
A Uni�ed Framework for Schedule and Storage Optimization�

William Thies, Fr�ed�eric Vivieny, Je�rey Sheldon, and Saman Amarasinghe

Massachusetts Institute of Technology

Laboratory For Computer Science

Cambridge, MA 02139

fthies,vivien,jeffshel,samang@lcs.mit.edu

Abstract

We present a uni�ed mathematical framework for analyz-
ing the tradeo�s between parallelism and storage allocation
within a parallelizing compiler. Using this framework, we
show how to �nd the best storage mapping for a given sched-
ule, the best schedule for a given storage mapping, and the
best storage mapping that is valid for all legal schedules.
Our technique combines aÆne scheduling techniques with
occupancy vector analysis, and incorporates general aÆne
dependencies across statements and loop nests. We formu-
late the constraints imposed by the data dependencies and
the storage mapping as a set of linear inequalities, and ap-
ply numerical programming techniques to eÆciently solve
for the best occupancy vector. We consider our method to
be a �rst step towards automating a procedure that �nds the
optimal tradeo� between parallelism and storage space.

1 Introduction

It remains an important and relevant problem in computer
science to automatically �nd an eÆcient mapping of a se-
quential program onto a parallel architecture. Though there
are many heuristic algorithms in practical systems and par-
tial or suboptimal solutions in the literature, a theoreti-
cal framework that can fully describe the entire problem
and �nd the optimal solution is still lacking. The diÆculty
stems from the fact that multiple inter-related costs and
constraints must be considered simultaneously to obtain an
eÆcient executable.

While exploiting the parallelism of a program is an im-
portant step towards achieving eÆciency, gains in paral-
lelism are often overwhelmed by other costs relating to data
locality, synchronization, and communication. In particu-
lar, with the widening gap between clock speed and mem-
ory latency, and with modern memory systems becoming in-
creasingly hierarchical, the amount of storage space required
by a program can have a drastic e�ect on its performance.
Nonetheless, parallelizing compilers often employ varying
degrees of array expansion [9, 5, 1] to eliminate element-
level anti and output dependencies, thereby adding large
amounts of storage that may or may not be justi�ed by the
resulting gains in parallelism.

�This document is MIT/LCS Technical Memo LCS-TM-613,
November 2000. A similar document was submitted to PLDI 2001.
Please do not distribute.

yFr�ed�eric Vivien is on leave from ICPS/LSIIT, University Louis
Pasteur, Strasbourg, France.

Thus, compilers must be able to analyze the tradeo�s
between parallelism and storage requirements in order to
arrive at an eÆcient executable. In this paper, we intro-
duce a unifying mathematical framework that incorporates
both schedule constraints (restricting when statements can
be executed) and storage constraints (restricting where their
results can be stored). The framework is capable of han-
dling any loop-based program with aÆne array references
and loop bounds, making it applicable to many scienti�c
applications.

Using this framework, we also present solutions to three
important scheduling problems. Namely, we show how to
determine 1) the best storage mapping for a given schedule,
2) the best schedule for a given storage mapping, and 3) the
best storage mapping that is valid for all legal schedules.
Our solutions are optimal (in a sense that is de�ned below),
and our method is practical in that it reduces to a linear
program that can be eÆciently solved with standard tech-
niques. We believe that these solutions represent the �rst
step towards automating a procedure that �nds the optimal
compromise between parallelism and storage space.

2 Abstract Problem

To motivate our approach, we consider simpli�ed descrip-
tions of the scheduling problems faced by a parallelizing
compiler. We are given a directed acyclic graph G = (V;E).
Each vertex v 2 V represents a dynamic instance of an in-
struction; a value will be produced as a result of executing v.
Each edge (v1; v2) 2 E represents a dependence of v2 on the
value produced by v1. Thus, each edge (v1; v2) imposes the
schedule constraint that v1 be executed before v2, and the
storage constraint that the value produced by v1 be stored
until the execution time of v2.

Our task is to output (�;m), where � is a function map-
ping each operation v 2 V to its execution time, and m is
the maximum number of values that we need to store at a
given time. Parallelism is expressed implicitly by assigning
the same execution time to multiple operations. To sim-
plify the problem, we ignore the question of how the values
are mapped to storage cells and assume that live values are
stored in a fully associative map of sizem. How, then, might
we go about choosing � and m?

2.1 Choosing a Store Given a Schedule

The �rst problem is to �nd the optimal storage mapping for
a given schedule. That is, we are given � and choose m such



A[][] = new int[n][m]
...
for j = 1 to m
for i = 1 to n
A[i][j] = f(A[i-2][j-1], (S1)

A[i][j-1],
A[i+1][j-1])

Figure 1: Original code for Example 1.

that 1) (�;m) respects the storage constraints, and 2) m is
as small as possible.

This problem is orthogonal to the traditional loop paral-
lelization problem. After selecting the instruction schedule
by any of the existing techniques, we are interested in iden-
tifying the best storage allocation. That is, with schedule-
speci�c storage optimization we can build upon the perfor-
mance gains of any one of the many scheduling techniques
available to the parallelizing compiler.

2.2 Choosing a Schedule Given a Store

The second problem is to �nd the optimal schedule for a
given size of the store, if any valid schedule exists. That is,
we are given m and choose � such that 1) (�;m) respects
the schedule and storage constraints, and 2) � assigns the
earliest possible execution time to each instruction. Note
that ifm is too small, there might not exist a � that respects
the constraints.

This is a very relevant problem in practice because of
the stepwise, non-linear e�ect of storage size on execution
time. For example, when the storage required cannot be
accommodated within the register �le or the cache, and has
to resort to the cache or the external DRAM, respectively,
the cost of storage increases dramatically. Further, since
there are only a few discrete storage spaces in the memory
hierarchy, and their size is known for a given architecture,
the compiler can adopt the strategy of trying to restrict the
store to successively smaller spaces until no valid schedule
exists. Once the storage is at the lowest possible level, the
schedule could then be shortened, having a more continuous
and linear e�ect on eÆciency than the storage optimization.
In the end, we end up with a near-optimal storage allocation
and instruction schedule.

2.3 Choosing a Store for all Schedules

The �nal problem is to �nd the optimal storage mapping
that is valid for all legal schedules. That is, we are given a
(possibly in�nite) set 	 = f�1;�2; : : : g, where each � in 	
respects the schedule constraints. We choose m such that
1) 8� 2 	; (�;m) respects the storage constraints, and 2)
m is as small as possible.

A solution to this problem allows us to have the mini-
mum storage requirements without sacri�cing any exibility
of our scheduling. For instance, we could �rst apply our stor-
age mapping, and then arrange the schedule to optimize for
data locality, synchronization, or communication, without
worrying about violating the storage constraints.

