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1 Introduction

This paper contains an overview of recent and current work in the M.I.T. The-
ory of Distributed Systems research group on modelling, verifying and analyzing
problems arising in automated transit systems. The problems we consider are in-
spired by design work in the Personal Rapid Transit (PRT) project at Raytheon
(as described to us by Roy Johnson, Steve Spielman and Norm Delisle), and in
the California PATH project (as described to us by Shankar Sastry, Datta God-
bole and John Lygeros) [7, 6, 13, 3]. Our work is based on the Lynch-Vaandrager
timed automaton model [19, 20, 18], extended to include explicit state trajecto-
ries and continuous interaction [17]. The formal tools we use include standard
techniques for reasoning about concurrent algorithms { invariants, simulations
(levels of abstraction) and automaton composition, plus standard methods for
reasoning about continuous processes { di�erential equations.

Our work so far suggests that these methods are capable of providing good
results about safety and performance of automated transit systems. The meth-
ods support modular system description, veri�cation, analysis and design. They
allow a smooth combination of discrete and continuous reasoning in the same
framework. They are especially good at handling nondeterminism and approxi-
mate information.

2 Background

2.1 Timed Automata and Hybrid I/O Automata

The starting point for our transit project was the Lynch-Vaandrager timed au-
tomaton model, which has been used over the past few years to describe and
analyze many distributed algorithms and simple real-time systems. The de�ni-
tion of a timed automaton appears in [20, 18]. A variety of proof techniques for
timed automata have been developed, including invariant assertions and sim-
ulations [20], compositional methods based on shared actions [18, 5, 16], and
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temporal logic methods [24]. Applications of the model to asynchronous and
timing-based distributed algorithms appear in [22, 15, 12, 11, 16], applications
to communication systems appear in [24, 9, 1], and applications to real-time
control (trains and gates, steam boiler control) appear in [8, 10].

Briey, a timed automaton is a labelled transition system having real-valued
as well as discrete state components, and allowing continuous state evolution as
well as discrete state changes. A timed automaton has a set of states of which
a subset are distinguished as start states, a set of actions classi�ed as external
(input or output), internal, or time-passage actions, and a set of steps (both
discrete and time-passage). As a derived notion, it also has a set of trajectories,
which describe evolution of the state over time. A trajectory is obtained by �lling
in an interval of time solidly with states, so that time-passage steps connect all
pairs of states. An execution is an alternating sequence of (possibly trivial)
trajectories and discrete steps.

Most of the proofs that have been done using timed automata use invariants
(statements that are true about all reachable system states) and simulations
(statements of relationships between states of an implementation system and
states of a more abstract speci�cation system). Even proofs of timing properties
are done in this way; the key idea that makes this work is to build time deadlines
(�rst and last times for certain events to occur) into the automaton state and to
involve these deadlines in assertions. Some of the proofs have been automated,
using the Larch Prover (LP) [4] and PVS [23]. Other proofs use composition
and temporal logic. In these examples, the model works well, yielding clear,
unambiguous, and understandable descriptions and proofs.

The work on real-time control suggested to us that some additions to the
model would be useful for modelling hybrid systems. In particular, it would be
convenient to have trajectories as primitive rather than derived objects; this
would allow more direct modelling of physical behavior using physical laws.
Also, it would be useful to allow continuous interaction between components via
shared continuously-changing variables, in addition to discrete interaction via
shared actions; this would allowmodelling of systems with continuous controllers
or shared clocks, for example. These considerations led us to work on developing
a new \hybrid automaton" model.

Some conditions we wanted the new model to satisfy were: (a) We wanted
it to be an extension of the timed automaton model, in order to take advan-
tage of earlier results. (b) It should support modular system description, design,
veri�cation and analysis (using, for example, composition, abstraction, and sys-
tem transformation). Modular techniques work very well in reasoning about dis-
tributed algorithms, and they should work equally well for hybrid systems. (c) It
should be mathematical, not tied to or skewed toward any particular language for
programming or speci�cation, nor to any particular proof method or veri�cation
system. This would allow us to formulate results quite generally, only introduc-
ing restrictions (�nite-state, di�erentiability, integrability, Lipschitz, etc.) where
necessary. This generality would make the model exible enough to be used
as the formal basis for many di�erent languages and proof methods. (d) The



model should support the e�ective use of di�erent methods, in particular, those
of discrete algorithm analysis and those of control theory, in combination.

