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Abstract

We present a practical testing algorithm called ExitBlock
that systematically and deterministically �nds program er-
rors resulting from unintended timing dependencies. Exit-
Block executes a program or a portion of a program on a
given input multiple times, enumerating meaningful sched-
ules in order to cover all program behaviors. Previous work
on systematic testing focuses on programs whose concur-
rent elements are processes that run in separate memory
spaces and explicitly declare what memory they will be
sharing. ExitBlock extends previous approaches to multi-
threaded programs in which all of memory is potentially
shared. A key challenge is to minimize the number of sched-
ules executed while still guaranteeing to cover all behaviors.
Our approach relies on the fact that for a program following
a mutual-exclusion locking discipline, enumerating possible
orders of the synchronized regions of the program covers all
possible behaviors of the program. We describe in detail the
basic algorithm and extensions to take advantage of read-
write dependency information and to detect deadlocks.

1 Introduction

Concurrency is increasingly used in programs of all varieties.
However, concurrent programs are more diÆcult to test than
sequential programs. Traditional testing techniques for se-
quential programs consist of test suites that simply run the
target program on di�erent sets of representative inputs.
Such tests are likely to cover only a small fraction of the
possible execution paths of a concurrent program. This is
due to the nondeterministic nature of concurrent programs:
merely controlling the program's input is not enough to con-
trol the program's behavior. We de�ne a particular program
execution's behavior to be the set of externally visible actions
that the program performs during its execution.

A concurrent program consists of components that exe-
cute in parallel. These components are of two varieties: pro-
cesses, which run in separate memory spaces, and threads,
which all share the same memory space. Di�erent orders of
the components' actions with respect to one another may re-
sult in di�erent program behaviors; any resulting erroneous
behaviors are called timing-dependent errors. The order of
components' actions is often nondeterministic due to asyn-
chronous input or interrupts or simply a nondeterministic
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scheduler. The scheduler is the operating system or library
component that determines at run time the actual order of
execution, or schedule, of the processes or threads.

In this paper we describe a practical algorithm called Ex-
itBlock for enumerating the possible behaviors of a section
of a multithreaded program, for a given input. The number
of possible schedules of a concurrent program's processes or
threads increases exponentially with program size so quickly
that testing even very small program sections by executing
every schedule is intractable. Behavior-equivalence classes
of schedules must be identi�ed and as few members of each
class as possible executed. ExitBlock relies on the fact that
for a program following a mutual-exclusion locking disci-
pline, enumerating possible orders of the synchronized re-
gions of the program includes at least one schedule from
each behavior-equivalence class, covering all possible behav-
iors of the program. The algorithm does not need a separate
model or speci�cation of the program or the source code;
it does its testing dynamically using information gathered
while running the actual program.

The completeness of the enumeration is de�ned in terms
of assertion checking. If there is some execution of a program
on a given input that leads to an assertion failure, ExitBlock
guarantees to �nd that execution. Since any observable pro-
gram behavior can be di�erentiated from all other behaviors
by assertions, ExitBlock e�ectively guarantees to execute all
behaviors of a program.

We also present a method called ExitBlock-RW that uses
read-write dependency information to prune the schedules
that ExitBlock considers, and a technique for augmenting
both ExitBlock and ExitBlock-RW to detect deadlocks.

We have built a systematic tester that implements Ex-
itBlock and its pruning and deadlock detection extensions
for Java application programs. Our tester is implemented
in Java as a tool for the Rivet virtual machine [Rivet], a
Java virtual machine built by our group. The tester can
successfully �nd errors in programs of four threads with
twenty synchronized regions each in a matter of minutes.
We demonstrate that the ExitBlock algorithm �nds com-
mon timing-dependent errors that are often diÆcult to de-
tect; for example, errors that occur only in certain orderings
of modules that are individually correctly synchronized, or
using an if instead of a while to test a condition variable.

The rest of the paper is organized as follows. The next
section gives an example of a simple target program, and
Section 3 describes related work. Section 4 describes Exit-
Block. ExitBlock-RW and other eÆciency improvements to
ExitBlock are discussed in Section 5; extending ExitBlock



public class SplitSync implements Runnable f
static class Resource f public int x; g
static Resource resource = new Resource();

public static void main(String[] args) f
new SplitSync();
new SplitSync();

g

public SplitSync() f
new Thread(this).start();

g

/** increments resource.x */
public void run() f
int y;
synchronized (resource) f

y = resource.x;
g
synchronized (resource) f

// invariant: (resource.x == y)
resource.x = y + 1;

g
g

g

Figure 1: Sample Java program SplitSync illustrating an
error that our algorithm can detect. Although all variable
accesses in this program are correctly protected by locks,
the program contains a timing-dependent error.

to detect deadlocks is explained in Section 6. Section 7
presents the results of running our tester on a number of
sample programs, and Section 8 concludes the paper.

2 Example

A simple Java program exhibiting one sort of concurrency
error that ExitBlock can detect is shown in Figure 1.
SplitSync creates two threads that each wish to increment
the �eld x of the variable resource. The Java synchronized
statement limits its body to execute only when the execut-
ing thread can obtain the lock speci�ed. Thus only one
of the two threads can be inside either of the synchronized
statements in the program at one time.

The way in which the threads execute the increment of
resource.x is roundabout; however, it is representative of
a common class of errors in large systems in which the pro-
cessing of a resource is split between two modules that each
correctly protect the resource with a lock. The intention is
that no other module can access the resource while these
two modules are processing it, but their separate synchro-
nization allows a third module to acquire the resource before
it is fully processed.

A traditional test suite might never �nd this timing-
dependent error because the thread scheduler of its Java
virtual machine may never perform a thread switch while
either thread is between the two synchronized blocks. Even
if the bug is found, it may be very diÆcult to duplicate. Our
implementation of ExitBlock �nds this error by systemati-
cally enumerating schedules of the program.

