respect to neighbor v

Suppose � is a Freeu;x event. Then this action does not change the concerned

variables and hence ~s satis�es Lu;v.

Suppose � is a Receivev;u(token) event. Then in s, Qv;u = token. Thus we can

infer that in s, pointeru = v, havetoken(u; v) = true and pointerv = u. Also in s

there is no token in Qu;v, queuev[u] and queueu[v]. Thus in ~s, the only change is that

Qv;u = nil, havetoken(u; v) = false, and pointeru = nil.

The most interesting case is if � is a Receivex;u(token) event with x 6= v. We

consider two cases. Suppose in s, pointeru 6= x. Then, since the code will not accept the

token in this case, it is easy to see that in ~s, the values of pointeru,pointerv,Qu;v, Qv;u,

queuev[u] and queueu[v] are identical to their values in s. Hence ~s satis�esLu;v. Suppose

in s, pointeru = x. Then we can infer that in s, pointerv = u and havetoken(u; v) =

false. Also in ~s, pointeru = nil and pointerv = u and havetoken(u; v) = false. Thus ~s

satis�es Lu;v.

The next thing we have to do is to specify a local reset function f to correct each

(u; v) subsystem. Our idea is very simple. Let us de�ne a partial order on pairs of

neighbors in T such that \any edge e is less than any edge below e in T". More

precisely, we let fu; vg � fv;wg i� u is the parent of v and v is the parent of w. Also,

fu; vg 6� fw; xg if the two pairs do not have a node in common. We let < be the

transitive closure of �. Thus, the partial order directly reects the structure of T .

To allow f to be a reset function using < we must ensure that applying f to the

state of v with respect to child w does not a�ect the stability of Lu;v. This can be

achieved by the following reset function f described in Figure 6.3.
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Lemma 6.3.3 The function f de�ned in Fig. 6.3 is a local reset function for network

automaton N = Net(T;N) with respect to link predicate set L and partial order <.

Proof: Consider any edge (u; v) and suppose that u is the parent of v; the reverse

case is symmetrical. We check the two conditions in De�nition 5.3.7.

� Correction: We need to show that (f(sju; v);nil;nil; f(sjv; u)) 2 Lu;v. Consider

f(sju; v). From the code in Figure 6.3 we see that in this node state, pointeru 6=

v and queueu[v] is empty. Consider f(sjv; u). From the code in Figure 6.3

we see that in this node state, pointerv = u and queuev[u] is empty. Thus

(f(sju; v);nil;nil; f(sjv; u)) 2 Lu;v.

� Stability: We only need to check the stability condition for links less than

(u; v) in the partial order. Since v is the child of u it su�ces to show the

following: for any neighbor w of v, if (sju; sj(u; v); sj(v; u); sjv) 2 Lu;v then

(sju; sj(u; v); sj(v; u); f(sjv;w)) 2 Lu;v. But if we change the state of node v

from sjv to f(sjv;w), queuev[u] remains unchanged. Next, if pointerv 6= u in sjv,

then pointerv 6= u in f(sjv;w). Similarly, if pointerv = u in sjv, then pointerv = u

in f(sjv;w). Taken together, these facts imply the stability condition.

Let height(T ) denote the height of tree T which in turn is the length of the longest

path from the root to a leaf. Clearly height(f) = height(T ).

The next lemma that follows directly from the previous lemmas and the de�nitions:

Lemma 6.3.4 The network automaton N = Net(T;N) is locally correctable to L

using link predicate set L and the reset function f de�ned in Fig. 6.3.

The following theorem follows directly by applying the Local Correction theorem

(Theorem 5.4.3).

Theorem 6.3.5 Let N be the set of node automata de�ned in Figure 6.2, L be the

local predicate set de�ned in De�nition 6.3.1, and f be the local reset function de�ned

in Figure 6.3. Let N+ = Augment(N ;L; f), Then N+ stabilizes to the behaviors of

N (tp)jL in time tq � height(T ), where tq and tp are constants.
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Let the symbol � denote any node in the tree. We de�ne the \correct" set of

behaviors of a token passing system using a set B. Informally, B is the set of behaviors

consisting of phases in which a token is received at a node, then enqueued at the same

node, and then passed to a neighbor of the node. Also, we require that a token will

be received periodically at every node.

De�nition 6.3.6 We de�ne the set B of correct behaviors of a token passing system

as follows. B is the set containing any behavior � that only has actions of N and such

that:

� For any u, after any Receive�;u(token) event in � the next event other than a

Free�;� event is an Enqueueu;� event.

� For any u; v, after any Enqueueu;v(token) event in � the next event other than

a Free�;� event is a Sendu;v(token) event.

� For any u; v, after any Sendu;v(token) event in � the next event other than a

Free�;� event is a Receiveu;v(token) event.

� For any u, and any su�x  of �, a Receive�;u(token) will occur in c � n time

after the start of , where c is some constant and n is the number of nodes in T .

We �rst argue informally that the behaviors of N (tp)jL are in B.

To make a verbal argument, we introduce some intuitive terminology. Let us say

that a token is in transit between nodes u and v if havetoken(u; v) = true. We say

that a token is at node u if pointeru = nil.

We �rst see that for any s 2 L, there is at least one token in s. An intuitive

explanation for this is as follows. We will de�ne a search procedure to �nd a token

in state s. Start at any node u in the tree. If pointeru = nil then there is a token

at u. If pointeru = v then from the local predicates, either there is a token in transit

between u and v or pointerv 6= u. If pointerv 6= u we continue the search procedure

recursively at node v. Since we never backtrack, the search procedure cannot continue

inde�nitely without encountering some leaf node w such that pointerw 6= x, where x

is the parent of w. But if w is a leaf node and pointerw 6= x then, pointerw = nil and

hence the token is at w.
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Thus we know that there is at least one token in state s. Suppose this token is at

node u. Then by induction on the length of the path between u and any node w 6= u,

it is easy to see that pointerw 6= nil. Similarly for any edge (w; x), by induction on the

length of the path between u and (w; x) we can show that the token is not in transit

between w and x. A similar argument shows that if in s the token is in transit between

u and v, then the token is not at any node x, nor is it in transit on any other edge.

(w; x). Hence there is exactly one token in state s.

Once we know that there is exactly one token in any state s of N (tp)jL, it is quite

easy to prove that the behavior corresponding to any execution � of N (tp)jL is in B.

For example consider any execution � and any state si in � immediately following a

Receive�;u(token) event for some node u. Then it is easy to see that in si, pointeru =

nil. This predicate will continue to hold until a an Enqueueu;� event occurs. But if

pointeru = nil in a state s, then (since there can be only one token in state s) the only

actions enabled are Enqueueu;� or a Free�;� event. Similar arguments can be used to

show the behavior of � satis�es the next two properties that characterize a behavior

in B However, we also need to show the fourth property of a behavior: that for any

u, and any su�x  of �, a Receive�;u(token) will occur in c �n time after the start of

, where c is some constant. This can be shown by an inductive argument using the

properties of the Succ function.

Thus we can show:

Theorem 6.3.7 Let N+ be the automaton de�ned in Theorem 6.3.5. Then N+ stabi-

lizes to the behaviors in problem B in time tq �height(T ), where tq and tp are constants.

6.4 Removing Unexpected Packet Transitions

Consider the following modi�cation of the token passing protocol described in

Figure 6.2. The modi�cation is shown in Figure 6.4. The only di�erence is that the

routine to receive a token at a node u from node v has been changed. The only change

is that we no longer check whether pointeru = v before accepting the token. Let us

call the resulting tree automaton N �.

Assume, however, that we continue to use the de�nitions of L, L, and Lu;v from

De�nition 6.3.1. Then it is quite easy to prove that N � is not locally checkable with
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ModifiedReceivev;u(token) (*token is received from neighbor v*)

E�ect:

pointeru := nil (* accept token*)

lastu := v (* update last*)

All external actions are in a separate class with upper bound tn.

Figure 6.4: Modi�ed Code for a node u in a token passing protocol. The remaining code is identical to

the code in Figure 6.2

respect to L and L. This follows from the fact that Lu;v is not a closed predicate of

N �.

Despite this it is not hard to prove that the behaviors of N �jL are exactly the

behaviors of NjL. In fact, if we are allowed the luxury of specifying initial states,

N �jL is a \natural" IOA to solve the token passing problem. Suppose a protocol

designer has started with N �jL and now wishes to construct a UIOA that stabilizes

to the behaviors speci�ed by the token passing problem. It is interesting to note that

this can be done by the following two step process:

� Transform N � into N by adding the extra check shown in Figure 6.2.

� Transform N into N+ as shown earlier.

We would like to abstract this process. First, note that the extra check added in

going from N � into N essentially amounts to the following heuristic: if we receive

an \unexpected" packet p at node u from node v, then we do not process p. Notice

that in N , a token received from v when pointeru 6= v (see Figure 6.5) is certainly

\unexpected". We will formalize this intuitive notion of an \unexpected" packet below.

However, for the present it is important to intuitively understand why such checks for

unexpected packets are useful. Consider a transition (s; �; ~s) of N such that s satis�es

Lu;v but not Lu;w. Then it is quite possible that there is an \unexpected" packet on

channel Qw;u in state s. By adding checks for such packets in N , we can ensure that

~s satis�es Lu;v. Also note that these checks do not a�ect the \correct" executions of

NjL.

146



u
pointer

Token receipt

u

Figure 6.5: Receiving a token on a link that is not being pointed to is an unexpected packet transition. In

general, an unexpected packet transition is a packet reception that could never have occurred if the receiving

link subsystem was in a good state.

We now formalize these observations. First, we de�ne the notion of weak local

checkability. Intuitively, we remove the requirement that that each Lu;v be a closed

predicate and instead require only that L is a closed predicate.

De�nition 6.4.1 A network automaton N is weakly checkable for predicate L using

link predicate set L if:

� L is a link predicate set for N and L � Conj(L).

� For any transition (s; �; ~s) of N , if s 2 L then ~s 2 L

Ideally, we would like to prove that any weakly checkable protocol can be trans-

formed into an \equivalent" locally checkable protocol. While we do not know how

to do this in general, we can can obtain such a result if the automaton is also locally

extensible. Intuitively, an automaton is locally extensible with respect to a link predi-

cate set if any pair of \good" adjacent link subsystem states can be extended to form

a \good" state of the entire automaton.

De�nition 6.4.2 A network automaton N = Net(G;N) is locally extensible with

respect to link predicate set L = fLu;vg if the following condition is true:

For any two adjacent edges (u; v) and (v;w) in G, if x 2 Lu;v and y 2 Lv;w then

there is some state s 2 Conj(L) such that x = (sju; sj(u; v); sj(v; u); sjv) and y =

(sjv; sj(v;w); sj(w; v); sjw).

To transform a locally extensible and weakly checkable protocol N � into an \equiv-

alent" locally checkable protocol, we will add checks to N � for \unexpected" packets.

We formalize this notion of an \unexpected packet" (see Figure 6.5) as follows:
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De�nition 6.4.3 Consider a network automaton N with link predicate set L = fLu;vg

and some pair of neighbors u; v in N . We say that a transition (s; �; ~s) is an unexpected

packet transition at u with respect to v if:

� is a Receivev;u(p) event and there is no a; b such that (sju; a; p; b) 2 Lu;v.

For example, in Figure 6.2, a (s;Receivev;u(token); ~s) transition with s:pointeru 6=

v is an unexpected packet transition at u with respect to v. We can now state a simple

theorem.

Theorem 6.4.4 Consider a network automaton N � = Net(G;N) that is weakly check-

able for predicate L with respect to predicate set L. Suppose further that N is locally

extensible with respect to L. Then it is possible to construct another automaton N

such that:

� N is an automaton for graph G and the executions of NjL are identical to the

executions of N �jL

� N is locally checkable for predicate L with respect to predicate set L.

Proof:We transformN � intoN by replacing all unexpected packet transitions (s; �; ~s)

in N � by the null transition (s; �; s). Then we use the local extensibility property to

show each Lu;v is a closed local predicate of N .

6.5 Tree Correction Theorem

The reader who has read Chapter 4 might suspect that any locally checkable protocol

on trees can be made locally correctable. Thus for tree automata it seems plausible that

we do not need the stronger hypothesis that the tree automaton be locally correctable.

This is indeed true. Compare the following theorem to Theorem 4.3.1 (but be aware

that Theorem 4.3.1 applies to shared memory tree automata) and the Local Correction

theorem (Theorem 5.4.3).

Theorem 6.5.1 Tree Correction: Consider any tree automaton T = Net(T;N)

that is locally checkable for L using link predicate set L. Then there exists some N+

that is a UIOA for graph G and constants c and ~c such that N+ stabilizes to the

behaviors of N (c)jL in time ~c � height(T ).
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The proof of this theorem is extremely similar to that of Theorem 4.3.1 of Chapter

4. However, since we can no longer do snapshots and resets atomically, we need to

use the local snapshot and reset protocols de�ned in Chapter 5. Thus we have to

add actions for local checking and correction as in the proof of the Local Correction

Theorem, Theorem 5.4.3. However, there are two di�erences. We will assume that

for every (u; v) subsystem in which v is the parent of u, the child u performs the

checking/correction. The local snapshot protocol is identical to the protocol of Chapter

5, but the local reset protocol is a little di�erent. This is sketched in Figure 6.6. The

�gure should be compared with the right hand diagram in Figure 5.9.

The basic idea is that the reset response carries the state b of the parent at the

instant the response was sent. When the child gets the response, the child sets its

state to f(b), where f is a function that we describe next. Basically, f is chosen such

that for every state b of the parent node v, (f(b);nil;nil; b) 2 Lu;v. In other words, f

is chosen so that we can reset the link subsystem to a good state by only changing

the state of the child node. Of course, that is the basic idea in the proof of Theorem

4.3.1. The only tricky part is to argue that we can �nd such a function f . The proof

is again similar to the proof of Theorem 4.3.1: we �rst normalize the original protocol

T to get rid of \useless" node states that can never occur in global states in which

all local predicates are true. We then show that the required function f exists for the

normalized protocol.

The Tree Correction theorem is not a corollary of the Local Correction theorem.

Recall in Chapter 5 that when we applied a local reset function to the state of leader

node u with respect to node v, the resulting state of node u can only depend on the

previous state of node u. However, in the proof of the Tree Correction theorem we

require the the resulting state of node u to depend on the previous state of node v!

Finally, we note that we could have derived the stabilizing mutual exclusion pro-

tocol by showing that it was locally checkable and then using the Tree Correction

theorem directly.

6.6 Summary

In Chapter 4, we showed (in a shared memory model) that any locally checkable

protocol on a tree could be stabilized in time propostional to the height of the tree.
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TIME Reset Request

u

v

Figure 6.6: Sketch of a reset phase used for Tree Correction. Node v is the parent of node u in the tree.

This chapter shows that this theorem can be extended to the message passing model

(Tree Correction theorem, Theorem 6.5.1). We also described a simple application {

the problem of token passing on a tree. A stabilizing solution to this problem can be

derived using either the Local Correction or Tree Correction theorems.

The token passing problem suggests a simple strategy for stabilizing protocols.

First, we try to add a small amount of state to make the protocol locally checkable.

Recall that we added a pointer to each node for this purpose in the token passing

protocol. Then we combine the original protocol with another protocol that computes a

spanning tree. Finally, we do local correction on the resulting spanning tree. Although

we have not done so, it is important to formally describe how an arbitrary protocol P

could be composed with a spanning tree protocol so that the net e�ect is the same as

if P were running on the �nal tree.

Local checkability requires that each local predicate be a closed predicate. Re-

moving unexpected packet transitions (Figure 6.5) is a useful heuristic that is often

su�cient to ensure that each local predicate is closed.

The token passing protocol on a tree can be generalized to passing a constant

number of tokens on a tree. In this case, we replace the pointer variable pointeru at

each node u by a variable token countu[v] (one for each neighbor v) that keeps track

of the number of tokens that are in the direction of neighbor v. The local predicates
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have also to be suitably modi�ed.
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Chapter 7

Stabilizing Network Reset

The stabilizing network reset protocol described in this chapter is the link between the

previous two chapters (which were about Local Correction) and the last two chapters

of the thesis (which are about Global Correction).

The major service provided by a network reset protocol is synchronization of the

nodes in a network. In the �rst section of this chapter, we informally introduce the

concept of synchronization, and discuss why this service is useful. In Section 7.2 we

review existing reset protocols. Then in Section 7.3 we specify the reset problem.

Previous speci�cations of reset protocols have been state-based. Our speci�cation

of the reset problem is novel in that it is based on external behaviors. In the next

section (Section 7.4), we give an overview of our reset protocol. Then in Section 7.5,

we formally specify our reset protocol using a reset automaton.

Sections 7.6 and 7.7 are devoted to showing that the reset automaton is a stabilizing

solution to the reset problem. We do this using the Local Correction theorem developed

in Chapter 5. We show that the reset automaton is locally checkable by exhibiting a

set of closed local predicates for the reset automaton. Then we show that the reset

automaton is locally correctable by showing that the local predicates are independent

{ i.e., the partial order that formalizes the dependency relation between the predicates

is the trivial partial order. Thus the reset protocol stabilizes in constant time. Next,

(in Section 7.7), we show that once the reset automaton is in a state that satis�es

all local predicates, then the behaviors exhibited by the reset automaton are indeed

the behaviors speci�ed by the reset problem. This completes the proof that the reset

automaton is a stabilizing solution to the reset problem.
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The last two sections of the chapter try to abstract some general principles based

on the example of the stabilizing reset protocol. The reset protocol in this chapter is

based on an existing non-stabilizing reset protocol [AAG87] that works in networks

where links can fail and recover. Section 7.8 suggests that this is no accident { locally

checkable protocols that work in networks where links can fail and recover are likely

to also be locally correctable.

Because this chapter is very long, we o�er two suggestions for reading. First,

constantly consult the roadmaps at the beginning of the chapter and each long section.

Second, it is hard to appreciate the speci�cation of the reset problem until one sees why

it is useful. Chapters 8 and 9 describe important applications of the reset protocol.

Readers may prefer to read Chapter 8 after reading the speci�cation in Section 7.3

and before reading the rest of Chapter 7.

7.1 Synchronization

A reset protocol is used to synchronize all the nodes in a network. Before we describe

what we mean by synchronizing all the nodes in a network, it is helpful to understand a

form of synchronization between a pair of nodes in a network. Such synchronization is

provided by a Data Link protocol [Spi88a]. We will then see that in essence a network

reset protocol generalizes the guarantees of a Data Link protocol to multiple nodes in

a network.

7.1.1 Data Link Synchronization

Consider a pair of neighboring nodes in a network, say u and v. Suppose the physical

link between two nodes in a network can periodically crash and recover. The Data

Link protocol is responsible for providing noti�cation (as to whether the link is up or

down) to the users at u and v. Thus at each node, the Data link protocol issues Link

up and Link down actions to signify that the link is operational or not operational

respectively. If the network is asynchronous, it is impossible to provide a Link down

event (or Link up event) at exactly the same instant at both u and v. But if Link up

and down events are reported independently (and possibly at di�erent times) at both

ends, the Data Link must provide some additional functions to synchronize u and v.
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The synchronization requirements for a Data Link protocol can be stated elegantly

[Spi88a] as follows. First, for node u (or node v) we can de�ne an operating interval at

node u (or at node v) to be the time from a Link up event at that node until the next

Link down event at that node. If an operating interval does not end with a Link down

event we say that the interval is a �nal interval. Thus each execution of the Data Link

protocol induces a set of operating intervals at both nodes. Then for synchronization,

we require that there is a symmetric relation between intervals at the two nodes (called

a mating relation in [AE86]) such that:

� An operating interval can be mated to at most one other operating interval.

� Suppose an operating interval � at u is mated to an operating interval � at

v. Then the sequence of messages received by v in � must be a pre�x of the

sequence of messages sent by u in �. (This is often called the pre�x property of

Data Link protocols.) Also, if � is a �nal interval, then so is � and in this case

the sequence of messages received by v in � must be identical to the sequence of

messages sent by u in �.

� Suppose an operating interval � at u is mated to an operating interval � at v

and an operating interval �0 at u is mated to an operating interval �0 at v. Then

if �0 occurs later than � then �
0 occurs later than �.

The mating relation for two nodes u and v is sketched using the time-space diagram

shown in Figure 7.1. We have depicted Link up events by horizontal lines. The Link

down events between Link down events are depicted by crosses. An arrow from v to u

depicts a packet sent by v that is successfully delivered at u, and vice versa. An arrow

from v that does not reach u is a packet sent by v that is not delivered at u. In the

�gure, the second operating interval at u mates to the second operating interval at v.

Also, the third operating interval at u mates to the fourth operating interval at v and

the two intervals are �nal intervals. Notice that the sequence of packets received by

u in its second interval is a pre�x of the sequence of packets sent by v in its second

interval. Also notice that all packets sent in the two �nal intervals are delivered.

Why does this mating relation provide a useful form of synchronization? It does so

because the synchronization relation guarantees that the behavior of a node during an

operating interval is what might have occurred in some asynchronous execution of the
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Figure 7.1: Illustrating the Mating Relation

Data Link protocol in which there were no link failures. This is a crucial abstraction

that allows users of the Data Link protocol to deal with failures in a simple way.

Almost identical forms of synchronization are provided by virtual circuit protocols

([Spi88a]) and transport protocols. Thus all these protocols essentially synchronize

two nodes in a network.

7.1.2 Network Synchronization

The synchronization provided by a network reset protocol is a generalization of the

synchronization guarantees of a Data link. A reset protocol synchronizes all the nodes

in the network. Informally, the reset problem [Fin79] is to design a reset service that

can be superimposed on any other distributed protocol P . The reset may be invoked

at any node, and its e�ect is to output a signal at all the nodes of the system in

a consistent way. We use �-messages to denote the messages sent and received by

protocol P .

By consistent, we mean the following. As in the Data Link protocol, the reset

protocol induces signal intervals at each node (i.e., intervals between consecutive signal

events at a node). Then for each pair of neighbors u and v we require that the signal

intervals at u and v can be mated as described earlier. For example, if we replaced the

Link up events with Signal events in Figure 7.1 and ignored Link down events, then
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Figure 7.1 could equally well describe the pairwise mating relation provided by a reset

protocol. Notice, however, that in a Data Link the Link up events occur independently

on each link and so the the operating intervals on each link adjacent to a node u can

be di�erent. However, in a Reset protocol, the Signal events induce signal intervals on

a per node basis.

For example this means that the sequence of �-messages sent by any node u to

any neighbor v after the last signal at u must be equal to the sequence of �-messages

received by v after its last signal.

Why is this called a reset service? Suppose Su de�nes the set of \legal" start states

for every node u. Suppose the \legal executions" of P are those executions in which

the initial state of every node u belongs to Su and the initial state of every channel

is a state in which the channel contains no �-messages. It's natural to de�ne the

legal states of P as those states that occur in legal executions of P . Suppose we now

superimpose a reset service over P . Suppose also that whenever a node u receives a

signal, we locally reset the state of node u (i.e., the local state of protocol P at node

u) to some state in Su. Then after every node has received its last signal, protocol P

is in a legal state. In other words, the signals provide a consistent time point for every

node u such that we can globally reset protocol P to a legal state by locally resetting

each node u at its time point. The time point for each node is the instant it receives

a signal.

Thus a global reset service is much like the reset button on a computer. After the

reset button is pushed, the computer is restored to a \good" state. However, globally

resetting a network to a \good" state is much more challenging than resetting a single

node. In a network, reset requests can arrive at any node and the signals must be

delivered at every node in a consistent fashion. Ideally, we would like the signals to be

delivered to every node at the same instant. However, since this seems to be impossible

in a distributed system, we settle for delivering the signal in a consistent manner (see

above).

Why is a reset service useful? It was introduced in [Gal76, Fin79] as a tool for

converting any protocol that works in a so-called static network to work in a so-called

dynamic network. A static network, as the name suggests, is a network in which

the topology of the network remains �xed during the execution of the algorithm. A

dynamic network, by contrast, is a network in which nodes and links can crash, thereby

changing the topology. However, it is assumed that topology changes eventually stop
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and that some node in the �nal topology can detect the fact that there has been

a topology change. Roughly, the idea behind [Fin79] is that any node that detects

a topology change makes a reset request. If successful, the reset request results in

restarting the static protocol. This methodology is quite practical. For instance, the

Autonet local area network uses a version of [Fin79] to cope with failures.

Besides its use in dynamic networks, a reset protocol is also useful in a stabilizing

setting. As we show in Chapters 8 and 9, a stabilizing reset protocol is an important tool

for the design of other stabilizing protocols. Notice that in order to use the reset service

in dynamic networks [Fin79], some node must detect the last topological change. More

generally, suppose that any bad state of a network protocol can be detected locally by

some node. This corresponds to what we have called a locally checkable protocol in

Chapter 5. As we will see in Chapter 8, any locally checkable protocol can be stabilized

using a stabilizing reset protocol. Intuitively, our idea is similar to that of [Fin79]. We

add actions to each node to make a reset request if the node locally detects a bad state

of the network.

The technique of using a reset protocol to stabilize a locally checkable protocol

is quite di�erent from the techniques developed in Chapter 5 and 6. In Chapter 5,

a locally checkable and correctable protocol is stabilized by doing independent local

resets of each link subsystem. In Chapter 6, a locally checkable protocol on a tree is

also stabilized by doing independent local resets of each link subsystem.

By contrast, we can stabilize a locally checkable (but perhaps not locally cor-

rectable) protocol by doing a coordinated global reset of the entire network. As one

might guess, there is a performance penalty in using a network reset. The stabilization

time of a solution that uses local correction is proportional to the height of the under-

lying partial order (see Local Correction Theorem, Theorem 5.4.3). The stabilization

time of a solution that uses tree correction is proportional to the height of the tree

(see Tree Correction Theorem, Theorem 6.5.1).

However, the stabilization time of a solution that uses global correction is propor-

tional to the number of nodes in the network. Because the height of the partial order

(or the height of a tree) typically is smaller than the number of nodes, we have the

following rule of thumb. If a protocol is locally correctable or runs on a tree, then it

pays to use the techniques of Chapter 5 or 6. However, if a locally checkable protocol

cannot be shown to be locally correctable, then the network reset approach provides

a (perhaps less e�cient) stabilizing solution. It is perhaps elegant that the network
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reset protocol is itself stabilized using the local reset approach of Chapter 5.

In this chapter we introduce the most e�cient known stabilizing network reset

protocol. We do so by applying the method of local checking and correction of Chapter

5 to an existing reset protocol described in [AAG87] The space overhead of the protocol

is logarithmic. Our reset protocol stabilizes in constant time.

7.2 Existing Solutions

In Chapter 4, we described a stabilizing reset protocol due to Arora and Gouda [AG90].

Their protocol was described in terms of a shared memory model but it appears that

it can be adapted to work in our message passing model. [AG90] also describes a

stabilizing protocol to build a spanning tree of the network. For the spanning tree

protocol, it is assumed that processes have unique identi�ers, and that there is some

a priori bound K on the number of nodes in the network. The IDs and K cannot be

corrupted by transient errors. The stabilization time of the spanning tree protocol is

O(K), where K is a non-volatile bound on the number of nodes in the network. Their

protocol will also work correctly if K is an upper bound on the diameter of the �nal

network. However, in a network in which the topology can change arbitrarily, often

the only reasonable bound on the diameter of the network is a bound on the number

of nodes in the network. Secondly, as we will see in Chapter 8, their spanning tree

protocol is based on a routing algorithm that works poorly in practice.

Katz and Perry [KP90] describe a stabilizing reset protocol. Their approach re-

quires the election of a leader and the stabilization time of their approach is O(n2)

where n is the number of nodes in the network.

On the other hand, the reset protocol we describe does not require node IDs, and

takes O(n) time to stabilize, where n is the actual number of nodes in the network.

Our protocol does not require the computation of a spanning tree. Thus it can be

used to build a stabilizing spanning tree protocol as we show in the Chapter 8.
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7.3 Specifying the Desired Behaviors of a Reset

Protocol

This section is divided into four subsections. First, we describe the external interface

to the reset protocol. Then, we give an overview of the speci�cation and some of

its di�culties. After this motivation, we formally specify the reset problem and then

briey discuss alternative speci�cations.

7.3.1 Interface to Reset Protocol

We �rst describe the external interface to the reset protocol.

A reset service is modelled as a network automaton R = Net(G;N). The external

interface for any node u in the network is shown in Figure 7.2. We have the usual

interfaces to send and receive packets between neighbors as described in Chapter 5.

However, in addition each node also has interfaces to send and receive messages on

behalf of external users of the reset service. We assume that every messagem is drawn

from some message alphabet �, and that � � Pdata, where Pdata is the data packet

alphabet used by the network automaton. Intuitively, the messages sent by users to

the reset service will be relayed between nodes of the network using packets.

Thus node u also has an input action Sendmu;v(m) by which an external user can

send a message to neighbor v. Similarly node u has an output action Receivemv;u(m)

by which the reset service can deliver a message m from the user at node v to the user

at node u. There is also a Freemu;v output action that is used by the reset service to

indicate that it is ready to accept another message from node u to node v. Thus the

external interface between a reset service and its users essentially mimics the interface

o�ered by a UDL (see Chapter 5) except that packets are replaced by messages. This

is an important property that will be exploited later.

However, the interface between a user and a reset service is richer than the interface

between a user and a set of UDLs. This is because the reset service at node u o�ers

two additional actions: an input action Requestu and an output action Signalu.

Intuitively, the Requestu action is used by the user at node u to request a network

reset, and the Signalu action is used to inform the user at node u that a reset has
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Figure 7.2: Interface speci�cation for reset service
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been completed. We will refer to any event of the form Signalu as a signal event and

any event of the form Requestu as a request event.

7.3.2 Di�culties in Specifying the Reset Problem

The ideal behaviors of a non-stabilizing reset protocol can be speci�ed in terms of

three properties: timeliness, consistency, and causality. Intuitively, a behavior is

timely if, in the absence of reset requests, free events are delivered in constant time

and sent messages are delivered in constant time. A behavior is consistent if there is a

symmetrical mating relation between signal intervals at neighbors. Finally, a behavior

is causal if reset signals are only caused by reset requests and reset requests result in

reset signals.

As in a UDL, we cannot guarantee that any message sent by a user from say u to

v will be received at v unless (see Figure 7.2) this message is sent after u performs a

Freemu;v action. If this is true (and no other message is sent from u to v between

the free action and the send action), then we will say that the send action is safe. We

will only require delivery of messages corresponding to safe message send events. The

speci�cation will allow other messages to be dropped.

Any speci�cation of the behaviors of a stabilizing reset protocol has to take into

account three anomalies that do not occur in the speci�cation of a non-stabilizing reset

protocol:

� The �rst message sent on any link may not be safe in that it may not be preceded

by a free event.

� Some of the initial messages that are delivered may be abnormal in that they

do not correspond to any messages sent. It appears that no stabilizing reset

protocol can guarantee that there is some su�x of every behavior that contains

no abnormal message delivery.1

� Some of the initial signal actions may not be \caused" by any reset request.

1A stabilizing reset protocol can begin in a state in which all links can have arbitrary messages

stored. There can be executions that contain no state in which all links are empty of messages. Any

su�x of such an execution will have abnormal message deliveries.
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We handle these di�culties as follows. We add the following condition to the

timeliness property: within linear time of the start of any behavior of the reset protocol,

all received messages are normal { i.e., correspond to some message sent. We weaken

the mating relation so that it is possible to receive abnormal messages in a signal

interval { however, normal messages received in a signal interval must have been sent

in a mated interval. Finally, we relax the consistency property and ask only that

causality holds in linear time after the start of a behavior. Precise de�nitions are

given in the next subsection.

7.3.3 Formal Speci�cation of Reset Problem

Recall the following notation. When we say that an event aj occurs within time t

in � we mean that aj :time � �:start + t. When we say that a time t is a constant,

we mean that t = ctl + c
0
tn where c; c0 are some scalar constants and tn and tl are

the default node and link delays respectively. In this and following chapters, we will

also use the following notation borrowed from complexity theory. When we say that

t = O(n), we mean that t � cn, where c is some constant time and n is the number

of nodes in the graph G. This reects a linear dependence on the size of the input,

if we consider the input to be the network graph. If we say that an event ai occurs

within O(n) time in a behavior �, we mean that ai:time� �:start = O(n). If we say

that an event aj occurs within O(n) time after an earlier event ai in behavior �, we

mean that aj :time� ai:time = O(n); in this case, we will also say that event ai occurs

within O(n) time before event aj in behavior �. Sometimes we will say linear time to

mean an interval of time that is O(n) in duration.

As in a UDL, we cannot guarantee that any message sent by a user from say u to

v will be received at v unless (see Figure 7.2) this message is sent after u performs a

Freemu;v action. If this is true (and no other message is sent from u to v between

the free action and the send action), then we will say that the send action is safe. We

formalize this restriction by de�ning what it means for a message send event to be

safe.

De�nition 7.3.1 Consider any behavior � of a reset protocol that has the interface

shown in Figure 7.2. We say that an action aj = Sendmu;v(m) is safe in � if:

� There is some Freemu;v action in � before aj and
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� No other action of the form Sendmu;v(�) occurs between aj and the Freemu;v

action.

Clearly we would eventually like every message that is received at u from say v to

correspond to some message sent from v to u. We will require that there is at most

one message in transit from v to u. This will make it easy to make a correspondence

between received and sent packets. Thus:

De�nition 7.3.2 We say that event ak = Receivemv;u(m) in � is a normal receive

at u from v i�:

� There is some aj = Sendmv;u(m) in � that occurs before ak in � and

� There is no Receivemv;u(�) event between aj and ak in �.

We will refer to the earliest Sendmv;u(m) in � that occurs before ak (and satis�es the

above properties) as the send corresponding to ak.

Notice that if the sender ignores the free noti�cation and sends a messagem several

times before it is received, we make a correspondence between the receive and the

earliest send event.

Specifying Timeliness

Next, we formalize the timeliness property. We we say that a behavior is timely if it

satis�es four conditions for every pair of neighbors u and v. First all receive events

that occur after linear time in � are normal. In other words, after at most O(n) time,

each packet received corresponds to some packet sent. Also any normal receive event

occurs within O(n) time after the corresponding send event. This is shown in Figure

7.3.

The second condition is that either the user at u periodically receives a free action

indicating that the link to v is free or else a signal event occurs periodically at either

u or v. Third, any message sent by v to u is either delivered in constant time or else

a signal event occurs (at either u or v) after the message is sent. The essence of the

second and third conditions is that, in the absence of signal events, free events are
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Node u Node v

O(n) TIME

O(n) TIME

Figure 7.3: Normal message receipt after linear time: There is a send action at v corresponding to any

message received at u after O(n) time. Also any normal receive event occurs within O(n) time after it is

sent.

delivered periodically and sent messages are delivered in constant time. Intuitively,

signal events are caused by reset requests; if reset requests are made continuously, then

the reset protocol cannot guarantee periodic free events or the delivery of messages.

The fourth timeliness condition is important (for example in Chapter 8) in appli-

cations. It says that signals cannot keep occurring at u without also occurring at a

neighbor v. More precisely, if a signal event occurs at u then a signal event must occur

at v in linear time before or after the signal event at u. However, because the reset

protocol can start in an arbitrary state, we relax this requirement and only ask that

this property hold after a linear amount of time.

De�nition 7.3.3 We say that a behavior � is timely if for every pair of neighbors

u; v:

1. Normal Receipt of Messages: There is some constant c such that every every

receive event that occurs at time greater than �:start + c � n is normal. Also if

aj is any normal receive event and ai is the send corresponding to aj , then aj

occurs within O(n) time after ai.

2. Periodic Free Events: Consider any t-su�x  of behavior �. Then in  either

a Freemu;v occurs within constant time, or a signal event occurs at u within

O(n) time, or a signal event occurs at v within O(n) time.

3. Timely Message Delivery: Suppose aj is a safe Sendmu;v(m) event in �.

Then after aj either a Receivemu;v(m) occurs within constant time, or a signal
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event occurs at u within O(n) time, or a signal event occurs at v within O(n)

time.

4. Signals at a Node induce Signals at Neighbors: There is some constant c

such that for every Signalu event aj that occurs at time greater than �:start+c�n

there is a Signalv event that occurs in linear time before or after aj .

Specifying Consistency

Before we formalize the consistency property, we formalize the notion of a signal in-

terval at a node in a behavior.

De�nition 7.3.4 Consider a behavior �. A signal interval at node u in � is a con-

tiguous subsequence of � that:

� Begins with either the start of � or a Signalu event and

� Ends with either the �rst Signalu event that occurs after the start of the interval

or (if there is no such Signalu event) the interval ends with the end of �. In

the latter case we call the signal interval a �nal interval.

Thus any behavior induces signal intervals at each node. We now specify the

consistency condition by requiring a mating relation between signal intervals. However,

the mating relation is weaker than the relation for Data Links because it does not

require the pre�x property. The third property is a little tricky. Consider Figure

7.4. Suppose the send at v is safe and is followed by a free action at v that is in the

same signal interval at v. Then we require that the sent message is delivered and the

delivery event occurs between the send and the free events. In essence, this states that

all messages (except possibly the last message) sent safely in a signal interval at v are

delivered at u.

De�nition 7.3.5 We say that a behavior � satis�es the consistency property if for

every pair of neighbors u; v there is a symmetric relation (called a mating relation)

between signal intervals at u and v such that:

165



Node u Node v

Free Action that
indicates that messages
can be sent to u.

Safe Send Action
Both the send and the free
occur in the same signal
interval at v.

Figure 7.4: Successful sending of messages: between the sending of a message and the free action that

indicates that the next message can be sent, either the message is delivered or a signal occurs at the sender.

1. At most one mate: A signal interval at u can be mated to at most one signal

interval at v.

2. Signal Intervals that communicate are mates: Let ak be any normal receive

event at u from v in � and let am be the send event corresponding to ak. Then the

signal interval at u containing ak is mated to the signal interval at v containing

am.

3. Successful Sending of Messages: Consider any safe Sendmv;u(m) event aj

and a later Freemv;u event that occur in a signal interval at v. Then between

these two events in � there must be a normal Receivemv;u(m) event ak such

that aj is the send corresponding to ak.

4. Mating of Final Signal Intervals: A �nal interval at u can only mate to a

�nal interval at v.

5. Mating Relation Preserves Temporal Ordering: Suppose a signal interval

Su at u is mated to a signal interval Sv at v and a signal interval S0
u at u is mated

to a signal interval S0
v at v. Then if S0

u occurs later than Su then S
0
v occurs later

than Sv.

Suppose Su and Sv are signal intervals at u and v respectively that are mates. No-

tice that as compared to a Data Link speci�cation, we have weakened the requirements

for a mating relation: we no longer require that the sequence of message received by v

from u is a pre�x of the sequence sent from u to v. However, if all received messages
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are normal and all sent messages are safe, then the third consistency condition does

imply the pre�x property. The third and fourth consistency conditions also imply that

if Sv is a �nal interval, and if all received messages are normal and all sent messages

are safe, then the two sequences are identical.

