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For the last several decades, computer architecture research has largely benefited from, and continues to be driven by ad-hoc benchmarking. Often
the benchmarks are selected to represent workloads that architects believe should run on the computational platforms they design. For example,
benchmark suites such as SPEC, Winstone, and MediaBench, which represent workstation, desktop and media workloads respectively, have influenced
computer architecture innovation for the last decade. Recently, advances in VLSI technology have created an increasing interest within the computer
architecture community to build a new kind of processor that is more flexible than extant general purpose processors. Such new processor architectures
must efficiently support a broad class of applications including graphics, networking, and signal processing in addition to the traditional desktop
workloads. Thus, given the new focus on flexibility demands, a new benchmark suite and new metrics are necessary to accurately reflect the goals
of the architecture community. This paper thus proposes(i) VersaBench as a new benchmark suite, and(ii) a new Versatility measure to characterize
architectural flexibility, or in other words, the ability of the architecture to effectively execute a wide array of workloads. The benchmark suite is
composed of applications drawn from several domains including desktop, server, stream, and bit-level processing. The Versatility measure is a single
scalar metric inspired by the SPEC paradigm. It normalizes processor performance on each benchmark by that of the highest-performing machine for
that application. This paper reports the measured versatility for several existing processors, as well as for some new and emerging research processors.
The benchmark suite is freely distributed, and we are actively cataloging and sharing results for various reference processors.

1. INTRODUCTION

Advances in VLSI technology have spurred a shift away from a single-minded focus on performance, and toward new
kinds of “all-purpose” architectures. The new architectures are expected to compete with extant microprocessors not
in the raw performance they can deliver in specific classes of applications, but rather, in theirversatility, or the ability
to deliver consistently high performance in a very broad set of application domains, from server workloads, to desktop
computing and embedded systems. The shift toward versatile architectures is arguably due to the opportunity created
by exponentially increasing chip-level resources, combined with the physical limits of power and wire-delay faced by
today’s high-performance processors. A recentNew York Timesarticle [9] reported that Intel for example is revamping
its processor road map because chips, such as the widely deployed Pentium 4, have reached their performance limit
for the amount of power they consume. Along with other leading companies in the microprocessor industry, Intel
is likely to focus on exploiting the characteristics of new and increasingly pervasive application workloads, including
graphics, wireless processing, networking, and various forms of signal processing. In these applications, characterized
by increasingly prevalent computation paradigms such asstream processing, the extraction of parallelism will not require
heroic efforts, and as a result, future processors can deliver high performance with significantly lower power costs.

The shift toward versatile architectures can also be observed in the academic arena. Projects such as Smart Mem-
ories [20] at Stanford, CDE [1] at UPC, WaveScalar [33] at U. Washington, TRIPS [27] at UT Austin, Raw [39] and
SCALE [15] at MIT, have all stated as a goal the ability to efficiently run a broad class of applications, including those
from traditional desktop and embedded system domains. The recent DARPA program in Polymorphic Computing Ar-
chitectures [25] is also a research thrust in this new area marked by architectural versatility.

Motivated by the focus on versatility, this paper proposes a new benchmark suite calledVersaBench, and a new metric
calledVersatility to accurately reflect the new goals of a significant portion of the architecture community. Much as the
Standard Performance Evaluation Corporation (SPEC) [8] has influenced the design of general purpose CPUs in the past,
we will demonstrate how the Versatility metric along with the VersaBench suite may guide the design and optimization
of future all-purpose computers.
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The VersaBench suite is a collection of fifteen benchmarks that are grouped into five application categories encom-
passing desktop integer workloads, floating-point and scientific applications, server computing, stream processing, and
embedded bit-level computation. The VersaBench applications are drawn from various suites, and were selected be-
cause of the salient behavior and the properties they exhibit along various dimensions. In all, we consider fivebasis
property-dimensions when characterizing a benchmark, includingparallelism, instruction temporal locality(which is
the inverse of control complexity),data temporal locality, anddata spatial locality. The VersaBench suite was created
systematically by measuring the properties of numerous applications, and selecting those that best matched the proper-
ties that intuitively describe applications from the five central computing tiers—desktop integer, desktop floating-point
and scientific, servers, embedded streaming, and embedded bit-level systems. The constituents of the VersaBench suite
are listed in Table 2 and described in Section 3. It differs from previous benchmark suites such as MediaBench [16],
Winstone [42], and SPEC in two ways. First, it uses a new Versatility metric, and second, it consists of applications
drawn from five computing classes; whereas Winstone, SPEC and MediaBench are heavily weighted toward desktop
computing, workstation workloads and streaming media respectively.

The Versatility metric is inspired by the SPECmark metric which is the de facto standard for reporting the throughput
of an architecture for a given SPEC benchmark suite. A SPECmark provides a scalar measure to compare architectures,
and it may be normalized by power, area, or cost to reflect an efficiency along dimensions other than performance.
Specifically, the SPEC CINT89 SPECmark for an architecture is the geometric mean of the speedups of that architecture
relative to a reference machine (specifically, the VAX 11/780)1 for each of the applications in the SPEC CINT89 suite.

