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Abstract

We present a general framework for discriminative estimation based on the maximum en-

tropy principle and its extensions. All calculations involve distributions over structures and/or

parameters rather than speci�c settings and reduce to relative entropy projections. This holds

even when the data is not separable within the chosen parametric class, in the context of

anomaly detection rather than classi�cation, or when the labels in the training set are uncer-

tain or incomplete. Support vector machines are naturally subsumed under this class and we

provide several extensions. We are also able to estimate exactly and eÆciently discriminative

distributions over tree structures of class-conditional models within this framework. Preliminary

experimental results are indicative of the potential in these techniques.

1 Introduction

E�ective discrimination is essential in many application areas including speech recognition, im-

age classi�cation or identi�cation of molecular binding sites in genomic DNA. Statistical approaches

used in these contexts for classi�cation generally fall into two major categories { generative or dis-

criminative { depending on the estimation criterion used for adjusting the model parameters and/or

structure. Generative approaches rely on a full joint probability distribution over examples and clas-

si�cation labels whereas for discriminative methods only the conditional relation of a label given the

example is relevant. While the full joint distribution in the generative approach carries a number of

advantages e.g. in handling incomplete examples, the typical estimation criterion (maximum likeli-

hood or its variatiants) is nevertheless suboptimal from the point of view of classi�cation objective.

Discriminative methods such as support vector machines [21] or boosting algorithms [8] that focus

directly on the parametric decision boundary typically yield more robust classi�cation methods,

whenever they are applicable.

Full joint distributions and the bene�ts they convey can be, of course, exploited in discriminative

approaches as well. We may, for example, interprete the posterior probability of a label given the

example as a parametric decision boundary (see e.g. [10, 13]). Alternatively, we can induce suitable
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vector space representations for examples from generative models and feed such representations into

standard discriminative techniques [11].

In this paper we provide a more general notion of discrimination, one that applies also in the

contex of anomaly detection or when the classi�cation labels themselves are uncertain or missing.

Note that the utility of e.g. unlabeled examples is not obvious [22, 2, 4, 18]. Our approach towards

general discriminative training relies on the well known maximum entropy principle which embodies

the Bayesian integration of prior information with observed constraints (see e.g. [15]). The formalism

that we apply and extend in this paper allows, for example, a feasible discriminative training of both

the parameters and the structure of a class of joint probability models. The approach is not limited

to probability models, however, and we extend e.g. support vector machines.

2 Maximum entropy classi�cation

Consider �rst a two-class classi�cation problem where labels y 2 f�1; 1g are assigned to examples

X 2 X . Assume we have two class-conditional probability distributions over the examples, i.e.,

P (X j�y) with parameters �y, one for each class. The decision rule corresponding to any particular

parameter setting f��1g follows the sign of the discriminant function:

L(X j�) = log
P (X j�1)

P (X j��1)
+ b (1)

where � = f�1; ��1; bg and b is a bias term, usually expressed as a log-ratio of prior class probabilities

b = log p=(1 � p) . The class-conditional distributions here may come from di�erent families of

distributions or we might specify the parametric discriminant function directly without any reference

to probability models. The parameters �y may also include the model structure as seen later in the

paper.

The parameters � = f�1; ��1; bg in the discriminant function should be chosen to maximize

classi�cation accuracy. Instead of �nding a single parameter setting, we consider here a more

general problem of �nding a distribution P (�) over the parameters and using a convex combination

of discriminant functions, i.e., Z
P (�)L(X j�)d� (2)

in place of the original discriminant function in the decision rule. The problem is now to �nd an

appropriate distribution P (�). Given a set of training examples fX1; : : : ; XT g and corresponding

labels fy1; : : : ; yT g we seek for a distribution P (�) that makes the least assumptions about the choice

of the parameter values � while giving rise to a discriminant function that correctly separates the

training examples. We can formalize this as a maximum entropy (ME) estimation problem. In other

words, we maximize the entropy H(P ) of P subject to the classi�cation constraintsZ
P (�) [ yt L(Xtj�) ] d� �  (3)

for all t = 1; : : : ; T . Here  speci�es a desired classi�cation margin. We note that the solution is

unique (provided that it exists) since H(P ) is concave and the linear constraints specify a convex

region. Note that the preference towards high entropy distributions (fewer assumptions) applies

only within the admissible set of distributions P consistent with the classi�cation constraints.

