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Abstract

In real distributed systems, processes may have only inexact information about the

amount of real time needed for primitive operations such as process steps. This thesis

studies the e�ect of this timing uncertainty on the real-time behavior of distributed systems.

We consider a semi-synchronous model in which the amount of real time between process

steps is known to be in the interval [c1; c2] and every message is known to be delivered within

time d of when it is sent. We use C = c2=c1 as a measure of the timing uncertainty.

We �rst study the problem of reaching agreement in the presence of failures. A simple

argument derived from the case of synchronous processes shows that at least time (f + 1)d

is required to tolerate f failures, while time (f + 1)Cd is su�cient to tolerate f stopping or

omission failures by directly simulating the rounds of any synchronous consensus algorithm.

We narrow this gap for omission failures, building on the nearly optimal algorithm of Attiya,

Dwork, Lynch, and Stockmeyer which tolerates only stopping failures. If fewer than half the

processes are faulty (n � 2f + 1), then the running time of our algorithm is 4(f + 1)d +

Cd, which is within a factor of 4 of optimal and has minimal dependency on the timing

uncertainty factor C. If more than half the processes are faulty, then a more complicated

analysis shows the running time is increased by approximately a factor of min( f

n�f
;
p
C). We

also present a general simulation for n � 3f +1 tolerant of Byzantine failures that simulates

any synchronous algorithm at a cost of time 2Cd+ d per round.

Finally, motivated by the message ine�ciency of our consensus algorithm for omission

failures, we de�ne a more realistic model of message links by limiting their capacity. If

messages are sent too frequently on these message links, they may incur delay greater

than d. For message links with capacity �, we prove nearly tight upper and lower bounds of

min(2Cd + d; C2d=� + Cd+ d) and min(2Cd + d=�; C2d=� + Cd+ d) respectively for the

time needed to detect stopping failures.
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Chapter 1

Introduction

In real distributed systems, processes are likely to be neither perfectly synchronous nor com-

pletely asynchronous. Many systems lie somewhere between these two extremes and can thus

be more accurately modeled by a semi-synchronous model in which processes have inexact

knowledge about real time. In our model, the degree of asychrony is captured by a parameter

which we call the processes' timing uncertainty. We will be particularly interested in how

the magnitude of timing uncertainty a�ects the time complexity of distributed computing

problems. In particular, we study the the time needed to reach consensus in the presence

of omission failures and in the presence of Byzantine failures. We also introduce a model

of message links with bounded-capacity and study the time needed to detect failures in a

system using these message links.

In a synchronous system, processors have perfectly synchronized clocks and distributed

algorithms are often broken up into rounds of communication. In a single round of com-

munication, each processor may receive messages from other processors, perform some local

computation, and then send messages to other processors. The time required to perform

local operations is generally assumed to be negligible and the time complexity of algorithms

is therefore measured by the number of rounds of communication required. In an asyn-

chronous system, the delay of messages is arbitrary and unbounded (or the relative rates

of di�erent processors are unbounded). The time complexity of an asynchronous algorithm

is usually measured by letting one time unit equal the maximum delay of any message

([Gal82, Awe85]).

The model we use is a slightly simpli�ed version of the semi-synchronous model intro-

duced in [AL89], which is in turn based on the formal model of timed automata in [MMT90].

In this model, processors have inexact knowledge about the time needed to perform certain

primitive operations. The model is formally described in Section 2.1, but is very simple:

every message is delivered within time d of when it is sent and the amount of time between
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any two consecutive steps of any process is in the interval [c1; c2]. Because process steps are

the only events for which there is a lower bound, a process can deduce a lower bound on

the amount of time for any interval of events only by counting the number of steps it takes

in that interval. For instance, to ensure that time d elapses over an interval of events, a

processor must count d=c1 of its local steps, after these events it knows that at least time

c1 � d=c1 = d (and at most c2 � d=c1) has elapsed. We will be particularly interested in how

this timing uncertainty factor of c2=c1, henceforth denoted C, a�ects the time complexity of

problems relative to their synchronous time complexity.

Of particular interest are problems that are intractable in an asynchronous setting yet

have solutions with tight bounds in the synchronous setting. A simple example is the basic

task of detecting the failure of stopped processes. Clearly, if there is no bound on message

delay or relative process step time, then failures can never be detected with certainty; in a

synchronous system, any stopping failure can be detected within approximately the maxi-

mum message delay time. Another natural candidate is the consensus problem. It is well

known that a completely asynchronous algorithm for consensus cannot tolerate the failure

of even one process, whereas exactly f +1 rounds of synchronous communication are needed

to tolerate f failures in a synchronous system.

1.1 Reaching consensus|known time bounds

The problem of reaching consensus in the presence of failures is one of the most well-studied

problems in distributed computing. We consider the version of this problem for a system

of n deterministic processes some f of which may fail, completely connected by a reliable

message system. The processes begin executing at the same time, each with a private binary

input, and must each decide on a binary value such that no two nonfaulty processes decide

di�erently and if all processes begin with value v then v is the decision of all nonfaulty

processes. In this thesis, we consider two kinds of process failure: send-omission failures, by

which a process may unwittingly omit messages of an algorithm, and Byzantine failures, by

which a process may exhibit arbitrary behavior.

It is well known ([FLP85]) that in an asynchronous system, this problem cannot be solved

deteministically even if the only failure to be tolerated is the unannounced halting (stopping)

of a single process. The work of [DDS87] methodically explores the synchrony necessary to

reach consensus; they show that if there is no upper bound on message delay or there is no

upper bound on the relative rate of process steps|if any of our bounds d, c1, or c2 does not

hold|then there is no deterministic solution tolerating even a single stopping failure.

The time complexity of the consensus problem has been well studied in the synchronous

rounds model (see, for example, [LSP82, PSL80, FL82, DS83, DLM82]). It is well known
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that f+1 rounds of communication are both su�cient ([PSL80]) and necessary ([FL82, M85,

DM86, CD86]) to reach consensus, regardless of the severity of failures (stopping, omission,

or Byzantine). In [DLS88], the problem was studied using a model of partial synchrony in

which upper bounds on message delivery time and/or processes' relative step rates exist,

but they are unknown a priori to the processes. The algorithms of [DLS88] are concerned

with fault tolerance rather than timing e�ciency, and therefore translate to relatively slow

algorithms for our model.

For our semi-synchronous model, a lower bound of (f+1)d is implied by the synchronous

lower bound of f + 1 rounds, via a straightforward transformation of any algorithm for our

model to an an algorithm for the synchronous model. For stopping and omission failures,

any synchronous round-based algorithm may be simulated directly, yielding an algorithm

for our model with a running time approximately C times the synchronous running time.

This simulation strategy is described in Section 3.1. Thus, upper bounds of approximately

(f + 1)Cd are easily derived. For Byzantine failures, it is not clear how to simulate a

synchronous algorithm correctly.

In [ADLS90], Attiya, Dwork, Lynch, and Stockmeyer prove nearly tight upper and lower

bounds on the time to reach consensus in the presence of stopping failures. Surprisingly,

they give a clever algorithm for consensus that runs in time 2fd + Cd, much faster than

a direct simulation when C is large. They also show a lower bound of (f � 1)d + Cd in a

proof that combines the arguments of the synchronous lower bound with techniques from

asynchronous lower bounds and retiming techniques for our semi-synchronous model.

1.2 Related work

Current research also concentrating on the real time complexity of the consensus problem

appears in [SDC90]. There, processes are assumed to have clocks that are synchronized to

within a �xed additive error. In contrast to our results, the results of [SDC90] are stated

in terms of process clock time, not absolute time. The relationship between those results

and ours is unclear; a better understanding of the di�erences between two di�erent models

is posed as a direction for further research in Section 6.2.

A related model is studied in [HK89] to explore the time complexity of detecting failures

along a network path. This model assumes synchronous processes but di�erentiates between

the (known) a priori worst-case bound on message delay, �, and the (unknown) actual worst-

case message delay in a given execution, �. Since � may be much less than �, it is desirable

for algorithms to have minimal dependency on �. This model raises a concern similar to

that raised by our model: detecting the absence of a message may be much more costly than
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receiving the message. Our algorithms run equally well in this model; we remark on how our

bounds translate to this model in Section 6.1.

Other work in this area includes the extensive literature on clock synchronization algo-

rithms (see [SWL86] for a survey). Other problems recently studied in our model of timing

uncertainty include the problem of mutual exclusion ([AL89]) and the complexity of a net-

work synchronizer algorithm ([AM90]).

1.3 Results of this thesis

1.3.1 Consensus in the presence of omission failures

In Chapter 3, we strengthen the algorithm of [ADLS90] to tolerate omission failures. The

resulting algorithm has a running time of 4(f+1)d+Cd for n � 2f+1. This is approximately

within a constant factor (4) of the lower bounds of (f + 1)d and (f � 1)d + Cd ([ADLS90])

and minimizes the dependence on the timing uncertainty C.

For n � 2f , a more involved analysis bounds the running time by two di�erent quantities

simultaneously: one bound is dependent on the ratio f
n�f

and the other is dependent on
p
C.

We �rst derive the bound (3 f

n�f
+ 5)(f + 1)d + Cd using a �ner analysis that is similar in

spirit to the analysis for n � 2f + 1. We then show that (2
p
C + 6)(f + 1)d + Cd is also a

bound on the running time using a simple but di�erent argument.

1.3.2 Consensus in the presence of Byzantine failures

In Chapter 4, we present a simulation algorithm using 3f + 1 processes and tolerating f

arbitrary failures. The algorithm simulates any synchronous round-based algorithm tolerant

of f arbitrary failures using roughly time 2Cd + d per round.

The simulation works by keeping processes loosely synchronized to ensure that a nonfaulty

process does not advance to round r until it has received a round r � 1 message from every

nonfaulty process. The partial synchronization works by using a combination of two criteria

for advancing to further phases, one based on elapsed local time and the other based on

messages received.

It follows that any of the known synchronous consensus algorithms tolerating f Byzantine

failures and taking f + 1 rounds can be run in our model in time (f + 1)(2Cd + d).
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1.3.3 Timeouts using bounded-capacity message links

In Chapter 5, we de�ne a realistic restriction on the message links of our model and examine

its e�ect on the time needed to detect stopping failures. According to the model of [AL89]

and [ADLS90] (used in Chapter 3), every message sent by a process is delivered within time

d of when it is sent, regardless of the rate at which messages are sent. In reality, if a link is

ooded with messages, their delay may be much greater. Our algorithm for omission failures

and the algorithm of [ADLS90] ignore this consideration by requiring a process to send a

message at every step it takes. This enables failures to be detected as quickly as possible,

but is grossly ine�cient in its use of messages. We therefore de�ne a more realistic model of

message delay that takes into consideration the rate at which messages are sent.

We give a clean, modular de�nition of a message link of arbitrary capacity �. Such a link

my may be thought of as allowing the \progress" of only � messages at any time. We then

derive nearly tight bounds on the time needed to detect a stopping failure using such links.

Two easy algorithms guarantee that the time between a failure and its detection is at most

2Cd + d and C2d=� + Cd + d, respectively. We show that these bounds are nearly optimal

by proving a lower bound of the lesser of 2Cd+ d=� and C2d=� + Cd+ d.
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Chapter 2

Model and De�nitions

Our underlying formal model is essentially the same as that used in [ADLS90]. Our model

di�ers by assuming for ease of presentation that all messages are delivered in the order sent

and that processes begin executing the algorithm at the same time. The former assumption

is not used in our algorithm for Byzantine failures and is easily removed from our algorithm

for omission failures by employing a more complicated protocol for receiving messages. The

latter assumption is avoided in [ADLS90] by instead providing a special individual input

event for each process, in which it receives its initial value for the consensus protocol. In

measuring the time complexity of the algorithm, time is measured only from the earliest

time that all processes have received an input. Using the same formalism, our algorithm for

omissions failures works equally well without the assumption of a synchronized start. This is

not true, however, for our algorithm tolerating Byzantine failures, where we make use of the

fact that all nonfaulty processes begin executing the algorithm at the same time. Without

this assumption, the problem is complicated by the need to determine when all processes

have received inputs. Also, in addition to allowing stronger failures than [ADLS90], we

assume that processes know the number of failures, f , to be tolerated.

2.1 Formal model

We consider a system of n processes 1; : : : ; n. Each process is a deterministic state machine

with possibly an in�nite number of states and a distinguished start state.

A con�guration is a vector C consisting of the local states of each process. Let st(i; C)

denote the state of process i in con�guration C. We model a computation of the algorithm as

a sequence of con�gurations alternated with events. Each event � is either the computation

step of a single process or the delivery of a message to a process. The local protocol of process
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i consists of two transition functions,Mi for message delivery events, and Si for computation

events. Transition function Mi is applied to a state of the process and a message (taken

from some �nite message alphabet) and returns a state. (So, for example, a process can

\remember" a message that was delivered to it.) A message delivery event � is of the form

(m; i), specifying the message m delivered and the recipient process, i. Transition function

Si is a applied to a state of the process and returns a state and a �nite set of messages to

be sent.1 A computation step � is of the form (i;M), speci�ng the process i taking the step

and the set of messages M it sends in that step. (M should be interpreted as the messages

the process actually sends at that step in the execution; if the process is faulty, this may not

correspond to those determined by the transition function.)

An execution is an in�nite sequence of alternating con�gurations and events, � = C0; �1;

C1; : : : ; �j; Cj; : : :, where C0 is the vector of start states and each con�guration Ci follows

from the previous con�guration Ci�1 and the intervening event �i, according to the state

transitions of the process at which event �i occurs. This means that if event �j is an event

at process x then (1) for y 6= x, st(y;Cj�1) = st(y;Cj), (2) if � is a message delivery event

specifying the delivery of message m then st(i; Cj) is the result of applying Mi to Cj�1 and

m, and (3) if � is a computation event, then st(i; Cj) is the result of applying Si to Cj�1.

Also, each message sent is delivered after it is sent and no unsent \messages" are delivered.

A timed event is a pair (�; t), where � is an event and t, the \time", is a nonnegative

real number. A timed sequence is an in�nite sequence of alternating con�gurations and

timed events � = C0; (�1; t1); C1; : : : ; (�j; tj); Cj; : : :, where the times are nondecreasing and

unbounded.

Fix real numbers c1, c2, and d, where 0 < c1 � c2 <1 and 0 < d <1. Letting � be a

timed sequence as above, we say that � is a timed execution if

1. C0; �1; C1; : : : ; �j; Cj; : : : is an execution;

2. The �rst step of each process is at time 0;

3. There are in�nitely many computation steps for each process;

4. If �i and �j are consecutive computation steps of the same process, then c1 � tj� ti �
c2; and

5. If message m is sent to process i during computation event �j then it is delivered to

process i during message delivery event �k, j < k, such that 0 � tk � tj � d.

In our timing analysis (but not in our algorithms or correctness proofs), we make the

assumption that c2� d and therefore make the approximation d + c2 � d.