Computing the Versatility of an architecture purposefully mirrors that of a SPECmark. Accordingly, Versatility is
a scalar quantity defined as the geometric mean of the speedups of an architecture for each of the applications in the
VersaBench suite. Unlike SPECmarks however, the speedup of each application is not computed relative to a single
reference machine, but rather relative to the architecture which provides thebestperformance for that application (in
the 2004 time frame from known results at the time of this writing). A formal definition of Versatility can be found in
Section 2. Like SPEC, the Versatility may be separately normalized by chip area, power or machine cost.

Intuitively, Versatility measures how close the performance of an architecture is to that of a hypothetical, idealized
versatile machine (IVM) whose performance on each application equals that of the highest-performing machine (HPM)
for that application. Since a single scalar metric can hide a lot of information, additional insight into the strengths and
weaknesses of an architecture can be obtained by going beyond the scalar metric and graphing the individual speedups for
each application relative to the HPM for that application, as shown in the abstract graphs in Figure 1. Points on the X-axis
represent various benchmark applications, and points on the Y-axis represent speedups compared to the HPM for each
application. The solid lineenvelopein Figure 1(a) represents a hypothetical ideal versatile machine, or IVM. The dotted
line in (a) might represent a conventional general purpose processor (e.g., a Pentium 4) whose performance for desktop
integer applications equals that of the HPM for those applications, while its performance for streaming computations
falls short of the best achievable by a specialized vector or stream engine such as VIRAM [14] or Imagine [12]. The
dotted line in Figure 1(b) depicts the characteristics of an ASIC (application-specific integrated circuit) which performs
exceptionally well for a few bit-level applications, but is unable to run other types of programs. Clearly, a highly versatile
architecture that does well across the board will closely track the IVM envelope. Because we will reference such graphs
frequently, we name themVersaGraphs.

VersaGraphs help identify the application areas where opportunities for architectural improvements are greatest. For
example, a new architecture that performs as well as a Pentium 4 for desktop integer workloads has little to gain from
further improvements targeted toward that application domain. In contrast, an architecture that fares poorly compared to
the best stream processor warrants attention that is focused on improving the performance of that architecture within the
streaming context.

1The reference machines have changed over time. While the VAX 11/780 was the reference machine for SPEC CINT89 and SPEC CINT92, the
SPARCstation 10/40 was the reference machine for SPEC CINT95, and the Sun Ultra5-10 workstation with a 300MHz SPARC processor is the
reference machine for SPEC CINT2000.
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(a) (b)

Figure 1. Example VersaGraphs. The solid-line outer envelope in (a) and (b) represents a hypothetical ideal versatile machine, or IVM. The dotted line
in (a) might represent one of today’s general purpose processors. The dotted line in (b) represents a typical ASIC.

1.1 Summary of Contributions

In summary, this paper makes the following contributions:

— A new benchmark suite picked from five applications classes. The suite is geared toward the characterization of
architectural flexibility. We are maintaining the suite on the web, and freely distributing it, including benchmark
implementations in C, and where relevant, in Verilog, a stream language, and assembly code.

— A new metric called Versatility. This metric provides intuitive, normalized results that quantify the flexibility of
ASICs, general purpose processors, and tiled processor architectures, even as their performance improves over time.

— The paper presents results to demonstrate that the characteristics of the five application classes are distinct and mea-
surable.

— The paper characterizes the Versatility of several extant commercial and research processors. We are also actively
cataloging and sharing results for our reference processors and machines.

1.2 Roadmap

The remainder of this paper is structured as follows. Section 2 introduces the Versatility metric, Section 3 discusses the
VersaBench suite and the properties of the constituent applications. Section 4 describes the benchmarking methodology,
and Section 5 reports our results for several architectures using VersaBench and the Versatility metric. Section 6 discusses
related work, and Section 7 summarizes and concludes the paper.

2. THE VERSATILITY METRIC

We define the Versatility of an architecture as the geometric mean of the speedup of each of the applications in the
VersaBench suite relative to the architecture which provides the best execution time for that application.

In comparison, the SPECmark of an architecture is the geometric mean of the speedup of each of the applications in a
specific SPEC suite (e.g., SPEC INT 89) relative to the execution time of the application on asinglereference machine
(the VAX11/780 for SPEC INT 89). Like SPEC, Versatility provides several other results that are interesting in their own
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right as summarized in Table 1. Table 1 further highlights the similarities between the two metrics and shows that they
differ only in how the reference runtime is defined.

Table 1. VersaBench versus the SPEC metric. They differ only in how they define the reference runtime.

VersaBench SPEC INT 89

Application runtime on processor Application runtime on processor
Application reference runtime Application reference runtime
chosen as best known runtime in 2004chosen as runtime of a VAX 11/780
Speedup for application Speedup for application
over reference runtime over reference runtime
Geometric mean of speedups Geometric mean of speedups
over all applications over all applications

The SPEC metric is useful when comparing the performance of two architectures for workstation workloads. The
Versatility metric can also be used to compare the performance of two architectures across the diverse VersaBench suite.
In addition, the Versatility metric of an architecture is indicative of how close its performance is to that of an IVM, in
other words, a hypothetical processor whose performance on each application equals that of the HPM for that application.

