
Workstation Services and
Kerberos Authentication

at Project Athena

Don Davis, MIT Staff
Ralph Swick, Digital Equipment Corp.

03/17/89

1

Introduction
This document proposes solutions for two problems obstructing Project Athena’s

implementation of workstation services.

The principal problem is that workstation services demand a more flexible mutual-
authentication protocol than Kerberos currently provides. The egregious X access-control
hack, xhost, for example, has lack of authentication as its root cause. This protocol weakness
is also the reason that public workstations can’t accept authenticated connections from rlogin,
rcp, rsh, etc. We propose an extension to the Kerberos Ticket Granting Service protocol, that
cleanly supports user-to-user mutual authentication.

Our second proposal addresses the problem of ticket propagation. Currently, if a user
wants tickets that are valid on a remote host, he has to run kinit in an encrypted rlogin session,
unless he’s willing to send his password in cleartext. As an example of the use of our protocol
extension, we describe a Kerberos application that would support a limited facility for secure
ticket-propagation.

Authentication of Workstation Services

Problem to be Solved
Public workstation users can’t offer authenticated network services. Currently, only

physically secure hosts can offer such services, because Kerberos’ client-to-server
authentication requires each server to store its private key locally. Public workstations are
insecure, so we can’t extend this approach to workstations’ services.

1The basic Kerberos protocol, which allows a user to gain a service ticket in exchange
for a password, is not at fault in this problem. In fact, the basic protocol, lacking the
complications of TGTs and srvtab, offers a trivial, albeit limited, solution: Kerberos can supply

2anyone who asks with an encrypted key/ticket pair of the form {K ,..., { T } K } K . Ofc,sp c,sp sp c
course, the keys K and K are private keys, so both client and server must enter theirc sp
passwords each time they make a connection. The problem, restated, is thus to relieve users
of the frequent need to enter their passwords.

The clients’ half of this problem has been completely solved by the Ticket-Granting-
Ticket (TGT) protocol. Athena has addressed the servers’ half of the problem, but only weakly,
by storing each server’s private key in srvtab. Thus, clients and servers currently use
user-to-host authentication. This doesn’t work on public workstations, for two reasons:

1Needham & Schroeder’s 1978 protocol, plus timestamps. See: Roger M. Needham and Michael D. Schroeder,
"Using Encryption for Authentication in Large Networks of Computers". CACM Vol. 21, No. 12, Dec. 1978, pp.
993-999.

2Here, the subscripts "c" & "sp" refer to the client and service-provider, respectively. The ellipsis represents our
omission of the timestamp, server’s ID, and other data. Otherwise, our notation follows Steiner, Neuman, & Schiller,
"Kerberos: An Authentication Service for Open Network Systems", USENIX Winter Conference, February, 1988.

2

• Public workstations are vulnerable to various privacy attacks, and hence cannot
securely hold any long-lived secret.

• In most cases, what we really want is user-to-user, not user-to-host,
authentication.

An immediate corollary of public workstations’ insecurity is that idle public workstations’
services cannot be authenticated, because insecure hosts can readily be impersonated in any
protocol. Thus, we believe that no general user-to-host scheme can embrace public
workstations. Accordingly, this proposal will address only the goal of a fully general user-to-
user mutual authentication protocol. A user-to-user protocol raises the problem of dynamically
mapping users to hosts, but we will not address such mapping in this document.

Constraints on Solutions

These are non-negotiable, in case you’re wondering:

1. We can’t add state to the Kerberos server’s process at all.

2. We can’t add frequently-changing state to the Kerberos database.

3. We should make at most one transaction with Kerberos per connection.

4. More generally, loading the Kerberos server is always to be avoided.

5. No infinite-life keys (like srvtab’s) can be stored on an insecure host (for
example, public workstations).

Constraints 1 - 4 are "scaling issues". Constraints 1 and 2 limit the difficulty of
replicating Kerberos with slave servers. As a consequence of Constraint 1, Kerberos can
never initiate any protocol, because to ask for something requires that Kerberos await the
response, which requires process-state. For the same reason, Kerberos can’t measure time
intervals at all.