1In all our algorithms, a process always sends the same message (at most one per step) to all processes,

including itself.
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2.1.1 Omission failures

A process i su�ers an omission failure in execution � if and only if there is a computation

step �j of process i in � specifying a set of messages that is a strict subset of the messages

determined by the transition function Si applied to st(i; Cj�1). Recall that computation

step �j speci�es the messages actually sent by i during that step of execution �. Note that

according to our de�nition of an execution, st(i; Cj) must be the result of applying Si to

st(i; Cj�1), regardless of the messages speci�ed by �j. This implies that the process itself is

\unaware" of its failure and, unless informed about it, continues executing as if it had not

failed. (This kind of failure is sometimes called a send-omission failure.) If the algorithm

requires j to broadcast a message to all processes, but j does not send a message to i, then

we say that \j omits to i" or that this broadcast is \unsuccessful".

2.1.2 Byzantine failures

A process su�ers a Byzantine failure if it changes its state or sends messages in a way not

speci�ed by the transition functions of the algorithm. No restrictions are made on its state

transitions or what messages it sends, and so it may exhibit arbitrary behavior. Furthermore,

the time between successive steps of a faulty process might not be in the interval [c1; c2].

The messages it sends, however, are delivered within time d of when they are sent.

2.1.3 Consensus

Finally, we de�ne the consensus problem. We assume that each process begins with an

initial binary value (its \input") as part of its local state and may irreversibly \decide" on

a value by entering a specially designated state. The problem is for the processes to agree

on a binary value despite the failure of some processes. We say that a timed execution � is

f -admissible if at most f processes fail in �. An algorithm solves the consensus problem for

f failures within time T provided that for each of its f -admissible timed executions �, (1) no

two di�erent processes decide on di�erent values (agreement), (2) if some nonfaulty process

decides on v, then some process has initial value v (validity), and (3) every nonfaulty process

decides by time T (time bound). Note that the validity condition does not imply termination;

termination is implied by the third condition. We consider the binary version of the problem,

where the initial values are 0 or 1. Like the algorithm of [ADLS90], our algorithm for omission

failures can be extended to work for any value set, using the same extension given there

([ADLS90], Section 5.4). Our algorithm for Byzantine failures is a general simulation for

any rounds based algorithm and therefore can simulate any synchronous agreement algorithm

for any value set.
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Chapter 3

Consensus in the Presence of

Omission Failures

In this chapter, we present a consensus algorithm tolerant of send-omission failures. The

algorithm uses the same strategy as that of [ADLS90]; we �rst elucidate this strategy by

describing a synchronous consensus algorithm upon which it is based and explaining our

algorithm in terms of that synchronous algorithm. For n � 2f + 1, the running time of our

algorithm is 4(f +1)d+Cd, which is approximately within a factor of 4 of the lower bounds

of (t� 1)d +Cd and (t+ 1)d ([ADLS90]). For n � 2f , the running time is bounded by two

quantities, (3 f

n�f
+ 5)(f + 1)d + Cd and (2

p
C + 6)(f + 1)d + Cd.

In order to motivate the work presented here, we �rst discuss bounds attainable by more

straightforward algorithms.

3.1 Straightforward upper bounds

Attiya, Dwork, Lynch, and Stockmeyer ([ADLS90]) give two simple algorithms tolerant of

stopping failures and with running times of roughly fCd. One algorithm is based on a

method for simulating any synchronous round-based algorithm; the other is speci�c to the

consensus problem and requires that the processes begin synchronized. Both algorithms can

be modi�ed to tolerate omission failures without seriously a�ecting the running times. We

briey explain these two simple algorithms with the modi�cations.

The �rst simple algorithm simulates any synchronous round-based algorithm and takes at

most time Cd+ d per round. The algorithm works by executing the round-based algorithm

in parallel with a timeout task. The timeout task is similar to the one described at the

beginning of Chapter 5: each process keeps a count of the number of steps it has taken and
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at each step broadcasts the number of its current step to all other processes in the form

\I'm alive: s" at step number s. Each process also keeps track of the \I'm alive" messages

received from other processes and detects failures in the expected way, by detecting gaps in

the step numbering or by the absence of messages. (We will in fact employ this strategy in

our algorithm.) While performing the timeout task, a process simulates each round of the

synchronous algorithm by asynchronously executing it|a process simply waits inde�nitely

on every other process for either a message of that round or the detection of that process's

failure. It is not hard to see that this accurately simulates the round-based algorithm: no

process sends a round r message before receiving a round r � 1 message from all nonfaulty

processes; A simple inductive argument shows that by time r(Cd + d) (more accurately,

time C(d+ c2) + (d+ c2)), every process has �nished simulating round r of the synchronous

algorithm. Thus, any synchronous consensus algorithm tolerant of omission failures taking

f+1 rounds may be directly simulated to yield an algorithm for our semi-synchronous model

that takes time (f + 1)(Cd+ d).

Under the assumption that processes begin executing the algorithm at the same time, a

simpler algorithm speci�c to the consensus problem may be used. This simpler algorithm

does not make use of any fault-detection mechanisms. If a process starts with initial value

1, it broadcasts a 1 and decides 1 and halts. If a process ever receives a 1 (and has not yet

halted), it does the same. It is easy to see that if a correct process receives a 1, then some

correct process receives a 1 by time fd and subsequently all correct processes receive a 1

by time (f + 1)d (more accurately, (f + 1)(d + c2)). Therefore a process may decide 0 if it

has run for more than (f + 1)(d + c2)=c1 steps without deciding. This takes at most time

approximately (f + 1)Cd.

Finally, we remark that the e�cient algorithm of [ADLS90] can be modi�ed to tolerate

omission failures by using the timeout task for omission failures outlined above. The running

time, however, is then roughly f2d+Cd. This bound follows from a modi�cation of the part

of the analysis of [ADLS90] which takes the sum over each phase r of the number of processes

that fail during the sending of an r message. Because only stopping failures are considered

in [ADLS90], the analysis there concludes that a process may fail during the sending of at

most one r message and therefore the sum over all r is at most f . If failures are by omission,

then a process may fail during the sending of many r messages, but only once for any r.

Because there are at most f + 2 phases in any f -admissible execution, the sum over all r is

at most (f + 1)f , resulting in a bound of approximately (f + 1)fd + Cd.
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3.2 Intuition: the underlying synchronous algorithm

Our algorithm and the algorithm of [ADLS90] may be interpreted as simulations of an

underlying synchronous algorithm. In this underlying synchronous algorithm, all processes

begin executing in round 0. In even numbered rounds, processes may decide only on 0; in

odd numbered rounds, processes may decide only on 1. In round 0, any process with initial

value 0 decides 0 immediately and broadcasts a message saying \I decided in round 0"; any

process with initial value 1 broadcasts a message saying \I didn't decide in round 0" and

advances to round 1. In any subsequent round r, if a process did not receive a message

saying \I decided in round r � 1", it may decide r mod 2, broadcasting \I decided in round

r"; if it did receive a message saying \I decided in round r � 1", it advances to round r + 1

broadcasting \I didn't decide in round r".

It is easy to see that if a nonfaulty process decides in round r then no process decides

in round r + 1 and all processes then decide in round r + 2. The algorithm is also \early-

stopping": any execution in which at most f processes fail takes at most f + 2 rounds of

communication. (This means that all processes decide in round f + 2 or earlier, despite the

fact that the �rst round is numbered 0, since a decision in round i is based on messages sent

in round i�1 or earlier.) The is easily seen by observing that if an execution takes x rounds

then a faulty process decides in each of rounds 0 through x� 3: if no faulty process decides

in round i � x � 3 then either (1) a nonfaulty process decides in round i and all processes

decide by round i+ 2, or (2) no process decides in round i and therefore they all decide in

round i+1 (because no process receives an \I decided in round i" message). Thus, f failures

cause the maximum number of rounds, f + 2, in the following execution. All processes

except some process j0 begin with initial value 1 and advance to round 1. Process j0, with

initial value 0, broadcasts \I decided in round 0" to all processes except some other process

j1. Thus all processes except j1 advance to round 2; j1 decides in round 1 and broadcasts

\I decided in round 1" to all processes except some process j2. This continues until �nally

process jf�1 decides in round f�1 and broadcasts \I decided in round f�1" to all processes
except nonfaulty process jf , which decides in round f + 1; all processes subsequently decide

in round f + 2.

Both our algorithm and that of [ADLS90] \simulate" this synchronous algorithm, making

several important optimizations in order to improve the running time for our model. If during

the simulation of round r, a process receives a message saying \I decided in round r � 1",

it immediately advances to round r + 1 (without waiting for round r � 1 messages from

other processes), broadcasting to all processes, in e�ect, \I know of a process that decided in

round r � 1". Other processes in round r that receive this message relay it to all processes

and also advance immediately to round r + 1. A process may decide in round r only if it

can be sure that no nonfaulty process decided in round r�1. This is ascertained only when,
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for every other process p, either (1) the message \I didn't decide in round r � 1" is received

from p, or (2) p has been detected as faulty (by the timeout protocol), or (3) for some

r0 < r � 1, the message \I decided in round r0" has been received from p (also remembered

by the timeout protocol).

The key to the improved e�ciency of our algorithm relative to that of [ADLS90] is the

addition of a mechanism for a process to detect its own failure. We require that a process

receive at least n� f acknowledgments for every message of the synchronous algorithm that

it sends. Until a process has received a su�cient number of acknowledgments for its round

r message, it is prohibited from deciding in round r + 1 or advancing to round r + 2. This

is important to the e�ciency of the algorithm because it limits to 1 the number of times a

faulty process can omit a message of the synchronous algorithm to all nonfaulty processes.

For n � 2f +1, the convention of waiting for acknowledgments ensures that a faulty process

does not advance to round r + 1 if it omits to all nonfaulty processes a message saying \I

know of a process that decided in phase r". If it does send such a message to a nonfaulty

process, that nonfaulty process in turn relays it to all other processes; the faulty process

therefore has not delayed the algorithm by very much (time d at most). The convention

of waiting for acknowledgments requires that a process continue executing the algorithm,

sending acknowledgments, after it has decided.

3.3 The algorithm

We �rst explain the presentation of our algorithm. We describe our algorithm as the parallel

composition of a fault-detection protocol and a main algorithm. At each step, a process

�rst executes the code of the fault-detection protocol, then executes the code of the main

algorithm, and �nally sends a message. (Recall that in our model a process may send at

most one message at each step).

This message is the concatenation of possibly several component \messages" which are

speci�ed by the queue commands in the code: if during a step, the statement \queue `m' "

is executed in the code, then \message" m is a component of the message sent at the end

of that step. We will refer to a message by any one of its components: we will say \an m

message" or simply \an m" to refer to any message with m as one of its components.

Our model also speci�es that a process receives messages only during delivery events (and

therefore only between process steps). For every delivery event, a process changes its state

by adding the received message to a bu�er (an unordered set). At its next step, the process

reads and empties this bu�er. A conditional statement in the code referring to the receipt

of a message checks whether such a message was read from this bu�er during the given step.

18



For ease of presentation, some components of a process's state are not explicitly named

or maintained in the code|for instance, the number of steps a process has taken, whether it

has decided, or whether it has sent a certain message. Process index subscripts are omitted

in the code but used in the text (e.g., \Di") to refer to a local variable (D) of process i.

3.3.1 The fault-detection protocol

In order to tolerate omission failures, our algorithm employs the timeout protocol described

in Section 3.1. A process sends a message at every step that it takes, consecutively numbering

all messages that it sends with the number s of its current step.1 Before a process decides,

the message that it sends at every step is of the form \I'm alive: s", where s is the number

of its current step; after a process decides, the message is of the form \I've decided: s".

The failure of a process can thus be detected by a gap in the sequence numbering (recall

we assume that message links deliver messages in the order sent) or by the absence of any

messages for too long a period of time (more than time d + c2).

All processes detected as faulty are added to a local set F . When a process i detects the

failure of another process j, it broadcasts this fact in the form of a \shutdown j" message.

Upon receiving this message, other processes add j to their respective sets F ; when process

j receives this message, it halts, ceasing its execution of the algorithm. The timeout protocol

also keeps track of which processes have decided. When a process receives a message \I've

decided: s" from another process, it adds that process to its set D. When a process i adds

j to Di (Fi, resp.), it is said to have \detected" that j has decided (failed, resp.). We say

that a process i is shut down at time t if it receives a \shutdown i" message at time t. The

code for the fault-detection protocol is in Figure 3.1.

We now verify two basic properties of the fault-detection protocol with respect to arbi-

trary executions. The �rst bounds the time by which a failure is detected.

Lemma 3.1 If at time t, process j omits a message to process i, and i is not shut down by

time t+ C(d+ c2) + (d + c2) � t+ Cd+ d, then i adds j to Fi by that time.

Proof: Let sj be the step number of j at which it omits a message to i. The lemma is

clearly true if j sends a message to i at a step numbered greater than sj and that message

arrives at i by time t+C(d+c2)+(d+c2). If j does not send such a message, then i receives

no message from j between time t+d and t+d+c2(1+(d+c2)=c1) = t+(d+c2)+C(d+c2),

in which time i takes more than (d + c2)=c1 steps and, since it is not yet shut down, adds j

to Fi.

1As a consequence of the bound on running time to be derived, these sequence numbers are bounded by

a function of f , d, c1 and c2.
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Step s: If \shutdown i" received, then halt.

If decided, then queue \I've decided: s"

else queue \I'm alive: s".

For each j 62 D [ F ,
if \shutdown j" message received

then F  F [ fjg; queue \shutdown j"

if \I'm decided: sj" message received from j

then D D [ fjg
if \I'm alive" messages from j not numbered consecutively

then F  F [ fjg; queue \shutdown j"

if no message received from j and more than

(d+ c2)=c1 steps taken since last message received from j,

then F  F [ fjg; queue \shutdown j".

Figure 3.1: The fault-detection protocol for i at step number s.

The second property veri�es that nonfaulty processes are never declared faulty.

Lemma 3.2 If process i does not fail in an execution, then i is not added to any set Fj and

is never shut down.

Proof: For contradiction, let j be the process that �rst adds i to its failed set Fj. Process j

adds i to Fj because either it receives a \shutdown i" message, or it receives two \I'm alive"

messages from i with a gap in sequence numbering, or it does not receive an \I'm alive"

message from i for more than (d+ c2)=c1 steps.

By our choice of j, process j cannot receive a \shutdown i" message before adding i to

Fj|that would imply that some other process added i its failed set before j did.

Because i is nonfaulty (and the links are FIFO), j does not receive two \I'm alive"

messages with a gap in the sequence numbering.

Before it decides, i sends \I'm alive" messages at every step it takes and so any two

messages are delivered to j at most time d+c2 apart (if one message is delivered immediately

and the following message is delayed by d). In time d + c2, j can take at most (d + c2)=c1
steps and therefore does not add i to Fj. After i decides, it broadcasts an \I'm decided"

message, which causes j to add i to Dj and prevents j from adding i to Fj thereafter. Thus,

j cannot add i to Fj.
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3.3.2 The main algorithm

The main algorithm is basically an asynchronous version of the synchronous algorithm of

Section 3.2. The code for the main algorithm appears in Figure 3.2. We call the simulation

of round r of the synchronous algorithm \phase r". Each process i starts in phase 0 with vi

set to its own private value (1 or 0). In its �rst step, a process either decides 0 or advances to

phase 1. As with the synchronous algorithm, in even numbered phases a process can decide

only 0, and in odd numbered phases a process can decide only 1.

When a process advances from phase r to phase r+1, it broadcasts an \r" message. (This

is the equivalent of the message \I didn't decide in round r" in the synchronous algorithm).