More formally, suppose VersaBench hasN benchmarks numbered 1,2,3, · · · i, · · ·N− 1,N. In our suite, 1− 3 are
desktop integer benchmarks, 4− 6 are desktop floating-point applications, 7− 9 are server benchmarks, 10− 12 are
embedded streaming applications, and 13−15 are embedded bit-level programs.

Next, suppose that the running time for applicationi on architectureA is denoted asAi , and further, the running time
achieved by the HPM fori is denoted asRi (i.e., this is the reference time for applicationi on the highest-performing
machine for that application). Mathematically,

Ri = min∀A(Ai)

Note thatRi may be the same as the correspondingAi if A is the HPM for applicationi. The speedup of architecture
A relative to the reference time (i.e., the best execution time) for applicationi is given by the ratioRi/Ai . Finally, the
Versatility of architectureA is

VA =
[

ΠN
i=1

Ri

Ai

] 1
N

(1)

or simply the geometric mean of the speedups. Interestingly, Equation 1 also defines the calculation of the SPEC metric,
with the distinction thatRi for SPEC is the running time of the VAX 11/780 for applicationi.

2.1 Rationale and Remarks

We chose to use the geometric mean to be consistent with existing benchmarking practices, although it is well known
that the harmonic mean of speedups is a better metric when the total execution time is the primary concern [31]. Unlike
the arithmetic mean, both the geometric and harmonic means for speedups have the intuitively appealing property that
an architecture’s Versatility is zero if it is unable to run even a single application; thus the Versatility of an ASIC is zero.

The Versatility metric can be used in one of two ways when considering the evolution of machines and their perfor-
mance. In one way, we select the best machines for each application at the time of this writing (in 2004), and we always
use their respective running times to normalize speedups. For example, if at the time of this writing, a 3 GHz Pentium 4
is the HPM for applicationi, then we will always normalizeAi relative to the Pentium 4’s runtime fori. This approach
provides a common standard to measure flexibility for all time. However, the drawback is that as machines get faster
over time, their Versatility will eventually surpass one. This is not counter intuitive however, since faster processors can
run more applications effectively. The SPEC analogy is to normalize to the performance of a VAX 11/780 for all time.
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In an alternate approach, we can renormalize to a new set of HPMs every year or every few years, so that the Versatility
of machines is always below one. The process of renormalizing numbers for older machines is easy with geometric means
because it does not require a knowledge of the individual application speedups. Specifically, if there areN applications
in the VersaBench suite, and the best execution time for one application decreases by a factorβ, then the Versatility of
any architecture will decrease by a factor ofβ(1/N). This result follows directly from Equation 1.

We do not take a position on the proper method for the evolution of the Versatility metric over time. Instead, we
propose to maintain two sets of Versatilities for each machine: one that keeps the normalizing running-times fixed for all
time—this isVA—and another that renormalizes every year—this isY–VA, whereY is the year in which the best machines
are chosen. Thus, for example, if the Versatility of an architectureA is 0.5 in 2004, and is 0.2 when normalized to HPMs
in 2006, then the Versatility ofA is specified either as 0.5 or as 2006–0.2. Note thatVA and 2004–VA are one and the
same because we are starting in the year 2004.

Our metric weights the application classes equally. However, the metric can easily be customized to use relative
weights. As an example, if a company wishes to produce a chip that is highly optimized for streaming workloads—while
providing barely adequate performance for desktop applications—the following variant of Versatility can be used:

VA =
[

ΠN
i=1

(
Ri

Ai

)wi
] 1

ΣN
i=1wi

Also note that theVersatility metric, and its variants, can be used with other benchmark suits that may reflect applica-
tions requirements other than the ones considered in this paper.

2.2 Improving Versatility

Intuitively, improvements in Versatility can come from two sources:(i) absolute increase in performance, and(ii) better
performance robustness across all applications. In terms of the former, performance boosts can come via advances in
technology that allow the same architecture to run with a faster clock. Faster processors can run more applications
effectively and are therefore more versatile. Notice that as general purpose processors became faster over the years,
they were able to process audio and many forms of video in real time, thereby reducing their need for special purpose
hardware.

In terms of performance robustness, a processor is highly versatile if it can run an entire range of applications ef-
fectively. The Versatility metric conveys quantitatively how close the performance of an architecture is to that of an
ideal versatile machine2, and identifies potential opportunities for architectural improvements. Namely, the normalized
speedups of the individual benchmarks can be plotted in the form of a VersaGraph to identify the application classes for
which a machine has room for improvement, and classes for which the architecture is already doing as well as can be
expected in the given timeframe. Thus while the Versatility equation can be factored as

VA =
[
ΠN

i=1Ri
] 1

N

[
ΠN

i=1
1
Ai

] 1
N

where the first term is independent of the architectureA (i.e., it is a common factor in the versatility computations of all
architectures), the normalization serves dual purposes as just described, and is therefore not gratuitous.

In the following Section, we describe the Versatility benchmark suite, and in Section 5, we present VersaGraphs for
several architectures, along with their measured Versatilities and other related analysis.

