
What are principal typings and what are they

good for?

Technical Memorandum MIT/LCS/TM{532

Trevor Jim�

Laboratory for Computer Science
Massachusetts Institute of Technology

August 1995

Abstract

We demonstrate the pragmatic value of the principal typing property,

a property more general than ML's principal type property, by study-

ing a type system with principal typings. The type system is based on

rank 2 intersection types and is closely related to ML. Its principal typ-

ing property provides elegant support for separate compilation, including

\smartest recompilation" and incremental type inference, and for accurate

type error messages. Moreover, it motivates a novel rule for typing recur-

sive de�nitions that can type many examples of polymorphic recursion.

Type inference remains decidable; this is surprising, since type inference

for ML plus polymorphic recursion is undecidable.

Keywords: Polymorphic recursion, separate compilation, incremental

type inference, error messages, intersection types.

1 Introduction

We would like to make a careful distinction between the following two properties
of type systems.

Property A
Given: a term M typable in type environment A.

There exists: a type � representing all possible types for M in A.

Property B
Given: a typable term M .

There exists: a typing A `M : � representing all possible typings of M .

�545 Technology Square, Cambridge, MA 02139, trevor@theory.lcs.mit.edu. Supported by

NSF grants CCR{9113196 and CCR{9417382.

1

Property A is the familiar principal type property of ML. By analogy, we will
call Property B the principal typing property. The names are close enough to
give us pause. In fact, some authors have used \principal typings" in reference
to Property A. But \principal typings" is also the name traditionally applied
to Property B, and we will not introduce a new name here.

Why do we care to make such a distinction? Property A|principal types|
is certainly useful. But Property B|principal typings|is more useful still.
We believe this has been overlooked because ML and its extensions completely
dominate current research on type inference; and we know of no sense in which
ML has principal typings. We will return to this point in x6.

In this paper, we demonstrate the usefulness of the principal typing property
by studying a type system that has it. We emphasize that our results are
motivated entirely by the general principal typing property, and not by the
technical details of this particular case study. Any system with principal typings
can bene�t from our observations.

Nevertheless, we take some care in choosing our case study, so that its rel-
evance to current practice will be immediately evident. Therefore, we seek a
type system closely related to ML: it should be able to type all ML programs,
it should have decidable type inference, and the complexity of type inference
should be approximately the same as in ML.

The type system that satis�es all of these requirements is the system of
rank 2 intersection types. This system is closely related to the more well-known
rank 2 of System F|they type exactly the same terms|but it possesses the
additional property of principal typings. We use a variant of this system, called
P2, as our case study.

The distinction between principal types and principal typings is evident in
the type inference algorithm for P2: it takes a single input, a term M , and
produces two outputs, an A and � such that A ` M : �. The types required
of the free variables of M are speci�ed by A; but A is a byproduct of type
inference, not a necessary input. Contrast this with Milner's algorithm for ML,
whose let-polymorphism relies on A being an input.

We illustrate the bene�ts of principal typings in three areas: recursive de�-
nitions, separate compilation, and accurate type error messages.

Recursive de�nitions. The following well-known example was used by
Mycroft [17] to illustrate the de�ciencies of ML's handling of recursive de�ni-
tions:

map = �f:�l: if null l then nil else f(hd l) ::map f (tl l)

squarelist = �l: map (�x: x� x) l

complement = �l: map (�x: not x) l

This program is not typable in ML when presented as a single, mutually recur-
sive de�nition.1 The rule of polymorphic recursion was introduced [17, 10] as a

1Note that map does not depend on the other functions, and it is possible for ML to type

the program by considering the de�nition of map separately; but Mycroft exhibits natural

2

remedy:

(rec-poly)
Ax [fx : �g `M : �

A ` (�xM) : �
(where � is an ML type scheme)

The rule (rec-poly) allows the bodyM of the recursive de�nition (�xM) to be
typed under the assumption that x has a polymorphic type. This is su�cient to
handle the map example above. But now consider type inference using Milner's
algorithm: in order to infer a type, �, for the de�nition M , we need to know
the type to use for the free variable x, that is, �. Resolution of this \chicken
and egg" problem is, in fact, impossible: type inference is undecidable [11, 5].

The principal typing property suggests a new rule for typing recursive de�-
nitions:

Ax [fx : �g `M : �
A ` (�xM) : �

(where � � �)

In this rule, the type � assumed for the recursive variable x need not be the same
as the type � derived for its de�nitionM . The type � expresses the requirements
on x needed to giveM the type �; as long as � meets these requirements (� � �),
it is safe to assume it as the type of the de�nition.

Now the strategy for type inference becomes clear: infer the principal typing
A ` M : � for M , producing both � and � = A(x). It only remains to ensure
� � � , and this can be accomplished by subtype satisfaction, a procedure similar
to uni�cation. The result is a type system with decidable type inference, able
to type many examples of polymorphic recursion, including the map example.

Separate compilation. In separate compilation, a large program is divided
into smaller modules, each of which is type checked and compiled in isolation.
The program as a whole is closed, but modules have free variables|a module
may refer to other modules. Types play an important role in compilation; for
instance, the data representations and calling conventions of a module may
depend on its type. Thus the compiled machine code of a module may depend
on the types of external variables that it references.

Consequently, most compilers require the user to specify the types of ex-
ternal variables referenced in each module. In P2, our ability to perform type
inference on program fragments with free variables means that the user need
not write these speci�cations: the compiler can infer them itself. More signif-
icantly, principal typings will enable us to achieve smartest recompilation [18],
which guarantees that a module need not be recompiled unless its own de�ni-
tion changes. We also show that principal typings enable an elegant and e�cient
solution to a related problem, incremental type inference [1].

Error messages. Most compilers for strongly typed languages do not do a
good job of pinpointing the location of type errors in programs; see Wand [21]
for a discussion. As a �nal example of the utility of principal typings, we show

examples of functions that cannot be separated in this manner, and which cannot be typed

in ML.

3

that principal typings help to produce error messages that accurately identify
the source of type errors.

Organization of the paper. We introduce the type system P2 in x2, and
state some of its basic properties. We describe how we type recursive de�nitions
in x3, and we show how principal typings support separate compilation in x4.
We describe how principal typings produce more accurate type error messages
in x5. In x6, we address the question of whether principal typings exist for ML.
In x7, we describe an extension of P2 with principal typings. We discuss related
work in x8, and we summarize our results in x9. In an appendix, we show how
our rule for typing recursive de�nitions could be added to ML. Proofs of all
theorems can be found in a separate paper [6].