Our strategy for obtaining a good hybrid automaton model was to develop
the model along with case studies in a particular application. This meant that
we needed to choose the \right" application: one that was really hybrid (with
lots of interesting continuous and discrete activity), that was simple enough for
us to handle yet complicated enough to exercise the theory, and that a�orded
many opportunities for modular system description. Moreover, in carrying out
application case studies, our strategy was to model and analyze many related
designs rather than isolated examples; such a coordinated study would permit
the formal structure that is useful for the particular application to emerge.

2.2 Automated Transit Systems

The application we chose was Automated Transit Systems (ATS). Among our
reasons for this choice were:

1. We originally considered studying air-tra�c control. However, air-tra�c con-
trol is too complex to use in developing basic theory, because it adds the
complexities of three-dimensional geometry to those of combining continu-
ous and discrete behavior. Many of the problems arising in the ATS domain
seem to be simpler (one-dimensional) versions of problems arising in air-
tra�c control.

2. The ATS application is important in its own right. There has been a recent
surge of interest in ATS, on at least three fronts: Personal Rapid Transit
(PRT) systems, in which small public vehicles circulate on tracks under
automated control, Intelligent Vehicle Highway Systems (IVHS), in which
ordinary cars are augmented with sensor, communication and control devices
to allow some automated assistance, and traditional transportation systems,
which are now being augmented with some automated control features.

3. ATS is a rich application, appearing to provide the right features to ex-
ercise the theory. It contains issues of safety (avoiding crashes, observing
maximum speed limits), performance, and comfort. It contains a rich com-
bination of continuous and discrete behavior { a complex real-world system
may be controlled by an equally complex distributed computer system. It
seems to have a good deal of modularity, for example, system decomposi-
tions involving separate vehicles, separate nodes of a distributed computer
system, or separate functions. It appears that a system can be described at
di�erent levels of abstraction, by considering a derivative-based view versus
an explicit function view, or a discrete view versus a continuous view.

4. The ATS area has many similarities with other areas we had studied ex-
tensively, in particular, the area of communication systems. Both commu-
nication and transit systems involve getting something successfully from a
source to a destination, with good throughput and timely arrival.2 This sim-

2 There are di�erences. Messages are not usually thought of as having velocity and
acceleration. And it is generally worse to lose a vehicle than it is to lose a message.



ilarity makes it likely that techniques that have been used successfully for
communication will carry over to ATS.

5. Engineers working in ATS seem amenable to the use of formal methods,
because the area is so safety-critical.

2.3 Our Project

We have begun using timed automata and some extensions to describe and
obtain results about typical problems arising in ATS's. The methods we are using
include invariants and simulations, composition, and di�erential equations.

With help from application engineers Johnson, Spielman, Delisle, Sastry,
Godbole, and Lygeros, we have been identifying problems arising in ATS's, in-
volving, for example,

1. Attaining and maintaining safe speeds.

2. Attaining and maintaining safe inter-vehicle distances.
3. Implementing typical vehicle maneuvers, such as lane changes, merging and

diverging at Y-junctions, joining and splitting \platoons" of vehicles, etc.
4. Resolving conicts among several di�erent planned vehicle maneuvers.

5. Tracking speci�ed vehicle trajectories.
6. Handing o� control of vehicles from one computer to a neighboring computer

in a distributed computer system.
7. Protecting against catastrophes.

8. Routing.

We are modelling versions of these problems formally and proving various prop-
erties (safety, throughput, timely arrival, passenger comfort) of the systems we
describe. We consider these problems in the presence of various types of uncer-
tainty, for instance, communication delays and uncertainty in vehicle response.
We are trying to identify and use modularity wherever possible. We aim not
only for results about the particular problems, but also at a general structured
theory for ATS's. Also, as I described above, we are using this work to help us
to develop general models for hybrid systems.

The next four sections contain descriptions of some of the particular problems
we have modelled. Section 3 contains a study of a simple deceleration maneuver.
Section 4 shows two uses of levels of abstraction in reasoning about a simple
acceleration maneuver: to relate a derivative view of a system to a function view,
and to relate a discrete view to a continuous view. Sections 5 and 6 provide brief
summaries of our work on vehicle protection systems and platoon join safety,
respectively. The paper closes with a brief conclusion section.

Two other papers in this volume are closely related to this one. In [26],
Weinberg, Lynch and Delisle provide a detailed description of our work on ve-
hicle protection systems. And in [17], Lynch, Segala, Vaandrager and Weinberg
present the latest version of our general hybrid automaton model, which we call
the hybrid I/O automaton (HIOA) model.