3. VERSABENCH

Benchmark suites are assembled to represent the workloads that architects believe should run on the computational
platforms they design [18]. For example, benchmark suites such as SPEC, Winstone [42], and MediaBench [16]—which

2The Versatility (in 2004) of an IVM is unity, as its performance on each application equals that of the HPM for each application.
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Table 2. The VersaBench suite.
Desktop mcf Combinatorial optimizer
Integer parser Link grammar parser

twolf Place and route simulator

Desktop bmm Blocked matrix multiplication
Floating vpenta Pentadiagonal matrix inverter
Point tomcatv Vectorized mesh generator

Server mesa 3D-Graphics library (24 copies)
mgrid Multi-grid solver (24 copies)
dbms DataBase Management System (24 copies)

Embedded corner Large matrix transposer
Streaming fm Software FM radio

beam Multi-channel beam-former

Embedded 80211a Convolutional encoder from IEEE 802.11a Standard
Bit-Level 8b10b IBM 8bit/10bit block encoder

des ECB encoder of the Data Encryption Standard

represent workstation, desktop, and embedded workloads respectively—have driven computer architecture innovation for
several years. Recently, several projects have begun to investigate more flexible architectures that can efficiently support
a broader class of applications including graphics, networking, and signal processing in additional to the traditional
workstation and desktop workloads. Thus, given the new focus on versatility, new benchmark suites must also evolve to
reflect the broader application requirements.

This section describes VersaBench, our proposed benchmark suite to facilitate the versatility measurements of next-
generation architectures. The benchmark suite consists of fifteen benchmarks that are grouped into five categories:
desktop integer(INT), desktop floating-point(FLT), server(SVR),embedded streaming(STR), andembedded bit-level
(BIT), with the first two categories reflecting traditional ILP-centric sequential workloads. The benchmark suite is freely
distributed, and we believe the community will help evolve the collection to continuously reflect the range of workloads
architects wish to run on the processors they design. The VersaBench suite is easy enough to run and we encourage
researchers to evaluate their architectures and report their results to the community via our cataloging website.

The VersaBench constituents are briefly described in Table 2. They are drawn from various suites, and were selected
because of the salient properties they exhibit along various dimensions. For example, desktop applications are expected to
have complex control structures, and hence poorer instruction-temporal locality, whereas streaming applications consist
of relatively small computational kernels with simple control mechanisms, and hence better instruction temporal local-
ity. In what follows, we present simple measures to quantifycontrol complexity, as well as several other fundamental
dimensions of interest. In all, there are five property-dimensions, and they are

— predominant data type: summarizes the predominant type-domain over which computation is performed,

— parallelism: quantifies maximum IPC (instructions per cycle) in a benchmark,

— instruction temporal locality(ITL): measures the degree to which instructions are repeated in a given time window,
and is related to the inverse of the control complexity,

— data temporal locality(DTL): captures the degree to which data addresses are repeated in a given time window, and

— data spatial locality(DSL): captures the degree of address adjacency in data traces.

Intuitively, we believe the properties of each of the five benchmark-categories are as shown in Table 3. Accordingly,
the VersaBench suite was created systematically by measuring the properties of numerous applications and selecting
those that matched expectations. Namely, we favored desktop integer benchmarks with low parallelism, ITL, and DSL,
high DTL, and of course those which predominately consisted of computation using integer data types. Similarly, for the
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Table 3. Characteristics of the VersaBench workloads.
Type IPC ITL DTL DSL

Desktop INT integer low low high low
Desktop FLT float medium medium medium medium
Server integer/float high low to medium medium to high low to medium
Streaming integer/float very high high low to high very high
Bit-Level bit medium-high very high low very high

desktop floating-point benchmarks, we chose benchmarks that are floating-point heavy, with relatively higher parallelism,
ITL and DSL, and relatively lower DTL. It is expected that scientific applications in the desktop floating-point category
are more amenable to compiler optimizations (e.g., loop unrolling) that expose parallelism. Such applications usually
process large quantities of data and hence have lower data temporal locality compared to the integer benchmarks. The
server-oriented benchmarks often exhibit properties that mimic integer and floating-point workloads, although they have
substantially more parallelism by way of concurrent processes.

In the embedded domain, the streaming benchmarks largely represent signal processing computation. They are char-
acterized by kernels that process potentially infinite sequences of short-lived data. Often, stream applications alsopeekat
future data items before they are processed, as in the computation of moving averages. They may also perform substan-
tial coefficient lookups, and as a result, stream benchmarks exhibit varying degrees of temporal locality. When stored in
temporary memory buffers, stream data addresses exhibit high data spatial locality. In addition, the kernels in streaming
systems are often self-contained and have well defined static control structures. Hence, they are massively parallel and
have high instruction temporal locality. The bit-level benchmarks are similar in terms of their characteristics, although
they may carry out complex bit-twiddling and state updates that limit parallelism.

The following sections describe our methodology for quantifying the property-dimensions of the VersaBench suite.
We initially focus on each application-class as a whole and illustrate that the basis properties are distinguishable. The
goal was to demonstrate that each of the domains can be characterized by one or more basis properties. For example, the
desktop integer applications have high control complexity (and hence low ITL) and are limited in terms of IPC (Table 3).
By contrast the streaming benchmarks have significantly more parallelism and different locality behaviors. Here, we
report the properties for the individual benchmarks.