The reader may wonder whether it is su�cient to specify consistent behavior only

in �nal intervals. In that case, the consistency condition is much simpler. However, if

the stabilizing reset protocol is to be used as a tool to build other stabilizing protocols

(which is what we do in the next two chapters), then we claim that the reset protocol

must make some guarantees during non-�nal intervals. A typical user of the reset

protocol will be constantly doing some form of checking (see Chapter 8 for example)

and will make a reset request if the checking detects a violation. But if the reset

protocols exhibits arbitrary behavior during non-�nal intervals, then the user may

always detect violations. These in turn lead to continuous reset requests which prevent

the forming of a �nal interval. In other words, �nal intervals are only guaranteed if

the user stops making reset requests; but users may only stop making reset requests if

the reset protocol guarantees some form of consistency during non-�nal intervals. As

another example, some user protocols may periodically make reset requests to start a

new phase of the protocols. Such protocols (Chapter 9 describes an example of such

a protocol) never stop making reset requests!

Specifying Causality

A causal behavior satis�es two intuitive conditions: that signal events are only caused

by reset requests and reset requests result in signal events. Ideally, any signal event

must be preceded by a reset request that occurs a linear amount of time before the

signal event. Notice that this guarantees that all signal events will disappear in linear

time after the last reset request in a behavior. However, because the reset protocol can

start in an arbitrary state, we relax this requirement and only ask that this property

hold after a bounded amount of time. But a causal behavior should also ensure the ip

side of the above condition: reset requests should result in signal events. A protocol

that simply ignored reset requests would be useless. We specify the second condition

by requiring that a reset request at a node u is followed in linear time by a signal event

at node u.

De�nition 7.3.6 We say that a behavior � is causal if:
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1. There is some constant c such that every signal event ak that occurs at time

greater than �:start+ c � n is preceded by a request event aj that occurs in linear

time before ak.

2. A Signalu event occurs within linear time after any Requestu event.

We are now ready to describe the behaviors that should be produced by a reset

protocol.

De�nition 7.3.7 We de�ne the reset problem RP to be the behaviors � that are timely,

consistent and causal.

The following lemma is useful because it tells us that every su�x of a behavior in

RP is also in RP.

Lemma 7.3.8 If a behavior � is in RP, then any t-su�x of behavior � is in RP.

Proof: The proof consists mostly of looking at each property in the de�nition of RP

and showing that if a su�x of � does not have the property then neither does �. The

only tricky case is the property that all messages received after at most O(n) time

from the start of a behavior are normal. However, this can be deduced from the fact

that the send event corresponding to a normal receive event in � occurs at most O(n)

time before the receive event.

7.3.4 Alternative Speci�cations of Reset Problem

Traditional de�nitions (i.e., [AAG87]) of a reset service de�ne the correctness of a reset

service in terms of the states of protocol P , the user of the reset service. Our de�nition

is more modular because it focuses on the behavior of the reset subsystem without any

reference to the states of the users of the reset service.

Next, one might like a reset protocol to satisfy a much stronger consistency property

than the one speci�ed above. In the stronger condition, the mating relation between

signal intervals would also be transitive.. For instance, suppose u, v and w are con-

nected in a cycle such that u; v, and v;w, and w;u are all neighbors. Also suppose
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that a signal interval Su at u mates to a signal interval Sv at v, Sv mates to some Sw at

w, and Sw mates to some interval S0
u at u. Then our consistency speci�cation allows

Su to be di�erent from S
0
u. However, transitivity requires that Su = S

0
u. The stronger

condition seems to capture the essence of network synchronization in that the signal

events provide consistent time points across the entire network. However, we show

in the appendix that our reset protocol (and the reset protocol of [AAG87]) does not

satisfy the stronger condition. The applications in this thesis do not need the stronger

condition.

Note that the weaker condition does imply that there is a transitive mating relation

between �nal signal intervals at all nodes in the network.

Also the speci�cation of the behaviors of a stabilizing reset protocol is complicated

by anomalies that occur at the beginning of the behavior such as abnormal messages

and signals that are not \caused" by any requests. Given this di�culty, we might be

tempted to specify the reset problem using su�xes of the behaviors of a non-stabilizing

reset protocol. This results in a more elegant de�nition. However, if we choose that

de�nition, then we do not know any reasonably simple proof technique to show that a

protocol stabilizes to behaviors that are su�xes of a speci�ed set of behaviors.2

7.4 Overview of the solution

In this section, we will give an overview of a stabilizing reset protocol. Our solution

basically consists of stabilizing the reset protocol of [AAG87] using the method of

Chapter 5. In the �rst subsection, we describe a simple reset protocol that is not

stabilizing. In the next subsection, the problems of the simple reset protocol are used

to motivate the main ideas behind our reset protocol. Next, we give an overview of

the code. Finally, we end this section with an example execution of our reset protocol.

The next section contains a formal description of our reset protocol.

2Such proofs seem to involve showing that every initial state of an automaton A is a reachable state

of another automaton B. But familiar inductive proof techniques (such as invariant arguments, progress

metrics etc.) do not seem to su�ce to show that one state is reachable from another state.
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7.4.1 Problems with a Simple Reset Protocol

Amazingly, the consistency condition for normal reset behaviors can be guaranteed

by the following Simple Reset Protocol (SRP). This is a non-stabilizing protocol. So

assume that this protocol begins in a state where all queues and links do not contain

any messages.

In the absence of reset requests, nodes are in the so called Ready state. In this

state, any message sent from (say u to v) is queued by u in an outbound queue for

the link. When the message arrives at v, it is stored in a bu�er which we will call

bu�erv[u]. Eventually, the message stored in bu�erv[u] is delivered to the user at v.

Thus in the absence of reset requests, sent messages are delivered in FIFO order. In

the following two paragraph description of the protocol, when we say \node u" we

mean \the reset protocol at node u".

When node u receives a reset request (Requestu), the reset protocol at u sends an

Abort packet to all its neighbors and goes into a special Abort mode where it waits

until it gets anAbort packet from all its neighbors. It does so by setting a boolean ag

acku[v] for all neighbors v to indicate that it is expecting an Abort packet from v. A

node u that receives an Abort packet in the Ready mode behaves in almost the same

way as a node that receives a reset request { i.e., u sends an Abort packet to all its

neighbors. However, in this case u sets acku[v] for all neighbors v except the neighbor

v from which it received the Abort packet. If u receives an Abort packet from

neighbor v and acku[v] = true then u sets acku[v] = false. As soon as acku[v] = false

for all neighbors v, u returns to the Ready mode and performs a Signalu action.

The consistency condition is guaranteed by two additional rules. When an Abort

packet from u arrives at v, bu�erv[u] is emptied. Second, no packet in bu�erv[u] is

delivered while v is in Abort mode and until v has performed any outstanding Signalv

action. Intuitively, sending an Abort packet on a link and waiting until another

Abort packet returns on the link e�ectively \ushes" any old messages that were sent

in previous signal intervals. Essentially, we send an Abort packet between any two

Signal events at a node and we delay delivery of packets until an outstanding signal

has been performed. This ensures that a signal interval at u \communicates" or mates

with at most one signal interval in v. The Simple Reset Protocol (SRP) is similar to the

Chandy-Lamport snapshot protocol [CL85] with Abort packets replacing \markers".

The problem with SRP is that it can easily be placed in a state where it never
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u v w
ABORT
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Figure 7.5: Two \bad" states of the Simple Reset protocol. The black dot before an edge indicates that

a node is waiting for an Abort on that edge.

terminates { i.e., violates the causality property. Consider the topology shown in

Figure 7.5. Suppose in the initial state there is an Abort packet in the channel from

u to v, and u is waiting for an Abort from v (but not from w) before u can exit from

the Abort mode. Nodes v and w are in the Ready mode, and all other links are empty.

Next, assume that the Abort packet arrives at v which causes v to enter Abort state

and send an Abort packet to u and w. Assume that the Abort packet sent to u

arrives quickly and causes u to return to Ready mode. Notice that by the rules of

the protocol, v does not expect an Abort from u. The resulting state is shown in

Figure 7.5. By symmetry, it is clear that the execution can remain in a cycle of states

where an Abort packet continuously cycles through the network.

Now, since SRP is a non-stabilizing reset protocol, it may be possible to show that

(after proper initialization) SRP will never enter such a \bad state". If the network is

static, then this is indeed true. However, if network can have links that can fail and

recover (a so called \dynamic network") then a series of link failures and recoveries

can leave SRP in the \bad" state depicted in Figure 7.5.

More importantly for our purposes, SRP does not seem like a suitable point of

departure for constructing a stabilizing reset protocol. Speci�cally, there does not ap-

pear any easy way to make SRP locally checkable. For instance, consider the topology

of Figure 7.5. In a \good" state of SRP, if there is an Abort packet in the cycle,

there must be at least one other Abort packet in the cycle, which is travelling in the

\opposite" direction. This seems hard to check locally, even with the addition of a

small amount of state. Instead, our point of departure is the AAG reset protocol of

[AAG87]. This protocol works in dynamic networks and can be made locally checkable

and correctable. We describe some more details of how the AAG protocol works and

why it avoids the problems of the Simple Reset Protocol in the appendix. The ap-
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pendix also contains a description of the changes we made to make the AAG protocol

stabilizing. For the rest of this chapter, we will describe our reset protocol that is

based on (but not identical to) the AAG protocol.

7.4.2 The basic idea behind the Reset protocol

Our reset protocol uses essentially the same idea as SRP for ensuring consistency {

once again consistency is ensured by using Abort packets to \ush" old packets (that

were sent in a previous signal interval) from links. However, our protocol is much more

conservative about allowing a node to to return to Ready mode.

A global (but approximate) summary is as follows. The protocol responds to reset

requests in three phases. In the �rst phase, Abort packets are sent out from nodes

that receive reset requests. Nodes that receive Abort packets and are in the Ready

mode, broadcast Abort packets to their neighbors. Thus the �rst phase consists of a

wave of abort packets that spreads outwards from a reset request much the same way

as in SRP. However, in our protocol the abort waves create an abort forest as they

spread outwards. Consider any node u. Node u's parent in the abort forest is the

neighbor from whom u last received an Abort packet that caused u to leave Ready

mode. If node u left Ready mode because u received a reset request, then u has no

parent and u is considered a root in the abort forest. Notice that the abort forest is a

set of ad hoc abort trees that are created while reset requests are being processed.

In the second phase, a node sends an ack to its parent when the subtree rooted at

that node has stopped expanding. Thus, in the second phase a wave of acks ow up

the abort trees to the roots. The �rst and second phases work in much the same way

as the Dijkstra-Scholten termination detection algorithm [DS80]. As in the Dijkstra

Scholten algorithm, some nodes may be in the �rst phase (forward propagation of

Abort packets) while other nodes may be in the second phase (sending acks up to

parents).

What distinguishes our protocol from the Dijkstra-Scholten protocol is that there

is a third phase in our protocol. When a root of an abort tree receives acks from all

its children, it starts a wave of Ready packets that ows down the tree and allows all

nodes in the tree to return to the Ready mode. Thus the crucial di�erence between

SRP and the AAG protocol is as follows. In the former, nodes return to Ready mode
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after communicating with their neighbors. However, in our protocol a node u returns

to Ready mode only after the root of the abort tree (that u is part of) knows that the

abort wave has stopped propagating, and has informed u of this fact using a Ready

packet. Thus in the SRP protocol a node returns to Ready mode in constant time after

it receives an Abort packet. In our protocol a node may have to wait O(n) time to

return to Ready mode (potentially three worst case delays across the network, one for

each phase).

The reader may wonder why three phases are needed. The appendix provides some

intuition by describing why three phases were used in the original AAG protocol to

avoid the problems of the Simple Reset Protocol.

7.4.3 Overview of the Code

The code of our reset protocol works as follows.

Each node u has three interesting variables. First each node has a mode, modeu

which is one of Ready;Abort or Converge. Ready, is the \normal" mode of a node when

it is not processing a reset request. If the mode of u is Abort or Converge, then this

means that u is processing an abort request.

Next, each node u has an ack bit acku[v] for each neighbor. If this bit is set, it

indicates that u is waiting for an ack from v. (Unlike the Simple Reset Protocol,

our protocol uses explicit Ack packets.) Finally, u has a parent variable parentu that

points to the neighbor from which u received the reset request that it is processing. If

u received a reset request through a Requestu action (i.e., a reset request directly at

u itself) then u sets parentu = nil. If parentu = nil, we will say that u is a root of an

abort tree. A list of variables used by the code is shown in Figure 7.6.

In our code, the mode of a node is characterized by the state of the other variables

at the node. Thus the mode of node u is really a derived variable:

mode(u) =

8>><
>>:

Abort; if 9v such thatacku[v] = true

Converge; if parentu 6= nil and 8v (acku[v] = false)

Ready; if parentu = nil and 8v (acku[v] = false)

Notice that unlike the Simple Reset Protocol, we have a third mode called Converge.
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State

acku[v]: Boolean Flag for each neighbor v of u

parentu: Either one of the neighbors of u or nil

distu: integer in the range 0::n0, where n0 is an upper bound on the number of nodes in the graph.

We also assume that for any (Abort; d) packet, d is an integer in the range 0::n0.

signalbitu: Boolean ag (*used to remember to do a signal event*)

freeu[v]: Boolean Flag for each neighbor v of u (*says whether link to v is ready to accept a packet*)

freemu[v]: Boolean Flag for each neighbor v of u (*says whether v is ready to accept a message*)

queueu[v]: queue of size 5 consisting of packets drawn from Pdata (*outbound queue for link to v *)

bu�eru[v]: queue of size 1 that can contain a �-message only (*inbound message queue for link from v *)

The following piece of code is used as a macro to propagate Abort packets:

Propagateu(w; dist) �

parentu := w

distu := dist

For all neighbors v of u do (*broadcast abort packets to neighbors*)

acku[v] := true

enqueue (Abort; dist+ 1) on queueu[v]

Figure 7.6: Variables and a Useful Macro
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If mode(u) = Converge, this means that u has received acks from all its children and

is waiting for a Ready packet from its parent.

There are also three interesting packets used by the protocol: abort packets (that

are encoded as by tuples of the form (Abort; d) where d is a integer representing

distance from the root), ack packets (that are encoded simply as Ack), and ready

packets (that are encoded simply as Ready).

The protocol will deadlock if the protocol is placed in an initial state in which the

parent pointers form a cycle. In order to be able to locally check that the subgraph

induced by the parent pointers is acyclic, we maintain a distance variable at each node,

such that a node's distance is one greater than that of its parent. Speci�cally, distance

is initialized to 0 upon a reset request, and its accumulated value is appended to any

abort packets. Thus we encode an abort packet as a tuple (Abort; d), where d is a

distance.

The code that implements most of the reset protocol is shown in Figure 7.7.

For convenience, we have marked certain transitions in the �gure with the labels

VR;VA;DA; IA;FA;RA and RR.

A VR (for Valid Request) transition is a reset request that causes a node to change

its mode to Abort. A VA (for Valid Abort) transition is the receipt of an (Abort; d)

packet with valid distance �eld that causes a node to change its mode to Abort. A

DA (for Distance Invalid Abort) transition is the receipt of an (Abort; d) packet such

that the distance �eld d is at the maximum value and such that its receipt causes a

node to change its mode to Abort.

An IA (for Invalid Abort) transition is the receipt of an (Abort; �) packet that

does not cause a node to change its mode to Abort. A FA (for Final Ack) transition

is the receipt of an Ack packet that causes say node u to send an Ack packet to its

parent. It is not hard to see that the ack that was received must have been the last

ack that node u was waiting for. A RA (for Root Ack) transition is the receipt of an

Ack packet at a root node that causes the root node to change its mode to Ready. A

RR (for Regular Ready) transition is the receipt of an (Ready) packet at a node that

causes the node to change its mode to Ready.

Refer to these labels in Figure 7.7 when following the description below.

The code in Figure 7.7 uses a small macro called Propagateu(v; d). This proce-

dure is used to broadcast (Abort; �) packets and is shown in Figure 7.6. The �rst
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Actions to Execute Reset Protocol

Requestu (*receive a reset request from user at node u, input action*)

If mode(u) = Ready then

VR: Propagateu(nil; 0) (*broadcast abort packets to all neighbors and set parentu = nil*)

Receivev;u(Abort; dist) (*receive abort packet from neighbor v, input action*)

If bu�eru[v] is not empty then

Empty bu�eru[v] (*ush any old message in bu�er*)

Enqueue �-Ack in queueu[v] (*send a message ack allowing v to send another message*)

VA: If mode(u) = Ready and dist < n0 then

Propagateu(v; dist) (*broadcast abort packets to all neighbors*)

DA ElseIf mode(u) = Ready and dist = n0 then (*distance at max value; become a root and ack*)

Propagateu(nil; 0)

Enqueue Ack in queueu[v] (*send back an Ack as well*)

IA: Else enqueue Ack in queueu[v] (*send back an Ack*)

Receivev;u(Ack) (*receive ack packet from neighbor v, input action*)

If acku[v] = true then

acku[v] := false

FA: If mode(u) = Converge then (*no acks outstanding and not a root?*)

enqueue Ack in queueu[parentu] (*ack parent*)

RA: Else if mode(u) = Ready then (*no acks outstanding and a root?*)

signalbitu := true (*remember to do a signal later*)

For all neighbors x of u do

Enqueue Ready in queueu[x] (*broadcast Ready*)

Receivev;u(Ready) (*receive Ready packet from neighbor v, input action*)

RR: If parentu = v and mode(u) = Converge then (*Ready expected and from parent?*)

parentu := nil (*return to Ready mode*)

signalbitu := true (*remember to do a signal later*)

For all neighbors x of u do do

Enqueue Ready in queueu[x] (*broadcast Ready*)

Signalu (*deliver reset signal to user at u*)

Preconditions: signalbitu = true

E�ects: signalbitu = false

Figure 7.7: Actions at node u to execute reset protocol functions with respect to any
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parameter to the procedure speci�es that v is the new parent of u and the second

parameter speci�es that d is the distance from u to root of u's abort tree. The abort

packets sent out as a result of this procedure (see Figure 7.6) will carry a distance

value of d + 1. We add the distance variable to abort packets in order to make the

protocol locally checkable.

When a reset request is made at some node u while in Ready mode (VR), u changes

its mode to Abort, broadcasts an Abort packet to all its neighbors, and sets its ack

bits to true for all neighbors v. Node u then waits until all the neighboring nodes send

back an ack packet. If node u receives an abort packet while in Ready mode (VA), it

marks the neighbor from which the packet arrived as its parent, broadcasts Abort,

and waits for Ack packets to be received from all its neighbors. We also add a check

to see whether the distance in the Abort packet is less than n0, which is the maximum

value of the distance variable at a node. In linear time after all local predicates hold,

this condition will always hold. However, this check helps to ensure that the local

predicates remain closed during initial periods. If the distance check fails, (DA) node

u becomes a root and sends out abort packets just as if it received a reset request;

however, node u also sends back an Ack to the Abort packet it received. Finally, if

the Abort packet is received by a node not in Ready mode (IA), an Ack is sent back

immediately.

When node u receives an Ack from v it sets the ack bit for v to false. The action

of node u when it receives the last anticipated ack depends on the value of u0s parent.

If u's parent is not nil (FA), u's mode is changed to Converge, and an Ack is sent to

the parent. Notice that since modeu is a derived variable, modeu = Converge when

acku[v] = false for all neighbors v of u. If u is a root (RA), u changes its mode to

Ready (by setting parentu = nil), and broadcasts a ready packet to all neighbors. If

node u gets a Ready packet from its parent while in Converge mode (RR), then u

changes its mode to Ready (by setting parentu = nil), and broadcasts a ready packet

to all neighbors.

Finally, whenever node u changes its mode from either Abort or Converge to Ready

it sets a ag (which we call signalbitu) to remind itself to later output a signal event.

In other words, a Signalu event is enabled whenever signalbitu is set; naturally, when

this event occurs, the ag is cleared. For convenience, we introduce the following

de�nition.
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De�nition 7.4.1 We say that node u has a status of on whenever signalbitu = false

and modeu = Ready, and o� otherwise.

The code that implements the sending and receiving of �-messages is shown in

Figure 7.8.

If the status of u is on, u relays �-messages between the user and the network. More

speci�cally, when a Sendmu;v(m) event occurs and node u has status on, u queuesm on

an outbound queue (called queueu[v] as in previous chapters) that contains packets to

be sent to v. This queue can also contain an abort, ack or ready packet. Eventually,

packets in this outbound queue are delivered to neighbor v. When v receives a �-

message m from v, v queues m in an inbound message bu�er called bu�erv[u]. Later,

if v's status is on, it will do a Receivemu;v(m) event and remove m from the bu�er

and deliver it to the user. See Figure 7.9 for a sketch of the inbound and outbound

queues for a link.

If u's status is not on, u discards � messages input by the user through Sendmu;v

actions. Also, u, will not do a Receivemv;u action unless its status is on. Recall

that all �-messages from a neighbor v are queued on bu�eru[v]. In order to separate

packets that are sent during separate signal intervals at v, we use the same rule as

the Simple Reset Protocol. When a abort packet arrives from neighbor v, bu�eru[v]

is emptied. Once again, this simple rule is really the key to ensuring the conditions

required to satisfy the consistency property.

Note that bu�eru[v] can store at most one message. Clearly, if user messages are

not to be dropped, we have to rely on the Freem action as a form of \ow control".

Our scheme is as follows. We require that there is at most one �-message in transit

from u to v. Thus u keeps a variable freemu[v]. Whenever v delivers (or destroys) a

�-message from u, v sends a �-Ack back to u. When u receives a �-Ack from v, u sets

freemu[v] to true. This enables the Freemu[v] action, which tells the user at u that

it can safely send a message to v. Thus all we are doing is using a �-Ack message to

provide feedback to the sender that the bu�er at the other end is empty.

7.4.4 Example

Figure 7.10 describes a sample execution of the reset protocol for a simple topology

consisting of four node u,v, w and x connected as shown in the �gure. The �gure
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Actions to send and receive �-messages

Sendmu;v(m), m 2 � (*input action by which user sends a message*)

If mode(u) = Ready and signalbitu = false and freemu[v] = true then

(* accept message only if mode is ready, no outstanding signals, and message ow control says OK*)

enqueue m in queueu[v] (*enqueue m in outbound queue to v *)

freemu[v] = false (*inhibit delivery of free event to user*)

Sendu;v(p) (*output action to send a packet on UDL link to v*)

Preconditions:

p is the head of queueu[v] (*p is head of outbound queue for link*)

freeu[v] = true

E�ects:

Delete p from queueu[v]

freeu[v] := false

Freeu;v (*input action from link to v to say it is free*)

freeu[v] := true

Receivev;u(m), m 2 � (*input action to receive a user message from v*)

Enqueue m in bu�eru[v] (*store m in inbound bu�er for link*)

Receivev;u(�-Ack), (*input action to receive a �- message ack from v*)

freemu[v] = true (*record that v is ready to accept a new message*)

Receivemv;u(m), m 2 � (*output action to deliver a user message from v to the user*)

Preconditions:

m is the head of bu�eru[v]

mode(u) = Ready and signalbitu = false (*mode is ready and no outstanding signals*)

E�ects:

Remove m from bu�eru[v]

Enqueue �-Ack in queueu[v] (*send a message ack back to v*)

Freemu;v (*output action to tell user that it can safely send another message to v*)

Preconditions:

freemu[v] = true and signalbitu = false and mode(u) = Ready

E�ects:

None

Figure 7.8: Actions at a node u to send and receive user messages to and from any neighbor v of u.
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can contain protocol packets and a buffer [u], inbound message buffer

u

v
user message

Figure 7.9: Sketch of the inbound and outbound queues for a link.

describes seven snapshots (F1-F7) taken during this sample execution.

The execution begins (F1) with nodes u and w receiving a snapshot request. Node

u and w go into Abort mode and send abort packets to their neighbors. In F2, the

abort packet from u has arrived at v. Next, u and w receive each other's abort packet

and (F3) send back acks to each other. We assume that the abort from w to x travels

slowly which allows the abort packet sent from v to arrive at x earlier (F3). Thus in

F3, the abort tree rooted at u (which is shown using dotted lines) consists of u, v and

x.

Next, x sends an abort to both v and w which are acked immediately. Then x

receives the \slow" abort from w and sends back an ack. Once x gets an ack back

from both v and w, x sends back an ack to its parent v (F4). When v receives this

ack, it sends back an ack to its parent u (F5). Finally, in F6, u sends a ready packet

down to v and then (F6), v sends a ready packet to x. Note that the ready packet

destroys the abort tree as it travels down the tree.

7.5 Reset Automaton

In describing the reset code, we use the following notation. As in any node automaton

there is a outbound queue of packets (queueu[v]) at any node u for every neighbor v

of u. As usual, queueu[v] consists of packet waiting to be sent on Cu;v.

Each node automaton Nu is speci�ed given in Figures 7.6, 7.7, and 7.8. The code
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Figure 7.10: A sample execution for the reset protocol described in terms of seven snapshots.

181



uses the variables and macro speci�ed in Figure 7.6. The piece of code that deals with

implementing the main part of the reset protocol is described in Figure 7.7. The piece

of code that deals with sending and receiving �-messages is described in Figure 7.8.

7.6 Reset Protocol is Locally Checkable and Cor-

rectable

Let G be the topology graph that models the topology of the network on which the

reset protocol works.

Lemma 7.6.1 N = fNu; u 2 Gg is a set of node automata for G with Pdata = � [

f(Abort; �);Ack;Readyg.

Proof: Simple checking of the de�nitions given earlier.

7.6.1 Overview of Predicates

Next, we prove that the protocol is locally checkable, by describing a set of predicates

in Figure 7.14 and showing that these predicates are closed. The description of the

predicates uses the shorthand notation shown in Figure 7.13. Please refer to both

these �gures during the following discussion.

Recall thatQu;v is the queue corresponding to the single packet that can be stored in

channel Cu;v. For convenience, we de�ne xqueueu[v] (i.e., the extended queue between

u and v) as the queue formed by the concatenation of Qu;v and queueu[v]. Thus in

Figure 7.9, the extended queue between u and v is the queue formed by concatenating

the outbound link queue and the link itself. Note that we do not include the inbound

message bu�er! If Qu;v 6= nil, we assume that Qu;v is the head of xqueueu[v].

We informally describe the predicates. The �rst two predicates A and B deal with

the ack ag acku[v] at a node u. Intuitively, this bit is set if u expects an ack from v.

A states that if u is expecting an ack from v then one of three possibilities must be

true: either there is an abort packet in transit from u to v (Case 1 in Figure 7.11), OR

v has received the abort packet and has chosen u as its parent (Case 2 in Figure 7.11),
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mode(v) = abort
and v’s parent is u

Figure 7.11: The Three Cases for the �rst and second predicates. The black dot before an edge indicates

that a node is waiting for an Ack on that edge.

OR there is an ack packet in transit from v to u (Case 3 in Figure 7.11). Predicate

B says that at most one of these three possibilities can be true at the same time. In

some sense, A and B govern the �rst two phases of the reset protocol

Consider Figure 7.10. In that example execution, the �rst case is illustrated in F2,

the second case in F3 and F4, and the third in F5.

The next two predicates C and D govern the second and third phases of the reset

protocol. They deal with the parentu variable at a node u. Intuitively, parentu = v

if v is the parent of u in the abort tree. C states that if v is the parent of u and the

the mode of u is Converge then one of three possibilities must be true: either there is

an ack packet in transit from u to v (Case 1 in Figure 7.12), OR v has received the

ack packet and has cleared its ack bit for u but has not changed its mode to Ready

(Case 2 in Figure 7.12), OR there is a ready packet in transit from v to u (Case 3 in

Figure 7.12). Predicate D says that if v is u's parent, then at most one of these three

possibilities can be true at the same time.

As an example, consider nodes x and v in Figure 7.10, where v is the parent of x.

In that example execution, the �rst case is illustrated in F4, the second in F5 and F6,

and the third in F7.

The next predicate E is crucial to the proof of termination of the protocol. It states

that the distance of a child in the abort tree is one more than the distance of its parent.

The only exception to this is if the parent has \abdicated" by sending a ready packet

that is currently in transit to the child. Essentially, this predicate shows that abort

trees are acyclic and have a maximum height of n, the number of nodes; the proof of
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Figure 7.12: The Three Cases for the third and fourth predicates. Node v is the parent of Node u in all

three cases.

termination will essentially consist of induction on the height of the abort trees. The

predicate F is a supporting predicate required to prove that E is closed. It states that

if u sends an abort to v then the distance in the abort packet is one more than u's

current distance.

Predicate G is is again a supporting predicate required to prove that some of the

other predicates are closed. Suppose there is a packet p, that is either a ready packet

or a user message or a �-Ack, in transit from u to v. Then p must have been sent

when u was in the Ready mode. Thus, it must be that either u is still in the Ready

mode or that u has gone into Abort mode since the time p was sent. But in the latter

case there must be an abort packet behind p in transit from u to v.

Predicate H governs the ow control scheme that ensures at most one message in

transit from u to v. If freemu[v] is true then the Freemu;v action is enabled and so

there must be no message in transit from u to v and also no message acks (�-Ack's)

in the reverse direction. On the other hand, if freemu[v] is false then either a message

is in transit from u to v, or a message ack is in transit in the reverse direction, but not

both.

Predicate Q is the reason why we can get away with an outbound queue size for

links (e.g., the size of queueu[v]) of 5. It states that the outbound queue (even after

concatenation with the channel queue) can contain at most one packet of each type:

abort, ack, and ready. Since H tells us we can have at most one �-message and at

most one �-Ack, it means that a queue size of 5 is su�cient.
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The following shorthand is used to specify local predicates:

xqueueu[v] (the extended queue between u and v) is the queue

formed by the concatenation of Qu;v and queueu[v].

A1(u; v) � (Abort; �) in xqueueu[v]

A2(u; v) � mode(v) = Abort and parentv = u

A3(u; v) � Ack in xqueuev[u]

C1(u; v) � Ack in xqueueu[v]

C2(u; v) � ackv[u] = false and mode(v) 6= Ready

C3(u; v) � Ready in xqueuev[u]

Figure 7.13: Shorthand Used to De�ne Local Predicates

We now show that the conjunction of these predicates is a closed predicate. The

proofs, which we relegate to the appendix, consist basically of rigorous (and somewhat

tedious) case-analysis.

7.6.2 Proving that the Local Predicates of the Reset Protocol

are Closed

First, the the local predicates of Figure 7.14 are speci�c to a directed link (u; v). Recall

that for local checkability we need exactly one local predicate for each edge. Hence:

De�nition 7.6.2 We let Gu;v be the intersection of the local predicates in Figure 7.14

for any edge (u; v). For any edge (u; v), we let Lu;v be the intersection of Gu;v and

Gv;u.

De�nition 7.6.3 Let Lu;v be the local predicate de�ned in De�nition 7.6.2. Let L be

the link predicate set containing Lu;v for every (u; v) in G and let L = Conj(L).

185



A: acku[v] = true i�

one of A1(u; v), A2(u; v), or A3(u; v) holds.

B: At most one of A1(u; v), A2(u; v), or A3(u; v) holds.

C: parentu = v implies

mode(u) = Converge i�

one of C1(u; v), C2(u; v), or C3(u; v) holds.

D: parentu = v implies

at most one of C1(u; v), C2(u; v), or C3(u; v) holds.

E : parentu = v implies

one of the following holds:

distu = distv + 1 and mode(v) 6= Ready OR

C3(u; v).

F : If xqueueu[v] contains a (Abort; d) packet then d = distu + 1.

G: If p in xqueueu[v] and p = Ready or p is a �-message or p = �-Ack then

Either mode(u) = Ready

Or there is an Abort in xqueueu[v] after p.

H: Let Mu;v denotes the concatenation of xqueueu[v], and bu�erv[u]. Then:

If freemu[v] = true then

There is no �-message in Mu;v and no �-Ack in xqueuev[u]

Else one of the following holds:

There is exactly one �-message in Mu;v OR

There is exactly one �-Ack in xqueuev[u]

Q: xqueueu[v] contains at most one (Abort; �), Ack, or Ready packet.

Figure 7.14: Reset Protocol: Local Predicates for edge (u; v). Refer to the code given in Figure 7.13 for

an explanation of the shorthand used.
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The proof, which is in the appendix, consists of showing that each Lu;v is a closed

local predicate.

Lemma 7.6.4 For a leader edge (u; v) and transition (s; a; s0) of R, if s satis�es Lu;v,

then s
0 satis�es Lu;v.

Proof: By lemmas, D.1.4, D.1.5, D.1.6, D.1.7, D.1.8, and D.1.3 in Section D.1 of the

appendix. The predicates are closed because of the code in [AAG87] and the heuristic

of removing unexpected packet transitions.

We quickly sketch what is involved in such a proof. Consider predicate A as

sketched in Figure 7.11. We essentially consider all states that satisfy this local predi-

cate and show that no transition can cause this predicate not to hold in the next state.

For example, consider Figure 7.11. If u is not expecting an ack from v in a state, then

the only transitions that can cause this to happen is if u gets a reset request or an

Abort packet while in Ready mode. But this causes u to send an an Abort packet

to v which leaves us in Case 1 of the predicate.

Rather than consider all possible transitions, we save some e�ort by �rst identifying

the transitions that can a�ect key variables. Then we focus our attention on such

transitions. This method is described in the appendix.

The following theorem is immediate from the last lemma.

Theorem 7.6.5 The reset automaton R can be locally checked for L using L.

7.6.3 Reset Protocol is Locally Correctable

Consider the function f de�ned in Figure 7.15. Let < be the trivial partial order such

for all u; v;w; x in G, fu; vg 6< fw; xg. (i.e., no pair of neighbors is less than any other

pair of neighbors.) We claim that f is a local reset function for R with respect to L

and partial order <.

Lemma 7.6.6 The function f de�ned in Figure 7.15 is a local reset function for net-

work automaton R with respect to link predicate set L = fLu;vg and partial order

<.
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Local Reset Function f applied to node u with respect to node v

(*First simulate the receipt of an Ack message from v*)

If acku[v] = true then

acku[v] := false

If mode(u) = Converge then

enqueue Ack in queueu[parentu]

Else if mode(u) = Ready then

signalbitu := true

For all neighbors x of u do Enqueue Ready in queueu[x]

(*Next simulate the receipt of an Ready message from v*)

If parentu = v and mode(u) = Converge then

parentu := nil

signalbitu := true

For all neighbors x of u do do

Enqueue Ready in queueu[x]

(*Finally correct parentu if it has not been done by code above*)

(*and also clean up the message bu�er and packet queue*)

If parentu = v then parentu = nil

Empty queueu[v] and bu�eru[v]

freemu[v] = true

Figure 7.15: Reset Protocol. Local Reset Function
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Proof: Consider any state s of R and any leader edge (u; v) of G: We show each of

the properties required by a local correction function.

� Correction: In the state f(sju; v), it is easy to check that parentu 6= v, acku[v] =

false and queueu[v] and bu�eru[v] are empty. Also freemu[v] = true. Similarly,

in the state (f(sjv; u), it is easy to check that parentv 6= u, ackv[u] = false and

queuev[u] and bu�erv[u] are empty and freemv[u] = true. Thus it follows that

(f(sju; v);nil;nil; f(sjv; u)) 2 Lu;v.

� Stability: We need to show the following fact for any neighbor w of v:

If (sju; sj(u; v); sj(v; u); sjv) 2 Lu;v then (sju; sj(u; v); sj(v; u); f(sjv;w)) 2 Lu;v.

But if we look at the code for f(sjv;w) we see that f(sjv;w) is the same state

that would occur at v in an execution in which the reset protocol starts in state

s and consisting of the following sequence of actions:

{ A Receivew;v(Ack) action (see Figure 7.7) followed by

{ A Receivew;v(Ready) action (see Figure 7.7) followed by

{ A hypothetical internal action that results in the execution of the last three

lines of Figure 7.15 applied to node v with respect to node w.

Now we know that the state at v resulting after the Receivew;x(Ack) and

Receivew;x(Ready) events must satisfy the stability condition because we have

already proved this in Lemma 7.6.5.

Now consider the hypothetical internal action applied to v. Note that this in-

ternal action can only change parentv from w to nil. Also a careful look will

show that this internal action will never change the value of mode(v) since it is

only applied after the simulated processing of a Ready packet from w. Now the

predicates described in Lu;v only depend on the value of mode(v), ackv[u] and the

predicate parentv = u. But none of these values are a�ected by the hypothetical

internal action. Thus Lu;v is una�ected by the hypothetical internal action.

Thus the result of executing all three actions must satisfy the stability condition.
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Lemma 7.6.7 Let f be the reset function described in Figure 7.15. Then R is locally

correctable to L using link predicate set L, reset function f , and partial order <.

Proof: Follows from Lemma 7.6.6 and Lemma 7.6.5.

Theorem 7.6.8 R+ stabilizes to the behaviors of R(tp)jL in time tq, where tq and tp

are constants.

Proof: Follows directly from the Local Correction theorem, Theorem 5.4.3 and

Lemma 7.6.7. Notice that height(<) = 1 since < is the trivial partial order.

7.7 The behaviors of a reset protocol after it sta-

bilizes

We have already shown that R+ stabilizes to the behavior of R(tp)jL in constant time.

Recall that R(tp)jL is identical to the automaton R except that the node and link

delays are increased by a constant factor, and all link predicates hold.

We now show that R(tp)jL solves the reset problem RP. However, because the set

of behaviors speci�ed by RP remains unchanged after scaling by constant factors, it

su�ces to show that RjL solves the reset problem RP. Thus in the remainder of this

section and in the appendix, we show that every behavior � of RjL is in RP.

We relegate the proof of this theorem to the appendix. However, in this section, we

intuitively explain why any behavior � of RjL is timely, consistent, and causal. The

intuition provided in this section should help the reader understand the proof in the

appendix.

In the proofs when we talk of a state s or an execution �, we mean a state or

execution of RjL. Recall that we de�ned a derived variable called status(u) which is

on if mode(u) = Ready and signalbit(u) = false and o� otherwise. From the code, it is

easy to see that u will only send and receive messages when status(u) = on.

The �rst important lemma is what we call the Termination Lemma. This states

the following. Consider any node u. Assume that mode(u) 6= Ready in some state si of

any execution �. The lemma states that mode(u) will change to Ready in O(n) time

after si.
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7.7.1 Why the Termination Lemma Works

Let c be the worst-case time for a packet queued at node u to reach neighbor v. It's

not hard to see that c is a constant because the outbound queue size at each node

is at most 5 and because of the properties of a UDL. In the following, we will say

that a node u is a root in some state s of the reset protocol if mode(u) = Abort and

parentu = nil in state s.

By assumption, mode(u) 6= Ready in state si. Since mode(u) 6= Ready, u must

either be a root or have a parent (say v) in state si. By using invariants A and C

repeatedly, we can obtain a chain of nodes starting with u such that each node is the

parent of the previous node. Also the chain must either end with a Ready packet

or must end with a root node r such that mode(r) = Abort in si. This is shown in

Figure 7.16. We also know from invariant E that the distance of each node in the chain

is one more than that of its parent. Thus no node can occur more than once in this

chain and hence this chain can consist of at most n nodes.