Discussion of the Problem
If the server workstation is to autonomously authenticate on its user’s behalf, it will have

to store a secret that only the user and Kerberos share; this is axiomatic. Furthermore,
3because the workstation’s secret could be compromised at any time, this secret must be

short-lived. We propose to use the user’s session-key with the TGS as the "service secret".

Then Kerberos’ most natural response to a service-ticket request takes the form
{ K ,..., { T } K } K . Unhappily, it is not straightforward to enable Kerberos toc,sp c,sp sp,tgs c,tgs
build such a response. If Kerberos is to use both users’ TGS session keys to encrypt the

4service-ticket, Kerberos must receive both users’ TGTs simultaneously. Note that
Constraint 1 implies that Kerberos cannot judge "simultaneity" of these tickets’ arrival, unless
they arrive together in one message.

3via an unattended console, for example.

4To a good approximation, C’s TGT = { C, time/life, K } K .c,tgs tgs

3

It is troublesome, though, for one user to pass both TGTs to Kerberos, because the TGT
protocol requires that each TGT be presented to Kerberos with a time-stamped authenticator.
Further, the TGT protocol has no provision for one user to present another user’s credentials.
However, for one user to possess another’s TGT is actually neither troublesome nor
remarkable, since in order to use the TGT, any impersonator would need the corresponding
session key. Indeed, when any user requests service tickets, he sends his TGT along in a
cleartext request, making the TGT available to anyone on the net.

The source of the TGT protocol’s "crossed-credentials" prohibition, is a flawed analogy
between TGTs and service tickets. The basic Kerberos protocol requires that a user present
an authenticator when using his service ticket, so as to prevent replay of service tickets. The
TGT protocol conservatively makes the same requirement, on the assumption that what is
secure for other services, is secure for the ticket granting service. But, in fact, a TGT-mediated
service ticket request is actually more analogous to the basic Kerberos ticket-request, which
does not include an authenticator: neither request can usefully be replayed, because the TGS’
responses are always encrypted in the requester’s key.

Thus, in essence, a principal authenticates himself by using his secret key; reading an
encrypted message serves this purpose as well as does sending an encrypted authenticator,
and doing both is redundant. Further, Kerberos’ role is not to authenticate the service’s
principals, but to enable the principals to authenticate one another. Thus, we argue that the
TGT-protocol’s authenticator requirement can safely be relaxed, so as to allow either member

5of a client-server pair to present both members’ TGTs.

Notation
We introduce the notation t for the conversation key K , service-id, ticket lifetime,c,sp c,sp

and other data, that accompany the service ticket in a credentials message from Kerberos.
6The identity T == (C, t) is a good approximation. Thus, what we’ve represented asc,sp c,sp

{ K ,...,{ T } K } Kc,sp c,sp sp,tgs c,tgs

is properly written

{ t ,{ T } K } Kc,sp c,sp sp,tgs c,tgs

As mentioned above, our notation otherwise follows Steiner, Neuman, and Schiller [88].

5Actually, the TGS protocol could retain the authenticator requirement, if the TGS were willing to unseal TGT aftersp
verifying the credentials in TGT . This would preserve some accountabilty for one kind of service-denial attack.c

6The Kerberos Request For Comments (RFC), currently in preparation, is the best reference for the existing
protocol’s message contents.

4

Our Proposed Solution
We’ve chosen to have the client do the talking with Kerberos, because to do so requires

time-out state, which burden can’t be borne by all application servers. An added benefit of this
choice, is that if a network connectivity fault separates a server from Kerberos, some of its
clients will still be able to authenticate.

