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Abstract

It is impossible to add a combinator to PCF to achieve full abstraction for models such as
Berry's stable domains in a way analogous to the addition of the \parallel-or" combinator
that achieves full abstraction for the familiar cpo model. In particular, we de�ne a general
notion of rewriting system of the kind used for evaluating simply typed �-terms in Scott's
PCF. Any simply typed �-calculus with such a \PCF-like" rewriting semantics is shown
necessarily to satisfy Milner's Context Lemma. A simple argument demonstrates that
any denotational semantics that is adequate for PCF, and in which certain simple Boolean
functionals exist, cannot be fully abstract for any extension of PCF satisfying the Context
Lemma. An immediate corollary is that stable domains cannot be fully abstract for any
extension of PCF de�nable by PCF-like rules.
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1 Introduction

A paradigmatic example of a functional programming language is PCF, Scott's simply
typed �-calculus for recursive functions on the integers [32]. Many categories of deno-
tational meaning are known to adequately reect the computational behavior of PCF in
a precise technical sense, namely, a PCF term evaluates to the numeral n i� it means
the integer n. But typically there are pairs of terms with distinct meanings that never-
theless are computationally indistinguishable in PCF. For example, with the semantics
based on cpo's, PCF must be extended with a \parallel-or" combinator in order to express
enough computations to be fully abstract, i.e., semantical distinctions and computational
distinctions between terms coincide [31, 30].

The problem of characterizing a fully abstract model of unextended PCF remains open
after nearly two decades, cf. [27, 8, 28, 36]. E�orts to construct spaces of \sequential"
functions corresponding to those de�nable in the original PCF without parallelism have
led to the discovery of a number of new domains suitable for denotational semantics.
Although none are fully abstract for PCF, one motivation for the development of spaces
such as the stable functions, bistable functions, sequential algorithms [5, 4, 8, 7, 15], and
most recently the strongly stable functions [13] was that they captured various aspects
of sequentiality and so seemed \closer" to full abstraction for unextended PCF than the
popular cpo model.

The stable function model in particular has a simple de�nition and attractive category-
theoretic properties. Its only apparent technical peculiarity is that stable domains of
functions are not partially ordered pointwise; in general, the stable ordering strictly re-
�nes the pointwise ordering. Nevertheless, just as for the cpo model, the elements of
stable domains of type � ! � are actually total functions from elements of type � to
elements of type � . Likewise, there is a natural notion of �nite and e�ective elements of
stable domains, and these domains yield an adequate least �xed-point model for PCF.
Further, they form a Cartesian Closed Category with solutions for domain equations [5].
This category was also independently discovered and used in constructing a model of
polymorphic �-calculus [16]. So the stable domains seem to o�er a setting for a theory
for higher-order recursive computation with many of the attractions of the cpo category.

However, one important result about cpo's is not known for stable domains, namely,
full abstraction with respect to some extension of PCF analogous to the parallel-or ex-
tension which Plotkin and Sazonov provided for the cpo model. What might a symbolic-
evaluator for an extended PCF look like if it was well matched|fully abstract|with the
stable model? We conclude that such an evaluator will have to be unusual looking: it
cannot be speci�ed by the kind of term-rewriting based evaluation rules known for PCF
and its extensions.

The signi�cance of this negative result hinges heavily on how drastic we judge it to
go beyond the scope of PCF-like rules. It is of course possible that some operational
behavior that we declare to be non-PCF-like, in our technical sense, will nevertheless
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o�er a useful extension of PCF for which stable domains are fully abstract. For example,
Bloom [10] provides such an extension for complete lattice models, though he goes on to
criticize the rather complex algorithmic speci�cation of the combinators in his extension.
(The general bene�ts of structured approaches to operational semantics and connections
to full abstraction are discussed in [26, 11].)

To illustrate the generality of our notion of PCF-like rules, we note that the standard
extensions of PCF by parallel-or and existential combinators are easily seen to be PCF-
like. For example, we can de�ne an evaluator for Plotkin's 9 constant [30] while remaining
within a term rewriting discipline, as follows. Let p : �! o be an \integer predicate"
variable, and use the rules:

9p ! cond (pn) tt 
;

9p ! cond (p
) 
 ff:

The resulting PCF-like language no longer has a conuent rewriting system, though it
remains single-valued, viz., every term rewrites to at most one numeral. In general, our
PCF-like rules need not even be single valued.

A substantial technical contribution of this paper is a simple, modest restriction on
the format of rewrite rules which is su�cient to guarantee Milner's Context Lemma [27]
for languages de�ned by such rules. Informally, this \Approximation" Context Lemma
requires that if two phrases M;N of the same syntactic functional type yield visibly
distinct computational outcomes when used in some language context, then there are
actual parameters of appropriate argument type, such that M and N each simply applied
to these arguments, yield visibly distinct computational outcomes. This property, more
perspicuously dubbed operational extensionality by Bloom [9, 10], has been identi�ed by
many authors as technically signi�cant in program semantics [37, 29, 24, 1, 18, 2, 35].
The key to the proof of the Context Lemma is a new Standard Reduction Theorem 25
for PCF-like rewrite systems.

Our work borrows much from Bloom [9, 10]. The second author raised the question
of whether there is a \reasonable" extension of PCF that would yield a fully abstract
evaluator for lattice models [33, 34]. In answering this question, Bloom emphasized how
the Context Lemma and full abstraction were incompatible with single-valued evaluators
for the lattice model. He also characterized a general class of consistent rewrite rules
that ensured the soundness of the Context Lemma. However, in order to encompass
the computational behavior of the 9 combinator, Bloom needed to develop an auxiliary
notion of \observation calculi".

Our PCF-like rules are, in an appropriate sense, as powerful as Bloom's observational
calculi, and strictly subsume the class of consistent rules. In particular, consistent rules
are necessarily conuent and hence single-valued; as Bloom remarks [9], introducing a
join combinator with simple multiple-valued rewrite rules yields a PCF extension both
fully abstract for the lattice model and also satisfying the Context Lemma. Our wish
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to simplify Bloom's criteria while dealing with nonconuent rewriting systems forced us,
however, to a rather elaborate theory of standard reductions.

As an aside, we also point out that it is questionable whether the (bi)stable and similar
domains are closer to full abstraction for PCF. In particular, although some operationally
valid equations that fail in the cpo model do hold, for example, in the stable model, we
note in Corollary 15 that the converse also happens: some equations that hold in the cpo
model fail in the stable model. The cpo, stable and likewise the bistable models thus
o�er information about the operational behavior of PCF terms that is not apparently
comparable, and it is hard to see how to judge which is a more accurate model.

The outline of our argument is as follows: in Section 2 we formulate the key concepts
of observational approximation, adequacy, and full abstraction in a fairly general setting.
Then in Section 3, Theorem 14, we give a short proof that any denotational semantics
that is adequate for PCF, and in which a certain simple Boolean functional exists, cannot
be fully abstract for extensions of PCF satisfying the Context Lemma. The Boolean
functional is obviously not continuous in Scott's sense, but it is stably continuous, and
so does appear in the stable model. We also formulate a Comparability Context Lemma
which applies to the bistable domains. Section 4 gives our general notion of term rewriting
systems of the kind used for symbolic evaluation of PCF terms. Then in Section 5, we
show that any such system de�nes an observational approximation relation that must
satisfy the Context Lemma [27]. An immediate corollary is Theorem 30 that there is
no extension of PCF de�ned by PCF-like rewriting rules for which the stable domain
semantics is fully abstract. A similar result for the bistable domains is announced but
not proved.

2 Adequacy and Full Abstraction

Concepts concerning program behavior, such as observational congruence, adequacy, and
full abstraction, can usefully be de�ned in a general setting consisting of:

� an arbitrary set L, called a language, whose elements,M;N; : : :, are called terms;

� partial operators C[�] on terms called contexts; and

� an arbitrary set O, called a notion of observation, whose elements are predicates
on terms called observations. When an observation is true of a term, the term is
said to yield the observation.

We will work with languages whose operational behavior is speci�ed by (possibly
nondeterministic) symbolic evaluation of terms, so we further assume a binary relation,
\evaluates to", on terms. For such languages, Oeval captures the familiar notion of ob-
serving the �nal output of an evaluation:

Oeval = f \evaluates to O" j O is an output termg:
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Here the output terms are those terms regarded as observable \output values". These
typically include the ground constants (integers, truth values, : : : ); �-abstractions and
�nite lists of output values might also be included.

There are other notions of observation based on evaluation. For instance, Olazy con-
sists of the single predicate true of exactly those terms whose evaluation can terminate.
And notions of observation can be based on semantics of terms, e.g.,

Oint = f\has the meaning of O" j O is an output termg:

In this paper, however, we will be mainly concerned with Oeval.

Any notion of observation induces a preordering on terms called observational approx-
imation. Intuitively, one term approximates another if, according to the chosen notion of
observation, the approximated term exhibits at least as much observable behavior when
used in any program as the approximating term.

De�nition 1 Let L be a language with a notion of observation O. A term M obser-
vationally approximates a term N , written M vobsN , if for all contexts C[�], whenever
C[M ] is a term yielding an observation from O, then C[N ] is a term yielding it as well.
M and N are observationally congruent , written M �obs N , i� M vobsN and N vobsM .

Observational approximation provides precise meaning for questions such as, \Does
my code meet a speci�cation?" or \Will my new implementation of a module change the
behavior of the program?"

In languages like PCF with applicative syntax and a suitable notion of closed terms,
analysis of observational approximation can be simpli�ed by appealing to a Context
Lemma:

De�nition 2 Let L be a language with a notion of observation O. We say a term M
applicatively approximates a term N , writtenM vappN , i� for all vectors of closed terms,
~P , wheneverM ~P is a term yielding an observation, N ~P is a term yielding it as well. The
Approximation Context Lemma1 holds if for all closed terms M and N ,

M vappN i� M vobsN:

A fundamental result of Milner [27] is that under Oeval with numerals taken as the
output terms, PCF itself, as well as its extension with parallel-or, satis�es the Approxi-
mation Context Lemma. We will see later that the Approximation Context Lemma holds
for all languages de�ned in a \PCF-like" operational discipline, including, of course, PCF
and its familiar extensions.