2 The type system

We now present our type system, in an expository manner. Uninteresting details
have been placed in an appendix. For the most part, the system relies on
familiar rules of subtyping and type assignment. However, the system is based
on a notion of rank, and there are some complications due to the need to stay
within rank. These complications are characteristic of all ranked systems.

Our programs are just the terms of the lambda calculus:

M ::= x j (M1M2) j (�xM):

Notice that our programs do not use ML's let-expressions. In our type system,
let x = M in N can be considered an abbreviation for (�xN)M .

We will be de�ning several classes of types, each of which is a restriction of
the types with quanti�cation and intersection:

� ::= t j (�1 ! �2) j (8t�) j (�1 ^ �2):

For those unfamiliar with intersection types, we present a brief example. A
term of type (�^ �) is thought of as having both the type � and the type � . For
example, the identity function has both type (t! t) and (s! s) ! (s! s), so

(�y:y) : (t! t) ^ ((s! s) ! (s! s)):

By this intuition, a quanti�ed type stands for the in�nite intersection of its
instances:

(�y:y) : (8u:u! u):

The types (t ! t) and (s ! s) ! (s ! s) are instances of (8u:u ! u), so in
some sense this typing is \more general" than the �rst.

Our ranked system will allow only a limited use of intersections: they may
only appear to the left of a single arrow. For example, we will be able to derive
the following type in our system:

(�x:xx) : 8s; t:(s ^ (s! t))! t:

4

This says that as long as the argument of the function (�x:xx) has both the
types s and s! t, for some s and t, the result will be of type t. Note that this
term is not typable in ML. An appropriate argument for this function is the
identity function:

(�x:xx)(�y:y) : (8u:u! u):

Again, we will be able to derive this type in our system. This example is typable
in ML, provided it is translated into a let-expression:

let x = (�y:y) in xx : (8u:u! u):

We now give the details of our ranked system, called P2. The sets T0, T1,
T2, and T82 of types are de�ned inductively by the equations below.

T0 = f t j t is a type variable g [f(�! �) j �; � 2 T0g;

T1 = T0 [f(� ^ �) j �; � 2 T1g;

T2 = T0 [f(�! �) j � 2 T1; � 2 T2g;

T82 = T2 [f(8t�) j � 2 T82g:

The set T0 is the set of simple types, and T1 is the set of �nite, nonempty
intersections of simple types. T2 is the set of rank 2 intersection types: these
are types possibly containing intersections, but only to the left of a single arrow.
Note that T0 = T1 \ T2. Finally, T82 adds top-level quanti�cation of type
variables to T2.

Just as we have several classes of types, we have several subtyping relations.2

Their de�nition is simpli�ed by observing the following conventions: we con-
sider types to be syntactically equal modulo renaming of bound type variables,
reordering of adjacent quanti�ers, and elimination of unnecessary quanti�ers;
and we consider `^' to be an associative, commutative, and idempotent oper-
ator, so that any T1 type may be considered a �nite, nonempty set of simple
types, written in the form (

V
i2I �i), where each �i 2 T0.

De�nition 1 For i 2 f1; 2; 82g, we de�ne the relation �i as the least partial
order on Ti closed under the following rules:

� If f�j j j 2 Jg � f�i j i 2 Ig, then (
V

i2I �i) �1 (
V

j2J �j).

� If �1 �1 �1 and �2 �2 �2, then (�1 ! �2) �2 (�1 ! �2).

� If � �2 � , then � �82 � .

� If � 2 T0, then (8t�) �82 ft := �g�.

� If � �82 � and t is not free in �, then � �82 (8t�).

2These could be combined into a single subtyping relation, but it is technically convenient

to keep them separate.

5

The �rst rule says that �1 expresses the natural ordering on intersection types.
The second rule says that�2 obeys the usual antimonotonic ordering on function
types, restricted to rank 2. The rules for �82 express the intuition that a type
is a subtype of its instances (we write ft := �g� for the substitution of � for t
in �). They are equivalent to the following rule, similar to ML's notion of
generic instance:

� If f~s := ~�g� �2 � , where ~� is a vector of simple types, and the type
variables ~t are not free in (8~s�), then 8~s� �82 8~t� .

Note that we only allow instantiation of simple types. This ensures that instanti-
ation does not take us beyond rank 2. It also has less desirable implications, e.g.,
(8t:t) is not a least type in the ordering �82: (8t:t) 6�82 (s1 ^ (s1 ! s2))! s2.

A fourth subtyping relation will play an important role in the type system.
The relation �82;1 between T82 and T1 is the smallest relation satisfying the
rule:

� If � �82 �i for all i 2 I, then � �82;1 (
V
i2I �i).

The relation �82;1 is not a partial order; it is not even reexive. This is because
it relates types \across rank." Note that in a comparison

(8t�) �82;1 (
^
i2I

�i);

the type variable t may be instantiated di�erently for each �i.
The type system derives judgments of the form A `M : �, where � is a T82

type, and all of the types in A are T1 types. The typing rules are given below.

(var) A [fx : �g ` x : � (where � �1 � 2 T0)

(abs)
Ax [fx : �g `M : �
A ` (�xM) : �! �

(app)
A `M : �1 ! �2 A ` N : �

A ` (MN) : �2
(where � �82;1 �1)

(gen)
A `M : �

A ` M : (8t�)
(where t is not free in A)

(sub)
A `M : �
A `M : �

(where � �82 �)

Example 2 Recall that the typings

(�x:xx) : 8s; t:(s ^ (s! t))! t;

(�y:y) : (8u:u! u);

hold in our system. Then by rule (sub),

(�x:xx) : (s! s) ^ ((s! s)! (s! s))! (s! s):

6

And (8u:u! u) �82;1 (s! s) ^ ((s! s)! (s! s)), so by rule (app),

(�x:xx)(�y:y) : (s ! s):

Finally, by rule (gen),

(�x:xx)(�y:y) : 8s:s! s:

We now give the de�nition of principal typings appropriate to our system.

De�nition 3
i) A typing B ` M : � is an instance of a typing A ` M : � if there

is a substitution S such that S� �82 � and B(x) �1 S(A(x)) for all
x 2 dom(A).

ii) A principal typing for a term M is a typing A `M : � of which any other
typing of M is an instance.