We can readily extend this formulation to a multi-class setting by introducing additional clas-

si�cation constraints. To see this, suppose we have instead m class-conditional probability models
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P (X j�y), y = 1; : : : ;m, prior class frequencies fpyg, and the associated pairwise discriminant func-

tions

Ly;y0(Xtj�) = log
P (X j�y)

P (X j�y0)
+ log

py

py0
(4)

where � = f�1; : : : ; �m; p1; : : : ; pmg. We may now replace the single constraint per training example

in eq. (3) with the following m� 1 pairwise constraintsZ
P (�) [Lyt;y(Xtj�) ] d� � ; y 6= yt; (5)

to ensure that the training label yt always \wins" the competition against the alternative labels

y 6= yt. For notational simplicity we will consider primarily only binary classi�cation problems in

the remainder of the paper but emphasize that the analogous extension to a multi-class setting can

be made.

The overall ME formulation presented so far has several problems. We have, for example, made

a tacit assumption that the training examples can be separated with the speci�ed margin. This

assumption may very well be violated in practice. Moreover, we may have a prior reason to prefer

some parameter values over others (as well as margin constraints) which requires us to incorporate a

prior distribution P0(�; ) into the de�nition. Other extensions and generalizations will be discussed

later in the paper.

A more general formulation that addresses these concerns is given by the following minimum

relative entropy principle:

De�nition 1 Let fXt; ytg be the training examples and labels, L(X j�) a parametric discriminant

function, and  = [1; : : : ; t] a set of margin variables. Assuming a prior distribution P0(�; ), we

�nd the discriminative minimum relative entropy (MRE) distribution P (�; ) by minimizing

D(PkP0) =

Z
P (�) log

P (�)

P0(�)
d� (6)

subject to the (soft) classi�cation constraintsZ
P (�; ) [ yt L(Xtj�)� t] d�d � 0 (7)

for all t. The decision rule for any new example X is given by

ŷ = sign

� Z
P (�) L(X j�) d�

�
(8)

Let us make a few remarks about the de�nition. First, we can recover the previous ME formula-

tion by appropriately adjusting the prior distribution P0(�; ) (e.g., if P0() peaks around a speci�c

setting of the margins). It is clear that the margin constraints are hidden in the prior distribution

P0(). Second, if we assume that there is a non-zero prior probability for all t taking some negative

values, we guarantee that the admissible set P composed of all distributions P (�; ) consistent with

the classi�cation constraints, is never empty. Thus even when the examples cannot be separated

by any discriminant function in the chosen parametric class (e.g. linear), we get a valid and unique

solution. Third, the penalty for violating any of the margin constraints also depends on the prior

distribution P0; whenever the mean of t deviates from its prior mean under P0, we incur a penalty
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Figure 1: Minimum relative entropy (MRE) projection from the prior distribution to the admissible

set.

in the form of relative entropy distance between the corresponding distributions. It is worth noting

that the penalties are de�ned in terms of joint speci�cations of margins but, in certain cases, they

reduce to the more typical additive penalties of violating the constraints.

The prior P0(�; ) playes an important role in our de�nition and we must choose it appropriately.