3 Related Work

There is a large body of work in the general area of testing
concurrent programs. However, to our knowledge, no exist-
ing work can guarantee to �nd all assertion violations in a
multithreaded program without a model or a speci�cation.

A tool called the Nondeterminator [FL97] detects data
races in Cilk, a multithreaded variant of C. The Nondeter-
minator guarantees that if a program has a data race it
will �nd and localize it. The Nondeterminator's algorithms
depend on being able to model the concurrency of a Cilk
program with a directed acyclic graph. The methods used
do not apply to the more general concurrency found in most
multithreaded languages (such as Java), and only data races
are detected.

In deterministic testing [CT91], test cases consist not
just of inputs for the program to be tested but of (input,
schedule) pairs, where each schedule dictates an execution
path of the program. Static analysis is used to generate the
test case pairs. Since static analysis is limited in the scope
of what it can determine about a program, the resulting
test cases are not guaranteed to cover all behaviors of the
program.

Model checking tools verify properties of models of con-
current systems. They have been shown to be e�ective in
verifying many types of properties, including checking for as-
sertion violations. However, they depend on a manageable
number of program states explicitly delineated in a model,
so their technology cannot be directly applied to testing an
implementation.

Verisoft [God97] extends model checking methods in
order to apply them to actual programs. It uses tech-
niques that do not require manageable numbers of states
[God96], performing some static analysis to provide informa-
tion needed by its dynamic methods. Verisoft's target pro-
grams are small C programs consisting of multiple processes.
It uses \visible" operations (operations on shared objects) in
the code to de�ne \global states" of the program. Since pro-
cesses must explicitly declare the variables that they share,
the number of global states is signi�cantly smaller than the
number of states, and since processes can only communicate
through shared variables, Verisoft need only consider sched-
ules that di�er in their sequences of global states. Verisoft
further prunes the state space by identifying schedules that
lead to identical behaviors.

Verisoft has been shown to successfully discover errors in
C programs composed of several concurrent processes. How-
ever, its techniques cannot readily be transferred to multi-
threaded languages. Since threads share the same memory
space, all variables are potentially shared. Thus there are
not a small number of explicitly declared \visible" opera-
tions that can be used to dramatically reduce the search
space. Verisoft would have to assume that all variables
are shared, and end up searching a prohibitively large state
space.

Reachability testing [HTH95] builds on a method for sys-
tematically executing all possible orderings of operations on
shared variables in a program consisting of multiple pro-
cesses [Hwa93]. It is similar to Verisoft but does not do
any pruning; it does parallelize the executions of di�erent
schedules to speed up testing. Like Verisoft, reachability
testing requires explicit declarations of which variables are
shared and hence does not apply directly to multithreaded
programs.
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4 The ExitBlock Algorithm

This section describes the ExitBlock algorithm, which sys-
tematically enumerates the possible schedules of the syn-
chronized regions of a multithreaded program. It can be
made more eÆcient by pruning the schedules it considers;
this is discussed in Section 5.

4.1 Testing Criteria

ExitBlock requires that a program it is testing meets three
criteria: that it follows a mutual-exclusion locking discipline,
that its �nalization methods are \well-behaved," and that
all of its threads are terminating. Collectively we refer to
these requirements as the testing criteria.

Mutual-Exclusion Locking Discipline A mutual-
exclusion locking discipline dictates that each shared vari-
able is associated with at least one mutual-exclusion lock,
and that the lock or locks are always held whenever any
thread accesses that variable. Assuming that a program
follows such a discipline allows ExitBlock to systematically
explore a program's behaviors by considering only schedules
of atomic blocks, which is the key idea of the algorithm.

By limiting ExitBlock to those programs that follow this
locking discipline, some classes of valid programs are ruled
out. For example, a barrier is a point in a program which
all threads must reach before any threads are allowed to
continue beyond that point. A program using barriers can
validly use di�erent sets of locks for protecting the same
variable on di�erent sides of a barrier. However, as Savage
et al. [S+97] argued, even experienced programmers with
advanced concurrency control mechanisms available tend to
use a simple mutual-exclusion locking discipline. Java en-
courages the use of this discipline through its synchroniza-
tion facilities. We expect that requiring such a locking dis-
cipline will not overly restrict the applicability of the algo-
rithm.

The Eraser algorithm by Savage et al. [S+97] can be
used to eÆciently verify that a program follows a mutual-
exclusion locking discipline. Our implementation of Exit-
Block runs Eraser in parallel with itself to verify that this
criterion is met. Running Eraser alone only ensures that
a program follows the discipline in one particular schedule,
while running Eraser in parallel with ExitBlock checks that
the discipline is followed in every schedule. Even though Ex-
itBlock does not guarantee to execute all behaviors of a pro-
gram that contains a discipline violation, it does guarantee
to �nd the violation. This is guaranteed because ExitBlock
will not miss any behavior until the instant one thread com-
municates with another thread using shared variables that
are not protected by consistent sets of locks. At this point
Eraser will catch the discipline violation.

Finalization This criterion is speci�c to Java and similar
environments. Classes in Java may have finalize meth-
ods, or �nalizers, that are called by the garbage collector
when instances of those classes are reclaimed. There are
no guarantees on when �nalizers are called. They can be
called in any order or even not at all, depending on when
or if the garbage collector runs. This means that ExitBlock
would need to consider every possible schedule of �nalizers
executing at arbitrary points in the program in order to �nd

possible assertion violations, which can be a very large num-
ber of schedules. However, most �nalizers are used only to
deallocate memory that was allocated in some native Java
method or to clean up system resources such as open �le
descriptors. Since these activities do not interact with the
rest of the program, the order of execution of such �nalizers
does not a�ect the rest of the program. To reduce the num-
ber of schedules tested, ExitBlock assumes that the timing
of �nalizers has no bearing on whether assertions will be vi-
olated or not or whether a deadlock can occur. We call this
ExitBlock's �nalization criterion. It seems to be reasonable
and is met by the �nalizers in the standard Java libraries.