This de�nition is standard, c.f. [16]. Note in particular that the notion of in-
stance is monotonic in the derived type, but antimonotonic in the type environ-
ment. The intuition is, a principal typing expects less of its free variables,
and provides more than any other typing judgment.

The close connection between all of the rank 2 systems is expressed by the
following theorem.

Theorem 4 A term M is typable in P2 i� M is typable in rank 2 of System F

i� M is typable in rank 2 of the intersection type discipline. Therefore, typability

in P2 is DEXPTIME-complete.

The equivalence between rank 2 of System F and the rank 2 intersection disci-
pline has been shown independently by Yokouchi [23].

2.1 Subtype satisfaction

In order to perform type inference, we must solve subtype satisfaction problems,
which generalize uni�cation. Solving subtype satisfaction also gives a decision
procedure for subtyping. We will focus on the relation �82;1, as it is the most
important for type inference; all of the other relations can be handled in a
similar manner.

A �82;1-satisfaction problem � is a pair 9~s:P , where P is a set whose every
element is either: 1) an equality between simple types; or 2) an inequality
between a T82 type and a T1 type. A substitution S is a solution to 9~s:P if
there is a substitution S0 such that S(t) = S0(t) for all t 62 ~s, S0� �82;1 S0�

for all inequalities (� � �) 2 P , and S0� = S0� for all equalities (� = �) 2 P .
We write MGS(�) for the set of most general solutions to a �82;1-satisfaction
problem � (as with uni�cation, most general solutions are not unique).

Theorem 5
i) The relation �82;1 is decidable.

7

ii) If a �82;1-satisfaction problem � is solvable, then there is a most general

solution for �. Moreover, there is an algorithm that decides, for any �,

whether � is solvable, and, if so, returns a most general solution.

Algorithms for deciding �82;1 subtyping and solving �82;1-satisfaction prob-
lems are given in Appendix B.

2.2 Type inference

The type inference algorithm is presented in the style favored by the intersection
type community: for any M , we de�ne a set, PP(M), called the principal pairs
of M . Every element of PP(M) is a pair hA; �i such that A ` M : � is a
principal typing of M .

The following technical property is used to show that PP(M) indeed speci�es
a type inference algorithm: the set PP(M) is an equivalence class of pairs under
permutations, i.e., hA1; �1i; hA2; �2i 2 PP(M) i� hA1; �1i = ShA2; �2i for some
bijection S of type variables. Therefore, in choosing hA; �i 2 PP(M) it is always
possible to guarantee that the type variables of hA; �i are \fresh".

To perform type inference, simply follow the de�nition of PP(M), choosing
\fresh" type variables and using the MGS algorithm as necessary.

De�nition 6 For any termM , the set PP(M) is de�ned by the following rules.

� If M = x, then for any type variable t, hfx : tg; ti 2 PP(x).

� If M = �xN , and hA; 8~s�i 2 PP(N), where the type variables ~s are
distinct from all other type variables, then:

i) If x 62 dom(A), and t is a type variable not appearing in hA; 8~s�i,
then hA; 8t~s(t! �)i 2 PP(�xN).

ii) If x 2 dom(A), then hAx;Gen(Ax; A(x)! �)i 2 PP(�xN).

� If M = M1M2, the type variables of hA1; 8~s�1i 2 PP(M1) and hA2; �2i 2
PP(M2) are disjoint, and the type variables ~s are distinct from all other
type variables:

i) If �1 is a type variable t, t1 and t2 are fresh type variables, U 2
MGS(f�2 � t1; t = t1 ! t2g), and A = U (A1 + A2), then

hA;Gen(A;Ut2)i 2 PP(M):

ii) If �1 = �1 ! �2, U 2 MGS(f�2 � �1g), and A = U (A1 + A2), then
hA;Gen(A;U�2)i 2 PP(M).

Example 7 We show how the algorithm �nds the type of (�x:xx).

i) PP(x) produces a pair hfx : t1g; t1i.

ii) PP(x) (again) produces a pair hfx : t2g; t2i.

8

iii) To calculate PP(xx), we �nd a most general solution to

ft2 � t3; t1 = t3 ! t4g;

such as ft2 := t3; t1 := t3 ! t4g. Then hfx : t3 ^ (t3 ! t4)g; t4i 2 PP(xx).

iv) Finally, PP(�x:xx) produces h;; 8t3; t4:t3 ^ (t3 ! t4)! t4i.

Theorem 8 (Principal typings) If M is typable in P2, then there is a pair

hA; �i 2 PP(M) such that A `M : � is a principal typing for M .

3 Recursive de�nitions

We now add recursive de�nitions to our language. A term of the form (�xM)
is meant to represent the program x such that x = M , where M may contain
occurrences of x. The following rule is a straightforward way to type such
de�nitions, and is the rule adopted by ML:

(rec-simple)
Ax [fx : �g `M : �

A ` (�xM) : �
(where � is a simple type)

As remarked in the introduction, this simple recursion is not able to type the
map example, and other examples of interest. And the rule (rec-poly) is not
appropriate for our system, because we do not allow quanti�ed types in our type
environments.

Instead, we propose the following rules for typing recursive de�nitions:

(rec)
Ax [fx : �g ` M : �

A ` (�xM) : �
(where � �82;1 �)

(rec-vac)
Ax ` M : �

A ` (�xM) : �
(where x is not free in M)

The rule (rec-vac) is necessary to type terms like

(�w(�x:xx)) : 8s; t:(s ^ (s! t))! t:

In order to use the rule (rec) in this case, we would need a type � 2 T1 such
that 8s; t:(s^ (s ! t))! t �82;1 � . There is no such type, because s and s! t

cannot be uni�ed.
The rules (rec) and (rec-vac) can type strictly more terms than (rec-

simple), but not as many terms as (rec-poly).

Example 9
i) The following term is typable in P2 + (rec) + (rec-vac), but not in
P2 + (rec-simple):

(�x:(�yz:z)(xx) : 8t:t! t:

The self-application xx cannot be typed if x is assigned just a simple type.

9

ii) The term (�x:xx) is typable in ML+(rec-poly), but not in P2+(rec)+
(rec-vac). In ML + (rec-poly) it has type (8t:t).