Let us consider here only the prior over the margin constraints . Supposing again that P0(�; ) =

P0(�)P0(), we can, for example, set

P0() =
Y
t

P0(t) (9)

where P0(t) = c e
�c(1�t), for t � 1. A penalty is incurred for margins smaller than 1� 1=c (the

prior mean of t) while margins larger than this are not penalized. In the latter case, the associated

constraint becomes merely irrelevant. We will see in later sections that this choice of the margin

prior corresponds closely to the use of slack variables and additive penalties used in support vector

machines. A number of other choices for P0() are possible and we discuss some of them later in

the paper.

An important property of the MRE solution is that it can be viewed as a relative entropy

projection, the e-projection in the terminology of [1], from the prior distribution P0(�; ) to the

admissible set P . Figure 1 illustrates this view. Even in the non-separable case, we can view the

MRE solution as a projection. This formalism readily extends to the case of uncertain or partially

labeled examples as we will see later in the paper.

To solve the MRE problem, we rely on the following theorem.

Theorem 1 The solution to the MRE problem has the following general form (cf. [7]):

P (�; ) =
1

Z(�)
P0(�; ) e

P
t
�t[ ytL(Xtj�)�t] (10)

where Z(�) is the normalization constant (partition function) and � = f�1; : : : ; �T g de�nes a set

of non-negative Lagrange multipliers, one for each classi�cation constraint. � are set by �nding the

unique maximum of the following jointly concave objective function:

J(�) = � logZ(�) (11)

Whether the MRE solution can be found in a feasible way depends entirely on whether we can

evaluate the partition function Z(�),

Z(�) =

Z
P0(�; ) e

P
t
�t[ ytL(Xtj�)�t]

d�d (12)
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in closed form. Given a closed form expression for Z(�), the maximum of the jointly concave ob-

jective function J(�) can be subsequently found through any standard convex optimization method

such as Newton-Raphson. The resulting set of Lagrange multipliers f�tg then de�ne the MRE

solution as indicated in the theorem. Finally, predicting a label for any new example X involves av-

eraging the discriminant function L(�) with respect to the marginal P (�) of the MRE distribution

(see De�nition 1). Finding this marginal as well as performing the required averaging are no more

costly than computing Z(�). We will elaborate these calculations further in the context of speci�c

realizations.

The MRE solution is sparse in the sense that only a few Lagrange multipliers will be non-zero.

This arises because many of the classi�cation constraints become irrelevant once the constraints are

enforced for a small subset of examples. For support vector machines that are subsumed under the

above general de�nition, this notion translates into a sparse representation of the separating hyper-

plane. Sparsity leads to immediate generalization guarantees (independent of the dimensionality of

the parameter or example space):

Lemma 1 The generalization error �g of the MRE classi�er satis�es

eg � Ef fraction of non-zero Lagrange multipliers g (13)

where the expectation is over the choice of the training set.

Practical leave-one-out cross-validation estimates of the generalization error can be derived on

the basis of this result (cf. [21, 12]). We may also make use of generalization error results derived

for convex combination of classi�ers [20] to obtain more informative generalization bounds for MRE

classi�ers. The details are left for another paper.

3 Practical realization of the MRE solution

We now turn to the question of actually �nding the MRE solution. Consider �rst the following

elementary but helpful lemma

Lemma 2 Any factorization of the prior P0(�; ) across any disjoint sets of variables f�; g leads

to a disjoint factorization of the MRE solution P (�; ) across the same sets of variables provided

that these variables appear in distinct additive components in ytL(Xt;�)� t.

If we assume that the labels fytg are �xed and that the prior distribution P0(�; ) factorizes

across the components f�nb; b; g, then according to the lemma, the MRE solution factorizes in the

same way. This factorization property allows us to eliminate e.g. the bias term from the remaining

solution by means of imposing additional constraints on the Lagrange multipliers. This is analogous

to the handling of the bias term in support vector machines [21]:

Lemma 3 Assuming P0(�; ) = P0(� n b; )P0(b) and P0(b) approaches a non-informative prior,

then P (�; ) = P (� n b; )P (b) and P (� n b; ) can be found independently from P (b) provided that

we require
P

t
�tyt = 0.