Terminating Threads ExitBlock requires that the pro-
gram region to be tested has a de�ned endpoint in each
thread's execution. This endpoint can be termination of the
thread, exit from a speci�ed module of interest, or execu-
tion of a certain number of operations. ExitBlock makes this
requirement so that its depth-�rst search of the program's
schedules will terminate. Throughout the rest of this paper,
the term \program" will be used to refer to the region being
tested (up to the de�ned endpoint for each thread).

4.2 Algorithm Overview

A program following a mutual-exclusion locking discipline
can be divided into atomic blocks based on its synchro-
nized regions, which are blocks of code that are protected
by locks. Shared variables cannot be accessed outside of
atomic blocks. Furthermore, shared variables modi�ed by
a thread inside of an atomic block cannot be accessed by
other threads until the original thread exits that block. This
means that enumerating possible orders of the atomic blocks
of a program covers all possible behaviors of the program.

To see why enumerating the orders of the atomic blocks
is suÆcient, consider the following. The order of two in-
structions in di�erent threads can only a�ect the behavior
of the program if the instructions access some common vari-
able | one instruction must write to a variable that the
other reads or writes. In a program that correctly follows a
mutual-exclusion locking discipline, there must be at least
one lock that is always held when either instruction is exe-
cuted. Thus they cannot execute simultaneously, and their
order is equivalent to the order of their synchronized regions.
By enumerating only synchronized regions, we signi�cantly
reduce the number of schedules to consider | rather than
considering all possible schedules at the instruction level,
the algorithm need only consider schedules of the program's
atomic blocks.

Since the atomic blocks of a program can change from
one execution to the next due to data ow through branches,
we cannot statically compute a list of atomic blocks. We in-
stead dynamically enumerate the atomic blocks using depth-
�rst search. Depth-�rst search requires that the threads of
the program eventually terminate; this is the reason for that
testing criterion.

To perform depth-�rst search on a program we �rst ex-
ecute one complete schedule of the program. Then we back
up from the end of the program to the last atomic block
boundary at which we can choose to schedule a di�erent
thread. We create a new schedule, branching o� from this
point in the program by choosing a di�erent thread to run.
We again execute until program completion. Then we sys-
tematically repeat the process, continuing to back up to
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Thread 1 =
1: <arbitrary code>
2: synchronized (a) f <arbitrary code>
3: synchronized (b) f <arbitrary code> g
4: <arbitrary code> g
5: <arbitrary code>

Thread 2 =
6: <arbitrary code>
7: synchronized (a) f <arbitrary code> g
8: <arbitrary code>
9: synchronized (b) f <arbitrary code> g
10: <arbitrary code>

Figure 2: Two threads, one containing nested synchronized
regions. Even for nesting we delineate atomic blocks with
lock exits. We divide Thread 1 into atomic blocks 1,2,3, 4,
and 5, and Thread 2 into atomic blocks 6,7, 8,9, and 10.

atomic block boundaries where we can make di�erent choices
than before.

To implement this search we need the ability to back up
the program to a previous state, and the ability to present a
consistent external view of the world to the program as we
execute sections of code multiple times. Our implementa-
tion uses checkpointing to back up and deterministic replay
to ensure the program receives the same inputs as it is re-
executed.

This method will �nd an assertion violation in a program
if one can occur, regardless of whether the violation shows
up when the program is executed on a single processor or
a multiprocessor. The locking discipline enforces an order-
ing on shared-variable accesses | two threads executing on
di�erent processors cannot access the same variable at the
same time. Theorem 1 of [Bru99] proves that the execution
of a program following the discipline on a multiprocessor is
equivalent to some serialization of that program on a single
processor.

4.3 Atomic Blocks

For un-nested synchronized regions, it is clear what an
atomic block is: the region from a lock enter to that lock's
exit (a lock enter is an acquisition of a lock, which occurs
at the beginning of a synchronized block or method, while
a lock exit is the release of a lock that occurs either at the
end of a synchronized block or method or in a wait oper-
ation). The �rst atomic block of a thread begins with its
birth and ends with its �rst lock exit, while the last atomic
block begins after its last lock exit and ends with its death.
We want as few blocks as possible, so we choose to group
the non-synchronized code before a synchronized region with
that region in one atomic block.

Dividing nested synchronized regions into atomic blocks
requires more thought. Consider the code for Thread 1 in
Figure 2. Should the code section labeled 2 be in a separate
atomic block from section 3? For the purpose of �nding
all assertion violations, it turns out that we can combine
them. This may be counter-intuitive. Intuition suggests
that we need to schedule Thread 2's section 9 in between
sections 2 and 3, because Thread 2 could modify variables
protected by the b lock while Thread 1 is in section 2. How-
ever, this has the same e�ect as executing section 9 before
both sections 2 and 3. Intuition also suggests that we should

BEGIN:
run program until 2nd thread is started, then:

enabled = f1st thread, 2nd threadg
delayed thread = null
goto LOOP

LOOP:
if (enabled is empty)

if (stack is empty) goto DONE
pop (RetPt, saved enabled, saved thread) off stack
change execution state back to RetPt
enabled = saved enabled
delayed thread = saved thread
goto LOOP

curThread = choose a member of enabled
RetPt = make new checkpoint capturing execution state
old enabled = enabled
run curThread until one of following events occurs:

if (lock enter && another thread holds that lock)
move curThread from enabled to lock's block set
change execution state back to RetPt
goto LOOP

if (curThread dies or reaches execution limit)
remove curThread from enabled and old enabled
goto LOOP

if (thread T starts)
add T to enabled set
continue running curThread

if (lock exit)
push enabled = old enabled minus curThread
push on stack (RetPt, push enabled, curThread)
add delayed thread to enabled set
add all threads on lock's blocked set
to enabled set

goto LOOP
DONE: // testing is complete

Figure 3: Pseudocode for initial ExitBlock algorithm that
does not handle wait or notify. ExitBlock systematically
executes the tree of possible schedules by dynamically dis-
covering the atomic blocks of a program. At each lock exit
(atomic blocks are delineated by lock exits) it pushes an-
other branch of the tree onto its stack to be executed later.

schedule section 7, 8, and 9 in between sections 2 and 3; this
cannot occur, however, because while Thread 1 holds the a
lock section 7 cannot execute. We use lock exits (and thread
births and deaths) as the sole boundaries of our atomic
blocks.