3.1 Data Types

The predominant data type in an application dictates the nature of the computation, with distinctions drawn between
integer arithmetic, floating-point arithmetic, and bit-level processing. Applications from each of the five VersaBench
categories intrinsically consist of different predominant data types. We identify the predominant data type and compu-
tation by manually inspecting the source code of the application. In addition, we measure the dynamic instruction mix
of each benchmark using a cycle accurate simulator, and summarize the results in Figure 2. There are five main types of
instructions: branch, compare, memory, integer, and floating point. The control intensive applications will have a much
large percentage of compare and branch instructions. Computation intensive benchmarks will have a larger percentage
of integer or floating point operations: nearly 40% of the operations in the desktop integer applications are compare and
branch operations; compare this to the 70-80% of operations spent in actual computation in the bit-level benchmarks.
The desktop floating-point programs are the most memory intensive and stress the floating point unit with roughly 20%
of their instructions. The instruction mix for the server benchmarks shows they are slightly more control-complex com-
pared to the floating-point applications, and do not stress the floating-point ALU as heavily. The streaming benchmarks
have a range of instruction mixtures with respect to the integer versus floating-point operations. They also vary with
respect to the number of memory operations; two of three stream benchmarks have significantly more loads than stores
because they perform significant peeking.
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Figure 2. Left. Dynamic instruction mix for the five application-classes in VersaBench. The classes are listed in following order: INT, FLT, SVR,
STR, and BIT. The classes are separated by the dashed vertical lines.Right. The median IPC for the VersaBench suite; note that a log-scale is used.

3.2 Parallelism

The intrinsic parallelism of an application is an important property that varies across workloads. It is expected that
embedded applications will exhibit massive levels of parallelism, whereas desktop integer application are quite limited
in this regard.

To measure parallelism, we focus on instructions per cycle (IPC), and perform a “limit study” to discover how much
parallelism exists in the application. Specifically, given a sequential instruction trace, we dynamically schedule the oper-
ations assuming infinite resources (i.e., unlimited number of registers and functional units) and oracular knowledge (i.e.,
perfect branch prediction and memory disambiguation). Hence all artificial dependences are removed, much like the ILP
limit studies performed by Wall [40]. We also heavily optimize each benchmark and perform aggressive inlining and loop
unrolling to break legacy performance barriers. Our compilation and simulation environment is based on the Trimaran
research infrastructure [37]. Trimaran is a publicly available compilation and simulation framework that includes a num-
ber of high level optimizations geared toward increasing ILP (e.g., superblock [11] and hyperblock [19] optimizations).
In our “perfect” processor, we execute instructions as early as possible, limited only by dataflow dependences. Also,
while we assume perfect branch prediction, branch instructions are not free and they contribute to the critical path length
of the execution.

In Figure 2, we report the median IPC for each application-class from the VersaBench suite (detailed results for each
benchmark can be found in Table 4). The IPC is the average instruction issue rate, assuming all instructions have a one-
cycle latency. The results show that the desktop integer benchmarks ranked lowest in terms of IPC, largely due to their
control complexity. Streaming benchmarks occupy the other extreme, partly because of their lower control complexity,
and partly because there is significant task level parallelism that is exploitable. The bit-level applications have lower
parallelism by comparison, despite their very low control complexity. This is because of the significant number of state
updates that are necessary for “bit-twiddling”. The desktop floating point and server workloads both have substantial
parallelism. In the case of the server workloads, the amount of IPC can potentially increase further as the number of
concurrent threads is increased (we assume twenty four concurrent threads in VersaBench). Thus, the server applications
in VersaBench can benefit from support for multithreading in processors. On a related note, we do not distinguish
between instruction level parallelism (ILP), data level parallelism (DLP), or thread level parallelism (TLP). We believe
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Figure 3. The median IPC (left), DTL (middle) and DSL (right) for the VersaBench application-classes. In the DTL graph, we indicate the expected
locality for each of the classes (H: high, M:medium, L:low).

that to a large extent, IPC is a reasonable measure for parallelism of any sort. It is also easiest and most straightforward
to measure.

3.3 Instruction Temporal Locality

Instruction temporal locality characterizes the reuse of instruction addresses as a function of time. To measure instruction
temporal locality, we extract an address traceT from the application as it executes, and partition the trace into contiguous
and non-overlapping trace segmentss1, s2, . . . , sn, such thatT = s1|s2| . . . |sn. When measuring instruction temporal
locality, T I consists of the sequence of addresses corresponding to the instructions that are (serially) executed by the
processor. By construction, each segmentsi contains exactlyW unique addresses, but may vary in length (l i = |si |) since
an address may occur several times within a segment.3 The instruction temporal locality of a segment is

ITL(si) = 1− W
l i

or simply one minus the number of unique references in a segment divided by the total number of addresses in the
segment. A segment that lacks address reuse therefore does not have any temporal locality (i.e.,W = l i and hence
ITL = 0); temporal locality increases proportional tol i thereafter. The temporal locality for the entire sequenceT is the
arithmetic mean temporal locality of all of its segments.

We measured the temporal locality of instruction traces for several values ofW in the range[25,216]. In Figure 3,
we plot the median ITL for each of the application-classes usingW = 210. For the most part, the ITL varies little from
one class to the next, with the biggest distinction made for the desktop integer suite, as expected. The highest ITL is
measured for the bit-level applications, and indeed these benchmarks have the smallest instruction memory footprints
and only show variations for very small values ofW . The stream benchmarks have comparable ITL, although they have
large instruction memory footprints; the streaming kernels can be fully unrolled and can impact the measured ITL up to
W = 211.