With the help of these results, we will consider now a few speci�c realizations such as support

vector machines and a class of graphical models.
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Figure 2: Three margin prior distributions (top row) and the corresponding potential terms (bottom

row) from Eq. (15).

3.1 Support vector machines

It is well known that the log-likelihood ratio of two Gaussian distributions with equal covariance

matrices yields a linear decision rule. With a few additional assumptions, the MRE formulation

gives support vector machines:

Theorem 2 Assuming L(X;�) = �
T
X�b and P0(�; ) = P0(�)P0(b)P0() where P0(�) is N(0; I),

P0(b) approaches a non-informative prior, and P0() is given by eq. (9) then the Lagrange multipliers

� are obtained by maximizing J(�) subject to 0 � �t � c and
P

t
�tyt = 0, where

J(�) =
X
t

[�t + log(1� �t=c) ]�
1

2

X
t;t0

�t�t0ytyt0(X
T

t Xt0) (14)

The only di�erence between our J(�) and the (dual) optimization problem for SVMs is the

additional potential term log(1� �t=c). This highlights the e�ect of the di�erent miss-classi�cation

penalties, which in our case come from the MRE projection. Figures 2a) and c) show, however,

that the additional potential term does not always carry a huge e�ect (for c = 5). Moreover, in the

separable case, letting c!1, the two methods coincide. The decision rules are formally identical.

The choice of the prior distribution P0() leads to di�erent potential terms. Figure 2 gives the

following priors and their corresponding potential terms

Margin prior Dual potential term

a) P0() / e
�c (1�)

;  � 1; �t + log(1� �t=c)

b) P0() / e
�c j1�j

; �t + 2 log(1� �t=c)

c) P0() / e
�c2 (1�)2=2

; �t � (�t=c)
2

(15)

where a) is the case discussed in the theorem. Note that the resulting potential terms may or may

not set an upper bound on the value of �t. In a) and b) �t is bounded by the constant c whereas

in c) no such bound exists.
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3.1.1 Extension

We now consider the case where the discriminant function L(X;�) corresponds to the log-

likelihood ratio of two Gaussians with di�erent (and adjustable) covariance matrices. The parame-

ters � in this case are both the means and the covariances. The prior P0(�) must be the conjugate

Normal-Wishart to obtain closed form integrals1 for the partition function, Z. Here, P (�1;��1)

is P (m1; V1)P (m�1; V�1), a density over means and covariances (and the factorization follows from

our assumptions below).

The prior distribution has the form P0(�1) = N (m1;m0; V1=k) IW(V1; kV0; k) with parameters

(k, m0, V0) that can be speci�ed manually or one may let k ! 0 to get a non-informative prior. We

used the MAP values for k, m0 and V0 from the class-speci�c data2. Integrating over the parameters

and the margin, we get a partition function which factorizes Z = Z �Z1 �Z�1. For Z1 we obtain

the following:

Z1 / N
�d=2
1 j�S1j

�N1=2 �d

j=1�

�
N1 + 1� j

2

�
(16)

N1
�
=
P

t
wt

�X1
�
=
P

t

wt

N1
Xt S1

4
=
P

t
wtXtX

T
t �N1

�X1
�XT
1

(17)

Here, wt is a scalar weight given by wt = u(yt) + yt�t for Z1. To solve for Z�1 we proceed in a

similar manner with the exception that the weights are set to wt = u(�yt) � yt�t. u(�) here is the

step function. Given Z, updating � is done by maximizing the corresponding negative log-partition

function J(�) subject to 0 � �t � c and
P

t
�tyt = 0 where:

J(�) =
X
t

[l��t + log(1� �t=c)]� logZ1(�t)� logZ�1(�t) (18)

The potential term above corresponds to integrating over the margin with a margin prior P0() /

e
�c(l��) with  � l�. We pick l� to be some �-percentile of the margins obtained under the standard