4.4 The Algorithm

The ExitBlock algorithm systematically executes the sched-
ules of atomic blocks delineated by lock exits. It also needs
to consider separately each possible thread woken by a
notify operation. We ignore thread operations such as wait
and notify for now; they will be discussed in Section 4.5.
Pseudocode for the algorithm, ignoring wait and notify, is
shown in Figure 3.

ExitBlock dynamically explores the tree of possible
schedules using depth-�rst search. Each thread in the pro-
gram is kept in one of three places:

1. In the \block set" of a lock, if the thread needs that
lock to continue its execution and another thread holds
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the lock.

2. As the \delayed thread" | the thread that is not al-
lowed to execute at this time in order to schedule an-
other thread.

3. In the \enabled set", the set of threads that are ready
to be executed.

ExitBlock runs the program normally until there are two
threads; then it places both of them in the enabled set and
enters its main loop. Each iteration of the loop is the ex-
ecution of an atomic block of the current thread, which is
chosen from the enabled set. First a checkpoint is taken and
the enabled set saved; then the current thread is chosen and
executed. When it reaches a lock exit, a new branch of the
tree of schedules is created and stored on a stack for later
execution. This branch represents executing the rest of the
threads from the point just prior to this atomic block. We
need the checkpoint so we can go back in time to before
the block, and we need to make sure we execute a di�erent
thread from that point. So we make the current thread the
\delayed thread" of the branch. The delayed thread is re-
enabled after the �rst atomic block of a branch so that it can
be interleaved with the atomic blocks of the other threads.
Note that we use the old enabled threads set in the branch;
this is because newly created threads cannot interact with
the atomic block in which they were created, and in fact did
not exist at the time of the checkpoint.

ExitBlock keeps executing the current thread, pushing
branches onto the stack, until the thread dies or reaches
a preset execution limit, which could either be a certain
amount of execution or exiting from the subsystem being
tested. Then it chooses a di�erent thread from the enabled
set to be the current thread and executes it in the same
manner. ExitBlock treats the execution from a thread's �nal
lock exit to its death as a separate atomic block; this is
unavoidable since we have no way of knowing when a thread
will die beforehand. When the enabled set becomes empty
ExitBlock pops a new branch o� of the stack and uses the
branch's state as it continues the loop.

If the current thread cannot obtain a lock, a new thread
must be scheduled instead. Since we only want thread
switches to occur on atomic block boundaries, we abort the
current branch of the tree and undo back to the end of the
previous atomic block before we schedule a di�erent thread.
Which threads own which locks must be kept track of to de-
termine if a lock can be acquired without having the thread
actually block on it. The thread is placed in the block set of
the lock and a di�erent enabled thread is tried after return-
ing to the checkpoint. ExitBlock cannot enter a lock-cycle
deadlock since it never lets threads actually block on locks,
so that is not a concern (see Section 6 for a method to detect
deadlocks).

ExitBlock assumes that it has the power to take and
return to checkpoints, and to deterministically replay all in-
teractions between the code of the program and the rest of
the world. It must do so to make the threads of the pro-
gram deterministic with respect to everything except vari-
ables shared with other threads. The pseudocode shown
here assumes that deterministic replay is going on behind
the scenes.

Figure 4 shows the tree of schedules executed by Exit-
Block for a program consisting of the two threads in Figure
2. Thread 1 is abbreviated as T1 and Thread 2 is abbre-
viated as T2 in the �gure. Each node of the tree lists the

1,2,3

T1,T2

T1,T2

4

T1,T2

T2

6,7

T2

8,9

T2

()

5

T1

4

T1

1,2,3

T1

T2,T1

8,9

6,7

T2,(T1)

T2,T1 T1,(T2)

1,2,3

T1,T2

4

T1,T2

5

T2

8,9

T2

() ()

5

T1

4

T1

T2,T1

8,9

T2,(T1)

10

5

10

10

10

()

6

T2,(T1)

Figure 4: Tree of schedules explored by ExitBlock for the
threads in Figure 2. Threads in parentheses are delayed.
Arrows indicate the execution of the sections of code on
their left. An X means that a path was aborted because a
lock could not be obtained.

threads in the enabled set, and the delayed thread, if there
is one, in parentheses. A solid arrow indicates execution
of one atomic block by the �rst thread listed in the node
at the tail of the arrow, with the section numbers of the
code contained in that block listed to the left of the arrow.
Parallel execution paths are connected by dashed lines to
indicate that they are both executed from a checkpoint that
was created at the left end of the dashed line. The large X in
the �gure indicates that that path was aborted because T2
could not obtain a lock that T1 was holding. A checkpoint is
created at each node in the tree, but most are not used. Our
implementation of checkpointing uses a lazy copy-on-write
scheme to make this eÆcient.

4.5 Wait and Notify

So far we have ignored thread communication other than
with shared variables protected by locks; in particular, we
have ignored condition variables. In Java any object can
be used as a condition variable. A thread can wait on an
object, causing the thread to go to sleep until another thread
performs a notify (awakening one thread) or notifyAll
(awakening all threads) on that object. We can deal with
wait by considering the lock exits that result when a thread
waits to be like other lock exits. A thread that has acquired
a lock multiple times will release it multiple times when
it performs a wait on the lock object. Since there is no
way to schedule another thread in between these releases,
we consider them to be one lock exit. Also, a thread that
performs a wait should be removed from the set of enabled
threads for the duration of its wait.