Such exibility could be critical if, for example, we want
to apply loop tiling [10] in conjunction with storage opti-
mization. If we optimize storage too much, tiling could
become illegal; however, we sacri�ce eÆciency if we don't
optimize storage at all. Thus, we optimize storage as much

j

i

Figure 2: Iteration space diagram for Example 1. Given the
schedule where each row is executed in parallel, our method iden-
ti�es (0; 2) as the shortest valid occupancy vector.

A[] = new int[2*n+1]
...
for j = 1 to m

for i = 1 to n
A[2*i + (j mod 2)] = f(A[i-2][(j-1) mod 2] (S1)

A[i][(j-1) mod 2],
A[i+1][(j-1) mod 2])

Figure 3: Transformed code for Example 1. The occupancy
vector is (0,2).

as we can without invalidating a schedule that was valid
under the original storage mapping.

More generally, if our analysis indicates that certain sched-
ules are undesirable by any measure, we could add edges to
the dependence graph and solve again for the smallest m
suÆcient for all the remaining candidate schedules. In this
way, m provides the best storage option that is legal across
the entire set of schedules under consideration.

3 Concrete Problem

Unfortunately, the domain of real programs does not lend
itself to the simple DAG representation as presented above.
Primarily, loop bounds in programs are often speci�ed by
symbolic expressions instead of constants, thereby yielding a
parameterized and in�nite dependence graph. Furthermore,
even when the constants are known, the problem sizes are
too large for schedule and storage analysis on a DAG, and
the executable grows to an infeasible size if a static instruc-
tion is generated for every node in the DAG.

Accordingly, we make two sets of simplifying assump-
tions to make our analysis tractable. The �rst concerns
the nature of the dependence graph G and the scheduling
function �. Instead of allowing arbitrary edge relationships
and execution orderings, we restrict our attention to aÆne
dependencies and aÆne schedules. The second assumption
concerns our approach to the optimized storage mapping.
Instead of allowing a fully associative map of size m, as
above, we employ the occupancy vector as a mechanism of
storage reuse. In the following sections, we discuss these
assumptions in the context of an example.

3.1 Program Domain

Primarily, we require an aÆne description of the dependen-
cies of the program. This formulation gives an accurate de-



j

i

j

i

Figure 4: Iteration space diagram for Example 1. Given an occupancy vector of (0; 2), our method identi�es the range of valid schedules.
An aÆne schedule will sweep across the space, executing a line of iterations at once. If this line falls within the gray region (as on the
left), then the schedule is valid for the occupancy vector. If this line falls within the striped region (as on the right) then the schedule
is valid for some other occupancy vector. The schedule at right is invalid because of the parallel read/write occuring from the tip of the
occupancy vector.

scription of the dependencies of programs with static control
ow and aÆne index expressions [6] and can be estimated
conservatively for others. As will become clear below, re-
stricting our attention to aÆne dependencies allows us to
model the in�nite dependence graph as a �nite set of pa-
rameters, which is central to the method.

In this paper, we further assume that the iteration space
of each statement exactly corresponds with the data space
of the array written by that statement. That is, for array
references appearing on the left hand side of an assignment,
the expression indexing the i'th dimension of the array is the
index variable of the i'th enclosing loop (this is formalized
below). While techniques such as array expansion [5] can
be used to convert programs with aÆne dependencies into
this form, our analysis will be most useful in cases where
an expanded form was obtained for other reasons (e.g., par-
allelism detection) and one now seeks to reduce storage re-
quirements.

We will refer to the example in Figure 1, borrowed from
[18]. It clearly falls within our input domain, as the depen-
dencies have constant distance, and iteration (i; j) assigns to
A[i][j]. This example could represent a computation where
a one-dimensional array A[i] is being updated over a time
dimension j, and the intermediate results are being stored.
We assume that only the element A[n][m] is used outside the
loop; the other values are only temporary.

3.2 Occupancy Vectors

We arrive at a simple model of storage reuse via the oc-
cupancy vector [18]. Informally, an occupancy vector for a
given array de�nes equivalence classes over the locations of
the array. Two locations of an array are stored in the same
location following a storage transformation if and only if
they are separated by an integral multiple of the occupancy
vector:

De�nition 1 A' is the result of transforming A under the

occupancy vector ~v if for all pairs of locations (~l1;~l2) of A:
~l1 = ~l2 + k �~v for some integer k if and only if ~l1 and ~l2 are
stored in the same location in A'.

We say that an occupancy vector ~v is valid for an array A
with respect to a given schedule � if transforming A under

v everywhere in the program does not change the semantics
when the program is executed according to �.

Given an occupancy vector, we implement the storage
transformation using the technique of [18] in which the orig-
inal data space is projected onto the hyperplane that is per-
pendicular to the occupancy vector. If an occupancy vector
intersects multiple (integral) points of the data space, then
modulation must be used to distinguish these points in the
transformed array.

Occupancy vector transformations are useful for reduc-
ing storage requirements when many of the values stored
in the array are temporary. Generally, shorter occupancy
vectors lead to smaller storage requirements because more
elements of the original array are coalesced into the same
storage location. However, the shape of the array also has
the potential to inuence the transformed storage require-
ments. Throughout this paper, we assume that the shapes
of arrays have second-order e�ects on storage requirements,
and refer to the \best" occupancy vector as that which is
the shortest.

We are now in a position to consider our occupancy vec-
tor analysis as applied to Example 1. First, assume that we
have chosen to execute each row in parallel so as to have
the shortest schedule. What is the best storage mapping for
this schedule? Our method can identify (0; 2) as the shortest
occupancy vector for this schedule (see Figure 2), yielding
the code in Figure 3.

Secondly, consider the case where we become interested
in adding some exibility to our scheduling. What sched-
ules can we consider without changing the storage mapping
induced by the occupancy vector of (0; 2) above? As illus-
trated in Figure 4, our method can identify all legal aÆne
schedules for the occupancy vector of (0; 2). We could then
use aÆne scheduling techniques [7] to choose amongst these
schedules according to other criteria.

3.3 AÆne Occupancy Vectors

Finally, we might inquire as to the shortest occupancy vector
that is valid for all aÆne schedules in Example 1. An aÆne
schedule is one where each dynamic instance of a statement
is executed at a time that is an aÆne expression of the loop
indices, loop bounds, and compile-time constants. To ad-
dress the problem, then, we need the notion of an AÆne
Occupancy Vector:



j

i

Figure 5: Iteration space diagram for Example 1. Here the hol-
low arrow denotes an AÆne Occupancy Vector that is valid for
all legal aÆne schedules. The gray region indicates the slopes
at which a legal aÆne schedule can sweep across the iteration
domain.

A[] = new int[2*n+m]
...
for j = 1 to m
for i = 1 to n
A[2*i-j+m] = f(A[2*(i-2)-(j-1)+m], (S1)

A[2*i-(j-1)+m],
A[2*(i+1)-(j-1)+m])

Figure 6: Transformed code for Example 1. The AOV is (1,2).

De�nition 2 An occupancy vector ~v for array A is an AÆne
Occupancy Vector (AOV) if it is valid with respect to every
aÆne schedule � that respects the schedule constraints of the
original program.