1. Client C asks server SP for service, in cleartext.

C ----> SP : (C wants SP)

2. SP sends its TGT, but not its session-key, to C.

SP ----> C : { T }Ksp,tgs tgs

3. C asks Kerberos for a service ticket, sending SP’s TGT and C’s own TGT.

C ----> Krb : ({ T }K , { T }K)c,tgs tgs sp,tgs tgs

4. In response, Kerberos:

• decrypts the two TGTs, yielding the users’ names and TGS session keys;

• prepares a new session key K for C and SP to share;c,sp

• composes service-ticket contents T from the TGTs’ name-fields, thec,sp
new session key, and other data;

• uses SP’s TGS session key K to encrypt the ticket contents into asp,tgs
service ticket;

• sends the service ticket, the new session key, and other credentials to C,
encrypted in C’s TGS session key K .c,tgs

Krb ----> C : { t , { T } K } Kc,sp c,sp sp,tgs c,tgs

5. On receipt of the ticket/key pair, C:

• uses C’s TGS session key to decrypt the credentials, yielding the new
session key K , the service ticket, and other data;c,sp

• checks the service-provider’s name and the timestamp in t ,c,sp

• uses K to encrypt an authenticator, andc,sp

• sends the service-ticket and authenticator to SP.

C ----> SP : ({ Auth } K , { T } K)c c,sp c,sp sp,tgs

6. On receipt of the ticket-authenticator pair, SP:

• uses SP’s TGS session key to decrypt the ticket, gaining K ;c,sp

• checks the names and the lifetime in T ,c,sp

• uses K to decrypt C’s authenticator, andc,sp

• uses K to encrypt a corresponding authenticator of its own, which itc,sp
returns to C (optional for physically-secure services).

5

SP ----> C : { Auth } Ksp c,sp

7. For each additional connection, C and SP need to repeat only messages 5 and 6
(optional).

Step 1 seeks to verify that SP is in fact available at the message’s destination; since
Kerberos will not be handling user-to-host mapping, such a query is probably desirable in any
user-to-user authentication protocol. Step 2 serendipitously offers a solution to the difficult
problem that a client can’t distinguish in his ticket file between two identically-named service
tickets: we propose that the SP’s TGT is just the handle we need. Indeed, we propose that if
two services have the same name and the same TGT, they should be indistinguishable.

Note also that in step 3, C specifies SP not by name, but by giving SP’s TGT. In step 4,
the TGS uses the TGTs’ name-fields to build C’s credentials, thereby securely identifying C
and SP to one another as the owners of the key K . Thus, C’s and SP’s checks of thec,sp
credentials’ name-fields foils intruders’ replay of TGTs in the unauthenticated messages 2 and
3.

Note finally that Kerberos, to support this protocol, doesn’t need access to the database,
but needs only the TGS’ service-key K . Thus, our proposed changes affect only Kerberos’tgs
Ticket Granting Service; the Kerberos database would not be changed.

Ticket Lifetimes and Renewal
The protocol we’ve presented so far, doesn’t support ticket renewal. The service ticket

7is timestamped to expire as soon as either principal’s TGT expires. Whenever either user
runs kinit to refresh her TGT, the client and service-provider processes need to be able to
renew their conversation key and service ticket. This renewal of session credentials should
proceed invisibly to the users.

There are three expiration/renewal scenarios:

• Servers’ right to accept connections should expire with their TGTs; all remaining
clients’ service-tickets will expire simultaneously. These clients should renew their
service-tickets only when they need a fresh connection.

• Clients’ right to use a conversation key in an established service-connection may
expire, if the service applies the service-ticket lifetime to the conversation key.

• Established client/server sessions may wish to change their conversation keys
periodically, even if the service-ticket doesn’t expire.

Service-ticket lifetime enforcement must be coded into the application-servers, as is
done now. Clients should not try to enforce anticipated lifetimes on tickets, because servers
may have idiosyncratic lifetime-rules. Once the client realizes that it needs a new ticket/key
pair, all three types of renewal require that the client talk again to Kerberos with up-to-date

7This assumes that the maximal service-ticket lifetime == TGT lifetime. These lifetimes may be different.

6

TGTs. Thus, in step 4, Kerberos should be able to respond to out-of-date TGTs with an
error-code that tells which TGT has expired, so that the client-user can know what to do.

User-To-Host Authentication
Should this protocol supplant or supplement the existing protocol? The main argument

for grandfathering is that large-scale servers are typically secure, so they needn’t bear the cost
of the extra exchange 1 - 2. A fortiori, some services don’t grant connections, but just want to
accept authenticated messages, and therefore should use the briefest protocol possible.