Dealing with the noti�cation operations is more involved.
For notifyAll we need to add every thread that is woken
up to the block set for the notify lock. For notify we need
to do the same thing for the single thread that wakes up;
however, if there are multiple threads waiting on an object,
which thread will be woken by notify is nondeterministic.
The algorithm needs to explore the schedules resulting from
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BEGIN:
run program until 2nd thread is started, then:

wait = fg
no notify = fg
...

LOOP:
if (enabled is empty)

...
pop (RetPt, saved enabled, saved thread, wait,
no notify) off stack

...
...
run curThread until one of following events occurs:

...
if (curThread does a wait())

move curThread from enabled set to wait set
goto LOCKEXIT

if (curThread does a notifyAll())
wake up all threads waiting on notify object
move those threads from wait set to block set

of notify lock
if (curThread does a notify())

select a thread T not in no notify to wake up
move T from wait set to block set of notify lock
if (threads are still waiting on notify object)

push on stack (RetPt, enabled, delayed thread,
wait, no notify+T)

no notify = no notify - all threads originally
waiting on notify object

if (lock exit)
LOCKEXIT:
...
push (RetPt, saved enabled, curThread, wait, fg)
...

DONE: // testing is complete

Figure 5: Changes to the pseudocode for the ExitBlock al-
gorithm in Figure 3 in order to handle wait and notify. A
set of waiting threads and a set of threads that should not
be noti�ed are added to each branch. We treat wait like a
lock exit, and for notify we create new branches of the tree
to consider other threads being noti�ed.

each possible thread being woken by a notify, so it needs to
make new branches for each. Figure 5 shows additions to the
ExitBlock algorithm that will handle wait and notify. For
each branch of the tree in which we wish to notify a di�erent
thread, we must prevent threads that have already been
noti�ed from being noti�ed again. Thus we keep track of a
set of threads that should not be noti�ed (the \no notify"
set) for every branch of the execution tree. Even if there are
multiple noti�cations in one atomic block, we can still use
a single no notify set since there can be no overlap between
threads waiting on the multiple notify objects (a thread can
only wait on one object at a time). When we execute a
notify we wake up a thread that is not in the no notify
set. We want to carry the set to the next branch's identical
notify operation in order to keep reducing the set of threads
we wake up; however, we do not want a di�erent notify that
occurs later to have the threads it wakes up restricted by
this notify. Therefore, after pushing a new notify branch
on the stack, we remove from the no notify set all threads
originally waiting on the notify object.

Most other thread-related operations, such as sleep,
yield, preemption, and thread priorities, can be ignored.
As for input and output, ExitBlock assumes the user will
provide any needed input and that blocking on an input will
not be a problem; replaying the input deterministically for
other paths is necessary and, as discussed earlier, is assumed
to be happening all along.

4.6 Analysis of ExitBlock

For a program with k threads that each contain n lock exits
the total number of lock exits we have is k � n.

�
kn

n

�
is the

number of ways we can place the �rst thread's n lock exits
in between all of the other lock exits. Placing a lock exit also
places the atomic block that the lock exit terminates. Now

that those are placed, we have (k� 1) �n slots left;
�
(k�1)n

n

�
is the number of ways the second thread can place its atomic
blocks in between the others. The process continues until we
have the number of schedules that the ExitBlock algorithm
needs to consider:�
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n

�
�
�
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n
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By Stirling's approximation,
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n

�
= �
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kp

n(k � 1)

�
1

k

�n � k

k � 1

�n(k�1)
!

Thus the number of schedules that must be explored
grows exponentially in both the number of threads and the
number of lock uses by each thread. Section 5 will modify
the ExitBlock algorithm to reduce the expected growth of
the number of paths from exponential to polynomial in the
number of locks per thread.

4.7 Correctness of ExitBlock

When a program meets the criteria of Section 4.1, Exit-
Block guarantees to �nd all possible assertion violations in
the program. Any program condition can be detected us-
ing assertions; thus, ExitBlock guarantees to enumerate all
possible behaviors of the program. We state this formally in
the following theorem, which is proved correct as Theorem
3 of [Bru99].

Theorem Consider a program P that meets the testing cri-
teria de�ned in Section 4.1. Suppose that for a given input,
when executed on a single processor, P can produce an asser-
tion violation. A schedule exists that is produced by the Ex-
itBlock algorithm in which the same assertion is violated.

5 The ExitBlock-RW Algorithm

The ExitBlock algorithm executes all schedules of atomic
blocks. However, not all schedules need to be executed
in order to �nd all possible assertion violations. If two
atomic blocks have no data dependencies between them,
then the order of their execution with respect to each other
has no e�ect on whether an assertion is violated or not. The
ExitBlock-RW algorithm uses data dependency analysis to
prune the tree of schedules explored by ExitBlock.
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5.1 Read-Write Pruning

As an example, consider again the tree from Fig-
ure 4. The rightmost branch represents the ordering
6,7,1,2,3,8,9,10,4,5. Suppose that the two threads are
independent except for a data dependency between code sec-
tions 2 and 7. Code sections 4 and 5 only share locks with
section 7 of the other thread. This means that 4 and 5 can
have data dependencies only with 7 and with no other code
sections of the other thread. We have already considered 4
and 5 both before and after 7 in earlier branches. So why
should we execute 4 and 5 at the end of this last branch?
If there were an assertion violation produced only when 4
and 5 were executed after 7, we would already have found
it. Thus we can trim the end of the rightmost branch.