3W is similar to the popular notion of working set size.
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3.4 Data Temporal Locality

Data temporal locality characterizes the reuse of data addresses as a function of time. It is measured in a manner similar
to the instruction temporal locality, usingT D, the trace of data addresses that are (serially) fetched by the processor.
To measure data temporal locality, we variedW in the range[29,220], and in Figure 3, we plot the median DTL for
the five application-classes usingW = 213. The measured DTL values closely follow intuition (Table 3), with integer
benchmarks at the high end of the spectrum, and bit-level applications at the lowest. Note that as noted earlier, the
streaming benchmarks can widely range in terms of their DTL, proportional to the amount of data-peeking that they may
perform. In general, the DTL of a streaming kernel is roughly 1− 1

p, wherep is the kernel peek-rate. The server and
floating-point workloads have relatively large data memory footprints. They vary in terms of their processing patterns,
from dense matrices, to sparse mesh computations. Their DTL are in the medium range for the most part.

3.5 Data Spatial Locality

Temporal locality represents the reuse of addresses as a function of time, whereas spatial locality describes the clustering
of data in space. Specifically, data spatial locality refers to the extent of data address adjacency in an address stream.
That is, given two addressesα1 andα2, if |α1−α2| ≤ K then the addresses are said to share the same locale. Memory
architectures widely exploit spatial locality by fetching ablockof data at a time from memory to the caches; this amortizes
and ameliorates the cost and latency of a memory access, as long as the data within the block is utilized in time (i.e., data
within the same spatial locale also share temporal locales).

To measure data spatial locality, we divide the memory space into equal-sized blocks such that every addressable
byte is a member of a unique block. Given a trace segmentsi partitioned as described earlier, we map each address
in the segment to its parent block, and count the number of unique blocks that are referenced. IfB equals the number
of addressable bytes in a block (i.e.,B is the block size), then an addressα belongs to blockα modB. Hence, using
Wi(B) to represent the number of unique blocks referenced in a segmentsi , data spatial locality is defined as

DSL(si) =
W

Wi(B)×B

or simply the ratio of the unique references insi to the total number of data in the accessed blocks (Wi(B)×B). In-
tuitively, the spatial locality measure quantifies the “pollution” in a block. A segment with “perfect” spatial locality
(i.e., DSL(si) = 1) does not have any pollution because every addressable byte in every accessed block is referenced.
In contrast, if every (byte-sized) reference insi maps to a different block, thenB −1 bytes per block are not used and
considered pollution; note that the minimum value for spatial locality isDSL(si) = 1

B . The spatial locality for the entire
sequenceT D is the arithmetic mean spatial locality of all segments in the trace.

Data spatial locality varies significantly between workloads, and the median DSL for the VersaBench application-
classes is shown in Figure 3. In the plot, we assumeW = 213 andB = 32 bytes. As expected, the embedded benchmarks
have the highest levels of address adjacency, as the data they processed is tightly packed in contiguous memory locations.
The integer workloads, which are often pointer-heavy, have the lowest levels of DSL.

4. BENCHMARKING METHODOLOGY

Our philosophy is to have simple benchmarks that are easy to run. Some of the VersaBench applications are part of the
SPEC suites, and when available, we used the MinneSPEC reduced reference workloads [13]. In terms of Versatility
measurements, we propose the following guidelines for future reporting—these are the same rules that were followed for
the results reported in this paper:

— Benchmarks may be compiled with the best available compiler.

— Benchmarks may be rewritten in any language (e.g., C, Java, StreamIt [36], Brook [7], Verilog) provided they adhere
to the original algorithms. For example, a recoding ofbmm must use the blocked matrix multiply algorithm. The
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Table 4. Measured properties of VersaBench.
Benchmark IPC ITL DTL DSL
mcf 5.8 0.948 0.483 0.360
parser 4.8 0.645 0.894 0.335
twolf 10.8 0.255 0.871 0.637

bmm 10560.5 1.000 0.817 0.9370
vpenta 339.6 0.415 0.450 0.997
tomcatv 119.5 1.000 0.555 0.972

mgrid 576.48 0.965 0.815 0.949
mesa 108.8 0.781 0.457 0.866
dbms 19.2 0.440 0.854 0.592

corner 43995.1 1.000 0.011 0.944
fm 266.6 0.923 0.988 0.988
beam 76.5 0.934 0.453 0.972

80211a 12.3 1.000 0.418 0.995
8b10b 19.9 1.000 0.322 0.998
des 77.5 0.992 0.803 0.986

benchmarks may even be hand-coded in assembly to suit a particular architecture. The VersaBench website provides
several versions for many of the benchmarks.

— The Versatility may be computed using wall clock times (preferred) or number of cycles, as long as the method used
is clearly specified.

— Real architectures are preferred, but simulators may be used.