Note that, in contrast to the Universal Occupancy Vector
of [18], an AOV need not be valid for all schedules; rather,
it only must be valid for aÆne ones. Almost all the sched-
ules found in practice are aÆne, since any FOR loop with
constant increment de�nes a schedule that is aÆne in its
loop indices. In this paper, we further relax the de�nition
of an AOV to those occupancy vectors which are valid for
all one-dimensional aÆne schedules. We have yet to extend
our method to higher dimensional schedules.

We also observe that, if tiling is legal in the original
program, then tiling is legal after transforming each array
in the program under one of its AOV's. This follows from
the fact that two loops are tilable if and only if they can be
permuted without a�ecting the semantics of the program
[10]. Since each permutation of the loops corresponds to a
given aÆne schedule and the AOV is valid with respect to
both schedules, the AOV transformation is also valid with
respect to a tiled schedule.

Returning to our example, we �nd using our method
that (1; 2) is a valid AOV (see Figure 5). Any aÆne one-
dimensional schedule that respects the dependencies in the
original code will give the same result when executed with
the transformed storage.

4 The Method

4.1 Notation

We adopt the following notation:

� An iteration vector~i contains the values of surrounding
loop indices at a given point in the execution of the
program.

� The structural parameters ~n, of domain N , represent
loop bounds and other parameters that are unknown
at compile time, but that are �xed for any given exe-
cution of the program.

� There are ms statements S1 : : : Sms in the program.
Each statement S has an associated polyhedral domain

DS , such that 8~i 2 DS , there is a dynamic instance
S(~i) of statement S at iteration~i during the execution
of the program.

� With each statement S is associated a scheduling func-
tion �S which maps the instance of S on iteration ~i
to a scalar execution time. By assumption, �S is an
aÆne function of the iteration vector and the struc-
tural parameters: �S(~i; ~n) = ~aS �~i+~bS � ~n+ cS .

� There are mp dependencies P1 : : : Pmp in the program.
Each dependence Pj is a 4-tuple (Rj ; Tj ; hj ;Pj) where
Rj and Tj are statements, hj is a vector-valued aÆne
function, and Pj � DRj is a polyhedron such that:

8~i 2 Pj ; Rj(~i) depends on Tj(~hj(~i; ~n)) (1)

The dependencies Pj are determined using an array
dataow analysis, e.g., the Omega test [16].

� There are ma arrays A1 : : : Ama in the program, and
A(S) denotes the array assigned to by statement S.
Our assumption that the data space corresponds with
the iteration space implies that for all statements S,

S(~i) writes to location ~i of A(S). However, several
statements can write to the same array.

� With each array A we will associate an occupancy vec-
tor ~vA that speci�es the storage reuse within A. The

locations ~l1 and ~l2 in the original data space of A will
be stored in the same location following our storage

transform if and only if ~l1 = ~l2 + k �~vA, for some inte-
ger k. Given our assumption about the data space,
we can equivalently state that the values produced

by iterations ~i1 and ~i2 will be stored in the same lo-
cation following our storage transform if and only if
~i1 =~i2 + k � ~vA, for some integer k.

4.2 Schedule Constraints

According to dependence Pj (equation (1)), for any value of~i

in Pj , operation Rj(~i) depends on the execution of operation

Tj(~hj(~i; ~n)). Therefore, in order to preserve the semantics of
the original program, in any new order of the computations,

Tj(~hj(~i; ~n)) must be scheduled at a time strictly earlier than

Rj(~i), for all ~i 2 Pj . We express this constraint in terms of
the scheduling function. We must have, for each dependence
Pj , j 2 [1; np]:

8~n 2 N ; 8~i 2 Pj ;�Rj (~i; ~n)��Tj (
~hj(~i; ~n); ~n)� 1 � 0 (2)

These dependence constraints can be solved using Farkas'
lemma as shown by Feautrier [7, 8, 4]. The result can be
expressed as a polyhedron R: the set of all the legal sched-
ules � = (aS1 ; bS1 ; cS1 ; : : : ; aSns ; bSns ; cSns ) in the space of



scheduling parameters. Note that equation (2) does not al-
ways have a solution [7]. In such a case, one needs to use
multidimensional schedules [8]. However, in this paper, we
assume that equation (2) has a solution.

4.3 Storage Constraints

The occupancy vectors induce some storage constraints. We
consider any array A. Because we assume that the data
space corresponds with the iteration space, and by de�ni-
tion of the occupancy vectors, the values computed by it-

erations ~i and ~i + ~vA are both stored in the same location
~l. For an occupancy vector ~vA to be valid for a given data
object A, every operation depending on the value stored at

location ~l by iteration ~i must execute before iteration ~i+~vA

stores a new value at location ~l. Otherwise, following our
storage transformation, a consumer expecting to reference

the contents of ~l produced by iteration ~i could reference the

contents of ~l written by iteration ~i + ~vA instead, thereby
changing the semantics of the program.

Let us consider a dependence P = (R;T; h;P). Then

operation T (~h(~i; ~n)) produces a value which will be later on

read by R(~i). This value will be overwritten by T (~h(~i; ~n) +

~vA(T )). The storage constraint imposes that T (~h(~i; ~n) +

~vA(T )) is scheduled after R(~i). Therefore, any schedule �
and any occupancy vector ~vA(T ) respects the dependence P
if:

8~n 2 N ; 8~i 2 Z;�T (~h(~i; ~n) + ~vA(T ); ~n)��R(~i; ~n)� 1 � 0
(3)

where Z represents the domain over which the storage con-
straint applies. That is, the storage constraint applies for
all iterations ~i where ~i is in the domain of the dependence,

and where ~h(~i; ~n) + ~vA(T ) is in the domain of statement T .

Formally, Z = f~i j ~i 2 P ^ ~h(~i; ~n) + ~vA(T ) 2 DT g. This
de�nition of Z is not problematic, since the intersection of
two polyhedra is de�ned simply by the union of the aÆne in-
equalities describing each, which obviously is a polyhedron.
Note, however, that Z is parameterized by both ~vA(T ) and
~n, and not simply by ~n.

Equation (3) expresses the constraint on an occupancy
vector for a given dependence and a given schedule. For an
occupancy vector to be an AOV, however, it must respect all
dependencies across all legal schedules. Thus, the following
constraint de�nes a valid AOV ~vA for each object A in the
program:

8� 2 R; 8~n 2 N ; 8j 2 [1; np]; 8~i 2 Zj ;

�Tj (
~hj(~i; ~n) + ~vA(Tj ); ~n)��Rj (~i; ~n)� 1 � 0 (4)

4.4 Linearizing the Constraints

Equations (3) and (4) represent a possibly in�nite set of
constraints, because of the parameters. Therefore, we need
to rewrite them so as to obtain an equivalent but �nite set
of aÆne (in)equations, which we can easily solve. Mean-
while, we seek to express the schedule (2) and storage (4)
constraints in forms linear in the scheduling parameters �.
This step is essential for constructing a linear program that
minimizes the length of the AOV's.