One method for proving observational approximations is by developing an abstract
meaning, [[M ]], of a term M that is adequate to determine its observations.

1In particular when O is Oeval, Bloom [9] calls this \operational extensionality" while Milner [27] uses
simply \the Context Lemma". We use the more descriptive \Approximation Context Lemma" because
we will later consider Context Lemma's that are not based on approximation.
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De�nition 3 A meaning function for a language L is a function [[�]] from terms M
to values [[M ]] in some set, partially ordered by a relation v. A meaning function is
compositional i� for all termsM;N and contexts C[�], if [[M ]] v [[N ]] and C[M ] is a term,
then C[N ] is a term and [[C[M ]]]v [[C[N ]]].

A meaning function is adequate2 for a notion of observation O i� for all terms M;N and
all observations obs 2 O,

�
[[M ]] v [[N ]] and obs(M)

�
implies obs(N):

Adequacy and compositionality guarantee that the meanings accurately predict ob-
servational approximation.

Lemma 4 A compositional meaning function [[�]] is adequate for a notion of observation
i� for all terms M and N ,

[[M ]] v [[N ]] implies M vobsN:

The ordering on adequate meanings may be strictly �ner than observational approx-
imation. In the ideal situation, known as full abstraction, the two orderings coincide:

De�nition 5 Let [[�]] be a meaning function for a language L with a notion of observa-
tion O. We say [[�]] is approximation fully abstract3 if for all terms M and N ,

[[M ]]v [[N ]] i� M vobsN:

It is equationally fully abstract if for all M and N ,

[[M ]] = [[N ]] i� M �obs N:

Approximation full abstraction trivially implies adequacy for compositional meaning
functions. Assuming that each output term evaluates to itself, it follows immediately
that if [[�]] is adequate for Oeval and [[O]] v [[M ]], then M evaluates to O, for any output
term O. If, in addition, the meaning function is sound for the evaluator, we easily obtain
a familiar (cf. [26]) alternate characterization of adequacy:

De�nition 6 A meaning function [[�]] is sound for an \evaluates to" relation if for all
terms M and N ,

M evaluates to N implies [[M ]] = [[N ]]:

2As with the Context Lemma, we might more descriptively call this \approximation adequate"; but
we will use only the version of adequacy based on approximation, and call it simply adequacy for brevity.

3Stoughton [36] calls this \inequationally fully abstract".
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Lemma 7 A sound, compositional meaning function [[�]] is adequate for Oeval i�

[[O]] = [[M ]] i� M evaluates to O;

for all terms M and output terms O.

This paper focuses speci�cally on the language PCF and its extensions. The precise
(usual) de�nitions of PCF syntax and semantics appear in Appendix A, and we provide
only a quick review here.

PCF is a simply typed �-calculus with Boolean and natural number ground types,
numerals n for n � 0, Boolean constants tt and ff, and simple arithmetic, recursion,
and conditional operators. The evaluation relation � of the language is given by term
rewriting rules.

De�nition 8 An extension of PCF is a simply typed language together with a set of
rewrite rules. The types, typed constants, and rewrite rules of the extension must include
those of PCF. The extension is conservative i� for all PCF terms M , and all terms N in
the extension,

M �extended N i� M �PCF N:

Observational congruence, adequacy, etc., for PCF and its extensions will be de�ned
with respect to Oeval, where we take the rewriting relation � as the \evaluates to"
relation, and the output terms are the ground constants tt, ff, and n for n � 0.

The results of the next section, which examines full abstraction for models of exten-
sions of PCF, require that we prove facts about the meanings of terms while knowing very
little about the extensions or the models. We will only have adequacy, conservativity,
and a few other assumptions to work with. The following lemma shows that this gives
us enough to reason about the unextended terms of the language.

Lemma 9 If a model is adequate for a conservative extension of PCF, then it is also
adequate for PCF.

Proof: Suppose a model [[�]] is adequate for a conservative extension of PCF, and [[M ]] v
[[N ]] for some PCF terms M;N . All models are compositional, so [[C[M ]]] v [[C[N ]]]
for any PCF context C[�]. So for any ground PCF constant c, if C[M ] �extended c,
then C[N ] �extended c by adequacy. And then by conservativity, if C[M ] �PCF c, then
C[N ]�PCF c. Hence, M vPCF

obs N . �

We will further require that our models be sound, and that the ground types o and �
be interpreted as the at cpos ftt;� g? and f0; 1; : : :g?, with the standard interpretation
of tt, ff, and the numerals n. Such models will be called models with Booleans (though
they are indeed also models with integers). Two models with Booleans of particular
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interest are the cpo model C[[�]] and the stable model S[[�]]. Both models are adequate but
not fully abstract for PCF.

The additional information about the ground types of models with Booleans is in fact
enough to determine the meanings of ground PCF terms.

Lemma 10 The meaning of any closed PCF term of ground type is the same in all
models with Booleans that are adequate for PCF.

Proof: Let M be a closed PCF term of type o (the case M : � is similar). In PCF,
exactly one of the following holds: (1) M �PCF tt; (2) M �PCF ff; or (3) neither (1)
nor (2) holds. And by Lemma 7, M �PCF tt i� [[M ]] = [[tt]] = tt for any model with
Booleans [[�]] adequate for PCF. Similarly, cases (2) and (3) imply [[M ]] = � and [[M ]] = ?
respectively. �

Thus we can use any particular adequate model with Booleans, like the familiar cpo
model, to discover the meaning of ground PCF terms for arbitrary adequate models with
Booleans. We have less to say about terms of higher type. But the following notions are
useful:

De�nition 11 Let � be a �rst-order type, that is, a type of the form �1 ! � � � ! �n,
where �j is a ground type for 1 � j � n. Let [[�]]i for i = 1; 2 be type frames such that
v1 on [[�j]]1 equals v2 on [[�j]]2, and let fi 2 [[� ]]i. Then f1 pointwise approximates f2,
written f1vpntf2, i� for all dj 2 [[�j]]1,

f1(d1) � � � (dn) v1 f2(d1) � � � (dn):

It follows immediately from Lemma 10 that the functions that are the meanings of a
PCF term of �rst-order type agree pointwise in all models with Booleans that are adequate
for PCF. So we can use the meaning of a �rst-order PCF term in some particular model
to reason about its meaning in any adequate model with Booleans.

However, pointwise equality is not quite the same as equality of functions. For ex-
ample, consider the conditional constant condo : o! o! o! o. Now S[[condo]] �pnt

C[[condo]]. But the stable domain does not contain parallel-or, so the stable and cpo
meanings of o! o! o are di�erent. Thus, S[[condo]] 6= C[[condo]] since the two functions
have di�erent codomains.

Nevertheless, it follows immediately from the de�nitions that pointwise approximation
has the following useful property:

Lemma 12 Let [[�]] be a model with Booleans that is adequate for PCF, and let M and N
be closed PCF terms of �rst-order type. Then

[[M ]]vpnt[[N ]] implies MvappN:
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3 Failures of Full Abstraction

Our �rst theorem hinges on the presence of certain simple functionals over the Booleans.

De�nition 13 Let True be the constant tt function on the at Booleans, and True! be
the strict constant tt function. A true-separator is a function f satisfying

f(True) = tt;

f(True! ) = �:

Theorem 14 Let [[�]] be a model with Booleans that is adequate for some conservative
extension of PCF satisfying the Approximation Context Lemma. If [[�]] contains a true-
separator, it is not equationally fully abstract.

Proof: De�ne the terms

True
def
� �x:tt;

True!
def
� �x:cond x tt tt:

By the de�nition of model with Booleans, we have [[True]] = True. And by Lemma 10,
[[cond]] �pnt C[[cond]], so by de�nition of model with Booleans, we have [[True!]] = True! .
Then True!vappTrue by Lemmas 9 and 12. So by the Approximation Context Lemma,
True!vobsTrue.

We conclude that there is no term P de�ning a true-separator; otherwise True!

and True yield distinct observations in the context (P [�]), contradicting the fact that
True!vobsTrue.

However, we can de�ne a true-separator detector, D, as follows:

D
def
� �x:cond (x True) (cond (x True!) 
o tt) 
o;

where 
o is the divergent term (Yo(�zo:z)). By Lemma 10, [[
o]] = C[[
o]] = ?, and so

[[D]](f) =

(
tt if f is a true-separator,
? otherwise.

Now [[�x:
o]] is the constant ? function, so [[D]] 6= [[�x:
o]], since they di�er exactly on
arguments that are true-separators. But since true-separators are not de�nable by terms,
D and �x:
o are applicatively congruent. Then by the Approximation Context Lemma,
they are observationally congruent, contradicting equational full abstraction. �

Corollary 15 If a stable function model with Booleans is adequate for a conservative
extension of PCF that satis�es the Approximation Context Lemma, then the model is not
equationally fully abstract.
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Proof: Every stable function model with Booleans contains a true-separator truesep,
de�ned as follows:

truesep(g) =

8><
>:

tt if g = True,
� if g = True! ,
? otherwise.

�

Corollary 16 The PCF equations valid in the stable model do not include those valid in
the cpo model.

Proof: Just note that C[[D]] = C[[�x:
o]], but S[[D]] 6= S[[�x:
o]]. �

Our proof of Corollary 15 of course takes advantage of the notable fact that the stable
ordering of functions di�ers from the pointwise ordering, e.g., the pair of functions True
and True! are ordered pointwise but are stable-incomparable. In fact, the �rst few lines of
the proof of Theorem 14 already show that inequational full abstraction is incompatible
with the Approximation Context Lemma for any model in which True and True! are
incomparable; the rest of the proof justi�es the stronger conclusion that equational full
abstraction fails as well.