MAP solution. Optimal lambda values are found via constrained gradient descent. The resulting

marginal MRE distribution over the parameters (normalized by the partition function Z1�Z�1) is

a Normal-Wishart distribution itself, P (�1) = N (m1; �X1; V1=N1) IW(V1;S1; N1) with the �nal �

values. Predicting the labels for a data point X under the �nal P (�) involves taking expectations

of the discriminant function under a Normal-Wishart. This is simply:

EP (�1)[logP (X j�1)] = constant�
N1

2
(X � �X1)

T
S
�1
1 (X � �X1) (19)

We thus obtain discriminative quadratic decision boundaries. These extend the linear boundaries

without (explicitly) resorting to kernels. Of course, kernels may still be used in this formalism,

e�ectively mapping the feature space into a higher dimensional representation. However, unlike

linear discrimination, the covariance estimation in this framework allows the model to adaptively

modify the kernel.

3.1.2 Experiments

In the following, we show results using the minimum relative entropy approach where the dis-

criminant function (L(X;�)) is the log-ratio of Gaussians with variable covariance matrices on

standard 2-class classi�cation problems (Leptograpsus Crabs and Breast Cancer Wisconsin). In

1This can be done more generally for conjugate priors in the exponential family.
2The prior here is the posterior distribution over the parameters given the data, i.e. an empirical Bayes procedure.
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Method Training Testing

Errors Errors

Neural Network (1) 3

Neural Network (2) 3

Linear Discriminant 8

Logistic Regression 4

MARS (degree = 1) 4

PP (4 ridge functions) 6

Gaussian Process (HMC) 3

Gaussian Process (MAP) 3

SVM - Linear 5 3

SVM - RBF � = 0:3 1 18

SVM - 3rd Order Polynomial 3 6

Maximum Likelihood Gaussians 4 7

MaxEnt Discrimination Gaussians 2 3

Table 1: Leptograpsus Crabs
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(a) Training ROC (b) Testing ROC

Figure 3: ROC curves on Leptograpsus Crabs for discriminative (solid line), Bayes / ML models

(dashed line) and SVM linear models (dotted line).

addition we display a two-dimensional visualization example of the classi�cation. Performance is

compared to regular support vector machines, maximum likelihood estimation and other methods.

The Leptograpsus crabs data set was originally provided by Ripley [19] and further tested by

Barber and Williams [3]. The objective is to classify the sex of the crabs from 5 scalar anatomical

observations. The training set contains 80 examples (40 of each sex) and the test set includes 120

examples.

The Gaussian based decision boundaries are compared in Table 1 against other models from[3].

The table shows that the maximum entropy (or minimum relative entropy) criterion improves the

Gaussian discrimination performance to levels similar to the best alternative models. The bias was

estimated separately from training data for both the maximum likelihood Gaussian models and the

maximum entropy discrimination case. In addition, we show the performance of a support vector

machine (SVM) with linear, radial basis and polynomial decision boundaries (using the Matlab

SVM Toolbox provided by Steve Gunn). In this case, the linear SVM is limited in exibility while

kernels exhibit some over-�tting.

In Figure 3 we plot the ROC curves on training and testing data. The ROC curve shows improved

classi�cation for maximum entropy (minimum relative entropy) case.
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Method Training Testing

Errors Errors

Nearest Neighbour 11

SVM - Linear 8 10

SVM - RBF � = 0:3 0 11

SVM - 3rd Order Polynomial 1 13

Maximum Likelihood Gaussians 10 16

MaxEnt Discrimination Gaussians 3 8

Table 2: Breast Cancer Classi�cation
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Figure 4: ROC curves on Breast Cancer for discriminative (solid line), Bayes / ML models (dashed

line) and SVM linear models (dotted line).