Now we add mutually recursive de�nitions to the language:

(letrec x1 = M1; : : : ; xn = Mn inM);

where all of the xi are distinct. The corresponding typing rule is:

(letrec)

Ax1���xn [fx1 : �1; : : : ; xn : �ng `M : �
(8i � n) Ax1���xn [fx1 : �1; : : : ; xn : �ng ` (�xiMi) : �i

A ` (letrec x1 = M1; : : : ; xn = Mn inM) : �
(where 8i � n; �i �82;1 �i)

In the hypothesis of this rule, we are careful to type each de�nition Mi as a
recursive but not mutually recursive de�nition. Thus at �rst, each Mi needs to
satisfy only the constraints on xi implied by the occurrences of xi in Mi itself;
constraints implied by occurrences in M or other Mj are satis�ed second. In
between, the type of Mi can be generalized.

This is the technical trick that lets us type examples like map. Even when
we are presented with map, squarelist, and complement in a mutually recursive
de�nition, we will type each of them �rst without mutual recursion.

Example 10 LetMm,Ms, andMc abbreviate the de�nitions ofmap, squarelist,
and complement , and let

A = fmap : ((int! int)! int list! int list)
^ ((bool! bool)! bool list! bool list)g:

Since
A ` (�map:Mm) : 8s; t:(s! t)! s list! t list;
A ` (�squarelist:Ms) : int list! int list;
A ` (�complement :Mc) : bool list! bool list;

and (8s; t:(s! t)! s list! t list) �82;1 A(map), by rule (letrec) the term

(letrec map = Mm;

squarelist =Ms;

complement =Mc

in 0)

is typable.

Adding the following clauses to De�nition 6 gives a type inference algorithm.

� If M = (�xN) and hA; �i 2 PP(N), then:

i) If x 62 dom(A), then hA; �i 2 PP(M).

ii) If x 2 dom(A) and U 2MGS(f� �82;1 A(x)g),

then hUAx;Gen(UAx; U�)i 2 PP(M).

10

� If M = (letrec x1 = M1; : : : ; xn =Mn inM0),

and hAi; �ii 2 PP(�xiMi) for 1 � i � n,
hA0; �0i 2 PP(M0),
A0 = A0 +�1�i�nAi,
U 2MGS(f�i � A0(xi) j 1 � i � n; xi 2 dom(A0)g),
and A00 = A0

x1;:::;xn
,

then hUA00;Gen(UA00; U�0)i 2 PP(M).

4 Separate compilation

Any separate compilation system manages a collection of small program frag-
ments that together make up a single large program. Two questions must be
answered by such a system. First, does the program as a whole type check?
And second, how do we generate code for each program fragment, and how can
we combine these code fragments into an executable program?

We consider each of these questions in turn.

4.1 Incremental type inference

The problem of incremental type inference [1] can be described as follows. A
user develops a program in an incremental fashion, by entering a sequence of
de�nitions to a read-eval-print loop:

x1 = M1; x2 = M2; x3 =M3; : : :

After each de�nition is entered, the compiler performs type inference to ensure
the type-correctness of the partial program. De�nitions may be re-de�ned as
the programmer detects and corrects bugs, and they may be mutually recursive.
Most relevant, a \bottom-up" style of program development is made possible
by allowing de�nitions to refer to other de�nitions which have not yet been
entered. This is exactly the strength of principal typings: type inference can be
performed without knowing the types of free variables.

Incremental type inference is simply the type checking task of separate com-
pilation, on an extremely �ne scale: not just every module, but every de�nition
is typed and compiled separately. The type checking task can be solved elegantly
and e�ciently using principal typings.

Consider a partial program x1 = M1; : : : ; xn = Mn. If a variable is de�ned
twice, the latter de�nition takes precedence; let y1 = N1; : : : ; ym = Nm be the
sequence with duplicates discarded. To check that the program is well-typed,
we can perform type inference on the expression

(letrec y1 = N1; : : : ; ym = Nm in 0):

By our algorithm, type inference requires, �rst, computing the principal pair
hAi; �ii of each (�yiNi), and second, reconciling the type of each de�nition with

11

its uses. That is, if A = �Ai, we want to satisfy the problem

f�i � A(yi) j 1 � i � m; yi 2 dom(A)g:

We have already shown how to accomplish both tasks.
Now suppose the user enters a brand new de�nition, ym+1 = Nm+1. Again,

we must compute hAi; �ii for each (�yiNi). But if i 6= m + 1, then by the

principal typing property, hAi; �ii is unchanged. The principal pair for each
de�nition need only be computed once, as it is entered by the user; it does not
need to be recomputed at each new de�nition or re-de�nition.

We must also calculate a solution to the new satisfaction problem. However,
the new problem is almost identical to the previous problem, adding only a few
more constraints. We may be able to incorporate large parts of the old solution
into the new solution. Our algorithm for subtype satisfaction, described in
Appendix B, solves problems by transforming them into equivalent, simpler
problems until a solution is reached. Such an algorithm is ideally suited to
incorporating parts of the old solution. The transformations that applied to
the old problem will, for the most part, be identical to the transformations
applicable to the new problem.

4.2 Smartest recompilation

Once we have solved the type checking task of separate compilation, we face the
task of code generation. Types determine data representations, calling conven-
tions, and other implementation details. Thus we regard compilers as functions
from typing judgments to machine code. For example, the compilation of a
module M that imports a module x can be written

Compile(fx : �g `M : �) = hmachine code for M i:

There are two di�culties with this strategy. First, the compiler requires as
input a typing judgment, or, at least, the types of external variables. The
typical solution is to require the user to supply the types. A better solution is
available in P2, where the compiler itself can infer a judgment fx : �g ` M : �
for a term M with free variable x.

The second di�culty arises when we need to link all of the code fragments
together into a single program. In particular, consider recompilation, in which
a user changes a single module x and the system attempts to recompile as small
a portion of the entire program as possible. Certainly the de�nition of x must
be recompiled. Moreover, an unchanged module M that imports x may have
to be recompiled: if the type of x changes, then the typing judgment of M , and
thus its compiled output, changes.

This is where principal typings help. Suppose that we have compiled a
module M by compiling its principal typing, A ` M : � . At link time, we
discover that in order to be consistent with the rest of the program, we should
instead have compiledM by a di�erent typing, B `M : �. The principal typing
property tells us that the second judgment is an instance of the �rst: in P2,

12

it can be obtained by substitution and subsumption from the principal typing.
More formally,

hB; �i = ChA; �i;

where C is an operator that applies substitution and subsumption to the pair
hA; � i.