(The following is a more detailed argument that explains why each chain must end

in a Ready packet or a root r. If mode(u) = Abort, then either u is a root or u has

a parent, say v. In the latter case by A, ackv[u] = true and so mode(v) = Abort. If

mode(u) = Converge then u has a parent, say v. By C, either there is an Ack in

transit from u to v (in which case by A, mode(v) = Abort), or mode(v) 6= Ready, or

there is a Ready packet in transit from v to u. Thus either u is a root, or u has a

parent v such that mode(v) 6= Ready or there is a Ready packet in transit from v to

u. We now repeat this argument until we either arrive at a root node or a Ready

packet.)

Consider the case where the chain ends with a Ready packet. In this case, it is

not hard to see that within O(n) time after si, a Ready packet will reach u which will

cause u to go into Ready mode.

So consider the latter case where the chain ends with a root r. Suppose we can

show that in O(n) time after si, there is an action aj in which r changes its mode to

Ready and sends a Ready packet to all its children. But if we can show this we are

done in O(n) time after aj using the arguments in the previous paragraph. So all we

have to do is to show that in O(n) time after si, r will change its mode to Ready

If the mode of r is Abort, then by de�nition r must have some neighbor v that it

expects an ack from (i.e., ackr[v] = true). Now by invariant A, this means that (see
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Figure 7.16: The two cases that can occur if u's mode is not Ready. Each node in a chain is the parent

of the node below it.
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Figure 7.17: The two cases that can occur if node u is expecting an ack on the link to v.
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Figure 7.11) either there is an abort in transit from r to v, or an ack in transit from v

to r, or v is also in Abort mode and r is the parent of v. But if v is in in Abort mode,

we can continue this argument inductively to produce a chain of nodes starting with r

such that each node is the parent of the next node. We also know from invariant E that

this chain can consist of at most n nodes. At the end of this chain (see Figure 7.17,

there must be either an abort or an ack. We call a chain that ends with an abort

packet an abort chain and we call a chain that ends with an ack packet an ack chain

Recall that c is the constant that reects the worst-case time for a packet queued

at node to reach a neighbor. Now, observe that in c units of time any abort chain must

either increase in size by 1 or be converted into an ack chain. But since the size of an

abort chain cannot increase beyond n (the number of nodes), within O(n) time any

abort chain must have converted into an ack chain. Similarly in c units of time, any

ack chain must decrease in size by 1. Thus in O(n) time any ack chain will disappear.

The upshot is that within O(n) time, ackr[v] will become false. Since this happens

for any child v of r, within O(n) time after si, r will change its mode from Abort to

Ready and we are done.

A formal proof can be made based on these arguments. The appendix contains a

formal statement of the lemma (Lemma D.2.1) but omits a detailed formal proof.

7.7.2 Why behaviors of the reset automaton are timely, con-

sistent, and causal

Recall that we de�ned a derived variable called status(u) which is on if mode(u) =

Ready and signalbit(u) = false and o� otherwise. From the code, it is easy to see that

u will only send and receive messages when status(u) = on.

The �rst important tool is what we call the Signal Lemma. Consider any execution

� of RjL and any node u and any state si in �. The signal lemma basically says that if

status(u) = o� in state si, then a Signalu event occurs within O(n) time after si in �.

This follows because if signalbitu = true in si, then a Signalu event must occur within

constant time of si by the timing conditions. On the other hand, if mode(u) 6= Ready

in si, then the Termination Lemma tells us that in O(n) time after si, we reach a state

sj in which mode(u) = Ready. If sj is the �rst such state after si, then by the code, we
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know that u cannot change its mode to Ready without also setting signalbitu = true.

Then, as before, a Signalu event must occur within constant time of sj in �.

Now we consider an execution � of RjL and sketch why the behavior corresponding

to � satis�es the timeliness, consistency, and causality properties.

Proving the Timeliness Property

Consider �rst the timeliness property:

1. Normal Receipt of Messages: We need to show that there is some constant c

such that every every receive event that occurs at time greater than �:start+c�n

in any execution � is normal. Also if aj is any normal receive event and ai is the

send corresponding to aj , then aj occurs within O(n) time after ai.

This follows because that any message m in transit from say v to u (i.e, stored

either in the queue at v, the link from v to u, or the bu�er at u) cannot remain

in transit for more than O(n) time. If a message m is stored either in the queue

at v or in the link from v to u, then (by the properties of the link and the fact

that the queue holds at most 5 packets), the message m will be stored in the

bu�er at u in constant time. Next, we argue that in O(n) time after a state si

in which a a message m is in the bu�er at u, m will either (see Figure 7.18) be

delivered or be \ushed" by an Abort packet sent from v.

If status(v) remains on for a constant amount of time after si, then the message

m will be delivered. Thus the only other possibility is that message m remains

in the bu�er because status(v) is o� in constant time after si. But in that case

by the Signal Lemma, there will be a Signalu event in O(n) time after si. With

a little work (see appendix) we can show that such Signalu events cannot keep

occurring at node u for a linear amount of time without causing v to send an

Abort packet to u; this will ush the bu�er at u.

2. Periodic Free Events: Consider any t-su�x  of execution �. Then in  either

a Freemu:v occurs within constant time or a signal event occurs at u within O(n)

time or a signal event occurs at v within O(n) time.

This follows because of the following observation. Let c be a su�ciently large

constant time. Suppose either status(u) or status(v) is o� in c time after the
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m stored in buffer

Case 1 Case 2

Figure 7.18: Two Cases for how a message is removed from a link

start of . Then we are done by the Signal Lemma. But if this is not true,

and c is su�ciently large, then any message m in transit from u to v will be

delivered in constant time; also any �-Ack message in transit from v to u will be

delivered in constant time; this will result in freemu[v] = true in constant time.

In constant time after freemu[v] is true (and assuming that c is large enough so

that status(u) remains on in this interval), a Freemu;v event will occur.

3. Timely Message Delivery: Suppose aj is a safe Sendmu;v(m) event in .

Then either a Receivemu;v(m) occurs within constant time after aj or a signal

event occurs at u within O(n) time or or a signal event occurs at v within O(n)

time.

This follows because of a similar observation to the one used to show periodic

free events. Let c be a su�ciently large constant time. Suppose either status(u)

or status(v) is o� in c time after aj. Then we are done by the Signal Lemma.

If not, by arguments similar to the ones above, we show that message m will be

accepted and stored at u and then sent to v where it will be delivered in constant

time. We assume that c is large enough so that status(u) and status(v) remain

on in this interval.

4. Signals at a Node induce Signals at Neighbors: There is some constant c

such that for every Signalu event aj that occurs at time greater than �:start+c�n

there is a Signalv event that occurs in linear time before or after aj.
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TIMEO(n) time
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Figure 7.19: A signal event at u that occurs su�ciently \late" must be preceded in linear time by the

sending of an Abort packet to v. This in turn causes a signal event to occur within linear time at v.

First, within linear time of the start of the execution � corresponding to �, there

must be some state sh in which mode = Ready (by the termination lemma). In

constant time after sh, there must be some state si in which signalbitu = false.

This follows because signalbitu cannot remain true for constant time without

a Signalu action occurring, which sets signalbitu = false. Thus any Signalu

action aj that occurs after state si must have been \caused" by u receiving a

reset request or an Abort packet while in Ready mode. Let this action be aj0 ;

by the termination lemma, aj0 occurs in linear time before aj . But as part of

action aj0, the code will also send an Abort packet to neighbor v as sketched in

Figure 7.19. Thus in constant time after aj0 , this Abort packet will arrive at v

and result in a state in which status(v) = o�. Thus, by the Signal Lemma, in

O(n) time after aj0 , a Signalv event occurs. Since aj0 occurs within linear time

before aj , the Signalv event occurs within linear time before or after aj.

Proving the Consistency Property

Consider now the consistency property. As in the Simple Reset Protocol, the consis-

tency conditions follow from the sending of Abort packets between signal intervals.

We de�ne a signal interval Su at u and a signal interval Sv at v to be mates i� a nor-

mal message sent in Su is received in Sv or vice versa. We can show that the mating

relation is well-de�ned and symmetrical because of the following two properties.

The �rst property which we call send consistency states that messages sent in a

signal interval at v can be received in at most one signal interval at u; conversely
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Figure 7.20: What happens between the sending of a message and a later Signal event.

messages received in a signal interval at u could have been sent in at most one signal

interval at v. This will help establish that each signal interval at u can have at most

one mated signal interval at v.

Send Consistency: Let aj and ak be any two normal receive events at u from v

in �. Let al and am be the send events corresponding to aj and ak respectively. Then

there is a Signalv event between al and am i� there is a Signalu event between aj

and ak.

Consider Figure 7.20. This �gure shows that if there is a Signalv event after al

then there must be an Abort packet sent in between from v to u. On receipt of this

packet, all packets in the bu�er at u will be ushed and status(u) must become o�.

Next, u will not deliver any messages until it has performed a Signalu and status(u) is

on again. But any messages sent by v after the Signalv event will arrive (by the FIFO

property of the queue and link) after the Abort packet arrives at u. This guarantees

that such messages will not be delivered until u performs its Signalu event. Similar

(but more complicated) arguments can be used to show the other side of this claim.

Next, we show a second property which states (in essence) that a signal interval at

u cannot send messages to and receive messages from di�erent signal intervals at v.

This will help show that the mating relation is symmetric.

Send-Receive Consistency Let aj be a normal receive event at u from v and

let am be a normal receive event at v from u. Let al and ak be the send events

corresponding to aj and am respectively. Then there is a Signalv event between al

and am i� there is a Signalu event between aj and ak.
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Consider Figure 7.20. This �gure shows that if there is a Signalv event after al

then there must be an Abort packet sent from v to u before v performs its Signalv

event. When this packet arrives at v there are two possibilities. Suppose the mode of u

is not equal to Ready at this point. If u has sent any message m to u in the past, then

u must have sent an Abort packet to v after message m. On the other hand, if the

mode of u is Ready when the Abort packet from v arrives, then u will immediately

send an Abort packet to u. In either case, the Abort packet from u to v will arrive

at v before the Ack (see Figure 7.20 which shows the second case) from u to v. But

when the Abort packet arrives at v, it will ush out any messages in transit from u

to v; it is only later that the Signalv event can be performed.

This e�ectively means that any messages sent by u after the Abort is received at

u can only be delivered at v after the Signalv event. Similar arguments can be used

to complete the proof of this claim.

Now we show the third property of a consistent behavior listed in De�nition 7.3.5.

Successful Sending of Messages: Between any safe Sendmv;u(m) event and a

later Freemv;u event, there is either a Receivemv;u(m) event or a Signalv event.

Call the �rst Sendmv;u(m) event ai. If in state si, status(v) = o�, message m will

be dropped; but in this case by the Signal Lemma a Signalv will occur after si. But

in the period between si and the Signalv event, since status(v) = o�, the code ensures

that no Freemv;u event can occur. So suppose m is placed in queuev[u] in si. Now

we return to Figure 7.18. We know that either (case 1) m is delivered to u or m is

destroyed by a later Abort packet. In either case, we know from predicate H, that

freemv[u] will be false until m is no longer in transit and so no Freemv;u can occur in

the interim. In Case 2, after the Abort is sent by v, status(v) will remain o� until a

Signalv occurs. Thus in this period as well no Freemv;u event can occur.

Next, we show the fourth property of a consistent behavior listed in De�nition

7.3.5.

Mating of Final Signal Intervals: Let aj be a normal receive event at u from

v in � and al be the send corresponding to aj . Then there is no Signalu event after

aj i� there there is no Signalv event after al.

This follows from Figure 7.20. If there is a Signalv after al there must be an

Abort packet that will be received at u after aj. This will result in status(u) becoming
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o� after aj. The Signal Lemma now tells us that there will be a Signalu event after

aj . The reverse argument is similar.

Finally, the �fth property of a consistent behavior (i.e., the mating relation pre-

serves temporal ordering) follows in essence from the fact that the UDLs are FIFO

links and the fact that Abort packets sent between signal intervals ush the links and

bu�ers of previously sent messages.

Proving the Causality Property

To show that the behavior corresponding to execution � is causal, we prove the two

properties of a causal behavior:

1. There is some constant c such that every signal event ak in � that occurs at time

greater than �:start+ c �n is preceded by a request event aj that occurs in linear

time before ak.

It is su�cient to show that there is some constant c such that the following is

true: if we consider any interval [si; sk] in which no reset request occurs and

such that sk:time� si:time � cn, then ak cannot be a signal event. The required

property follows from this because it implies that if ak is a signal event, then a

reset request must have occurred in linear time before ak.

If we choose c large enough, then we can break the interval [si; sk] into four

subintervals [si; si0 ], [si0; sj ], [sj; s
0
j ] and [sj0 ; sk] such that:

� Every node u has had mode(u) = Ready in the interval [si; si0]. (More

precisely, for every node u there is some state sl in the interval [si; si0 ] such

that sl:mode(u) = Ready.)

� Every node u has had mode(u) = Ready in the interval [si0; sj ].

� Every node u has had mode(u) = Ready in the interval [sj; sj0 ].

� For any u, any signal event enabled in sj0 is guaranteed to occur in the

interval [sj0 ; sk�1].

Intuitively, we choose the �rst three subintervals to be long enough, so that every

node will have had a chance to go to Ready once in each subinterval. The termi-

nation lemma tells us that this can be done using subintervals whose duration
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is O(n). Finally, the fourth subinterval needs to be su�ciently long so that any

signal events enabled at the start will occur before the end of the subinterval.

By the timing conditions (see code), this can be done using a subinterval whose

duration is a constant.

First, note that a node u can become a root (i.e. modeu = Abort and parentu = nil

only through two events: �rst, by a reset request at node u; and second by

receiving an (Abort; n0) packet with the distance variable at the maximum

value. We call the second transition, a spurious reset request. We �rst claim

that a spurious reset cannot occur in any state in which the following bounded

distance predicate holds: for all nodes u, if parentu = nil then distu = 0. This

follows because if there is an (Abort; n0) in transit from say v to u we can apply

A and B repeatedly to obtain a chain of nodes ending with a root node r. If

distr = 0 then by E and F we can arrive at a contradiction in that any Abort

packet must carry a distance less than n� 1.

Next, we claim that all spurious reset requests disappear after the �rst subin-

terval. This is because the bounded distance predicate must hold after the �rst

interval. If any node u becomes a root after the �rst interval, since it was Ready

at some time during the �rst interval, it must have become a root through either

a reset request or a spurious reset request; but either of these transitions will

also set distu = 0.

Next, we claim that for every node u, at the end of the third subinterval that

mode(u) = Ready. This follows because of the following intuitive argument.

Recall that a root of an abort tree is a node u with parentu = nil and mode(u) =

Abort. Second, we claim that any roots of abort trees that existed at the start of

the second subinterval can no longer exist by the end of the second subinterval.

This is because (by choice of subinterval) any such root node must have changed

its mode to Ready by the end of the second subinterval. But since no reset

requests occur in the entire interval, and no spurious requests occur after the

�rst subinterval, no new roots can be created after the �rst subinterval. Thus

there are no roots by the end of the second subinterval.

Now consider any node u. But if there are no roots at the end of the second

subinterval, u cannot enter Abort mode in the third subinterval. This is because

in any state s in which s:mode(u) = Abort there must be a root node. (This in
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turn follows by applying predicate B repeatedly.) But we know that u changed

its mode to Ready somewehere in the third subinterval. Also, u cannot change

its mode from Ready to Converge or Abort without �rst going into Abort mode.

Thus, u must be in Ready mode by the end of the third subinterval.

Finally, if no real or spurious reset requests occur in the fourth subinterval and

every node is ready by the end of the third subinterval, then no signal event can

occur at the end of the fourth subinterval. This is because we choose the fourth

subinterval such that any signal actions enabled at the start of this subinterval

would occur before the end of this subinterval.

2. A Signalu event occurs within c � n time after any Requestu event in �.

This follows easily because immediately after the Requestu event, status(u) =

o�. The claim now follows from the Signal Lemma.

Thus, as we show more formally in Theorem D.2.28, every behavior of RjL is in

RP. This can be used to show:

Theorem 7.7.1 R+ stabilizes to the behaviors in problem RP in constant time.

Proof: Follows directly from Theorem 7.6.8 and Theorem D.2.28.

7.8 Local Correctability and Dynamic Network Pro-

tocols

A dynamic network is a network in which faults are limited to link failures: links

can crash and recover in arbitrary fashion. A dynamic protocol is a protocol that

works correctly in dynamic networks. If we assume that the topology (and the list

of neighbors of each node) eventually stabilizes, then any stabilizing protocol P will

eventually work correctly in a dynamic network. This is because any �nite sequence

of link failures can only leave P in some arbitrary state.

A large number of protocols have been designed for dynamic networks. Dynamic

protocols are useful because the most common faults in real networks are link and

node crashes. Many of these existing protocols have not explicitly been designed to be
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stabilizing. However, in this section, we conjecture that a number of dynamic protocols

can be made locally correctable.

We start with the reset protocol described in [AAG87] on which the reset protocol

described in this chapter is based. This protocol was originally designed for dynamic

networks. Thus besides the actions described in this chapter, the protocol in [AAG87]

had actions for link failure and recovery. Thus for every node u and every neighbor

v of u, the protocol had an input action Link Upu;v (corresponding to the link to v

coming up at node u) and an input action Link Downu;v (corresponding to the link

to v coming down at node u).

Next, consider the reset function (Figure 7.15) used in this chapter for the reset

protocol. The reset function applied to a node v with respect to a neighbor u is exactly:

� The code performed in [AAG87] for a Link Downu;v event, immediately followed

by

� The code performed in [AAG87] for a Link Upu;v event.

In other words, we can obtain a local reset function by simulating a link failure

immediately followed by a link recovery. Is this a coincidence?

We present a rough (but incomplete) argument as to why this might work. First,

consider the stability condition for local correctability. Consider any neighbor w of u.

Suppose that the (u;w) subsystem is in a good state { i.e., in a state that belongs to

Lu;w. Now when the link to v comes up or goes down, the original protocol had to

preserve the stability of Lu;w. Thus the code for the Link Upu;v and Link Downu;v

events preserves the stability of Lu:w.

Now consider the correction condition. Clearly it is possible in the dynamic pro-

tocol to have the link at u go down simultaneously at both ends and then come up

simultaneously at both ends. When the link comes up it should come up with no

messages in the links and with both u and v in states that satisfy Lu;v.

Both arguments given above are incomplete. For example, consider our \proof"

of the stability condition. We claimed that if the (u;w) subsystem was in a good

state, the Link Downu;v events would preserve the stability of Lu:w. To make a more

careful argument we have to add the following local extensibility condition. For every
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state a 2 Lu;w, there is some valid global state s of the network, in which the (u;w)

subsystem is in state a and the link from node u to node v is considered to be up at

node u. Since s is a valid state of the original protocol, and the Link Downu;v can

occur in state s, the result of taking the Link Downu;v action must result in a new

valid state s0. But since s0 is a valid state of the original protocol it must satisfy all

local predicates, including Lu;w.

It is possible to formalize the intuitive arguments by adding similar local extensi-

bility conditions, and showing that the protocol in [AAG87] satis�es these conditions.

We will not do so here.

7.9 Summary

The three main ideas in this chapter are as follows:

First, we have given a new de�nition of the correctness of a reset protocol in

terms of its external behaviors. We have seen that the resulting de�nition is, in

some sense, a generalization of the synchronization guarantees o�ered by a Data Link

protocol. However, while a Data Link protocol synchronizes two nodes, a reset protocol

synchronizes multiple nodes. Notice that our de�nition speci�es the behavior of the

reset protocol when reset requests are continuously being made and not just in the

event that there is a last reset request. The de�nition we used in our original paper

([APV91b]) only speci�ed the behaviors in the event that there is a �nal reset request.

However, in trying to apply the reset protocol (for instance, in Chapter 8) we soon

found a need for the present speci�cation.

Second. we have applied the Local Correction theorem to stabilize a version of

the reset protocol described in [AAG87]. We had to make some subtle changes to the

original protocol to make it locally checkable and correctable.

Third, we have conjectured that many locally checkable protocols that work in

dynamic networks can be made locally correctable. To obtain a reset function, we

concatenate the code that the original protocol used for a link down event with the

code used for a link up event. As another example, Spinelli [Spi88a] describes a virtual

circuit protocol that works in dynamic networks. This protocol appears to be locally

checkable and it appears that we can use the link up and link down code to create a

reset function. Interestingly, Spinelli [Spi88a] makes his protocol stabilizing by sending
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a message periodically from the source of the virtual circuit to the destination of the

virtual circuit and back. He also uses a timer whose value is proportional to the

maximum end-to-end delay in the network. If, as we conjecture, local checking and

correction is applicable to Spinelli's protocol, the resulting protocol will be simpler

and faster than the one presented in [Spi88a].
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Chapter 8

Global Correction Theorem

The previous three chapters have been concerned with local checking and local correc-

tion. This chapter marks an important transition as we move to local checking and

global correction. For the next two chapters, we will study the use of the stabilizing

reset protocol of Chapter 7 for global correction. In this chapter, we will prove a

Global Correction Theorem. This theorem states that any locally checkable protocol

can be stabilized in time proportional to the number of network nodes using global

correction. Thus global correction removes the need for the original protocol to be

locally correctable but pays a price in terms of stabilization time. In the next chapter,

we will apply global correction to a simple synchronizer protocol [Awe85].

The focus of this chapter is the Global Correction Theorem. The Global Correction

theorem should be contrasted with the Local Correction Theorem (Theorem 5.4.3) of

Chapter 5. The extra price paid for Global Correction is a stabilization time that is

proportional to the number of network nodes instead of the height of some underlying

partial order.

A second important idea contained in this chapter is the concept of one-way check-

ability. One-way checking is a special case of local checking that results in simpler

and more e�cient stabilizing protocols. We illustrate the two ideas in this chapter by

using a simple spanning tree protocol. The spanning tree protocol is locally checkable

and hence can be stabilized using the Global Correction Theorem. However, because

the Spanning Tree protocol is also one-way checkable, we can create a simpler (and

more e�cient) stabilizing spanning tree protocol.
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This chapter is organized as follows. In the �rst two sections, we state and prove

the Global Correction Theorem. In Section 8.3 we describe a locally checkable protocol

to compute a spanning tree. After all local predicates hold, this protocol computes a

spanning tree in time proportional to the diameter of the network. Because it does not

appear that the spanning tree protocol is locally correctable, the methods of Chapter

5 do not seem applicable. However, the Global Correction Theorem applies to this

spanning tree protocol.

Next, in Section 8.4 we explain the concept of one-way checkability, and show

that the spanning tree protocol is one-way checkable. We combine this observation

with with the Global Correction Theorem to yield a simple stabilizing spanning tree

protocol. Finally, in Section 8.6 we quickly sketch how Global Correction can also be

applied to the design of a stabilizing protocol for topology maintenance in dynamic

networks.

8.1 Statement of Global Correction Theorem

In this section and the next, we show that any locally checkable protocol N can be

e�ciently stabilized using a reset protocol. The basic idea in the proof of the Global

Correction theorem is extremely similar to the transformation used in Chapter 5 (see

Figure 5.6 and Figure 5.7) for the proof of the Local Correction theorem. As before,

we augment the original automaton with actions to perform local snapshots on every

(u; v) subsystem. However, there are two crucial di�erences in the proof of Global

Correction:

� First, we replace all links (UDL's) in the original protocol by a stabilizing reset

protocol for graph G as described in Chapter 7. In other words, each node u

now communicates with its neighbors using the interfaces provided by the reset

subsystem. Now, the reset protocol o�ers an interface that is identical to a UDL

except that packets are replaced by messages. Thus we also have to replace the

actions that send and receive packets in the node automata with actions to send

and receive messages.

� Second, when a violation is detected in the (u; v) subsystem, a global reset request

is made using the Requestu action o�ered by the reset protocol interface. Then
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when a Signalu action occurs, node u will essentially do a \local restart" by

initializing its state. This will guarantee that no more violations of the (u; v)

subsystem will be detected after both u and v have initialized their state.

Suppose we are given a locally checkable automatonN . Then in the transformation

outlined above, we need to replace the events to send and receive packets by events to

send and receive messages. Thus we cannot guarantee that the transformed automaton

stabilizes to the behaviors of NjL but to a renamed version of NjL in which action

names have been suitably renamed. This motivates:

De�nition 8.1.1 Consider a network automaton N . We de�ne R(N ), the message-

renamed version of N , to be the automaton that is identical to N except that for all

u; v:

� Every Sendu;v(�) (i.e., packet send) event in N is renamed as a Sendmu;v(�)

(i.e., message send) event.

� EveryReceiveu;v(�) (i.e., packet receive) event in N is renamed as a Receivemu;v(�)

(i.e., message receive) event.

� Every Freeu;v (i.e., packet free noti�cation) event in N is renamed as a Freemu;v

(i.e., message free noti�cation) event.

The message-renamed version of a set of behaviors of a network automaton is de�ned

similarly.

Note that renaming does not really a�ect the services o�ered by an automaton

because the users of the automaton can change their interface to accommodate the

renaming.

With this de�nition, we can state the main theorem of this chapter. It states

that any locally checkable network automaton N can be transformed into another

automatonN+ such thatN+ stabilizes to a version ofN in which i) All local predicates

hold ii) The node and link delays are increased by a constant factor iii) The packet

events are renamed as message events.
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Theorem 8.1.2 Global Correction: Consider any network automaton N = Net(G;N)

that is locally checkable for some predicate L using link predicate set L. Then there

exists some N+ that is a message-renamed UIOA for graph G and a constant c such

that N+ stabilizes to the behaviors of R(N (c)jL) in O(n) time.

8.2 Proof of the Global Correction Theorem

We present the main ideas in the proof of the Global Correction Theorem in the

following subsections. We �rst sketch the construction of the augmented automaton

N+. Then, we show that after linear time of the start of any execution of N+ all reset

requests disappear. We use this to conclude that N+ stabilizes to a message-renamed

version of N in linear time. Finally, we make some observations about modularity in

the proof.

8.2.1 Construction of N+

Let Lu;v be the local predicate for each leader edge (u; v). We construct N+ as follows.

As in Chapter 5, for every leader edge (u; v) we add actions to nodes u and v to perform

the local snapshot protocol on the (u; v) subsystem. The local snapshot protocol is

used to detect a violation of predicate Lu;v. When the leader u detects a violation, u

makes a reset request. The code is derived from the code used for the proof of the Local

Correction theorem in Chapter 5 (Figures 5.6, 5.7, and 5.5) by making the following

changes:

� All sending and receiving of packets in the modi�ed node automata N
+
u is re-

placed by sending and receiving of messages so that N+
u can be a user of the

reset subsystem. Thus instead of sending request and response packets, we send

request and response messages. Similarly we have to replace the free packet

noti�cation events with free message noti�cation events.

� There is no longer a need for a mode variable in N
+
u because each phase is

implicitly a snapshot phase. Whenever the mode is checked in the original code,

we only follow the code path corresponding to mode = snapshot.

� We add a requestbitu variable to N
+
u to remember to do a reset request.
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� When a response is received at the leader and a local predicate violation is

detected, requestbitu is set to true (instead of changing modeu[v] to reset).

� We compose the modi�ed node automata N
+
u with the reset protocol RjL of

Chapter 7. Thus in the �nal automaton, N+
u has input action Signalu and

output action Requestu.

� N
+
u makes a reset request Requestu whenever requestbitu is true; on taking this

action requestbitu is set to false.

� On receiving a Signalu event, N+
u does a local restart. It �rst resets the basic

state of the original automaton Nu to some initial value Iu ( we will discuss how

Iu is determined below). Also for each neighbor v of u, u will locally reset all

the phase and free variables. More precisely, the freeu[v], freequ[v] and phaseu[v]

variables are all set to false for all neighbors v. The counter variable countu[v]

is initialized to 1 (if u is the leader) and to 0 (if u is not the leader). This will

ensure that after a signal event at u and v, all (u; v) phases are clean and all

message send events at u are safe.

� The de�nition of local checkability in Chapter 5 ensures that there is always at

least one global state s which satis�es all local predicates. Now if there are any

messages in transit in global state s, we consider the state s0 that results when all

these messages are received by their destinations. Because the local predicates

are all closed predicates, s0 satis�es all local predicates as well. But in addition

s
0 has no messages in transit. Then we choose the initial state Iu for each node

u to be equal to s0ju.

The modi�ed code is described in Figure 8.1, Figure 8.2, and Figure 8.3. The

message formats and timing partitions are as in the proof of the Local Correction

Theorem. As before, we hide all actions of N+ that are not actions of N .

8.2.2 All reset triggers disappear in Linear Time

In the proof we will make heavy use of the reset protocol speci�cation given in Chapter

7 and some aspects of the proof of the Local Correction Theorem in Chapter 5. Refer

to Chapter 7 for de�nitions of normal messages, the send corresponding to a receive,
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Sendmu;v(p) (*output action for p 2 Pdata only*)

Preconditions:

freequ[v] := true and freeu[v] := true

p is head of queueu[v]

((l(u; v) = u) and (phaseu[v] = false)) OR ((l(u; v) = v) and turnu[v] = data))

E�ect:

freequ[v] := false and freeu[v] := false;

Remove p from head of queueu[v]

turnu[v] = response (* give response packets a turn*)

phaseu[v] = true (* start a new checking/correction phase*)

Freemu;v (*input action*)

E�ect: freequ[v] := true and freeu[v] := true;

Figure 8.1: Code for the modi�ed Sendu;v(p) actions at a modi�ed node N+
u in order to do Global

Correction.
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Sendmu;v(p
0
req) (*output action: u repeatedly sends a request till it gets a response*)

Precondition:

l(u; v) = u (*u is the leader of link subsystem*)

(phaseu[v] = true) or (queueu[v] is empty) (*phase in progress or no data waiting*)

freequ[v] = true (* no message in transit on link to v *)

p0req:count = countu[v]; (* counter correct*)

E�ect:

freequ[v] = false (* set to false until link says it is free*)

phaseu[v] := true; (*remains true until matching response returns*)

Receivemv;u(p
0
req) (*input action, receive request at u from v*)

E�ect:

If p0req :count 6= countu[v] and l(u; v) = v then (*not a duplicate or invalid message*)

countu[v] := p0req:count; (*remember count*)

Figure 8.2: Code to send and receive request messages at node u in order to do Global Correction.

211



Sendmu;v(p
0
resp) (*output action: u repeatedly sends a response to last request*)

Preconditions:

l(u; v) = v (*u is not the leader of link subsystem*)

(turnu[v] = response) or (queueu[v] is empty) (*response's turn or no data messages waiting*)

freequ[v] = true (* no message in transit on link to v *)

p0resp:count = countu[v];

p0resp:node state = sju

E�ect:

turnu[v] := data (*give data messages a turn*)

freequ[v] := false (* set to false until link says its free*)

Receivemv;u(p
0
resp) (*input action to receive response at u from v*)

E�ect:

If (countu[v] = p0resp:count) and (phaseu[v] := true) and (l(u; v) = u) then

If (sju; nil; nil; p0resp:node state) 62 Lu;v then requestbitu := true

phaseu[v] := false; (*end of phase*)

countu[v] := (countu[v] + 1) mod 4;

Requestu (*input action to make a reset request*)

Preconditions:

requestbitu := true;

E�ect:

requestbitu := false;

Signalu (*input action to receive a Signal at u*)

E�ect:

For all neighbors v (*make links to all neighbors clean*)

phaseu[v] := false;

If l(u; v) = u then countu[v] := 1 else countu[v] := 0

Empty queueu[v] and set freequ[v] and freeu[v] to false

sju = Iu (*initialize node state*)

Figure 8.3: Code to send and receive response messages and to make reset requests and respond to

signals at node u.
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causality, timeliness, and the mating relation. Refer to Chapter 5 for de�nitions of a

phase and a clean link.

The proof consists of showing that all reset requests will eventually stop and that

in linear time after this L holds. De�ne a (u; v) reset trigger to be the receipt of

a snapshot response from v at u that causes u to set requestbitu = true. The main

part of the proof consists of showing that all reset triggers disappear in linear time

(which by causality implies that all signals disappear). We start with some preliminary

de�nitions.

Consider an execution � of N+. De�ne a quiescent state in � to be a state si in �

such that:

� All messages received after state si in � are normal.

� All signal events that occur after state si are preceded by a request event that

occurs in linear time before the signal event.

� For any pair of neighbors u and v, a signal event aj at u that occurs after state si

is accompanied by a signal event at node v that occurs within linear time before

or after aj .

We have the following lemma:

Lemma 8.2.1 Quiescent Lemma: A quiescent state occurs within linear time of

any execution of N+.

Proof: N+ is the composition of the augmented node automata with RjL. We know

the behaviors ofRjL are timely and causal. The lemma follows from the �rst timeliness

property, the �rst causality property, and the fourth timeliness property.

Suppose that u is the leader of some (u; v) subsystem. We show that in any

execution � of N+, there exists some linear time t such that all (u; v) reset triggers

disappear in time t after a quiescent state in �. Since a quiescent state occurs in linear

time after the start of �, it follows that all reset triggers disappear in linear time after

the start of �.

The proof is in two parts. First, we show that one of two cases must occur in linear

time after a quiescent state. Next, we show that no (u; v) reset triggers can occur after

the occurrence of either of the two cases.
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One of Two Cases must Occur in Linear Time after a Quiescent State

To de�ne the two cases, we need two simple preliminary de�nitions. Recall from

Chapter 7 the de�nition of a signal interval and the de�nition of a send corresponding

to a normal message. Intuitively, an initialized signal interval at a node is a signal

interval that begins with a signal event at the node; we give it this name because each

node initializes its local state immediately after a signal event. Next, a regular message

receipt is a message that was received in an initialized signal interval and was sent in

an initialized signal interval. Formally:

De�nition 8.2.2 An initialized signal interval at node u is a signal interval at node

u that begins with a Signalu event.

De�nition 8.2.3 A message receive event is regular if

� The message receive event is normal

� The message is received in an initialized signal interval at the receiving node.

� The send corresponding to the receive event occurs in an initialized signal interval

at the sender.

Next, we state the main lemma of this subsection.

Lemma 8.2.4 Quiescent Cases: Consider any execution � of N+ and any leader

edge (u; v). Within linear time after any quiescent state si of � there is a state sj such

that one of the following two cases is true:

� Case 1: Any message received by u from v (and vice versa) after sj is regular

OR

� Case 2: In state sj, Lu;v holds and (u; v) is clean. Also, the interval [si; sj ] is

contained in some signal interval at u as well as some signal interval at v, and

these two signal intervals are mates.
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Proof: (Sketch) Recall the de�nition of a (u; v) phase from Chapter 5. Roughly

speaking, a (u; v) phase is an interval that begins with the leader u sending a request

and ends with u receiving matching response. Recall also the de�nition of a clean phase

from Chapter 5. The proof also makes considerable use of the timeliness, consistency,

and causality properties (see De�nitions 7.3.3, 7.3.5, and 7.3.6) of the reset automaton

RjL.

We choose state sj as some state that occurs after state si and satis�es either one

of two properties:

a) Property 1: Six (u; v) phases occur in the interval [si; sj] AND there are no

signal events at u or v in [si; sj ] AND Lu;v holds in state sj.

OR

b) Property 2: There is some state sk in the interval [si; sj ] such that at least

one signal event occurs at both u and v before sk. Also, for any message receive event

that occurs after sj , the corresponding send event occurs after sk (i.e., all messages in

transit in state sk are delivered before state sj).

We now show that we can �nd such a state sj that occurs within linear time after

si.

From the second and third timeliness conditions, we see that message delivery

between u and v behaves exactly like a UDL in the absence of signal events at u or v.

In other words, the reset subsystem delivers messages and free noti�cations in constant

time in the absence of signal events. Thus from the proof of the Phase Rate lemma in

Chapter 5 (Lemma 5.6.5), we see that in the absence of signal events at either u or v,

a (u; v) phase will complete in constant time. Similarly, in the absence of signal events

at either u or v, six (u; v) phases will complete in constant time. By Lemma 5.6.12,

the sixth (u; v) phase is a clean phase { i.e., a phase in which the matching response is

sent by v after the receipt of the request. Thus the sixth phase will produce a correct

snapshot of the (u; v) subsystem. Thus by the end of the sixth phase, either Lu;v holds

or node u will make a reset request. But if node u makes a a reset request, then by

the second causality property, a signal event will occur at u in linear time after si.

We conclude from the last paragraph that in linear time after si either we reach a

state sj satisfying Property 1 or a signal event occurs at either u or v. But if a signal

event occurs at either u or v in linear time after si, then we know (from our choice of

si and the fourth timeliness property), that a signal event occurs at both u and v by
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some state sk that occurs within linear time after si. But in the latter case, the �rst

timeliness property tells us that there is some state sj that occurs within linear time

of sk and such that all messages \in transit" in state sk have been delivered before

state sj. Thus in linear time after si we reach a state sj satisfying either Property 1

or Property 2.

We are now ready to prove the lemma. If sj satis�es Property 2 we show that Case

1 must be true; and if sj satis�es Property 1 we show that Case 2 must be true.

If sj satis�es Property 2 then we know that all messages received at u from v (and

vice versa) after state sj was sent after some state sk. We also know that at least

one signal event has occurred at both u and v before state sk. Thus all such message

receive events are regular, and we have Case 1 in the lemma statement.

If sj satis�es Property 1 then we know by Lemma 5.6.12 that (u; v) is clean in

state sj. We also know that Lu;v holds in sj and that no signals occur at either u

or v in [si; sj ]. Thus there must be some signal interval (say Su) at u that contains

the interval [si; sj ]. Similarly, there must be some signal interval (say Sv) at v that

contains the interval [si; sj]. Now the sixth (u; v) phase in [si; sj] is a clean phase. But

in a clean phase, v sends a response to u after v receives a request from u. Thus there

is at least one message sent after si by u that was received before sj at v. Hence, from

the consistency property, the intervals Su and Sv must be mates. Thus we have Case

2 in the lemma statement.

All (u; v) triggers disappear after either Case 1 or Case 2

Next we show that for any leader edge (u; v), all (u; v) reset triggers stop after one of

these two cases listed above occur. Since we have just shown that that one of these

two cases must occur in linear time, we conclude that all reset triggers disappear in

linear time.

We �rst show all (u; v) triggers disappear after Case 1 occurs:

Lemma 8.2.5 Case 1 Trigger Termination: Consider any execution � of N+ and

any leader edge (u; v). Suppose that after any quiescent state si of � there is a state sj

such that any message received by u from v (and vice versa) after sj is regular. Then

no (u; v) triggers occur after state sj in �.
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Figure 8.4: Correct Snapshots after nodes u and v have each performed a signal event.

Proof: (Sketch) Recall that a (u; v) trigger is the receipt of a response at u which

causes u to set requestbitu = true. Consider the receipt of any response at u after sj.