We propose nevertheless to replace the existing user-to-host protocol with our protocol.
Our main concern is that the Kerberos protocol should not become any more unweildy than it
is already. Further, grandfathering the existing protocol will probably complicate programs like
rlogin, which will need to use both user-to-user and user-to-host authentication.

A physically-secure server would still keep a host-principal private key in srvtab, but
would use the key to get a TGT; its daemons would use the TGT in this protocol in order to

8accept connections. This arrangement is also necessary for insecure servers, where
administrators can’t leave their personal TGTs unattended.

Hosts’ TGTs should be non-expiring; otherwise, our protocol’s uniformity comes at the
cost of these hosts having to maintain up-to-date TGTs. After all, such long-lived session-keys
wouldn’t be any more vulnerable to cryptanalytic attack than srvtab keys are now. In the worst
case, a Kerberos application can read srvtab to renew short-lived TGTs automatically.

Naming and Authorization Issues
A service-provider may wish to destroy his normal tickets before offering services to the

network, so as to protect his client-identity from theft. Ideally, only unattended servers and
cycle-servers (rlogin etc.) would need this precaution, but in principle, we shouldn’t assume
that even X servers and fingerds aren’t providing more access than we expect. Thus, a
service-provider should be able to enter our protocol with something other than a normal user
TGT in hand. This section discusses the consequences of introducing service instances to
Kerberos.

Lacking normal TGTs, a server should be able to enter our protocol with a service-
instance TGT, in the name username.service@realm. The Kerberos protocol makes no
restrictions on how many different instances a user may use to authenticate himself, but
service-instances do present several problems:

1. Currently, the service-administrator will have to enter a separate password in
order to gain each service-instance TGT.

2. The service-administrator will have no assurance that all network services will
keep his service-instances’ and client-instances’ access separate.

8At MIT’s Laboratory for Computer Science, one of the Kerberos beta-sites, no servers are physically secure.

7

3. With a server-instance available, some clients will have to decide at connect-time
whether to use a service which lacks the access of a client instance.

4. If each user has a service-instance for each service he can offer, this
proliferation will not merely add to the Kerberos Database’s bulk, but will multiply
it, probably by the number of workstation-services.

The service instance will act as a proxy for the service-administrator and for the client,
because we anticipate that daemons will often need to provide "piggybacked services." For
example, one can envision many services’ needing their clients’ X service (Note that
piggybacked services generally shouldn’t require that clients propagate their tickets). Proxies
definitionally require an authorization mechanism. Here, because the service instance’s TGT
does double duty, the authorization needs of the client and service-administrator conflict.
Specifically, the service-instance should not enjoy any of the service-administrator’s client
access, yet it must act as a client to serve its own clients. This conflict narrowly constrains our
definition of a service instance’s authorization.

To fully support piggybacked services, all application-protocols will have to restrict
service-instances’ authorization. Further, the usual access-control files will probably not
suffice. We expect users’ access-control lists to be quite volatile in the presence of workstation
services, so that memory-cached lists will be necessary. This volatility will therefore probably
require a sophisticated authorization library and some kind of centralized authorization

9support. We do not propose to implement an authorization service soon.

If we disallow piggybacked workstation services, the service-instance need no longer be
the clients’ proxy, so much less central support can still relieve application-protocols of service-
instance restrictions. It would suffice to allow a service-provider to spawn a single "weak"
service-instance named, perhaps, username.weak@realm, which the TGS would reject as a
client unauthorized for TGS. "Spawn" here, means that these weak instances would not
appear in the Kerberos Database, but would gain TGTs on the strength of a normal instance’s
password or TGT.

An intergrade solution is possible as well, but is much less attractive: service instances
would be spawned as above, but their instance-fields could have a variety of values, e.g., "X",
"nfs", etc., which would be tabulated in an ancillary KDB. Further, these instances would be
allowed to gain some service tickets, unlike weak instances; the TGS would regulate the
service instances’ access to service-tickets via its own access-control list.