Stating the problem in this way lets us study the operator C in isolation. The
operations of substitution and subsumption speci�ed by C can be implemented
via coercions. These coercions can be \wrapped" around the code generated for
the typing A ` M : � at link time, making it behave like code generated for
B `M : � . That is,

Compile(B ` M : �) �= Link(C;Compile(A `M : �));

where Link produces machine code that implements the coercions speci�ed by C.
Using this strategy, a module need not be recompiled unless its de�nition

changes. This property was dubbed smartest recompilation by Shao and Ap-
pel [18]. They achieved smartest recompilation for ML by relating ML to a
restriction of P2 with principal typings.

Shao and Appel identi�ed the following problem with smartest recompila-
tion. If a module references many free variables, e.g., functions from the stan-
dard library, then the type environment of the principal typing becomes large.
This can be alleviated in the following way. Let B be a type environment speci-
fying the T82 types of our library functions. We modify our type system to use
two type environments, so that typings are of the form

A;B `M : �:

We modify our old rules to ignore this new type environment, and add a rule
that allows us to use it:

(var-new) A;B [fx : �g ` x : �

This system does not have principal typings, but it does have a useful \weak"
form of principal typing property: given a term M typable in type environ-
ment B, there exists a typing A;B `M : � representing all possible typings for
M in B. We say that M has a principal typing with respect to the type envi-
ronment B, and that we have smartest compilation with respect to B. Since B
only speci�es types for identi�ers that are relatively stable, we gain most of the
bene�ts of full smartest recompilation.

As an aside, we remark that this immediately suggests an extension to the
type system: restore let-expressions to the language and add the rule

(let)
A;B `M : �; A;Bx [fx : �g ` N : �

A;B ` let x = M in N : �

We call this a \rank 2.5" system, since it lies between ranks 2 and 3. For
instance, it can type a term that is untypable in rank 2:

let g = (�x:xx) in g(�y:y) : 8t:t! t:

13

We will not pursue this further, because we already know how to extend P2 to
a more general system, called P, that does not rely on let-polymorphism. The
description of P will appear in a future paper.

We do not claim that we have solved the smartest recompilation problem
for Standard ML. Standard ML has a rich module system, with type com-
ponents in modules, and generative, user-de�nable, recursive datatypes. Our
simple language does not support such features (nor does the work of Shao and
Appel [18]). However, we have identi�ed principal typings, or some equivalent,
as the key ingredient of such a system.

5 Error messages

Up until now, we have concentrated on one bene�t of principal typings: a term
can be given a type without regard to the de�nitions of its free variables.

The ip side of this bene�t is that a de�nition can be typed independently
of its uses. We now show how this allows us to produce accurate error messages
when our type inference algorithm is faced with a program containing type
errors.

Consider a de�nition, (�xM)N , in which some uses of the variable x cause
type errors: they require types that N cannot satisfy. To perform type inference,
we calculate the principal typings of both the operator and the operand, say

A ` (�xM) : � ! �;

A0 ` N : �0:

By the principal typing property, we can calculate these principal typings in
any order. To complete type inference, we simply check whether we can satisfy
�0 �82;1 �. At this point we will discover all of the type errors related to x: the
type �0 will not be able to satisfy some of the constraints expressed by �. If we
take care to label each constraint with the use of x that produced it, we can
output the o�ending uses, all in one batch.

Contrast this with the situation in ML. Assuming the de�nition is poly-
morphic, we must perform type inference on a let-expression let x = N inM .
Without principal typings, we are forced to �rst calculate the principal type, �,
of N . We then process M , instantiating � at each use of x. Errors are reported
as they are encountered, at each use. But note, the errors of one de�nition can
be interspersed with errors for other de�nitions, or with run-on errors. And the
type � may have been specialized for that particular (erroneous) use, leaving
the programmer to understand a type only remotely related to the type � of
the de�nition.

14

6 Does ML have principal typings?

We have deliberately stated the principal typing property in a broad way, so
that it can be applied to many di�erent type systems.3 In particular, we have
not precisely de�ned what it means to represent all possible typings, because
this will vary from one type system to another.

This imprecision makes it impossible for us to prove that a given type system
lacks the principal typing property. Nevertheless, we do not know of a sensible
formulation of principal typings for ML, and in particular, ML does not have
principal typings in the sense of our De�nition 3. For example, consider the
following ML typings of the term xx.

fx : 8t:tg ` xx : 8t:t;
fx : 8t:t! tg ` xx : 8t:t! t:

Our intuition is that a principal typing expects less of its free variables and
provides more than any other typing. We certainly cannot hope to derive a
more general type for the term xx than (8t:t), so the �rst judgment provides
more than the second. However, the �rst judgment also makes a strong require-
ment on x: the type environment indicates that it too must have type (8t:t).
Thus the second judgment expects less than the �rst, and neither typing is more
general than the other. Moreover, there is no typing more general than both
the typings above. The obvious candidate,

fx : 8t:t! tg ` xx : 8t:t;

is not derivable.
Why doesn't ML's principal type property imply the existence of principal

typings? You might think that the principal typing of a term could be obtained
from the principal type of the �-closure of the term. But ML has only a restricted
abstraction rule:

(abs)
Ax [fx : �g `M : �
A ` (�xM) : �! �

(where � is a simple type)

In ML, we cannot abstract over variables of polymorphic type; the only way of
introducing polymorphic variables is through let-expressions. In languages with
a \true" abstraction rule, the principal type property and the principal typing
property may coincide. This is the case in P2. It is also the case in rank 2 of
System F, which lacks both principal types and principal typings [12].

If we want to work in a language lacking the principal typing property,
we may still achieve some of its bene�ts by �nding a \representation" for all
possible typings. That is, we may relax the principal typing condition that the
representatives themselves be typings.

Pushed to an extreme, this is nonsense|after all,M itself is a representation
of all typings of M ! But there is a middle ground. An example is the smartest

3In fact, we could have stated it more broadly still: we assumed typing judgments were of

the form A `M : �, but this is not always the case.

15

recompilation system of Shao and Appel [18]. Their type system is a restriction
of P2. Its typings are not ML typings, but for any ML termM , there is a typing
in their system that encodes all of the ML typings for M . Similarly, typings in
either P2 or rank 2 of the intersection system can be regarded as the principal
\typings" of rank 2 of System F.

7 An extension

The system P2 is the rank 2 fragment of a type system, P, that can type many
more terms. The description of P is beyond the scope of this paper. However,
we will present a few examples of its typing power.