3 Deceleration

Our �rst project [21, 25] was the analysis of a simple control maneuver designed
to ensure that a vehicle's speed is within a given range [vmin ; vmax ] when it
reaches a particular track position xf . The vehicle is assumed to start at position
0 with known velocity vs > vmax . A version of this problem was studied earlier
by Schneider and co-workers [2].

We considered this problem with uncertain vehicle response and communi-
cation delay, and with and without periodic sensor feedback. We proved, using
invariants and simulations, that certain example controllers guarantee correct
behavior.

3.1 No Feedback

In the simplest version of the problem, there is no feedback from the vehicle
to the controller. The controller is allowed to apply a brake at any time, which
causes the vehicle to decelerate at some unknown, possibly varying rate in the
interval [a � �; a], where a is a known negative real. The controller can also
disengage the brake (\unbrake") at any time. The controller can use only its
knowledge of the constants vs, vmin , vmax and a to decide when to brake and
unbrake. Of course, some restrictions on the constants are needed in order to
make such a maneuver possible.

We modelled the vehicle by a single hybrid I/O automaton (HIOA), V , using
the model of [17].3 Its discrete actions are the two inputs, brake and unbrake .
Its state consists of values of the following variables:

x 2 R, initially 0

_x 2 R, initially vs

�x 2 R, initially 0

acc 2 R, initially 0

braking, a Boolean, initially false

Here, acc represents the acceleration proposed by the automaton's environment
(presumably, a controller) while �x represents the actual acceleration. The vari-
ables x and _x represent the position and velocity, respectively. The e�ects of the
discrete inputs are described by the following \code".

brake
E�ect:

braking := true
acc := a

�x :2 [a� �; a]

unbrake
E�ect:

braking := false
acc := 0
�x := 0

The trajectories are all the mappings w from left-closed subintervals I of R�0 to
states of V such that:
3 At the time we carried out this project, we actually used a less powerful extension
of the timed automaton model, but the newer model works even better.



1. braking is unchanged in w.
2. �x is an integrable function in w.
3. For all t 2 I, the following conditions hold in state w(t):

(a) If braking = true then �x 2 [acc � �;acc], otherwise �x = 0.

(b) _x = w(0): _x+
R
t

0
w(u):�xdu.

(c) x = w(0):x+
R
t

0
w(u): _xdu.

(The dot after a state is used to indicate state components.) Thus, the acc
variable is set by the environment (controller), by braking and unbraking. The
actual acceleration, velocity and position are determined accordingly: the actual
acceleration �x is assumed to be in an interval bounded above by acc if the brake
is on, and otherwise is 0, while the actual velocity and position are determined
from �x using integration. Our choice of notation for describing V is not important
{ other notation could be used, as long as it denotes the same HIOA.

Many controllers could be combined with automaton V . We considered a
trivial controller that just brakes once, at some time in the interval [0; t1], then
unbrakes once, at some time in the interval [t2; t3] after braking. The speci�c
times t1, t2 and t3 were chosen to be as nonrestrictive as possible. We modelled
the controller by another HIOA, C. Its discrete actions are the two outputs,
brake and unbrake . It enforces the time bounds t1, t2 and t3 by including dead-
line variables last-brake, �rst-unbrake, and last-unbrake in its state, and manip-
ulating them so as to ensure that the brake and unbrake actions occur at allowed
times. That is, initially last-brake = t1. When brake occurs, �rst-unbrake and
last-unbrake are set to times t2 and t3 in the future, respectively. C does not
allow time to pass beyond any last deadline currently in force, and does not
allow an unbrake action to occur if its �rst deadline has not yet been reached.
The trajectories are trivial { there is no interesting continuous behavior in the
controller, so time just passes without changing anything else.

The entire system is modelled formally as the composition of the two HIOA's,
V and C. We proved two properties of this composed system, V � C, both
involving the behavior of V :

1. If x = xf then _x 2 [vmin ; vmax ].

2. x eventually reaches position xf .

For example, consider the velocity upper bound, that is, the claim that the
velocity at position xf is at most vmax . This claim can be expressed as an
invariant, so we wanted to prove it in the usual way for invariants { by induction
on the length of an execution. For executions of an HIOA, we take the \length"
to be the total number of discrete steps and trajectories. As usual for invariants,
we had to strengthen the property so that it could be proved inductively; this
involved saying something about states where x 6= xf . By using laws of motion,
we came up with the following stronger assertion:

Assertion 3.1 In all reachable states, if x � xf then xf �x �
v2
max

� _x2

2a .