We take advantage of this observation as follows. We
record the reads and writes performed while executing an
atomic block. Instead of delaying just the current thread
and re-enabling it after the �rst step in the new branch,
we keep a set of delayed threads along with the reads and
writes of the atomic block they performed just before the
new branch was created. We only re-enable a delayed thread
when the currently executing thread's reads and writes in-
tersect with the delayed thread's reads and writes. If no
such intersection occurs, then none of the later threads in-
teract with the delayed thread and there is no reason to
execute schedules in which the delayed thread follows them.
The intersection is computed as follows: a pair consisting of
a set of reads and a set of writes (r1; w1) intersects with a
second pair (r2; w2) if and only if (w1 \ w2 6= ; _ r1 \ w2 6=
; _ w1 \ r2 6= ;).

We call the ExitBlock algorithm augmented with this
read-write pruning ExitBlock-RW. Pseudocode for the
changes to ExitBlock required for ExitBlock-RW is given in
Figure 6. Note that the algorithm uses the reads and writes
performed during the �rst execution of an atomic block A
to check for data dependencies with other threads' atomic
blocks. What if A performs di�erent reads and writes after
being delayed? Since we never execute past a block that in-
teracts with any of A's variable accesses without re-enabling
A, no blocks executed while A is delayed can a�ect the reads
and writes it would perform upon being re-enabled.

The ExitBlock-RW algorithm's schedules for the threads
in Figure 2, assuming that the only inter-thread data de-
pendency is between sections 2 and 7, are shown in Figure
7.

5.2 Analysis of ExitBlock-RW

If no blocks interact, no thread we delay ever becomes re-
enabled. For each schedule, each thread runs a certain
amount, gets delayed, and never wakes up. (Of course, there
is at least one schedule for each thread that executes that
thread until it dies.) Thus we can consider the problem of
creating each schedule simply that of deciding where to cut
o� each thread; by arranging the thread sections end-to-end
we have the schedule. The sections have the property that
the section of thread i must precede that of thread j if i is
started �rst in the program.

For a program with k threads that each obtain locks a
total of n times, with absolutely no interactions between the
atomic blocks, we have n+1 places to terminate each thread,
and it does not matter where we terminate the last thread of
each schedule; thus we have (n+ 1)k�1 di�erent schedules.
This number will be lower if some threads cannot run until

BEGIN:
run program until 2nd thread is started, then:

delayed = fg
...

LOOP:
if (enabled is empty)

...
pop (RetPt, saved enabled, saved delayed, wait,
no notify) off of stack

change execution state back to RetPt
enabled = saved enabled
delayed = saved delayed
reads = writes = fg
...

...
run curThread until one of following events occurs:

if (curThread performs a read)
record it in the reads set

if (curThread performs a write)
record it in the writes set

...
if (lock exit)
push enabled = old enabled minus curThread
push delayed = delayed plus
(curThread, reads, writes)

push (RetPt, push enabled, push delayed, wait,
fg)

foreach (thread, r, w) in delayed
if ((r,w) intersects (reads,writes))

move thread from delayed set to enabled set
move all threads in lock's blocked set
to enabled set

goto LOOP
DONE: // testing is complete

Figure 6: Changes to the ExitBlock pseudocode of Figures
3 and 5 for the ExitBlock-RW algorithm. This algorithm
records the reads and writes performed during atomic blocks
and only interleaves two blocks if their read and write sets
intersect.

others �nish, or other constraints are present, and higher
if interactions between blocks exist (potentially as high as
ExitBlock's formula if every block interacts with every other,
which fortunately is very unlikely).

This best-case result, polynomial in the number of locks
per thread and exponential in the number of threads, is
much better than the growth of ExitBlock which is expo-
nential in the number of locks per thread. The number of
threads in a program is typically not very high, even for
large programs, while the code each thread executes can
grow substantially. Thus in the best case the ExitBlock-RW
algorithm achieves polynomial growth.

The important issue is how close to the best case normal
programs are. The number of interactions between threads
in a program is usually kept to a minimum for ease of pro-
gramming. Thus we expect the average case to be close to
the best case.

Further pruning of the schedules considered by
ExitBlock-RW is possible while preserving the guarantee
that all assertion violations are detected. If the user knows
that one of the program's methods is used in such a way that
it causes no errors in the program, he or she can instruct the
tester to not generate multiple schedules for atomic blocks
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Figure 7: Tree of schedules explored by ExitBlock-RW
for the threads in Figure 2 on page 4, assuming the only
inter-thread data dependency is between code sections 2
and 7. Threads in parentheses are delayed, with sub-
scripts indicating the code sections over which read/write
intersections should be performed. Compared to the tree
for the ExitBlock algorithm shown in Figure 4, this tree
does not bother �nishing the schedule 6,7,1,2,3,4,5,. . . and
does not execute at all the �nal schedule of the other tree
(6,7,1,2,3,8,9,10,4,5).

contained in the method. For example, if a program uses
some library routines that it assumes are thread safe and
error free, the user can tell the tester to trust those library
routines. Then every time the tester would normally end an
atomic block, it checks to see if the current method is one
of the trusted routines; if so, it simply keeps executing as
though there is not an atomic block boundary there. One
instance of this extension is implemented in our tester as a
parameter that when set assumes that all methods in any
of the java.* packages are safe. It dramatically reduces the
number of paths the algorithm must explore.

Another pruning idea is to ignore an atomic block whose
lock object is not shared. If only one thread ever accesses
it then there is no reason to consider possible schedules en-
countered while in methods called on that object. This may
be computable through static analysis [WR99].

5.3 Correctness of ExitBlock-RW

This is proved correct as Theorem 4 of [Bru99].

Theorem Consider a program P that meets the testing cri-
teria de�ned in Section 4.1. Suppose that for a given input
and when executed on a single processor P produces an as-
sertion violation. A schedule exists that is produced by the
ExitBlock-RW algorithm in which the same assertion is vi-
olated.