— Although the modeling of real I/O is encouraged, we recognize the difficulty in doing so in a prototype environment.
We suggest initializing a region of external DRAM with I/O data, and flushing caches so they are not primed prior
to the measurement process. Simulation environments often ignore system calls, in that they are treated as magical
instructions that can atomically update memory, without polluting the caches. Alternatively, adeionizer[35] may be
used to idealize I/O. We went to great lengths to minimize the effects of I/O in the VersaBench suite.

The evaluation process thus affords a lot of flexibility in how the benchmarks may be coded and executed. How-
ever, when reporting results, the details of the methodology that is adopted must be clearly described. Some common
parameters include(i) whether a simulator is used,(ii) the language and compiler used in the implementation (and if
any hand-coding is done),(iii ) whether wall clock times are used, or whether cycles are being measured,(iv) the clock
speeds that are assumed for the architecture,(v) whether I/O is accurately simulated, or if the I/O costs are ignored, and
(vi) the speeds assumed for caches and external memory, and whether the external memory is faithfully modeled.

The next section reports our Versatility measurements for five different reference machines (see Table 5). These
machines were chosen primarily to assess the versatility of existing general purpose processors as well as the versatility
of an existing tiled-processor architecture (TPA). Physical accessibility was a major factor in choosing machines for this
evaluation. In the case of the Pentium III (P3), Pentium 4 (P4), Itanium 2, and Athlon 64, the results were gathered from
the real hardware. We measured the timing non-invasively and consistently across all four commercial platforms. In the
case of Raw, cycle counts were obtained from a cycle accurate simulator that has been verified against an existing Raw
chip. When compiling for the P3, P4, Itanium 2, and Athlon 64 the same optimization flags were used for all benchmarks
(Table 5). In keeping with the ideas behind versatility, future work will determine the best optimization flags for each
benchmark. For Raw,rgcc—a port ofgcc—was used to compile the integer and server benchmarks. The floating
point benchmarks were compiled withrawcc [17], the streaming benchmarks were compiled withstrc—the StreamIt
compiler—and the bit-level applications were hand-coded in assembly.
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Table 5. Experimental Setup.
Machine Clock Process Cache Compiler Compiler Flags
P3 600 MHz 180-nm L1-D 16K, L1-I 16K, gcc 3.3 -O3 -march=pentium3

L2-U 256K -mfpmath=sse
P4 2.8 GHz 130-nm L1-D 8K, TC 12k uops, gcc 3.3 -O3 -funroll-all-loops

L2-U 512K -march=pentium4 -ffast-math
Itanium2 1.3 GHz 130-nm L1-D 16K, L1-I 16K, ecc 7.1 -O3 -ipo

L2-U 512K, L3-U 3M
Athlon64 2.2 GHz 130-nm L1-D 64K, L1-I 64K, gcc 3.3 -O3 -funroll-all-loops

L2-U 1M -fmarch=athlon -ffast-math
Raw 425 MHz 180-nm 16*L1-D 32K rawcc/rgcc and -O3

16*L1-I 32K strc

5. RESULTS

We summarize the Versatilities of the five processors in Table 6. We find that the Athlon 64 is the most versatile of the
five processors, with a Versatility of 0.458. It is interesting to note that the P3 and Raw are implemented in the same
technology, yet their Versatilities are disparate:VP3 = 0.1, andVRaw= 0.406. The TPA outperforms the Pentium 3 on the
embedded applications. The TPA approaches the Versatility of the Athlon 64 even though it runs at a much slower clock
frequency and is implemented in an older technology.

Table 6. Versatility numbers
P3 P4 Itanium 2 Athlon 64 Raw

Versatility .104 .375 .316 .456 .406

The speedups of each architecture relative to the P3 can be seen in Figure 4. The Athlon 64 performs fairly consistently
across the board, often outperforming the P4 and the Itanium 2. This is in part due to the fact that the Athlon 64 is the
newest machine in the group; we suspect that the latest generation P4 and Itanium processors can rival the Athlon in
performance. The Raw processor is designed to run workloads that general CPUs eschew. As such, it outperforms the
other architectures in the server and bit-level applications. Its lower performance in the desktop integer class (a factor of
two worse than the P3) is because the applications in this class are run on a single tile of Raw—these numbers should
improve as its ILP compiler matures and is able to schedule integer programs over multiple tiles. Note that for the
server benchmarks, we use twenty four independent instantiations of the application, so multithreaded processors can
potentially exploit the process-level parallelism.4

The VersaGraphs for the five architectures are shown in Figure 5. Each bar in the VersaGraph represents the ratio of
the execution time of the corresponding application relative to the highest-performance machine (HPM) for the same
application. In other words, each bar represents the ratioRi/Ai in the range[0,1], where the upper extreme indicates the
architecture is the HPM for the application. For the bit-level applications, we synthesized Verilog implementations of two
bit-level applications (80211a and8b10b) using the IBM SA-27E process [41]. This yields ASICs that deliver the best
performance for the two applications. At the time of writing this paper, we have yet to generate an ASIC implementation
for thedes benchmark; we expect to complete the synthesis soon. Consequently, the HPM fordes is the Athlon.

6. RELATED WORK

Benchmarks have played a significant role in the design and optimization of processors. However, previous benchmark
suites have all focused on a given class of applications. SPEC, for example, focuses mostly on workstation workloads, and

4We will include results from a commercial hyperthreaded Pentium 4 in the final version of this paper.
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Figure 4. Speedups (in time) relative to the P3 (note a log-scale is used).