This says that there is enough remaining distance to allow the velocity to de-
crease to vmax by position xf , even if deceleration is the slowest possible.



We proved this strengthened claim using induction. In this inductive proof,
the cases involving discrete steps needed only discrete reasoning, while the tra-
jectory cases needed only continuous analysis based on laws of motion. The com-
bined argument implies that the assertion is always true, even with the given
combination of continuous and discrete behavior.

For both the velocity lower bound and the \eventuality" property, the key
was to show:

Assertion 3.2 In all reachable states, _x � vmin .

Again, this property cannot be proved alone using induction. The key to the
proof turned out to be the following claim about the last-unbrake deadline while
the vehicle is braking:

Assertion 3.3 In all reachable states, if braking = true then
last-unbrake � now + vmin� _x

a��
.

This says that the brake must be turned o� before the velocity has a chance to
drop below vmin , assuming the maximumdeceleration a��, Here, now represents
the current time. Again, this statement can be proved using induction.

This simple deceleration example already illustrates several aspects of our
model and methods: It shows how vehicles and controllers can be modelled using
HIOA's and composition, and in particular, how deadline variables can be used
to express timing restrictions. It shows some typical correctness conditions {
an invariant and an eventuality property { both expressed in terms of the real-
world component of the system. It shows how invariants can provide the keys
to proofs. Invariants can involve real-valued quantities representing real-world
behavior, thus allowing facts about velocities, etc. to be proved by induction;
invariants can also involve deadline variables, thus allowing time bounds to be
proved by induction.

This example also shows how continuous and discrete reasoning can be com-
bined in a single proof, with formal criteria to ensure that the combination is
correct. It illustrates careful handling of uncertainty. Finally, the arguments are
general { they don't handle just the apparent worst cases, but all cases at once.

We extended this example slightly to demonstrate some uses of abstraction
and composition. Namely, in place of the very nondeterministic automaton C

given above, we described the causes of uncertainty in the braking and unbraking
times in detail { we supposed that the uncertainty arose entirely from commu-
nication delay from a less uncertain controller C0 to V . That is, the composition
of C0 and a \delay bu�er" automatonD, C0�D, exhibits behavior that remains
within the bounds allowed by the more abstract controller C. Formally, it \imple-
ments" C, in the sense of inclusion of external behavior (here, sets of sequences
of brake and unbrake actions, each with an associated time of occurrence).

We showed this inclusion using a simulation relation to relate states of C0�D
to states of C. The most important part of the de�nition of this simulation re-
lation was a set of inequalities involving the deadlines in the two automata.
The proof that the relation is a simulation followed the normal pattern for such



proofs { it involved showing a correspondence involving start states, one in-
volving discrete steps, and one involving trajectories. Existence of a simulation
implies inclusion of external behavior.

External behavior inclusion wasn't quite enough, however. What we really
wanted was an exact correspondence between velocity and position values in
V , when it is composed with the controller C and when it is composed with
the implementation C0 �D. But this correspondence can be obtained from the
external behavior inclusion result, using basic projection and pasting results
about composition of HIOA's.

3.2 Feedback

We also considered a version of the problem with periodic feedback from the
vehicle to the controller, triggering immediate adjustment by the controller of
the proposed acceleration. This time, we allowed the controller to set acc to any
real value, not just to a �xed value a or 0. As before, the controller's request
need not be followed exactly, but only within a tolerance of �.

Our new version of the vehicle automaton V was very similar to the one we
used for the no-feedback case. A change is that the new V reports its position
x and velocity _x every time d. In order to express this in terms of an HIOA, we
added a last-sample deadline component and managed it appropriately. The new
V has an accel(a) input action, which causes acc to be set to a. The actual accel-
eration �x is anything in [acc � �; acc]. C performs an accel output immediately
after receiving each report.

Now C has more information than before, so it can guarantee more precise
velocity bounds. We modelled a controller that initially sets acc to aim so that,
if the vehicle followed acc exactly, it would reach velocity exactly vmax when
x = xf . Since the vehicle might actually decelerate faster than acc, C might
observe at any sample point that the vehicle is going slower than expected. In
this case, C does not change acc until the velocity actually becomes � vmax .
Thereafter, at each sample point, C sets acc to aim to reach vmax at exactly the
next sample point.