6 Detecting Deadlocks

A deadlock is a cycle of resource dependencies that leads to
a state in which all threads are blocked from execution. Two
kinds of cycles are possible; if the cycle is not one of locks,
then it must involve some or all threads in a wait state

Thread 1 =
1: <arbitrary code>
2: synchronized (a) f <arbitrary code>
3: synchronized (b) f <arbitrary code> g
4: <arbitrary code> g
5: <arbitrary code>

Thread 2 =
6: <arbitrary code>
7: synchronized (b) f <arbitrary code>
8: synchronized (a) f <arbitrary code> g
9: <arbitrary code> g
10: <arbitrary code>

Figure 8: Two threads with the potential to deadlock. If the
code sections are executed in any order where 2 precedes 8
and 7 precedes 3 (for example, 1,2,6,7) then a deadlock is
reached in which Thread 1 holds lock a and wants lock b
while Thread 2 holds lock b and wants lock a.

and the rest blocked on locks. We will refer to deadlocks
consisting solely of threads blocked on locks as lock-cycle
deadlocks, which will be discussed in the next section, and
those that contain waiting threads as condition deadlocks,
which will be discussed in Section 6.2.

6.1 Lock-Cycle Deadlocks

The ExitBlock algorithm rarely executes schedules that re-
sult in lock-cycle deadlocks. (When it does it simply aborts
the current branch in the tree of schedules.) Consider the
threads in Figure 8 and the schedules that the ExitBlock
algorithm produces for these threads, shown in Figure 9. In
order for deadlock to occur, Thread 1 needs to be holding
lock a but not lock b and Thread 2 needs to be holding lock
b but not lock a. This will not happen since for ExitBlock
the acquisitions of both locks in each thread are in the same
atomic block. Deadlocks are only executed in rare cases
involving multiply nested locks.

In order to always detect deadlocks that are present,
we could change our de�nition of atomic block to also end
blocks before acquiring a lock while another lock is held.
This would cause ExitBlock to directly execute all sched-
ules that result in lock-cycle deadlocks; however, this is un-
desirable since it would mean more blocks and thus many
more schedules to search. Instead of trying to execute all
deadlocks we execute our original, minimal number of sched-
ules and detect deadlocks that would occur in an unexplored
schedule.

The key observation is that a thread in a lock-cycle dead-
lock blocks when acquiring a nested lock, since it must al-
ready be holding a lock. Also, the lock that it blocks on
cannot be the nested lock that another thread in the cycle
is blocked on, since two threads blocked on the same lock
cannot be in a lock cycle. The cycle must be from a nested
lock of each thread to an already held lock of another thread.
For example, when the threads of Figure 8 deadlock, Thread
1 is holding its outer lock a and blocks on its inner lock b
while Thread 2 is holding its outer lock b and blocks on its
inner lock a.

These observations suggest the following approach. We
track not only the current locks held but also the last lock
held (but no longer held) by each thread. Then, after we
execute a synchronized region nested inside some other syn-
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Figure 9: Tree of schedules explored by ExitBlock for the
threads in Figure 8. Reverse lock chain analysis will detect
two deadlocks, one at each aborted path (denoted by a large
X in the �gure). Threads in parentheses are delayed.

chronized region, the last lock held will be the lock of the
inner synchronized region. When a thread cannot obtain
a lock, we look at the last locks held by the other threads
and see what would have happened if those threads had not
yet acquired their last locks. We are looking for a cycle of
matching outer and inner locks; the outer locks are currently
held by the threads and the inner locks are the threads' last
locks held. If the current thread cannot obtain a lock l and
we can follow a cycle of owner and last lock relationships
back to the current thread | if l's current owner's last lock's
current owner's last lock's . . . ever reaches a current owner
equal to the current thread | then a lock-cycle deadlock
has been detected. We call this reverse lock chain analy-
sis. It is straightforward to implement, and since failures
to acquire locks are relatively rare it does not cost much in
performance.

In Figure 9, the two large X's indicate paths that were
terminated because a lock could not be obtained. These
are the points where reverse lock chain analysis occurs. At
the �rst point, thread T1 holds lock a and last held lock
b. Thread T2 holds b and fails in its attempt to obtain
a. The analysis performed at this point �nds the following
cycle: a's current owner is T1, whose last lock is b, whose
current owner is T2, the current thread. At the second point
a similar analysis discovers the same deadlock in a di�erent
schedule.

We can improve performance by using reverse lock chain
analysis with ExitBlock-RW rather than with ExitBlock.
This seems to work well in practice. For all of the exam-
ple programs that we tested that contained lock-cycle dead-
locks, ExitBlock-RW plus analysis found the deadlocks.

However, this optimization comes at a cost. ExitBlock-
RW plus reverse lock chain analysis does not always �nd
deadlocks that are present. Figure 10 shows a counterex-
ample. ExitBlock plus analysis �nds the deadlock in this
program, while ExitBlock-RW does not. The tree of exe-
cution paths for ExitBlock on the program is shown on the
left in Figure 11. The potential deadlock is detected in two
di�erent places. The right of Figure 11 shows the tree of

Thread 1 =
1: <arbitrary code>
2: synchronized (a) f <arbitrary code>
3: synchronized (b) f <arbitrary code> g
4: <arbitrary code> g
5: <arbitrary code>

Thread 2 =
6: <arbitrary code>
7: synchronized (a) f <arbitrary code> g
8: <arbitrary code>
9: synchronized (b) f <arbitrary code>
10: synchronized (a) f <arbitrary code> g
11: <arbitrary code> g
12: <arbitrary code>

Figure 10: Two threads whose potential deadlock will be
caught by reverse lock chain analysis in ExitBlock but not
in ExitBlock-RW (see Figure 11). None of the regions of
code interact.

schedules for ExitBlock-RW on the program (none of the
regions of code of the two threads interact with the other
thread at all). The pruning performed by ExitBlock-RW
has completely removed the branches of the tree that detect
the deadlock.

One idea is to have ExitBlock-RW consider a lock enter
to be a write to the lock object; this would certainly prevent
the pruning of the deadlock situations in this example, but
we have not proved it would always do so.