4.4.1 Reduction using the vertices of polyhedra

Any nonempty polyhedron is fully de�ned by its vertices,
rays and lines [17], which can be computed even in the case

of parameterized polyhedra [14]. The following theorem ex-
plains how we can use these vertices, rays and lines to reduce
the size of our sets of constraints.

Theorem 1 Let D be a nonempty polyhedron. D can be
written D = P +C, where P is a polytope (bounded polyhe-
dron) and C is a cone. Then any aÆne function h de�ned
over D is nonnegative on D if and only if 1) h is nonnega-
tive on each of the vertices of P and 2) the linear part of h
is nonnegative (resp. null) on the rays (resp. lines) of C.

All the polyhedra produced by the dependence analysis
of programs are in fact polytopes, or bounded polyhedra
(the domain of parameters D is an input of this analysis
and may be unbounded). Therefore, in order to simplify the
equations, we now assume that all the polyhedra we manip-
ulate are polytopes, except when stated otherwise. Then,
according to Theorem 1, an aÆne function is nonnegative
on a polyhedron if and only if it is nonnegative on the ver-
tices of this polyhedron. We successively use this theorem to
eliminate the iteration vector and the structural parameters
from equation (3).

4.4.2 Eliminating the Iteration Vector

Let us consider any �xed values of � inR and ~n inN . Then,
for all j 2 [1; np], ~vA(Tj ) must satisfy:

8~i 2 Zj ;�Tj (
~hj(~i; ~n) + ~vA(Tj ); ~n)��Rj (~i; ~n)� 1 � 0 (5)

which is an aÆne inequation in ~i (as ~hj , �Tj , and �Rj are
aÆne functions). Thus, according to Theorem 1, it takes its
extremal values on the vertices of the polytope Zj , denoted
by ~z1;j ; : : : ; ~znz ;j . Note that Zj is parameterized by ~n and
~vA(Tj ). Therefore, the number of its vertices might change
depending on the domain of values of ~n and ~vA(Tj). In this
case we decompose the domains of ~n and ~vA(Tj) into subdo-
mains over which the number and de�nition of the vertices
do not change [14], we solve our problem on each of these
domains, and we take the \best" solution.

Thus, we evaluate (5) at the extreme points of Zj , yield-
ing the following for each k 2 [1; nz]:

�Tj (
~hj(~zk;j(~vA(Tj ); ~n); ~n) + ~vA(Tj ); ~n)

��Rj (~zk;j(~vA(Tj ); ~n); ~n)� 1 � 0
(6)

According to Theorem 1, equations (5) and (6) are equiva-

lent. However, we have replaced the iteration vector ~i with
the vectors ~zk;j , each of which is an aÆne form in ~n and
~vA(Tj ).

4.4.3 Eliminating the Structural Parameters

Suppose N is also a bounded polyhedron. We eliminate
the structural parameters the same way we eliminated the
iteration vector: by only considering the extremal vertices
of their domain N . Thus, for any �xed value of � in R, j
in [1; np], and k in [1; nz] we must have:

8~n 2 N ;�Tj (
~hj(~zk;j(~vA(Tj); ~n); ~n) + ~vA(Tj ); ~n)

��Rj (~zk;j(~vA(Tj ); ~n); ~n)� 1 � 0
(7)

Denoting the vertices of N by (~w1; : : : ; ~wnw ), the above
equation is equivalent to:

8l 2 [1; nw];�Tj (
~hj(~zk;j(~vA(Tj ); ~wl); ~wl) + ~vA(Tj ); ~wl)

��Rj (~zk;j(~vA(Tj ); ~wl); ~wl)� 1 � 0
(8)



Case of unbounded domain of parameters. It might also
be the case that N is not a polytope but an unbounded
polyhedron, perhaps corresponding to a parameter that is
input from the user and can be arbitrarily large. In this
case, we use the general form of Theorem 1. Let ~r1; : : : ; ~rnr
be the rays de�ning the unbounded portion of N (a line
being coded by two opposite rays). We must ensure that the
linear part of equation (8) is nonnegative on these rays. For
example, given a single structural parameter n1 2 [5;1),
we have the the following constraint for the vertex n1 = 5:

�Tj (
~hj(~zk;j(~vA(Tj); 5); 5) + ~vA(Tj ); 5)

��Rj (~zk;j(~vA(Tj); 5); 5)� 1 � 0

and the following constraint for the positive ray of value 1:

�Tj (
~hj(~zk;j(~vA(Tj ); 1); 1) + ~vA(Tj); 1)

��Rj (~zk;j(~vA(Tj ); 1); 1)

��Tj (
~hj(~zk;j(~vA(Tj ); 0); 0) + ~vA(Tj); 0)

+�Rj (~zk;j(~vA(Tj ); 0); 0) � 0

(9)

Though this equation may look complicated, in practice it
leads to simple formulas since all the constant parts of equa-
tion (7) are going away. We assume in the rest of this paper
that N is a polytope. This changes nothing in our method,
but greatly improves the readability of the upcoming sys-
tems of constraints!

4.5 Finding a Solution

After removing the structural parameters, we are left with
the following set of storage constraints:

8j 2 [1; mp]; 8k 2 [1; mz]; 8l 2 [1; nw];

�Tj (
~hj(~zk;j(~vA(Tj); ~wl); ~wl) + ~vA(Tj ); ~wl)

��Rj (~zk;j(~vA(Tj); ~wl); ~wl)� 1 � 0

(10)

which is a set of aÆne inequations in the coordinates of the
schedule �, with the occupancy vectors ~vA(Tj ) as unknowns.
Note that the vertices ~zk;j of the iteration domain, the ver-
tices ~wl of the structural parameters, and the components
~hj of the aÆne functions, all have �xed and known values.

Similarly, we can linearize the schedule constraints to
arrive at the following equations:

8j 2 [1; mp]; 8k 2 [1; my]; 8l 2 [1; mw];

�Rj (~yk;j(~wl); ~wl)��Tj (
~hj(~yk;j(~wl); ~wl); ~wl)� 1 � 0

(11)

Where y1;j ; : : : ; ymy ;j denote the vertices of Pj .

4.5.1 Finding an Occupancy Vector Given a Schedule

At this point we have all we need to determine which oc-
cupancy vectors (if any) are valid for a given schedule �:
we simply substitute into the simpli�ed storage constraints
(10) the value of the given schedule. Then we obtain a set of
aÆne inequalities where the only unknowns are the compo-
nents of the occupancy vector. This system of constraints
fully and exactly de�nes the set of the occupancy vectors
valid for the given schedule. We can search this space for
solutions with any Linear Programming solver.