By construction, this response must be received in an initialized signal interval (say

Su at u) and must correspond to a response sent in an initialized signal interval (say

Sv at v). This is shown in Figure 8.4.

We claim that the sequence of messages received by u in Su is a pre�x of the

sequence of messages sent by v in Sv, and vice versa. We will refer to this as the pre�x

property. The pre�x property follows from the consistency property because:

� Su and Sv are mates,

� All messages received after si are normal and

� All messages sent in an initialized signal interval are safe.

We now claim that that the matching response cannot be a (u; v) trigger because of

the following argument. First, at the start of Su, u sets its basic state to Iu and at the

start of Sv, node v sets its basic state to Iv. But (Iu;nil;nil; Iv) 2 Lu;v. Next, at the

start of Su, countu[v] is initialized to 1; also at the start of Sv, countv[u] is initialized to

0. Thus by the pre�x property, the sequence of states and messages sent and received

in Su and Sv could have occurred in some execution  of the (u; v) subsystem, such
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that (u; v) is clean and Lu;v holds in the �rst state of . Thus, as in Chapter 5, any

matching responses will carry accurate snapshot information, and will not result in a

(u; v) reset trigger.

Note that what makes this and the result in Chapter 5 work is that Lu;v is a closed

local predicate | once Lu;v holds, it continues to hold, regardless of the behavior of

other subsystems. Next, we show all (u; v) triggers disappear after Case 2 occurs:

Lemma 8.2.6 Case 2 Trigger Termination: Consider any execution � of N+ and

any leader edge (u; v). Suppose that after any quiescent state si of � there is a state

sj such that:

� Lu;v holds and (u; v) is clean in sj .

� The interval [si; sj ] is contained in some signal interval at u as well as in some

signal interval at v, and these two signal intervals are mates.

Then no (u; v) triggers occur after state sj in �.

Proof: (Sketch) The argument is extremely similar to that for Case 1 except in the

signal intervals at both u and v that contain the interval [si; sj ]. This is shown in

Figure 8.5. Let the signal interval at u that includes state sj be called Su. Let the

signal interval at v that includes state sj at be called Sv. We know that Su and Sv are

mates by assumption, and that in sj, Lu;v holds and (u; v) is clean. This is shown in

Figure 8.5.

Thus the sequence of states and messages sent and received in Su and Sv after state

sj could have occurred in some execution  of the (u; v) subsystem, such that (u; v)

is clean and Lu;v holds in the �rst state of . But then, any matching responses will

carry accurate snapshot information, and will not result in a (u; v) reset trigger. Thus

in the �rst signal intervals for Case 2 we rely on an explicit state sj (in which the local

predicate holds and the link is clean). By contrast, in Case 1 we relied on the �rst

signal intervals being initialized signal intervals.

The argument for signal intervals after Su and Sv in Case 2 is identical to the

argument for Case 1 because such signal intervals are initialized signal intervals.
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Figure 8.5: Correct Snapshots after Lu;v holds and link (u; v) is clean.

8.2.3 All Local Predicates Hold and All Signals Stop in Linear

Time

From the Quiescent Lemma, the Quiescent Cases Lemma, and the Case 1 and Case

2 Trigger Termination Lemmas, it follows that all reset triggers disappear in linear

time after the start of any execution of N+. Hence, by causality, all signal events also

disappear in linear time. More precisely, any execution � of N+ has some O(n)-su�x

 in which there are no signal events.

But now it is easy to see that in constant time in , all local predicates hold. We

know from the second and third timeliness conditions (and the fact that there are no

signals in ) that six (u; v) phases will complete in constant time after the start of


0. But after these six phases are complete, Lu;v must hold. If not, u would detect

a violation in the sixth phase (which is guaranteed to be a clean phase) and u would

have made a reset request. But this will result in a signal event in , a contradiction.

Lastly any execution of N+ which contains no signal events and in which Lu;v

holds for all links can be shown to be an execution of N (c)jL for some constant c. As

in Chapter 5, the c represents a constant slowdown due to the overhead of periodic

checking.
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8.2.4 Proof of Global Correction Theorem is Modular

We note that in the transformation used to prove the Global Correction Theorem we

used the reset protocol RjL from Chapter 7. However, the proof only uses properties

of the behaviors of RjL and thus RjL could have been replaced by any automaton

that has the same interface as RjL and has the same behaviors. Further, note that

the modi�ed node automata N+
u (that we create by the transformation) are UIOA and

RjL is a CIOA (since every reachable state is also a start state). Thus, the modularity

theorem assures us that we can replace RjL by its stabilizing implementation (the

automaton R+ as described in Chapter 7) without a�ecting the Global Correction

result.

8.3 A Locally Checkable Spanning Tree protocol

We begin by describing earlier stabilizing spanning tree protocols and their disadvan-

tages. Then we describe a locally checkable spanning tree protocol. This protocol will

be used in Section 8.5 to construct a stabilizing spanning tree protocol

8.3.1 Previous Work on Spanning Tree Protocols

The basic idea in virtually all spanning tree algorithms is that nodes report the smallest

node ID seen so far (and the shortest distance to this smallest ID node) to their

neighbors. Each node then picks as its parent the neighbor that knows of the smallest

ID. If more than one neighbor reports the smallest ID, the node picks from among

these the neighbor that reports the smallest distance. If two neighbors report the

same distance and root ID, then an arbitrary tie-breaker is used to select the parent.

A node sets its estimate of the root ID to equal its parent's root ID, and updates its

distance from the root to be one plus the parent's distance. Because of the way the

distance from the root is calculated, this approach is basically an adaptation of the

Bellman-Ford Algorithm.

However, in a dynamic network (and in a stabilizing setting), this approach en-

counters an obstacle known as \ghost roots". This phenomena occurs whenever the

root crashes: its ID, which was the smallest in the system, is still the smallest from
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the point of view of nodes that do not know of its crash. Even in a static network,

the same e�ect can be caused by initial errors that introduce a root ID lower than

the ID of any network node. This ID can potentially remain forever in the system!

Even if the nodes maintain a counter to reect their distance from the alleged root,

this counter will simply grow unboundedly. Since the ghost root phenomenon is not a

rare event, several ways to overcome this di�culty have been suggested.

One solution, known as the \hop counter" approach, is to have some pre-determined

bound on the diameter of the network at each node, and to discard the old root

whenever the associated counter reaches some limit (see, e.g.,[AG90]). Unfortunately,

this pre-determined boundmust be quite high, and hence, the stabilization time of such

counting up schemes is poor in practice [CRKG89a, CRKG89b, Gar89, RF89, Awe90].

Another widely used stabilizing Spanning tree protocol is the IEEE 802.1 bridge

routing protocol which is based on the design in [Per85]. This solution uses an approach

that we call timer ushing. The basic idea [Per85] is that each node \times out"

information received from its neighbors unless the information is refreshed periodically.

Any node that thinks it is the root is responsible for periodically sending updates to

all its neighbors in order to refresh their state information. Any other node X sends

estimates to its neighbors only after receiving a message from the node X thinks is its

parent. The upshot is that if there is an old root in the system, the information about

this old root will eventually \time out", after which the system will stabilize.

However, timer ushing su�ers from several drawbacks. First, the node clocks (by

which packet lifetimes are enforced) can have di�erent rates. Second, the message

delivery time over links typically has large variance; since the topology of the network

is not known in advance, the variance of the message delivery time across the whole

network is even higher. A conservative timeout bound must take into account high

message latencies and the worst-case topology, even though the latencies of an actual

execution may be considerably (e.g., an order of magnitude) smaller. This leads to an

order of magnitude slowdown of the stabilization process. Lastly, the parameters of

such \global" timeout protocols often have complicated dependencies. Tuning these

parameters is typically quite di�cult.

Th stabilizing spanning tree protocol we will describe in Section 8.5 is extremely

similar to the two schemes we have described above. However, it uses a di�erent

mechanism for detecting and recovering from states with ghost roots that speeds up

the stabilization time of the resulting protocol.
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The detection mechanism is based on the following observation. Consider an exe-

cution of the simple spanning tree protocol that starts with a state in which all nodes

are correctly initialized and there are no messages in transit on the links. Now focus

on some node. Throughout the execution the node maintains a current estimate of the

root ID, and another estimate for its distance from this alleged root. It can be shown

that in the course of legal executions, the node's estimate of the root ID never goes

up; also while such a root estimate is �xed, the distance estimate never goes up. This

property can be cast in the form of a local predicate for each link. If the predicate

holds, then the algorithm will produce a spanning tree. This immediately suggests the

stabilizing algorithm: whenever the predicate is violated, the node that detects the

violation makes a reset request. In the execution that follows the last reset signal, all

the information will be correct.

Rather than directly describe the �nal spanning tree protocol of Section 8.5, we

will derive it in the following way. In the next subsection, we will describe a locally

checkable (but non-stabilizing) spanning tree protocol on which the �nal spanning

tree protocol is based. Of course, the Global Correction Theorem is applicable to

this protocol. However, we will show in the following section that the spanning tree

protocol is also one-way checkable. We then combine these observations to produce the

�nal stabilizing spanning tree protocol in Section 8.5. The resulting protocol is simpler

and more e�cient than a spanning tree protocol based only on Global Correction.

8.3.2 Code for Locally Checkable Spanning Tree Protocol

We now describe the code for our locally checkable (but non-stabilizing!) spanning

tree protocol. After all local predicates hold, this protocol computes a spanning tree

in time proportional to the diameter of the network.

Before we delve into the code of the protocol, we de�ne what it means for a spanning

tree protocol to be stabilizing. We assume that the network topology is described by

some topology graph G and that there is an output action Reportu(p) at every node

u. This action is used to report the parent p of node u in the spanning tree, where

p is some neighbor of u in the network graph. We say that a spanning tree protocol

is stabilizing if it stabilizes to the stable tree behaviors for graph G. The stable tree

behaviors for graph G are the behavior � in which for every node u:
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� For every t-su�x  of � and for every node u, aReportu event occurs in constant

time. (i.e., nodes report their parent values at constant intervals of time.)

� For every node u, if there is Reportu(p1) event and a later Reportu(p2) event

in �, then p1 = p2. (i.e., the parent values reported by nodes never change).

� Consider any set ofReport�(�) actions in � containing exactly oneReportu(pu)

action for every node u. Then the graph induced by the values of the pu variables

is a spanning tree of G. (i.e., the parent values reported by nodes forms a

spanning tree of G)

Our locally checkable spanning tree protocol is described by the automaton Tu

shown in in Figure 8.6. The protocol is based on the simple idea alluded to earlier.

Each node keeps track of the smallest node ID seen so far and the shortest distance to

this smallest ID node. Each node uses this information to compute its parent in the

tree.

Thus each node u maintains a parent pointer parentu, current estimate of the root's

identity ru, and a current distance estimate du. We denote by (ru; du) the ordered pair

at node u. We will use lexicographic ordering for 2-tuples and 3-tuples. For example,

(rv; dv) < (ru; du) means that either rv < ru, or that rv = ru and dv < du. Similarly,

(rv; dv; parentv) < (ru; du; parentu) means that that either (rv; dv) < (ru; du), or that

(rv; dv) = (ru; du) and parentv < parentu. Each node also maintains a copy (possibly

outdated) of the root and distance estimates of each its neighbors. Thus the estimates

of neighbor v are stored at u in the variables ru[v] and du[v].

For compactness, we let both arrays have an entry for the node itself, in which the

default values are \hardwired": thus ru[u] = u, and du[u] = �1. Now a node always

chooses its own estimate based on the minimum of the estimates of all its neighbors

and its own default estimate. Node u chooses its own estimate of the root from this

minimum estimate; u also chooses its own estimate of the distance as one plus the

distance from the minimum estimate. Thus if u itself is the smallest root, the distance

u chooses for itself will be �1 + 1 = 0, which is as it should be. Thus du[u] is set to

�1 simply as a sentinel value to avoid an extra case.

Every node u periodically sends its own estimate of root and distance to all its

neighbors using an \Announce" packet. To make the Tu a node automaton, we have

followed the convention (see Chapter 5) of �rst enqueuing the \Announce" packet on an
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outbound queue for the link called queueu[v]; then the packet is sent out from the queue

when the link is free. The Announce packet is encoded as a tuple (Announce; r; d).

When a node u receives an Announce packet from v, u �rst checks whether the estimate

in the packet is greater than the previous estimate stored from v and the distance in

the estimate is not already at the maximum possible value. If this is not the case, u

stores the latest estimate it has received from v; u also updates its own estimate as

the minimum of all neighbor estimates.

Let Tu be the automaton shown in in Figure 8.6. We assume that for any u; v, all

actions of the form Sendu;v(�) are in a separate class, and any Enqueueu;v action is

in a separate class. Similarly for any u, all actions of the form Reportu(�) are in a

separate class.

Let T be the composition of the automata node Tu for every node in G with a

UDL for every edge (u; v) in G. In the next subsection we show that T is locally

checkable for a predicate L that we de�ne. In the following subsection, we show that

T jL stabilizes to the stable tree behaviors in time proportional to the diameter of

graph G. This sets the stage for applying the global correction theorem to T .

8.3.3 Local Predicates for T

We state a set of local predicates for the spanning tree protocol. Let us denote by

Ou;v the intersection of the local predicates shown in Figure 8.7 for any edge (u; v).

Note that Ou;v consists of two predicates, O1(u; v) and O2(u; v). O1(u; v) says that

the sentinel values that node u uses (as a neighbor estimate from itself) are correct.

It also says that node u's estimate is the minimum of all its neighbors.

O2(u; v) shows that the sequence of estimates sent from u to a neighbor v are non-

increasing. Suppose there is an (Announce; r; d) packet in transit from u to v, then

the estimates that v already has stored from u can be no less than the estimates in

the packet (i.e., (rv[u]; dv[u]) � (r; d)). Also the estimates in the packet can be no less

than the estimates at u (i.e., (r; d) � (ru; du)). If there is no (Announce; �; �) packet in

transit from u to v, then the estimates that v already has stored from u can be no less

than than the current estimates at u (i.e., (rv[u]; dv[u]) � (ru; du)). Recall that a Unit

Capacity Link only allows one outstanding packet on each link, just as in a UDL.
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State

neighborSetu set containing all neighbors of u and u itself

parentu parent pointer, in neighborSetu

du: distance estimate, integer in the range 0::n0, n0 is an upper bound on number of nodes.

ru: root estimate, all root estimates are in the range of node identi�ers

ru[v]: estimate of rv for each v in neighborSetu except ru[u] = u

du[v]: estimate of dv for each v in neighborSetu except du[u] = �1

freeu[v] boolean, true if link to v is free for each v in neighborSetu except u itself.

queueu[v] a queue containing at most one (Announce; �) packet to be sent to v.

Actions

Freeu;v (*input action to receive free noti�cation from link to neighbor v*)

E�ects: freeu[v] = true

Sendu;v(p) (*output action to send estimate to neighbor v*)

Preconditions: p is the head of queueu[v] and freeu[v] = true

E�ects: freeu[v] = false; Remove p from queueu[v]

Enqueueu;v (*output action to enqueue estimate to neighbor v*)

Preconditions: queueu[v] is empty

E�ects: Add (Announce; ru; du) to queueu[v]

Receivev;u(Announce; r; d) (*input action to receive estimate from neighbor v*)

E�ects:

If (r; d)� (ru[v]; du[v]) then (*received estimate is no greater than previous estimate*)

If (d < n0) (*received estimate not at max value *)

(ru[v]; du[v]) := (r; d) (*update estimate from v*)

(ru; du; parentu) :=minf(ru[v]; du[v] + 1; v); v 2 neighborSetug

Reportu(q) (*output action to report parent estimate*)

Preconditions: q = parentu

Figure 8.6: Spanning tree protocol. Code for a node u.
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De�nition 8.3.1 For any edge (u; v), we let Lu;v be the intersection of Ou;v and Ov;u.

Let L be the link predicate set containing Lu;v for every (u; v) in G and let L = Conj(L).

It is easy to show that each Lu;v is a closed local predicate.

Lemma 8.3.2 For a leader edge (u; v) and transition (s; a; s0) of R, if s satis�es Lu;v,

then s
0 satis�es Lu;v.

Proof: First, O1(u; v) is clearly closed because the code never changes the value of

ru[u] and du[u]. Also, if the code changes (ru; du; parentu), it always sets this 3-tuple

equal to the minimum of (ru[v]; du[v]; parentu[v]) for all v in neighborSetu as required

by O1(u; v).

Next, O2(u; v) is closed because of a simple observation: the (r; d) estimates sent

in (Announce; r; d) packets by node u are always non-increasing. This follows because

node u changes its own estimate after receiving an Announce packet from some neigh-

bor w. But (see code), u will not accept the packet from w unless the new estimate

from w is no greater than the previous value that u has stored from w and if the

distance from w is not already at the maximum value n0. But if the new estimate from

w is no greater than the previous value that u has stored from w, then the new esti-

mate that u calculates will be no greater than before. But if O2(u; v) is true initially

and all estimates sent by u are non-increasing, then it is easy to see that O2(u; v)

remains true. Note that if u does not accept a packet from neighbor v (e.g., because

the distance estimate in the packet is equal to n0) this does not a�ect O2(v; u)

Finally, since the above argument can be applied symmetrically for the link (v; u),

it follows that Lu;v is closed.

Note that the check in the code that prevents v from accepting an estimate larger

than a previously stored estimate is really an application of the heuristic of removing

unexpected packet transitions (see Chapter 6). Clearly if u receives an estimate from

w larger than the previous estimate stored from w, then O2(w;u) is not true in the

state before the estimate was received. Thus this is an unexpected packet transition;

by removing such a transition, we ensure that Lu;v is a closed predicate.

The following theorem is immediate from the last lemma.

Theorem 8.3.3 The network automaton T can be locally checked for L using L.
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O1(u,v):

ru[u] = u

du[u] = �1

(ru; du; parentu) := minf(ru[v]; du[v] + 1; v); v 2 neighborSetug

O2(u,v):

If there is an (Announce; r; d) packet in transit from u to v then

(rv[u]; dv[u]) � (r; d) � (ru; du)

Else (*there is no Announce packet in transit*)

(rv[u]; dv[u]) � (ru; du)

Figure 8.7: Spanning Tree Protocol: Local Predicates for edge (u; v).

8.3.4 Fast Computation of Spanning Tree after all Link Pred-

icates Hold

We now show that T jL stabilizes to the stable tree behaviors in time proportional

to the diameter of G. Recall that T jL is the spanning tree automaton described in

Figure 8.6 such that all local predicates hold in the initial state.

The basic idea is to show �rst that if all local predicates hold then there can be

no ghost roots; next, we show that if the spanning tree protocol begins in a state that

does not contain a ghost root, then the protocol quickly converges to a stable spanning

tree.

We assume that each node has a unique ID that is modelled by the name of the

node in the topology graph. Thus the unique ID of node u is u. Our spanning tree

protocol depends heavily on the fact that each node has a unique ID that cannot be

corrupted. Thus we are assuming that the node ID is part of the code at a node.

We �rst de�ne what it means to have a ghost root in a state of T . Informally,

consider the set of all the IDs present (in all the root estimates at nodes and in all

the Announce packets in the links) in state s. If the minimal ID of all nodes in the

network is not the the minimal ID in this set, then we have a ghost root. Formally:
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De�nition 8.3.4 Consider a state s of T . We say that s has a ghost root r if r < u

for all nodes u in G and either:

� There is an (Announce; r; �) packet in transit from u to v in s for some u; v, OR

� ru[v] = r in s for some u; v, OR

� ru = r in s for some u.

The only way we can have ghost roots in any execution is because of bad data in

links and nodes when the protocol starts up.

Lemma 8.3.5 Consider any execution � of T . Suppose there is a state si in � such

that there is no ghost root in si. Then then there is no ghost root in the state following

si in �.

Proof: From the code it is easy to see that the only way a new value is added to set

of existing roots is if a node u adds its own ID to the set (e.g., by changing its root

estimate to the default). Thus ghost roots cannot be created after state si.

Next, we show that any state in which all local predicates hold cannot contain a

ghost root.

Lemma 8.3.6 There is no ghost root in any state of T jL.

Proof: Suppose we did have a ghost root in some state s of T jL. Then there must

be a ghost root r with the lowest ID among ghost roots in s. If it is in an Announce

packet in transit from say v to u, then we know from O2(v; u) that rv � r and hence

rv = r. On the other hand, if there is some w such that rw[x] = r or rw = r, then we

know from O1(w; �) that rw � r and hence rw = r. Thus, we have some node, say w,

such that rw = r.

By O1(u; v) if parentw 6= w we can continue inductively following parent pointers.

Each time we move from say w to x = parentw, we know from O1(w; �) that (rw; dw) =

(rw[x]; dw[x] + 1). But since rw = r, (rw[x]; dw[x]) < (r; dw). But we know from

O2(x;w) that that (rx; dx) � (rw[x]; dw[x]). Thus we conclude that (rx; dx) < (r; dw).
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But the distance estimates are non-negative and the root estimates in this chain

are all equal to r since r is the lowest ID ghost root. Hence the process of following

parent pointers must terminate at some node say z such that parentz = z and rz = r.

Thus by O1 applied to z, we know that r = z. But that contradicts the fact that r is

a ghost root.

The last important fact to observe is that if there are no ghost roots and all local

predicates hold, then the protocol converges in time proportional to the diameter of

the network. As usual, we will say that t = O(d) to mean t � cd where c is a constant.

We denote the diameter of G by D.

Lemma 8.3.7 Consider an execution � of T jL. Then there is some t-su�x of exe-

cution � (where t = O(D)) whose behavior is a stable tree behavior for graph G.

Proof: We know from from Lemma 8.3.6 that there is no ghost root in the initial

state of � and hence by Lemma 8.3.5 there is no ghost root in any state of �. From

the fact that O2(u; v) is closed, we know that O2(u; v) holds for all links (u; v) in all

states of �. Let q be the node with the smallest ID in graph G. We prove the lemma

using induction on the distance d of a node u from q.

Inductive Hypothesis: There exists some constant c such that within c � d time

after the start of �, there is some state in which (ru; du; parentu) = (q; d; v), where v is

some neighbor of u at distance d � 1 from q. Also u will not change ru,du or parentu
from this state onwards in �.

The inductive hypothesis implies the lemma because it implies that within time

proportional to the diameter, every node has a parent pointer that points to a node that

is one hop closer to the root q. It also implies that the parent pointers do not change

after this point. Also, since for each u, all Reportu(�) actions are in a separate class,

such a Reportu(�) action must occur in constant time in any su�x of an execution.

Basis, d = 0: Node q is the only node at distance 0 from itself. In all states si

of �, (rq; dq; pq) = (q; 0; q), or there would be a ghost root in state si which we have

already ruled out.

Inductive Step: Suppose it is true for all nodes at a distance d from s and we

wish to show that it is true for a node v at a distance d+1 from s. Thus there is some

state si such that all nodes u within distance d from q have (ru; du; parentu) = (q; d; �).
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Also, si occurs within c � d time after the start of �. We �rst claim that in all states

of �, (rv; dv) � (q; d + 1). Suppose this were not true in some state sk of �. Then by

following parent pointers as we did in the proof of Lemma 8.3.6 and by using predicates

O1 and O2 iteratively, we can show that we must end in a ghost root. Since we have

ruled out ghost roots, (rv ; dv) � (q; d+ 1) in all states of �.

Next, v must have some neighbor at a distance d from q. Let u be the neighbor

with the lowest ID among the neighbors of v at distance d from q. Thus by the

properties of a UDL, within constant time after state si, an (Announce; q; d) packet

from u will arrive at v which will cause (rv; dv) = (q; d + 1). (Note that this packet

will be accepted at v because in the previous state (rv; dv) � (q; d+1) as we have just

shown and d < n
0.) Also since u is the lowest ID neighbor at distance d from q, v will

set parentu = u and this will remain unchanged for the rest of the execution.

Theorem 8.3.8 T jL stabilizes to the stable tree behaviors for graph G in O(D) time,

where D is the diameter of G.

Proof: From Lemma 8.3.7

At this stage, we could apply the Global Correction Theorem to obtain a stabilizing

version of T . However, there is an even simpler transformation because T is one-way

checkable. Before we present the �nal version of the stabilizing spanning tree protocol,

we �rst de�ne what we mean by a one-way checkable protocol.

8.4 One Way Predicates and Local Checking

In Section 8.1, we claimed that every locally checkable protocol could be stabilized

using the global reset protocol of Chapter 7. The proof sketch suggested that this

could be achieved by periodically doing a local snapshot of each local subsystem and

making a reset request if a violation is detected.

However, in this section we will show that if a locally checkable protocol P is also

what we call one-way checkable, then we can locally check P using a simpler and faster

method than doing a local snapshot. In this method, each node periodically sends its

entire state to each of its neighbors. We can call this local checking by periodic sending

of state or simply periodic sending. The question that remains is: when is periodic
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sending adequate to detect local violations in lieu of a local snapshot? The answer is

that periodic checking is su�cient if each local predicate is what we call a separable

local predicate.

Intuitively, a separable local predicate can be separated into two one-way predi-

cates, one for each direction of a link subsystem. Intuitively a one-way predicate for

link (u; v) is a predicate that only involves the state of u, the state of the link (u; v),

and the state of node v. Note that it does not depend on the the state of the link (v; u).

Formally:

De�nition 8.4.1 Consider any network automaton N with graph G. Let (u; v) be

any edge in G. We say that Ou;v is a one-way predicate for edge (u; v) of N if:

� Ou;v is a local predicate of N for edge (u; v).

� For any two states s and s0, suppose s satis�es Ou;v and sju = s
0ju and sjv = s

0jv

and sj(u; v) = s
0j(u; v). Then s

0 satis�es Ou;v.

For example, consider the second predicate of the spanning tree protocol listed in

8.7. Recall that it essentially says that the estimate values in transit from v to u

are always non-increasing. Clearly this is a one-way predicate. It is not hard to see

that the �rst predicate (which involves only the state of one node) is also a one-way

predicate.

De�nition 8.4.2 Consider any network automaton N with graph G. Let (u; v) be

any edge in G. We say that Lu;v is a separable local predicate for edge (u; v) of of N

if there exist two one-way predicates Ou;v and Ov;u (one for edge (u; v) and edge (v; u)

respectively) such that:

Any state s of N satis�es Lu;v i� s satis�es both Ou;v and Ov;u

Once again it is easy to see that the spanning tree protocol has a link predicate

set that consists of separable predicates. In this case, we say that the spanning tree

protocol is one-way checkable.

De�nition 8.4.3 A network automaton N is one-way checkable for predicate L using

link predicate set L if:
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� N is locally checkable for predicate L using link predicate set L.

� Each Lu;v 2 L is a separable local predicate.

We now claim the following fact informally. Any one-way checkable automaton can

be locally checked by periodic sending. We simply add actions to send the state of a

node periodically to each of its neighbors and actions to receive such packets.

Suppose that in state s, node u receives such a periodic packet from node v con-

taining the value x. Then u checks whether (x;nil;nil; sju) 2 Ov;u; if this is not true u

detects a local violation.

Notice that local checking by periodic sending is not just simpler than doing a

local snapshot but is also faster. The proof of Lemma 5.6.12 in Chapter 5 tells us

that it takes 6 checking/correction phases for the local snapshot protocol to stabilize.

Roughly, this means that the local snapshot protocol takes 12 link delays (where a link

delay is the time to send a control packet from a node to its neighbor) to stabilize.

By contrast, the periodic sending protocol takes 1 link delay to stabilize. Thus for

one-way checkable protocols it always pays to use periodic sending for local checking.

8.5 Simple Stabilizing Spanning Tree Protocol

We have shown that the spanning tree protocol described in Figure 8.6 is locally check-

able. Thus we can apply the Global Correction theorem to this protocol. This requires

checking link predicates using local snapshots. However, since the spanning tree pro-

tocol described in Figure 8.6 is also one-way checkable, we can can replace the local

snapshot by periodic sending of state information. The resulting protocol is simpler

and faster than a spanning tree protocol that uses local snapshots.

If we look at the protocol in Figure 8.6, we see that each node sends (Announce; r; d)

packets periodically containing the root and distance estimates at the node. But if we

look at the predicates in Figure 8.7, O1(u; v) involves only variables at u, and O2(u; v)

only involves root and distance estimates at v. Thus we can rely on the (Announce; r; d)

message for periodic checking. This is shown in the code of Figure 8.8 which only

describes the changes to the code of Figure 8.6 to convert it into a stabilizing protocol.
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The �rst change is that we have applied message renaming to the original protocol

and replaced all packet events with message events.

The rule for one-way checking is as follows. If in state s, node u receives a periodic

message from node v containing the value x, then u checks whether (x;nil;nil; sju) 2

Ov;u; if this is not true u detects a local violation. In our case, the (Announce; r; d)

message does not contain the complete state x of node v, but only a projection of the

state of node v that is su�cient to do checking. But (x;nil;nil; sju) 2 O2(v; u), i�

(r; d) � (ru[v]; du[v]). Thus to check whether O2(v; u) holds it is su�cient to check

whether (r; d) � (ru[v]; du[v]) and make a reset request if a violation is detected. Also

notice that we do not need to check for the O1(v; u) predicate because we have added

a few lines of code that ensure that O1(v; u) will hold after the �rst Announce message

received by v.

Let T 0
u be the modi�ed node automaton shown in Figure 8.8. Let RjL be the reset

automaton for graph G as described in Chapter 7. Let T 0 be the automaton formed

by composing T 0
u for each node u with RjL.

Then we have the following theorem:

Theorem 8.5.1 T 0 stabilizes to the stable tree behaviors for graph G in O(n) time.

Proof: (Sketch) We �rst show that T 0 stabilizes to the behaviors of R(T (c)jL) in

O(n) time. The operator R denotes message-renaming, as in the Global Correction

Theorem. This part of the proof uses arguments similar to the ones used in the proof

of the Global Correction Theorem except that the arguments are simpler because of

the use of one-way predicates and one-way checking.

Next, we know from Theorem 8.3.8 that T jL stabilizes to the stable tree behaviors

of graph G in O(D) time. D is the diameter of G and is no greater than n, the

number of nodes. But if T jL stabilizes to the behaviors in P in O(D) time, then so

does R(T (c)jL). This is because the set of stable tree behaviors is invariant under the

operations of message-renaming and scaling by constant factors. Finally, since behavior

stabilization is transitive, we conclude that R(T (c)jL) stabilizes to the behaviors in P

in O(D + n) = O(n) time.

Finally, we note that because T 0
u is a UIOA and RjL is a CIOA the modularity

theorem assures us that we can replace RjL by its stabilizing implementation (R+ as
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described in Chapter 7) without a�ecting the result. This is an elegant application of

the modularity theorem because it means that we can begin with a stabilizing version of

a UDL; next, as shown in Chapter 7 we can use the stabilizing UDL implementations to

construct a stabilizing version of a reset protocol; and �nally we can use the stabilizing

version of the reset protocol to construct a stabilizing spanning tree protocol. In the

process, we have two applications of the modularity theorem. We can go even further

and change T 0 so that it o�ers a suitable interface to the token passing example of

Chapter 6. If we do so, we could construct a stabilizing token passing protocol using

the stabilizing spanning tree, once again relying on the modularity theorem.

In any of these modular constructions, we can replace major pieces of the construc-

tion by other modules that o�er the same external behavior.

8.6 Stabilizing topology update protocol

The topology update task is to broadcast the list of incident operating edges at a node

to all other network nodes. Thus the goal of the topology update task is to produce

at each node u a database listing the operating edges of each node that is reachable

from u.

The following simple strategy is often used for topology maintenance. Each node

maintains a sequence number. Whenever a change occurs, the incident nodes increment

their sequence number and broadcast the new status of all their incident links in a

link state packet ([Per83]). Any link state packet sent by node u contains node u's

sequence number. Whenever a node v receives a message purporting to be from u, v

checks whether the sequence number on the message is larger (i.e., newer) than the

sequence number of the last update v has stored from u. If so, v stores this new update

from u (after discarding any previous update it has stored from u) and broadcasts the

update to all neighbors. Otherwise, the message is simply discarded as an outdated

update.

Now the sequence number �eld is �nite. Even if we allocate 64 bits for sequence

numbers, it is always possible (due to errors) for a link state packet with a maximum

sequence number value to be present in the initial state of the network.

In the ARPANET [MRR80] and DECNET [Per83] protocols, erroneous updates

with the maximum number are removed by what we had earlier called \timer ushing".

234



State

requestbitu[v] boolean, true if a request is to be done later.

All other variables remain unchanged.

Modi�ed Actions

Freemu;v (*message-renamed free action, replaces Freeu;v action*)

E�ects: freeu[v] = true

Sendmu;v(p) (*message-renamed output action to send estimate to neighbor v*)

Preconditions: p is head of queueu[v] and freeu[v] = true

E�ects: freeu[v] = false; Remove p from queueu[v]

Receivemv;u(Announce; r; d) (*input action to receive estimate from neighbor v*)

E�ects:

If (r; d)� (ru[v]; du[v]) then (*received estimate is no greater than previous estimate*)

If d < n0 (*distance estimate not already at max value*)

(ru[v]; du[v]) := (r; d) (*update estimate from v*)

Else requestbitu = true (*if received estimate is greater make reset request later*)

(ru[u]; du[u]) := (u;�1); (*next two lines make O1(u; v) hold*)

(ru; du; parentu) := minf(ru[v]; du[v] + 1; v); v 2 neighborSetug

Requestu (*output action to request a reset*)

Preconditions: requestbitu = true

E�ects: requestbitu = false

Signalu (*input action to receive a reset signal*)

E�ects:

For all v 6= u 2 neighborSetu do

(ru[v]; du[v]) := (1;1) (*reset all estimates*)

freeu[v] := false

(ru[u]; du[u]) := (u;�1);

(ru; du; parentu) := (u; 0; u)

Figure 8.8: Spanning tree protocol. Modi�cations to the Code for a node u.
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Each update (and hence the associated counter value) is assumed to remain in the

network only for some limited \lifetime," after which it is discarded. This prevents

the problem because after its lifetime expires, an erroneous counter value is no longer

present in the network. Once again, the disadvantage of timer ushing is that the

timeout periods have to be high, which results in high stabilization times.

Instead of using timer ushing, we can use global correction to create a faster

stabilizing topology update protocol. This is because the protocol is easily seen to

be locally checkable for the property L which states that the maximum value of any

sequence number is not present in the network. Thus we can apply the Global Cor-

rection theorem to ensure that maximum size sequence numbers are removed from the

network. On receiving a signal, each node deletes the link state packet of all nodes

other than itself, and resets its own sequence number to 0. A node that does not have

a link state packet from u will accept any update sent by u as being newer.

Thus, the number of bits allocated for the sequence number a�ects only the perfor-

mance of the algorithm: errors that cause the sequence numbers to reach the maximum

value incur a performance penalty | a network latency of O(n).

A complete design of a stabilizing topology update protocol would also have to

add a number of other actions as suggested in [Per83]. For instance, each node must

periodically increment its sequence number and send its latest Link State Packets to

all its neighbors. Basically, we suggest keeping the essential simplicity of [Per83] and

only replace the need for global timers in [Per83] with global correction.

8.7 Summary

The major point of this chapter is to show that any locally checkable protocol can be

stabilized using the global reset protocol developed in the last chapter. In general, this

is done by having the leader of every every link subsystem do a periodic snapshot; if the

leader detects a local violation, it makes a reset request. However, in the special case

that the local predicates can be separated into one-way predicates, we can dispense

with a snapshot and use periodic sending of state. Local Checking by periodic sending

is simpler and faster than using a local snapshot.

An important example of both techniques is furnished by the spanning tree pro-

tocol described in Section 8.3. Both the spanning tree and topology update protocols
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described are quite practical and could be used in real networks.

The topology update protocol demonstrates a useful paradigm for designing stabi-

lizing protocols. The essence of the idea is to design a stabilizing protocol assuming

the use of unbounded counters. Next, we use global correction to convert this protocol

into a more practical protocol that uses bounded counters.

This chapter also demonstrates why the speci�cation of a reset protocol must spec-

ify the behavior in non-�nal signal intervals and not just in the �nal signal intervals.

The proof of the Global Correction relies strongly on the mating relation between non-

�nal intervals. The intuition is that the augmented automaton is doing local checking

of the system during non-�nal intervals; if local checking does not eventually observe

consistent behavior, the augmented automaton may keep making reset requests and

the protocol may never stabilize.
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Chapter 9

Compiling Synchronous Protocols

In the previous chapters we have shown how we can stabilize certain protocols by

local checking and/or correction of the state of a node and its neighbors. We applied

this technique to obtain stabilizing solutions to some important tasks such as mutual

exclusion, network resets, and computing spanning trees. By contrast, this chapter

provides a general technique for a special class of problems (known as non-interactive

tasks), for many of which (e.g., Minimal Spanning Tree, Min Cost Flows, etc.) no

locally-checkable implementation is known. In fact, for many of the problems solved

in this chapter, no e�cient stabilizing solution was known previously.

In this chapter, we describe two compilers (Sections 9.5 and 9.6) that convert a

deterministic synchronous protocol � into a stabilizing, asynchronous version of �. In

essence, we e�ciently transform a solution for the most restrictive model (synchronous,

fault-free networks) to a solution that works in a very permissive model (asynchronous

networks with catastrophic faults that stop).

Let T� be the time complexity of � and S� be the space complexity of �. Let n be

the number of nodes in the network. The �rst compiler produces a version of � that

stabilizes in time O(n + T�) and has the same space complexity as �. Thus the �rst

compiler is extremely e�cient if the time complexity of the original protocol � is at

least O(n). The second compiler produces a version of � that stabilizes in time O(T�)

and has a space complexity of T� � S�. Thus the second compiler is extremely e�cient

if the time complexity of the original protocol � is very small { i.e., T� = O(log(n)).

These two compilers allow us to provide e�cient stabilizing solutions for many
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problems including minimum spanning trees, colorings, maximum ows, and maximal

independent sets.

Despite the apparent change of direction, the ideas in this chapter are closely re-

lated to the ideas in the previous chapters. First, as we have said earlier, the ideas in

this chapter extend the range of our general techniques. Our previous general tech-

niques (Local, Tree and Global Correction) only apply to protocols that are locally

checkable. Second, the compilers in this chapter are implemented using the the tech-

niques developed earlier. The �rst compiler is based on a simpli�ed form of local

checking and correction that we call one-way checking and correction (see Chapter 8).

The second compiler is based on local checking and global correction.

When we �rst presented these results in [AV91], the second compiler, the Resynchronizer,

was based on a complicated construction. In this chapter, we provide a simpli�ed con-

struction using the reset protocol described in Chapter 7. We do not have a complete

proof of the simpli�ed construction, but we will outline why we believe our simpli-

�ed construction is correct. Thus while our con�dence in the Resynchronizer result is

based on the original result in [AV91], we believe that the construction in this chapter

o�ers the potential for a much simpler solution.