In summary, we propose that weak instances may prove convenient, but probably aren’t
necessary. In the long run, some sort of authorization service will be necessary, since
implementors will want to "piggyback" services. Until we implement one form or another of
centralized authorization-support, we recommend that no service instances be created.

9Kerberos was originally named after Hades’ three-headed watchdog because it was to provide not only
authentication service, but authorization and accounting services, too. As the system developed, these auxiliary
functions were deferred, on the grounds that authentication proved to be dauntingly subtle by itself.

8

Ticket Propagation

Problem to be Solved
Kerberos’ current suite of applications doesn’t allow users to get tickets for use on

remote hosts. Rlogin users sometimes need such tickets in order to authenticate their remote
10sessions, e.g., so as to remotely access their NFS lockers. We anticipate that other remote

processes will need access to their client-users’ tickets.

Constraints on Solutions
• Passwords and keys require encrypted transmission.

• The propagated tickets must be created anew for the recipient host; that is, the
tickets’ format must retain the "host id" field.

• Propagation of tickets must require a password; that is, it can’t be automatic. (to
prevent "unattended console" ticket-thefts).

• The local host must not cache tickets for a remote host (unattended console
again).

• Propagated should normally have a reduced lifetime, since it’s harder for the user
to destroy them.

• As usual, we prefer not to change the Kerberos protocols.

Actually, it would probably be safe to allow automatic propagation of reduced-
authorization tickets, but this is hampered by the difficulty of adding a notion of "reduced
authorization" to Kerberos. Until it’s better understood, automatic propagation is risky enough
that Kerberos should only support it, when an application demonstrates an overriding need.

Discussion of the Problem
We propose a new service, called "rkinit", whose purpose is to transfer tickets on

encrypted connections. How will ticket-propagation be used, and how will it work? Depending
on whether the donor or the recipient initiates the transfer, we’ll distinguish between "pushing"
and "pulling" tickets, respectively. For example, a user might push tickets to a remote host
before using rlogin, or he might rlogin first, and then use the remote session to pull his tickets
after him.

Pulling is more convenient for rlogin and telnet users, who don’t always need remote
tickets. It would be nice to support both pushing and pulling of tickets at Athena, but only
pushing is necessary. It’s likely, in fact, that only rlogin and other "cycle services" can use
pulling to advantage, so that it’s best to equip those protocols with toggled-encryption. This
would allow such users to run (r)kinit remotely and securely.

10Project Athena’s NFS-implementation demands Kerberos authentication for protected accesses.

9

Our Proposed Solution
Pushing is the more elegant approach:

1. The donor requests rkinit service of the receiver host, and uses the resulting
encrypted connection to identify himself.

2. The receiver rkinitd asks Kerberos for normal tickets in the normal way. Rkinitd
then returns Kerberos’ encrypted response to the donor.

3. The donor code prompts the user for his password, uses the password to decrypt
the tickets just as kinit does, checks the tickets for freshness, and returns the
tickets to the receiver, via the encrypted connection.

4. The receiver host’s rkinitd puts the tickets into a ticket-file.

Pulling is quite hard to implement, because it always requires that the donor-user see a
remote process’ password-prompt.

1. The receiver runs kinit to get tickets, which are encrypted in the donor’s private
key. Kinit must be told the donor’s host-name.

2. kinit then calls the donor’s host, and uses the receiver-host’s administrator’s TGT
to gain an encrypted connection.

3. The encrypted connection can be used to either get a password from the donor,
or to send the tickets to him for decryption. In either case, the donor’s host must
raise a password-prompt somewhere. This is difficult if X-windows aren’t
available, and spoofable even then. After decrypting the tickets, the donor
returns them to the receiver.

4. The receiver host’s rkinitd puts the tickets into a ticket-file.

In summary, we propose that rkinit use the pushing protocol. In either case, rkinitd has
to be careful to put the tickets into the correct ticket file, if multiple users/sessions are present.
This is another aspect of Kerberos’ naming problem.