To �nd the shortest occupancy vectors, we can use as
our objective function the sum of the lengths of the com-
ponents of the occupancy vector. This metric minimizes

the \Manhattan" length of each occupancy vector instead
of minimizing the Euclidean length. However, minimizing
the Euclidean length would require a non-linear objective
function. Furthermore, we have found that our linear ob-
jective function gives on all of our examples results with the
smallest Euclidean length.

4.5.2 Finding a Schedule Given an Occupancy Vector

At this point, we also have all we need to determine which
schedules (if any) exist for a given set of occupancy vec-
tors. Given an occupancy vector ~vA for each array A in
the program, we substitute into the linearized storage con-
straints (10) to obtain a set of inequalities where the only
variables are the scheduling parameters. These inequalities,
in combination with the linearized schedule constraints (11)
completely de�ne the space of valid aÆne schedules valid for
the given occupancy vectors. Once again, we can search this
space for solutions with any Linear Programming solverm,
selecting the \best" schedule as in [7].

4.5.3 Finding the AOV's

Solving for the AOV's is more involved. To �nd a set of
AOV's, we need to satisfy the storage constraints (10) for
any value of the schedule � within the polyhedronR de�ned
by the schedule constraints. To do this, we apply the AÆne
Form of Farkas' Lemma [17, 7, 4].

Theorem 2 (AÆne Form of Farkas' Lemma) Let D be a
nonempty polyhedron de�ned by p aÆne inequalities

~aj � ~x+ bj � 0; j 2 [1; p];

in a vector space E. Then an aÆne form 	 is nonnegative
everywhere in D if and only if it is an aÆne combination of
the aÆne forms de�ning D:

8x 2 E ; 	(~x) � �0 +
X
j

(�j(~aj � ~x+ bj)); �0 : : : �p � 0

The nonnegative constants �j are referred to as Farkas mul-
tipliers.

To apply the lemma, we note that the storage constraints
are aÆne inequations which are nonnegative over the poly-
hedron R. Thus, we can express each storage constraint as
a nonnegative aÆne combination of the schedule constraints
de�ning R.

To simplify our notation, let STORAGE be the set of ex-
pressions that are constrained to be nonnegative by the lin-
earized storage constraints (10). That is, STORAGE con-
tains the left hand side of each inequality in (10). Naively,
jSTORAGEj = mp �mz � (mw +mr); however, several of
these expressions might be equivalent, thereby reducing the
size of STORAGE in practice.

Similarly, let SCHEDULE be the set of expressions that
are constrained to be nonnegative by the linearized schedule
constraints (11). The size of SCHEDULE is at most mp�
my � (mw +mr).

Then, the application of Farkas' Lemma yields these
identities across the vector space E in which � lives:

STORAGEi = �i;0 +

jSCHEDULEjX
j=1

(�i;j � SCHEDULEj)

�i;j � 0; 8x 2 E ; 8i 2 [1; jSTORAGEj]



A[][] = new int[n][m]
B[][] = new int[n][m]
...
for i = 1 to n
for j = 1 to m
A[i][j] = f(B[i-1][j]) (S1)
B[i][j] = g(A[i][j-1]) (S2)

Figure 7: Original code for Example 2.

j

i s2
s1

Figure 8: Dependence diagram for Example 2.

These equations are valid over the whole vector space E .
Therefore, we can collect the terms for each of the compo-
nents of x, as well as the constant terms, setting equal the
respective coeÆcients of these terms from opposite sides of
a given equation (cf. [7, 4] for full details). We are left with
jSTORAGEj� (3�ms+1) linear equations where the only
variables are the �'s and the occupancy vectors ~vA.

The set of valid AOV's is completely and exactly deter-
mined by this set of equations and inequations. To �nd a
good AOV, we proceed as in Section 4.5.1.

5 Examples

We present four examples to illustrate applications of the
method described above.

5.1 Example 1: Simple Stencil

First we derive the solutions presented earlier for the 3-point
stencil in Example 1.

5.1.1 Constraints

Let � denote the scheduling function for statement S1 in
the example. We assume that � is an aÆne form as follows:

�(i; j; n;m) = a � i+ b � j + c � n+ d �m+ e

There are three dependencies in the stencil, each from S1
unto itself. The access functions describing the dependencies

are ~h1(i; j; n;m) = (i�2; j�1), ~h2(i; j; n;m) = (i; j�1), and
~h3(i; j; n;m) = (i+1; j�1). Because these dependencies are
uniform{that is, they do not depend on the iteration vector{
we can simplify our analysis by considering the dependence
domains to be across all values of i and j. Thus, the schedule
constraints are:

�(i; j; n;m)��(i� 2; j � 1; n;m)� 1 � 0
�(i; j; n;m)��(i; j � 1; n;m)� 1 � 0
�(i; j; n;m)��(i+ 1; j � 1; n;m)� 1 � 0

A[] = new int[m+n]
B[] = new int[m+n]
...
for i = 1 to n

for j = 1 to m
A[i-j+m] = f(B[(i-1)-j+m]) (S1)
B[i-j+m] = g(A[i-(j-1)+m]) (S2)

Figure 9: Transformed code for Example 2. Each array has an
AOV of (1,1).

However, substituting the de�nition of � into these equa-
tions, we �nd that i, j, n, and m are eliminated. This is
because the constraints are uniform. Thus, we obtain the
following simpli�ed schedule constraints, which are linear in
the scheduling parameters:

2 � b+ c� 1 � 0
c� 1 � 0
�b+ c� 1 � 0

Now let ~vA = (vi; vj) denote the AOV that we are seeking
for array A. Then the storage constraints are as follows:

�(i� 2 + vi; j � 1 + vj ; n;m)��(i; j; n;m)� 1 � 0
�(i+ vi; j � 1 + vj ; n;m)��(i; j; n;m)� 1 � 0
�(i+ 1 + vi; j � 1 + vj ; n;m)��(i; j; n;m)� 1 � 0

Simplifying the storage constraints as we did the schedule
constraints, we obtain the linearized storage constraints:

b � vi + c � vj � 2 � b� c� 1 � 0
b � vi + c � vj � c� 1 � 0
b � vi + c � vj + b� c� 1 � 0

5.1.2 Finding an Occupancy Vector

To �nd the shortest occupancy vector for the schedule that
executes the rows in parallel, we substitute �(i; j; n;m) = i
into the linearized schedule and storage constraints. Min-
imizing vi + vj with respect to these constraints gives the
occupancy vector of (0; 2) (see Figure 2).

5.1.3 Finding a Schedule

To �nd the set of schedules that are valid for the occupancy
vector of (0; 2), we substitute vi = 0 and vj = 2 into the
linearized schedule and storage constraints. Simplifying the
resulting constraints yields:

c � 1 + 2 � b
c � 1� 2 � b

which corresponds to the set of legal aÆne schedules as de-
picted in Figure 5.