When a process decides in phase r, it broadcasts an \r+1" message. (The message \r+1"

replaces the messages \I decided in round r" and \I didn't decide in round r + 1" of the

synchronous algorithm; both have the meaning \I know of a process that decided in round

r", so it is unnecessary to distinguish between them.) Set M r contains those processes from

which an r message has been received. A process may decide in phase r only if it has (1) not

yet received an r message, and therefore does not know of a process that decided in round

r, and (2) has received an r � 1 message from all processes not yet detected as faulty or

decided, indicating that they did not decide in round r � 1. If process i is nonfaulty, then

the receipt of an r+ 1 message from i prevents other processes from deciding in phase r+ 1

since they do not add i to D or F before receiving it. A process that decides in round r does

not send an r message unless it receives one �rst (this implies that some process decided in

round r � 1 but failed).

Our convention of acknowledging messages works as follows. Each process maintains a

set Ar containing those processes from which a properly sequenced \ack(�; r)" message has

been received. (The restriction to properly sequenced \ack(�; r)" messages is achieved by

not adding a process to Ar if that process is already in F . This restriction is necessary only

for the bound when n � 2f .) Until a process decides, it sends exactly one acknowledgment

message, \ack(j; r0)", for each r0 message where r0 is less than its current phase number. After

a process decides in some phase r, it continues to acknowledge r0 messages for r0 � r + 1.

This is implemented in the code by allowing the process to advance to phase r + 2 but no

further. It is not necessary for a process to acknowledge r0 messages for r0 > r + 1 because

as we will see, if it is nonfaulty then other nonfaulty processes do not advance to phase r+3

without deciding and therefore do not require acknowledgments for their r + 2 messages.

Until a process has received at least n � f properly sequenced acknowledgments for its r

message (jAr�1j � n� f), it may not advance to phase r + 1 or decide in phase r.

De�nition 1 A process i is blocked in phase r (for r > 0) if it advances to phase r without

deciding and never has jAr�1
i j � n � f .
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Being blocked is a permanent state, but even if a process is not blocked in phase r, it may

be temporarily delayed from advancing to phase r+1 as it waits for acknowledgments before

proceeding.

Phase 0: If v = 1, then queue \0" and goto Phase 1.

If v = 0, then queue \1" and decide 0 and goto Phase 2.

Phase r > 0: For each j and each r0, 1 � j � n and 0 � r0 < r,

if \r0" message received from j,

then M r0  M r0 [ fjg
if \ack(i; r � 1)" received from j and j 62 F ,
then Ar�1 Ar�1 [ fjg

if j 2M r0 and r0 < r and \ack(j; r0)" not yet sent,

then queue \ack(j; r0)". (whether decided or not)

If decided and M r�2 6= ; and \r � 2" not yet sent,

then queue \r � 2"

If not decided and jAr�1j � n� f , (enough ack's received)

then if M r 6= ;, (some process decided in phase r � 1)

then queue \r" and goto Phase r + 1

if M r = ; and j 2M r�1 for all j 62 (D [ F ),
then queue \r + 1" and decide r mod 2 and goto Phase r + 2

Figure 3.2: The main algorithm of process i, performed at every step. Initially,

a process is in phase 0 with M r = Ar = ; for all r.

We prove here a few basic lemmas about the main algorithm with respect to any f -

admissible execution. The �rst two lemmas a�rm two expected properties that held for the

synchronous algorithm.

Lemma 3.3 If some nonfaulty process decides in phase r � 0 then no process decides in

phase r + 1.

Proof: Let i be a nonfaulty process that decides in phase r and consider any other process j.

According to the code of the main algorithm, j cannot decide in phase r+1 without receiving

an r message from i or adding i to Fj or Dj . We claim that neither can happen before j

receives an r + 1 message from i, which according to the code (which requires M r+1 6= ;)
precludes j from deciding phase r+1. First, because i is nonfaulty, by Lemma 3.2 it is never
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added to Fj. Process i may send an r message, but only after sending an r + 1 message.

Because i is nonfaulty, it does not omit this message, and because messages are delivered in

the order sent, j does not receive it before receiving the r+1 message. Process i is added to

Dj only when j receives the message \I've decided" from i. By the same argument, j does

not receive \I've decided" from i before receiving the r + 1 message.

The following de�nition is useful in proving correctness and analyzing time complexity.

De�nition 2 Phase r is quiet if there is some process that never receives any r messages.

Lemma 3.4 If a nonfaulty process decides in phase r � 0 then phase r + 2 is quiet.

Proof: By Lemma 3.3, no process decides in phase r + 1. If a process does not decide in

phase r + 1, then it does not send an r + 2 message until it receives one. Therefore, no

process sends an r + 2 message and in fact no process receives an r message.

The next two lemmas a�rm that the convention of acknowledging r messages works as

expected|nonfaulty processes are never blocked|and the last lemma states that the failure

of blocked processes is eventually detected by all processes.

Lemma 3.5 For any process i and any nonfaulty process j, if i advances to phase r � 1

without deciding and sends an r0 message j for 0 � r0 � r�1, then i receives an \ack(i; r�1)"
message from j.

Proof: By induction on r. Clearly the lemma is true for r = 1: j advances to phase 1

during its �rst step and sends \ack(i; 0)" during the next step at which it has received a 0

message from i.

Assume the lemma is true for r � 1 � 1. First observe that j does not decide in any

phase r0 � r�3: by Lemma 3.3, this would imply that no process decides in phase r0+1 and

therefore no process sends an r0 + 2 message, but this is not possible because i advances to

phase r � r0+3 without deciding and therefore must receive an r0+2 message. If j decides in

phase r0 and r0 = r�2 or r�1, then j immediately advances to phase r0+2 � r after deciding

and sends \ack(i; r�1)" to i. Suppose that j does not decide in any phase r0 � k�1. Process
j must advance from each phase r0 � k � 1 because it is never shut down, has M r0

j 6= 0, and

has jAr0

j j � n � f : j is never shut down by Lemma 3.2; j has M r0

j 6= ; because it receives
an r0 message from i; j has jAr0

j j � n � f because it is nonfaulty and therefore sends an

r00 message to all processes for each r00 � r0 � 1 and by the induction hypothesis receives

\ack(j; r00)" from all nonfaulty processes|none of which, by Lemma 3.2 are ever added to

Fj. Process j therefore advances to phase r and may then send \ack(i; r� 1)" to i.
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Corollary 3.6 If process i is nonfaulty and advances to phase r � 1 without deciding, then

it eventually has jAr�1
i j � n� f . (A nonfaulty process is never blocked.)

Proof: Because i is nonfaulty and advances to phase r without deciding, for 0 � r0 < r it

sends an r0 message to all processes as it advances to phase r0+1. By Lemma 3.5, i receives

\ack(i; r� 1)" from each nonfaulty process. Because by Lemma 3.2, nonfaulty processes are

never added to Fi, each nonfaulty process is added to Ar�1
i , giving the necessary bound.

The following lemma relies on the fact that a process continues to take steps, executing

the algorithm after it decides; in particular, it continues to detect the failure of processes

and, if necessary, send acknowledgments.

Lemma 3.7 If a faulty process j unsuccessfully broadcasts an r message at time t and is

subsequently blocked in phase r+1, then all processes not shut down by time t+C(d+ c2)+

2(d + c2) � t+ Cd+ 2d detect the failure of j by that time.

Proof: By the de�nition of being blocked, j advances to phase r + 1 but never has jAr
jj �

n � f . Thus there is some nonfaulty process i never added to Ar
j. By Lemma 3.5, j omits

an r0 message to i for some 0 � r0 � r. This omission occurs at or before time t. By

Lemma 3.1, i detects this failure by time t+ C(d+ c2) + (d + c2), broadcasting \shutdown

j" to all processes in the same step. By time d + c2 later, all processes not yet shut down

have received this message and taken a step, adding j to their failed sets.

3.4 Correctness proof

We now prove that in all f -admissible executions, the algorithm terminates and correctly

satis�es the agreement and validity conditions. We �rst prove \progress"|that processes

in fact advance to successive phases as expected. Given this progress lemma and a few

simple facts about quiet phases, the proofs of agreement, validity, and termination are easily

derivable. These proofs follow the same reasoning as the informal argument about the

synchronous algorithm outlined in Section 3.2.

Lemma 3.8 For each r � 0 and each process i that is neither blocked nor shut down in any

phase r0 � r, process i either decides in some phase r0 � r or advances to phase r + 1.

Proof: For contradiction, let phase r be the �rst phase for which the lemma is not satis�ed

and let i be any process for which the lemma is not satis�ed at phase r. By the choice of r,

i advances to phase r.
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First note that r 6= 0, since every process either decides or advances to phase 1 during

its �rst step.

We show below that for r > 0 and for every process j, either i either receives an r � 1

message from j or adds j to Fi or Di. We thus derive a contradiction by concluding that i

may either decide or advance to phase r + 1, since it has j 2M r�1 for all j 62 (Di [ Fi) and

by assumption is not shut down and eventually has jAr�1
i j � n� f (is not blocked in phase

r).

Let j be any other process. First consider the case that j also is neither shut down nor

blocked in any phase r0 � r and that further, j does not fail directly to i. By the choice of

r, j either advances to phase r or decides in a previous phase. If j advances to phase r, then

it must send an r � 1 message to i (successfully, in this case). It cannot be that process j

decides in phase r � 1, since that would imply sending an r message to i, thus enabling i

to advance immediately to phase r + 1, contradicting our original assumption. If j decides

before phase r � 1, then it sends an \I've decided" message to i and is added to Di.

Now consider the case that j is either shut down or blocked in some phase r0 � r or j

fails directly to i. If j is blocked, then by Lemma 3.7, i will eventually detect that j is faulty.

Similarly, if j is shut down, then it halts and i will detect its failure by timeout. Lastly,

Lemma 3.1 ensures that if j fails directly to i and i is not shut down, then i eventually

detects j as faulty and adds it to Fi.

Corollary 3.9 For any r � 0, every nonfaulty process either decides in phase r0 � r or

advances to phase r + 1.

Proof: By Lemmas 3.2 and 3.6, a nonfaulty process is never shut down or blocked; the

corollary then follows immediately from Lemma 3.8.

Corollary 3.10 If phase r � 0 is quiet, then each nonfaulty process decides in some phase

r0 � r.

Proof: By Corollary 3.9, each nonfaulty process either decides in phase r0 � r or advances

to phase r + 1. But a nonfaulty process cannot advance to phase r + 1: to do so, it would

send an r message to all processes, contradicting the assumption that phase r is quiet.

Lemma 3.11 (Agreement) No two nonfaulty processes decide on di�erent values.

Proof: Let r be the �rst phase in which some nonfaulty process i decides. By Lemma 3.3,

no process decides in phase r + 1. Because no process decides in phase r + 1, no process

sends an r + 2 message and thus phase r + 2 is quiet. Thus by Lemma 3.10, all nonfaulty

processes decide in some phase r0 � r+ 2. By the choice of r, all nonfaulty processes decide

in either phase r or phase r + 2, in either case on r mod 2.
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Lemma 3.12 (Validity) If any process decides on value b, then some process i starts with

vi = b.

Proof: Clearly if some process j decides on 1, it does so in phase r > 0 and that process

itself must have started with vj = 1 since otherwise it would have decided on 0 during its

�rst step.

If some process j decides on 0, it cannot be that all processes started with vi = 1.

For then, no process would decide in phase 0 and no process would send a 1 message. No

process would receive a 1 message and therefore no process would advance to phase 2 without

deciding and so no process would decide 0.

Lemma 3.13 (Termination) In any f-admissible execution, there is a quiet phase num-

bered at most f + 2 and so each nonfaulty process decides in some phase r � f + 2.

Proof: If some nonfaulty process decides in phase r � f then no process decides in phase

r+1 and no process sends an r+2 message. Phase r+2 is therefore quiet and by Lemma 3.10

all nonfaulty processes decide by phase r + 2 � f + 2.

If no nonfaulty process decides in any phase r � f , then there must be a phase h,

0 � h � f , in which no faulty process decides, and therefore in which no process decides.

If a process does not decide in phase h, then it does not send an h + 1 message until it

receives one. Therefore no process sends an h + 1 message|phase h + 1 is quiet|and by

Lemma 3.10, all nonfaulty processes decide by phase h+ 1 � f + 1.
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3.5 Analysis of time bounds

We now bound the amount of real time until all nonfaulty processes decide in any f -

admissible execution. The analysis in this section is carried out with respect to any given

f -admissible execution. Having already proved the correctness of the algorithm, we will here-

after assume d� c2 and make approximations appropriately. We �rst establish the tools for

our analysis and then conclude with the nearly optimal bound for n � 2f +1 (Section 3.5.1)

and two bounds for n � 2f (Section 3.5.2). We �rst introduce some notation.

� For r � 0, let tr be the earliest time by which all processes not blocked in any phase

r0 � r of the execution have either decided, advanced to phase r + 1, or been shut

down.

Because every process either decides or advances to phase 1 on its �rst step, t0 = 0.

� Let phase h be the �rst (smallest numbered) phase that is quiet.

� For r � 0, let Br = fi : i is blocked in phase r + 1g; let br = jBrj.

The de�nition of Br may seem unusual, but makes sense on closer analysis. We will want

to bound tr � tr�1, which we think of as the time for phase r, in terms of the number of

processes that omit an r message to all nonfaulty processes. This number is br, since all such

processes are subsequently blocked in phase r + 1.

Lemma 3.14 For r 6= r0, Br \Br0 = ;.

Proof: By de�nition, a process must advance to phase r0 in order to be blocked in phase

r0. If r < r0 and i 2 Br, then i is blocked in phase r + 1 � r0 and cannot advance to phase

r+ 2 � r0 + 1 or greater. Therefore, i is not blocked in phase r0 +1 and cannot be in Br0.

Corollary 3.15

Pi=1
i=0 bi � f .

Proof: By Corollary 3.6, a nonfaulty process is not in any Br, so these sets consist of faulty

processes only. The bound of f then follows immediately from the disjointness of the sets

Br, from Lemma 3.14.

We prove our upper bound by summing the times of the individual phases. We will say

\the time of/for phase r" to mean tr�tr�1. We prove an upper bound for two kinds of phases:

those that are quiet and those that are not. We �rst derive some useful lemmas about the

receipt of acknowledgments. We then prove an upper bound on the time to complete any

phase|in particular, quiet phases. We then prove a lemma (Lemma 3.19) that is at the
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heart of the timing analysis, regarding causal chains of r messages. The time for phases that

are not quiet depends on whether or not n � 2f + 1 and will be deferred until the following

subsections (Sections 3.5.1 and 3.5.2), where we will also sum over the phases to derive the

total time bounds.

We �rst prove a useful lemma about the timeliness of acknowledgments: if a process

receives a su�cient number of properly sequenced acknowledgments for its r message, then

it receives them promptly, by time tr�1 + 2d.

Lemma 3.16 For r � 0, if process j eventually has jAr
jj � n� f , then it has jAr

jj � n � f

by time tr + 2d.

Proof: Process j sends an r message either as it advances to phase r+ 1 or as it decides in

phase r � 1. If process j broadcasts its r message because it advances to phase r + 1, then

it is clearly not blocked in any phase r0 � r and is neither decided nor shut down before

it broadcasts this message, and so broadcasts it by time tr. Similarly, if j broadcasts its

r message because it decides in phase r � 1, then it does so by time tr�1. In either case,

j broadcasts its r message by time tr and any process that receives an r message from j

receives it by time tr + d.