We remark that the authors of [13] have informed us that their strongly stable models
are adequate models with Booleans for PCF, and that truesep is strongly stable, so
Theorem 15 and Corollary 16 hold for strongly stable models.

Berry realized that altering the pointwise ordering of functions caused di�culties, and
he proposed from the start an additional bistable model which combines stability with the
pointwise ordering. Since the counterexample of Corollary 15 relies on the non-pointwise
stable ordering, it does not apply to the bistable model.

There is, however, an interesting counterexample to the full abstraction of the bistable
model that provides a starting point for extending our results. The counterexample,
noted in [15], has its roots in the fundamental motivation behind stable models, viz., to
eliminate elements like parallel-or. Consider the following de�nition:

De�nition 17 Let lor be the or-function that is strict in its left argument, and ror be the
or-function that is strict in its right argument. An or-separator is a function f satisfying

f(lor) = tt;

f(ror) = �:

The cpo model contains a parallel-or function which bounds the left- and right-strict
or-functions, and thus, by monotonicity, cannot contain an or-separator. Since the cpo
model is adequate for PCF, an or-separator is not de�nable in PCF. On the other hand,
the stable and bistable models do not contain parallel-or, and in fact, both contain or-
separators.
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Thus in extending the results to the bistable model, one might try to use an or-
separator in the role played by the true-separator in the stable case. Since neither lor
nor ror applicatively approximates the other, an argument based on the Approximation
Context Lemma will not work; but a similar argument based on a notion of observational
comparability does apply:

De�nition 18 Let L be a language with a notion of observation O. TermsM and N are
directly comparable provided the set of observations yielded by M is setwise comparable
to that yielded by N . The terms are observationally comparable, written M �obsN ,
if for all contexts C[�], the terms C[M ] and C[N ] are directly comparable. They are

applicatively comparable, written M �appN , if for all vectors ~P of closed terms, M ~P

and N ~P are directly comparable. L with O is said to satisfy the Comparability Context
Lemma if for all closed terms M and N ,

M �appN i� M �obsN:

Theorem 19 Let [[�]] be a model with Booleans that is adequate for some conservative
extension of PCF satisfying the Comparability and Approximation Context Lemmas. If
[[�]] contains an or-separator, it is not equationally fully abstract.

Proof: Consider the terms

lor
def
� �xy:cond x tt (cond y tt ff);

ror
def
� �xy:cond y tt (cond x tt ff):

By Lemmas 9, 10 and 12, we have [[lor]] = lor, [[ror]] = ror, and lor �appror. So by
the Comparability Context Lemma, lor �obsror.

We conclude that there is no term P de�ning an or-separator; otherwise lor and ror

yield distinct observations in the context (P [�]), contradicting the fact that lor�obsror.
However, we can de�ne an or-separator detector as follows:

D
def
� �x:cond (x lor) (cond (x ror) 
o tt) 
o:

By Lemma 10,

[[D]](f) =

(
tt if f is an or-separator;
? otherwise:

Now [[D]] 6= [[�x:
o]], since they di�er exactly on arguments that are or-separators.
But since or-separators are not de�nable by terms, D and [[�x:
o]] are applicatively con-
gruent. Then by the Approximation Context Lemma, they are observationally congruent,
contradicting equational full abstraction. �
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Corollary 20 If a bistable model with Booleans is adequate for a conservative extension
of PCF that satis�es the Comparability and Approximation Context Lemmas, then the
model is not equationally fully abstract.

Proof: Every bistable model with Booleans contains an or-separator orsep, de�ned as
follows:

orsep(g) =

8><
>:

tt if g = lor,
� if g = ror,
? otherwise.

�

Corollary 21 ([21]) The PCF equations valid in the bistable model do not include those
valid in the cpo model.

Proof: Just note that C[[D]] = C[[�x:
o]], but B[[D]] 6= B[[�x:
o]], where B[[�]] is the
bistable model of [5]. �

The PCF-like languages, de�ned in the next section, do not satisfy the Comparability
Context Lemma. In fact, an or-separator constant can de�ned through the following
PCF-like rules:

orsep(f) ! cond (f tt 
o) (cond (f ff tt) (cond (f ff ff) tt
o) 
o) 
o;

orsep(f) ! cond (f 
o tt) (cond (f tt ff) (cond (f ff ff) ff
o) 
o) 
o:

Thus we will have to restrict the class of rules we consider if we wish to apply Theorem 19.
The consistent rules of Bloom [10] are an important, natural candidate for the restricted
class. We do not know whether the Comparability Context Lemma holds for them.
However, we can prove that an or-separator is not de�nable in consistent systems by a
method involving a notion of comparability based on logical relations, as we indicate at
the end of the next section.

4 PCF-like rewrite systems

Symbolic evaluators for PCF terms are often presented as term rewriting systems. In this
section, we give the basic de�nitions for such systems, and give our criteria for calling
such a system \PCF-like". Our evaluator for PCF is given in Appendix A.

A rewrite rule is a pair l ! r of terms of the same type, such that the free variables

of the right-hand side r are included in those of the left-hand side l. We write M
�
!� N

if for some subterm � of M , � ! �0 is an instance of the rule �, and N is obtained
from M by replacing � with �0. We will omit � or � as convenient.
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Since all of our languages are simply typed �-calculi, we will always include �-
reduction in the rewrite rules of the language. Additionally, we may specify some set �
of �-rules de�ning the behavior of the constants. Together, � and � de�ne the rewriting
relation !�;� on the language L. We omit � and � when they can be recovered from
context.

The �-rules of PCF have a particularly simple form:

De�nition 22 A linear ground �-rule is a rewrite rule of the form

�m1m2 � � �mn ! P;

where each mi is either a ground constant ci or a variable xi. The variables xi must
be distinct. A PCF-like rewrite system is a language L together with a set � of linear
ground �-rules on the constants of L.

Note that this de�nition of \PCF-like" is meant to be generous. In particular, al-
though the system for pure, unextended PCF is both single-valued|every term reduces
to at most one constant|and conuent, PCF-like systems in general may be multiple-
valued and nonconuent.

An interesting example of a multiple-valued PCF-like system arises in [9]. There,
Bloom de�nes an extension of PCF that is both fully abstract and denotationally uni-
versal for the lattice model of PCF. The key to the construction amounts to the addition
of operators > : o and join : o ! o ! o with rules

join x y ! x;
join x y ! y;

join n1 n2 ! >; n1 6= n2;
> ! n; n � 0:

Nonconuent but single-valued systems are also of interest. For example, [30] extends
parallel PCF by an existential operator, 9 : (� ! o) ! o, to achieve a language that is
fully abstract and denotationally universal for the cpo model. There, 9 is de�ned by the
deductive rules

pn � tt

9p! tt
,

p
� ff

9p ! ff
,

where � is the reexive transitive closure of !. The resulting language is indeed con-
uent, but goes beyond mere term rewriting. Because he wanted to be able to specify
constants like 9, Bloom [10] introduced observation calculi as a de�nition of \PCF-like"
deductive rules.

But note that if we give up conuence, it is possible to de�ne an 9 constant while re-
maining in a term rewriting discipline. One such de�nition was given in the introduction;
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we provide here a second implementation, which uses the parallel-or combinator por.

9p ! por (p0)
�
9(�x:p(succx))

�
;

9p ! cond (p
) tt ff:

This kind of rewriting is more straightforward, but actually as powerful as the deductive
discipline.

Since PCF-like systems are not conuent in general, we will not be able to use con-
uence in our proof of the Context Lemma. Instead we will rely on a standardization
theorem, which states that if a term M rewrites to a term N , then there is a \standard"
reduction from M to N . Thus we only need consider these standard reductions in our
proof.

Typically, the standard reductions are a class of reductions with a particularly nice
structure. For instance, in the pure, typed �-calculus, a standard reduction is one in
which redexes are contracted from left to right.

The de�nition of standard reductions in PCF-like rewrite systems is more compli-
cated because they admit the upwards creation of redexes, cf. [19]. However, there is
a simple inductive characterization of those standard reductions that end at a ground
constant. This will be su�cient to follow the proof of the Context Lemma given in the
next section, so we defer the general de�nition of standard reductions, and the proof of
the Standardization Theorem, to Appendix C.

Before de�ning the standard reductions to ground constants, we introduce some useful
notation. Consider the set of indices

f i j mi is a constant ci in rule � : � ~m! P g:

These indices identify what we call the critical arguments of �, since the rule � applies
to a term � ~Q i� Qi � ci for i in the set. For expository purposes it will be convenient to
separate the critical and non-critical arguments of a constant � (relative to some linear
ground �-rule �).

Notation 23 Let � : � ~m! P be a linear ground �-rule with j critical arguments and k
non-critical arguments. Then for vectors ~A � A1 � � �Aj and ~B � B1 � � �Bk, we let

��h ~A; ~Bi
def
� � ~Q;

where ~Q is the interleaving of ~A and ~B such that the Ai's appear at the critical indices
of ~Q. We drop the subscript � when it can be recovered from context.

Note that we do not require that � ~Q be an instance of � ~m; we will want to use the �h�; �i
notation on terms that we anticipate becoming �-redexes over the course of a reduction.
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In this notation, we write linear ground �-rules as

� : �h~c; ~xi ! P

or even

� : �h~c; ~xi ! P (~x)

when we wish to make the dependence of P on ~x explicit.

De�nition 24 The standard reductions to ground constants in a PCF-like rewrite system
are de�ned inductively as follows. We will write M �s c for a standard reduction of a
term M to a ground constant c.

� If c is a ground constant, then the 0-step reduction c� c is standard.

� If M1;M2; : : : ;Mn are terms, and c is a ground constant, then a reduction

(�xM1)M2M3 � � �Mn !� M1[x :=M2]M3 � � �Mn

�s c

is standard.