5.1.4 Finding an AOV

To �nd an AOV for A, we apply Farkas' Lemma to rewrite
each of the linearized storage constraints as a non-negative
aÆne combination of the linearized schedule constraints:2

4
b � vi + c � vj � 2 � b� c� 1

b � vi + c � vj � c� 1
b � vi + c � vj + b� c� 1

3
5 =

2
4

�1;1 �1;2 �1;3 �1;4
�2;1 �2;2 �2;3 �2;4
�3;1 �3;2 �3;3 �3;4

3
5
2
64

1
2 � b+ c � 1

c� 1
�b+ c� 1

3
75

�i;j � 0; 8i 2 [1; 3]; 8j 2 [1; 4]



imax = a.length
jmax = b.length
kmax = c.length
D[][][] = new int[imax][jmax][kmax]
...
for i = 1 to imax
for j = 1 to jmax
for j = 1 to kmax

if (i==1) or (j==1) or (k==1) then
D[i][j][k] = f(i,j,k) (S1)

else
D[i][j][k] = (S2)

min(D[i-1][j-1][k-1] + w(a[i],b[j],c[k]),
D[i][j-1][k-1] + w(GAP,b[j],c[k]),
D[i-1][j][k-1] + w(a[i],GAP,c[k]),
D[i-1][j-1][k] + w(a[i],b[j],GAP),
D[i-1][j][k] + w(a[i],GAP,GAP),
D[i][j-1][k] + w(GAP,b[j],GAP),
D[i][j][k-1] + w(GAP,GAP,c[k]))

Figure 10: Original code for Example 3, for multiple sequence
alignment. Here f computes the initial gap penalty and w com-
putes the pairwise alignment cost.

Minimizing vi + vj subject to these constraints yields an
AOV (vi; vj) = (1; 2), which is smaller than the shortest
UOV of (0; 3) [18].

To transform the data space of array A according to this
AOV ~v, we follow the approach of [18] and project the orig-
inal data space onto the line perpendicular to ~v. Choosing
~v? = (2;�1) so that ~v � ~v? = 0, we transform the original
indices of (i; j) into ~v? � (i; j) = 2 � i� j. Finally, to ensure
that all data accesses are non-negative, we addm to the new
index, such that the �nal transformation is from A[i][j] to
A[2� i�j+m]. Thus, we have reduced storage requirements
from n �m to 2 � n+m. The modi�ed code corresponding
to this mapping is shown in Figure 6.

5.2 Example 2: Two-Statement Stencil

We now consider an example adapted from [12] where there
is a uniform dependence between statements in a loop (see
Figures 7 and 8). Letting �1 and �2 denote the schedul-
ing functions for statements 1 and 2, respectively, we have
following schedule constraints:

�1(i; j; n;m)��2(i� 1; j; n;m)� 1 � 0
�2(i; j; n;m)��1(i; j � 1; n;m)� 1 � 0

and the following storage constraints:

�2(i� 1 + vB;i; j + vB;j ; n;m)��1(i; j; n;m)� 1 � 0
�1(i+ vA;i; j � 1 + vA;j ; n;m)��2(i; j; n;m)� 1 � 0

We now demonstrate how to linearize the schedule con-
straints. We observe that the polyhedral domain of the itera-
tion parameters (i; j) has vertices at (1; 1); (n; 1); (1; m); (n;m),
so we evaluate the schedule constraints at these points to
eliminate (i; j):

�1(1; 1; n;m)��2(0; 1; n;m)� 1 � 0
�2(1; 1; n;m)��1(1; 0; n;m)� 1 � 0
�1(1;m; n;m)��2(1� 1; j; n;m)� 1 � 0
�2(1;m; n;m)��1(1; j � 1; n;m)� 1 � 0
�1(n; 1; n;m)��2(n� 1; 1; n;m)� 1 � 0
�2(n; 1; n;m)��1(n; 0; n;m)� 1 � 0
�1(n;m; n;m)��2(n� 1; m; n;m)� 1 � 0
�2(n;m; n;m)��1(n;m� 1; n;m)� 1 � 0

imax = a.length
jmax = b.length
kmax = c.length
D[][] = new int[imax+jmax][imax+kmax]
...
for i = 1 to imax

for j = 1 to jmax
for j = 1 to kmax
if (i==1) or (j==1) or (k==1) then

D[jmax+i-j][kmax+i-k] = f(i,j,k) (S1)
else

D[jmax+i-j][kmax+i-k] = (S2)
min(D[jmax+(i-1)-(j-1)][kmax+(i-1)-(k-1)] + w(a[i],b[j],c[k]),

D[jmax+i-(j-1)][kmax+i-(k-1)] + w(GAP,b[j],c[k]),
D[jmax+(i-1)-j][kmax+(i-1)-(k-1)] + w(a[i],GAP,c[k]),
D[jmax+(i-1)-(j-1)][kmax+(i-1)-k] + w(a[i],b[j],GAP),
D[jmax+(i-1)-j][kmax+(i-1)-k] + w(a[i],GAP,GAP),
D[jmax+i-(j-1)[kmax+i-k] + w(GAP,b[j],GAP),
D[jmax+i-j][kmax+i-(k-1)] + w(GAP,GAP,c[k]))

Figure 11: Transformed code for Example 3, using the AOV of
(1,1,1). The new array has dimension [imax+jmax][imax+kmax],
with each reference to [i][j][k] mapped to [jmax+i-j][kmax+i-k].

Next, we eliminate the structural parameters (n;m). As-
suming n and m are positive but arbitrarily large, the do-
main of these parameters is an unbounded polyhedron: (n;m) =
(1; 1)+ j � (0; 1)+k � (1; 0), for positive integers j and k. We
must evaluate the above constraints at the vertex (1; 1), as
well as the linear part of the constraints for the rays (1; 0)
and (0; 1). Doing so yields 24 equations, of which we show
the �rst 3 (which result from substituting into the �rst of
the equations above):

�1(1; 1; 1; 1) ��2(0; 1; 1; 1)� 1 � 0
�1(1; 1; 1; 0) ��2(0; 1; 1; 0)��1(1; 1; 0; 0) + �2(0; 1; 0; 0) � 0
�1(1; 1; 0; 1) ��2(0; 1; 0; 1)��1(1; 1; 0; 0) + �2(0; 1; 0; 0) � 0

Expanding the scheduling functions as �x(i; j; n;m) = ax+
bx � i+ cx � j+dx �n+ ex �m, the entire set of 24 equations
can be simpli�ed to:

d1 = d2
e1 = e2
a1 + b1 + c1 + e1 � a2 � c2 � e2 + (b1 + d1 � b2 � d2)n� 1 � 0
a1 + 2b1 + c1 + e1 � a2 � b2 � c2 � e2 + (d1 � d2)n� 1 � 0
a2 + b2 + 2c2 + e2 � a1 � b1 � c1 � e1 + (d2 � d1)n� 1 � 0
a2 + 2c2 + e2 � a1 � c1 � e1 + (b2 + d2 � b1 � d1)n� 1 � 0

These equations constitute the linearized schedule constraints.
In a similiar fashion, we could linearize the storage con-
straints, and then apply Farkas' lemma to to �nd the short-
est AOV's of ~vA = ~vB = (1; 1). Due to space limitations, we
do not derive the entire solution here. The code that results
after transformation by these AOV's is shown in Figure 9.