This chapter is organized as follows. First, we describe how we model interactive

protocols and synchronous protocols. Next, we summarize the major results of the

chapter. Then we contrast the notion of distributed checking (that we use in this

Chapter) with the independent local checking that we have used in previous chapter.

Next we briey describe the �rst Rollback compiler and then describe the simpli�ed

version of the Resynchronizer compiler. Finally, we outline extensions for randomized

protocols.

9.1 Non-interactive Protocols

Non-interactive protocols form an important subclass of distributed algorithms. These

are protocols whose correctness can speci�ed by a relation (the I/O relation) between

its input and output. For example, if the protocol has to compute a spanning tree

then the output (the tree) should be a spanning tree of the input (the graph G). By

contrast, mutual exclusion is an interactive task because (see Chapter 6) its correctness

must be expressed in terms of sets of valid behaviors or sets of valid executions.
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We de�ne the notion of a non-interactive protocol more formally using a slight

variant of the network model introduced in Chapter 5. Recall that in Chapter 5, we

modelled a network using a topology graph G = (V;E; l), where V is a set of nodes, E

is a set of directed edges and l is a leader function. For this chapter we will augment

the notion of a topology graph to have an extra component I that represents the input.

We will de�ne an augmented topology graph G = (V;E; l; I) where V ,E and l are as

before. I, however, is a vector of inputs such that for any node u, Iu represents the

local input at node u. (In previous chapters the only input to a node automaton for

node u was the list of neighbors of u and, in the case of a tree topology, the parent of

u.)

We start by �xing an input domain I and an output domain O.

De�nition 9.1.1 An augmented topology graph G = (V;E; l; I) is a topology graph

(V;E; l) together with an input speci�er I, where I is vector of local inputs (Iu) and

Iu 2 I;8u 2 V .

Informally, this amounts to modelling the input to the non-interactive protocol as

part of the local code of each node (which cannot be corrupted) and not as part of

the state of each node (which can be corrupted). Clearly no non-interactive protocol

can hope to produce correct output from corrupted input! However, more generally,

the input to the protocol could be the output of another stabilizing protocol. Thus in

Chapter 5, we assumed the list of neighbors of each node u was part of the code at

node u. But in many real networks, the list of neighbors of a node would be provided

as the output of a stabilizing Data Link protocol. In this chapter, we will often refer

to an augmented topology graph as an augmented graph.

Once again, we will model the protocol using node automata Nu (one for each node

u in G), and unit capacity data links Cu;v (one for each edge (u; v) in G).

De�nition 9.1.2 An automaton for augmented graph G = (V;E; l; I) is an automaton

consisting of an IOA for each u 2 V together with a UDL Cu;v for each (u; v) 2 E.

Refer to Chapter 5 for a de�nition of the UDL Cu;v. Recall that for any state s of

the automaton we let sju denote the state of the IOA for node u. For an augmented

240



graph, we also let (Xu) denote a vector consisting of an element Xu for each node u

in the graph.

For non-interactive protocols we will also assume that there is some local output

function Ou of the state of each Nu, such that Ou(s) provides the local output of Nu in

state s. Let N be the network automaton formed by the composition of the node and

channel automata as described in Chapter 5. Using the Ou we can de�ne the output

function O to be a function of the state s of the network automaton N such that O(s)

produces a vector of local outputs that is identical to the outputs produced by each

Ou when applied to sju. Thus:

De�nition 9.1.3 Let N be an automaton for augmented graph G = (V;E; l; I). We

say that O is an output function for N if O is a vector of functions (Ou), such that

for every state s of N and for every node u 2 V , Ou(sju) 2 O. We will also abuse

notation by de�ning O(s) = (Ou(sju));8u 2 V .

Traditionally, the correctness of a non-interactive protocol N is described using an

input-output relation R. In the traditional de�nitions, N is allowed to be an ordinary

IOA (i.e., we are allowed to specify initial states). Next, the correct executions of N

are those executions � of N in which there is some t-su�x  of � such that for all

states s in , (I;O(s)) 2 R. In other words, in all executions of the protocol the output

must eventually \settle" to a value that satis�es the I/O relation. Thus:

De�nition 9.1.4 Let N be an automaton for augmented graph G = (V;E; l; I). An

I/O relation for N is a set of tuples (I 0; O0) where each I
0 is a vector (I 0u); I

0
u 2 I and

each O
0 is a vector (O0

u); O
0
u 2 O.

Finally we de�ne a non-interactive protocol to consist of two components: an

automaton and an output function.

De�nition 9.1.5 A non-interactive protocol for augmented graph G is a tuple (N ; O)

where N is an automaton for augmented graph G and O is an output function for N .

For stabilization, we will keep the the correctness de�nition exactly as in the tra-

ditional de�nitions except that N will typically be a UIOA.
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De�nition 9.1.6 Let P = (N ; O) be a non-interactive protocol for augmented graph

G = (V;E; l; I) and let R be an I/O relation for N . Let C be the set of executions � of

N such that for all states s in �, (I;O(s)) 2 R. We say that non-interactive protocol

P stabilizes to I/O relation R in time t if N stabilizes to the executions in C in time

t.

Thus this de�nition is a special case of the general de�nition of \stabilizes to the

executions of" given in Chapter 3.

We now formally de�ne two complexity measures that we use to evaluate stabilizing

non-interactive protocols: the �rst measures the worst-case time for the protocol to

stabilize, and the second measures the worst-case amount of space used by any node.

We de�ne the stabilization time of a non-interactive protocol P with respect to I/O

relation R to be the in�mum of all t such that P stabilizes to R in time t.

The space complexity of P = (N ; O) is the worst case across all nodes u of the size

of the set fsju : s 2 states(N )g

9.2 Synchronous Protocols

We model a deterministic synchronous protocol � as follows. The network topology is

again speci�ed by an augmented graph G = (V;E; l; I), where Iu once again represents

the input to node u. The protocol is synchronous because it works in rounds numbered

from 0 to T�, where T� is some �nite, known bound on the running time. The channels

are no longer UDL's but simply obey the property that any packet sent on a channel at

the start of a round is delivered by the end of the round. Similarly, the node protocol

at each node u is no longer modelled by a node automaton but instead by a 4-tuple

(s0u; Fu;Mu; Ou), where s
0
u is an initial state, Fu is a state transition function, Mu is a

message generation function, and Ou is the output function. All these correspond to

the standard notions for such protocols but we explain them briey below.

The state s of the synchronous protocol consists of the state sju of each node in G.

An execution of the synchronous protocol is generated as follows. At the start of the

�rst round, each node u is placed in the initial state s0u and all channels are empty.

At the start of each round, a node sends a packet to each neighbor. The contents of
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the packet are determined by the message generation function Mu that takes as input

the state of u at the start of the round. At the end of each round, a node changes its

state using the state transition function Fu that takes as input the messages received

by u in the round as well as the state at the start of the round.

The output of � in any execution is determined by the value of Ou(sju) for every

node u, where sju is the state of node u at the end of round T�. Exactly as for non-

interactive protocols, we de�ne an output function O to be a function of the state s

of � such that O(s) produces a vector of local outputs that is identical to the outputs

produced by each Ou when applied to sju.

Exactly as for non-interactive protocols, we de�ne the correctness of synchronous

protocols using an I/O relation R. The synchronous protocol � is said to be correct if

all runs of � end in a state s such that (I;O(s)) 2 R.

The time complexity of a synchronous protocol � is the number of rounds, T�. The

space complexity of � is the worst case across all nodes u of the number of states of u.

Let � be a synchronous protocol with time complexity T� and Input-Output relation

R. We also introduce the notion of a checker for �. A synchronous protocol � is said

to be a checker for � if it satis�es the following property.

Suppose each node u in � is given as input both the input of � (i.e., I) as well as

a value O0 that purports to be the output of � on input I. Informally, � must detect

(at some node) if the purported output O0 of � could have been produced in some run

of � on input I. Thus � has a boolean output at every node. If any node outputs the

value false, then it must be that O0 could never have been produced by �; if all all

nodes output the value true, then it must be that O0 could have been produced by �.

Note that our de�nition only allows deterministic synchronous protocols whose

output is a function of its input. Thus for such protocols �, � has a trivial checker that

simply runs � again and compares the output Ou(s) at each node with the purported

output O0
u. The checker outputs true at node u i� Ou(s) = O

0
u.

9.3 Results

Recall the de�nitions of stabilization time and space complexity for a non-interactive

protocol P and the de�nitions of time and space complexity for a synchronous protocol
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Stab.

Method Space

Time

Rollback T� T� � S�

Resynchronizer T� + n S�

Figure 9.1: Comparison of the complexity of our compilers

�. Recall that n is the number of nodes in the network.

Our solutions are in the form of compilers that can compile synchronous protocols

into stabilizing versions that have the same I/O relation when run on an asynchronous

network. The performance of our compilers is summarized in Figure 9.1

Our simplest compiler is the Rollback compiler that takes a synchronous protocol

� as input and produces a stabilizing, non-interactive version of �. This is expressed

as the following theorem:

Theorem 9.3.1 Rollback Compiler: Consider any synchronous protocol � for aug-

mented graph G with I/O relation R, time complexity T� and space complexity S�.

Then there is a corresponding non-interactive protocol P = (N ; O) such that:

� N is a UIOA.

� The space complexity of P is O(T� � S�).

� The stabilization time of P with respect to R is O(T�).

The main contribution of this chapter is a second compiler called a Resynchronizer.

In its simplest form, the Resynchronizer takes a deterministic synchronous protocol �

as input and produces a stabilizing non-interactive version of �.

Theorem 9.3.2 Resynchronizer Compiler: Consider any synchronous protocol

� for augmented graph G with with I/O relation R, time complexity T� and space

complexity S�. Then there is a corresponding non-interactive protocol P = (N ; O)

such that:
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� N is a UIOA.

� The space complexity of P is O(S�).

� The stabilization time of P with respect to R is O(T� + n).

Our original proof of the Resynchronizer Compiler Theorem was based on a com-

plicated construction given in [AV91]. We conjecture that the simpli�ed construction

in Section 9.6 also provides a proof of the same theorem.

We will also see in Section 9.7.2 how to use the Resynchronizer to compile random-

ized, synchronous protocols (of course, this would entail generalizing our model of a

synchronous protocol to allow coin-tosses at each node.)

Note that, when compared to the Resynchronizer, the Rollback construction re-

moves the additive factor of n in the stabilization time but increases the space by a

factor of T�. Thus Rollback is useful only for \fast" protocols that have T� � n. The

two compilers can be used to e�ciently stabilize several non-interactive tasks.

Some sample results obtained by applying the Resynchronizer are as follows. For

the problems of computing a spanning tree and single source shortest paths we achieve

O(n) stabilization time and O(log n) space. This is comparable to the results achieved

in Chapter 7 and the best previous results. For the problem of computing a minimal

spanning tree [GHS83] we achieve O(n) stabilization time (which is as good as the

time of the best non-stabilizing synchronous protocol) using O(logn) space. For the

problem of computing a maximum ow [Gol85, GT88] we achieve O(n2) stabilization

time, which is as good as the time of the best non-stabilizing synchronous protocol.

The Rollback compiler gives good results when applied to symmetry breaking prob-

lems such as the problems of computing a Maximum Independent Set [AGLP89], �+1

Coloring in sparse networks [GPS87], and �2 Coloring in general networks [Lin87]. For

instance, for � + 1 Coloring in sparse networks we achieve log� n for both measures.

This is much better than any previous results.

9.4 Distributed Program Checking

A deterministic sequential algorithm can make itself stabilizing by periodically saving

its output and running itself again; when it �nishes it can check its output. For

245



sequential algorithms, this is ugly and unnatural { after all, we want the computer to

move on and run other programs!

However, as we have said before, periodic checking is quite natural for distributed

computing. Once we have accepted the inevitable periodic cost of stabilization we can

ask: why not run a checking process to check the algorithm periodically?. If the check

reveals a problem, we restart the main algorithm. In the previous chapters we have

already seen how we can do this in some cases if each link subsystem independently

does local checking. However, that method (which we can call independent checking

of link subsystems) is limited to locally checkable protocols.

One approach to check a distributed program introduced by Katz and Perry [KP90]

is to collect all information at a single \leader" node, thus reducing distributed checking

to centralized checking. However, the space and time complexities of this method are

quite large because of the bottleneck at the \leader" node.

In this chapter, we will introduce a form of distributed checking that is neither

the independent local checking of the previous chapters nor the centralized checking

introduced by Katz and Perry. In many cases, we can improve performance by doing

distributed program checking.

Such distributed program checking clearly requires coordination of all the network

nodes. For example, we need to ensure that a node not move to a new phase (whether

it be checking or executing) before every other node in the network has completed this

phase. The main di�culty is to implement this coordination in a stabilizing fashion.

We will describe two such implementations { the Rollback protocol in Section 9.5 and

the Resynchronizer in Section 9.6.

9.5 Rollback Compiler

There is a naive implementation of distributed checking that requires a large amount

of storage and bandwidth and works only for deterministic protocols. In the naive

method, every node keeps a log of every state transition it has taken to reach its

current state. If each node constantly sends its current log to all neighbors, every

node can check and correct every transition it has made in the past. Since the inputs

are always correct, eventually all transitions are corrected. This method works only

because it is possible to check transitions in a stabilizing fashion.
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Clearly, for an arbitrary asynchronous protocol the logs can grow very large. How-

ever, if the asynchronous protocol is simulating an underlying synchronous protocol �

then the size of the log can be reduced to the time complexity T� of �. This idea is

implemented in the dynamic synchronizer of [AS88]. However, in [AS88] the logs are

only used to avoid unnecessary recomputation after an input change, and hence are

not periodically checked. By adding the periodic checking of logs, we obtain aModi�ed

Dynamic Synchronizer that we call Rollback.

The disadvantage of the Rollback method is that it blows up the space utilization

and periodic bandwidth by a factor of T�. This is not a problem for protocols with

small time complexity { i.e., those for which T� � n. Thus the naive method leads

to e�cient solutions for such problems as coloring and MIS. However, for protocols in

which T� � n, Rollback is a poor choice.

Notice that the Rollback compiler combines the use of logs with a simpli�ed form of

local checking and correction. The Rollback compiler does local checking by periodic

sending of state (as opposed to doing a local snapshot). This is because the Rollback

compiler is one-way checkable (see Chapter 8 for a de�nition of a one-way checkable

protocol). Also, the Rollback compiler does local correction by simply correcting the

local state of a node when periodic sending detects a problem (as opposed to doing a

local reset). If local correction can be performed in this simple manner, we will call the

protocol one-way correctable. Chapter 10 discusses one-way correctability in a little

more detail.

9.6 Simpli�ed Resynchronizer Compiler

In the previous section, we saw how Rollback did distributed checking by maintaining

a log of its computation. Consider a deterministic protocol �. Clearly, we can avoid

the need for a log if we could simply re-execute �. However, this constant re-execution

requires coordination among the network nodes which must be implemented in a sta-

bilizing fashion. In general, the Resynchronizer avoids a log by constantly re-executing

a checker � for �. We introduce the basic idea by assuming that � is deterministic

and that � is its own checker. We return to separate checking later.

The Resynchronizer can be thought of as a stabilizing version of a synchronizer

[Awe85]. Any synchronous protocol can be simulated asynchronously by using a pulse
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number at each network node. Let us call a node synchronized if its pulse number

di�ers by at most 1 from any of its neighbors. In ordinary synchronizers, every node is

initially synchronized by setting the pulse numbers of all nodes to 0. Thereafter, a node

increments its pulse number from p to p+ 1 only after all its neighbors have reached

pulse p, thereby maintaining synchronization. If each node executes the corresponding

step of the synchronous protocol at pulse p just before incrementing to p + 1, then

the asynchronous protocol has the same I/O relation as the underlying synchronous

protocol.

Since a stabilizing synchronizer cannot rely on correct initialization, we introduce

a Termination Detection phase. This phase will two do things. First, this phase

ensures that each node has �nished executing the synchronous protocol. Second, once

each node has �nished executing the synchronous protocol, a reset (see Chapter 7)

is initiated. Once all nodes get a signal (see Chapter 7) all nodes reset their pulse

numbers to 0 and the cycle continues.

Thus the Resynchronizer can be considered to be an application of global correction

to the simplest synchronizer protocol described in [Awe85]. Our original construction

and proof [AV91] relied on a special-purpose reset protocol that was specially crafted

to work with the synchronizer protocol. In this chapter, we will describe a simpli�ed

version of the construction that uses the general purpose network reset protocol of

Chapter 7. While we do not have a complete proof of the simpli�ed construction,

we believe the construction in this chapter provides the basis for a simpler and more

elegant solution. In what follows, we only describe the simpli�ed construction.

When pulseu 2 [0; T�] we say that node u is in the Execute phase. In the Execute

phase node u simply executes the normal synchronizer algorithm described earlier. It

also implements the underlying synchronous protocol, starting from initialization at

pulse 0 followed by writing its output at pulse T�. Let D be an upper bound on the

diameter of the network.1 We assume that D � n.

We denote by Max = T� + D the maximum value of pulseu. When pulseu 2

[T� + 1;Max] we say that node u is in the Termination Detection phase. Suppose

that all nodes are synchronized when some node exits the Execute phase. Then the

Termination Detection phase ensures that every node has had a chance to correct its

1Unfortunately our protocol needs an upper bound on the diameter of the network. This is a liability

of the protocol.
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output before the pulse number of some node wraps around to 0. If the nodes are

synchronized by the start of this phase, a node need only wait D dummy pulses to

make sure that all other nodes have reached the Termination Detection phase.

If pulseu reaches Max, node u makes a reset request and waits to get a signal. This

potentially destroys synchronization. However, we can rely on the properties of the

reset protocol to deliver a signal at all nodes in a consistent way. When node u receives

a signal it sets its pulse number to 0 and the cycle continues. Notice that all nodes

constantly reexecute the underlying synchronous protocol.

The Resynch compiler must deal with arbitrary pulse numbers and arbitrary mes-

sages on links in the initial state. Second, it must cope with the fact that the pulse

numbers are �nite and hence have to wrap around. Recall that one of our motivations

for studying stabilization was to make real network protocols more fault-tolerant. Any

real counter implementation is bounded.

In our description and in the code below we only describe the Resynchronizer as a

tool that can be used to compile a deterministic protocol by re-executing it. It is easy

to extend these ideas slightly to add a separate checking phase to the Resynchronizer.

9.6.1 Resynchronizer Code

We described how to reduce the problem of stabilizing the output of a synchronous

protocol � to the problem of building a stabilizing synchronizer that constantly re-

executes pulse numbers in the execute region. Thus when presenting the code, for

simplicity we ignore the details of executing �; instead we concentrate on the major

task of synchronizing pulse numbers. To actually execute �, we need to supplement

the code as follows:

� Additional state variables are added at every node u to keep track of the state

of �. Also, we assume that every pulse message with pulse p carries the state of

� (at the sending node) on pulse number p and p� 1.

� Whenever pulseu reaches p and p is in the Execute phase, the synchronous pro-

tocol � is executed at node u. (Sometimes the code will cause the pulse number

at node u to jump from say p to p + 2. In that case, the synchronous protocol

must be executed at pulse p + 1 and pulse p+ 2.)
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� Whenever pulseu reaches T�, node u corrects its output to be the local output of

�.

The protocol is formally presented below in Figures 9.2 and 9.3. Every node u

keeps the variables described in Figure 9.2.

We assume that each node is a user of the reset protocol RjL described in Chapter

7. As in Chapter 7, we assume that RjL has an interface to make reset requests

and accept reset signals as shown in Figure 7.2 in Chapter 7. Recall also that the

reset subsystem also has an output action Freem that tells the user (in this case the

spanning tree protocol) when it can send a new user message. Of course, the similarity

to the Free action of a UDL is no coincidence. Just as the user of a UDL needs to

keep a free variable to record whether the UDL is free, each node (exactly as in the

spanning tree protocol of Chapter 8) will keep a variable free for each neighbor. In

fact, the entire protocol bears a strong resemblance to the spanning tree protocol of

Chapter 8 although it performs an entirely di�erent function.

Every node u periodically sends its own pulse number to all neighbors. using a

\Pulse" message. The Pulse message is encoded as a tuple (Pulse; p). When a node

v receives an Pulse message from u, v compares the pulse in the message (say p) to

the previous pulse estimate stored from u (pulsev[u]). During normal synchronizer

operation the following local predicate always holds: pulsev[u] � p and p � pulsev +1.

(Intuitively, the pulse estimates sent by u to v are non-decreasing and are never more

than one higher than the current pulse number of v) If v realizes that the local predicate

has been violated, v makes a reset request. If this is not the case, v stores the latest

estimate it has received from u; v also updates its own estimate as the minimum of all

neighbor estimates.

Once node u �nds that Pulseu = Max, it makes a reset request. Once node u gets

a signal, node u resumes normal synchronizer operation.

We assume that the topology of the network is speci�ed by an augmented graph

G. Let RjL be the reset protocol described in Chapter 7. Let SSu be the automaton

shown in in Figure 9.3. Let S be the composition of the automata node SSu for every

node in G with RjL.
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Variables

� pulseu: Highest pulse which was performed correctly until now. Its domain is restricted

to lie in f0::Maxg. Recall thatMax = T�+D, where D is an upper bound on the network

diameter.

� pulseu[v]: Node u's estimate of the current pulse number at node v. In normal syn-

chronizer, the estimate is always a lower bound on the true value. Its domain is also

restricted to lie in f0::Maxg.

� freeu[v]: Boolean, which if true indicates that link to v is free to accept new messages.

� requestbitu[v]: Boolean, which is set to true to remember that node u should make a

reset request in the future.

Figure 9.2: Declarations of variables at node u used by Resynchronizer code.

9.6.2 Proof Sketch for the Simpli�ed Resynchronizer Construc-

tion.

We outline an argument that explains why we believe the simpli�ed construction is

correct. We emphasize that this is an intuitive argument that needs further polishing.

Just as in the spanning tree protocol of Chapter 8, the normal operation of the

synchronizer can be de�ned by two one-way predicates S1(u; v) and S2(u; v) shown in

Figure 9.4. The �rst states that a node's pulse number is one higher than the smallest

estimate it has from any neighbor). The next states that the pulse estimates sent by

node u to neighbor v are strictly non-decreasing. However, any estimate sent by u can

never be more than one higher than the current pulse number of v. If we compare the

local predicates of Figure 8.7 with the local predicates of our spanning tree protocol

(Figure 9.4) we notice a remarkable similarity between two di�erent protocols.

If these two local predicates hold for all edges (u; v) we can show that all nodes

are synchronized - i.e., the pulse number of each node di�ers by at most 1 from any of

its neighbors. This is su�cient to ensure that the pulse numbers will eventually grow

until some node reaches the maximum value.

Unlike the spanning tree protocol, however, the Resynchronizer protocol keeps

making reset requests and there will never be �nal signal intervals in any execution

251



Receivemv;u(Pulse; p) (*receive pulse message from neighbor v*)

If (pulseu[v] � p) and (p � pulseu + 1) then

pulseu[v] := p

If minfpulseu[v]; v 2 neighborSetug+ 1 � Max then

pulseu := minfpulseu[v]; v 2 neighborSetug+ 1

Else pulseu :=Max

Else requestbitu = true

Sendmu;v(Pulse; p) (*output action to send pulse to neighbor v*)

Preconditions: p = pulseu and freeu[v] = true

E�ects: freeu[v] = false

Requestu (*output action to request a reset*)

Preconditions: requestbitu = true or pulseu = Max

E�ects: None

Signalu (*input action to receive a reset signal*)

E�ects:

pulseu := 0

For all neighbors v of u do

pulseu[v] := 0

freeu[v] := false

Freemu;v (*receive free signal from link to neighbor v*)

freeu[v] := true

Figure 9.3: Resynchronizer Code for any node u
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of the protocol. Thus we need to make heavy use of the causality property of reset

behaviors. For example, we can show that within O(n) time of any su�x of an exe-

cution, some node must make a reset request. This is proved by contradiction. If not,

in linear time all signals must stop and in constant time after this all local predicates

must hold. (The second part follows because the code makes a reset request if it de-

tects a violation of S2(u; v). Also, the receipt of the �rst pulse message at u will make

S1(u; �) hold.) Thus by normal synchronizer operation, the node with the lowest pulse

number will increase its pulse number by 1 in constant time; thus in O(Max) = O(n)

time, some node will have reached the maximum pulse number and hence will make a

reset request.

The overall argument consists of showing that there is some t-su�x su�x  of an

execution of the Resynchronizer protocol, where t = O(n) and such that:

1. All nodes receive a signal event in linear time after the start of .

2. In linear time after all nodes reach pulse number 0, some node reaches pulse

number Max and all nodes reach pulse number T� =Max �D

As in the proof of the Global Correction Theorem, we can argue that in linear

time, all reset requests that are caused by local predicate violations will disappear.

Thus we choose  such that reset requests in  are only caused by nodes reaching the

maximum pulse number Max.

The intuition behind the �rst part is that since some node makes a reset request

within O(n) time of , within O(n) time in  all nodes will receive a signal. Notice

that when a node gets a signal, the node resets its pulse number to 0.

The intuition behind the second part is as follows. After all nodes have reached

pulse number 0, we can again argue that some node makes a reset request in linear

time. By our choice of , a reset request is only caused by some node, say u, reaching

pulse number Max. But since u was previously at pulse number 0 in , u's pulse

number must have grown from 0 to Max in . We then argue that all neighbors of u

have grown from 0 to Max � 1 in , and �nally that all nodes have grown from 0 to

Max�D in .

Finally, if all nodes grow from 0 to Max �D in , we argue that by the end of 

all nodes have correct output. Intuitively, this is because each node begins executing

the synchronous protocol at pulse 0 and corrects its output at pulse T� = Max�D.
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S1(u,v):

pulseu = minfpulseu[v]; v 2 neighborSetug+ 1

S2(u,v):

If there is an (Pulse; p) message in transit from u to v then

pulsev[u] � p � pulseu and p � pulsev + 1

Else pulsev[u] � pulseu

Figure 9.4: Normal Synchronizer: Local Predicates for edge (u; v).

9.7 Extensions

9.7.1 Better Synchronous Checkers for Deterministic Proto-

cols

Suppose we limit ourselves to stabilizing protocols � that execute a distinct checking

protocol � even after reaching a legal state. Let us informally de�ne the stabilization

bandwidth of � to be the worst case message complexity per link of the checking

protocol. Clearly the checking protocol must be executed at least once every T time

units { where T is the stabilization time { even after the protocol has stabilized.

Hence this is really a bandwidth cost. For example, the stabilization bandwidth of

the protocol in [KP90] is the worst case message complexity per link to do a snapshot,

which is 
(m), where m is the number of links.

If we check a deterministic protocol � by re-executing �, we have to pay a high

price (T�) in stabilization bandwidth. Suppose instead, we can �nd a checker � for �

that has T� = 1 { i.e., can check � in a single pulse. Then after the execution phase

we can add a single check pulse number Tcp. When a node reaches pulse Tcp it stays

at Tcp executing the checking protocol until it detects a problem; if it does detect a

problem it drops back to pulse 0. By avoiding multiple pulses for checking, we remove

the need for costly a termination detection and reset operation in the checking phase.

The stabilization bandwidth drops to O(S�).
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There are a number of tasks that we can check in a single pulse. These include

the classical problems of shortest paths, topology update, leader election, computing a

spanning tree, and computing a maximum ow. Because the �rst four tasks are com-

monly used in real networks, it is important to improve their stabilization bandwidth.

We do so by what by essentially introducing a new form of local checking which

we will call synchronous local checking. The idea of doing local checking was already

introduced in previous chapters. In the previous chapters, we described asynchronous

protocols which continuously checked the state of every link subsystem. Note that

state of of every link subsystem includes the state of the channels as well as that

of the nodes. However, to build an e�cient synchronous checker, all we have to do

is to locally check a synchronous protocol that has terminated. Hence the checking

procedures are much simpler. Note that for a synchronous protocol, the state of every

link subsystem consists only of the state of two nodes.

Consider the problem of checking the shortest cost paths from a given source to

every other node. The key is the ability to check, in a single pulse, the shortest

cost distances from a given source to every other node. Let s denote the source

and Di denote the distance node i has recorded to s; let Bi;j denote the cost of a

link from Node i to Node j, and N(i) the set of neighbors of Node i. Then in a

checking pulse a) s checks that Ds = 0 b) Nodes other than s check that Di > 0 and

Di =Minj2N(i)(Dj +Bi;j). It is quite simple to prove that if any of the distances are

wrong some node will detect this after checking.

By adding an extra distance label to the other tasks, the other tasks can also be

checked in one pulse, using the same trick. We can do this, for instance, in leader

election by adding the distance to the leader, and in maximum ow by adding the

distance to the source in the residual graph.

In general, given our application, the design of faster checkers for synchronous

protocols becomes an interesting and practical problem. For instance, we can we

check a minimum spanning tree in fewer pulses than it would take to compute the

tree from scratch while using only small storage? There are a number of similar open

problems that arise from our work.
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9.7.2 Randomized Protocols

In all our models, both of asynchronous and synchronous protocols we have disallowed

the possibility of nodes tossing coins. Thus our formal models preclude the description

of randomized protocols. In a randomized protocol, nodes are given the ability to toss

coins. The de�nitions of correctness now become probabilistic and it is much harder

to give careful de�nitions of stabilization. However, we will assume that the reader

has an intuitive understanding of randomized protocols to understand the following

informal discussion.

First, for randomized protocols, we will assume that any supposedly random bits

in the initial state of a node can be arbitrarily corrupted and hence non-random.

However, subsequent coin-tosses will produce truly random bits.

Next, note that we need a separate checker to compile a randomized protocol.

This is because re-executing the original protocol can lead to a di�erent output, and

cause the checker to detect an error when there was none. Saving the original random

bits in the state does not help either as these bits could be corrupted (see previous

assumption). Further, this checker must be oblivious: it must not depend on the

correctness of the supposedly random bits currently in the state. It appears that a

stabilizing algorithm that uses a randomized checker needs an in�nite supply of random

bits since it cannot rely on the old random bits at any stage.

A simple example of compiling a randomized protocol is furnished by the problem

of electing a leader in an anonymous network - i.e., a network in which nodes do

not have any unique IDs.2 Clearly we need randomization to break symmetry. To

construct a stabilizing protocol for this task, we demonstrate a synchronous protocol

for execution together with an oblivious synchronous checker.

Recall that we use D to denote an upper bound on the diameter of the network.

In the execution protocol, each node picks a random ID uniformly and independently

in a space of 1::X. In the next D pulses, a node considers itself as the leader if it �nds

out that its ID is the largest in the network. In the checking protocol, each node i that

considers itself a leader picks a new random value ti in the space 1::X and broadcasts

ti during the next D pulses. At the end of D pulses, a node detects an error if it has

received either no values or it has received more than one value. While both checking

2If nodes have unique IDs we must assume that the IDs are protected; dropping this assumption

makes the system more fault tolerant.
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and execution can fail, by picking X to be a polynomial (of su�ciently high degree) in

the number of nodes, we can ensure that a correct output will be produced in constant

expected number of phases. Since each phase takes O(D) the expected stabilization

time is O(D).

A more e�cient protocol for this purpose (that works in time proportional to the

actual diameter as opposed to a bound on the diameter) is given in [DIM91b]. However,

our solution seems to be simpler. As in the case of deterministic protocols, checking

randomized synchronous protocols seems an interesting research area.

9.8 Summary and open problems

The main result of this chapter the Resynchronizer, is a compiler that transforms any

synchronous protocol into a stabilizing version for dynamic asynchronous networks.

The transformation adds O(n +D) overhead to the time complexity of the protocol,

where D is a bound on the diameter of the �nal network. Clearly D and n can be

much larger than the actual diameter of the �nal network. A natural open problem is

to obtain a compiler whose time overhead only depends on the actual diameter of the

�nal network.

When the results in this chapter were �rst presented [AV91], the Resynchronizer

compiler used a much more complicated construction (which could be regarded as a

special reset protocol optimized for the case of synchronizer operation). The transfor-

mation in [AV91] added only O(D) overhead to the time complexity of the protocol,

removing the factor of n which arises from the use of the reset protocol described in

Chapter 7. However, for many real networks the only meaningful bound on the diame-

ter of the network is the number of nodes. Thus this does not seem to be a meaningful

distinction in practice. Also, the construction in this chapter is much simpler than the

original. However, a careful proof of the simpli�ed construction is needed.
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Chapter 10

Conclusions and Open Questions

This thesis investigates the power and applicability of local checking and correction for

the design of stabilizing network protocols. The thesis provides a rigorous theoretical

foundation for these concepts. However, the emphasis is on using these concepts to

devise novel fault-tolerant protocols for real networks.

We have con�ned the notion of \local" to link subsystems consisting of a pair of

neighboring nodes and the two unidirectional links between them.1 We have de�ned

a protocol to be locally checkable for a good property L if two conditions hold. First,

there is a local property for each link subsystem (formalized by a predicate of the link

subsystem) such that property L holds if the local properties of all link subsystems

hold. Second, each local property is closed - i.e, once the local property is true, it

remains true.

We have also de�ned a protocol to be locally correctable to propertyL if the protocol

is locally checkable for L and there is a way to locally correct each node with respect

to a link subsystem (formalized by the existence of a local reset function) such that the

global property L becomes true. The index contains pointers to the formal de�nitions

of these concepts.

This chapter summarizes and evaluates the major contributions of the thesis. The

chapter ends with a list of open questions.

1However, in the list of open questions we suggest that this notion of locality can be usefully

generalized.
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10.1 Contributions

The major contribution of this thesis is the construction of general techniques for de-

signing stabilizing protocols. All our techniques revolve around the concepts of local

checking and correction. We use the general techniques to design new stabilizing pro-

tocols (many of which are practical) and to understand existing stabilizing protocols.

In the process of formalizing these techniques, we were also led to invent new de�ni-

tions of stabilization, a simple modularity theorem, and a new Data Link model. We

believe this modelling e�ort is useful in its own right. Thus we divide the contributions

of this thesis into �ve categories:

� General techniques for constructing stabilizing protocols.

� New or improved stabilizing solutions to speci�c problems.

� The Modularity Theorem

� Modelling of self-stabilization.

� Better understanding of existing work in self-stabilization.

We describe these contributions in more detail in the following subsections.

10.1.1 General Techniques

The thesis contains four general techniques and a powerful heuristic. The four general

methods are all organized around the theme of local checking and form a natural

progression of ideas. The methods are:

� Local Correction: The Local Correction Theorem (Theorem 5.4.3) of Chapter

5 shows that every locally checkable and correctable protocol can be stabilized in

time proportional to the height of the underlying partial order. This is achieved

by adding actions to do independent checking and resetting of each link subsystem

The Local Correction Theorem formalizes a useful design technique for building

stabilizing protocols. First, we add some (hopefully small) state to the protocol
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to make it locally checkable. Next, we look for a local reset function that can be

used for local correction. In some cases, it is possible to construct a local reset

function by combining several actions of the original protocol. In Chapter 7 we

conjectured that this (i.e., the construction of a local reset function) is possible

for many existing protocols that work in dynamic networks. The stabilizing reset

protocol of Chapter 7 is an example of this design technique.

� Tree Correction: The Tree Correction Theorem (Theorem 6.5.1) of Chapter 5

shows that every locally checkable protocol that works on a tree topology can be

stabilized in time proportional to the height of the tree. Thus we can dispense

with the need for local correctability if the underlying topology is a tree. This is

achieved by adding actions to do independent checking and resetting of each link

subsystem in such a way that the correction of a link (u; v) does not invalidate

the correctness of links above link (u; v) in the tree.

This theorem also formalizes a useful design technique. First, we construct a

spanning tree of the network using a stabilizing tree protocol. Next, we design

a locally checkable protocol to solve the desired problem that works over a tree.

Finally, we apply the transformation underlying the Tree Correction theorem.

The stabilizing token passing protocol of Chapter 6 is an example on which this

design technique could be applied.2

� Global Correction: The Global Correction Theorem (Theorem 8.1.2) of Chap-

ter 8 shows that every locally checkable protocol can be stabilized in time pro-

portional to the number of network nodes. That is we can dispense with the

need for local correctability or the restriction to a tree topology if we are will-

ing to incur a stabilization time that is proportional to the number of network

nodes. This is achieved by adding actions to do independent checking of each

link subsystem as well as actions to do a coordinated global reset of the entire

network if a local violation is detected.

This theorem also formalizes a useful design technique. We construct a locally

checkable protocol and then apply Global Correction. However, since the sta-

bilization time of this method is comparatively high, it pays to use the Local

Correction Theorem whenever a locally checkable protocol can also shown to be

2However, in Chapter 6 this example is derived using Local Correction.

260



locally correctable. The stabilizing spanning tree protocol of Chapter 6 is an

example of the Global Correction technique.

� Stabilizing Compiler for Synchronous Protocols: The Resynchronizer and

Rollback Compiler ideas in Chapter 9 show that any synchronous protocol � with

time complexity T� can be converted to an asynchronous, stabilizing version of

�, with either an additive cost of O(n) in stabilization time or a multiplicative

factor of T� in storage. Thus for such protocols we can dispense with even the

need for local checkability. This is achieved by applying global correction to a

simple synchronizer protocol. While Chapter 9 sketches the main ideas for both

compilers, the method still requires further development, especially to complete

and simplify the proofs.

The synchronous compilers also suggest a useful design technique. Suppose the

correctness of a task can be speci�ed by an Input/Output relation. Then we

can construct a synchronous protocol for a given task and then apply one of the

two compilers. This technique provides stabilizing solutions for many tasks for

which locally checkable solutions are not known to exists. For instance, this can

be used to produce e�cient and stabilizing minimal spanning tree, min-cost ow

and coloring protocols.

Besides the four general methods, we have a useful heuristic.

Heuristic of Removing Unexpected Packet Transitions: In many cases we

can make a protocol weakly locally checkable for a good property L (i.e., L holds if

the local properties of all link subsystems hold) by adding a small amount of state.

To make the protocol locally checkable for L we also have to ensure that each local

property is closed - i.e., if the local property is ever true, it remains true. This can

often be done by the method of removing unexpected packet transitions described in

Chapter 6. The basic idea is that when a node u receives a packet p from a neighbor v,

u only accepts the packet if this transition could have occurred in some good state of

the (u; v) subsystem. If the (u; v) subsystem is in a bad state but the (u;w) subsystem

is not, the only way the (u; v) subsystem can a�ect the (u;w) subsystem is if v sends

\unexpected" packets to u. Weeding out such unexpected packet transitions is often

su�cient to ensure that each local predicate remains closed.

The heuristic of removing enexpected packet transitions is used throughout the

thesis. It is used in the Token Passing Protocol of Chapter 6, the Reset Protocol of
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Chapter 7, the Spanning Tree Protocol of Chapter 8, and the Resynchronizer Protocol

of Chapter 9.

Comparison with Only Previously Known General Technique

The only previously known general method for stabilization is the elegant result of

Katz and Perry [KP90]. How do our methods compare with the general method of

[KP90]? Recall that in [KP90], checking is done by a single leader node periodically

taking a snapshot of the entire network.