� If C1; C2; : : : ; Cn; ~D; ~E are terms, and c; c1; c2; : : : ; cn are ground constants, then a
reduction of the following form is standard:

�1 : ��hC1C2 � � �Cn; ~Di ~E � ��hc1C2 � � �Cn; ~Di ~E

�2 : � ��hc1c2 � � �Cn; ~Di ~E
... � � � �

�n : � ��hc1c2 � � � cn; ~Di ~E

!� P�( ~D) ~E
�s c;

where for 1 � i � n, the subreduction �i consists of a standard reduction from the
subterm Ci to the ground constant ci.

Theorem 25 (Standardization) For any PCF-like rewrite system, if M � N , then
there is a standard reduction M �s N .

Note that if we require our rules to be non-overlapping, then they are a special case
of orthogonal rewrite systems, for which both conuence and standardization have been
known for some time [19]. Similarly, conuence and standardization have been known for
the systems of Bloom [10], which restrict our systems by allowing only so-called consistent
overlaps at the root. However, it is not clear whether 9 can be de�ned in such systems,
and we certainly lose the ability to de�ne interesting non-conuent systems, such as PCF
extended with join.
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5 The Context Lemma

Once standardization is known, the Context Lemma can be proved by a straightforward
adaptation of Bloom's proof for his observation calculi [10]. First we recall the following
basic facts about substitutions.

Lemma 26 (Substitution Lemma) If x 6� y and y 62 FV(L), then

M [x := L]
h
y := N [x := L]

i
� M [y := N ][x := L]:

Lemma 27 If x 62 FV(P ), then

P
h
~y := ~N [x :=M ]

i
� (P [~y := ~N ])[x :=M ]:

The Context Lemma will follow immediately from this next result.

Lemma 28 Suppose C is a ground term, c is a ground constant, M and N are closed
terms of the same type, and MvappN . If C[x :=M ]� c, then C[x := N ]� c.

Proof: By Standardization, C[x :=M ]�s c. We show C[x := N ]� c by induction on
the length of the reduction C[x :=M ]�s c.

1. The only reduction C[x := M ] �s c of length zero is c � c. Then one of the
following holds:

(a) C � c. Then clearly C[x := N ] � c� c.

(b) C � x and M � c. Here C[x := N ]� c because MvappN .

For the induction, we consider subcases on the form of C.

2. C � (�yC1)C2 � � �Cn. Assume x 6� y (the case x � y is similar). Since M is closed,
we have

C[x := M ] �
�
�y(C1[x :=M ])

�
C2[x :=M ] � � �Cn[x := M ]:

Then the reduction C[x :=M ]�s c is of the form

C[x := M ] �
�
�y(C1[x := M ])

�
C2[x := M ] � � �Cn[x :=M ]

!� (C1[x :=M ])
h
y := C2[x :=M ]

i
C3[x :=M ] � � �Cn[x :=M ]

�s c:

By the Substitution Lemma,

(C1[x :=M ])
h
y := C2[x := M ]

i
� (C1[y := C2])[x :=M ];
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so our reduction can be rewritten

C[x :=M ] �
�
(�yC1)C2 � � �Cn

�
[x :=M ]

!�

�
(C1[y := C2])C3 � � �Cn

�
[x :=M ]

�s c:

Now by �-reduction, the fact that N is closed, and the Substitution Lemma,

C[x := N ] �
�
(�yC1)C2 � � �Cn

�
[x := N ]

!�

�
(C1[y := C2])C3 � � �Cn

�
[x := N ]:

And by induction,

�
(C1[y := C2])C3 � � �Cn

�
[x := N ] � c:

Thus we have a reduction C[x := N ]� c as desired.

3. C � �C1 � � �Cn. Then the reduction C[x := M ]�s c must contract the head � by

some rule � : ��h~d; ~yi ! P (~y) (where each di is a ground constant). Accordingly,
we rewrite C as

C � ��h ~D; ~Ei~F:

Then the reduction C[x :=M ]�s c is of the form

C[x := M ] � ��h ~D[x := M ]; ~E[x :=M ]i~F [x :=M ]

� ��h~d; ~E[x :=M ]i~F [x :=M ]

!� P ( ~E[x := M ])~F [x :=M ]

�s c;

where each Di[x := M ]�s di in turn. By Lemma 27,

P ( ~E[x :=M ]) � P ( ~E)[x :=M ];

so the reduction can be rewritten

C[x :=M ] � (��h ~D; ~Ei~F )[x := M ]

� (��h~d; ~Ei~F )[x :=M ]

!� (P ( ~E)~F )[x :=M ]

�s c:
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Again by Lemma 27,

P ( ~E[x := N ])~F [x := N ] � (P ( ~E)~F )[x := N ]:

And by induction, (P ( ~E)~F )[x := N ] � c, and Di[x := N ] � di. Thus we have
found a reduction

C[x := N ] � (��h ~D; ~Ei~F )[x := N ]

� (��h~d; ~Ei~F )[x := N ]

!� (P ( ~E)~F )[x := N ]

� c:

4. C � xC1 � � �Cn. Then consider the term

C 0 def
� MC1 � � �Cn:

Note that C[x := M ] � C 0[x := M ], so C 0[x := M ] �s c. Moreover C 0 must be of
a form considered in the two previous cases, and so by the previous argument we
conclude C 0[x := N ]� c. Now consider the applicative context

C 00[�]
def
� [�]C1[x := N ] � � �Cn[x := N ]:

Since C 00[M ] � C 0[x := N ], we have C 00[M ] � c. Finally, MvappN implies
C 00[N ]� c; and

C 00[N ] � NC1[x := N ] � � �Cn[x := N ]

� C[x := N ];

so C[x := N ]� c.

Note that we need not consider the case C � yC1 � � �Cn, where y 6� x, since then
C[x :=M ] can never reduce to a ground constant. �

Theorem 29 (Approximation Context Lemma) In any PCF-like rewrite system,

MvobsN i� MvappN

for all closed terms M and N .

Proof:
(=)) Trivial.
((=) It is su�cient to show the following: for all ground contexts C[�] and ground

constants c, if C[M ]� c, then C[N ]� c.
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Remember that the action of placing a term into the \holes" of a context di�ers from
substitution only in that free variables of the term can be captured. But M and N are
closed, with no free variables to capture; so for any context C[�],

C[M ] � (C[x])[x :=M ];
and C[N ] � (C[x])[x := N ];

where x is a fresh variable. So by Lemma 28, if C[M ]� c, then C[N ]� c as well. �

We now have immediately from Corollary 15:

Theorem 30 Every stable function model with Booleans that is adequate for a conserva-
tive extension of PCF de�ned by PCF-like rewrite rules is not equationally fully abstract.

We remark that a simple su�cient condition to ensure that an extension of PCF
by PCF-like rules is conservative is that �-rules whose left-hand sides involve no new
(non-PCF) constants must be exactly the rules of PCF.

Because we are unable to prove a Comparability Context Lemma for consistent PCF-
like rewrite rules, Corollary 20 cannot be applied. Nevertheless, our analysis of compa-
rability can be extended to show:

Theorem 31 Every bistable model with Booleans that is adequate for a conservative
extension of PCF de�ned by consistent PCF-like rewrite rules is not equationally fully
abstract.

This will be proved in a forthcoming paper.

6 Conclusions and Future Work

We have extended the metatheory of term rewriting semantics for simply typed �-calculi
and have shown that certain denotational models, in particular those based on stable and
strongly stable domains, cannot be fully abstract for such operational semantics. Our
proof exploits the lack of order-extensionality in these domains, but an extension of our
results to certain order-extensional domains such as the bistable domains is possible and
will be the subject of a forthcoming paper.

The category of sequential algorithms [6] is technically not a model in our sense,
but is like the stable model in that it is a Cartesian Closed Category with partially
ordered function objects that are not pointwise ordered. We believe that with some
minor modi�cations our results will apply to it as well. (This claim stands in apparent
contradiction to the results of [6], which shows that the language CDS, based on concrete
data structures [22], is fully abstract for the sequential algorithm model. However, it
seems questionable to us to call a language such as CDS \PCF-like", since it does not
have �-abstraction or even variables.)
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We conjecture that our methods and results will extend to untyped versions of PCF-
like languages. Extensions to lazy and call-by-value languages also seem plausible, though
with more di�culties, since higher order terms now yield observations and the notion of
lazy model is more technical.

A particular open problem that we have not yet resolved is the case when the de�nition
of model with Booleans is relaxed to allow \extra" Boolean elements, e.g., if the Boolean
type is interpreted as ftt;�; errorg?. Finally, although we are able to show the failures
of some order-extensional models, like the bistable models, the extensional embedding
methods of [12] o�er a more sophisticated way to restore order-extensionality which, for
example, guarantees that the theory of the extensionally embedded models includes that
of cpo's. We do not know whether these models can avoid the kind of failure of full
abstraction that we have identi�ed.

How great a failing of, for example, the stable domains, is lack of full abstraction?
The category of stable domains is mathematically rich and o�ers a plausible formulation
of higher-order e�ective computability. We have shown that stable computability cannot
be captured precisely in the familiar rewriting style of operational semantics which works
for the cpo or even the lattice models. But as we observed in the introduction, the failures
of full abstraction we have shown might be avoidable by some other attractive, as yet
undeveloped, operational semantics. Such an operational semantics would be interesting
to see; and indeed, some recent work of Cartwright and Felleisen [14] suggests a fruitful
development in this direction.
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A PCF

Because we will work with both PCF and its extensions, we give the general de�nitions
for simply typed �-calculi. A language is parameterized by its ground types and typed
constants; for instance, PCF's ground types are the Booleans o and the numerals �, and
its constants are listed in Figure 1.

The set of types of the language is the least set containing the ground types and
(� ! � ) for types � and � . The set of �rst-order types is the least set containing the
ground types and (� ! � ) for ground types � and �rst-order types � .

The typed terms of the language are de�ned inductively:

� A constant �� is a term of type �.