If we de�ne terms M and N by

M = (�g:g(�f:f(�x:x)));

N = (�w:w(�y:yy));

then the following typings hold in P:

M : 8t:((8s:((8u:u! u)! s)! s)! t)! t;

N : 8u:((8st:(s ^ (s! t))! t)! u)! u;

MN : 8t:t! t:

Only M is typable in ML or P2, and only at less informative types. Note that
in the type of M , the inner quanti�er, 8u, is under the left of four arrows, well
beyond rank 2.

The system P has the principal typing property, decidable type inference,
and a rule in the style of (rec) for typing recursive de�nitions. The crucial
technical advance is a way of solving subtype satisfaction problems for types
with quanti�ers and intersections at arbitrary depth.

8 Related work

Principal typings are not a new concept. A number of existing type systems
have principal typings, including the simply typed lambda calculus [22], the
system of recursive types [4], the system of simple subtypes [16], and the system
of intersection types [3]. Our contribution is to highlight the practical uses
of the principal typing property, and to distinguish it from the principal type
property. A number of authors have published o�hand claims that ML possesses
the principal typing property, which suggests that this distinction is not widely
appreciated.

The system of rank 2 intersection types is also not new, but as with the
principal typing property, it has attracted little attention. It was �rst suggested
by Leivant in 1983 [14], but he did not give a formal de�nition of the type
inference algorithm or proof of correctness. In an oft-referenced 1984 paper [15],
McCracken gave a type inference algorithm for rank 2 of System F, inspired by

16

Leivant's ideas. This algorithm is incorrect. A correct algorithm for rank 2 of
System F was �nally given by Kfoury and Wells [12] in 1993. Their algorithm is
completely unrelated to Leivant's algorithm. The earliest formal de�nition and
proof of Leivant's algorithm was published in 1993, by van Bakel [20].

Our addition of top-level quanti�cation is a signi�cant technical improve-
ment to the rank 2 intersection system, allowing a smoother development. In
particular, the simplicity of our rule for typing recursive de�nitions is due to the
power of quanti�ers and the subtyping relation �82;1. It is possible to formulate
an equivalent rule for typing recursive de�nitions without top-level quanti�ca-
tion, but the machinery is cumbersome and simply duplicates the functionality
of the quanti�ers.

We have shown that rank 2 of System F is closely related to our type sys-
tem. However, rank 2 of System F does not have principal types or principal
typings [12]. Launchbury and Peyton Jones [13] describe an interesting constant
with a rank 2 System F type. Rank 2 System F types are not part of our type
system, and we do not know how to handle their constant without resort to
a special typing rule. This is the same solution employed by Launchbury and
Peyton Jones.

The system of Aiken and Wimmers [2] uses ML's let-polymorphism, and,
therefore, we believe it does not have principal typings. The subsystem without
let-polymorphism, though, is still of interest, and may have principal typings
(but this is not clear). The constraint-based systems of Jones [7], Kaes [9], and
Smith [19] are also based on ML.

Constraint satisfaction, including subtype satisfaction, is an important com-
ponent of each of these systems. Our method for solving constraints involving
quanti�ers (�82;1-satisfaction) is a signi�cant advance over these systems. Along
with intersections, this is the central mechanism by which let-polymorphism is
avoided and principal typings are achieved. In our work on the system P, we
will show how to solve some subtype satisfaction problems for types with quan-
ti�ers and intersections at arbitrary depth, giving type inference for a system
with a much richer class of types.

9 Conclusion

We have shown that the principal typing property has practical applications,
including smartest recompilation, incremental type inference, and accurate type
error messages. Inspired by the principal typing property, we proposed a novel
rule for typing recursive de�nitions. The type inference algorithm of our system
P2 is easily extended to infer principal typings for recursive de�nitions under
the new rule, resulting in a type system with decidable type inference that can
type many examples of polymorphic recursion.

A number of languages, including ML, seem to lack the principal typing
property. In such languages, we may achieve some of the bene�ts of principal
typings by �nding a way to represent all possible typings for terms.

Although our primary goal was to draw attention to the principal typing

17

property, a secondary contribution is to draw attention to the system of rank 2
intersection types, which also seems to have been overlooked. Our particular
version of this system, P2, makes an important technical contribution by show-
ing how to solve subtype satisfaction problems for types containing quanti�ers.
Our types only have quanti�ers at top level, but the method is easily extended
to types with quanti�ers at arbitrary depth, as we will show in a forthcoming
paper.

Acknowledgments. This paper has bene�ted from the comments of Assaf
Kfoury, Albert Meyer, Jens Palsberg, and Mona Singh.

References

[1] Shail Aditya and Rishiyur Nikhil. Incremental polymorphism. In Func-

tional Programming Languages and Computer Architecture, volume 523 of
Lecture Notes in Computer Science, pages 379{405. Springer-Verlag, 1991.

[2] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints
and type inference. In Functional Programming Languages and Computer

Architecture, pages 31{41. ACM Press, June 1993.

[3] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A
�lter lambda model and the completeness of type assignment. J. Symbolic

Logic, 48(4):931{940, December 1983.

[4] Felice Cardone and Mario Coppo. Type inference with recursive types:
Syntax and semantics. Information and Computation, 92(1):48{80, May
1991.

[5] Fritz Henglein. Type inference with polymorphic recursion. ACM Transac-

tions on Programming Languages and Systems, 15(2):253{289, April 1993.

[6] Trevor Jim. Rank 2 type systems and recursive de�nitions. Technical
Memorandum MIT/LCS/TM{531, Massachusetts Institute of Technology,
August 1995.

[7] Mark P. Jones. Quali�ed Types: Theory and Practice. Cambridge Univer-
sity Press, November 1994.

[8] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract
algebras: A rule-based survey of uni�cation. In Jean-Louis Lassez and
Gordon Plotkin, editors, Computational Logic: Essays in Honor of Alan

Robinson, chapter 8, pages 257{321. MIT Press, 1991.

[9] Stefan Kaes. Typing in the presence of overloading, subtyping, and re-
cursive types. In Proceedings of the 1992 ACM Conference on Lisp and

Functional Programming, pages 193{204, 1992.

18

[10] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper extension of ML with
an e�ective type-assignment. In Conference Record of the Fifteenth Annual

ACM Symposium on Principles of Programming Languages, pages 58{69,
1988.