Consider any process i 2 Ar
j. We claim that i sends \ack(j; r)" by time tr + d. By the

fact that it sends \ack(j; r)" eventually, process i must advance to phase r + 1 or greater

(either by deciding in phase r�1 or phase r or by advancing to phase r+1 without deciding)

before sending \ack(j; r)". It follows that i is neither blocked in any phase r0 � r nor shut

down before it does so and therefore advances to phase r + 1 by time tr. By time tr + d, i

also receives an r message from j and therefore sends \ack(j; r)" by then.

Corollary 3.17 For r � 0, if process i sends an r + 1 message after time tr or for some j

process i sends \ack(j; r)", then i has jAr
jj � n� f by time tr + 2d.

Proof: If process i sends an r + 1 message after time tr then it does not send the r + 1

message as a result of deciding in phase r, since processes that decide in phase r do so by

time tr. Therefore i sends an r+1 message as a result of advancing from phase r+1, which

requires that it have jAr
j j � n � f . By Lemma 3.16, i therefore has jAr

jj � n � f by time

tr + 2d.

We now prove a generous upper bound on the time to complete any phase (in particular,

quiet phases). The proof is very similar to the proof of progress.
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Lemma 3.18 t1 � t0 � Cd+ d and for any phase r > 1,

tr � max(tr�1 + Cd+ d; tr�2 + Cd+ 2d).

Proof: For contradiction, assume that for r > 1 (respectively, r = 1) at time max(tr�1 +

Cd + d; tr�2 + Cd + 2d) (resp. time t0 + Cd + d), some process i has neither decided nor

advanced to phase r + 1 nor been shut down and is never blocked in any phase r0 � r. By

this time, by the de�nition of tr�1, i is in phase r, and since it is not blocked in phase r, has

jAr�1
i j � n�f by Lemma 3.16. We will reach a contradiction by showing that i must decide

in phase r by this time because for every other process j, either i receives an r � 1 message

from j or i detects that j has decided or failed (j 2 Di [ Fi).

Let j be any other process. First consider the case that j (1) is not blocked in any phase

r0 � r � 1, (2) is not shut down by time tr�1, and (3) does not fail directly to i before or at

time tr�1. By Lemma 3.8, j either advances to phase r or decides in some phase r0 � r � 1;

by de�nition it does so by time tr�1. If j advances to phase r, then it sends (successfully, by

assumption) an r� 1 message to i by time tr�1 and i receives this message by time tr�1+ d.

If j decides in phase r0 � r � 1, then by time tr0 + d � tr�1 + d, i receives an \I've decided"

message from j and adds j to Di.

Now consider the case that j either (1) is blocked in some phase r0 � r � 1 (2) is shut

down by time tr�1, or (3) fails directly to i at or before time tr�1. If j is shut down or

fails directly to i at or before time tr�1, then by Lemma 3.7, i detects the failure by time

tr�1 + Cd + d. Case (1) is not possible for r = 1, so we are �nished for that case. If j is

blocked in some phase r0 � r � 1, then because it advances to phase r0, j neither decides

nor is blocked nor shut down in any prior phase. Therefore, by time tr0�1 � tr�2, j advances

to phase r0, broadcasting (unsuccessfully) an r0 � 1 message. By Lemma 3.7, all processes,

including i, detect the failure of j by time tr�2 + Cd+ 2d.

In bounding the time of a phase r that is not quiet, we will bound the time until every

process receives an r message (which every process does, by the de�nition of a quiet phase).

By that time, every process that is not yet decided or shut down or blocked in any phase

r0 � r may advance to phase r + 1; thus this is a bound for tr. In bounding the time until

every process receives an r message, the following reasoning is at the heart of the analysis.

In order for the �rst r message to ever be sent, some process must decide in phase r � 1,

which by de�nition, it does by time tr�1. An r message sent by any other process i that does

not decide in phase r � 1 is sent because i received an r message. Thus, a causal chain of

r messages may be followed and the �rst r message received by any process can be traced

back to a process that originated it (ik in the following lemma), sending the \�rst" r message

before tr�1. Because a process broadcasts an r message as soon as it receives one (at its

next step, to be precise; also, assuming it has jAr�1j � n � f , which it does after tr�1 + 2d

if at all), our time bound for phases that are not quiet is approximately d times the length
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of the shortest such chain to each process. We now prove a lemma about the existence of

such chains and their basic timing properties. This lemma is central to every bound we will

prove for the omission failures algorithm.

Lemma 3.19 If phase r is not quiet, then for every process i0, there exists a sequence of

distinct processes i0; i1; : : : ; ik and messages m0;m1; : : : ;mk with k � 0 such that

(1) for 0 < j � k, ij sends the �rst r message, mj�1, received by ij�1,

(2) exactly one process, ik, sends an r message by time tr�1, and

(3) for 0 < j � k, process ij sends an r message (mj�1) by time tr�1 + (k � j + 1)d.

Proof: Phase r is not quiet, so every process ij receives an r message; let mj be the �rst

r message that ij receives. De�ne a sequence of processes i0; i1; : : : inductively as follows: if

ij sends an r message by time tr�1 then de�ne k = j and let ij be the last process of the

sequence; otherwise, de�ne ij+1 to be the process that sends mj.

We �rst claim that the resulting does not include repetitions and is therefore �nite. This

is clear if i0 sends an r message by time tr�1 (then k = j = 0). If not, we show that for

any 0 � j � k, process ij is distinct from processes i0; : : : ; ij�1. Only i0 may fail to send

an r message. If it does, then clearly it is distinct from the other processes in the sequence;

if not, then let m�1 be any r message that it sends. If ij sends an r message by time tr�1,

then clearly it is distinct and we are done. If not, then for all ix, 0 � x � j, because ix

sends an r message (mx�1) later than time tr�1, ix must send it as the result of receiving

an r message (by the de�nition of tr�1, a process that decides in phase r � 1 broadcasts r

by time tr�1). It follows that the sending of mx�1 by ix is preceded by the sending of mx,

the �rst r message received by ix. Because a process broadcasts an r message only once, it

follows that processes i0; : : : ; ij are distinct.

Thus the sequence ik; : : : ; i1; i0 forms a chain of processes such that for 0 < j � k, process

ij sends the �rst r message, mj�1, received by ij�1 and k is the only process in the sequence

to broadcast an r message before time tr�1. This proves (1) and (2).

It remains to show (3), the timing property. For 0 < j < k, the fact that ij sends an r

message but does not decide in phase r� 1 implies that ij advances to phase r by time tr�1,

since it is not blocked in any phase r0 � r and is not decided or shut down before sending

mj�1, which it does after time tr�1. Therefore, by time tr�1 + 2d, each ij is in phase r and

by Lemma 3.16, has jAr�1
ij
j � n � f . Since ik�1 receives mk�1 by time tr�1 + d, it advances

to phase r + 1, sending mk�2 by time tr�1 + 2d. Process ik�2 receives this message by time

tr�1 + 3d and thus advances to phase r + 1, sending mk�3 by time tr�1 + 3d. Similarly, for

0 � j < k, process ij receives mj and sends mj�1 by time tr�1 + (1 + k � j)d.

To complete the lemmas necessary to tightly bound the running time, we need only bound

the time for any phase that is not quiet. This bound depends on whether or not n � 2f +1.
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3.5.1 Bound for n � 2f + 1

We show that the algorithm depends on C only to the extent of an additive factor of Cd.

For C large, this algorithm may be far more e�cient that a direct rounds simulation. The

bound we obtain for n � 2f +1 is within approximately a factor of 4 of optimal: our bound

is 4(f + 1)d + Cd; the lower bound proved in [ADLS90] is (f � 1)d + Cd.

Having bounded the time for quiet phases in Lemma 3.18, we need only bound the time

for any phase that is not quiet. If n � 2f + 1, we can be sure that when a faulty process

broadcasts an r message, it either sends to at least one nonfaulty process or becomes blocked

in phase r+1 since f < n�f . If it sends to a nonfaulty process, then that process will send an
r message to all processes and the phase will end. The number of processes blocked in phase

r+1 is exactly br; our bound for phase r is roughly br � d. This is the key di�erence between
our algorithm and the algorithm of [ADLS90]: a faulty process may cause delay d only if

it sends exclusively to other faulty processes; the convention of requiring acknowledgments

ensures that each faulty process can do so only once.

To reinforce the intuition about this bound, we �rst describe how this bound is realized

by a worst-case execution: Process 1 2 Br is the �rst to send an r message. It decides in

phase r � 1 at time tr�1 (no later, by de�nition of tr�1, since process 1 is not blocked in

any phase r0 � r � 1) and sends an r message to only process 2 2 Br. Process 2 waits until

time tr�1 + 2d for jAr�1
2 j � n � f and then, having received an r message from 1, advances

to phase r + 1, sending an r message to only process 3 2 Br. The pattern is repeated until

process br + 1 62 Br receives an r message at time tr�1+(br+1)d. Process br + 1 advances to

phase r+1 and omits an r message to exactly one nonfaulty process, i. All nonfaulty process

except i receive an r message from br + 1 at time tr�1+(br+2)d and i receives an r message

from them at time tr�1+ (br +3)d. By this time, each process has either advanced to phase

r+1 (as it sent an r message), decided, been shut down, or is blocked in some phase r0 � r.

This scenario shows where the extra 3d arises: one d is caused by the delay of waiting (by

process 2 in this scenario) for acknowledgments from the previous phase, another d is for a

faulty process (here, br + 1) that is not blocked in phase r + 1 to send an r message to a

nonfaulty process, and another d is for the remaining nonfaulty processes (here, i) to receive

an r message. (In [ADLS90], only the last extra d is incurred; this leads to the factor of 2

in their bound, instead of 4 in ours.)

Lemma 3.20 For n � 2f + 1 and r � 1, if for all r0 � r phase r0 is not quiet, then

tr � tr�1 � (3 + br)d.

Proof: We show that by time tr�1+ (3 + br)d, all processes receive an r message. Thus, by

that time, every process is either decided, shut down, blocked in some phase r0 � r, or may

advance to phase r + 1.
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By Lemma 3.19, we know that for every process i0, there is a sequence of distinct pro-

cesses, i0; i1; : : : ; ik satisfying the three properties of Lemma 3.19.

Now, if k � br+2 then i0 receivesm0 by time tr�1+(k�1+1)d+d � tr�1+(br+2)d+d.

If k > br + 2, then there is a j such that k � br � j � k and ij 62 Br. By Lemma 3.19, ij
sends an r message by time tr + (k � j + 1)d � tr�1 + (1 + br)d. Because ij 62 Br, ij sends

an r message to at least n � f � f + 1 processes, one of which must be nonfaulty. This

nonfaulty process, `, receives an r message from ij by time tr�1 + (2 + br)d.

We now conclude the proof by showing that process ` sends an r message, received by

all processes, by time tr�1 + (2 + br)d. Because no phase r0 � r is quiet, it follows from

Lemma 3.4 that ` does not decide in any phase r0 � r � 2. If ` decides in phase r � 1, then

does so, sending an r message, by time tr�1. If ` decides in phase r or advances to phase r

without deciding, then it does so by time tr�1 and subsequently sends an r message once it

receives one and has jAr�1
` j � n�f , which, by Lemma 3.16, it does by time tr�1+(2+br)d.

We can now bound tightly the running time of any f -admissible execution by summing

the bounds for all phases in that execution.

Theorem 3.21 For n � 2f + 1, the algorithm above solves the consensus problem for f

omission failures within time 4(f + 1)d + Cd.

Proof: For any given execution, let h be the �rst quiet phase. By Lemma 3.10, each

nonfaulty process decides in some phase r � h, by time th. If h = 0 then by Lemma 3.10,

each nonfaulty process decides in phase 0 in its �rst step and the running time is 0. If h = 1

then by Lemma 3.10, each nonfaulty process decides in phase 1 or 0, and by time t1; by

Lemma 3.18 the running time is t1 � t0 � Cd+ d.

If h > 1, then we can bound the time for phases 1; : : : ; h � 1 by Lemma 3.20, and the

time for phase h by Lemma 3.18. Thus we have

th � t0 =
h�1X
r=1

(tr � tr�1) + (th � th�1)

�
h�1X
r=1

(3 + br)d+ (Cd+ d) (by Lemmas 3.20 and 3.18)

� (f + 1)3d + f � d+ (Cd+ d) (by Lemma 3.13 and Cor. 3.15)

= 4(f + 1)d + Cd:

For C � 4, it is possible to construct an execution that takes exactly time 3d + 4(f �
3)d+3d+Cd+d. In this execution, the �rst phase takes time 3d, the following f �3 phases
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take time 4d, the penultimate phase takes 3d and and the last phase takes time Cd + d.

Each of the phases taking 4d develops when all processes receive an r � 1 message at time

tr�1 and all but one, pr�1, advances to phase r. Process pr�1 decides on r � 1 mod 2 at tr�1
(before it receives the r � 1 messsage) and sends an r message to exactly one other process,

pr+1, which receives its acknowledgments for its r�1 message at time tr�1+2d and sends an

r message to exactly n� f processes. By time tr�1 + 4d, all processes receive an r message

and, except for one process, pr, advance to phase r + 1. In the following phase, at time

tr + 4d, process pr+1 decides (the processes to which pr+1 omitted an r message run slowly

and do not detect its failure until tr�1 + 2d + (Cd + d) = tr�1 + 7d = tr + 3d, so it is not

shut down before then). Remaining details are left to the reader.

3.5.2 Bounds for n � 2f

When n � 2f , we are able to bound the running time of the algorithm in two ways, yielding

one expression that depends on the ratio f

n�f
and another expression that depends on the

square root of C. We will use Lemmas 3.14 (Br \Br0 = ;), 3.16 (the timeliness of acknowl-

edgments), 3.18 (the time for any phase), and 3.19 (sequences of causal r messages), and

Corollaries 3.15 (the sum of the br), and 3.17 (also regarding acknowledgments) the proofs

of which did not rely on the relative values of n and f .

Bound dependent on
f

n�f

This bound requires a lemma about the length of causal sequences of r messages more

complicated than Lemma 3.19. Processes not in Br must send an r message to n � f

processes but not necessarily to a nonfaulty process. We therefore are not able argue as

for n � 2f + 1 that phase r ends very soon after a process not in Br sends an r message.

Nevertheless, disregarding processes in Br for the moment, if it were true that a process

could not get an acknowledgment from another process that already sent an r message, then

it would take at most time ( f

n�f
)d before a nonfaulty process received an r message. Our

algorithm does not exactly enforce this restriction on acknowledgments, but it does prevent

a process from using acknowledgments received from a process that previously omitted an r

message to it. We are thus able to derive a bound of (3 f
n�f

+ br +4)d below in Lemma 3.23.

This argument is most easily made by considering a directed graph on the faulty processors.

Accordingly, for a given execution, de�ne

� directed graph Gf
r = (V f

r ; E
f
r ) where

V f
r = fall processes that fail during the given executiong.

Ef
r = f(i; j) : i sends an r message to j; i; j 2 V f

r ; i 6= jg.
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� �fr (i; j) = length of the shortest path in Gf
r from i to j, where i; j 2 V f

r .

� Str�1

r = fi : i sends an r message by time tr�1g.

� Snf
r = fi : i sends an r message to a nonfaulty processg.