� A variable x� is a term of type �.

� If M is a term of type (� ! � ) and N is a term of type �, then (MN) is a term of
type � .

� If M is a term of type � , then (�x�M) is a term of type (� ! � ).

We omit types and parentheses whenever possible, adopting the standard conventions
of association: application associates to the left, and types associate to the right. We will
use M;N;P; : : : to denote arbitrary terms; x; y; z; : : : to denote arbitrary variables; and
�; �; ; : : : to denote arbitrary types. � will always denote a constant, and c will always
be a ground constant. The binary relation symbol � denotes syntactic equality.

Free and bound variables are de�ned as usual, and we consider terms that are identical
modulo a change of bound variables to be syntactically identical. A term is closed if it
has no free variables; otherwise it is open. A program is a closed term of ground type.

A substitution is a typed-respecting mapping of variables to terms. Substitutions
are extended to terms as usual (taking care to avoid capture of free variables), and are
written post�x, so that M� is the application of the substitution � to the term M . We
call M� an instance of M . If ~x � x1; : : : ; xn and ~N � N1; : : : ; Nn, then [~x := ~N ] is the

tt; ff : o

n : � for each integer n � 0
succ; pred : �! �

zero? : �! o

condo : o! o! o! o

cond� : o! �! �! �

Y� : (� ! �)! � for each type �

Figure 1: Constants of PCF
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cond tt x y ! x

cond ff x y ! y

zero? 0 ! tt

zero?n + 1 ! ff

succn ! n + 1

pred 0 ! 0

predn + 1 ! n

Y f ! f(Y f)

Figure 2: Rewrite rules for PCF

substitution that maps each xi to Ni (simultaneously), and is the identity otherwise. A
special case is [x := N ], so that M [x := N ] is the result of substituting N for x in M .

Sometimes we write M �M(~x), with the intent that M( ~N ) �M [~x := ~N ].

A context C[�] is a term with some \holes". C[M ] denotes the result of putting M
into the holes of C[�], which may cause free variables of M to become bound. We say
C[�] is a program context for M if C[M ] is a closed term of ground type.

The interpreter of the language is de�ned via a rewrite system; any set of �-rules,
together with the classical rule (�), induces the one-step reduction relation !. The
relation � is the reexive transitive closure of !. Figure 2 gives the �-rules for PCF.

B Simply Typed Models

Here we develop the general framework for function-based models of simply typed �-
calculi.

A type frame f[[�]]g is collection of sets indexed by type such that [[� ! � ]] is a set of
functions from [[�]] to [[� ]]. The sets [[�]] are called domains, and the elements of each [[�]]
are called meanings or values of type �.

Since our discussion focuses on issues of adequacy and full abstraction, we also require
the following:

� there is a partial order v� associated with each domain [[�]];

� the functions of [[�! � ]] are monotone with respect to the orderings v� and v� ;
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� and the relation v�!� re�nes the pointwise relation on functions f; g 2 [[�! � ]],
i.e.,

f v�!� g implies f(d) v� g(d) for all d 2 [[�]]:

The last two conditions say that function application is monotone in both arguments;
this implies that models, de�ned below, are compositional.

An environment is a type-respecting mapping from variables to values. If � is an
environment, then the environment �[x := d] is � with the value of x updated to d:

�[x := d](y) =

(
d if y � x;
�(y) otherwise.

An interpretation is a type-respecting mapping from constants to values. For a given
type frame f[[�]]g and interpretation I we can try to de�ne a model , [[�]], that is a mapping
from each term to a meaning with respect to an environment, satisfying the following
conditions:

[[�]]� = I(�) (1)

[[x]]� = �(x) (2)

[[(MN)]]� = ([[M ]]�)([[N ]]�) (3)

([[�xM ]]�)(d) = [[M ]]�[x := d] (4)

Implicit in condition (4) is the requirement that the function de�ned to be ([[�xM ]]�)
must be an element of the type frame. In other words, a model is a type frame that is
closed under lambda-de�nability. Such closure certainly does not hold for all type frames
(cf. [25]).

The meaning of a closed term is the same in any environment:

[[M ]]� = [[M ]]�0

for all closed M and arbitrary �; �0. Therefore we sometimes write [[M ]] for the meaning
of a closed term M , omitting the environment.

Continuity

We give the standard de�nitions for cpo's and continuous functions, then de�ne the cpo
model of PCF.

A partial order or poset is a set D together with a binary relation v that is reexive,
transitive, and anti-symmetric. We will refer to the partial order hD;vi as just D. A
subset X � D is directed if every �nite subset of X has an upper bound in X. A partial
order D is a complete partial order or cpo if it has a least element?D and every directed
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subset X � D has a least upper bound tX. We omit the subscript D in ?D when it can
be recovered from context. For any set X we de�ne the cpo X?, with elementsX[f?Xg,
ordered x v y i� x = y or x =?X.

A function f : D ! E between posets is monotone if f(x) vE f(y) whenever x vD y.
We say f is continuous if it is monotone and f(tX) = tf(X) for every directed X � D.

The set D !c E of continuous functions from cpo D to cpo E is a cpo under the
pointwise order vp, de�ned as follows:

f vp g i� f(x) vE g(x) for all x 2 D:

If D is a cpo and f : D ! D is continuous, then f has a least �xed point �x (f). The
function �x itself is continuous, which will allow us to interpret the recursion operator Y.

Now we de�ne the cpo model C[[�]] of PCF, based on continuous functions and cpos.
First we construct a type frame with ground domains C[[o]] = ftt;� g? and C[[�]] =
f0; 1; 2; : : :g?, and higher-order domains C[[�! � ]] = C[[�]] !c C[[� ]]. The cpo model
of PCF is then the model C[[�]] associated with fC[[�]]g and the standard interpretation:
the ground constants are interpreted in the obvious way; the constants Y� are interpreted
as least �xed-point operators; and the interpretation of the remaining function constants
is determined by the condition that the rewrite rules of Figure 2 be valid as equations.

Theorem 32 (Plotkin[30], Sazonov[31]) The cpo model C[[�]] is adequate but not fully
abstract for PCF.

Stability

If D is a partial order and X � D, then X is bounded or consistent if there is an element
y 2 D such that x v y for all x 2 X. If elements x and y are consistent we will write
x " y. We say D is bounded complete if every bounded subset X � D has a least upper
bound tX.

An element a 2 D is compact if, for every directed X � D with a v tX, there is
some x 2 X such that a v x. We de�ne KD, the kernel of D, to be the set of compact
elements ofD. The cpo D is algebraic if, for every x 2 D, the set #x = f a 2 KD j a v x g
is directed and t #x = x.

The greatest lower bound of a set X is denoted uX. A cpo is distributive if xu(ytz) =
(x u y) t (x u z) whenever y and z are consistent. An algebraic cpo D has property I if
#a is �nite for each a 2 KD. A dI-domain is a distributive, bounded complete cpo that
has property I.

A continuous function f between dI-domains is stable if whenever x " y, we have that
f(xuy) = f(x)uf(y). We let D !s E be the set of stable functions between dI-domains
D and E. As noted in [5], D !s E ordered pointwise is not a dI-domain; accordingly we
de�ne the stable ordering vs:

f vs g i� f(x) = f(y) u g(x) whenever x v y:
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Function tt � ?

True tt tt tt
False � � �
True! tt tt ?
False! � � ?
Id tt � ?
Not � tt ?
(tt)tt) tt ? ?
(tt)�) � ? ?
(�)tt) ? tt ?
(�)�) ? � ?
Bot ? ? ?

Figure 3: Boolean functions

If D and E are dI-domains, then D !s E is a dI-domain under the stable order.

It must be noted that the stable order is quite di�erent from the pointwise order. For
instance, consider the monotone Boolean functions, listed in Figure 3. These functions
are both continuous and stable, and so they are elements of both the continuous and
stable type frames. However, the stable ordering of o! o (Figure 5) is di�erent from its
pointwise ordering (Figure 4). In particular, consider True, the constant tt function, and
True! , the strict constant tt function. Although True! vpTrue, we have True! 6vsTrue,
since ? vstt but

True! (?) =? 6= tt = (True! (tt) u True(?)):

(It is this that permits the existence of the function truesep that was needed in Corol-
lary 15.)

Nevertheless, a stable model S[[�]] of PCF, based on dI-domains and stable functions,
can be de�ned in much the same way as the cpo model. The ground domains S[[o]] and
S[[�]] of the stable type frame are identical to the ground domains of the cpo model. At
higher types, however, we use stable functions: S[[�! � ]] = S[[�]] !s S[[� ]]. Then we
let S[[�]] be the model associated with the stable type frame and the (stable) standard
interpretation (cf. the interpretation of the cpo model).

Theorem 33 (Berry[5]) The stable model S[[�]] is adequate but not fully abstract for
PCF.
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Bot

(tt)tt) (�)�) (�)tt) (tt)�)

Id True! False! Not

True False

Q
Q

Q
QQ

A
A

AA

�
�

� �

�
�

�
� �

�
�

� �

@
@

@@

�
�

� �

@
@

@@

�
�

� �

@
@

@@

Figure 4: Pointwise ordering of o! o

Bot

True (tt)tt) (�)�) (�)tt) (tt)�) False

Id True! False! Not

aaaaaaaa

Q
Q

Q
QQ

A
A

AA

�
�

� �

�
�

�
� �

! ! ! ! ! ! ! !

�
�

� �
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�
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� �
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�
�

� �
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@@

Figure 5: Stable ordering of o ! o
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C Standard reductions in PCF-like rewrite systems

C.1 Preliminaries

This appendix gives a full de�nition of standard reductions and proof of the Standard-
ization Theorem. In this section we sketch out some of the basic terminology of rewriting
systems. Section C.2 introduces descendants, which allow us to trace subterms from step
to step in a reduction. In Section C.3 we show that a very weak form of conuence
holds for PCF-like systems; this property will be essential in proving the Standardiza-
tion Theorem. Section C.4 introduces labelled rewrite systems, and proves that they are
strongly normalizing. The labelled systems will be used in the proof of Standardization.
The standard reductions are de�ned in Section C.5, and Standardization is proved in
Section C.6. The proof is a variation of Klop's proof for the pure �-calculus [23], and
involves a rewriting system on reductions. The system successively rewrites non-standard
reduction paths to \more standard" paths; Standardization is proved by showing that
the system is strongly normalizing, and that normal forms are standard reductions.