We proved the same two properties for this case as we did for the no-feedback
case, but for tighter bounds on the �nal velocity. The argument again used
invariants. For example, consider the argument that in all reachable states, _x �
vmin . Now to prove this by induction, we needed auxiliary statements about
what is true between sample points, for example:

Assertion 3.4 In all reachable states between sample points,
_x+ (acc � �)(last-sample � now ) � vmin .

That is, if the current velocity is modi�ed by allowing the minimum acceleration
consistent with the current acc, until the next sample point, then the result will
still be � vmin . Note the use of the last-sample deadline to express the time until
the next sample point. This statement is proved using induction.

This example illustrates how our methods can be used to handle more compli-
cated examples, including periodic sampling and control. It shows how to reason



about periodic sampling using intermediate invariants involving the last-sample
deadline: The controller issues control requests to the system at sample times,
but can \lose control" of the system's behavior between sample points; the in-
variants are used to bound how badly the system's performance can degrade
between sample points. Again, we handle all cases reliably, not just the appar-
ent worst cases.

4 Levels of Abstraction

Our second project [14] showed how levels of abstraction, one of the most im-
portant tools of discrete system analysis, can be used to reason about a simple
acceleration maneuver. In this case, the goal is for a vehicle to reach a speci�ed
velocity vf at a speci�ed time tf in the future. We assumed that the vehicle
starts at time 0 with velocity 0. The vehicle reports its velocity to the controller
every time d. The controller can send an accel(a) control signal to set acc := a

immediately after each sample point. The actual acceleration _v is anything in
the range [acc � �; acc]. The controller we considered aims to reach the goal of
vf at time tf . That is, it proposes acceleration

vf�v

tf�now
, where v is the current

velocity.
Using invariants and simulations, we proved bounds on velocity at every point

in time. The proofs use levels of abstraction in two ways: relating a derivative
view of a system to an explicit function view, and relating a system in which
corrections are made at discrete sampling points to a system in which correc-
tions are made continuously. The uncertainty � in the acceleration is integrated
throughout the levels.

First, we ignored the discrete sampling and considered a controller that con-
tinuously sets acc to the ratio given above, with _v 2 [acc; acc � �]. It was easy
to see that the velocity at time t is at most g(t) = vf t

tf
. For the lower bound, by

solving the di�erential equation:

_f(t) =
vf � f(t)

tf � t
� �;

we got a conjectured lower bound of:

f(t) =
vf t

tf
+ �(tf � t) log(

tf � t

tf
)

(patched with vf at tf ). The function f is the result of aiming at (tf ; vf ) and
consistently missing low by �.

To prove that f is indeed a lower bound, we used two levels of abstrac-
tion. The high level is an HIOA V giving explicit bounds on v. Its state con-
tains only v and now , and the only constraint is that in every reachable state,
v 2 [f(now ); g(now )]. The low level is another HIOA D giving bounds on the
derivative of v. It keeps acc aiming at (tf ; vf ) and ensures that _v 2 [acc; acc��].
In a sense, D describes how the system is supposed to guarantee the bounds
expressed by V .



We showed that D \implements" V , in the sense of inclusion of external
behavior (here, the values of v and now). We showed this inclusion using a
simulation relation to relate states of D and V . As usual, the proof involved
showing a correspondence involving start states, one involving discrete steps, and
one involving trajectories. The only interesting case is the one for trajectories.
Basically this involved showing that, if the pair (now ; v) starts within the region
speci�ed by V , the rule used by D does not cause the pair to leave that region.
This is in turn proved using standard methods of continuous analysis, expressed
formally as invariants involving _v.

Unfortunately, the actual controller does not behave as nicely as D. It only
sets acc to aim at (tf ; vf ) at sample points rather than continuously. Between
sample points, the value of acc can degrade. In fact, it is not hard to see that
v does not necessarily remain above f { the uncertainty introduced by periodic
sampling is reected in a change to the actual behavior produced. Therefore, we
had to modifyV to reect the new source of uncertainty. The result was a new V 0

with a new lower bound f 0 constructing by aiming not at the \real goal" (tf ; vf ),
but at an adjusted goal that depends on d and �, speci�cally, (tf ; vf � �d).