Claim 3.22 If phase r is not quiet and no nonfaulty process decides in phase r � 1, then

there exist faulty processes � 2 Str�1

r and  2 Snf
r such that there is a path in Gf

r from �

to .

Proof: Let  be the �rst process to send an r message to a nonfaulty process. Process 

must be faulty: by the choice of , no process sends an r message to a nonfaulty process

earlier than  sends an r message and therefore if  is nonfaulty then no process sends

an r message to  before it sends its r message. Therefore  must decide in phase r � 1,

contradicting our assumption that no nonfaulty process decides in phase r� 1. We conclude

that  2 Snf
r . Note that  sends an r message before any nonfaulty process does.

Let Cf be the nodes in Gf
r from which node  is reachable (including ) and let � be

the process such that no process in Cf sends an r message before � does. It follows that �

sends an r message no later than  does. Because no nonfaulty process sends an r message

before  does, � does not receive an r message from a nonfaulty process before sending its

r message. By choice, � does not receive an r message from any faulty process before it

sends its r message. We therefore conclude that � receives no r messages before sending its

own, and therefore must decide in phase r � 1, sending an r message by time tr�1 (by its

de�nition).

Lemma 3.23 For r � 1, if for all r0 � r phase r0 is not quiet, then

tr � tr�1 � (3 f
n�f

+ br + 4)d.

Proof: We show that by time tr�1 + (3 f

n�f
+ br + 4)d, every process receives an r message.

Thus, by that time, every process that is never blocked in any phase r0 � r and is neither

decided nor shut down at that time, has jAr�1j � n � f by Lemma 3.16 (because it is not

blocked in phase r) and therefore may advance to phase r + 1.

First note that if a nonfaulty process decides in phase r � 1, it does so by time tr�1,

broadcasting an r message that is subsequently received by all processes by time tr�1 + d,

and the lemma is proved. So we consider the case that no nonfaulty process decides in

phase r � 1.

Lemma 3.22 applies for this case: it says that there exist processes i 2 Str�1

r \ V f
r and

j 2 Snf
r \ V f

r such that j is reachable from i in Gf
r . Let � 2 Str�1

r and  2 Snf
r be a closest

pair of nodes in Gf
r :

�fr (�; ) = min
i2S

tr�1

r \V
f
r

j2S
nf
r \V

f
r

�fr (i; j):
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We �rst bound the time by which  broadcasts its r message. Fix a minimal length path

from � to  and let � be the last process on that path that sends an r message by time

tr�1 + 2d. We claim that  broadcasts its r message by time tr�1 + (�fr (�; ) + 2)d. By

the choice of �, each process j on the path from � to  sends an r message later than time

tr�1 + 2d and therefore by Corollary 3.17 has jAr�1
j j � n � f by time tr�1 + 2d . By time

tr�1+3d, the process on this path after � receives an r message (from �) and thus broadcasts

an r message. Similarly, for j � 1, the jth process on the path after � sends an r message

by time tr�1 + 2d+ jd and process  sends an r message by time tr�1 + (2 + �fr (�; ))d.

We now show that by time tr�1 + (�fr (�; ) + 4)d, all processes receive an r message. A

nonfaulty process � receives an r message from  by tr�1+(3+ �fr (�; ))d. Because no phase

r0 � r is quiet, it follows from Lemma 3.4 that � does not decide in any phase r0 � r� 2. If

� decides in phase r � 1, then it does so by time tr�1, sending an r message as it does; all

processes receive it by time tr�1+d. If � advances to phase r without deciding, then it does so

by time tr�1. By Corollaries 3.6 and 3.17, � has jAr�1
� j � n�f by time tr�1+(3+�fr (�; ))d.

By this time, � has received an r message from  and therefore if � has not yet sent an r

message|if � has not yet advanced from phase r or has decided in phase r and advanced to

phase r + 2 but not yet sent an r message|it may then send an r message. An r message

is then received by all processes by time tr�1 + (�fr (�; ) + 4)d.

To complete the proof, we now show �fr (�; ) � 3f
n�f

+ br. Let k = �fr (�; ) and let

Li = fp : �fr (�; p) = ig for 1 � i � k. De�ne L0 = f�g and L�1 = ;. Consider the sum

� =
k�1X
i=0

jLi�1 [ Li [ Li+1j:

Since the sets Li are disjoint, each node in G
f
r is counted at most 3 times, so� � 3jGf

r j � 3f .

Claim 3.24 For 0 � i � k� 1, at least k� br of the sets Li�1 [Li [ Li+1 has cardinality at

least n� f .

Proof: Clearly, for i � k � 1, no set Li is empty, since , at distance k from �, receives

an r message from a faulty process. At least k � br sets Li contain a process j 62 Br such

that j is on the path from � to . For each j, and each process ` in Ar
j , clearly, j sends

` an r message; we will show that if j is on the chosen path from � to , then process `

sends j an r message also. We will also show that if j 2 Li where i � k � 1, then ` is faulty

and therefore in Gf
r . Thus, for all ` in Ar

j such that j 2 Li, there are edges of Gf
r in both

directions between j and ` and if j 62 Br, then jLi�1 [ Li [ Li+1j � n � f , completing the

proof.

We �rst show that if j 2 Li where i � k � 1, then ` 2 Ar
j is faulty. If ` were nonfaulty,

then j would be in Snf
r . But j cannot be in Snf

r , since , at distance k, was de�ned to be

the closest node to � in Snf
r \ V f

r but j 2 Li is at distance i < k.
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We next show that for each j on the chosen path from � to , if ` 2 Ar
j, then ` sends j an

r message. Consider �rst the case that ` broadcasts an r message before sending \ack(j; r)"

to j. Since ` 2 Ar
j , ` does not omit a message to j before sending \ack(j; r)"; in particular,

it does not omit the r message. Consider then the case that ` does not send an r message

before sending \ack(j; r)" to j. By the choice of �, j sends its r message (and ` receives it)

later than time tr�1 + 2d. Because ` sends an \ack(j; r)" message, ` either decides in phase

r � 1 or advances to phase r without deciding. However, ` cannot decide in phase r � 1:

processes that decide in phase r � 1 do so, sending an r message by time tr�1, but we are

assuming ` does not send an r message before sending \ack(j; r)", which is later than time

tr�1 + 2d. Thus, at the time that ` receives the r message from j, ` is either in phase r,

not yet having sent an r message, or decided and in phase r + 2, not yet having sent an r

message. In its �rst step after receiving the r message from j, process ` queues both \r" and

\ack(j; r)". Because ` 2 Ar
j, this message is not omitted, so ` sends an r message to j.

Thus we have (k � br)(n � f) � � and � � 3f , or �fr (�; ) = k � 3f
n�f

+ br, which

completes the proof: all processes receive an r message by time tr�1 + ( 3f
n�f

+ br + 4)d.

Theorem 3.25 For n � 2f , the algorithm above solves the consensus problem for f omis-

sion failures within time (3 f
n�f

+ 5)(f + 1)d + Cd.

Proof: For any given execution of the algorithm in which h is the �rst quiet phase, by

Lemma 3.10, each nonfaulty process decides in some phase r � h, by time th. Again, if

h = 0 then by Lemma 3.10, each nonfaulty process decides in phase 0 in its �rst step and

the running time is 0. If h = 1 then by Lemma 3.10, each nonfaulty process decides in phase

1 or 0, and by time t1; by Lemma 3.18 the running time is t1 � t0 � Cd+ d.

If h > 1, we can bound the time for phases 1; : : : ; h� 1 by Lemma 3.23, and the time for

phase h by Lemma 3.18. Thus we have

th � t0 =
h�1X
r=1

(tr � tr�1) + (th � th�1)

�
h�1X
r=1

(4 + 3 f

n�f
+ br)d+ (Cd+ d) (by Lemmas 3.23 and 3.18)

� (f + 1)(4 + 3 f

n�f
)d + f � d+ (Cd+ d) (by Lemma 3.13 and Cor. 3.15)

= (f + 1)(5 + 3 f

n�f
)d + Cd:
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Bound dependent on

p
C

The analysis of the previous section shows that the running time of our algorithm is

(5 + 3 f

n�f
)(f + 1)d + Cd:

Note that if f is close to n, say n = f + 1, then the bound is roughly proportional to f2d,

which is no improvement on the algorithm of [ADLS90]. However, for these proportional

values of n and f , we are better able to bound the running time. The analysis of this section

shows that the running time of our algorithm is also bounded by

(2
p
C + 6)(f + 1)d+ Cd:

So when 2
p
C + 6 < 5 + 3 f

n�f
, or roughly n < f + f=

p
C, we have a better bound on the

running time.

De�ne a partition the �rst r phases of the given execution into two classes according to

their length:

Xr = f� : t� � t��1 �
p
C � d and � � rg = fshort phasesg

Yr = f� : � 62 Xr and � � rg = flong phasesg:

and de�ne

Sf
r = fi : i omits an r message to a nonfaulty process after time tr�1g:

We can bound the short phases by their de�ned bound, but bound the long phases by

chains of r messages, via the following two lemmas.

Lemma 3.26 If phase r � 1 is not quiet then either tr � tr�1 + (jSf
r j+ 3)d or

all nonfaulty processes decide by this time.

Proof: We once again show that by time tr�1+(jSf
r j+3)d, all processes receive an r message

and thus by this time are either decided, shut down, blocked in some phase r0 � r, or may

advance to phase r + 1.

By Lemma 3.19, we know that for any process i0, there is a sequence of distinct processes

i0; i1; : : : ; ik such that k is the only process in the sequence to broadcast an r message before

time tr�1, and for 0 < j � k, by time tr�1 + (1 + k � j)d, ij sends the �rst r message, mj�1,

received by ij�1.

Now, if k � jSf
r j then i0 receivesm0 by time tr�1+(k�1+1)d+d � tr�1+(jSf

r j+1)d. If

k > jSf
r j, then there is a j such that 0 < k � jSf

r j � j � k and ij 62 Sf
r . Process ij therefore

sends an r message to all nonfaulty processes by time tr�1+(1+k� j)d � tr�1+(1+ jSf
r j)d.
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If some nonfaulty process has not yet decided, then it sends an r message to all other

processes by time tr�1+ (2+ jSf
r j)d and process i0 receives an r message by time tr�1+(3+

jSf
r j)d.

The key observation is that a process cannot fail to a nonfaulty process in many long

phases:

Lemma 3.27 For any execution of the protocol taking at least � phases and for any process

j, there are at most
p
C + 3 phases � 2 Y� such that j 2 Sf

� .

Proof: If j omits an k message to a nonfaulty process at time t then by Lemma 3.1, that

nonfaulty process detects j's failure by time t+Cd+ d, broadcasting \shutdown j" at that

time. We have t � tk, and so j is shut down by time t+ Cd+ 2d � tk + (
p
C + 2)

p
Cd. It

follows that there are at most
p
C + 2 long phases ` such that tk < t` � Cd + 2d. Thus j

cannot attempt to send (and cannot omit) an ` + 1 message after time t` and is therefore

not in Sf
� for any � > `.

Theorem 3.28 For n � 2f , the algorithm above solves the consensus problem for f omis-

sion failures within time (2
p
C + 6)(f + 1)d + Cd.

Proof: Let phase h be the �rst quiet phase. Again, if h = 0 then by Lemma 3.10, each

nonfaulty process decides in phase 0 in its �rst step and the running time is 0. If h = 1 then

by Lemma 3.10, each nonfaulty process decides in phase 1 or 0, by time t1; by Lemma 3.18

the running time is t1 � t0 � Cd+ d.

If h > 1, we consider two cases. Consider �rst the case that not all nonfaulty processes

decide in phase h � 2. We bound the length of the short phases by their de�ned length.

We bound the length of the long phases by Lemma 3.26 and then sum the sizes of Sf
� using

Lemma 3.27. The length of phase h is bounded by Lemma 3.18. Thus we have

th � t0 =
X

�2Xh�1

(t� � t��1) +
X

�2Yh�1

(t� � t��1) + (th � th�1)

� jXh�1j �
p
Cd+d

X
�2Yh�1

(3 + jSf
� j) + (Cd+ d) (by Lemmas 3.26 and 3.18)

� jXh�1j �
p
Cd + 3jYh�1jd+ f(

p
C + 3)d + (Cd+ d) (by Lemma 3.27)

� (f + 1)
p
Cd + 3(f + 1)d+ f(

p
C + 3)d + Cd+ d (by Lemma 3.13)

< (2
p
C + 6)(f + 1)d + Cd:
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Now consider that case that all nonfaulty processes decide in phase h � 2. The running is

then bounded by th�2 � t0:

th�2 � t0 =
X

�2Xh�2

(t� � t��1) +
X

�2Yh�2

(t� � t��1)

� jXh�2j �
p
Cd +

X
�2Yh�2

(3 + jSf
� j)d (by Lemma 3.26)

� jXh�2j �
p
Cd + 3jYh�2jd+ f(

p
C + 3)d (by Lemma 3.27)

� f
p
Cd + 3fd + f

p
Cd + 3fd (by Lemma 3.13)

= (2
p
C + 6)fd
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Chapter 4

Consensus in the Presence of

Byzantine Failures

In this chapter we present a simulation algorithm using 3f + 1 processes and tolerating f

Byzantine failures. The algorithm simulates any synchronous round-based algorithm tolerant

of f Byzantine failures and uses time r(d + 2Cd) + Cd, where r is the number of rounds

required by the synchronous algorithm.

The simulation works by keeping processes loosely synchronized to ensure that a nonfaulty

process does not advance to round r until it has received a round r � 1 message from every

nonfaulty process. The partial synchronization works by using a combination of two criteria

for advancing to further phases, one based on elapsed local time and the other based on

messages received. A similar technique is used in [WL88] to initiate new rounds of clock

resynchronization. In particular, our criteria for ending round 1 is essentially the same as

the criteria used in [WL88] for ending every round; our criteria for subsequent rounds is

di�erent.

4.1 The simulation algorithm

The algorithm simulates a synchronous algorithm by ensuring that each nonfaulty process

receives all round r messages of the synchronous algorithm from all other nonfaulty processes

before advancing to round r + 1. We do not explore here the formal semantics of \a correct

simulation"; rather we regard as su�cient the following correspondence ensured by the above

property: For every execution of the simulation, there is an execution of the round-based

synchronous algorithm in which the nonfaulty processes receive the same vector of messages
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from each other at each round. Since the behavior of faulty processes is not restricted, clearly

the corresponding synchronous execution is legal.

Therefore, for the purposes of simulation, we de�ne a synchronous algorithm by its mes-

sage function only, suppressing information about the state of the synchronous algorithm.

Let Mi(r; V
r�1) denote the vector of messages to be sent in the synchronous algorithm by

process i in round r when the ordered set of messages V r�1 is received in round r � 1 (of

course, this message function may also depend on the state of the process; we leave this

implicit). Without loss of generality, assume each process sends a message to all processes

at every round of the synchronous algorithm.

Recall that we assume all processes begin executing the algorithm at the same time. At

each step, a process increments a counter s (initially 0) and executes the code in Figure 4.1,

explained below. A local variable, initially 1, keeps track of the Round number. Ordered

set V r contains the rth message received from each process. We refer to the rth message sent

by a process as a \round r" message. (Recall that we assume each process sends a message

to all processes in every round of the synchronous algorithm.)