5.3 Example 3: Multiple Sequence Alignment

We now consider a version of the Needleman-Wunch se-
quence alignment algorithm [15] to determine the cost of
the optimal global alignment of three strings (see Figure 11).
The algorithm utilizes dynamic programming to determine
the minimum-cost alignment according to a cost function w
that speci�es the cost of aligning three characters, some of
which might represent gaps in the alignment.

Using �1 and �2 to represent the scheduling functions
for statements 1 and 2, respectively, we have the following
schedule constraints (we enumerate only three constraints



A[][] = new int[n][m]
B[] = new int[n]
...
for i = 1 to n
for j = 1 to n
A[i][j] = B[i-1]+j (S1)

B[i] = A[i][n-i] (S2)

Figure 12: Original code for Example 4.

j

i s2
s1

Figure 13: Dependence diagram for Example 4.

for each pair of statements since the other dependencies fol-
low by transitivity):

�2(i; j; k; x; y; z)��1(i� 1; j; k; x; y; z)� 1 � 0
for i = 2; j 2 [3; y]; k 2 [3; z]
�2(i; j; k; x; y; z)��1(i; j � 1; k; x; y; z)� 1 � 0
for i 2 [3; x]; j = 2; k 2 [3; z]
�2(i; j; k; x; y; z)��1(i; j; k � 1; x; y; z)� 1 � 0
for i 2 [3; x]; j 2 [3; y]; k = 2
�2(i; j; k; x; y; z)��2(i� 1; j; k; x; y; z)� 1 � 0
for i 2 [3; x]; j 2 [2; y]; k 2 [2; z]
�2(i; j; k; x; y; z)��2(i; j � 1; k; x; y; z)� 1 � 0
for i 2 [2; x]; j 2 [3; y]; k 2 [2; z]
�2(i; j; k; x; y; z)��2(i; j; k � 1; x; y; z)� 1 � 0
for i 2 [2; x]; j 2 [2; y]; k 2 [3; z]

Note that each constraint is restricted to the subset of the
iteration domain under which it applies. That is, S2 depends
on S1 only when i, j, or k is equal to 2; otherwise, S2
depends on itself. This example illustrates the precision of
our technique for general dependence domains.

The storage constraints are as follows:

�2(i� 1 + vi; j + vj ; k + vk; x; y; z)��2(i; j; k; x; y; z)� 1
� 0 for i 2 [3; x]; j 2 [2; y]; k 2 [2; z]

�2(i+ vi; j � 1 + vj ; k + vk; x; y; z)��2(i; j; k; x; y; z)� 1
� 0 for i 2 [2; x]; j 2 [3; y]; k 2 [2; z]

�2(i+ vi; j + vj ; k � 1 + vk; x; y; z)��2(i; j; k; x; y; z)� 1
� 0 for i 2 [2; x]; j 2 [2; y]; k 2 [3; z]

There is no storage constraint corresponding to the depen-
dence of S2 on S1 because the domain Z of the constraint
is empty for occupancy vectors with positive components,
and occupancy vectors with a non-positive component do
not satsify the above constraints. That is, for the �rst
dependence of S2 on S1, the dependence domain is P =
f(2; j; k) j j 2 [3; y] ^ k 2 [3; z]g while the existence domain
of S1 is DS1 = f(i; j; k) j i 2 [1; x]^j 2 [1; y]^k 2 [1; z]^(i =
1_j = 1_k = 1)g. Then, the domain of the �rst storage con-
straint is Z = f(i; j; k) j (i; j; k) 2 P^(i�1; j; k)+~vA 2 DS1g.

A[] = new int[n]
B = new int
...
for i = 1 to n

for j = 1 to n
A[i] = B+j (S1)

B = A[i] (S2)

Figure 14: Transformed code for Example 4. The AOV's for A
and B are (1,0) and 1, respectively.

Now, Z is empty given that ~vA has positive components, be-
cause if (i; j; k) 2 P then i = 2, but if (i�1; j; k)+~vA 2 DS1

then i� 1 + vA;i = 1, or equivalently i+ vA;i = 2. Thus for
Z to be non-empty, we would have 2 + vAi = 2, which con-
tradicts the positivity assumption on vA;i. The argument is
analogous for other dependencies of S2 on S1.

Applying our method for this example yields an AOV of
(1; 1; 1). The transformed code under this occupancy vector
is just like the original, except that the array is of dimension
[imax+jmax][imax+kmax] and element [i][j][k] is mapped to
[jmax+i-j][kmax+i-k].

5.4 Example 4: Non-Uniform Dependencies

Our �nal example is constructed to demonstrate the ap-
plication of our method to non-uniform dependencies (see
Figures 12 and 13). Let �1 and �2 denote the scheduling
functions for statements S1 and S2, respectively. Then we
have the following schedule constraints:

�1(i; j; n)��2(i� 1; n)� 1 � 0
�2(i; n)��1(i; n� i; n)� 1 � 0

and the following storage constraints:

�2(i� 1 + vB ; n)��1(i; j; n)� 1 � 0
�1(i+ vA;i; n� i+ vA;j ; n)��2(i; n)� 1 � 0

Applying our method to these constraints yields the AOV's
~vA = (1; 0) and vB = 1. The transformed code is shown in
Figure 14.

6 Results

We performed preliminary experiments that validate our
technique as applied to two of our examples. The tests were
carried out on an SGI Origin 2000, which uses MIPS R10000
processors with 4MB L2 caches.

For Example 2, the computation was divided into di-
agonal strips. Since there are no data dependencies be-
tween strips, the strips can be assigned to processors with-
out requiring any synchronization [12]. Figure 15 shows the
speedup gained on varying numbers of processors using both
the original and the transformed array. Both versions show
the same trend and do not signi�cantly improve past 16
processors, but the transformed code has an advantage by a
sizable constant factor.

Example 3 was parallelized by blocking the computation,
and assigning rows of blocks to each processor. As shown
in Figure 16, the transformed code again performs substan-
tially better than the original code. With the reduced work-
ing set of data in the transformed code, the speedup is super-
linear in the number of processors due to improved caching.



0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

S
pe

ed
up

Processors

Example 2 Speedup

Transformed
Original

Figure 15: Speedup vs. number of processors for Example 2.