Acknowledgments
Mark Lillibridge and Jon Rochlis helped us solve the problem. Jennifer Steiner

suggested the problem statement, and answered many questions. Jerry Saltzer found a
security hole in a late draft of this document. Cliff Neuman, Steve Miller, Mark Eichin, and Stan
Zanarotti all offered trenchant insights, as we expected. Dan Geer read and understood at
least six drafts of this document.

10

Appendix: Proof of Correctness for the Proposed Protocol
11This proof uses a formal protocol-analysis logic. We begin by breaking step 3 into two

single-ticket messages, and analyze what happens when the TGS receives a single TGT:

Let Y = (A<--K -->TGS), N = (A, time, life),a a,tgs a
and X = (N , Y , #(Y))a a a a
Then we’re analyzing the message
C --> TGS : {X } K .a tgs
TGS |+ (Krb<--K -->TGS) and TGS <) {X }Ktgs a tgs
so TGS <) X and TGS |+ Krb |~ X , by msg-meaning rule.a a
now, the nonce N is principally a lifespan, so TGS |+ #(N),a a
and TGS |+ Krb |+ X , by nonce-verif. rule.a
TGS |+ Krb |+ (Y , #(Y)); we assume thata a
TGS |+ Krb => (Y , #(Y)),a a
so TGS |+ Y and TGS |+ #(Y), by jurisdiction rule.a a

Substituting C & SP for A in X and Y , we find that these conclusions provide what we need toa a
assume of the keys K & K .c,tgs sp,tgs

The next protocol step is the credentials message:
Let Y = (C<--K -->SP) and X = (Y, #(Y)), andc,sp
Z = (N , X)sp
Then we’re analyzing the message
TGS --> C: { Z, { C, Z} K } K .sp,tgs c,tgs
we have C |+ (C<--K -->TGS), and C <) { Z,... } K , soc,tgs c,tgs
C |+ TGS |~ (Z, { C, Z} K), by msg-meaning rule.sp,tgs
As above, C |+ #(N), so C |+ #(Z, { C, Z}), andsp
C |+ TGS |+ (Z, { C, Z} K), by nonce-verif. rule.sp,tgs
In particular, C |+ TGS |+ X, and we assume that C |+ TGS => X,
so we have C |+ X, so C |+ Y and C |+ #(Y), as desired.
Further, we have C <) { C, Z} K .sp,tgs

Now we analyze the service request, with ticket & authenticator:
C --> SP: { C, Z} K , ({ N , Y}K signed C)sp,tgs c c,sp
SP <) { C, Z} K and SP |+ (SP<-K ->TGS), sosp,tgs sp,tgs
SP |+ TGS |~ (C, Z). Now, recall that Z = (N , X);sp
as usual, SP |+ #(N), so SP |+ #(N , X),sp sp
so SP |+ TGS |+ (N , X), by the nonce-verif. rule.sp
In particular, SP |+ TGS |+ X; we assume SP |+ TGS => X, so SP |+ X.
That is, SP |+ Y and SP |+ #(Y), as desired.
Further, SP <) ({ N , Y}K signed C),c c,sp
so SP |+ C |~ (N , Y) and SP <) (N , Y).c c
SP |+ #(N), so SP |+ #(N , Y), so SP |+ C |+ (N , Y).c c c
Thus, SP |+ C |+ Y.
Since we already have C |+ Y, this completes C’s authentication to SP.

The analysis of SP’s responding authenticator is analogous to
that of C’s authenticator.

11Michael Burrows, Martin Abadi, and Roger Needham, "Authentication: A Practical Study in Belief and Action".
(1987) Digital Equipment Corporation Systems Research Center.

i

Table of Contents
Introduction 1
Authentication of Workstation Services 1

Problem to be Solved 1
Constraints on Solutions 2
Discussion of the Problem 2
Our Proposed Solution 4
Ticket Lifetimes and Renewal 5
User-To-Host Authentication 6
Naming and Authorization Issues 6

Ticket Propagation 8
Problem to be Solved 8
Constraints on Solutions 8
Discussion of the Problem 8
Our Proposed Solution 9

Acknowledgments 9
Appendix: Proof of Correctness for the Proposed Protocol 10