Each process �rst sends its round 1 message and then waits for at least time d to ensure

that it receives a round 1 message from every other nonfaulty process. When it can be sure

that time d has elapsed, it advances to round 2 and broadcasts its round 2 message based

on the round 1 messages it has received so far. It ensures that time d has passed by either

waiting for d=c1 of its own steps or by receiving f + 1 round 2 messages|this ensures that

some nonfaulty process has waited at least time d.

In subsequent each round r, a process waits for at least time 2d (actually 2d+3c2) after

at least f + 1 nonfaulty processes have sent a round r message. By this time, all nonfaulty

processes must have received at least f + 1 round r messages and therefore advanced to

round r and sent a round r message. At this time, a process advances to round r + 1 and

broadcasts its round r + 1 message. Again, there are two ways for a process to deduce

that su�cient time has passed: if it takes (2d + 3c2)=c1 steps after receiving at least 2f + 1

round r messages or if it receives at least f + 1 round r + 1 messages. The latter ensures

that some nonfaulty process has advanced to round r + 1 and therefore has already waited

a su�cient amount of time (at least time 2d after at least f + 1 nonfaulty processes sent a

round r message).

4.2 Correctness

Let tr be the latest time that any nonfaulty process sends a round r message. Again, we

assume that all processes begin at the same time (here, t1). We say a process \advances
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Round 1 Send M(1; �); goto Round 10.

Round 10 If s > d=c1 or jV 2j � f + 1,

then goto Round 2

Round r Send M(r; V r�1); goto Round r0.

Round r0 If jV rj � 2f + 1,

then s 0; goto Round r00.

Round r00 If s > (2d+ 3c2)=c1 or jV r+1j � f + 1,

then goto Round r + 1.

Figure 4.1: The simulation of a synchronous algorithm. At each step, a process

increments the counter s and executes the code according to its

present round number. V r is the ordered set consisting of the

rth message received from each process. M(r; V r�1) denotes the

message function of the synchronous algorithm for round r.

to round r" when it executes the \goto Round r" statement in the code. In order to

prove correctness, we must show that a nonfaulty process eventually advances to all rounds

required by the synchronous algorithm and always receives a round r message from all

nonfaulty processes before advancing to round r + 1.

Lemma 4.1 Each nonfaulty process advances to all rounds required by the synchronous al-

gorithm.

Proof: By induction on the round number. Clearly each nonfaulty advances to round 2|it

advances to round 10 after its �rst step and advances to round 2 after at most 1+ d=c1 more

steps.

For r > 2, assume all nonfaulty processes have advanced to round r. Then all nonfaulty

processes have sent a round r message and advanced to round r0. Since n � f � 2f + 1,

there are at least 2f +1 nonfaulty processes, so each nonfaulty process eventually receives at

least 2f + 1 round r messages and advances to round r00. After at most (2d + 3c2)=c1 steps

in round r00, each nonfaulty process advances to round r + 1.

Lemma 4.2 No nonfaulty process advances to round r+1 before receiving a round r message

from each nonfaulty process.
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Proof: By induction on the round number r.

r = 1: Each nonfaulty process takes more than d=c1 steps before advancing to round 2.

Thus each advances later than time t1 + d, which is after the round 1 message of each

nonfaulty process, sent at time t1, is delivered.

r > 1: Assume the lemma is true for r � 1 (i.e., no nonfaulty process advances to round

r before receiving a round r� 1 message from each nonfaulty process). We show the lemma

is true for r. Let i be the �rst correct process to advance to round r + 1 and let �i be the

time at which i advances to round r00 (by Lemma 4.1, this time is well-de�ned). We make

the following series of deductions about the events that occur at or before the listed times:

�i : Because i is in round r00, by the induction hypothesis, i has received

a round r � 1 message from all nonfaulty processes. Because i has

advanced to r00, it has received at least 2f + 1 round r messages.

�i + d : All nonfaulty processes are in round (r � 1)0 or greater (because they

have each sent an r� 1 message to i) and have received at least 2f + 1

round r � 1 messages (from each other).

�i + d+ c2 : All nonfaulty processes therefore advance to round (r � 1)00.

�i + d + 2c2 : All nonfaulty processes have received at least f + 1 round r messages

(from the nonfaulty subset of processes that sent round r messages to i)

and therefore advance to round r.

�i + d + 3c2 : All nonfaulty processes send a round r message and advance to round r0.

�i + 2d + 3c2 : All processes receive a round r message from each nonfaulty process.

Because by choice i is the �rst nonfaulty process to advance to round r + 1, it follows

that i advances to round r+ 1 only after (2d+3c2)=c1 steps in round r00, which occurs later

than time �i +2d+ 3c2. We conclude that i receives a round r message from each nonfaulty

process before advancing to round r+1. Since all nonfaulty processes advance to round r+1

after i, they also receive a round r message from all nonfaulty processes before advancing.

4.3 Analysis of time bounds

Again, we assume d� c2 and therefore approximate d + c2 by d in the timing analysis.
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Lemma 4.3 t2 � t1 � Cd and, for r � 2, tr+1 � tr � d+ 2Cd.

Proof: Clearly, t2 � t1 + Cd. By time tr all nonfaulty processes send a round r message

and advance to round r0. Therefore by time tr + d, all nonfaulty processes receive at least

2f + 1 round r messages and advance to round r00. Within another time 2Cd, all nonfaulty

processes have taken (2d + 3c2)=c1 steps and advanced to round r + 1, sending an r + 1

message.

Theorem 4.4 There is an algorithm using 3f + 1 processes which solves the consensus

problem for f Byzantine failures within time Cd+ f(d + 2Cd) = fd + (2f + 1)Cd.

Proof: Any (f+1)-round synchronous algorithm can be simulated. Agreement and validity

follow from correct simulation. Termination follows from Lemma 4.1. The time bound

follows from Lemma 4.3.
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Chapter 5

Bounded-capacity Message Links and

Failure Detection

In fault-tolerant distributed algorithms, a common primitive for detecting failures is to \time

out" failed processors. If processors fail by simply stopping, then a failure may be detected

by the absence of messages from a processor. In this chapter, we consider how quickly such

failures can be detected in our semi-synchronous model.

If it is assumed that all messages sent are delivered within time d of when they are sent,

then the following simple protocol minimizes the time between any failure and its detection.

(This is the strategy employed in the algorithm of [ADLS90] and our algorithm of Chapter 3.)

Each processor broadcasts a message at every step that it takes. If no message is received

from another processor for more than (d + c2)=c1 local steps, that processor is declared

faulty. Because local steps are separated by at least time c1, at least time d + c2 passes

before this many steps are taken. Because local steps are separated by at most time c2, the

time between the delivery of any two consecutive messages sent by a processor is at most

d+c2. It follows that only failed processors are declared faulty. The maximum time between

any failure and its detection is approximately Cd + d, occurring in the following scenario:

processor p broadcasts a message at time t and then fails; these messages are delivered at

time t+ d; every other processor runs slowly (its steps separated by c2) after t+ d, and thus

p's failure is not detected until time t+ d+ c2(d+ c2)=c1 � t+ d + Cd.

Although the above protocol guarantees minimal delay between any failure and its detec-

tion, it is clearly ine�cient in its use of messages. It takes advantage of the strong assumption

that all messages are delivered within time d, regardless of the rate at which they are sent.

In reality, the performance of a message link may su�er if messages are sent too frequently.

In this chapter, we propose a model of message links with bounded capacity and analyze the

e�ect of the capacity bound on the e�ciency of detecting stopping failures.
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5.1 Modeling bounded-capacity links

De�ne a message link of unit capacity and delay d as a communication channel that queues

incoming messages in FIFO order and delivers the �rst message in the queue within time

d of the later of when the message is sent and when the previous message is delivered.

(For simplicity, we will assume that message links deliver messages in the order sent. Our

algorithms do not make use this assumption and our lower bounds hold in spite of it.) For

positive integer �, de�ne a message link of capacity � and delay d as the composition of �

message links each of unit capacity and delay d=�, connected serially so that messages are

delivered from link i to link i+1 for 1 � i < � and link � delivers messages to the recipient

process. Messages are neither lost by a link nor delivered out of order, and once a processor

has sent a message, it cannot cancel that message.

Thus, in the absence of any other message tra�c, the delay of a single message is bounded

by � � d=� = d. Note that if a single component link delays all messages by the maximum

amount, d=�, then messages are delivered at a maximum rate of � messages per time d. In

particular, it is easy to see that if the last component link delays each message by d=�, then

for any interval of time of length l, at most
l

l
d=�

m
messages are delivered.

On the other hand, if no two messages are sent within time d=� of each other, then each

message is delivered within time d of when it is sent. This is easily seen by an induction on

the number of messages sent. Assume the previous message is delivered by the ith sublink

within time i � d=� of when it is sent (clearly this is true for the \�rst" message ever sent).

If message m is sent at time t, then for 0 � i < �, by time t+ i � d=� the previous message

has been delivered by link i+ 1 and m is delivered by link i (by induction on i). Thus m is

delivered to the recipient process within time � � d=� = d of when it is sent.

For the lower bound, we assume only that in the worst case, a link delivers every pair of

messages at least time d=� apart.

5.2 Timing out failed processors

We will consider a system of processors fully connected by message links of capacity � and

delay d. These processors may fail by stopping. A process is said to detect the failure of

another processor when it irrevocably decides that the other has failed. A timeout protocol

is correct if it satis�es two properties for all executions and all processors p and q: (1) if p

fails and q does not fail, then q eventually detects the failure of p, and (2) if neither p nor q

fails, then neither p nor q detects the failure of the other.
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For a given execution �, we say that p detects the failure of q within time T in � if q

fails at time t in � and p detects the failure of q at time t0 � t+ T in �,. We say a timeout

protocol guarantees a detection time of T if for all processors p and q and all executions �

in which p fails but q does not, q detects the failure of p within time T in �.

Because in our model each pair of processors is connected by a private bidirectional

message link, we will assume that the timeout protocol executes independently for each

pair of processors. We will therefore prove bounds on detection time for a system of two

processors, p and q.

5.2.1 Upper bounds on detection time

An upper bound of 2Cd+d is achieved by a simple protocol that works for any link capacity.

The two processors continually exchange a single token message: when p receives the token

message from q, it sends a token message back to q, and q does likewise. If a processor

takes more than (2d+ c2)=c1 steps without receiving a message, it concludes that the other

processor is faulty. Because there is at most one message in transit at any time, it is always

delivered within time d of when it is sent. Clearly a nonfaulty processor is never timed out.

This protocol guarantees that any failure is detected within time 2Cd + d (to be precise,

d+C(2d+ c2)+ c2; recall we approximate d+ c2 � d): if p fails at time t, then by time t+ d

all of the messages it has sent are delivered to q and q has sent its last message to p; within

another time c2(1 + (2d + c2)=c1) � 2Cd, q has taken enough steps to conclude that p has

failed.

An upper bound of C2d=� + Cd + d is achieved by a protocol in which each processor

sends a message every (d=�)=c1 steps. A process concludes that the other has failed if it

has taken more than (Cd=�+ d)=c1 steps without receiving a message. Clearly, the sending

times of every two messages are separated by at least time d=� and therefore, as shown

in Section 5.1, each message is delivered within time d of when it is sent. The maximum

amount of time between the delivery of two consecutive messages from a given processor is

then c2(d=�)=c1+d = Cd=�+d (if the �rst message is delivered immediately and the following

message incurs the maximum possible delay, d). This is less than the minimum amount of

time, Cd=� + d + c1, that the other processor waits before detecting failure. This protocol

guarantees a detection time of C2d=�+Cd+d: if p fails at time t, then by time t+d all of the

messages it has sent are delivered to q; within another time c2(Cd=�+ d)=c1 = C2d=�+Cd,

q has taken enough steps to conclude that p has failed.

Thus we obtain a simple upper bound of min(2Cd + d; C2d=� + Cd + d). Note that

2Cd+ d < C2d=� + Cd+ d if and only if � < C.
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5.2.2 Lower bounds on detection time

We now prove a nearly corresponding lower bound of min(2Cd + d=�; C2d=� + Cd + d).

Note that 2Cd + d=� < C2d=� + Cd + d if and only if � < C + 1. Thus, the bounds are

tight except for � < C + 1: when C � � < C + 1, C2d=� + Cd+ d is the best upper bound

and 2Cd+ d=� is the best lower bound; when � < C, 2Cd+ d is the best upper bound and

2Cd+ d=� is the best lower bound.

We �rst prove that there exists some execution in which p runs \fast" (its steps separated

by time c1), q runs \slowly" (its steps separated by time c2), messages from q to p are delivered

immediately, messages from p to q are delayed by at least time d, and some pair of consecutive

messages from p to q are separated by at least time d=�. We prove that such an execution

exists for any protocol guaranteed to detect failures within any bounded amount of time.

This is proved below using the properties of the bounded-capacity message links. The idea

is that if the last component link from p to q delays all messages by d=� then the delivery of

every pair of messages is separated by time d=�. Therefore, if each pair of messages sent by

p were separated by less than d=�, then messages would be sent (put onto the link) faster

than they were delivered (removed from the link). Thus the number of messages sent but

undelivered and, consequently, the total delay of a message, would grow in time without

bound. The time between when p fails and when q receives no further messages is therefore

increased without bound.

Lemma 5.1 For all B and for any correct timeout protocol that guarantees a detection time

of B, there exists an execution in which

1. All consecutive steps of p are separated by c1;

2. All consecutive steps of q are separated by c2;

3. All messages from q to p are delayed by time 0;

4. All messages from p to q are delayed by at least time d;

5. For all t0, there exists a pair of messages m1 and m2 sent by p at times t1 and t2

respectively, such that t1 � t0, t2 � t1 � d=�, and no message is sent by p in the

interval (t1; t2).

Proof: For contradiction, suppose not. Fix any execution � of the protocol in which (i) the

�rst three timing constraints are satis�ed, (ii) each component link from p to q delays each

message by time d=�, and (iii) no processor fails. Such an execution exists because conditions

(i), (ii) and (iii) are independent of each other and within the bounds of the model. Clearly,

condition (ii) implies that the fourth timing constraint is satis�ed|all messages from p to

q are delayed at least time d. We prove that the �fth condition is also satis�ed in �. To do

so, assume for contradiction that it is not.
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First note that because � is in�nite, p must send an in�nite number of messages: if it

does not, then let m` be the last message that it sends and consider an execution  in which

p fails after sending m`. Because q receives the same messages from p in each execution,

it cannot distinguish between the two executions and therefore q either does not detect p's

failure in  or erroneously decides that p has failed in �.

Recall that a processor can send messages only during steps and p's steps are separated

by exactly time c1 in �. It follows that if two consecutive messages are not separated by

at least time d=�, then they are separated by at most k =
l
d=�

c1

m
� 1 steps, which is time

k � c1 < d=�.

Consider the interval [t0; t0 + x] of execution �, where x is de�ned below. Because p

sends an in�nite number of messages and, by assumption, every two consecutive messages

are separated at most time k � c1, process p sends at least bx=(k � c1)c messages in this

interval. But since the last component link delays each message by d=�, at most
l

x
d=�

m
messages are delivered in this interval. Thus the number of messages sent but not delivered

in this interval is at least ( x
k�c1
� 1)� ( x

d=�
+ 1). According to the properties of the message

links, the last message sent in this interval may not be delivered until all prior messages have

been delivered. Thus the last message sent by p in this interval may not be delivered until

time t0+x+
d
�
( x
k�c1
� x

d=�
�2). Let x be any number large enough so that d

�
�( x

k�c1
� x

d=�
�2) > B

(recall that k � c1 < d=�).