[11] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the pres-
ence of polymorphic recursion. ACM Transactions on Programming Lan-

guages and Systems, 15(2):290{311, April 1993.

[12] A.J. Kfoury and J.B. Wells. A direct algorithm for type inference in the
rank 2 fragment of the second-order lambda-calculus. In Proceedings of

the 1994 ACM Conference on Lisp and Functional Programming, pages
196{207, 1994.

[13] John Launchbury and Simon L Peyton Jones. Lazy functional state threads.
In Proceedings of the ACM SIGPLAN '94 Conference on Programming

Language Design and Implementation, pages 24{35, 1994.

[14] Daniel Leivant. Polymorphic type inference. In Conference Record of the

Tenth Annual ACM Symposium on Principles of Programming Languages,
pages 88{98, 1983.

[15] Nancy McCracken. The typechecking of programs with implicit type struc-
ture. In G. Kahn, D.B. MacQueen, and G. Plotkin, editors, Semantics

of Data Types, volume 173 of Lecture Notes in Computer Science, pages
301{315, June 1984.

[16] John Mitchell. Type inference with simple subtypes. J. Functional Pro-

gramming, 1(3):245{285, July 1991.

[17] A. Mycroft. Polymorphic type schemes and recursive de�nitions. In Pro-

ceedings of the International Symposium on Programming, Toulouse, vol-
ume 167 of Lecture Notes in Computer Science, pages 217{239. Springer-
Verlag, 1984.

[18] Zhong Shao and Andrew Appel. Smartest recompilation. In Conference

Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 439{450, 1993.

[19] Geo�rey S. Smith. Principal type schemes for functional programs with
overloading and subtyping. Science of Computer Programming, 23:197{
226, 1994.

[20] Ste�en van Bakel. Intersection Type Disciplines in Lambda Calculus and

Applicative Term Rewriting Systems. PhD thesis, Mathematisch Centrum,
Amsterdam, February 1993.

[21] Mitchell Wand. Finding the source of type errors. In Conference Record

of the Thirteenth Annual ACM Symposium on Principles of Programming

Languages, pages 38{43, 1986.

19

[22] Mitchell Wand. A simple algorithm and proof for type inference. Funda-

menta Infomaticae, 10:115{122, 1987.

[23] Hirofumi Yokouchi. Embedding a second-order type system into an inter-
section type system. Information and Computation, 117(2):206{220,March
1995.

A Technical details of the type system

We use x; y; : : : to range over a countable set of (term) variables, and M;N; : : :

to range over terms. The terms of the language are just the terms of the lambda
calculus:

M ::= x j (M1M2) j (�xM):

Terms are considered syntactically equal modulo renaming of bound variables,
and we adopt the usual conventions that allow us to omit parentheses: appli-
cation associates to the left, and the scope of an abstraction �x extends to the
right as far as possible. We write �x1 � � �xn:M for (�x1(� � � (�xnM) � � �)).

We use s; t; u : : : to range over a countable set, Tv, of type variables, and
�; �; : : : to range over types. We de�ne several classes of types, each of which is
a restriction of the types with quanti�cation and intersection:

� ::= t j (�1 ! �2) j (8t�) j (�1 ^ �2):

The constructor `^' binds more tightly than `!', e.g., � ^ � ! t means (� ^
�) ! t, and the scope of a quanti�er `8' extends as far to the right as pos-
sible. If ~t = t1; t2; : : : ; tn, n � 0, and � 2 T2, we write (8~t�) for the type
(8t1(8t2(: : : (8tn�) : : :))).

A type environment is a �nite set fx1 : �1; : : : ; xn : �ng of (variable, type)
pairs, where the variables x1; : : : ; xn are distinct, and �1; : : : ; �n 2 T1. We use A
to range over type environments. We write A(x) for the type paired with x in A,
dom(A) for the set fx j 9�:(x : �) 2 Ag, and Ax for the type environment A
with any pair for the variable x removed. We write A1[A2 for the union of two
type environments; by convention we assume that the domains of A1 and A2

are disjoint. We de�ne A1 + A2 as follows: for each x 2 dom(A1) [dom(A2),

(A1 + A2)(x) =

8<
:

A1(x) if x 62 dom(A2);
A2(x) if x 62 dom(A1);
A1(x) ^A2(x) otherwise.

We write Gen(A; �) for the 8-closure of variables free in � but not A.

B A subtype satisfaction algorithm

A uni�cation problem is a satisfaction problem involving only equalities. Uni-
�cation algorithms, such as Robinson's algorithm, can determine, for any uni-

20

�cation problem, whether a solution exists, and, if so, produce a most general
solution. Two problems are equivalent if they have the same solutions.

We will show how to transform a �82;1-satisfaction problem into an equiva-
lent uni�cation problem. The transformation is de�ned by rules of the form

� � �) 9~s:P:

The rules may need to introduce fresh type variables, that is, type variables
that do not appear on the left-hand side. These variables will appear in the
variables ~s of the right-hand side (but they are not the only source of variables
in ~s).

The rules are used to de�ne a rewrite relation on problems:

� � �) 9~t:P

9~s:P 0] f� � �g) 9~s] ~t:P 0 [P

The operator `]' is disjoint union; on the right of the consequent, it means that
the variables ~t must be fresh (this can always be achieved by renaming).

The rules for transforming a �82;1-uni�cation problem into a uni�cation
problem are given below.

(�1 ! �2) � t) 9t1; t2:ft1 � �1; �2 � t2; t = t1 ! t2g
if t1; t2 are fresh

(�1 ! �2) � (�1 ! �2)) f�1 � �1; �2 � �2g

� � (�1 ^ �2)) f� � �1; � � �2g

t � �) ft = �g
if � is a simple type

(8t�) � �) 9tf� � �g
if � is not a ^-type, and t is not free in �

To see that these rules constitute an algorithm for producing an equivalent
uni�cation problem, observe that the rules preserve solutions, that the system
is terminating, and that normal forms contain no inequalities, and thus are
uni�cation problems.

A uni�cation algorithm in a transformational style, taken from [8], is given

21

below.4

P] f� = �g) P

P] f�1 ! �2 = �1 ! �2g) P [f�1 = �1; �2 = �2g

P] ft1 = t2g) ft1 := t2gP [ft1 = t2g
if t1; t2 2 FTV(P) and t1 6= t2

P] ft = �g) F

if t 2 FTV(�) and � 62 Tv

P] ft = �g) ft := �gP [ft = �g
if t 62 FTV(�), � 62 Tv, and t 2 FTV(P)

The normal forms of the rewrite system are in solved form, a set of equations
that corresponds immediately to a most general substitution. Note the special
problem F , used to denote failure of uni�cation.