At this point, we could have shown directly (using a simulation relation)
that the real system, I, implements V 0. However, we found it useful to instead
introduce a third level of abstraction, in the form of a modi�ed version D0 of
D. D0 di�ers from D by having a looser rule for acc: instead of continuously
setting acc to aim exactly at (tf ; vf ) it can instead (continuously) set it to point
anywhere between (tf ; vf ) and (tf ; vf � �d). Thus, D0 contains uncertainty in
acc, in addition to the � uncertainty in _v. With these simple modi�cations, we
easily modi�ed our proof that D implements V to show that D0 implements V 0.

Having shown that D0 implements V 0, we were able to forget about V 0 and
just show that I implements D0. Using a transitivity result, this implies that I
implements V 0, as needed.

To show that I implements D0, we showed that the identity on all the state
components of D0 is a simulation relation from I to D0. The key to this proof is
the fact that any acc that is set in I is in the range permitted by D0. Note that
acc is set to aim at the upper end of its range, (tf ; vf ), at each sample point, but
can degrade between sample points. As before, we had to bound the amount of
degradation that occurs between sample points. The key claim is that:

Assertion 4.1 Between sample points, acc � vf��(now+d�last-sample)�v

tf�now
.

This says, roughly speaking, that the value of acc has not degraded too badly
if there is still a long time until the next sample point. In particular, at the
beginning of a sample interval, now + d = last-sample, so the right-hand side of
the inequality simpli�es to

vf�v

tf�now
, which is exactly the upper end of the range

allowed by D0. Also, at the end of a sample interval, now = last-sample, so the
right-hand side simpli�es to

vf��d�v

tf�now
, which is exactly the lower end of the range.

The complete assertion gives bounds for all the intermediate points as well. This
assertion is proved by induction.

This example illustrate more uses of HIOA's and invariants, and the use of
last-sample deadlines to limit degradation between sample points. Most impor-



tantly, it demonstrates two uses of levels of abstraction in reasoning about hy-
brid control problems: relating a derivative view of a system to a function view,
and relating a discrete view to a continuous view. Uncertainties are included
throughout, and are handled accurately.

The example also illustrates the useful strategy of specifying the highest-level
correctness conditions in terms of an explicitly-speci�ed region of allowed val-
ues for the important physical variables. Derivative-based descriptions can be
regarded as ways to guarantee that the behavior remains within the high-level
regions. For instance, in air-tra�c control, the highest-level speci�cation might
involve regions in space-time \owned" by particular airplanes. Disjointness of
regions then would imply that planes do not collide. The mechanisms for ensur-
ing that individual planes remain within their regions could be reasoned about
individually, and separately from consideration of the disjointness of regions.

Note that the bounding functions for the high-level region are obtained using
usual methods of continuous analysis { our techniques do not provide any help
here. However, our methods do allow systematic checking that the results of the
analysis are correct (in particular, that they really capture the worst cases and
that they cope correctly with uncertainties).

5 Vehicle Protection Systems

Our third project [26] has been the analysis of automated Vehicle Protection
(VP) systems, which are sometimes added to automated Vehicle Operation (VO)
systems in order to enforce particular safety constraints. We model both VP and
VO systems as HIOA's, and model their combination by composition. Each VP
automaton monitors the physical system, using discrete sampling, and checking
for \dangerous" conditions. When such conditions occur, the VP triggers an
emergency response. For example, a VP might check whether a vehicle's speed is
\close" to a speci�ed \overspeed", in order to apply an emergency brake before
the overspeed could actually be exceeded. In [26], we analyze both overspeed
protection and maintenance of safe separation distance between pairs of vehicles.

This project demonstrates how to model the important interactions between
VP and VO systems, using HIOA's and composition. Again, bounding the degra-
dation of physical variables between sample points is a key to the analysis. The
project also shows how to compose several VP systems with the same VO system,
thereby obtaining the guarantees of all the VP's at once. In this composition,
some of the VP's might assume the e�ects achieved by others. Our work has
yielded useful methods for thinking carefully about the design of such systems.

6 Joining Platoons

Finally, our fourth project, just beginning, is the analysis of a \platoon join"
maneuver arising in the PATH project [3]. The problem is for cars travelling
in a \platoon" to join with another platoon travelling ahead of it in the same



lane. The join is accomplished by having the second platoon accelerate to catch
up with the �rst. This introduces the possibility of collisions: We assume that
there is some maximum possible deceleration a, the same for all vehicles. If
the �rst platoon suddenly brakes at rate a, and the second platoon is near the
�rst and going faster, then the second platoon will collide with the �rst, even
if the second can react immediately. However, this is considered acceptable by
the PATH researchers as long as the relative velocity of the two platoons upon
collision is no greater than a small constant vallow.