We conclude that the last message sent by p in the interval [t0; t0+x] of � is not delivered

until after time t0+ x+B. Since p does not fail in �, q does not time out p; in particular, q

does not time out p before time t0+x+B. However, before time t0+x+B, this execution is

indistinguishable to q from an execution in which p fails at time t0+x and which is otherwise

identical to � at p and q up to times t0 + x and t0 + x + B, respectively. Therefore in this

execution q does not detect the failure of p within time B. This is a contradiction on the

assumed protocol.

Our lower bound proof uses the retiming techniques of \shifting" events in time and

\shrinking" portions of executions that were developed in [AL89] and [LL84].

Theorem 5.2 In a system with links of capacity � and delay d, no correct timeout protocol

can guarantee failures to be detected within less than time min(2Cd+d=�; C2d=�+Cd+d).

Proof: Let T = min(2Cd+d=�; C2d=�+Cd+d). For contradiction, assume the existence

of a protocol that guarantees a detection time of T . We do not make use of the particular

value of T until the �nal step of the proof (the construction of execution �00). We will reach

a contradiction by showing that there is an execution of the protocol in which p does not

fail but q decides that it has.

Let � be an execution of the protocol whose existence is implied by Lemma 5.1 with

t0 = d
�

C
C�1

�
. Let m1 and m2 be the two messages speci�ed by the lemma, sent by p
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(m1)

(m2)

t1

t1+d=�

t2

q t1+d=�+d

Figure 5.1: Execution �, the existence of which is proved by Lemma 5.1, takes

the above form except that messages from p to q may be delayed

more than d and messages may be sent by q at arbitrary times. The

events of p (q) are on the left (right), with time represented by the

vertical dimension. An arrow represents a message labelled with its

delay, with its tail at the time of the send event and its tip at the

time of the receive event.

at times t1 and t2 respectively. Figure 5.1 depicts an example of an execution satisfying

Lemma 5.1; for presentation, messages from p to q are shown taking exactly time d and

messages from q to p are shown at arbitrary times.

Let � be an execution in which (i) events at p are identical to those of � up to time t1,

(ii) p fails at time t1 after sending m1, and (iii) events at q are identical to those of � up to

time t1 + d=� + d. Clearly � exists, since messages from p to q are delayed by at least time

d in � and so q doesn't receive m2 until t2 + d � t1 + d=� + d. Also, the assumed protocol

guarantees that in �, q detects the failure of p before time t1 + T .

The rest of the proof proceeds as follows. By retiming the events of � and �, we construct

executions �0 and �0, which are indistinguishable to both p and q from � and � respectively.

By retiming the events of �0, we construct �00, which is indistinguishable from �0 to q. Finally,

by retiming the events of �0, we construct �00, which is indistinguishable from �0 to p up to

the time that it sends m2 and indistinguishable from �00 to q up to the time that it times

out p in �00 Thus, although p does not fail in �00, q times out p in �00, contradicting the

correctness of the assumed protocol.
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Figure 5.2: In the region of interest, execution �0 is simply � with events of

processor q occurring earlier in time by d. Because p fails at time

t1, q detects the failure of p by time t1 + T � d, denoted by the

circle.

Construction of executions �0 and �0

Conceptually, we wish to construct �0 from � by letting each event at q occur earlier in time

by d (\shifting" those events earlier by d). Strictly speaking, this may not be possible for

all events at q because of initial conditions. However, it is su�cient to shift by d the events

of q that occur after time t1 in � and \shrink" some interval before t1 in � (i.e., retiming

the events of the inverval so that q runs fast in that interval of events in �0). In particular,

we shrink the interval [0; C
C�1

d]. Note that by our choice of t0 =
C

C�1
d in choosing �, the

last event of this interval occurs before m1 is sent at time t1. Leaving all events at time 0

unchanged, steps of q in this interval, which take time c2 in �, are retimed to take time c1
in �0. Thus the interval is shrunk by a factor of C and the last event of the interval occurs

earlier in �0 by C
C�1

d � 1
C�1

d = d. Figure 5.2 depicts the su�x of �0, showing the shifted

events of the region in which we shall be interested.

This execution satis�es the timing constraints on message delivery, since messages sent

by p (delayed by at least d in �) are received by q at most d earlier in �0 and hence are

delayed by at least 0 in �0; messages sent by q (delayed by 0 in �) are sent at most d earlier

in �0 and hence are delayed by at most d in �0.

Execution �0 is constructed similarly, shifting earlier by d the events at q in �.
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Because p and q do not know the time between any particular pair of steps they take,

they cannot distinguish between either � and �0 or � and �0. It follows that �0 and �0 are

not distinguishable to p up to the point at which it fails and not distinguishable to q up

to when it receives m2 in �0 (at least time t2 � t1 + d=�). Also, q's detection of p's failure

occurs before time t1 + T � d in �0.
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t1+d=�
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t1

s t1+
1
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(T�d)

Figure 5.3: Execution �00 is constructed from �0 by mapping the interval [t1 �
(d�d=�); t1+(T �d)] of �0 to the interval [t1� 1

C
(d�d=�); t1+

1
C
(T � d)] of �00 and appropriately shifting the rest of q's events.

Construction of execution �00

Recall that q runs slowly in � and most of �0|its steps are separated by c2. We now

construct �00 from �0 by a retiming certain events at q. Events at p are the same as in �0 up

to time t1, when p fails in both executions; after time t1, the events (message deliveries) at

p may be de�ned arbitrarily within the bounds of the model.

The retiming operation at q maps the interval [t1 � (d � d=�); t1 + (T � d)] of �0 to

the interval [t1 � 1
C
(d � d=�); t1 +

1
C
(T � d)] of �00 by letting q run fast over this interval

in �00. Events at time t1 in �0 also occur at t1 in �00; events in the above interval of �0 are

retimed to occur closer to time t1 by a factor of C. The rest of execution �0|before time

t1 � (d � d=�) and after time t + (T � d)|is shifted merely to preserve the step times of

events on the borders of this interval. To be precise, �00 is de�ned at q for by retiming each

event that occurs at q at time t0 � 1
C�1

d in �0 to occur at q at time t00 in �00, where t00 is
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de�ned as follows:

t00 =

8>><
>>:

t0 + (d � d=�) � 1
C
(d� d=�) if 1

C�1
d � t0 � t1 � (d � d=�)

t1 +
1
C
(t0 � t1) if t1 � (d � d=�) � t0 � t1 + (T � d)

t0 � (T � d) + 1
C
(T � d) if t0 � t1 + (T � d)

This execution is illustrated in Figure 5.3.

Again, we need to shift the events before time t1 � (d � d=�) while preserving

initial conditions. To do this we partially undo the shrinking performed on the interval

[0; C

C�1
d] of �. These events were mapped to the interval [0; 1

C�1
d] of �0, in which q runs

fast, with the last event of the interval occurring exactly time d earlier in �0 than in �.

In �00, we need the last event of this interval to occur exactly time (d�d=�)� 1

C
(d�d=�)

later than in �0. Because this amount is less than d, we are able to do this, in e�ect

partially undoing the original shrinking. The timing assumptions for steps of q are

clearly satis�ed. Because the net e�ect from both shrinking operations is to shift any

particular event in the interval [0; C

C�1
d] of � earlier by less than d in �00, the timing

assumptions for message delivery are also clearly satis�ed, for the reasons outlined in

the discussion of �0.

By construction, this retiming operation does not cause violations of the bounds on

process step times. We now verify that �00 is consistent with the timing assumptions for

message delivery. First note that all events at p before time t1 occur at the same time in

executions �; �; �0 and �00. We show that for any event at q occurring at time t00 in �00 and

at time t in � (and hence at t0 = t � d in �0) such that t00 � t1 and t � C
C�1

d, we have

t� d � t00 < t. By the retiming mapping above, as a function of t0 we have

t0 � t00 � t0 + (d � d=�) � 1

C
(d� d=�);

(this is because t0 is mapped forward in time furthest when t0 � t1 � (d � d=�); least when

t0 = t1) which, substituting t
0 = t� d, gives

t� d � t00 < t� d=� � 1

C
(d� d=�) < t: (5.1)

In �, every message from p to q is delayed by at least d. We claim that in �00, every

message from p to q is delayed by at least time 0 and by less time than in �. If a message is

delivered at q after time t1 in �00, then because p sends no messages after time t1, it must be

sent by t1 (no new message receipts at q have been introduced to �00) and hence delayed at

least time 0; also, events at q after time t1 in �
00 occur earlier in �00 than in �, so the message

is delayed by less than it is in �. If a message is delivered at q at time t00 � t1 in �00 then by

Equation 5.1, it is delivered earlier in �00 than in � by not more than d; it follows that the

message is delayed by at least time 0 in �00.
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We also claim that the delay of each message from q to p in �00 is delayed by at least 0

and at most d. In �, all messages from q to p are delayed 0; if in �00 they are sent before t1,

then from Equation 5.1 they are sent earlier (and delayed more) by not more than d. Any

message sent by q after t1 is de�ned arbitrarily to be within the bounds of the model.

Finally, we note that q detects the failure of p before time t1 +
1
C
(T � d) in �00.

Construction of execution �00

We now construct execution �00 in which p does not fail and which is indistinguishable to q

from �00 up to time t1+
1
C
(T�d). In proving that �00 satis�es the timing assumptions on step

time and message delivery, we will make use of the fact that T = min(2Cd+ d=�; C2d=� +

Cd+ d). Because q times out p before time t1 +
1
C
(T � d) in �00, we conclude that in �00, q

mistakenly times out the nonfaulty p, contradicting the assumed correctness and completing

the proof.

To construct �00 at q we use exactly the same events as in �00, up to time t1 +
1
C
(T � d).

We do not specify the events occurring at q later than this except to say that any message

sent by p after time t1 is received at q at least time d later.
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Figure 5.4: Execution �00 is essentially the same as execution �00, except that p

does not fail; instead, it runs slowly after sending messagem1, and

message m2 is delayed by d. Because p sends no other messages

before m2, this execution appears the same as �00 to q until it

receives m2.
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At p, we construct �00 from �0 by mapping the interval [t1; t1+ d=�] of �0 to the interval

[t1; t1 +
1
C
(T � d) � d] of �00 (p runs fast over this inteval in �0; it runs more slowly over

this interval in �00). Events in this interval are retimed to occur further from time t1 by at

most a factor of C (as we will show). We do not specify events occurring at p after time

t1 +
1
C
(T � d) � d except to say that any message sent by q after time t1 � 1

C
(d � d=�) is

delivered at p exactly time d later. Thus, �00 is de�ned at p for t00 � t1 +
1
C
(T � d) � d by

retiming each each event that occurs at time t0 in �0 to occur at time t00 in �00, where t00 is

de�ned as follows:

t00 =

8<
:

t0 if t0 � t1

t1 +
1

C
(T�d)�d

d=�
(t0 � t1) if t1 � t0 � t1 + d=�

This execution is illustrated in Figure 5.4.

We now verify that �00 is consistent with the timing assumptions of the model. Note that

all events of �00 at p before time t1 are the same in �0; �; �; �0, and �00; events of �00 at q before

time t1 +
1
C
(T � d) are by de�nition the same as in �00. Having already veri�ed the timing

properties for �00, we need verify only the timing properties involving events (processor steps,

message sends, and message receipts) occurring at p in the interval [t1; t1 +
1
C
(t � d) � d].

Events occurring at p later than t1 +
1
C
(T � d) � d and at q later than t1 +

1
C
(T � d) are

inconsequential to the proof and may be scheduled in any way consistent with the bounds

of the model.

First, we verify that successive steps of p after t1 are separated by at most c2. We show

that for any interval [t00i ; t
00

j ] of �
00, mapped from the interval [ti; tj] of �, where t1 � ti � tj �

t1 + d=�, we have t00j � t00i � C(tj � ti):

t00j � t00i = (tj � ti)
1
C
(T � d)� d

d=�

� (tj � ti)
1
C
(C2d=� + Cd)� d

d=�

= (tj � ti)C:

It follows that because any two steps of p are separated by time c1 in �0, they are separated

by at most C � c2 = c1 in �00.

We now verify that messages sent by p after t1 are within the proper bounds. The �rst

message sent by p after t1 is m2, which in �0 (and �) is sent at t2 � t1+ d=� and thus in �00

is sent at t002 � t1+
1
C
(T � d)� d. Messages sent by p after time t1 are speci�ed to be delayed

by at least time d, so m2 is not delivered until at least time t1 +
1
C
(T � d). (Note that q

times out p by this time.) The delivery of m2 and all subsequent messages by p is consistent

with our de�nition of �00 at q.

We now verify that messages from q to p are within the proper bounds. We analyze these

messages in three cases according to when they are sent by q in execution �0 (which is the
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same time as they are sent in �0).

Case 1 : q sends at time t0 � t1 � d in �0.

A message sent by q at time t1�d in �0 is sent and delivered at time t1 in �. Since the events

at p are the same in �00 and � and �00, messages sent by q before t1 � d in �00 are delivered

to p by t1 in �00 and are therefore, by the analysis of �00, are delayed by correct amounts.

Case 2 : q sends at time t0 in �0 where t1 � d � t0 � t1 � (d� d=�).

Such a message is delivered at time t0 + d in �0 where t1 � t0 + d � t1 + d=�. In �00 the

sending event at q is mapped to time t0 + (d � d=�) � 1
C
(d � d=�), which is less than t1. In

�00 the delivery event at p is mapped to t1+
1

d=�
( 1
C
(T � d)� d)(t0 + d� t1), which is greater

than t1. Thus, this messages is delayed by at least 0. We show below that it is delayed by

at most d:

t1 +
1
C
(T � d)� d

d=�
(t0 + d� t1)�

�
t0 + (d � d=�) � 1

C
(d� d=�)

�

= t1 +

 
1
C
(T � d)� d

d=�
� 1

!
t0 +

 
1
C
(T � d) � d

d=�

!
(d � t1)�

�
(d � d=�) � 1

C
(d� d=�)

�

� t1 +
1
C
(T � d)� d

d=�
(t1 � (d� d=�) + d � t1)�

�
t1 � (d� d=�) + (d� d=�) � 1

C
(d� d=�)

�

since t0 � t1 � (d� d=�) and

 
1
C
(T � d)� d

d=�
� 1

!
� 0

� t1 +
1

C
(T � d)� d�

�
t1 �

1

C
(d� d=�)

�

� 1

C
(2Cd+ d=� � d) � d+

1

C
(d � d=�) since T � 2Cd+ d=�

= d:

Case 3 : q sends at time t0 � t1 � (d� d=�) in �0.

These messages are sent at t00 > t1 � 1
C
(d� d=�) in �00 and thus are de�ned to be delivered

at p exactly time d later. Note that such messages are delivered at p later than time

t1 �
1

C
d +

1

C
d=� + d = t1 + 2d +

1

C
d=� � 1

C
d� d

= t1 +
1

C
(2Cd + d=� � d)� d

� t1 +
1

C
(T � d)� d:

This is consistent with our de�nition of �00 at p.