The combination of these two transformation systems is an algorithm for
�nding most general solutions to �82;1-satisfaction problems. As a special case,
we obtain a decision procedure for subtyping: to see whether � �82;1 � , compute
a member of MGS(f� � �g) and check whether it is the identity (empty)
substitution.

C Typing recursive de�nitions in ML

In this appendix, we show how to integrate our type inference strategy for
recursive declarations into ML. The result is not as elegant as our rank 2
system, but it demonstrates that an existing ML implementation could easily
be modi�ed to take advantage of our rules.

To simplify our presentation we make the following assumptions, all of which
can be relaxed without technical di�culty. We assume that no variable is bound
more than once, and free and bound variables are distinct; and that variables
are divided into two classes, recursive variables, which can be bound only by
letrec and �, and ordinary variables, which can be bound by � and let. We
use w to range over recursive variables and x to range over ordinary variables.

We introduce a new type system with judgments of the form

A;B `M : �;

where A maps recursive variables to T1 types, B maps ordinary variables to
ML type schemes, and � is an ML type scheme. The environments A and B

are kept separate for purposes of presentation; they might well be merged in an
implementation.

4This particular uni�cation algorithm is ine�cient, because the size of the output may be

exponential in the size of the input. It is possible to specify e�cient uni�cation algorithms in

this style, but in order to simplify the presentationwe use this more straightforward algorithm.

22

(var-rec) A [fw : �g; B ` w : � (� �1 � 2 T0)

(rec)
A [fw : �g; B ` M : �
A;B ` (�wM) : �

(� � �)

(letrec)

A [fw1 : �1; : : : ; wn : �ng; B `M : �
(8i � n) A [fw1 : �1; : : : ; wn : �ng; B ` (�wiMi) : �i
A;B ` (letrec w1 = M1; : : : ; wn =Mn inM) : �

(8i � n; �i � �i)

(var) A;B [fx : �g ` x : �

(abs)
A;B [fx : �1g `M : �2
A;B ` (�xM) : �1 ! �2

(�1; �2 2 T0)

(app)
A;B `M : �1 ! �2 A;B ` N : �1

A;B ` (MN) : �2

(gen)
A;B `M : �

A;B `M : (8t�)
(t is not free in A or B)

(inst)
A;B `M : (8t�)

A;B `M : ft := �g�
(� 2 T0)

Figure 1: A new way of typing recursive de�nitions in ML

23

The typing rules are given in Figure 1. The rules (rec), (var-rec), and
(letrec) are new; all of the other rules have been taken fromML, and modi�ed
to handle the type environment A. Note that this system does not have the rule
(rec-vac); since we do not use rank 2 types, it is not necessary.

The rules (rec) and (letrec) use a subtyping relation, �, that is the
restriction of �82;1 so that only ML type schemes can appear in the left position.
It can be de�ned by the following rules:

� 8~t� � f~t := ~�g�, where � and every �i is a simple type.

� If � � �i for all i 2 I, then � � (
V

i2I �i).

Because the relation does not involve proper rank 2 types, the corresponding
subtype satisfaction problem can be solved more easily than the general case.
The problems are of the form 9~s:P , where P is a set of equalities between
simple types and inequalities (� � �) between ML type schemes and T1 types.
The following rules are su�cient to transform such problems into equivalent
uni�cation problems.

� � �) f� = �g
if �; � 2 T0

� � (�1 ^ �2)) f� � �1; � � �2g

(8t�) � �) 9tf� � �g
if � is not a ^-type, and t is not free in �

To �nd U 2MGS(�), use the rules to transform � into �0 with only equalities,
and then use uni�cation on �0 to �nd U .

Now we consider how to perform type inference. The type inference algo-
rithm W � of Shao and Appel [18] can easily be extended to this system. But
most compilers are based on Milner's algorithm W , so we use W as a starting
point.

The modi�ed algorithm, called W 0, is given in Figure 2, and it behaves as
follows. If W 0(B;M) = hA; S; � i, the principal typing of M with respect to B

is
A; SB `M : Gen(A; SB; �):

Note that we have extended the operator Gen so that Gen(A;B; �) is the 8-
closure of � by type variables that do not appear free in A or B. To simplify our
presentation, we have only considered the case of letrec expressions that de�ne
exactly two variables. The general case introduces no technical di�culties.

24

W 0(B;M) = case M of

w) let t be a fresh type variable
in hfw : tg; fg; ti

(�wM1)) let hA; S; � i =W 0(M1)
in if w 62 dom(A) then hA; S; � i

else let � = Gen(A; SB; �)
U 2MGS(f� � A(w)g)
8~t� 0 = U�

~s be fresh type variables

in hUAw; US; f~t := ~sg� 0i

(letrec w1 = M1; w2 = M2 inM0)
) let hA0; S0; �0i = W 0(B;M0)

hA1; S1; �1i = W 0(S0B; (�w1M1))
hA2; S2; �2i = W 0(S1S0B; (�w2M2))
A = S2S1A0 + S2A1 +A2

S = S2S1S0
�1 = Gen(A; SB; S2�1)
�2 = Gen(A; SB; �2)
U 2MGS(f�i � A(wi) j i 2 f1; 2g; wi 2 dom(A)g)

in hUAw1;w2
; US; US2S1�0i

x) if x 62 dom(B) then fail
else let 8~t� = B(x)

~s be fresh type variables
in hfg; fg; f~t := ~sg�i

�xM1) let t be a fresh type variable
hA; S; � i =W 0(B [fx : tg;M1)

in hA; S; St ! �i

M1M2) let hA1; S1; �1i = W 0(B;M1)
hA2; S2; �2i = W 0(S1B;M2)
t be a new type variable
S3 2MGS(fS2�1 = �2 ! tg)

in hS3S2A1 + S3A2; S3S2S1; S3ti

let x = M1 inM2

) let hA1; S1; �1i = W 0(B;M1)
hA2; S2; �2i = W 0(S1B [fx : Gen(A1; S1B; �1)g;M2)

in hS2A1 +A2; S2S1; �2i

Figure 2: Extending ML's type inference algorithm for recursive de�nitions

25