6.2 Condition Deadlocks

Condition deadlocks involve a deadlocked state in which
some of the live threads are waiting and the rest are blocked
on locks. The tester can detect condition deadlocks by sim-
ply checking to see if there are threads waiting or blocked on
locks whenever it runs out of enabled threads to run. We call
the combination of this checking with ExitBlock and reverse
lock chain analysis the ExitBlock-DD algorithm. The same
combination but with ExitBlock-RW we call ExitBlock-
RWDD.

ExitBlock-RWDD cannot use the same condition dead-
lock check as ExitBlock-DD because of its delayed thread
set. We only delay threads to prune paths, so if we end
a path with some waiting threads but also some delayed
threads, we have not necessarily found a deadlock since
nothing is preventing the delayed threads from executing
and waking up the waiting threads.

Thus, to avoid reporting false condition deadlocks in
ExitBlock-RWDD, we must not report condition deadlocks
when there are delayed threads. We could attempt to ex-
ecute the delayed threads to �nd out if there really is a
condition deadlock; however, there is no way to know how
long they might execute. We have not fully investigated this
idea. ExitBlock-RWDD did successfully detect condition
deadlocks in every sample program we tested, but it makes
no guarantees. Because of this, the implementation of our
tester has two modes: the default uses ExitBlock-RWDD
for eÆciency, while the second mode uses ExitBlock-DD in
order to guarantee to �nd deadlocks.
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Figure 11: On the left is the tree of schedules explored by ExitBlock for the threads in Figure 10; on the right is the tree
explored by ExitBlock-RW for the same threads.

6.3 Analysis of ExitBlock-DD

Both ExitBlock-DD and ExitBlock-RWDD execute no more
schedules than their respective non-deadlock-detecting ver-
sions, and the deadlock checks themselves are inexpensive.
However, if a guarantee is needed, using ExitBlock-DD in-
stead of ExitBlock-RWDD is expensive. It is worth pursu-
ing the two ideas mentioned in the previous section, con-
sidering lock enters to be writes and executing delayed
threads when a potential condition deadlock is encountered.
The penalty in extra paths considered for the former idea
should not be too high since atomic blocks sharing the same
lock often have data dependencies anyway. Both ideas will
have performance penalties, but will still be more eÆcient
than ExitBlock-DD; combined they may provide ExitBlock-
RWDD with a guarantee.

6.4 Correctness of ExitBlock-DD

This is proved correct as Theorem 5 of [Bru99].

Theorem Consider a program P that meets the testing cri-
teria de�ned in Section 4.1.
(a) Suppose that P enters a deadlock for a given input when
executed on a single processor. Then a schedule is produced
by the ExitBlock-DD algorithm in which a deadlock is de-
tected (though not necessarily the same one).
(b) Furthermore, if there are no schedules of P that result in
a deadlock, the ExitBlock-DD algorithm will not detect any
deadlocks.

7 Experimental Results

We implemented the ExitBlock algorithm as a testing tool
for the Rivet virtual machine [Rivet]. Rivet is an extensible
tool platform structured as a Java virtual machine. Its pri-
mary goal is exibility in enabling rapid tool development.
Rivet contains built-in checkpointing and deterministic re-
play abilities that the tester makes use of.

Our tester has an assertion mechanism that client pro-
grams can use to directly notify the tester when assertions
fail. This gives the tester the ability to notify the user of
assertion failures and to stop testing when one occurs. If a
client program cannot be modi�ed errors must be detected
by examining its output.

The tester implements the read-write pruning of the
ExitBlock-RW algorithm, and also has an optional parame-
ter that when set causes it to assume that all methods in any
of the java.* packages are safe. This option causes a dra-
matic reduction in the number of schedules explored by the
tester. It performs deadlock detection as ExitBlock-RWDD
does, and through another optional parameter it can elimi-
nate read-write pruning in order to execute ExitBlock-DD.
This parameter was never needed in the sample programs
we tested; ExitBlock-RWDD never missed a deadlock.

Our tester �nds common timing-dependent errors that
are often diÆcult to detect. In experiments it has detected:

� using an if instead of a while to test a condition vari-
able

� using notify instead of notifyAll to wake up threads
waiting on a condition variable that is used for more
than one condition

� mutual-exclusion locking discipline violations that do
not occur in all dynamic schedules

� errors that occur only in certain orderings of modules
that are individually correctly synchronized. For exam-
ple, consider the SplitSync program presented in Figure
1 in Section 2. When its invariant is made an assertion
the tester reports it on the third schedule it executes.

� lock-cycle deadlocks

� condition deadlocks

The tester can successfully �nd errors in programs of four
threads with twenty synchronized regions each in a matter
of minutes when executed on a standard PC. For a complete
description of experimental results, see [Bru99].
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8 Conclusions

We have described practical algorithms for a systematic,
behavior{complete tester for multithreaded programs. By
assuming that the program to be tested follows a mutual{
exclusion locking discipline, we need only enumerate all
schedules of synchronized regions instead of all schedules
of instructions to cover all behaviors of the program. This
assumption is not overly restrictive: as Savage et al. [S+97]
argue, even experienced programmers tend to follow such a
discipline. They do this even when more advanced synchro-
nization techniques are readily available.

We presented the ExitBlock algorithm that guarantees to
test all program behaviors while only considering the pos-
sible schedules of synchronized regions. We showed how to
further prune the schedules executed in the ExitBlock-RW
algorithm. In addition, we augmented both algorithms with
deadlock detection methods.

Since ExitBlock tests a program for a single input, test
case generation is crucial. Generating test cases for use with
ExitBlock is simpli�ed since the e�ects of di�erent inputs on
scheduling can be ignored. Conventional sequential program
test case generation can be used instead of the complex gen-
eration techniques [KFU97] needed to generate test cases for
other multithreaded program testing methods.

Our ideas are applicable to multithreaded programs with
properly nested locks. There is a large class of such programs
due to the enforcement of proper nesting by the synchroniza-
tion constructs available in languages such as Java.
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