� Message Congestion: From a practical standpoint, the most important di�er-

ence is that all our methods have considerably smaller stabilization bandwidth

than that of [KP90]. Recall from Chapter 9 that stabilization bandwidth is the

periodic overhead of checking that must be paid even when the protocol is in a

good state and behaving correctly. Suppose the protocol is to stabilize in time T .

Roughly, [KP90] has to pay the price of a snapshot of the entire network every

T units of time. Now a snapshot requires at least O(m) state, where m is the

number of network links. Thus links leading to the leader node must carry O(m)

message bits every T units of time. Thus the worst case bandwidth per link is

very high. By contrast, in our local correction, tree correction, and global cor-

rection methods, each link only carries a constant number of message bits every

T units of time. Even the naive synchronous compilers of Chapter 9 have better

stablization bandwidth than the method of [KP90] because the communication

overhead of checking is spread out among all the links rather than being concen-

trated on links leading to the leader. In real networks, each link has a limited

bandwidth and the worst case bandwidth requirement is an important measure

of link congestion.

� Speed: If all links are UDL's, the method of [KP90] requires O(n) time to stabi-

lize, where n is the number of network nodes. The local correction method, tree

correction method, and Rollback compiler can all provide much faster stabiliza-

tion times.

� Storage: The method of [KP90] requires O(m) storage at the leader to store

the snapshot information, where m is the number of links. For fault-tolerance,
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every node must be prepared to be the leader of the network and be able to

store O(m) information bits. By contrast, except for the Rollback compiler, the

storage required by our methods is negligible.

� Generality: The method of [KP90] is clearly more general than our methods. Our

methods require protocols to be either locally checkable or to have a correctness

speci�cation that can be expressed (see Chapter 9) in terms of an I/O relation.

However, there is at least one case where the method of local checking and

correction is applicable where the method of [KP90] is not. This is the stabilizing

end-to-end protocol that we describe in [APV91b]. The problem here is that some

unknown set of network links may have in�nite delay. Thus the global snapshot

of [KP90] may never terminate. However, it is su�cient ([APV91b]) to do local

checking and correction on the so-called viable links that have bounded delay.

To summarize, our methods are less general but more e�cient than the method

of [KP90]. Despite the loss of generality, our methods can be used to stabilize many

useful tasks, as summarized below.

10.1.2 New or Improved Stabilizing Solutions for Speci�c Prob-

lems

Our general techniques provide new or improved solutions for Mutual Exclusion, Net-

work Resets, Computing Spanning Trees, Topology Update, Minimal Spanning Trees

and other tasks. We have also applied local correction to an important theoretical

problem { the problem of end-to-end message delivery in unreliable networks. In this

problem links can fail continuously { the only guarantee is that there is no cut of

permanently failed links that separate the sender and receiver. We have not described

our solution to this problem in this thesis but more details can be found in [APV91b].

There are a number of other protocols to which we believe local checking and

correction can be applied. These include the e�cient resource allocation algorithm of

Awerbuch and Saks ([AS90]), and the elegant virtual circuit protocol due to Spinelli

([Spi88b]). We hope to produce stabilizing versions of these protocols. We believe our

general methods provide solutions to many important networking tasks.
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We emphasize that many of our solutions are practical and can be applied in real

networks. Messages required for local checking can easily be piggybacked on the \keep-

alive" tra�c sent between neighbors in real networks. Thus solutions based on the

�rst three of our general methods (all of which are based on local checking) can be

added to real networks without appreciable loss of e�ciency. Solutions based on the

synchronous compilers of Chapter 8 can be practical if either the time complexity of the

underlying synchronous protocol is low (for the Rollback compiler) or if the underlying

synchronous protocol has an e�cient synchronous checker (for the Resynchronizer

compiler). A disadvantage of the synchronizer methodology is that the method tends

to slow down the network to the speed of the slowest link. Thus the synchronous

compiler methodology is best suited for use in networks where all links have roughly

the same speed.

Among the most useful practical protocols described in this thesis are the stabilizing

reset protocol of Chapter 7 (which was briey tested in a trial implementation on the

AUTONET) and the spanning tree and topology update protocols of Chapter 8. The

topology update protocol also illustrates another general paradigm that may be useful

in practice. We start with a simple protocol P that uses unbounded sequence numbers

and use global correction to convert P into a stabilizing version P 0 that uses bounded

sequence numbers. In the absence of catastrophic errors, P 0 is as e�cient (except for

the small overhead of local checking) and simple as P .

10.1.3 Modularity Theorem

The Modularity Theorem (Theorem 3.5.7) is simple but extremely useful. It helps

us to prove facts about the stabilization of a big system by proving facts about the

stabilization of each of its parts, as long as each part is su�x-closed. The modularity

theorem gives us a formal basis for a building-block approach. For example, we can

start with a stabilizing implementation of a UDL; use this to build a stabilizing reset

protocol as shown in Chapter 7; and then use the reset protocol as a building block

to construct a spanning tree protocol (Chapter 8) and a compiler for synchronous

protocols (Chapter 9). As we have argued at the end of Chapter 4, the requirement

that each of the parts be su�x-closed is not very restrictive. Essentially, this is because

our methods tend to produce CIOAs (i.e., automata in which every reachable state is

a start state) that are su�x-closed.
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As we build up a complex stabilizing protocol in several layers, the stabilization

time of the system can be calculated by applying the Modularity Theorem and the

Transitivity Lemma for behaviors (Lemma 3.2.6). For example, suppose the overall

system is described by an automaton P . Suppose also that P is identical to the

stabilizing reset protocolR+ of Chapter 7 except that every UDL Cu;v inR
+ is replaced

by a stabilizing implementation of a UDL called C
0
u;v. Suppose that C

0
u;v stabilizes to

the behaviors of Cu;v in time t1. Then by applying the Modularity Theorem (which

is possible because all the constituent automata in R+ are UIOA) we conclude that

P stabilizes to the behaviors R+ in time t1. But we know from Chapter 7, that R+

stabilizes to the behaviors of RjL in some constant time, say t2. (Recall that RjL is a

\correctly working" reset protocol in which all local predicates are true in the initial

state.) Thus we conclude from the Transitivity Lemma that P stabilizes to RjL in

time t1 + t2. Notice that the stabilization times of each \layer" add up due to the

Transitivity Lemma. Proceeding similarly, we can calculate the stabilization time of

a version of the stabilizing tree protocol of Chapter 8 in which the reset protocol RjL

is replaced by P .3

Our theorem can be viewed as a generalization of previous modularity results

[DIM90]. Previous results only applied to the case when a lower layer protocol com-

puted values of a shared variable that were read by a higher layer protocol. By contrast,

our theorem applies to more dynamic interaction between the various components of

a system.

10.1.4 Modelling

The models and proof techniques we use in this thesis are based on the large body of

existing work that has been done in the area of protocol veri�cation. Our model of

computation is based on the timed I/O automaton [MMT91] which is in turn based

on the I/O automaton of [LT89]. We have even described the shared memory network

model in Chapter 4 as an I/O automaton that meets certain restrictions.

We also use standard proof techniques. We use mapping techniques (Re�nement

Mapping Theorem, Theorem 3.4.3) to show that one automaton has the same behaviors

as another automaton. We prove that a local predicate is closed using the standard

3This time, however, we can apply the Modularity Theorem because RjL is a CIOA and the other

nodes implementing the spanning tree protocol are UIOA.
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inductive techniques used to prove program invariants. Perhaps the only unusual

technique is the Execution Convergence Theorem (Theorem 3.4.5) which is a key tool

for proving stabilization results. To apply this theorem we have to prove a stability

condition and a \liveness" condition. We prove the stability condition using standard

inductive arguments. We prove the \liveness" condition by proving time bounds on the

occurence of events. We have proved time bounds in a fairly ad hoc, operational way.

However, there is no reason why the time bounds could not be established by more

rigorous inductive arguments (as in [LA90]). Thus while the Execution Convergence

Theorem may appear slightly unusual, it is really a combination of existing veri�cation

techniques.

We believe this continuity (with the body of existing work in veri�cation) is an

advantage of our work. By contrast, previous papers on stabilization have sometimes

tended to invent new models and proof techniques. Despite our strong linkage with

existing work, we do have two interesting modelling contributions in this thesis. These

are the use of a behavior speci�cation for stabilization and the use of unit storage Data

Links.

Behavior Speci�cation

The de�nitions of stabilization in terms of external behaviors are di�erent from previ-

ous de�nitions that are in terms of the states and executions of the underlying automa-

ton. The external behavior de�nition allow us to de�ne that automaton A stabilizes to

another automaton B even though A and B have di�erent state sets. This is most use-

ful when A is a low level model (e.g., an implementation) and B is a high level model

(e.g., a speci�cation). This can be done using a de�nition of stabilization in terms of

executions if we are prepared to introduce an abstraction function into the de�nitions

as in Lamport's work [Lam83]. However, we prefer the behavior de�nitions as they

seem to be more natural; we prefer to use the equivalent of an abstraction function to

prove behavior stabilization results using the Re�nement Mapping Theorem.

Unit Storage Data Links

In a stabilizing setting it is necessary to de�ne Data Links that have bounded storage.

First, as shown in [DIM91a], almost any non-trivial network task is impossible in
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a stabilizing setting in which the links have unbounded storage and the nodes are

restricted to be �nite state machines. Second, bounded storage models correspond to

physical reality.

Thus we use the standard asynchronous message passing model of a computer

network except that each link is what we call a Unit Storage Data Link (UDL) that

can store at most one packet. We have chosen unit storage links (UDLs) because

they are practical (see Section 5.2) and they can be modelled elegantly. We have also

de�ned a stabilizing interface to a UDL. This is done by having the link periodically

deliver a free signal (to avoid deadlock) and by having the sender keep a variable that

indicates whether the link is free. We hope the UDL model will be used by others.

The UDL model can easily be generalized to Bounded Storage Data Links by changing

the free signal to report the number of packets currently stored in the link.

Earlier papers in stabilization (e.g., [DIM90]) seem to have used shared memory

models for communication in order to avoid the problems caused by unbounded storage

links. It does seem very likely (see Open Problems) that protocols that work in the low

atomicity sharedmemorymodel of [DIM90] can be transformed to work correctly in our

network model. However, we believe that our protocol descriptions are more accessible

to designers of \real" network protocols because most \real protocol" speci�cations

assume the use of message passing primitives.

10.1.5 Understanding Existing Work

The concept of local checking helps in crisply understanding many existing stabilizing

protocols. Chapter 4 shows that some existing work in the shared memory model can

be understood crisply in terms of local checking and correction. We believe that many

existing stabilizing protocols can be understood using three general ideas { one way

checking and correction, counter ushing, and timer ushing.

One Way Checking and Correction

In Chapter 8, we said that a protocol P was one-way checkable if it was locally check-

able using what we called one-way predicates. Intuitively, a one-way predicate is a

predicate that involves the state of a node u, the state of any neighbor v of u, and

the state of the link between u and v. Unlike a general local predicate, a one-way
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predicate only depends on the state of one of the links between the two nodes. We

saw that one-way checkable protocols could be checked without the need for a local

snapshot { it is su�cient for each node to periodically send its state to its neighbors.

The protocols in [Per83] and [Per85] do checking in this way.

In some cases, the protocol is also one-way correctable { i.e., we can apply local

correction to a one-way checkable protocol without the need for a local reset of the link

subsystem. For example, when v receives a copy of u's state and detects a violation

of the one-way predicate from u to v, it may be possible for v to apply a local reset

function to its own state so as to make the one-way predicate true. Of course, this

could falsify other \adjacent" one-way predicates. For the protocol to be one-way

correctable, the dependency relation among the one-way predicates must be acyclic,

as in the de�nition of local correctability. For example, the Rollback protocol of

Chapter 9 is one-way correctable. We speculate that the stabilizing topology update

protocol of Spinelli-Gallager [SG89] is also one-way correctable

Counter Flushing

Suppose a sender wishes to periodically send a Request packet to a set of network

nodes. The responders must each send back a Response packet before the sender

sends its next request. In Chapter 5, for example, we implemented local snapshots

and resets using such a request-response protocol initiated by the leader of each link

subsystem. In order to properly match responses to requests, the sender numbers each

request with a counter. Let m be the number of packets that can be in transit between

the sender and responder and let n be the number of responders. Then the sender uses

a counter that has Max = m + n + 1 distinct values. For example, in Chapter 5 we

used a counter in the range 0:::3 because there can be at most two packets in transit

in a link subsystem and there is only one responder.

Responders only accept Request packets with a number di�erent from the last

Request accepted. After accepting aRequest the responder sends back aResponse

with the same number as the Request. The sender retransmits the current Request

till it receives each matching Response with the same number. After all matching

Response packets arrive, the sender increments its counter.

The size of Max ensures that within Max increments of the counter, the sender

will reach what we call a \fresh" counter value { i.e. a counter value that is not
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currently stored in either the links or the responders. We call the method counter

ushing because the request-response protocol must guarantee the following \ushing"

property. Suppose the sender sends a request numbered c, where c is a fresh value. Then

after all matching responses to this request arrive, there must no counter values other

than c that are stored in the links or at the responders. In other words, the sending of

a freshly numbered request and the receipt of all matching responses, should \ush"

the links and responders of \old" counter values.

In Chapter 5, the ushing condition is guaranteed because the sender and receiver

are connected by two FIFO links in either direction. Similar forms of counter ushing

can be used to implement Data Links ([AB89]) and token passing [DIM91a]) in link

subsystems with bounded storage. Counter ushing is, however, not limited to link

subsystems. The �rst example in [Dij74] can be simply understood as counter ushing

in a unidirectional ring (see Appendix E for more details). Katz and Perry [KP90]

extend the use of counter ushing to arbitrary networks in an ingenious way. Our sta-

bilizing end-to-end protocol ([APV91b]) is obtained by �rst applying local correction

to the Slide protocol [AGR92] and then applying a variant of counter ushing to the

Majority protocol of [AGR92].

Timer Flushing

The main idea is to bound the lifetime of \old" state information in the network. This

is done by using node clocks that run at approximately the same rate and by enforcing

a maximum packet lifetime over every link. State information that is not periodically

refreshed is \timed out" by the nodes. In Perlman's [Per83] topology update protocol,

timer ushing is used to get rid of erroneous updates that are numbered with the

maximum possible sequence number. In Perlman's [Per85] spanning tree protocol,

timer ushing is used to get rid of \ghost" roots (see Chapter 8 for details.) Spinelli

[Spi88b] uses timer ushing to build stabilizing Data Link and virtual circuit protocols.

10.2 Open Questions and Further Problems

The following is a list of further problems. They are arranged under four categories:

modelling, increased understanding of local checking and correction, new algorithms,

and new directions.
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10.2.1 Modelling

The following is a list of what we believe are the further problems that are motivated

by our work in modelling stabilizing protocols.

� Extend model and theorems of Chapter 3 to allow the use of ran-

domization and lower bounds on the time between actions: The model

of Chapter 3 makes no provision for randomization or for lower bounds on the

time between actions. While the model in Chapter 3 is su�cient for modelling

asynchronous protocols it cannot be used to model many interesting randomized

and timing based algorithms. This seems to be an important problem. The hard

part is extending the model to obtain corresponding versions of the modularity

and transitivity results.

� Find a Proof technique for Generalized Stabilization De�nitions: The

de�nitions of a stabilizing reset protocol and other protocols can be made more

elegant if we modify the stabilization de�nitions as follows. We only require that

the t-su�x of a behavior (execution) be a t-su�x of a behavior (execution) of

the target set. One problem with this modi�ed de�nition is that we know of no

good proof technique to prove that the behaviors (executions) of an automaton

are su�xes of a speci�ed set of behaviors (executions). While a general proof

technique for this purpose may be infeasible, it may be possible to �nd a proof

technique that works for a large number of cases.

� Discover stronger variants of the modularity theorem. The modularity

theorem allows us to infer the stabilization properties of a large system from the

stabilization properties of its pieces. However, we required that each piece be

su�x-closed. It is natural to look for weaker or alternate conditions. This may

be somewhat technical as the su�x-closed requirement does not appear to be

very restrictive.

� Find a General De�nition of Stabilization Bandwidth: In Chapter 9,

we intuitively described an important measure for a stabilizing protocol { the

amount of periodic bandwidth the protocol consumes. The de�nition we gave

in Chapter 9 only applies to protocols that have a certain structure. A precise,

general de�nition would be very useful.
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� Find a way of Compiling Stabilizing Protocols in the Shared Mem-

ory Model into our Network Model. A number of interesting stabilizing

protocols have been described using the low atomicity, shared memory model

introduced by [DIM90]. It would be nice to have a compiler that that could

convert protocols from their model to our network model and vice versa. This

seems to be feasible.

10.2.2 Increased Understanding of Local Checking and Cor-

rection

Our understanding of local checking and correction is far from complete. This moti-

vates the following problems:

� Obtain a better understanding of local checkability. Recall that a protocol

is locally checkable for some good predicate L, if L is a conjunction of local

predicates, and each local predicate is closed. Thus we can study this problem

by asking two separate questions.

{ How much state do we need to add to a protocol so that it's

legal states are a conjunction of local predicates? In the token

passing protocol of Chapter 6 and the reset problem of Chapter 7, we made

protocols locally checkable by adding a constant amount of state to each

node. It is natural to ask what the minimum amount of storage is that

must be added in order to make a protocol locally checkable.

{ Can any weakly locally checkable protocol be transformed into an

(equivalent) locally checkable protocol? Recall that a weakly locally

checkable protocol is a protocol whose legal states are a conjunction of

local predicates; however, the local predicates are not necessarily closed.

In Chapter 6 we described a simple protocol transformation that consisted

of removing unexpected packet transitions. In many cases, this heuristic

is su�cient to ensure that the local predicates are closed. We have used

this heuristic successfully but we still don't completely understand when

this heuristic is guaranteed to work. In Chapter 6, we described a su�cient

condition called local extensibility. Are there weaker conditions than local

extensibility?
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� Obtain a better understanding of local correctability. In Chapter 5, we

used a fairly operational de�nition of local correctability in terms of a local reset

function. That de�nition is adequate for the thesis but it gives little insight into

the structure of locally correctable protocols. Why are some protocols locally

correctable but not others? Are there simpler su�cient conditions? It is also

important to formally understand the connection between local correctability

and locally checkable protocols that work in dynamic networks.

� Generalize the De�nitions of Locality and Local Checkability in Chap-

ter 5: In Chapter 5, we de�ned locality in terms of link subsystems. More gener-

ally, a subsystem is the composition of the nodes and channels corresponding to

some subgraph of the network graph. For example if we de�ne locality using the

subsystems corresponding to the entire network graph, then our method reduces

to the method of Katz and Perry [KP90]. Another interesting subsystem would

consist of a single node and all its incoming and outgoing channels. Another

interesting possibility is to consider subgraphs de�ned by the sparse network

partitions [AP90] de�ned by Awerbuch and Peleg.

Another simple generalization is to allow more than one local predicate per local

subsystem. For example, consider an example consisting of two link subsystems

and four link predicates, L1; L2; L3 and L4. Suppose the system is locally cor-

rectable using a partial order < such that L1 < L2 < L3 < L4. Then as we apply

local checking and correction to this system L1 will become true �rst, followed

by L2 followed by L3 and then L4. Having multiple local predicates per local

subsystem is only useful if these local predicates are independently ordered in

the partial order. (If this were not the case we could simply work with a new

local predicate that is the conjunction of all the predicates.) An example of the

need for this generality is the Rollback protocol in Chapter 9.

� Obtain a better understanding of Synchronous Checking In Chapter 9,

we introduced the notion of synchronous checking, which is a synchronous pro-

tocol that can check the output of another synchronous protocol. Synchronous

checking is a little easier than asynchronous checking because all the nodes run

in lockstep and we do not have to worry about messages in channels. Also, the

checker need only check the �nal output of the protocol and not the intermediate

states. Are there synchronous checkers for minimum spanning tree and max ow
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protocols that are faster than the protocols being checked?

10.2.3 New Algorithms

We suggest the following algorithmic problems:

� Invent a practical stabilizing reset protocol that stabilizes in O(d) time,

where d is the actual diameter of the network. By way of comparison, the

reset protocol of Chapter 7 stabilizes in O(n) where n is the number of nodes

in the network. This seems to be a major open problem. A solution to this

problem would yield O(d) stabilizing solutions for the spanning tree, topology

update, and other problems described in Chapters 8 and 9. To be practical, the

constants hidden in the O(d) notation must be small (between 1 and 3).

� Invent a practical stabilizing token passing protocol for rings and ar-

bitrary graphs: We have already described how to construct a tree from an

arbitrary graph, and shown how to execute a stabilizing token passing protocol

on a tree. However, the latency of token traversal on a tree can be quite high,

for example if the original graph is a ring. The �rst example in [Dij74] appears

extensible to token passing in a ring. An e�cient stabilizing token passing pro-

tocol for rings would be useful and practical. Existing token ring protocols such

as the IEEE 802.3 and FDDI protocols have a number of ad hoc mechanisms to

deal with failures.

� Invent a Stabilizing Clock Synchronization Scheme: Fault-tolerant clock

synchronization schemes typically have to defend against Byzantine faults. It

would be desirable to invent a practical, stabilizing version of such a protocol.

This would be an interesting example of a protocol that is robust against both

Byzantine faults that continue as well as catastrophic faults that stop.

� Simplify Existing Flow Control Schemes for Transport Protocols and

Data Links: A ow control scheme is a scheme by which a receiver regulates

the rate at which a sender sends data in order to prevent bu�er overows at

the receiver. In [CSV89] we propose an extremely simple stabilizing ow control

scheme for physical links. It can be considered to be a trivial application of

local checking and correction to the sender-receiver ow control protocol. The
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resulting protocol is robust and simple enough to be implemented in hardware.

Now, robust ow control schemes are a major component of Transport and Data

link layer protocols. Perhaps existing ow control schemes can be simpli�ed

using local checking and correction.

� Invent a stabilizing, distributed protocol to compute Sparse Parti-

tions: Awerbuch and Peleg [AP90] have shown how to decompose a network

into what they call sparse partitions. They use sparse partitions to build e�-

cient solutions for online tracking of mobile users, network synchronization, and

network routing with low memory. The most e�cient distributed algorithm for

constructing sparse partitions is based on the work of Linial and Saks [LS91].

A stabilizing distributed algorithm for sparse partitions would be an extremely

useful tool.

� Make the Synchronizer Methodology practical for networks with links

of di�erent speeds: The synchronizer methodology was introduced in [Awe85]

and is extended to a stabilizing setting in Chapter 9. However, the method

su�ers from a severe drawback in networks in which links have varying delays.

Essentially, it slows down all links to the speed of the slowest link. It may be

possible to modify the methodology to avoid this drawback.

� Invent a stabilizing version of the Bootstrap Protocol for End-to-End

Communication: Our previous work on stabilizing end-to-end communication

[APV91b] has concentrated on producing a stabilizing version of the simple and

elegant Slide protocol [AGR92]. However, the Bootstrap Protocol [AG91] is

more e�cient in some cases, and so a stabilizing version would be of theoretical

interest. The current solutions are still too ine�cient (for example in storage)

for the end-to-end problem to have any practical application.

10.2.4 New Directions

We suggest the following new directions for research in self-stabilization.

� Local Checking for Randomized Protocols: Local checking of randomized

protocols is an important research area. There are several randomized protocols
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(e.g., the Rabin-Lehman dining philosophers protocol of [RL81]) that use ran-

domization to break symmetry and to guarantee termination. Such protocols

can often be locally checked in a deterministic fashion. For example, in graph

coloring, it is easy to check whether a neighboring node has the same color. If,

however, the check reveals a problem, a randomized local reset action must often

be applied. Thus in graph coloring, a node may randomly choose a new color

once it discovers that it has the same color as one of its neighbors. Now the

randomized local reset functions can be applied at a node after all other nodes

have already chosen their colors. Thus the dynamics (and the analysis) of the

stabilizing protocol may be quite di�erent from that of the original randomized

protocol. Preliminary work in this area has been done by Baruch Awerbuch,

Leonore Cowen, and Mark Smith at MIT.

Protocols whose behavior is correct only with high probability are even harder

to check locally. Suppose that a (non-stabilizing) randomized protocol computes

sparse partitions such that with high probability the partitions have low diam-

eter. Then even if local checking can detect \poor" partitions, how can we tell

whether the partitions are bad a) because of errors in the initial random bits at

the nodes or b) because of a low probability outcome of the protocol?

� Stabilizing Data Structures: We have suggested earlier that programs that

run on a single shared memory can be made stabilizing by using domain re-

striction { the states of the program are restricted to legal states. Consider the

problem of building a stabilizing data structure (e.g., a dictionary or a queue)

within the memory of a single processor. The data structure provides a certain

set of operations (for example to insert and delete elements). The correctness

of the data structure can be de�ned in terms of allowable sequences of opera-

tions. This notion of correctness is similar to the behavior speci�cations of I/O

automata. Thus we can de�ne a stabilizing data structure to be one in which

the data structure can begin in an arbitrary state; however, any sequence of op-

erations on the structure will eventually have a su�x that is a correct sequence

(or a su�x of a correct sequence) of the data structure. For example, in a stabi-

lizing dictionary, we would require that any elements inserted after the structure

stabilizes would be found when searched for.

Now any such data structure can be trivially made stabilizing in the following

way. Before any operation on the data structure, we �rst check the invariants of
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the data structure, and reinitialize the data structure if an error is found. Un-

fortunately, this slows down regular operations. Thus if we charge for processing

(which we have not done in the distributed model in this thesis), there appears

to be a tradeo� between stabilization time and the time to complete normal

operations. For some data structures, the tradeo� can be extremely good. For

example, we can easily implement a stabilizing, bounded size queue using a �xed

size array. The head and tail pointers can be restricted to stay within the array

bounds. However, it appears to be much harder to obtain good tradeo�s for say

a tree-based implementation of a dictionary. We have done some preliminary

thinking in this area [MPV90].

� Applying Self-Stabilization to Other Areas: Most of the stabilizing pro-

tocols described in this thesis are used for routing, scheduling, and resource

allocation { tasks typically found in the network and Data Link layers of the

communication hierarchy. However, in principle there is no reason why self-

stabilization cannot be added as an \extra envelope" of fault-tolerance for higher

layer protocols { e.g., �le transfer and database protocols. Such protocols should

be designed to avoid errors in the case of common faults such as node and link

crashes. However, it is also desirable that these protocols recover by themselves

after catastrophic errors. Self-stabilization is also applicable at the lowest layer

of the protocol hierarchy. For example, it would be desirable to have stabilizing

clock recovery and framing protocols at the physical layer.

� Generalized Local Checking: The method of Katz and Perry [KP90] consists

of a single leader that checks the entire network. In our method of local checking,

nodes independently (and in parallel) check each link subsystem. The Katz and

Perry method is more general but less e�cient. Local checking of link subsystems

is e�cient but only applicable to locally checkable protocols. Thus there may

be intermediate approaches in which the notion of locality is generalized to an

arbitrary set of subnetworks of the original network.

10.3 Summing Up

Self-stabilization abstracts the ability of a protocol to tolerate catastrophic faults

that stop. On the other hand, the cost of self-stabilization is often low. Thus self-
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stabilization can provide a cheap way to improve the fault-tolerance of network pro-

tocols.

Local checking can be used to design e�cient, stabilizing protocols. The resulting

protocols can be proved correct in a systematic way. The overhead of local checking can

be piggybacked on existing keep-alive tra�c between network nodes. Local checking

may prove to be a useful debugging tool because it provides a continuous check of

system predicates, and violations can be logged.

Our research into stabilization and local checking has helped us better understand

existing protocols, both stabilizing and non-stabilizing. For instance, in the process of

understanding Global Correction, we realized that a Global Reset protocol provides

a mating relation that is a generalization of the guarantees of Data Link protocols.

We also saw that many existing protocols use a special form of local checking that we

called one-way checking.

Whitehead once said that the interest of a generalization is the interest of a road for

those who know what travel is; and the pleasure of the road has its roots in the labor

of the journey. After struggling to understand many examples of stabilizing protocols,

we have begun to appreciate the simplicity of understanding provided by such concepts

as local checking and counter ushing. They have helped us to see things a little more

clearly and to travel a little distance. We hope that our readers will go much further.
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Appendix A

Notation

We summarize notation that is commonly used in this thesis. Other de�nitions can

be found using the index. For example, if the notation for Cu;v refers to a UDL, the

de�nition of a UDL can be found by using the index.

� fu; vg: For an pair of neighboring nodes u and v, this denotes the unordered

pair corresponding to the directed edge (u; v). This is useful in de�ning a partial

order on unordered pairs of nodes.

� AjL: For any automaton A and any subset L of the states of A, AjL is the

automaton that is identical to A except that the set of start states of AjL is L.

� Cu;v: The Unit Capacity Data Link (UDL) corresponding to directed edge (u; v)

in a topology graph.

� Conj(L): For any link predicate set L, Conj(L) denotes the conjunction of the

predicates in L.

� N (t): For any network automaton N , N (t) is the automaton that is identical to

N except that the link and node delays in N (t) are equal to t.

� Qu;v: The packet stored on the UDL corresponding to directed edge (u; v) in a

topology graph. If the value of the variable is nil, then there is no packet stored.

� queueu[v]: A queue of packets for outgoing edge (u; v) in the node automaton

corresponding to node u. See the de�nition of a node automaton.
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� xqueueu[v]: The concatenation of Qu;v and queueu[v]. Only used in some proofs.

Can be the read as the extended queue at node u corresponding to neighbor v,

� U(A): For any automaton A, U(A) is the automaton that is identical to A except

that the set of start states of U(A) is equal to the set of states of A. Thus U(A)

creates a UIOA from an IOA.

The following symbols are used frequently to denote the following quantities

� <: A partial order on a set of local predicates.

� �: An execution of an automaton

� aj: The j-th action in a behavior or execution.

� �: A behavior of an automaton.

� f : A reset function.

� G: A graph or a topology graph.

� L: A predicate (set of states) of an automaton.

� Lu;v A local predicate for edge (u; v)

� L: A set of local predicates.

� N : A network automaton.

� N+: An augmented network automaton.

� P : A packet alphabet.

� s: A state of an automaton. A state with a subscript like si often denotes the

i-th state in an execution.

� t: A time. Times with subscripts like tn, tp denote special constants; many of

these are listed in the index.
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Appendix B

Proofs for Chapter 5

Let N+ = Augment(N ;L; f). We will use s and ~s to denote states of N+. In deriving

time bounds recall that all locally controlled actions at nodes take tn time; also for

any link all actions have upper bound tl.

B.1 Any Execution of N+ is in�nite

Our �rst lemma states that all executions of N+ are in�nite and hence in all execu-

tions of N+, time grows without bound. This follows because we have ruled out the

possibility of so-called Zeno executions in our model (see Chapter 2). We will assume

this implicitly in what follows without making explicit reference to this lemma.

Lemma B.1.1 Any execution � of N+ is in�nite.

Proof: Suppose not. Then there is some �nal state s of � after which no action takes

place. Consider any channel Cu;v. If s:Qu;v = nil, then a Freeu;v action is enabled;

but s:Qu;v = p 6= nil, then a Receiveu;v(p) action is enabled. Both cases contradict

the assumption that s is a �nal state.

Notice also that since N+ is a UIOA, any su�x of an execution of N+ that begins

with a timed state is also an execution of N . We will assume this implicitly when we

apply some of the lemmas and claims described below.
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B.2 Basic Properties of links

The �rst lemma states that once a link is drop-free (see De�nition 5.6.7), it remains

drop-free.

Lemma B.2.1 For any (u; v) and any transition (s; �; ~s) of N+, if s 2 Fu;v, then

~s 2 Fu;v.

Proof: If s:freequ[v] = true then since s 2 Fu;v, s:Qu;v = nil. Thus the only action

that can cause ~s:Qu;v 6= nil is a Sendu;v(p) event that also sets ~s:freequ[v] = false.

If s:freequ[v] = false then the the only action that can cause ~s:freequ[v] = true is a

Freeu;v event which in turn can only occur if s:Qu;v = ~s:Qu;v = nil.

The next lemma says that (u; v) becomes drop-free after the �rst action that sends

a packet to Cu;v, or the �rst signal from Cu;v that it is free.

Lemma B.2.2 For any edge (u; v) and any execution �, (u; v) is drop-free in all states

of � that follow a Freeu;v or a Sendu;v(p) action.

Proof: After a Freeu;v action, Qu;v = nil, and after a Sendu;v(p) action, freequ[v] =

false. Hence if ~s follows either of these actions in �, then si 2 Fu;v. The lemma follows

from the stability of Fu;v (Lemma B.2.1).

Once a link is drop-free we can be sure that all packets sent on the link will be

delivered.

B.3 Time Bounds for Correction Phases

Recall the de�nition of a correction phase on a link from 5. This section builds up to

a few important time bounds that are useful in the main body of the proof.

Only the last two lemmas are important. The remaining claims are only useful

in proving the last two lemmas. In the following claims, when we say that an event

occurs within time t in execution �, we mean that the event occurs within time t of

the �rst state in �.

The �rst claim says that a packet on a link will be delivered in tl time.
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Claim B.3.1 For all executions � and any (u; v), if in the initial state, Qu;v = p 6= nil,

then a Receiveu;v(p) event occurs within tl time units.

The next claim says that a sender will know that a link is free in 2tl time. Also

after this period, the link will be drop-free. (Intuitively it takes tl time units to deliver

any packet on the link, and tl time units to deliver the Free signal to the sender.)

Claim B.3.2 For all executions � and any (u; v), within 2tl time units there is a state

s such that s:freequ[v] = true and (u; v) is drop-free in s.

Proof: By Claim B.3.1 in tl time units after the �rst state of �, there must be a

state s, such that s:Qu;v = nil. Now we have two cases. First, suppose within tl

time units after s a Sendu;v(p) event occurs. Then in the state preceding this event,

freequ[v] = true and Qu;v = nil and we are done. On the other hand if the �rst case

does not occur, then Qu;v = nil for tl time units after s. Hence in tl time units after

s a Freeu;v action must occur, resulting in a state ~s such that ~s:freequ[v] = true. By

Claim B.2.2, (u; v) is drop-free in ~s.

The next claim bounds the time before a response will be sent. Note that in the

code, responses are sent continuously even without waiting for a request. This helps

avoid deadlock in arbitrary initial states. We rely on the matching process to weed

out meaningless responses.

Claim B.3.3 Response Time: For all executions � and any leader edge (u; v), there

must be some Sendv;u(presp) action in � that occurs in 3tn + 4tl time units.

Proof: FromClaim B.3.2, within 2tl time, there is a state s such that s:freeqv[u] = true.

If queuev[u] is empty for tn time units after s, then a Sendv;u(presp) will occur in this

period. If not, queuev[u] becomes non-empty within time tn after s, which enables the

sending of a data packet. In this case, within 2tn time units after s, a Sendv;u(pdata) will

occur, resulting in a state ~s in which turnv[u] = response. FromClaim B.3.2, in 2 tl time

units after ~s, there is a state s0 such that s0:freeqv[u] = true and turnv[u] = response.

Finally, in tn time units after s0, a Sendv;u(presp) will occur.

The next claim bounds the time before a new phase will start on a link.
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Figure B.1: Summary of the proof of Claim B.3.5.

Claim B.3.4 For all executions � and any leader edge (u; v), within 2tn + 2tl time

units there is a state in which phaseu[v] = true.

Proof: Assume phaseu[v] = false in the initial state of � or we are done trivially.

From Claim B.3.2, within 2tl time, there is a state s such that s:freequ[v] = true. If

queueu[v] is empty for tn time units after s, then a Sendu;v(preq) action occurs within

this period, resulting in a state in which phaseu[v] = true. On the other hand, suppose

that queueu[v] becomes non-empty within time tn after s. Then a Sendu;v(pdata) event

will occur within 2tn time units after s, resulting in a state in which phaseu[v] = true.

The next claim bounds how long it can take for a phase on a link to complete once

it has started.

Claim B.3.5 For all � and any leader edge (u; v), within 4tn + 10tl time units there

is a state in which phaseu[v] = false.

Proof: The proof is summarized in Figure B.1. We assume the claim is false, so

phaseu[v] = true for 4tn + 10tl time units after the start of �. First, from Claim B.3.2

in 2tl time, there is a state s such that both (u; v) and (v; u) are drop-free in s. Thus
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any any requests and responses that are sent in states after s will be delivered to the

corresponding receiver.

From Claim B.3.2, within 2tl time after s, there is a state s
0 such that s0:freequ[v] =

true. Thus a a Sendu;v(preq) action is enabled in s
0. Thus within tn time units after

s
0 a Sendu;v(preq) action occurs. In tl time units after this Sendu;v(preq) action, a

Receiveu;v(preq) action occurs resulting in a state say s
00. Also in all states after s00,

countv[u] = countu[v]. Then by Claim B.3.3 in 3tn + 4tl after s
00 a Sendv;u(presp)

event occurs with presp:count = countu[v]. Finally, another tl time units after this

event, a Receivev;u(presp) event occurs with presp:count = countu[v]. In the state

immediately after this event, phaseu[v] = false. This contradicts the assumption that

phaseu[v] = false for 4tn + 10tl time units after the start of �.

All the previous claims are only useful in proving Lemma 5.6.5 and Lemma 5.6.6.

We now prove Lemma 5.6.6.

Proof: First assume that l(u; v) = u. Now we consider two cases. If s0:phaseu[v] =

false then by Lemma B.3.4, within 2tn + 2tl time after s0, there is a state si in which

si:checku[v] = true. However, the action before si must be a Sendu;v(pdata) event. (The

only other action that sets checku[v] = true is a Sendu;v(preq) action, but such an action

is not enabled if queueu[v] is non-empty and phaseu[v] = true.) If s0:phaseu[v] = true,

then by Lemma B.3.5 within 4tn + 10tl after s0 we reach a state in which phaseu[v] =

false and we are back to the previous case. Thus in both cases, a Sendu;v(pdata) occurs

within tp after s0.

Now suppose that l(u; v) = v. Once again we have two cases. Suppose s0:turnu[v] =

data. From Claim B.3.2, within 2tl time after s0, there is a state si such that

si:freeqv[u] = true and si:turnu[v] = data. Thus within tn time after si a Sendu;v(pdata)

event occurs. If s0:turnu[v] 6= data, then by Lemma B.3.3, we see that in at most

3tn + 4tl after si, a Sendv;u(presp) event occurs that will result in state in which

turnu[v] = data. Then we are back to the �rst case. In both cases, a Sendu;v(pdata)

occurs within tp after s0.

B.4 Proof that Clean Edges remain Clean

The following claim is useful in determining how and when the counter values stored

in the links and the receiver can change. Recall that we used unde�ned when there is
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no counter value stored on a link.

Claim B.4.1 In any execution, and for any leader edge (u; v), the only action that

can add a new element that is not unde�ned to countset(u; v) is a Sendu;v(preq) action.

Proof: The only other actions that a�ect countset(u; v) are a Receiveu;v(preq) ,

Sendv;u(presp) and Receivev;u(presp) , none of which can add any new values other

than unde�ned.