Thus we conclude that �00 is a valid timed execution in which p does not fail but q times

out p. This is a contradiction on the correctness of the assumed protocol.
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5.2.3 Bounds for two processors using a single message link

We remark that our techniques give a tight upper and lower bound of C2d=�+Cd+ d for a

system of two processors with a message link in only one direction.

In such a system, we have two processors, p and q, and a single message link of capacity

� from p to q. Naturally, a protocol does not need to detect failures of q. All other previous

de�nitions apply.

The second simple protocol described in Section 5.2.1 operates independently in each

direction. It immediately gives a protocol for the unidirectional case, guaranteeing that in

any execution, q detects the failure of p within time C2d=� + Cd+ d.

It is also not di�cult to see that our lower bound proof of Theorem 5.2 specializes to the

unidirectional case to give a corresponding lower bound of C2d=�+Cd+ d. Theorem 5.2 is

proved for T = min(2Cd+ d=�; C2d=� + Cd+ d). A similar theorem for the unidirectional

case may be proved with T = C2d=� + Cd+ d. Recall that in that proof, the value of the

timeout detection time T guaranteed by the protocol is not used before the claims about

execution �00. All preceding claims except those involving messages from q to p carry over a

fortiori. Lemma 5.1, for example, is true also for the unidirectional case with the exception

of its third condition, which regards messages from q to p. The proof of Theorem 5.2 uses

the fact that T � 2Cd + d=� in claims about �00 only to verify bounds on the delay of

messages from q to p. This analysis is not needed for a theorem about the unidirectional

case and hence the entire proof specializes to the unidirectional case to give a lower bound

of C2d=� + Cd+ d.
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5.3 Consensus with bounded-capacity message links

We remark on how our upper bounds for consensus are a�ected by bounding the capacity of

the message links used.

5.3.1 Byzantine failures

Because it is not message-intensive, our algorithm for Byzantine failures is not a�ected by

the restriction of bounded-capacity message links. Recall that the algorithm for Byzantine

failures does not include a fault-detection task and does not require a process to send a

message at every step it takes. The correctness follows from the fact that at least time

2d passes between the time that the round r � 1 messages of all nonfaulty processes are

delivered and the time that any nonfaulty process advances to round r + 1. The round r

message of a nonfaulty process can incur more than delay d only if it is sent before the

previous message is delivered. The previous message is its round r � 1 message, so even if

the round r message incurs added delay, it is still delivered by time 2d (actually, d) after

the round r�1 messages of all nonfaulty processes are delivered, and all nonfaulty processes

receive it before advancing to round r + 1. Otherwise, if the round r message does not

incur added delay due to the capacity of the message link, the proof of Lemma 4.2 holds as

before. Because nonfaulty processes do not send any messages other than the messages of

the synchronous algorithm, it is easy to see that the delay of messages does not a�ect the

proof of Lemma 4.3, and the running time is not a�ected.

5.3.2 Omission failures

First note that if every pair of messages sent by a process are separated by at least time

d=�, then each message is delayed by at most time d and the omissions algorithm is not

a�ected (the analysis of Chapter 3 holds). Because the fault-detection protocol requires a

process to send a message at every step it takes, messages may be separated by as little as

time c1; therefore the omissions algorithm is not a�ected if the message links are of capacity

� � d=c1.

The �rst consequence of using links of capacity � < d=c1 is the obvious e�ect on the

fault-detection protocol. Instead of the bound Cd+ d guaranteed for the time until a failure

is detected (shown in Lemma 3.1), a bound of only min(2Cd + d=�; C2d=� + Cd + d) can

be guaranteed by the fault-detection protocol. Lemmas 3.7 and 3.18 then also involve the

above expression instead of Cd+ d.

58



But a more serious a�ect on the running time of the algorithm is the added delay between

when a process \should" send a message (according to the main algorithm) and when it may

send it. A crucial element of the algorithm is the piggybacking of messages of fault-detection

task and messages of the main algorithm. A straightforward implementation would require

that messages of the main algorithm can only be sent during steps in which a message of

the fault-detection task is to be sent.

If the �rst timeout task, in which each pair of processes continually sends a \token" back

and forth, were used for the fault-detection protocol, up to time 2d may elapse between

when a process is required to send a message of the main algorithm and when it is able to

piggyback that message onto a message of the fault-detection task. Thus each message may

in e�ect be delayed by a total of 3d, since the timeout task ensures that all messages are

delivered within time d of when they are sent, despite the capacity of the message links.

This gives bounds of

4(f + 1)3d + 2Cd for n � 2f + 1

(3 f

n�f
+ 5)(f + 1)3d + 2Cd for n � 2f:

The bound of Section 3.5.2 can be slightly modi�ed to give a bound of

(2
p
2C + 6)(f + 1)3d + 2Cd for n � 2f:

Using the second timeout task, in which a process waits for d=(�c1) steps between every

pair of messages, adds a delay of up to C(d=�) to every message. Each message is then in

e�ect be delayed by a total of up to d(1 + C=�). This gives bounds of

4(f + 1)(1 + C=�)d + (C2d=� + Cd) for n � 2f + 1

and
(3 f

n�f
+ 5)(f + 1)(1 + C=�)d + (C2d=� + Cd)

and (2C=
p
�+ 2

p
C + 6)(f + 1)d+ (C2d=� + Cd)

for n � 2f:

It may be possible that a more clever stategy would allow processes to send messages

of the algorithm on demand by more closely intertwining the main algorithm and the fault-

detection task.
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Chapter 6

Conclusions

We �rst summarize the known bounds for consensus:

Failure type n � Lower bound Upper bound Reference

Stopping f + 1
(f � 1)d + Cd;

(f + 1)d
2(f + 1)d + Cd [ADLS90]

Omissions (sending) 2f + 1 " 4(f + 1)d + Cd Thm. 3.21

f + 1 " (3 f

n�f
+ 5)(f + 1)d + Cd;

(2
p
C + 6)(f + 1)d + Cd

Thm. 3.25

Thm. 3.28

\Timing" f + 1 " (f + 1)(Cd+ d) (see below)

Byzantine 3f + 1 " (f + 1)(d + 2Cd) Thm. 4.4

Auth. Byzantine 2f + 1 " (f + 1)(d + 2Cd) (see below)

f + 1
�l

f

n�f

m
+
j

f

n�f

k�
Cd (Cf+1 + Cf + � � � + C)d (see below)

The bounds for stopping and omission failures (for n � 2f + 1) are tight to within approx-

imately a constant factor (2 and 4, respectively). The bounds for omission failures when

n � 2f are not tight; an improvement in either direction would be interesting. It has been

noted by Bharali ([B91]) that the running time for omissions failures can be improved to

3(f + 1)d + Cd by the following modi�cation to the algorithm. The improvement is ob-

tained by reducing the delay caused by a process that must wait for acknowledgments before

0This is an updated version of the original Chapter 6. It di�ers by the inclusion of the following: the

upper bound for authenticated Byzantine failures when n � 2f + 1, the improvement of the constant from

4 to 3 for the running time of the omissions algorithm ([B91]), and the more careful analysis of the running

time in the model of [HK89].
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sending an r message. Recall that if pi sends an r � 1 message at exactly tr�1|the latest

possible time|and immediately thereafter receives an r message, it may have to wait until

time tr�1 + 2d to receive enough acknowledgments for its r � 1 message before sending an

r message and advancing to phase r + 1. Thus a process pj receiving the r message from pi

would not receive it until tr�1 + 3d. The idea is to let pi send a \virtual r message", even

though it has not yet received n � f acknowledgments for its r � 1 message. Process pj
does not treat a virtual r message from pi as a regular r message until it sees that pi has

received enough acknowledgments for its r � 1 message (recall that all messages, including

acknowledgments are broadcast to all processes). Thus, if pi does get enough acknowledg-

ments, then both pi and pj receive them by time tr�1 + 2d and pj has e�ectively received a

(real) r message from pi by time tr�1 + 2d, saving time d.

For failures less benign than omissions, this thesis leaves open a large gap in time com-

plexity. In particular, the following central question remains unanswered:

Does consensus in the presence of Byzantine failures require time 
(fCd)?

The di�culty of this problem seems to lie not in the potential of for arbitrary message

content but in the potential for timing misbehavior. We believe an important step towards

answering this question will be to obtain tight bounds for \timing failures", described below.

Timing failures

We say that a process su�ers a \timing failure" if the time between some pair of successive

steps is not in the interval [c1; c2]. The simple direct rounds simulation �rst described in

Chapter 3 tolerates timing failures as well, implying a consensus algorithm with running

time (f +1)(Cd+ d). The algorithm of [ADLS90] is also correct despite timing failures, but

each of its phases may take up to time Cd + d. In fact, no algorithm is known to tolerate

timing failures in less than time O(fCd).

Byzantine failures with authentication

First note that the direct simulations outlined at the beginning of Chapter 3 do not work in

the presence of Byzantine failures, even with authentication, and our general simulation of

Chapter 4 itself requires n � 3f + 1.

The upper bound for authenticated Byzantine failures with n � 2f+1 can be obtained by

a very simple modi�cation of the algorithm for Byzantine failures: change \If jV rj � 2f+1"

to \relay V r+1" (unconditionally). In other words, to ensure that every process receives f+1

round r messages (and therefore sends its own round r message), it is su�cient to relay the
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f+1 round r messages already received|these messages are signed and therefore believable.

This protocol works for n � 2f + 1 and achieves the same time complexity.

When n � 2f , the only obvious algorithm to tolerate authenticated Byzantine failures

is a costly simulation of a synchronous algorithm. The simulation requires that processses

begin synchronized and time out each other's timeouts by terminating round i after (C i�1+

� � �+ C + 1)d=c1 steps.

The lower bound for authenticated Byzantine failures, not presented in this thesis, is

interesting (greater than Cd) only for the limited range of n � 2f , and therefore says

nothing interesting about unauthenticated Byzantine failures. The proof of this bound is

similar to the \shifting scenarios" proofs of [FLM86].

Before suggesting other directions for further research, we �rst comment on the implica-

tions of our bounds for consensus in a closely related model.

6.1 Consensus in the related model of [HK89]

Herzberg and Kutten [HK89] consider a model in which the actual worst-case message delay

in a given execution, �, may be much less than the a priori worst-case bound on message

delay, �. It is thus desirable for the running time of algorithms to depend minimally on �.

This model raises similar concerns as our model does; in particular, detecting the absence of

a message may be much more expensive than receiving the message.

For the consensus problem, it is not di�cult to see that direct implementation of syn-

chronous algorithms gives a running time of O(f�) for any type of failures; on the other

hand, clearly the synchronous lower bound implies that no algorithm can guarantee a running

time of less than (f + 1)�. In this model, our algorithms yield an improvement over direct

simulation strategies similar to the corresponding improvement in our semi-synchronous

model.

It is not di�cult to see that our algorithms may be run without modi�cation in the model

of [HK89], yielding the same running times with the syntactic substitution of � for Cd and

� for d. Thus we obtain bounds of

4(f + 1)� +� for n � 2f + 1

(3 f
n�f

+ 5)(f + 1)� +� for n � 2f:

The bound involving
p
C carries over with

q
�=� instead of

p
C, giving a bound of (2

q
�=�+

6)(f + 1)� + �. If � � �, these are signi�cant improvements over the bounds obtainable

by direct simulation. Moreover, it is possible to prove better bound for these algorithms
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in general, depending on the ratio of � to �; the bound of 4(f + 1)d + Cd is realized by

an execution only if � = 4�. This is because process clocks are perfectly synchronized:

whereas in our model the time between failure and detection may be anywhere in the range

[d; d+Cd], in this model it must be � (plus or minus twice the step time, which is assumed

to be much less than �; see [ADLS90], x7).) The length of each phase except the last must

therefore be � and must have at least �=� � 3 failures (processes in Br). There are thus at

most (f + 1)=(�=� � 3) phases except for the last phase, and the running time is at most

( �
��3�

)(f +1)�+�. The running time is the maximum of this expression and 4(f +1)�+�.

Similarly for the stopping failures algorithm of [ADLS90], the running time is the maximum

of 2(f + 1)d) + Cd and ( �
���

)(f + 1)� + �. Our algorithm for Byzantine failures is not

interesting in this model, as it is trivial to design an algorithm taking only time (f + 1)�

(our algorithm takes (2f + 1)� + f�).

In comparison, the algorithms of [DLS88] may also be used in the model of [HK89]. For

stopping and omission failures (sending and receiving), their algorithms require n � 2f + 1;

for Byzantine failures, they require n � 3f +1. Their algorithms assume only that an upper

bound on message delay time exists|it may not be known to the processes; the running time

is a function of the maximum message delay in the given execution. The running times are

O(�2+n2) for all types failures. (As noted in [DLS88], the running times can be improved to

O(�2+ f2). We also note that the di�erent model considered there, which enables processes

to send to at most one process per step, does not a�ect the time bound asymptotically.)

Note that in contrast to our algorithm and the algorithm of [ADLS90], the running times

of the algorithms of [DLS88] in the [HK89] model do not depend at all on �, the upper bound

on message delay time. This is possible because the model of [HK89] provides an extra degree

of power to the algorithm by assuming that process clocks are perfectly synchronized. The

algorithms of [DLS88] do not give good bounds in our model; the running times depend only

polynomially on the ratio of process step rate, C. This di�erence in the model also accounts

for the simplicity of solving consensus in the presence of Byzantine failures in the [HK89]

model, relative to our semi-synchronous model.

6.2 Directions for further research

There are many possible directions for interesting research addressing the issues and concerns

of real-time behavior of distributed systems:

� The existence of the underlying synchronous algorithm described in Section 3.2 suggests

that the results of [ADLS90] and this thesis may be generalizable to certain classes of

synchronous algorithms. For instance, the properties of the underlying synchronous
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algorithm that make it amenable to \e�cient" simulation in our model are that it is

\early-stopping" and that processes advance to further rounds only because of messages

received (not because of messages omitted).

{ Can the properties su�cient for e�cient simulation be clearly characterized?

{ Can these properties be shown necessary by proving lower bounds with large

dependency on C for synchronous algorithms lacking these properties?

{ Are the factors of f

n�f
and
p
C inherent to such simulations with n � 2f and

tolerating omission failures?

� What classes of problems are in fact a�ected by timing uncertainty? Perhaps problems

solvable in asynchronous systems need not be a�ected. Can they be helped by timing

assumptions? Are only fault-tolerant problems a�ected?

� Similar questions can be asked in the context of the model of Herzberg and Kutten

([HK89]): What can be said about converting synchronous algorithms with running

times as a function of message delay d to algorithms that depend on the actual worst-

case message delay � rather than the a priori worst-case message delay �?

� What can be said about simulating synchronous algorithms that do not operate in

rounds?

� Other work ([SDC90]) on the real-time complexity of the consensus problem assumes

a di�erent model of semi-synchrony. There, continuous local clocks are assumed to

be within a �xed constant � of each other and to stay within a linear envelope of real

time. Insight into how these two models are related would enable a comparison of the

bounds that have been obtained. In particular, using the assumptions of our model,

for what values of their parameters can their model be implementable?

� We have given a straightforward implementation of our consensus algorithm using

bounded capacity message links. Can a more involved approach avoid merely e�ectively

increasing the delay of each message?

� For other problems, can bounded capacity message links be used to control implicitly

message complexity by causing message ine�ciency to be manifested as time ine�-

ciency?
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