7 Related Work

The work most closely related to ours is that of [18], which
considers schedule-independent storage mappings using the
Universal Occupancy Vector (UOV). While an AOV is valid
only for aÆne schedules, a UOV is valid for any legal execu-
tion ordering. There are a number of advantages of AOV's
over UOV's. Testing whether a given occupancy vector is a
UOV is an NP-compete problem, and [18] gives a branch-
and-bounds algorithm to �nd the smallest UOV. In contrast,
an AOV can be quickly checked by determining the feasibil-
ity of a set of linear constraints, and we employ numeri-
cal programming techniques to eÆciently �nd short AOV's.
Moreover, the analysis of [18] is limited to a stencil of de-
pendencies involving only one statement within a perfectly
nested loop, whereas our method applies to general aÆne
dependencies across statements and loop nests. Also, some-
times there are AOV's shorter than any UOV since the AOV
must be valid for a smaller range of schedules. Finally, our
framework goes beyond AOV's to unify the notion of occu-
pancy vectors with known aÆne scheduling techniques.

Another related approach to storage management for
parallel programs is that of [3, 2, 11]. Given an aÆne sched-
ule, [11] optimizes storage �rst by restricting the size of each
array dimension and then by combining distinct arrays via
renaming. This work is extended in [3, 2] to consider storage
mappings for a set of schedules, towards the end of capturing
the tradeo� between parallelism and storage.

However, these techniques utilize a storage mapping where,
in an assignment, each array dimension is indexed by a
loop counter and is modulated independently (e.g. A[i mod
n][j mod m]). This is distinct from the occupancy vec-
tor mapping, where the data space of the array is pro-
jected onto a hyperplane before modulation (if any) is in-
troduced. The former mapping{when applied to all valid
aÆne schedules{does not enable any storage reuse in Exam-
ples 2 and 3, where the AOV did. However, with occupancy
vectors we can only reduce the dimensionality of an array
by one, whereas the other mapping can introduce constant
bounds in several dimensions. We hope to extend the occu-
pancy vector method in this capacity in the future.

Memory reuse in the context of the polyhedral model
is also considered in [19]. This approach uses yet another
storage mapping, which utilizes array transformations on
the data space to achieve the e�ect of multiple occupancy
vectors applied at once. However, the mapping does not
have any modulation, so it could not duplicate the e�ect of
the (2; 0) occupancy vector we found (for a given schedule) in

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Example 3 Speedup

Transformed
Original

Figure 16: Speedup vs. number of processors for Example 3.

Example 1. Unifying our framework with the data mapping
of [19] could be a fruitful direction for future research.

8 Conclusion

We have presented a mathematical framework that uni�es
the techniques of aÆne scheduling and occupancy vector
analysis. Within this framework, we showed how to deter-
mine the best storage mapping for a given schedule, the best
schedule for a given storage mapping, and the best storage
mapping that is valid for all legal schedules. Our technique is
general and precise, allowing inter-statement aÆne depen-
dencies and eÆciently solving for the minimal occupancy
vector using standard numerical programming methods.

We consider this research to be the �rst step towards
automating a procedure that �nds the optimal tradeo� be-
tween parallelism and storage space. This question is very
relevant in the context of array expansion, where the cost of
extra array dimensions must be weighed against the schedul-
ing freedom that they provide. Additionally, our framework
could be applied to single-assignment functional languages
where all storage reuse must be orchestrated by the com-
piler. In both of these applications, and even for compil-
ing to uniprocessor systems, understanding the interplay be-
tween scheduling and storage is crucial for achieving good
performance.

In future work, we hope to consider more general storage
mappings. The occupancy vector method as it stands now
can only decrease the dimensionality of an array by one,
and the irregular shape of the resulting data space could be
hard to embed in a rectilinear array in a storage-eÆcient
way. However, other storage mappings [11, 19] we discussed
also have their limitations. The perfect storage mapping
would allow variations in the number of array dimensions,
while still capturing the directional and modular reuse of the
occupancy vector and having an eÆcient implementation;
it should also lend itself to eÆcient storage reuse between
distinct arrays.

Additionally, we plan to extend our method to multi-
dimensional schedules, and to consider integrating our method
with aÆne partitioning techniques [13]. Finally, it could be
useful to incorporate cache behavior into our model, as false
sharing e�ects may be ampli�ed in parallel systems as the
size of the store decreases.



References

[1] D. Barthou, A. Cohen, and J.-F. Collard. Maximal
static expansion. In Principles of Programming Lan-
guages, pages 98{106, San Diego, CA, Jan. 1998.

[2] A. Cohen. Parallelization via constrained storage map-
ping optimization. Lecture Notes in Computer Science,
1615:83{??, 1999.

[3] A. Cohen and V. Lefebvre. Optimization of storage
mappings for parallel programs, 1998.

[4] A. Darte, Y. Robert, and F. Vivien. Scheduling and
Automatic Parallelization. Birkhuser Boston, 2000.

[5] P. Feautrier. Array expansion. In ACM Int. Conf. on
Supercomputing, pages 429{441, 1988.

[6] P. Feautrier. Dataow analysis of array and scalar ref-
erences. Int. J. of Parallel Programming, 20(1):23{51,
1991.

[7] P. Feautrier. Some eÆcient solutions to the aÆne
scheduling problem. part I. one-dimensional time. Int.
J. of Parallel Programming, 21(5):313{347, Oct. 1992.

[8] P. Feautrier. Some eÆcient solutions to the aÆne
scheduling problem. part II. multidimensional time. Int.
J. of Parallel Programming, 21(6):389{420, Dec. 1992.

[9] P. Feautrier, J.-F. Collard, M. Barreteau, D. Barthou,
A. Cohen, and V. Lefebvre. The interplay of expansion
and scheduling in paf, 1998.

[10] F. Irigoin and R. Triolet. Supernode partitioning. In
Proc. 15th Annual ACM Symp. Principles of Prog. Lan-
guages, pages 319{329, San Diego, CA, Jan. 1988.

[11] V. Lefebvre and P. Feautrier. Automatic storage man-
agement for parallel programs. Parallel Computing,
24(3{4):649{671, May 1998.

[12] A. Lim and M. Lam. Maximizing parallelism and min-
imizing synchronization with aÆne transforms, 1997.

[13] A. W. Lim and M. S. Lam. Maximizing parallelism
and minimizing synchronization with aÆne partitions.
Parallel Computing, 24(3{4):445{475, May 1998.

[14] V. Loechner and D. K. Wilde. Parameterized polyhe-
dra and their vertices. Int. J. of Parallel Programming,
25(6):525{549, Dec. 1997.

[15] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search of similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48:443{453, 1970.

[16] W. Pugh. The Omega test: a fast and practical in-
teger programming algorithm for dependence analysis.
Communications of the ACM, 8:102{114, Aug. 1992.

[17] A. Schrijver. Theory of Linear and Integer Program-
ming. John Wiley and Sons, New York, 1986.

[18] M. M. Strout, L. Carter, J. Ferrante, and B. Simon.
Schedule-independent storage mapping for loops. ACM
SIGPLAN Notices, 33(11):24{33, Nov. 1998.

[19] D. Wilde and S. Rajopadhye. Memory reuse analysis
in the polyhedral model. Parallel Processing Letters,
7(2):203{215, June 1997.