A nice property is that once an edge becomes clean, it remains clean. This is stated

in Claim 5.6.11. We now prove Claim 5.6.11.

Proof: We assume that leader edge (u; v) is clean in s and we show that it remains

clean in ~s. We will refer to the �ve predicates in the de�nition of a clean link by their

numbers. The stability of the �rst predicate follows directly from Lemma B.2.1.

If s:phaseu[v] = false and ~s:checku[v] = false, then no Sendu;v(preq) action can occur

which by Lemma B.4.1 is the only action that can change countset(u; v). Thus the

second predicate holds and the remaining three hold trivially. If s:phaseu[v] = false and

~s:checku[v] = true, then � must be a Sendu;v(preq) or a Sendu;v(pdata) event which will

cause Predicate 3 to hold. Also by Predicate 2 in state s, s:countu[v] 6= s:respcount(u; v)

and s:countu[v] 6= s:countv[u]. Since a Sendu;v(preq) or a Sendu;v(pdata) event does not

change countu[v] or respcount(u; v) or countv[u], Predicates 4 and 5 hold in ~s; also

Predicate 2 holds trivially.

If s:phaseu[v] = true and ~s:checku[v] = false, then � must be a Receivev;u(presp)

action and s:countu[v] = respcount(u; v) and ~s:countu[v] = (s:countu[v] + 1) mod 4.

Then we can use the fact that Predicates 3 and 4 hold in s to infer that Predicate 2

holds in ~s. Also Predicates 3, 4, and 5 hold trivially in ~s. If s:phaseu[v] = true and

~s:checku[v] = true, then the only actions of interest are Sendu;v(preq) (which makes

Predicate 3 true and leaves the others true), Sendv;u(presp) (which makes Predicate 4

true and leaves the others true) and a Receiveu;v(preq) . For a Receiveu;v(preq) , we

can use the fact that Predicate 3 holds in s to infer that Predicate 4 holds in ~s. All

other Predicates hold trivially. Note that � cannot be a Sendu;v(pdata) event because

s:phaseu[v] = true.
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B.5 How Links Become Quiet: Detailed Proofs

Recall the de�nition of a quietlink from Chapter 5. For (u; v) to be quiet, we want

to show not only that Lu;v holds by the end of the second (u; v) phase but also that

no more \reset" actions can occur after this point so that Lu;v will remain true. This

motivates the following de�nitions of a reset transition.

De�nition B.5.1 Consider any transition (s; �; ~s) of N+. We say that this transition

is a reset transition at node u with respect to node x if:

� s:modeu[x] = reset AND

� Either � is a Sendu;x(presp) or � is a Receivex;u(presp) and l(u; x) = x.

Intuitively, a reset transition at node u causes the local reset function f to be

applied to the state of u.

We start by proving 5.6.17, which is the stability condition for a quiet link. Proof:We

will show that each of the �ve predicates used to de�ne a quiet link (De�nition 5.6.15)

holds in ~s. We will refer to the four predicates using the numbers given in De�nition

5.6.15. The �rst predicate holds in ~s because of Claim 5.6.11.

Consider the second predicate. We wish to show that (~sju; ~sj(u; v); ~sj(v; u); ~sjv) 2

Lu;v. We know that the second predicate holds in s. We also know that if � is any

action of N , then the second predicate holds in ~s as well because Lu;v is a closed

predicate by de�nition. The only other transitions of N+ that can a�ect Lu;v are reset

transitions at u or v.

Suppose (s; �; ~s) is a reset transition at u. From the fact that the third predicate

holds in s, it is easy to see that (s; �; ~s) cannot be a reset transition at node u with

respect to v. Suppose (s; �; ~s) is a reset transition at node u with respect to some

neighbor x 6= v. Let e denote the leader edge corresponding to edge (u; x). Then e

is not quiet in state s. From the hypothesis, we infer that fu; xg 6< fu; vg. Thus by

the stability condition for local correctability, and since ~sju = f(sju; x), we infer that

the second predicate holds in ~s even if (s; �; ~s) is a reset transition at u. A similar

argument works if (s; �; ~s) is a reset transition at v.
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We can infer that the third predicate holds in ~s from the fact that the third, fourth

and �fth predicates hold in s. The only actions to consider are Receivev;u(presp) and a

Receiveu;v(preq) . We can infer that the fourth predicate holds in ~s from the fact that

the third and fourth predicates hold in s. The only action to consider is a Sendu;v(preq)

action.

Consider the �fth predicate. Let X be the predicate Qu;v = presp and presp:count =

countu[v]. The only actions that can change the truth or falsity of predicate X are

Sendv;u(presp) or Receivev;u(presp) . Suppose that either � is a Sendv;u(presp) action

and s:countu[v] 6= s:countv[u] OR � is a Receivev;u(presp) action. Then X will become

false in ~s and the �fth predicate holds trivially. On the other hand, suppose � is

a Sendv;u(presp) action and s:countu[v] = s:countv[u] Thus X will become true in ~s.

However, in this case, from the de�nition of a clean link, s:Qu;v 62 Pdata. Thus � will

make the �fth predicate hold in ~s.

Thus, suppose that X is true in s and also in ~s. The only other actions to consider

are actions that change the state of sju. We know that if � is any action of N , then the

�fth predicate holds in ~s as well because Lu;v is a closed predicate by de�nition. The

only other transition of N+ that can a�ect the �fth predicate is a reset transition at u.

Suppose (s; �; ~s) is a reset transition at node u with respect to some neighbor x 6= v.

Let e denote the leader edge corresponding to edge (u; x). Then e is not quiet in state

s. From the hypothesis, we infer that fu; xg 6< fu; vg. Thus by the stability condition

for local correctability, and since ~sju = f(sju; x), we infer that the �fth predicate holds

in ~s even if (s; �; ~s) is a reset transition at u.

Next we show the required liveness condition: that a leader edge (u; v) will become

quiet in bounded time if all leader edges less than (u; v) are already quiet.

In the rest of this section, we prove Lemma 5.6.18, which describes how and when

links become quiet. A quick overview of this section can be obtained by skimming

Claim B.5.4, Figure B.2, De�nition B.5.7 and the last three lemmas in the section.

We start by proving some more detailed properties of the local snapshot and reset

protocols during a clean phase. For all the claims and lemmas in this section, we �x

an execution � of N+ and a leader edge (u; v). When we refer to a (u; v) phase we

mean a (u; v) phase in �. When we refer to the code, we mean the code in Figures 5.6

and 5.7.
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Figure B.2: More detailed structure of a clean phase

Since neither the mode or the counter at the leader can change except at the end

of a phase it makes sense to talk of the mode and counter value of a phase.

De�nition B.5.2 Consider any clean (u; v) phase P with �rst state r. Then we use

mode(P) to denote r:modeu[v] and count(P) to denote r:countu[v].

Claim B.5.3 For all states s in a clean (u; v) phase except the last state, s:countu[v] =

count(P) and s:modeu[v] = mode(P).

Proof: From the code, the values of countu[v] and modeu[v] can only change at the

end of the phase.

Figure B.2 shows the structure of a clean phase in more detail for some leader

edge (u; v). The next claim formalizes the intuition behind Figure B.2 and de�nes two

important states within a phase: the midpoint and the penultimate state.

Claim B.5.4 Any clean (u; v) phase P contains the following four actions in the order

shown:

� A Sendu;v(preq) action with preq:count = count(P) and preq:mode = mode(P).
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� A Receiveu;v(preq) action with preq:count = count(P) and preq:mode = mode(P).

� Exactly one Sendv;u(presp) action with presp:count = count(P) and

presp:node state = mjv, where m is the state immediately following this action.

We will call m the midpointphase!midpoint of the phase.

� Exactly one Receivev;u(presp) action with presp:count = count(P) and presp:node state =

mjv, where m is the midpoint of the phase. We will call the state immediately

before this action, the penultimate statephase!penultimate state of the phase.

Proof: The four actions are shown in Figure B.2 as a, b, c, and d respectively. The

midpoint and penultimate states are also marked.

Informally, the claim follows from two facts. First since both (u; v) and (v; u) are

drop-free in all states of P any Sendu;v(p) action in P must be followed by a state

in which Qu;v = p. (i.e., any packet sent on channel Cu;v will be stored in the link.).

A similar statement holds for link (v; u). The second fact is that, by de�nition, at

the start of a clean phase, countu[v] 62 countset(u; v). Thus at the start of the phase,

there are no potentially confusing requests or responses numbered with the value of

the counter at the sender. This ensures, for instance, that when a response presp is

received at u with presp:count = countu[v], then presp was sent in the phase. Similarly

it ensures that when a request preq is received with preq:count = countu[v], then the

request was sent in the phase.

The formal argument is quite tedious. We start by proving the last statement in

the claim and then working backwards to prove the other three. Let's sketch the �rst

part of the argument.

We know that P can only end with aReceivev;u(presp) with presp:count = countu[v].

Thus in the state s0 before this action, respcount(u; v) = countu[v]. But in the �rst

state of P, we know that since P is clean, respcount(u; v) 6= countu[v]. Thus there must

have been a Sendv;u(presp) action in P. Also, there can be only one such action in P:

any earlier Sendv;u(presp) action would have caused the phase to have ended earlier;

no later Sendv;u(presp) action can occur because Qv;u 6= nil for all remaining states in

the phase except the last state. If the state after the only Sendv;u(presp) action is m,

then from the code presp:node state = mjv. Similar arguments can be used to show the

remainder of the claim.
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In Figure B.2, in all states following b and before action c, modev[u] = modeu[v].

Informally, this is becausemodev[u] is set to the mode carried in the request packet and

cannot change until action c occurs at which point modev[u] is changed to snapshot.

Then modev[u] remains at this value till the end of the phase. Formally:

Claim B.5.5 Consider a clean (u; v) phase P with midpoint m. Then in the state

before m, modev[u] = modeu[v] and in all remaining states in P, modev[u] = snapshot.

Proof:After the �rstReceiveu;v(preq) action in P,modev[u] becomes equal tomodeu[v].

The value ofmodev[u] can only change due toReceiveu;v(preq) actions and Sendv;u(presp)

actions. However, future Receiveu;v(preq) actions in P cannot change modev[u] be-

cause from the de�nition of a clean link, preq:count = countv[u]. After the �rst (and

only, see Claim B.5.4) Receivev;u(presp) action, modev[u] = snapshot and remains at

that value till the end of the phase.

The following de�nition is convenient:

De�nition B.5.6 The leader edge corresponding to an edge (u; v) is (u; v) if l(u; v) =

u and (v; u) if l(v; u) = v.

In order to guarantee correction or checking at end of a (u; v) phase, we need

restrictions on the states of links adjacent to either u or v. Otherwise, concurrent

checking/correction on these adjacent links may invalidate the checking/correction

done in the (u; v) phase.

De�nition B.5.7 We will call a (u; v) phase P well-behaved if P is clean and for

all states s in the phase and for all fw; xg < fu; vg, the leader edge corresponding to

fw; xg is quiet in s.

Now in a well-behaved phase, the response contains the state of v at the midpoint.

However, the response is received in the penultimate state. Despite the fact that the

state of v recorded in the response is \old", the recorded state is stil useful in the

following precise sense.

Claim B.5.8 Phase Invariant: Consider any clean (u; v) phase P with midpoint

m and penultimate state s0. Then for all states r in the interval [m; s0], the following

predicates hold in r:
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� r:Qv;u = presp and presp:count = count(P).

� For any y: If (y;nil;nil; presp:node state) 2 Lu;v then (y;nil;nil; rjv) 2 Lu;v

Proof: The �rst part of the claim follows directly from Claim B.5.4. We establish the

second predicate by induction on the length of the interval [m; s0]. First, this predicate

is true in m because m:Qv;u = presp and presp:node state =mjv by Claim B.5.4.

Next, assume the second predicate holds in some state r0 before r and consider the

transition (r0; �; r). The only actions of interest are the actions that change the state

of v. If � is any action of N , then the second predicate holds in r as well because Lu;v is

a closed predicate. The only other transitions of N+ that can a�ect the state of v are

reset transitions at v. We �rst see that (r0; �; r) cannot be a reset transition at node

v with respect to u. Suppose (r0; �; r) is a reset transition at node v with respect to

some neighbor x 6= u. Let e denote the leader edge corresponding to fv; xg. Then e is

not quiet in state r0. But since the phase is well-behaved, we infer that fv; xg 6< fu; vg.

Thus by the stability condition for local correctability, and since rjv = f(r0jv; x), we

infer that the second predicate holds in r.

We can now state two lemmas that explain why the local snapshot and reset pro-

cedures work correctly. Let us call a snapshot phase a well-behaved phase P such that

mode(P) = snapshot. Similarly a reset phase is a well-behaved phase P such that

mode(P) = reset. The �rst lemma states that if Lu;v does not hold at the end of a

snapshot (u; v) phase, then at the end of the phase modeu[v] = reset. This ensures

that the next (u; v) phase will be a reset phase.

Lemma B.5.9 For any snapshot (u; v) phase P with last state s the following is true.

If (sju; sj(u; v); sj(v; u); sjv) 62 Lu;v, then s:modeu[v] = reset.

Proof: Let s0 be the penultimate state immediately before s in P. The action just

before s is a Receivev;u(presp) action. Since s
0 is the penultimate state of a snapshot

phase, modeu[v] = snapshot and Qv;u = presp and presp:count = countu[v] in s
0.

Thus, from the code, sju = s
0ju and sjv = s

0jv (i.e., the basic states of nodes u and v

remain unchanged after the Receivev;u(presp) action.). Next, from the fact that (u; v)

is clean in s
0, we deduce that sj(u; v) = s

0j(u; v) = nil. Also, after a Receivev;u(presp)

action sj(v; u) = nil.
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Thus if (sju; sj(u; v); sj(v; u); sjv) 62 Lu;v then (s0ju;nil;nil; s0jv) 62 Lu;v. But by the

phase invariant (Claim B.5.8) if (s0ju;nil;nil; s0jv) 62 Lu;v then we can be sure that

(s0ju;nil;nil; presp:node state) 62 Lu;v. Thus if (sju; sj(u; v); sj(v; u); sjv) 62 Lu;v then

(s0ju;nil;nil; presp:node state) 62 Lu;v. Hence, from the code of the Receivev;u(presp)

action it is easy to see that s:modeu[v] = reset.

The second lemma states that at the end of a (u; v) reset phase, (u; v) is quiet.

Lemma B.5.10 For any reset (u; v) phase P with last state s, (u; v) is quiet in s.

Proof: Let s0 be the state immediately before s in P. The action just before s must

be a Receivev;u(presp) action. Since s
0 is the penultimate state of a reset phase,

modeu[v] = reset and Qv;u = presp and presp:count = countu[v] in s
0. Let m be the

midpoint of P and m
0 be the state immediately before m in P. By Claim B.5.5,

m
0
:modev[u] =m

0
:modeu[v] = reset, and hence presp:node state = f(m0jv; u).

Now from the correction property of a local reset function, (f(s0ju; v);nil;nil; f(m0jv; u) 2

Lu;v. Since presp:node state = f(m0jv; u), (f(s0ju; v);nil;nil; presp:node state) 2 Lu;v.

But by the phase invariant, Claim B.5.8, this implies that (f(s0ju; v);nil;nil; s0jv) 2

Lu;v. But by similar arguments as in the proof of the previous lemma: sj(u; v) = nil,

sj(v; u) = nil, and sjv = s
0jv. However, since s

0
:modeu[v] = reset, sju = f(s0ju).

Together, these equations imply that (sju; sj(u; v); sj(v; u); sjv) 2 Lu;v.

Next, s:modeu[v] = s:modev[u] = snapshot by Claim B.5.3 and Claim B.5.5. Also,

since (u; v) is clean in state s
0, if s:Qu;v = preq, then preq:count = s:countv[u]. Now

it is easy to verify now that all �ve predicates used in the de�nition of a quiet link

(De�nition 5.6.15) hold in state s.

We are now ready to prove Lemma 5.6.18. The proof is almost immediate from

the last two lemmas. We recall the statement of Lemma 5.6.18. If every leader edge

(w; x) < (u; v) is quiet in some state si of some execution � of N+jC, then (u; v) is

quiet in some state that occurs within 3 � tp of si in �.

Proof: First from the hypothesis and Lemma 5.6.17, every (u; v) phase in � is well-

behaved. Consider the �rst (u; v) phase P in � that starts after state si. If mode(P) =

reset, then we know from Lemma B.5.10 that at the end of P, (u; v) is quiet. If

mode(P) = snapshot, then we know from Lemma B.5.9 that at the end of P,modeu[v] =

reset. Consider the next (u; v) phase in �, say P 0. Since modeu[v] only changes at the
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end of a phase, mode(P 0) = reset. Thus by Lemma B.5.10, (u; v) is quiet at the end

of P 0.

Hence there is some state sj that occurs before the end of the second (u; v) phase

that follows si in � and such that (u; v) is quiet in sj . Thus by the phase rate lemma,

Lemma 5.6.5, sj must occur within 3tp time units after si in �.
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Appendix C

The AAG reset protocol

In this chapter, we describe why three phases were used in the original AAG protocol

[AAG87] and also describe the changes that were required to convert the AAG protocol

into the reset protocol described in Chapter 7. We also show that the mating relation

provided by the AAG protocol is not transitive.

C.1 Why three phases are used in the AAG proto-

col

The AAG reset protocol [AAG87] is much more conservative than the Simple Reset

Protocol about allowing a node to to return to Ready mode.

The point of all the conservatism in the AAG protocol is as follows. The use of

three phases ensures that if reset requests stop being made, all nodes will eventually

return to Ready mode. The AAG protocol makes this guarantee even in dynamic

networks. The additional rules the AAG protocol uses to work in dynamic networks

are remarkably simple. Suppose a link from node u to node v fails. If node v is node

u's parent (in the abort tree), node u takes over as the root of the abort tree; if node

u is expecting an ack from node v, node u assumes it has got an ack from v. Finally,

when a link from u to v comes up, nothing special is done!

Here is an intuitive explanation of why three phases are used in the AAG protocol.
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Each execution � of the reset protocol can be used to induce work intervals at

nodes. Let us call a work interval at a node u, a maximal subsequence of � during

which node u is not in Ready mode. Thus from the point of view of node u, each

execution � can be divided into work intervals followed by Ready intervals (intervals

during which u is in Ready mode.) Now each work interval at node u can be considered

to be \caused" by an Abort packet from a neighbor v (in which case we say that the

work interval at u has as its parent a work interval at v) or by a reset request (in

which case, we say that the work interval at u has no parent). Thus, starting from an

execution �, we can assign each work interval at each node to a tree of work intervals.

We claim that each tree of work intervals has a height of at most n, where n is

the number of nodes in the graph. This follows if we can show that any work interval

tree can contain at most one work interval from any given node. This brings us to

the crucial observation. Consider any work interval tree T in �. Let Ir be the work

interval corresponding to the root. The use of three phases guarantees us that there

is some state in Ir that is contained in all the work intervals contained in T . This is

the state in which r sends Ready packets to all its children. But that implies that a

given node u cannot have two distinct work intervals in T because these two disjoint

work intervals do not share a common state. Hence the height of T is at most n.

Thus, each root interval can \cause" at most one work interval at any node u. But

each root interval corresponds to either a reset request (or to a link failure in the case

of dynamic networks). Thus the number of work intervals at a node is at most the

number of reset requests (plus the number of topology changes in the case of dynamic

networks). Thus if the number of reset requests (and topology changes) is �nite, there

will only be a �nite set of work intervals at each node. Next, it is possible to show

that each work interval terminates in O(n) time by using induction on the height of

the abort tree. We combine the last two observations to prove the causality property

{ in �nite time after all reset requests (and topology changes) stop, all nodes return

to Ready mode.

It is interesting to return to the simple reset protocol (SRP). Consider an execution

� of SRP that begins in a \bad state" as shown in Figure 7.5. Suppose we construct

work interval trees from execution �. The result is that we get a single work interval

tree of in�nite height. Each work interval ends in �nite time but there are an in�nite

number of work intervals at each node!
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C.2 Overview of the changes required for stabiliza-

tion

In a non-stabilizing setting (e.g. [AAG87], bu�ers like bu�eru[v] are modelled by

unbounded queues. However, just as in the case of links, stabilizing reset protocols

must use bounded size queues if they are to stabilize in bounded time. Our solution

is for v to use a single bu�er to store messages from u, and to require that v sends a

special � � Ack packet whenever it removes a message from the bu�er. This special

packet is not needed in the original AAG protocol that uses unbounded queues.

The �rst step in making this protocol stabilizing is to make it locally checkable. A

clear problem with the AAG protocol is that it will deadlock if in the initial state some

parent edges form a cycle. As in stabilizing spanning tree algorithms [AKY90, AG90],

we mend this aw by maintaining a distance variable at each node, such that a node's

distance is one greater than that of its parent. Speci�cally, distance is initialized to 0

upon reset request, and its accumulated value is appended to the abort packets. Thus

we encode an abort packet as a tuple (Abort; d), where d is a distance.

Next, we list all the local predicates that are necessary to ensure correct operation

of the Reset protocol. Note that a signi�cant advantage of our approach is that all we

have to do is to prove that all local predicates eventually hold. Once we do that we can

rely on the correctness of the original protocol. However, since a rigorous correctness

argument for the original protocol did not exist (as far as we knew), we produced a

correctness argument anyway.

To ensure that the local predicates are closed predicates, we use the heuristic of

removing unexpected packet transitions. Recall from Chapter 6, that to do this we

add checks before processing any packet arriving at the node. We check whether this

packet could have possibly been sent when the link subsystem (on which the packet

arrived) is in a good state. Two checks we have added (which were not needed in the

AAG protocol) are: when an Ack arrives, a node checks whether the Ack expected

before processing it; when a Ready packet arrives, a node accepts it only if it is in

Converge mode and the packet has come from the node's parent.

The use of the distance variable introduces a new problem. Since the distance �eld

has a maximum value, say n0, we have to consider the case of a node u that receives an

(Abort; n0) packet from neighbor v. If u is in Ready mode, u cannot simply accept v
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as its parent and set its own distance to be one greater than n0 since n0 is the maximum

value. Instead, in our code, u pretends that it has received a reset request before the

(Abort; n0) packet. Thus u will �rst become a root and send Abort packets to all

its neighbors; then it will send back an ack to v. We call this a spurious reset request

action.

Since the new action we have added is just a combination of two existing actions

in the original protocol, the new action preserves all local predicates and consistency

conditions of the original protocol. However, it does slightly complicate the proof of

termination (and hence of the causality condition). Clearly, if the reset protocol can

keep producing such \spurious reset requests" the protocol may never terminate even

if all real reset requests stop. Luckily, it is easy to show that within linear time after all

local predicates of the original protocol hold, no (Abort; n0) packets can be received.

Thus spurious reset requests stop in linear time, and the termination proof is only

slightly more complicated.

Next we have to design a local correction action for links, that is taken when a

violation of the predicates is detected. The main di�culty about designing a correcting

strategy is making it local, i.,e., to ensure that when we correct a link we do not

a�ect the correctness of any other link. An interesting heuristic for this purpose is

to notice that protocols designed for dynamic networks (like [AAG87]) had to deal

with link failures and recovery. Now when a link fails and then immediately recovers,

the original protocol must have established the local predicates for the link that failed

without a�ecting the correctness of the other links. Thus the local correction procedure

we use is essentially identical to the combined code in [AAG87] that is invoked when

a link fails and recovers. This seems to be a powerful heuristic in general.

C.3 Mating Relation is not Transitive

Consider the reset protocol described in Chapter 7 (or the protocol described in

[AAG87]) when all local predicates hold. We use the scenario shown in Figure C.1

to show that the mating relation between signal intervals at neighboring nodes is not

transitive. Thus the reset protocol may cause inconsistent states of the user protocol

during initial signal intervals. However, the mating relation between �nal intervals

is indeed transitive. The original paper [AAG87] showed an example in which the
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A B C

READYABORT from C

ACK to C

m1

m2

m3 from C
ABORT

ABORT

ABORT

ACK
ACK

ACK from A

m3 to C

ABORT to A

mode(A) = ready

mode(A) = converge

mode(C) = ready

Figure C.1: Counterexample to Show that Mating Relation is not Transitive

mating relation was not transitive; however, the original paper used an optimization

(in which Abort packets were only sent on edges on which messages had either been

sent or received in the last signal interval). Thus it was not clear whether the problem

was due to the optimization. In fact, the simple counterexample in [AAG87] does not

work as soon as we remove the optimization.

However, we show in Figure C.1 that there is a (more complicated) counterexample.

In Figure C.1 there are three nodes A, B and C that are connected in a cycle

(not shown). The vertical axis represents time; time increases as we go downwards.

Because this is a cycle, there is a link between A and C. When A sends a packet to

C (or vice versa), we show this by showing an arrow leaving A and going o� the left
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of the page. We then depict the packet receipt at C by an arrow coming in to C from

the right end of the page. Thus in the second event at C, C sends an Abort packet

to A which is received as the second event at A.

In the initial state, mode(A) = Converge and parentA = B. Thus A is waiting for

a Ready message from B that is sent out at the start of the execution. Assume that

after B has sends out the Ready packet, B does a Signal event immediately and so

mode(B) = Ready at the start of the execution. We assume that mode(C) = Ready

and that there is no other packet in transit in the initial state. Clearly this is a valid

initial state.

The �rst event at C is that C sends a user message (say m1) which is received

by B and then delivered. Immediately after this B sends a user message m2 to A.

Shortly after this, a reset request occurs at both B and C. This causes B to send an

Abort packet to A and C, and C to send an Abort packet to A and B. The Abort

packet sent from C to A arrives before the Ready packet arrives at A. Thus A will

send an Ack back. Similarly B sends an Ack immediately back to C. The net result

is that by the time A receives its Ready packet, C is already in Ready mode. We

also assume C has done a signal event immediately after going to Ready mode. Next

the message m2 sent by B arrives at A and C sends a third user message m3 which is

received by A. All this happens before the Abort packet in transit from B arrives at

A.

The net result is as follows. C sends two messages m1 and m3 in two di�erent

signal intervals at C, call them SC and S0
C. Message m1 is received in a signal interval

say SB at B. Node B then sends a message m2 in signal interval SB that is received

in a signal interval (say SA at A.) Finally the message sent by C in S0
C is also received

in SA.

By the de�nition of the mating relation, messages can only be received from a

unique mate at a neighbor. Thus SC mates to SB and SB mates to SA. Also S
0
C mates

to SA. If the mating relation were transitive, SC would mate to S0
C which is impossible.

The signi�cance of this counterexample is that arguments like \making a reset

request guarantees a fresh start of the application protocol" do not work. If the

application is doing any general form of checking, it may detect an inconsistent state

and keep making reset requests, leading to non-termination. For example, if we were

to use the global snapshot protocol due to [KP90] to check the application and then
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use our stabilizing reset, the protocol may never terminate! Our stabilizing reset is

still useful in a number of cases. For instance, (Chapter 8) when used in conjunction

with a local snapshot protocol that checks for closed local predicates. In any case,

termination of the resulting protocol requires careful argument.

Another signi�cant thing about the counterexample is that it shows that our pair-

wise de�nition of a mating relation between neighbors is probably the only statement

that one can make about the non-�nal intervals of a reset protocol. The original speci-

�cation of [AAG87] used a state-based speci�cation. It seems hard to specify this weak

safety property of non-�nal intervals in terms of states as opposed to using an external

behavior speci�cation. In either, case [AAG87] only needed to specify the behavior

in the �nal interval. For stabilizing applications, we must specify the behaviors in

non-�nal intervals.

It is interesting to note that the reset protocol of Arora and Gouda [AG90] (after

adaptation to a message passing model) is likely to ensure a transitive mating relation.

This is because it does a reset protocol on a tree and only the root (e�ectively) sends

out the quivalent of Abort packets. Of course, our stabilizing protocol can be �rst

used to construct a spanning tree, after which we do another reset which is guaranteed

to work from a single root outwards.
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Appendix D

Proofs for Reset Protocol in

Chapter 7

D.1 Proving that the Local Predicates of the Reset

Protocol are Closed

Recall the de�nition of Lu;v in De�nition 7.6.3.

Our strategy for showing that Lu;v is closed is as follows. If we had to consider every

action we would have a large number of cases to consider. However, each transition

only a�ects a small number of variables. Thus we �rst isolate the transitions that can

a�ect each variable. This reduces the number of cases we have to consider.

First, we need to de�ne the key transitions. Recall that the code in Figure 7.7 has

certain code paths marked as VR, V A, DA, IA, FA, RA, and RR. We now de�ne

these more precisely. It is helpful to refer to the code of Figure 7.7 in understanding

the following de�nitions.

A informal description of these transitions is as follows. A VR (for Valid Request)

transition is a reset request that causes a node to change its mode to Abort. A VA (for

Valid Abort) transition is the receipt of an (Abort; d) packet with d < n
0 that causes

a node to change its mode to Abort. A DA (for Distance Invalid Abort) transition is

the receipt of an (Abort; n0) packet that causes a node to change its mode to Abort.
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An IA (for Invalid Abort) transition is the receipt of an (Abort; �) packet that

does not cause a node to change its mode to Abort. A FA (for Final Ack) transition

is the receipt of an Ack packet that causes say node u to send an Ack packet to its

parent. It is not hard to see that the ack that was received must have been the last

ack that node u was waiting for. A RA (for Root Ack) transition is the receipt of an

Ack packet at a root node that causes the root node to change its mode to Ready. A

RR (for Regular Ready) transition is the receipt of an (Ready) packet at a node that

causes the node to change its mode to Ready. More carefully:

De�nition D.1.1 We call a transition (s; a; s0) of R:

� A VR transition at u if a = Requestu and s:mode(u) = Ready.

� A VA transition at u if a = Receive�;u(Abort; d) and d < n
0 and s:mode(u) =

Ready.

� A VA transition at u with respect to v if a = Receivev;u(Abort; d) and s:mode(u) =

Ready and d < n
0.

� A DA transition at u with respect to v if a = Receivev;u(Abort; d) and s:mode(u) =

Ready and d = n
0.

� An IA transition at u with respect to v if a = Receivev;u(Abort; d) and s:mode(u) 6=

Ready.

� A FA transition at u with respect to v if a = Receive�;u(Ack) and s:mode(u) =

Abort and s:parentu = v and s
0
:mode(u) = Converge.

� A RA transition at u if a = Receive�;u(Ack) and s:mode(u) = Abort and

s
0
:mode(u) = Ready.

� A RR transition at u if a = Receive�;u(Ready) and s:mode(u) 6= Ready and

s
0
:mode(u) = Ready.

In the following lemma we will say that a Boolean condition b is established by some

transition (s; a; s0) if b is false in s but true in s
0. Recall that we wish to prove that

each Lu;v is closed. The next lemma makes this job easier, by isolating the transitions

that can establish various Boolean conditions used in the de�nition of Lu;v.
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We start with the observation that we do not need to consider the transition DA

explicitly because a DA transition at u with respect to v can be simulated by two other

transitions: �rst a VR transition at u followed immediately by an IA transition at u

with respect to v. Thus in the following lemmas and proofs we assume that the DA

transition does not exist,

Lemma D.1.2

1. acku[v] = true can only be established by a VR or a VA transition at u.

2. A1(u; v) = true can only be established by a VR or a VA transition at u.

3. A2(u; v) = true can only be established by a VA transition at v with respect to u.

4. A3(u; v) = true can only be established by a IA or a FA transition at v with

respect to u.

5. A2(u; v) = false can only be established by a FA transition at v with respect to u.

6. acku[v] = false can only be established by a transition (s; a; s0) such that s:acku[v] =

true and a = Receivev;u(Ack).

7. parentu = v can only be established by a VA transition at u with respect to v.

8. mode(u) = Converge can only be established by a FA transition at u with respect

to some neighbor x.

9. mode(u) 6= Converge can only be established by a RR transition at u.

10. C1(u; v) = true can only be established by a IA or a FA transition at u with

respect to v.

11. C2(u; v) = true can only be established by a transition (s; a; s0) such that s:ackv[u] =

true and a = Receiveu;v(Ack).

12. C3(u; v) = true can only be established by a RR or RA transition at v.

13. C2(u; v) = false can only be established by a RR or RA transition at v.
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Proof: By inspection of the code.

Notice that in the code we often enqueue packets to queueu[v]. But since queueu[v]

is �nite (it only has room for 5 packets), this allows the possibility of a transition

(s; �; s0) causing a packet to be dropped if queueu[v] is full in the previous state. The

next lemma shows that packets will not be dropped if Lu;v holds in s. We will tacitly

assume this lemma in what follows without making explicit reference to it.

Lemma D.1.3 For any leader edge (u; v) and any transition (s; a; s0) of R, if s 2 Lu;v.

then in s0, Q holds. Also if as part of the code for a, a packet p is enqueued on queueu[v]

then p will be added to the tail of queueu[v] in s
0.

Proof: To show Q, we show that when a packet of a certain type is in xqueueu[v],

then no action will enqueue a packet of the same type. The �ve types of packets to

consider are (Abort; �) packets, Ack packets, Ready packets, ��Ack packets and

�-messages. The second part also follows from this claim because xqueueu[v] has room

for �ve packets.

Suppose there is an (Abort; �) packet in xqueueu[v] in s. Then (byA) s:mode(u) =

Abort and hence this cannot be a VA or VR transitions at u. But these are the only

transitions that can enqueue another (Abort; �) packet to xqueueu[v] (see Lemma D.1.2,

item 2).

Suppose there is an Ack packet in xqueueu[v] in s. Then, (by B) A1(v; u) = false

and A2(v; u) = false in s. Thus (by Lemma D.1.2, item 4), this cannot be a transition

that can enqueue another Ack packet to xqueueu[v].

Suppose there is aReady packet in xqueueu[v] in s. Then (by G) either s:mode(u) =

Ready or there is an Abort in xqueueu[v] after the Ready packet. In the former case,

(by Lemma D.1.2, item 12) this this cannot be a transition that can enqueue another

Ready packet to xqueueu[v]. In the latter case, (by A) s:acku[v] = true, and (by B)

A3(u; v) is false in s
0. Thus again (by Lemma D.1.2, item 12) this this cannot be a

transition that can enqueue another Ready packet to xqueueu[v].

Suppose there is a � message in xqueueu[v] in s. Then (byH) in s, freemu[v] = false.

Thus even if a = Sendmu;v(m), the code will not enqueue m on xqueueu[v].

Suppose there is a � �Ack message in xqueueu[v] in s. Then (by H), bu�eru[v]

must be empty and so the code cannot queue a ��Ack on xqueueu[v].
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We now proceed to prove that each of the predicates from A to H are closed in a

series of four lemmas: Lemma D.1.4, Lemma D.1.5, Lemma D.1.6, Lemma D.1.7, and

Lemma D.1.8.

Lemma D.1.4 For any leader edge (u; v) and any transition (s; a; s0) of R, if s 2 Lu;v.

then in s
0, A and B hold.

Proof: We consider four cases:

� Suppose acku[v] = false in s but acku[v] = true in s
0. Then (by A) A1(u; v),

A2(u; v), and A3(u; v) are false in s. Also by Lemma D.1.2, the transition must

be a VA or a VR transition at u which causes A1(u; v) to become true and leaves

A2(u; v) and A3(u; v) as false in s
0.

� Suppose acku[v] = false in s and s0. Then (by A) A1(u; v), A2(u; v), and A3(u; v)

are false in s. Also by Lemma D.1.2, items 1 and 2, A1(u; v) cannot hold in s
0

without making acku[v] = true hold in s0. Also by Lemma D.1.2, item 3, A2(u; v)

cannot become true in s
0 if A1(u; v) is false in s. Also by Lemma D.1.2, item 4,

A3(u; v) cannot become true in s
0 if A1(u; v) and A2(u; v) are false in s. Thus

A1(u; v), A2(u; v), and A3(u; v) are false in s
0.

� Suppose acku[v] = true in s but acku[v] = false in s
0. By Lemma D.1.2, item 6,

a = Receivev;u(Ack) and so A3(u; v) is true in s. By B, A1(u; v) and A2(u; v)

are false in s. Also, (by Q) there is exactly one Ack packet in s:xqueuev[u] and

hence A1(u; v), A2(u; v), and A3(u; v) are false in s
0.

� Suppose acku[v] = true in s and s0. Then (by A) exactly one of A1(u; v),A2(u; v),

or A3(u; v) is true in s. If A1(u; v) is true in s, then A1(u; v) becomes false

in s
0 (by Lemma D.1.2, items 3 and 4) i� exactly one of A2(u; v) or A3(u; v)

becomes true in s0. If A2(u; v) is true in s, then A2(u; v) becomes false in s
0 (by

Lemma D.1.2, item 5) i� A3(u; v) becomes true in s
0. Finally if A3(u; v) is true

in s, then A3(u; v) cannot become false in s
0 (by Lemma D.1.2, item 6) without

causing acku[v] = false in s
0, a contradiction.
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Lemma D.1.5 For any leader edge (u; v) and any transition (s; a; s0) of R, if s 2 Lu;v,

then C and D are true for (u; v) in s
0.

Proof: We consider cases:

� Suppose parentu 6= v in s0. Then C andD hold trivially in s0. Suppose parentu 6= v

in s and parentu = v in s
0. Then by Lemma D.1.2, item 7, this must be a VA

transition at u with respect to v. Thus s0:mode(u) = Abort, Thus A1(v; u) is

true in s and hence (by A) A3(v; u) = false in s and hence C1(u; v) is false in

s and hence in s
0. Also, (by A) ackv[u] = true in s and s

0 and hence C2(u; v) is

false in s
0. Next (by G and Q) we can infer that C3(u; v) is false in s and hence

in s
0. (This is because if C3(u; v) were true in s then (by G) there must be a

second (Abort; �) packet in xqueuev[u] which would violate Q.)

Thus in the remaining cases we assume that parentu = v in s and s0.

� Suppose mode(u) 6= Converge in s and s0. Then C1(u; v), C2(u; v), and C3(u; v)

are false in s. Also by Lemma D.1.2, item 10, C1(u; v) can become true in s
0

only if mode(u) = Converge in s
0. 1 By Lemma D.1.2, item 11, C2(u; v) can

become true in s
0 only if C1(u; v) is true in s. Finally by Lemma D.1.2, item

12, C3(u; v) can become true in s0 only if C1(u; v) or C2(u; v) is true in s. Thus

C1(u; v), C2(u; v), and C3(u; v) are false in s
0.

� Suppose mode(u) 6= Converge in s and mode(u) = Converge in s
0. Then (by C)

C1(u; v), C2(u; v), and C3(u; v) are false in s. Also by Lemma D.1.2, item 8,

a is a FA transition at u with respect to v. Thus after this transition, C1(u; v)

becomes true in s
0, and C2(u; v) and C3(u; v) remain false in s

0.