Our presentation of the machinery used to state and prove Standardization is neces-
sarily brief. Much of the material is covered in more depth in standard references [3, 23].
Throughout we will work with a PCF-like rewrite system given by a language, L, and
set, �, of linear ground �-rules.

We assume that the reader is familiar with the following terminology. The notation
M � N denotes that M is a subterm of N . A subterm may appear several times in
a term; multiple occurrences of a subterm can be distinguished by their paths, which
specify the exact position of a subterm inside the term. When we speak of a subterm
M � N we implicitly mean a particular occurrence of M in N ; the disambiguating paths
are omitted.

Note that M ! N i� there is an instance �! �0 of a rule � such that � �M , and

N is obtained from M by replacing � with �0. We will write M
�
!� N in this case, and

we call � a (�)-redex and �0 its (�)-contractum.
A reduction (path) � is a sequence

� :M1
�1!�1 M2

�2!�2 M3
�3!�3 � � � :

We will use �; � ; : : : to refer to reduction paths. Two reductions are coinitial if they
start in the same term, and co�nal if they end in the same term.

C.2 Descendants

Consider some possible e�ects of a reduction M ! N on a subterm � �M :

� � could be erased, as in (�x:y)�! y.
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� � could be copied to some instances in N , as in (�x:�xx)�! ���.

� � could be left untouched and in its original position, as in �((�x:x)y)! �y.

� The contracted redex might occur within �, transforming it into a syntactically
di�erent subterm in the same position.

In order to de�ne and prove standardization, we will need to speak precisely about these
cases, so we introduce descendants, which let us track a subterm throughout a reduction.
We will not de�ne descendants in their full generality, but only for certain subterms of
interest. Our de�nition is equivalent to the standard de�nition [23] on those subterms.

Descendants are introduced via an annotated rewrite system derived from L and �,
in which some �'s and �'s are marked with a �. Thus we de�ne the language L�, whose
symbols are those of L, with the addition of ��, and ��� for each constant �� of L. The
terms of L� are de�ned inductively:

� A constant �� or ��� is a term of type �.

� A variable x� is a term of type �.

� If M is a term of type (� ! � ) and N is a term of type �, then (MN) is a term of
type � .

� If M is a term of type � , then (�x�M) and (��x�M) are terms of type (� ! �).

The erasure jM j 2 L of M 2 L� is obtained from M by leaving out the �'s. Substitution
for the language is de�ned in the obvious way (with ��'s binding variables just as �'s).
The rules of the new system include � and the rule scheme ��:

�� : (��xM)N !M [x := N ]:

Similarly, the �-rules �� of the system are derived from the rules �. If � is a rule of �,

� : �h~c; ~xi ! P (~x);

then �� contains all rules of the form �0 and ��:

�0 : �h~c 0; ~xi ! P (~x);

�� : ��h~c
0; ~xi ! P (~x);

where ~c 0 is any vector of L� ground constants such that j~c 0j � ~c.
There is a strong connection between the systems. Any ��-reduction path �,

� :M1
�1!�1 M2

�2!�2 M3
�3!�3 � � � ;
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projects to a �-reduction path j�j:

j�j : jM1j
j�1j
! j�1j jM2j

j�2 j
! j�2j jM3j

j�3j
! j�3j � � � :

Conversely, for any M 2 L� and �-reduction path � : jM j ! � � �, there is a unique lift
of � to a ��-reduction path �0 :M ! � � � such that � � j�0j.

We will be interested in tracing subterms of the form (�x:M1)M2 or �M1 � � �Mn

throughout a reduction; that is, �-redexes and possible �-redexes. Accordingly, we intro-
duce the following terminology. A subterm (�x:M1)M2 or �M1 � � �Mn of M is called a
predescendant of M . If F is a set of predescendants of M 2 L, we write (M;F) for the
L� term derived from M by marking the head � or � of each predescendant in F with
a �.

De�nition 34 Suppose � : M ! � � � ! N is a �-reduction path.

(i) If � is a predescendant of M , its set of descendants in N relative to �, written
(�=�), is de�ned as follows.

Let M 0 � (M; f�g) and lift � to �0 : M 0 ! � � � ! N 0. If � � (�xM1)M2 (resp.

� � �M1 � � �Mn), then (�=�)
def
= F , where F is the unique set of subterms of N

of the form (�xM 0
1)M

0
2 (resp. �M

0
1 � � �M

0
n), such that N 0 � (N;F).

(ii) If F is a set of predescendants of M , its descendants F=� are de�ned

F=�
def
=

[
f�=� j � 2 F g:

(iii) � �M is an ancestor of �0 � N if �0 2 �=�.

For a given reductionM1 !M2 !M3 ! � � �, we will sometimes speak of descendants
and ancestors for subterms of terms Mi and Mj, where i and j are any indices such that
j � i. We do not specify the reduction from Mi to Mj , as it can be recovered from
context.

Note 35
(i) If M

�
! N , then � has no descendants in N .

(ii) If M
�
!� N , where � � �h~c; ~Bi, then no ci has a descendant in N .

We mention that the following important property holds for our PCF-like systems, since
it does not hold for all rewrite systems [23].

Note 36 If � �M and M ! N , then descendants of � in N are disjoint.
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Disjointness of descendants does not extend to �, as we indicate here:

(�y:(�x:yx)y)(�z:��z) !� (�x:(�z:��z)x)(�z:��z)

!� (�x:��x)(�z:��z)

!� ��(�z:��z):

De�nition 37 Suppose Mi is a term in a reduction �,

� :M1
�1!�1 M2

�2!�2 M3
�3!�3 � � � :

(i) We say � �Mi is (�)-contracted (in �) if for some j � i, �j is a descendant of �
and �j = �.

(ii) We say � �Mi is active (in �) if there is a �0 � � that is contracted in �.

Sometimes it will be useful to specify a set of subterms of some termM , and consider
reductions from M in which only those subterms are contracted. Such reductions are
called developments. Because we work with systems in which a subterm can contract by
more than one rule, our de�nition of developments extends the standard de�nition by
specifying a rule for each redex contracted in a development.

De�nition 38 Suppose the following: � is a reduction from M to N ; F is a set of
subterms of M ; and � is a mapping that takes each � 2 F to a rule ��.

(i) We call � a development of F from M by �, written � : (M;F)
�
� N , if each

redex �0 contracted in � is a descendant of some � 2 F , and �0 is contracted by
rule ��.

(ii) We say a development � is a complete development , written � : (M;F)
�
�
cpl

N , if

F=� = ;.

When � is evident from context, we will omit mention of it.

Note 39 If F is a set of n disjoint redexes of M , then clearly all complete developments
of F from M are of length n and are co�nal.

C.3 Properties related to conuence

Note 39 is a special case of a much stronger theorem, the Finite Developments theorem.
We will not need to prove the Finite Developments theorem in its full generality; this
section proves a weaker result that will be su�cient for our application.

De�nition 40 We say two �-redexes �1 and �2 overlap if either

32



(i) they share the same head �, or

(ii) one �i appears as a critical argument of the other.

Note that in case (ii), the �i must be a ground constant.

Often, rewrite systems are constrained to avoid overlapping redexes; such systems
are guaranteed to be conuent. Because we allow overlapping rules, our systems are not
conuent in general. However, they do satisfy the following much weaker property, which
will be essential in our proof of standardization.

Lemma 41 Suppose �1 : M0
�1! M1 and �2 : M0

�2! M2, where �1 and �2 do not
overlap. Then complete developments of �2=�1 from M1 and �1=�2 from M2 are �nite
and co�nal.

Proof: For each of the various cases on the relative positions of �1 and �2 inM0, we �nd
a termM3 that is the �nal term of every complete development of �1=�2 and �2=�1:

M0

�1

������! M1????????y
�2

???????yy
�2=�1

M2

�1=�2
������� M3

1. �1 and �2 are disjoint. Then M0, M1, and M2 can be written

M0 � � � ��1 � � ��2 � � � ;

M1 � � � ��0
1 � � ��2 � � � ;

M2 � � � ��1 � � ��
0
2 � � � ;

where �0
1 and �0

2 are the respective contractums of �1 and �2. Now de�ning

M3
def
� � � ��0

1 � � ��
0
2 � � � ;

we see that the only complete development of �2=�1 is M1
�2! M3, and the only

complete development of �1=�2 is M2
�1!M3, as desired.

2. �1 � �2. Then there is a unique descendant �0
2 of �2 in M1, and we consider

three subcases.
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(a) �2 � (�x: � � ��1 � � �)N . Then we can write M0, M1, and M2 as

M0 � � � � ((�x: � � ��1 � � �)N) � � � ;

M1 � � � � ((�x: � � ��0
1 � � �)N) � � � ;

M2 � � � � ((� � ��1 � � �)[x := N ]) � � � ;

where �0
1 is the contractum of �1, and �0

2 � (�x: � � ��0
1 � � �)N . If we take

M3
def
� � � � ((� � ��0

1 � � �)[x := N ]) � � � ;

then the only complete development of �2=�1 is M1
�0

2!� M3. Furthermore,
substitutivity holds for PCF-like rewrite systems; that is,

M
�
!M 0 =) M [x := N ]

�0

!M 0[x := N ];

where �0 is � with any free occurrences of x replaced by N . Thus the only
complete development of �1=�2 is M2 !M3.