In [3], a particular controller is described that ensures this relative velocity
bound, while allowing the join to be completed as fast as possible and observing
passenger comfort limits (expressed by bounds on acceleration and jerk). The
controller causes the second platoon to accelerate as fast as possible, subject to
safety limits and passenger comfort limits, in order to catch up, and then to
decelerate as fast as possible to move into the correct position.

Our goals are to model this system using HIOA's, and to formulate and
prove its properties. There are four separate properties to prove: observance of
the vallow limit, eventual success in joining platoons, passenger comfort, and
optimal join time. Our idea is to use these four separate properties as a basis for
decomposing the system and its proof.

So far, we have just considered the safety property { that is, the vallow limit.
For this, we are describing a very nondeterministic safety controller that just
guarantees safety (but not necessarily the other three properties). Our plan is
to prove that the safety controller guarantees safety, and then to show that
the actual controller implements the safety controller. A bonus is that the safety
controller should be reusable for analyzing other maneuvers besides platoon join.

We de�ne a Platoons HIOA to model the behavior of the platoons, and allow
platoon 1 to be under the control of an arbitrary controller HIOA, C1. C1 is
unconstrained, subject only to a known maximumdeceleration a. The designer's
job is to design a safety controller, C2, for platoon 2 that works with any C1.
That is, the combination of Platoons , C2 and an arbitrary C1 should guarantee
the safety property.

The key to the safety property is an invariant that says that platoon 2's
velocity is slow enough, relative to the velocity of platoon 1 and the inter-platoon
distance. There are two possibilities, either of which is �ne. First:

x1 � x2 �
_x1
2 + v2allow � _x2

2

2a

This says that enough distance remains to allow platoon 2 to reach vallow by
the time a collision occurs, even if platoon 1 decelerates as fast as possible. And
second:

_x2 � _x1 + vallow

This says that the relative speed is already small enough. The analysis is essen-
tially the same as in [3] (ignoring delays in response), but it is expressed in our
invariant style. We can prove that a particular nondeterministic C2 maintains
the disjunction of these two inequalities, and hence guarantees safety.



This example illustrates how our techniques (here, invariants and composi-
tion) apply to reasonably complex, realistic systems. It shows how to model a
controller that is supposed to work in the presence of unpredictable behavior on
the part of some of the real-world entities. Again, we handle all cases reliably,
not just the apparent worst cases. Our analysis has given us some insights about
the application. For example, we realized that it is important to also model what
happens after a collision; our techniques appear to be suitable for doing this,
but this still remains to be done.

7 Conclusions

We have used hybrid I/O automata to model and verify examples arising in
automated transit. We began with very simple deceleration examples, and have
progressed to more realistic examples involving vehicle protection systems and
platoon join safety. Our methods allow accurate handling of nondeterminism, un-
certainties and discrete sampling. All cases are considered, not just the apparent
worst cases. The methods support modular system description, veri�cation, anal-
ysis and design. They allow a smooth combination of discrete and continuous
reasoning, in the same framework.

I have pointed out the key technical features of our approach in various places
throughout the paper. The most important of these are: our modelling of all sys-
tem components (physical world and computer system) as HIOA's; our use of
deadline variables to express timing restrictions; our use of composition to de-
scribe interactions among components; our statement of correctness conditions
in terms of the real world; our extensive use of invariants, including those involv-
ing real-valued quantities such as deadlines; our handling of periodic sampling
by limiting the degradation of key parameters between sample points; our de-
scription of systems at many levels of abstraction; our speci�cation of correctness
in terms of regions of allowed values for important physical variables; our use
of simulations to show correspondences between di�erent levels of abstraction;
and our use of composition to model controllers that work in the presence of
unpredictable behavior on the part of some of the system components.

Our preliminary results say that these methods work well to provide useful
results about safety and performance of automated transit systems. They have
already had some impact on system designers. Our work on ATS modelling has
also inuenced the development of the basic HIOA model. It remains to use
the model and methods to study many more ATS problems, and to integrate
the results obtained for all these problems into a coherent theory for automated
transit systems.

Acknowledgment: Michael Branicky provided useful information about con-
trol theory methods and useful discussions of the platoon join maneuver.
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