� Suppose mode(u) = Converge in s and mode(u) 6= Converge in s
0. Then by

Lemma D.1.2, item 9, a is a RR transition at u. Thus C3(u; v) is true in s;

hence (by D) C1(u; v) and C2(u; v) are false in s and s
0. Also, (by Q) there

is exactly one Ready packet in xqueuev[u] in s and this is removed after the

transition, and so C3(u; v) is false in s
0.

1Note that this cannot be an IA transition at u with respect to v because otherwise s:mode(u) =

Abort which together with s:parentu = v would violate A.
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� Suppose mode(u) = Converge in s and s
0. Then (by C and D) exactly one of

C1(u; v),C2(u; v), or C3(u; v) is true in s. First suppose C1(u; v) is true in s.

Then (by A) ackv[u] = true in s. Thus C1(u; v) becomes false in s
0 i� exactly

one of C2(u; v) or C3(u; v) becomes true in s
0. Also if C1(u; v) remains true in

s
0, then ackv[u] = true in s

0 by Lemma D.1.2, item 6. Thus by Lemma D.1.2,

items 11 and 12, C2(u; v) and C3(u; v) cannot become true in s
0.

Next, notice that since we have assumed that mode(u) = Converge in s, C1(u; v)

remains false in s0 (by Lemma D.1.2, item 10) if it is false in s. Suppose C2(u; v)

is true in s. Then C2(u; v) becomes false in s
0 (by Lemma D.1.2, item 13) i�

C3(u; v) becomes true in s
0.

Finally if C3(u; v) is true in s, then C3(u; v) cannot become false in s
0 without

causing mode(u) = Ready in s
0, a contradiction. Also by Lemma D.1.2, item 11

C2(u; v) cannot become true in s
0 since C1(u; v) is false in s.

Lemma D.1.6 For any leader edge (u; v) and any transition (s; a; s0) of R, if s 2 Lu;v,

then E and F are true for (u; v) in s
0.

Proof: First consider F. Suppose there is no (Abort; �) packet in xqueueu[v] in

s. Then if an (Abort; �) packet is in xqueueu[v] in s
0, then this must be a (by

Lemma D.1.2, item 2) VR or VA transition at u. However, after such a transi-

tion there is an (Abort; d) packet in xqueueu[v], where d = distu + 1. Suppose

there is a (Abort; d) packet in xqueueu[v] in s with d = s:distu + 1. Then (by A)

s:mode(u) = Abort. Now the only transitions that can change distu are VR or VA

transitions at u, but such transitions are not enabled in if s:mode(u) 6= Ready.

Now consider E and consider three cases.

� parentu 6= v in s
0: then E holds trivially.

� parentu 6= v in s but parentu = v in s
0: Then by Lemma D.1.2, item 7, a must

be a Receivev;u(Abort; d) event with s:mode(u) = Ready. But by F in s,

d = s:distv + 1. Thus in s
0, distu = distv + 1. and mode(u) 6= Ready.
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� parentu = v in s and s
0. If in s, C3(u; v) is true, then C3(u; v) can become

false in s
0 if a = Receivev;u(Ready), but in that case s0:parentu = nil. If in

s, distu = distv + 1 and mode(v) 6= Ready, then this transition cannot be a VR

or VA transition at v or u. But only such transitions can change either distv or

distu. Also if s
0
:mode(v) = Ready, then this must be a RR or RA transition at v

which results in C3(u; v) becoming true in s
0.

Lemma D.1.7 For any leader edge (u; v) and any transition (s; a; s0) of R, if s 2 Lu;v,

then G is true for (u; v) in s
0.

Proof: Suppose in s there is no p in xqueueu[v] such that p is either a Ready packet

or p is a �-message or p is a � �Ack. Then if there is such a packet in s
0, then, by

the code, s:mode(v) = Ready and we are done. Suppose in s there is a p in xqueueu[v]

such that p is either a Ready packet or p is a �-message or p is a ��Ack. Then by

G either there is an (Abort; �) packet in xqueueu[v] or s:mode(u) = Ready. Consider

the �rst case. Since the channel from u to v is FIFO, the (Abort; �) packet cannot

be removed from xqueueu[v] in s
0 without also removing packet p. Consider the second

case. Then if s0:mode(v) 6= Ready then this transition must be a VA or VR transition

at u which would result in adding an (Abort; �) packet to the end of xqueueu[v] in s
0.

Lemma D.1.8 For any leader edge (u; v) and any transition (s; a; s0) of R, if s 2 Lu;v,

then H is true for (u; v) in s
0.

Proof: We consider all the actions a that can a�ect this predicate. For each action

considered, a symmetrical argument holds for the action with u and v interchanged.

If a = Sendmu;v(m) and s:freemu[v] = false, then message m is dropped and there

is no change to the concerned variables. If a = Sendmu;v(m) and s:freemu[v] = true,

then there is no �-message in Mu;v in s and no � � Ack in s:xqueuev[u]. Also, (by

Qand H) there is at most one (Abort; �), Ack, or Ready packet in queueu[v] in s.

Since queueu[v] can store �ve packets, after this event m is placed in queueu[v] and

s
0
:freemu[v] = false and and there is no ��Ack in s:xqueuev[u].
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If a = Receiveu;v(m), m 2 �, then m is enqueued in bu�erv[u] and none of

the concerned variables change. Note that by H, bu�erv[u] is empty in s. If a =

Receiveu;v(Abort; �) and s:bu�erv[u] is empty in s, then there is no change to the

concerned variables. Suppose a = Receiveu;v(Abort; �) and s:bu�erv[u] contains a

message m in s or a = Receivemu;v(m). Then (by H) in s, freemu[v] = false, there

is no � � Ack in xqueuev[u], and no other message in Mu;v besides m in bu�erv[u].

Then in s
0, all variables remain unchanged except that bu�erv[u] becomes empty and

a ��Ack is added to s:xqueuev[u].

Similarly, if a = Receivev;u(� �Ack), then by Hin s, freemu[v] = false, there is

no � message in Mu;v and exactly one � �Ack in xqueuev[u]. The result is that the

��Ack is removed from xqueuev[u] and freemu[v] becomes true in s
0.

D.2 Proving that the Reset Protocol Behaviors are

Timely, Causal, and Consistent

We will show that every behavior of RjL is timely and causal and satis�es the consis-

tency property. We will do so in the next �ve subsections. First, we prove a series of

useful preliminary lemmas. In the second subsection, we prove that every behavior is

timely. In the third subsection, we prove that every behavior satis�es the consistency

property. In the fourth subsection, we prove that every behavior is causal. Finally, we

tie everything together and show that every behavior � of RjL is in RP.

We will assume this claim implicitly in what follows.

D.2.1 Useful Claims and Lemmas for Reset Protocol

The �rst lemma is the important Termination Lemma that states that the mode will

become Ready in O(n) time.

Lemma D.2.1 Termination Lemma Consider an execution � = s0; a1; s1; . . . of

RjL. For any state si there is another state sj that occurs within O(n) time after si

and such that sj:mode(u) = Ready.
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Proof: A formal argument can be made based on the intuitive \proof" given in

Section 7.7.1. We omit it here.

The next lemma is the Signal Lemma. The lemma states that once the status of a

node u is o� (recall that this means that either signalbitu = true or modeu 6= Ready)

then a Signalu event is guaranteed to occur in linear time.

Lemma D.2.2 Signal Lemma: For any execution � of RjL, if si:status(u) = o�

then a Signalu event occurs within O(n) time after si.

Proof: Suppose si:mode(u) = Ready and si:signalbitu = true. Then it is easy to see

from the code that a Signalu action is enabled and will remain enabled until it occurs

in constant time after si.

The only other possibility is that si:mode(u) 6= Ready. Let sk be the �rst state

after si such that sk:mode(u) = Ready. We know from Lemma D.2.1 that such a

state exists and sk occurs within O(n) time after si. Then sk�1:mode(u) 6= Ready and

sk:mode(u) = Ready. Thus from the code it is easy to see that sk:signalbit = true.

Now we are back to the �rst case and hence a Signalu event must occur in constant

time after sk.

The next claim is a variation of the Signal Lemma. It states that the status of a

node u cannot change from o� to on until the next Signalu event.

Claim D.2.3 For any execution � of RjL, if si:status(u) = o� and sk:status = on

and k > i, then there is a Signalu event between si and sk in �.

Proof: From the code, the only way status(u) can change from o� to on is by a Signalu

event. Note that any action that changesmode(u) to Ready also sets signalbitu to true,

which leaves status(u) unchanged.

Next we show that any packet queued on the outbound queue for a link will be

delivered in constant time. This follows from the fact that the outbound queue has a

size of at most 4.

Claim D.2.4 Consider any pair of neighbors u; v and any execution �. If there is a

packet p in xqueueu[v] in some state si of �, then in constant time after si there is a

Receiveu;v(p) event. (i.e., any packet in either the outbound queue for a link or on

the link itself is delivered within constant time.)
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Proof:We know from Lemma 5.6.6 that the packet at the head of queueu[v] is placed in

Qu;v (i.e., is placed in the channel) in tp time and that any packet in Qu;v is delivered in

tl time. The lemma follows since queueu[v] has a size of at most 4, and tp is a constant.

Next, we show that within constant time the signalbit variable at a node becomes

false.

Claim D.2.5 Consider any node u; v and any execution �. If signalbitu = true in

some state si of �, then in constant time after si there is a state in which signalbitu =

false.

Proof: This follows because if signalbitu = true in si, the Signalu event is enabled

and signalbitu will remain true unless the Signalu event occurs (see code). Thus since

each Signalu action is in a separate class, a Signalu action will occur in constant

time after si, resulting in a state (see code) in which signalbitu = false.

The next claim (which is used to show the consistency property) states the follow-

ing. Suppose there is some interval in which the mode of a node u is Ready at the start

and end of the interval but is not Ready somewhere within the interval. Consider any

neighbor v of u. Then there must be some point within the interval during which an

Abort packet arrives at v; also at this point any messages in transit from u to v have

been \ushed" out.

Claim D.2.6 Consider any pair of neighbors u; v and any execution � of RjL. Con-

sider any three states si, sj and sk in � such that i < j < k and si:mode(u) = Ready,

sj :mode(u) 6= Ready and sk:mode(u) = Ready. Then there is some j
0 such that

i < j
0
< k and aj0 is a Receiveu;v(Abort; �) action and sj0 :Mu;v does not contain

any �-message.

Proof: Let sl be the �rst state after si in which si:mode(u) 6= Ready. Such a state

must exist by hypothesis and it must be that l � j. Thus by the code, A3(u; v) is

true in sl (i.e., there is an abort packet in xqueueu[v] in sl). Let sj0 be the �rst state

after sl in which A3(u; v) is false (i.e., the �rst state after sl in which the abort packet

is delivered). We know from Claim D.2.4 that such a state exists. Also, we know

from A, that in the interval [sl; sj0 ], mode(u) 6= Ready. Thus j0 < k. Also aj0 must
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be a Receiveu;v(Abort; �) event and following such an event it is easy to see from

the code that mode(v) 6= Ready and that bu�erv[u] is empty. Also we know that in

the interval [sl; sj0 ], since mode(u) 6= Ready no �-message was added to Mu;v. Also

any �-message in xqueueu[v] in sl must have been removed from xqueueu[v] before sj0

because xqueueu[v] is a FIFO queue. Thus sj0 :Mu;v does not contain any �-message.

The next claim (which is also used to show the consistency property) is a mild

corollary of the previous claim. Suppose there is some interval in which mode(u) =

Ready at the start of the interval, and u's signal bit is false in the interval, and u does

a signal at the end of the interval. Then the mode of u must be Ready at the end of

the interval and must have been not Ready somewhere within the interval. Thus the

previous claim applies, along with its consequences.

Claim D.2.7 Consider any pair of neighbors u; v and any execution � of RjL. Con-

sider any state si such that si:mode(u) = Ready and another state si0, i
0 � i, such that

si0 :signalbitu = false. Suppose that after si0 there is a Signalu action ak. Then there

is some j where i < j < k such that:

� aj is a Receiveu;v(Abort; �) action.

� sj:status(v) 6= on

� sj:Mu;v does not contain any �-message.

Proof: In the state just before ak, signalbitu = true but in sk, signalbitu = false.

Let sl be the �rst state before sk�1 in which signalbitu = false. Also l � i
0 because

si0 :signalbitu = false. Thus from the code it must be that sl:mode(u) 6= Ready and

sl+1:mode(u) = Ready. The lemma follows by using Claim D.2.6 to the three states si,

sl and sl+1 and by observing that in any state that follows a Receiveu;v(Abort; �)

action, mode(v) 6= Ready and hence status(v) 6= on.

Notice that the requirements of the previous claim are satis�ed if status(u) = on

at the start of the interval and there is a signal at u at the end of the interval. We

state this corollary to the previous claim as a separate claim as it is used often.
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Claim D.2.8 Consider any pair of neighbors u; v and any execution � of RjL. Con-

sider any state si such that si:status(u) = on. Suppose that after si there is a Signalu

action ak. Then there is some j where i < j < k such that:

� aj is a Receiveu;v(Abort; �) action.

� sj:status(v) 6= on

� sj:Mu;v does not contain any �-message.

Proof: Follows from Claim D.2.7.

The next three claims are all used to prove the timeliness property.

Consider any two neighboring nodes u and v. The next claim states that if the

status of both u and v is on for a su�ciently large constant, then u must deliver a free

event (indicating that u is willing to accept a new message to be sent to v) within this

time.

Claim D.2.9 Consider any pair of neighbors u; v and any execution � of RjL. Con-

sider any state si. Then in constant time after si either a Freemu;v occurs or there is

a state sj such that either sj :status(u) = o� or sj:status(v) = o�.

Proof: Suppose that status(u) = on and sj :status(v) = on for c time after si, where

c is a large enough constant to make the following argument work. By H, in state si

either:

� freemu[v] is true.

� xqueuev[u] contains a ��Ack.

� Mu;v contains a �-message.

In the �rst case, assuming c is large enough, status(u) = on for a constant time

after si which causes a Freemu;v to occur in constant time after si.

In the second case, if there is a ��Ack in xqueuev[u] then by Claim D.2.4 within

constant time a Receivev;u(��Ack) event occurs which causes freemu[v] to become

true, leaving us in the �rst case.
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For the third case, we can use an argument similar to the second case to show that

in constant time after si, a Receiveu;v(m) event occurs which causes m to be placed

in bu�erv[u]. Assuming again that c is large enough this implies that in constant time

after si either a Receivemu;v(m) event or a Receiveu;v(Abort) event occurs. Either

of these events will cause a ��Ack to be placed in xqueuev[u], which brings us back

to Case 2.

Consider any two neighboring nodes u and v. The next claim states that if the

status of both u and v is on for a su�ciently large constant after a message is sent

from u to v, then the message will be delivered to v within this time.

Claim D.2.10 Consider any pair of neighbors u; v and any execution � of RjL..

Consider any safe Sendmu;v(m) action in �. Then in constant time after this action

either a Receivemu;v(m) occurs or there is a state sj such that either sj :status(u) =

o� or sj :status(v) = o�.

Proof: Similar to proof of Claim D.2.9. Let us denote the safe Sendmu;v(m) event by

aj . Suppose that status(u) = on and sj:status(v) = on for c time after aj , where c is a

large enough constant to make the following argument work. Then since aj is a safe

send it is easy to see from the code that freemu[v] is true in the state before aj. Also

by our assumption, status(u) = on in the state after aj . So m is placed in queueu[v]

in the state after aj . Thus by Claim D.2.4, in constant time after aj, m is placed in

bu�erv[u] and if status(v) = on for constant time after this, a Receivemu;v(m) event

occurs.

D.2.2 Every Behavior of RjL is timely

We prove that every behavior � of RjL is timely by showing each of the four properties

in De�nition 7.3.3. Corresponding to the four properties, we have four lemmas.

We will leave the �rst property of a timely behavior (i.e., that all messages received

after O(n) time are normal) to the end of this section. We start by showing the second

property.

Lemma D.2.11 Periodic Free Events: Consider any pair of neighbors u; v and

any execution � of RjL and any state sj in �. Then either a Freemu;v(m) occurs
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in constant time after sj or a Signalu action occurs in O(n) time after sj or or a

Signalv action occurs in O(n) time after sj .

Proof: We know from Claim D.2.9 that for some constant c, in c time after sj a

Freemu;v(m) occurs or there is a state sk such that either sk:status(u) = o� or

sk:status(v) = o�. In the �rst case, we are done. In the second case, we know from

the Signal Lemma (Lemma D.2.2), that within O(n) time after sk either a Signalu

or a Signalv event occurs,

Next, we prove that RjL satis�es the third property of a timely behavior.

Lemma D.2.12 Timely Message Delivery: Consider any pair of neighbors u; v

and any execution � of RjL. Consider any aj that is a safe Sendmu;v(m) action in �.

Then either a Receivemu;v(m) occurs in constant time after aj or a Signalu action

occurs in O(n) time after aj or or a Signalv action occurs in O(n) time after aj .

Proof: We know from Claim D.2.10 that for some constant c, in c time after aj a

Receivemu;v(m) occurs or there is a state sj such that either sj:status(u) = o� or

sj :status(v) = o�. In the �rst case, we are done. In the second case, we know from

the Signal Lemma (Lemma D.2.2) that within O(n) time after sj either a Signalu or

a Signalv event occurs,

Next, we prove that RjL satis�es the fourth property of a timely behavior.

Lemma D.2.13 Signals at a Node induce Signals at Neighbors: Consider any

pair of neighbors u; v and any execution � of RjL. There is some constant c such that

for every Signalu event aj that occurs at time greater than �:start + c � n there is a

Signalv event that occurs in linear time before or after aj .

Proof: First, within linear time of the start of �, there must be some state sh in which

mode(u) = Ready (by the Termination Lemma). In constant time after sh, there must

be some state si in which signalbitu = false by Claim D.2.5. Consider any Signalu

action aj that occurs after state si. In the state before aj, signalbitu = true but in state

si, signalbitu = false. Consider the �rst state sk before sj in which signalbitu = false.

By Claim D.2.5, sj occurs in constant time after sk. Also since sk+1:signalbitu = true,
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the code tells us that that sk:mode(u) 6= ready. But we know that sh:mode(u) =

Ready. Consider the �rst state sl before sk in which mode(u) = Ready. By the

Termination Lemma, sl occurs in linear time before sk.

Thus we have identi�ed two states sl and sk, with k � l such that both states occur

before the Signalu event aj and such that slmode(u) = Ready and sk:signalbitu = false.

By applying Claim D.2.7 to sl, sk and aj we know that there is some state sm in the

interval [sl; sj] in which status(v) 6= on. Thus by the Signal Lemma, a Signalv event

occurs within linear time after sm. But since sl occurs within linear time before sj,

the Signalv event occurs in linear time before or after aj.

Finally, we prove that RjL satis�es the �rst property of a timely behavior. This

requires more work and so we start with two claims. The claims are quite intuitive.

The �rst claim states that in any su�x of an execution, all except possibly the �rst

packet received on a link are normal packets that have been sent in this execution.

Claim D.2.14 Consider any pair of neighbors u; v and any execution � of RjL. Let

si be the �rst state in � such that there is no �-message in si:Mu;v. Consider any ak

that is a Receiveu;v(m) event that occurs after si in �. Then:

� There is a Sendu;v(m) action aj before ak and such that there are no Receiveu;v(�)

events in between aj and ak. We will call the earliest such aj the send correspond-

ing to ak in �.

� In state sj (i.e., the state immediately after aj in �), status(u) = on and in state

sk, status(v) = on

� In all states in the interval [sj ; sk�1], m is in Mu;v.

Proof: It is clear from the code that in sk�1, m must be in bu�eru[v] and hence m is

in Mu;v. But since in si, Mu;v is empty, there must be a Sendu;v(m) action between si

and sk�1 which added m to Mu;v. Let aj be the �rst such action that occurs before ak.

In the state immediately after aj by the code status(u) = on. Clearly, there cannot

be a Receiveu;v(�) action between aj and ak because (from H), Mu;v contains at one

most one message in any state. But a Receiveu;v(m) action is the only action that

can remove m from Mu;v and hence m is in Mu;v in the interval [sj; sk�1]. Also from

the code, in the state immediately after a Receiveu;v(m) action, status(v) = on.

316



Claim D.2.15 Consider any pair of neighbors u; v and any execution � of RjL and

any state si in �. Then there is some state sm that occurs in O(n) time after si such

that there is no �-message in sm:Mu;v.

Proof: From Lemma D.2.1, there is a state sj that occurs in O(n) time after si such

that sj:mode(v) = Ready. From Claim D.2.5, in constant time after sj there is a state

sj0 in which signalbitv = false.

From Lemma D.2.1, there is a state sk that occurs in O(n) time after sj0 such that

sk:mode(u) = Ready. From Claim D.2.5, in constant time after sk there is a state sk0

in which signalbitu = false.

From Lemma D.2.11, some event al occurs within O(n) time after sk0 , where al is

either a Freemu;v event or Signalu or a Signalv event. In the �rst case, we are done

by predicate H which shows that Freemu;v cannot occur unless Mu;v is empty. In the

second case al is a Signalu event, then by Claim D.2.7, there is some state sl0 in the

interval [sk; sl] such that there is no �-message in sk:Mu;v. If al is a Signalv event, then

by Claim D.2.7 there is a state say sl0 in the interval [sj; sl] such that sl0 :status(u) = o�.

Thus by the Signal Lemma (Lemma D.2.2), a Signalu event occurs within O(n) time

after sl0, which brings us back to the second case.

We can now show the �rst part of the consistency property (see De�nition 7.3.5),

that every message received after O(n) time is normal; it is almost immediate from

the last two claims.

Lemma D.2.16 Normal Receipt of Messages: Consider any any execution � of

RjL and any su�x  of � with �rst state s0. There is some constant c such that every

every receive event that occurs at time greater than s0:time+ c �n in � is normal. Also

if aj is any normal receive event and ai is the send corresponding to aj, then aj occurs

within O(n) time after ai.

Proof: Consider any pair of neighbors u; v. By Claim D.2.15, there is some sj that

occurs in O(n) time after s0 and such that there is no �-message in sj :Mu;v. Let us call

j the quiescent index for link (u; v). Further, let k be the largest quiescent index over

all possible links (u; v). Clearly sk occurs in O(n) time after s0. Also by Claim D.2.14,

all receive events that occur after sk in  are normal.

317



Also let aj be any normal receive event and ai be the send corresponding to aj. By

Claim D.2.14, in all states in the interval [si; sj�1], m is inMu;v. But by Claim D.2.15,

there is some state sk that occurs in O(n) time after si such that there is no �-message

in sk:Mu;v. Thus aj occurs within O(n) time after ai.

And now we come to the main result of this subsection:

Lemma D.2.17 Every behavior of RjL is timely.

Proof: Immediate from De�nition 7.3.3 and Lemmas D.2.16, D.2.13, D.2.11, and

D.2.12.

D.2.3 Every Behavior of RjL satis�es the consistency prop-

erty

We prove that every behavior � of RjL satis�es the consistency property by showing

each of the �ve properties in De�nition 7.3.5. We have the following preliminary claim

that is essential for proving the consistency property.

The claim states the following. Consider some interval and some node u and

suppose that the status of u is on at the start of the interval and the interval ends

with u receiving a normal message m from v. Suppose also that there is a Signalu

event in the interval. Then from Claim D.2.8 we know that there is some point within

the interval during which an Abort packet arrives at v and such that any messages

in transit from u to v have been \ushed" out. However. this claim goes further and

states that the point at which the Abort packet arrives at v occurs before v sends

message m.

Claim D.2.18 Consider any pair of neighbors u; v and any execution � of RjL. Con-

sider any i; j; k such that i < j < k. Suppose si:status(u) = on, aj is a Signalu event,

and ak is a normal receive event at u from v. Let ak0 be the send corresponding to ak.

Then there is some i < j
0
< k

0 such that status(v) 6= on and sj0 :Mu;v is empty.

Proof: By Claim D.2.8 applied to si and aj we know there is some j0 where i < j
0
< j

such that:
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� aj0 is a Receiveu;v(Abort; �) action.

� sj0:mode(v) 6= Ready

� sj0:Mu;v does not contain any �-message.

As long as we can prove that j0 < k
0 we are done. Suppose not. By A we know that

sj0 :acku[v] = true. But since ak is a receive action, sk:status(u) = on, and so we know

that sk:acku[v] = false. Let sl be the �rst state after sj0 such that sl:acku[v] = false.

Thus j0 < l < k. But we know from the code that acku[v] is only set to false after a

Receivev;u(Ack) event and so al must be a Receivev;u(Ack) event. But by B we

know that there is no Ack packet in Mv;u in state sj0 . Thus there must be some n,

j
0 � n < k such that an = Sendv;u(Ack). Intuitively, what we have shown is that in

the interval [sj0; sk] an ack packet must have been sent by v and received by u.

Now we can obtain the required contradiction. We will only sketch the rest of

the argument informally. Suppose for contradiction, that j0 � k
0. Then it must be

that the ack sent (in action an) was sent after the user message sent (in action ak0).

But then (essentially because the channels and queues are FIFO), the corresponding

user message receipt (i,e., action ak) must have occurred before the corresponding ack

packet receipt (call this action al). Thus k < l. Also, since j0 < k, we know that

k lies in the interval [sj0; sl�1]. But we know from A that in the interval [sj0 ; sl�1],

mode(u) 6= Ready since in this interval u is still waiting for an ack from v. But this

contradicts the fact that in a state sk immediately following a receive event such as

ak, mode(u) must be Ready.

Next, we show a lemma (see Figure D.1) which states (in essence) that messages

sent in a signal interval at v can be received in at most one signal interval at u;

conversely messages received in a signal interval at u could have been sent in at most

one signal interval at v. This will help establish that each signal interval at u can have

at most one mated signal interval at v.

Lemma D.2.19 Send Consistency: Consider any pair of neighbors u; v and any

execution � of RjL. Let aj and ak be any two normal receive events at u from v in �.

Let al and am be the send events corresponding to aj and ak respectively. Then there

is a Signalv event between al and am i� there is a Signalu event between aj and ak.
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Figure D.1: Send consistency: there is a signal between the two receives at u i� there is a signal between

the two corresponding sends at v.

Proof: Assume without loss of generality that j < k. Suppose there is a Signalv

event, say am0 between al and am. By Claim D.2.14, sl:status(v) = on. Then by

Claim D.2.8 there must be some p, l < p < m
0, such that sp:status(u) = o� and

Mv;u is empty. But by Claim D.2.14, Mv;u is non-empty in the interval [sl; sj ]. Thus

since p > l, it must be that p > j. Also p < m
0 and m

0
< m and by Claim D.2.14,

m < k. So p < k. Thus there is a state sp that occurs in the interval [sj; sk] in

which status(u) = o�. Also we know by Claim D.2.14 that sk:status(u) = on. Thus

by Claim D.2.3, a Signalu event must occur in the interval [sj; sk].

The reverse argument is slightly di�erent. Suppose there is a Signalu event, say ak0

between aj and ak. By the code, sj:status(v) = on. Thus by Claim D.2.18, applied to

sj , ak0 and ak we know that there is some j0 such that j < j
0
< m and sj0 :status(v) 6= on.

But since l < j, sj0 occurs in the interval [sl; sm] and status(v) = o�. Also we know

by Claim D.2.14 that sm:status(v) = on. Thus by Claim D.2.3, a Signalu event must

occur in the interval [sl; sm].

Next, we show a second lemma (see Figure D.2) which states (in essence) that a

signal interval at u cannot send messages to and receive messages from di�erent signal

intervals at v. This will help show that the mating relation is symmetric

Lemma D.2.20 Send-Receive Consistency: Consider any pair of neighbors u; v

and any execution � of RjL. Let aj be a normal receive event at u from v and let am

be a normal receive event at v from u. Let al and ak be the send events corresponding

to aj and am respectively. Then there is a Signalv event between al and am i� there

is a Signalu event between aj and ak.
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Figure D.2: Send-Receive consistency: there is a signal between the receive and the send at u i� there is

a signal between the corresponding send and receive at v.

Proof: Assume that k > j as shown in the Figure D.2. The other cases are similar.

Suppose there is a Signalu event, say ak0 between aj and ak. By Claim D.2.14,

sj :status(u) = on. Then by Claim D.2.8 there must be some p, j < p < k
0, such

that sp:status(v) = o�. Thus since p > j, it must be that p > l. Also p < k and

k < m. So p < m. Thus there is a state sp that occurs in the interval [sl; sm] in

which status(v) = o�. Also we know by Claim D.2.14 that sm:status(v) = on. Thus

by Claim D.2.3, a Signalv event must occur in the interval [sl; sm].

The reverse argument is slightly di�erent. Suppose there is a Signalv event, say

am0 between al and am. By the code, sl:status(v) = on. Thus by Claim D.2.18, applied

to sl, am0 and am we know that there is some p such that p < k and sp:status(u) 6= on

and such that sp:Mv;u does not contain a �-message. We claim that j < p. If not not

sp must lie in the interval [sl; sj] and in this interval we know that there is always a

�-message in Mv;u by Claim D.2.14. But this contradicts the fact that sp:Mv;u does

not contain a �-message.

Thus sp occurs in the interval [sj; sk] and status(u) 6= on. Also we know by

Claim D.2.14 that sk:status(v) = on Thus by Claim D.2.3, a Signalu event must

occur in the interval [sj ; sk].

We now show the third part of the consistency property (see De�nition 7.3.5).

Lemma D.2.21 Successful Sending of Messages: Consider any pair of neighbors

u; v and any execution � of RjL. Between any safe Sendmv;u(m) event and a later

Freemv;u event, there is either a Receivemv;u(m) event or a Signalv event.

321



Signal

Node u Node v

Signal

Final Interval
Final Interval

Figure D.3: Mating of Final Signal Intervals: Messages sent in a �nal interval can only be received in

another �nal interval.

Proof: Let us denote the Sendmv;u(m) event by ai and the Freemv;u event by ak.

Clearly l < k.

Thus, by the code status(v) = on in sk. Also by the code, freemv[u] = true in sk

and hence by H, Mv;u does not contain any �-message in sk.

Next, consider ai. Since ai is safe, by de�nition there must an action ah =

Freemv;u(m) such that h < i and such that there is no other Sendmv;u(�) action

between ah and ai. Thus, by the code freemv[u] = true in sh and si�1. Thus, by the

code, we see that either si:status(v) = o� or m belongs to Mv;u in si (i.e., the message

m is placed on the queue at v to send to u). But in the �rst case, we are done by

Claim D.2.3, which tells us there must be a Signalv event between si and sk.

So consider the second case where m belongs to Mv;u in si and si:status(v) = on.

But we know that in the later state sk, m does not belong to Mv;u. Now, from the

code, the only two actions that could remove m from Mv;u in the interval [si; sk] are a

Receivemv;u(m) event or a Receivev;u(Abort; �) event. In the former case, we are

done; so consider the latter case. Now, because si:mode(v) = on, we know fromA that

there is no (Abort; �) packet in si:xqueuev[u]. Thus there must have been an action

aj = Sendv;u(Abort; �) in the interval [si; sk]. From the code, sj :status(v) = o�. The

lemma now follows from Claim D.2.3, which tells us there must be a Signalv event

between sj and sk.

We now show the fourth part of the consistency property (see De�nition 7.3.5).

The lemma on which it is based is sketched in Figure D.3.
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Lemma D.2.22 Mating of Final Signal Intervals: Consider any pair of neighbors

u; v and any execution � of RjL. Let aj be a normal receive event at u from v in �

and al be the send corresponding to aj. Then there is no Signalu event after aj i�

there there is no Signalv event after al.

Proof: Suppose there is a Signalv event an after al. Then by Claim D.2.8, there is

a state sm between al and an such that sm:mode(u) 6= Ready and sm:Mv;u does not

contain any � messages. It follows from Claim D.2.14 that sm must occur after aj.

Thus there is a state after aj in which mode(u) 6= Ready. Thus by the Signal Lemma

(Lemma D.2.2), a Signalu event will occur after aj.

The reverse argument is similar but slightly simpler.

Lemma D.2.23 Mating Relation Preserves Temporal Ordering: Consider any

pair of neighbors u; v and any execution � of RjL. Suppose a signal interval Su at u

is mated to a signal interval Sv at v and a signal interval S0
u at u is mated to a signal

interval S0
v at v. Then if S0

u occurs later than Su then S
0
v occurs later than Sv.

Proof: Omitted. Follows, in essence, from the FIFO properties of the underlying

UDLs and the fact that Abort packets sent between signal intervals ush the links

and bu�ers of previously sent messages.

And now we come to the main result of this subsection:

Lemma D.2.24 Every behavior of RjL satis�es the consistency property.

Proof: We de�ne a signal interval at a node u in an execution � by analogy with

the de�nitions for behaviors. We de�ne two signal intervals Iu at u and Iv at v to be

mates if any normal message received in Iu was sent in Iv or vice versa. Lemma D.2.19

and Lemma D.2.20 show that the mating relation is well-de�ned and that any signal

interval at u can have at most one mate and that the relation is symmetric. The last

three conditions in De�nition 7.3.5 follow from Lemma D.2.21, Lemma D.2.22 and

Lemma D.2.23.
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D.2.4 Every Behavior of RjL is causal

We can now prove that the Reset protocol is causal. We �rst prove the �rst property

in De�nition 7.3.6.

Theorem D.2.25 Consider any execution � = s0; a1; s1; . . . of RjL. There is some

constant c such that every signal event ak that occurs at time greater than s0:time+ cn

is preceded by a request event aj such that ak:time� aj :time � cn.

Proof:A formal proof can be patterned after the intuitive argument given in Section 7.7.

Next, we prove the second property in De�nition 7.3.6.

Lemma D.2.26 Consider an execution � = s0; a1; s1; . . . of RjL. There is some

constant c such that a Signalu event occurs within cn time of any Requestu event.

Proof: We know from the code that in the state immediately following a Requestu
event, status(u) = o�. The lemma follows immediately from the Signal Lemma

(Lemma D.2.2).

And now we come to the main result of this subsection:

Lemma D.2.27 Every behavior of RjL is causal.

Proof: Immediate from De�nition 7.3.6 and Lemmas D.2.25 and D.2.26.

D.2.5 The Main Theorem

Finally, we can state our main theorem of this section, which follows from the main

lemmas of the last three subsections:

Theorem D.2.28 Every behavior of RjL is in RP.

Proof: Immediate from De�nition 7.3.7 and Lemmas D.2.17, D.2.24, and D.2.27.
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Appendix E

Dijkstra's Token Protocol as an

Example of Counter Flushing

In Chapter 10, we described a paradigm called counter ushing. We now show that Di-

jkstra's �rst example protocol in [Dij74] can be simply understood using this paradigm.

Dijkstra's �rst example is modelled by the automaton D2 shown in Figure E.1.

As in the previous example, the nodes (once again numbered from 0 to n � 1) are

arranged such that node 1 has node 0 and node 2 as its neighbors and so on. However,

in this case we also assume that Process 0 and n � 1 are neighbors. In other words,

by making 0 and n� 1 adjacent we have made the line into a ring. For process i, let

us call Process i� 1 (we assume that all arithmetic on indices and counters is mod n)

the anticlockwise neighbor of i and i+ 1 the clockwise neighbor of i.

Each node has a counter counti in the range 0; . . .n that is incremented mod n+1.

Once again the easiest way to understand this protocol is to understand what happens

when it is properly initialized. Thus assume that initially Process 0 has its counter set

to 1 while all other processes have their counter set to 0. Processes other than 0 are

only allowed to \move" (see Figure E.1) when their counter di�ers in value from that

of their anticlockwise neighbor; in this case, the process is allowed to make a move

by setting its counter to equal that of its anticlockwise neighbor. Thus initially, only

Process 1 can make a move after which Process 1 has its counter equal to 1; next,

only Process 2 can move, after which Process 2 sets its counter equal to 1; and so on,

until the value 1 moves clockwise around the ring until all processes have their counter

equal to 1.
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The state of the system consists of an integer variable

counti 2 f0; . . .ng, one for every process in the ring.

We assume that Process 0 and n � 1 are neighbors

In the initial state counti = 0 for i = 1 . . .n � 1 and count1 = 1

Move0 (*action for Process 0 only *)

Precondition: count0 = countn�1 (*equal to anticlockwise neighbor?*)

E�ect: count0 := (count0 + 1) mod (n+ 1) (*increment counter*)

Movei; 1 � i � n� 1 (*action for other processes*)

Precondition: counti 6= counti�1 (*not equal to anticlockwise neighbor?*)

E�ects:

counti := counti�1;(*set equal to anticlockwise neighbor*)

All actions are in a separate class

Figure E.1: Automaton D1: a version of Dijkstra's �rst example with initial states. The protocol does

token passing on a ring using nodes with n states.
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Figure E.2: In the good states for Dijktra's �rst example, the ring can be partitioned into 2 bands with

the token at the boundary.

Process 0 on the other hand cannot make a move until Process n � 1 has the

same counter value as Process 0. Thus until Process 1 sets its counter to 1, Process 0

cannot make a move. However, when this happens, Process 1 increments its counter

mod n+ 1. Then the cycle repeats as now the value 2 begins to move across the ring

(assuming n > 2) and so on. Thus after proper initialization, this system does perform

a form of token passing on a ring; each node is again considered to have the token,

when the system is in a state in which the node can take a move.

The good global states of the protocol can be sketched in Figure E.2. Notice that

the ring can be partitioned into 2 bands. All counter values within a band are equal

and the band that includes the top node has a counter value one higher than the lower

band. The token is at the boundary between the two bands; after that node makes a

move, the top band becomes larger and the lower band becomes smaller.

It is easy to see that the system is in a good state i� the following local predicates

are true.

� For i = 1 . . .n� 1, either counti�1 = counti or counti�1 = counti + 1.

� Either count0 = countn�1 or count0 = countn�1 + 1.
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The system is locally checkable but it does not appear to be locally correctable.

However, it does stabilize using a paradigm that we can call counter ushing. Even

if the counter values are arbitrarily initialized (in the range 0; . . . ; n) the system will

eventually begin executing as some su�x of a properly initialized execution. We will

prove this informally using three claims:

� In any execution, Process 0 will eventually increment its counter. Sup-

pose not. Then since Process 0 is the only process that can \produce" new

counter values, the number of distinct counter values cannot increase. If there

are two or more distinct counter values, then moves by Processes other than 0

will reduce the number of distinct counter values to 1, after which Process 0 will

increment its counter.

� In any execution, Process 0 will eventually reach a \fresh" counter

value that is not equal to the counter values of any other process. To

see this, note that that in the initial state there are at most n distinct counter

values. Thus there is some counter value say m that is not present in the initial

state. Since, process 0 keeps incrementing its counter, Process 0 will eventually

reach m and in the interim no other process can set their counter value to m.

� Any state in which Process 0 has a fresh counter value m is eventually

followed by a state in which all processes have counter value m. It is

easy to see that the value m moves clockwise around the ring \ushing" any

other counter values, while Process 0 remains at m. This is why we call this

paradigm counter ushing.

The net e�ect is that any execution of D1 eventually reaches a good state in which

it remains. The reader should compare our proof of this protocol with the general

description of counter ushing found in Chapter 10.
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