(b) �2 � (�x:N)(� � ��1 � � �). Then M0, M1, and M2 can be written

M0 � � � � ((�x:N)(� � ��1 � � �)) � � � ;

M1 � � � � ((�x:N)(� � ��0
1 � � �)) � � � ;

M2 � � � � (N [x := (� � ��1 � � �)]) � � � ;

where �0
1 is the contractum of �1, and �0

2 � (�x:N)(� � ��0
1 � � �). De�ning

M3
def
� � � � (N [x := (� � ��0

1 � � �)]) � � � ;

we see that the only complete development of �2=�1 is M1
�0

2!� M3. Further-
more, descendants of �1 in M2 are disjoint, and any contraction of them in

turn is a reduction M2
�1! � � �

�1!M3.

(c) �2 � ��h� � � ; � � � (� � ��1 � � �) � � �i. Then we write M0, M1, and M2 as

M0 � � � � (��h� � � ; � � � (� � ��1 � � �) � � �i) � � � ;

M1 � � � � (��h� � � ; � � � (� � ��
0
1 � � �) � � �i) � � � ;

M2 � � � � (P�(� � � (� � ��1 � � �) � � �)) � � � ;

where �0
1 is the contractum of �1, and �0

2 � ��h� � � ; � � � (� � ��0
1 � � �) � � �i. De�n-

ing

M3
def
� � � � (P�(� � � (� � ��

0
1 � � �) � � �)) � � � ;

we see that the only complete development of �2=�1 is M1
�0

2!� M3. And just
as in case 2b, the descendants of �1 inM2 are disjoint, so by contracting them

in turn we �nd a reduction M2
�1! � � �

�1!M3.
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3. �2 � �1. This case is handled exactly as case 2.

�

C.4 A labelled �-calculus

For any PCF-like rewrite system, there is a corresponding labelled PCF-like system that
is strongly normalizing. The labelling technique has led to some of the simplest proofs
for many syntactic properties, and we will use it in our proof of standardization. This
section introduces labelled calculi and proves that they are strongly normalizing.

The labelled system is similar to the system that we introduced earlier to de�ne
descendants. However, the systems are also di�erent in important ways, since they are
intended for di�erent purposes. In the labelled system, we will mark �'s with nonnegative
integers instead of �'s, and we will not need to mark �'s. Furthermore, we do not allow
unmarked �'s. The reasons for this will become apparent in what follows.

For any PCF-like language L, the language LN is just the PCF-like language with
constants ��n for each constant �� of L and each n 2 N.

Notation 42
(i) If M 2 LN, then jM j 2 L is the term derived from M by erasing the labels on the

constants.

(ii) If M 2 L, then Mn 2 LN is the term derived from M by labelling each constant
with n.

The �-rules �N of the labelled calculus are de�ned as follows. If � is a rule of �,

� : �h~c; ~xi ! P (~x);

then �N contains all rules of the form �N:

�N : �n+1h~c
0; ~xi ! P n(~x);

where ~c 0 is a vector of LN ground constants such that j~c 0j � ~c. Note that there is no rule
for any �0.

The projection j�j of a �N-reduction path � is de�ned in the obvious way. And any
�-reduction � can be lifted to a �N-reduction �

0 such that � � j�0j (e.g., label each
constant in the �rst term of � by the length of �).

De�nition 43 A term M is strongly normalizable (SN) if all reductions starting at M
are �nite.

Theorem 44 (Strong Normalization) Every LN term is strongly normalizable.
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The rest of this section lays out the proof of strong normalization. We use a straightfor-
ward extension of the method of [17].

De�nition 45 The notion of strong computability (SC) of a term is de�ned by induction
as follows:

(i) A term of ground type is SC i� it is SN

(ii) A term M (�!� ) is SC i�, for every SC term N�, the term (MN)� is SC

Note 46 By de�nition 45(ii) a term M is SC i�, for all vectors ~N of SC terms driving

M to ground type, the term M ~N is SC. And by de�nition 45(i), such an M ~N is SC i�
it is SN.

De�nition 47 An atom is a variable or a constant �n with no rule.

Lemma 48
(i) If a is an atom and ~N is a vector of SN terms, then the term a ~N is SC.

(ii) Every SC term M is SN.

Proof: By induction on the type of a ~N and M .

1. Basis: a ~N and M have ground type.

(i) Since each Ni is SN, a ~N must be SN, and therefore SC by de�nition 45(i).

(ii) By de�nition 45(i).

2. Induction: a ~N and M have type � ! � .

(i) Let P � be SC. By the induction hypothesis (ii), P is SN. Then by induction,

the term (a ~NP )� is SC. Therefore so is a ~N by de�nition 45(ii).

(ii) Let x� be a variable not occurring in M . By the induction hypothesis (i), x is
SC. Then (Mx)� is SC, and therefore SN by induction. But any subterm of
an SN term is SN, so M is SN as well.

�

Lemma 49 If N is SC and M [x := N ] is SC, then so is (�xM)N .

Proof: Let ~P � P1; : : : ; Pn be a vector of SC terms driving M to ground type. Since
M [x := N ] is SC, the term

(M [x := N ])~P (5)
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is SN by Note 46. The lemma follows from Note 46 if we can prove that

(�xM)N ~P (6)

is SN.
Now since (5) is SN, all of its subterms are SN, includingM [x := N ]; ~P . Furthermore

by hypothesis and the preceding lemma,N is SN. Therefore an in�nite reduction from (6)
cannot consist entirely of contractions in M;N;P1; : : : ; Pn. So an in�nite reduction of
(6) must have the form

(�xM)NP1 � � �Pn � (�xM 0)N 0P 0
1 � � �P

0
n

! M 0[x := N 0]P 0
1 � � �P

0
n

� : : :

(where M �M 0, etc.) From the reductions M �M 0 and N � N 0 we have

M [x := N ]�M 0[x := N 0]

Then we can construct an in�nite reduction from (5) as follows:

M [x := N ]P1 � � �Pn � M 0[x := N 0]P 0
1 � � �P

0
n

� : : :

But this contradicts the fact that (5) is SN. Therefore there is no in�nite reduction from
(6); it must be SN. �

Lemma 50 Consider a constant � and a vector ~N of SC terms driving � to ground type.
If for each rule � on �,

� : ��h~c; ~xi ! P�(~x);

where � ~N � ��h ~N1; ~N2i ~N3, we have that

P�( ~N2) ~N3 (7)

is SC, then � ~N is SC.

Proof: We must show that � ~N is SN. Since the ~N are SC, by Lemma 48 they are SN.
Therefore any in�nite reduction from � ~N must look like

��h ~N1; ~N2i ~N3 � ��h~c; ~N2
0
i ~N3

0

! P�( ~N2
0
) ~N3

0

� � � �
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where ~N1 � ~c, ~N2�
~N2

0
, etc. But then we can construct an in�nite reduction from (7)

as follows:

P�( ~N2) ~N3 � P�( ~N2
0
) ~N3

0

� � � �

But as (7) is SC, by Lemma 48 it is SN, a contradiction. Therefore � ~N is SN. �

Lemma 51 For any term M and substitution � � [~x := ~N ], where each Ni is SC, the
term M� is SC.

Proof: The proof is by induction on the lexicographic ordering of (m;M), where m is
the maximum �-index appearing in M .

1. M is a variable xi. Then M� is Ni and the result follows.

2. M is an atom distinct from x1; : : : ; xn. Then M� �M which is SC by Lemma 48.
Note that this includes all constants �0.

3. M � �m+1. Then M� � �m+1. Thus it is su�cient to show that for any vector ~N 0

of SC terms driving �m+1 to ground type, the term �m+1
~N 0 is SC.

Consider any rule � on �m+1:

� : �m+1h~c; ~xi ! P (~x):

By construction of the labelled calculus, no constants in P are labelled with an
index greater than m. Thus we can apply the induction hypothesis to P .

If we rewrite �m+1
~N 0 as �m+1h ~N1

0
; ~N2

0
i ~N3

0
, by induction P ( ~N2

0
) is SC. Then by the

de�nition of SC, the term P ( ~N2
0
) ~N3

0
is SC. Therefore by Lemma 50, �m+1

~N 0 is SC.

4. M � �y�M1. Then M� � �y(M1�), neglecting changes in bound variables.

To show that M� is SC we must show that for all SC terms N�, the term (M�)N
is SC. But (M�)N � (�y(M1�))N , and

(M1�)[y := N ] � M1[x1 := N1] � � � [xn := Nn][y := N ]

which is SC by induction. Therefore (�y(M1�))N is SC by Lemma 49.

5. M � M1M2. Then M� � (M1�)(M2�), and M1� and M2� are SC by induction.
Therefore M� is SC by de�nition 45(ii).

�

Proof of Theorem 44 (Strong Normalization): By Lemma 51, every termM is SC
(just let ~x be empty). Then by Lemma 48, M is strongly normalizing. �

38



C.5 Standard Reductions

Our de�nition of standard reductions is similar to that of [19], with a few important dif-
ferences. The \linear ground" restriction imposed on our systems gives us a particularly
simple class of rewrite rules, and this simplicity carries over to the de�nition of standard
reductions. On the other hand, the systems of [19] do not include �-abstraction, and
forbid overlapping rewrite rules, which we allow.

Overlapping rules do not add much complication to the de�nition of standard reduc-
tions, but they are more of an obstacle in the proof of standardization. Overlapping
systems are not conuent in general, so we cannot use conuence and related properties
in our proof. This is o�set by the fact that we consider only typed systems.

The standard reductions of [19] are based on \outside-in" reductions. Informally,
outside-in reductions are reductions in which no subterm of a term reduces before the term
itself contracts, unless the subterm reduces outside-in and contributes towards making
the term a redex. For example, consider the PCF reduction

cond (zero?0)M N ! cond ttM N

! M:

The reduction is standard, even though the term cond (zero?0)M N contracts after its
subterm (zero?0), because it is the contraction of (zero?0) that turns the cond term
into a redex.