Winstone [42] and SYSmark [34] on desktop workloads. MediaBench [16] showed that embedded media applications
differ significantly from SPEC in terms of the cache performance, and embedded-systems engineers can reach incorrect
conclusions with respect to architectural requirements (if they used improper workloads to calibrate the performance of
their media processors). Other benchmark suites such as MiBench [10] have generally focused on embedded systems,
NetBench [23], which is often used for network processors, Perfect Club [5] and STREAM [21] for supercomputers, [4]
for reconfigurable computing, Splash [43] for multiprocessors, etc. By and large, current benchmark collections focus
on a single class of applications. VersaBench, however, attempts to focus on many different application classes.

In selecting the VersaBench constituents, we followed a fundamental approach, focusing on intuitive properties that
are easily measurable. For example, we quantify parallelism or IPC, instruction temporal locality, and data locality—
both temporal and spatial. This approach is in contrast to previous methodologies that focused on secondary statistics,
including branch prediction accuracy, instruction miss rates, and data miss rates. Our methodology for quantifying each
of the basis properties is founded upon simple mathematical definitions.

There is a large body of work (e.g., [2, 3, 22, 26, 32]) on measuring temporal and spatial locality, and on average, the
definitions of locality are often tuned to a specific context. We share a single characteristic with previous work: the use
of a fixed window size (i.e.,W or the number of unique references in a trace segment). One might argue that a variable
window size is necessary, as evidenced by the substantial interest in program phases analysis (e.g., [30]) that identifies
logical execution units in a program (i.e., the conceptual equivalent of a trace in a trace cache [24, 28]). The approach is
intriguing, and we did in fact experiment with dynamically tunedW . We found that in the absence of a fixed segment
size, it is difficult to make comparisons and standardize our results.

The Versatility metric, our measure of architecture flexibility, is inspired by the SPECmark metric, and differs only
in how speedups are normalized. This single difference is the key innovation in the Versatility metric. Furthermore, the
Versatility metric, via VersaGraphs, affords insight into how close the performance of an architecture is to that of an IVM,
or concretely, how close the performance of an architecture is to the best performing machine for any given application.
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7. CONCLUDING REMARKS

We are at the verge of a paradigm shift in the design of microprocessors. Largely spurred by the exponentially increasing
chip-level resources and the physical limitations facing contemporary high-performance processors with respect to power
and wire-delays, the focus is shifting toward architectures that are more flexible and can exploit computation patterns
other than ILP. Notably, multithreading [38] (which is an important part of several new commodity processors), dataflow
graph execution [17, 29, 33], and variants of stream, vector and systolic processing [6, 12, 14, 39] are all at the heart of
several academic research projects.

Because benchmarks heavily influence architecture innovation and design, there is a need for a new set of applica-
tions to represent the broad class of workloads that future flexible architectures are expected to run. The suite, at the
very least, must span desktop integer and floating point workloads, server applications, and embedded streaming and
bit-level processing. In terms of benchmarks influencing processor designs, one has to look no further than the very well-
known SPEC suite, although many other examples exist. To a large extent, previous work has focused on application
within a specific context. As processors continue to evolve, there will be an increasing demand for a single benchmark
suite that covers a spectrum of applications. As such, this paper proposes VersaBench, a benchmark suite of fifteen
benchmarks—a few drawn from other benchmark suites—that span five important computing tiers–namely, desktop in-
teger, desktop floating-point and scientific, server and multithreading, embedded streaming, and embedded bit-level.
In selecting the VersaBench constituents, we followed a pragmatic and systematic approach, focusing on five intuitive
properties:predominant data type, parallelism, instruction temporal locality(inverse of the control complexity),data
temporal locality, anddata spatial locality. Each of the properties can be measured using a simple scalar metric, and we
detailed a methodology for doing so. Further, our results demonstrate that each of the benchmark-categories is distin-
guishable. The VersaBench suite is freely distributed on a website, and we encourage the members of the community to
use it to evaluate their respective architectures.

In addition to the collection of benchmarks, this paper also defines Versatility as a single scalar metric to quantify the
flexibility of an architecture. Versatility is defined as the geometric mean of the speedups of an architecture for each of the
applications in the VersaBench suite, where the speedup of each application is computed relative to highest-performing
architecture for that application, in the 2004 time frame from known results at the time of this writing. The Versatility
metric mirrors the well-known SPECmark metric, and differs only in the normalizations of the speedups. SPECmarks
are normalized relative to a single machine. By contrast, the Versatility metric does not compare the performance
of an architecture relative to a single machine, but to the best performing architectures in a given timeframe. As such,
Versatility affords engineers the ability to quantify, in absolute terms, the flexibility of their architectures. And further, just
as the SPEC metric has influenced architectural innovation in the workstation arena for more than a decade, Versatility is
a useful measure to identify opportunities where further innovation will lead to maximal rewards. This paper evaluates
the flexibility of several extant processors, as well as a research tiled-processor architecture. We are actively measuring
and cataloging the versatility of contemporary processors, and we encourage the community to submit results for their
architectures. The results are published as part of the VersaBench website and are publicly available online.
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