There is a natural way of testing whether or not a reduction is outside-in: �rst,
identify \outermost" subterms that contract; each of these identi�es subterms that must
reduce before the outer subterm itself contracts. By iterating the process, we can identify
a subterm or subterms that must reduce before any others, if the reduction is to be
outside-in. This idea is the basis of our de�nition of standard reductions.

For each term in a reduction, we identify a principal redex , and call a reduction stan-
dard if the redex contracted at each step is the principal redex. For the pure �-calculus,
the principal redex for someMi will simply be the leftmost redex of Mi contracted in the
reduction.

For systems with constants, we must allow reductions to take place in the critical
arguments of some �-terms. To �nd the principal redex, then, we start by considering
the leftmost contracted subterm; if it is a �-term, we then consider critical arguments
in which contractions take place, etc. Eventually, consideration of these preprincipal
subterms leads to the principal redex.

De�nition 52 Let Mi be a term in a reduction path �,

� : M1
�1!M2

�2!M3
�3! � � � :

A contracted subterm � of Mi is preprincipal in � if
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(i) � is the leftmost subterm of Mi contracted in �; or

(ii) there is a subterm �0 of Mi such that:

� �0 is �-contracted in �;

� �0 is of the form ��h ~A; ~Bi, where the leftmost active critical argument, Ak, is

of the form � ~N ; and

� �0 is preprincipal in �.

We write pp�(�) if � is preprincipal in �.

This next lemma is essential in showing an important property of the preprincipal
subterms: they are linearly ordered by � (see the following note):

Lemma 53 Let Mi be a term in a reduction path �,

� : M1
�1!M2

�2!M3
�3! � � � ;

and let � be a preprincipal subterm of Mi. If � 6� �i, then � has a unique, preprincipal
descendant �0 �Mi+1.

Proof: By induction on how pp�(�).

(i) pp�(�) because � is the leftmost contracted subterm of Mi. Then clearly � has
some unique descendant �0 in Mi+1. Furthermore �0 is the leftmost contracted
subterm of Mi+1, as the contraction of �i can only introduce terms to the right of
�0. Thus pp�(�

0).

(ii) pp�(�) because Mi contains a preprincipal, �-contracted subterm, ��h ~A; ~Bi, whose

leftmost active critical argument, Ak, is of the form � ~N .

Now �i 6� ��h ~A; ~Bi, else by Note 35(ii), � would have no descendant in Mi+1,
contradicting the fact that it is contracted in �.

So by induction, ��h ~A; ~Bi has a unique, preprincipal descendant, which must be of

the form ��h ~A0; ~B0i. But then A0
k � �0 ~N 0, where �0 is the unique descendant of �,

and furthermore pp�(�
0).

�

Note 54
(i) By Lemma 53, every preprincipal subterm contracts exactly once in �. Thus the �

and Ak of De�nition 52(ii) are unique.

(ii) By (i), we conclude that if �1 and �2 are distinct, preprincipal subterms of Mi,
then either �1 � �2 or �2 � �1.
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De�nition 55 Suppose � is a reduction path,

� : M1
�1!M2

�2!M3
�3! � � � :

(i) We de�ne the principal redex pr�(Mi) to be the innermost preprincipal subterm of
Mi. By Note 54(ii), this is well de�ned.

(ii) We say � is a standard reduction if for all i, �i � pr�(Mi).

The following theorem is the main result of this appendix.

Theorem 56 (Standardization) If M � N is a �nite reduction in a PCF-like rewrite
system, then there is a standard reduction from M to N .

C.6 Path-reduction

This section gives our proof of Standardization. It is based on a proof in [23] for the pure
�-calculus, which introduced a sort of meta-reduction: a reduction relation on reduc-
tion paths. This path-reduction rewrites non-standard reductions into \more standard"
reductions. The following results motivate the de�nition of path-reduction.

Lemma 57 Let � be a reduction path,

� : M1
�1!M2

�2!M3
�3! � � � ;

and let � � pr�(Mi). If �i 6� �, then � has a unique descendant �0 � Mi+1, and
�0 � pr�(Mi+1).

Proof: Lemma 53 proves uniqueness. To show �0 � pr�(Mi+1), by the de�nition of pr�
and Lemma 53 it su�ces to note the following: if �1 � �2 �M have unique descendants
�0

1;�
0
2 �M 0, where M !M 0, then �0

1 � �0
2. �

Corollary 58 Suppose � is a reduction path,

� : M1
�1!M2

�2! � � �
�n�1

! Mn:

Then � is standard i� there is no j such that �j is the descendant of pr�(Mj�1).

The corollary suggests a possible way to transform a non-standard reduction into a
standard reduction: successively \swap" the contraction of a principal redex with the
contraction of a non-principal redex at the previous step. If we reach a reduction in
which each principal redex contracts as soon as it becomes principal, we will have found
a standard reduction.
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De�nition 59 Suppose � is a non-standard reduction, that is, there is some j such that

� : � � � !Mj�1
�j�1

! Mj
�j
!Mj+1 ! � � �

where �j is the descendant of �
0
j � pr�(Mj�1). The subpath

Mj�1
�j�1

! Mj
�j
!Mj+1

is called the path-redex at step j. Note that �0
j and �j�1 do not overlap, and furthermore,

by Lemma 57, �j is the unique descendant of �0
j. Therefore by Lemma 41, we can �nd

a sequence

Mj�1

�0

j
!M 0

j

�0

j�1

! � � �
�0

j�1

! Mj+1;

where the �0
j�1 are the descendants of �j�1. Such a sequence is call a path-contractum.

Finally, we de�ne path-reduction: �
j
!
path

�
0 if �0 is obtained from � by replacing the

path-redex at step j by a corresponding path-contractum. We will drop the index j
when convenient.

Clearly, path-reduction preserves initial and �nal terms, and any path-reduction nor-
mal form is a standard reduction. Moreover, the next two lemmas show that path-
reduction is strongly normalizing.

Lemma 60 Suppose �
j
!
path

�
0, where

� : M1 ! � � � !Mj�1
�j�1

! Mj
�j
!Mj+1 ! � � � ;

�
0 : M1 ! � � � !Mj�1

�0

j
!M 0

j

�0

j�1

! � � �
�0

j�1

! Mj+1 ! � � � :

Then for i 6= j, the following hold:

(i) If � �Mi is not contracted in �, then it is not contracted in �
0.

(ii) If � �Mi is contracted in � and pp�(�), then � is contracted in �
0.

(iii) If � �Mi is preprincipal in �, then it is preprincipal in �
0.

(iv) pr�(Mi) � pr�0(Mi).

Proof:

(i) Just note that path-reduction only permutes the order of contraction of subterms;
it does not introduce new contractions.
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(ii) It is clear that if � contracts in � and does not contract in �
0, then � is either

�j�1 or one of its ancestors. Thus we only need consider �j�1.

If �j�1 does not contract in �
0, then it must be contained in �0

j. But �0
j is the

principal redex of Mj�1, that is, the innermost preprincipal subterm of Mj�1. So if
�j�1 is not contracted in �0, it is not preprincipal in �.

(iii) We use induction on how pp�(�).

1. pp�(�) because � is the leftmost contracted subterm of Mi. By (ii), � is
contracted in �0, and by (i), it is the leftmost contracted subterm of Mi in �0.
Therefore pp�0(�).

2. pp�(�) because pp�(��h ~A; ~Bi), and the leftmost active critical argument, Ak,

is of the form � ~N . By induction, pp�0(��h ~A; ~Bi), and by (ii), � is contracted
in �

0. So Ak is active in �
0, and by (i), it is the leftmost active critical

argument. Therefore pp�0(�).

(iv) This follows from (i), (iii), and the de�nition of pr�.

�

Lemma 61 If � is a �nite reduction, then there is no in�nite path-reduction starting
from �.

Proof: Consider a path-reduction

� � �1 !
path

�2 !
path

�3 !
path

� � � :

It is not hard to see that the reduction could have been carried out in the labelled system;

that is, if �0
i is a labelled reduction such that j�0

ij � �i, and �i
j
!
path

�i+1, then there is

a labelled reduction �
0
i+1 such that j�0

i+1j � �i+1, and �
0
i

j
!
path

�
0
i+1. Thus we can �nd

labelled reductions �0
1;�

0
2;�

0
3; : : : such that j�0

ij � �i, and

�
0
1 !path

�
0
2 !path

�
0
3 !path

� � � :

And because labelled reduction is strongly normalizing, and each �0
i begins with the same

LN term, each �i is �nite.
Furthermore, the path-reduction can be thought of as constructing a tree of terms,

with each path from root to leaf corresponding to a reduction �i. Each contracted

path-redex introduces a branching in the tree. For example, if �i
j
!
path

�i+1, then the

root-to-leaf path corresponding to �i+1 is obtained by branching o� of the root-to-leaf
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path of �i at depth j � 1. The situation is depicted in the following �gure, where the
root of the tree is displayed at the left and the leaves are displayed at the right:

M1 �! � � � �! Mj�1

�j�1

�! Mj

�j

�! Mj+1 �! � � � �! Mn : �i??y�0

j

M 0

j

�0

j�1

�! � � �
�0

j�1

�! Mj+1 �! � � � �! Mn : �i+1

By Lemma 60(iv), the tree is a binary tree, and we have just seen that there is no
in�nite path from the root. Then by K�onig's Lemma, the tree is �nite, so the number of
di�erent reductions given by the tree must be �nite. �

Proof of Theorem 56 (Standardization): If � : M � N is a �nite reduction in a
PCF-like system, we can obtain a standard reduction from M to N just by �nding a
path-reduction normal form of �. �

Note that we have not shown that path-reduction normal forms are unique: that is,
if

� !
path

� � � !
path

�1;

and � !
path

� � � !
path

�2;

where �1 and �2 are normal forms, we are not guaranteed that �1 � �2. We expect
that the property holds, but haven't tried to verify that it does, since it is not needed to
prove Standardization.
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