Another data set which was tested was the Breast Cancer Wisconsin data where the two classes

(malignant or benign) have to be computed from 9 numerical attributes from the patients (200

training cases and 169 test cases). The data was �rst presented by Wolberg [24]. We compare our

results to those produced by Zhang [25] who used a nearest neighbour algorithm to achieve 93:7%

accuracy. As can be seen from Table 2, over-�tting seems to prevent good performance for kernel

based SVMs. The maximum entropy discriminator achieves 95:3% accuracy.

In Figure 4 we plot the ROC curves on training and testing data. The training ROC curves

show improved discrimination for the maximum entropy method. ROC curves for all three methods

are equivalent on testing however since we typically assume that bias is estimated exclusively from

training data, the results in Table 2 are more signi�cant.

Finally, for visualization, we present the technique on a 2D set of training data in Figure 5 and

Figure 6. The SVM in Figure 5(a) attempts to achieve maximum descrimination but is limited to a

linear decision boundary. It only succeeds after the application of a kernel as in Figure 5(b), where

a 3rd order polynomial kernel is used. In Figure 6(a), the maximum likelihood technique is used

to estimate a 2 Gaussian discrimination boundary (bias is estimated separately) which has more

exibility than the linear SVM yet fails to achieve the desired optimal classi�cation. Meanwhile,

the maximum entropy discrimination technique places the Gaussians in the most discriminative

con�guration as shown in Figure 6(b).
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(a) Linear SVM (b) Polynomial Kernel SVM

Figure 5: Classi�cation visualization SVMs.

(a) Max Likelihood (b) Max Ent Discrimination

Figure 6: Classi�cation visualization for Gaussian discrimination.

3.2 The Fisher kernel classi�er

Here we demonstrate that the MRE formulation proposed in this paper contains the Fisher kernel

method of [11]. The Fisher kernel method provides a combination of a generative model P (X j�)

with a discriminative method such as support vector machines through de�ning an appropriate

kernel function. The kernel function, called the Fisher kernel, can be computed from any generative

model in the neighborhood of some desired e.g. maximum likelihood parameter setting �
�. The

Fisher kernel function is given by

Kfk(X;X
0) = UX(�

�)T F (��)�1
UX0(��) (20)

where UX(�) is the Fisher score

UX(�) = r� logP (X j�)j�=�� ; (21)
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F (�) = EfUX(�)U
T

X
(�) g is the Fisher information matrix3 and the expectation is with respect to

P (X j�). Replacing the inner product XT
t Xt0 between the examples in Theorem 2 with the kernel

function in Eq. (20) amounts to the \simple" Fisher kernel method as explained in [11].

Our goal in this section is to show that we can recover the Fisher kernel method in the MRE

framework so long as the prior distribution P0(�; ) is chosen in an appropriate way. We start with a

few necessary regularity assumptions about the family of distributions P (X j�) in some small (open)

neighborhood O(��) of ��:

1. for any X 2 X , UX(�) = r� logP (X j�) is a continuously di�erentiable vector valued function

of �

2. F (�) = EfUX(�)U
T

X
(�) g exists and is positive de�nite

Let us de�ne, in addition, the di�erential (symmetric) relative entropy distance between the

distributions P (X j�) and P (X j��)

d(�; ��)2 =
1

2
(� � �

�)T F (��)�1 (� � �
�) (22)

valid whenever � � �
�. We assign a prior distribution P0(�) in terms of this distance4

P0(�) =
1

Z(��; �)
e
�� d(�;��)2 (23)

where � serves as a scaling parameter. This prior assigns a low probability to all � for which the

corresponding probability distribution P (X j�) deviates signi�cantly from P (X j��). Another way to

view this prior is as a local isotropic Gaussian prior distribution in the probability manifold induced

by the family of distributions P (X j�), � 2 O(��).

In the MRE formalism the objective is to minimize the relative entropy distance between the

MRE distribution P and the prior P0 subject to the classi�cation constraintsZ
P (�; ) [ ytL(Xtj�; �)� t ] d�d � 0 (24)

where the discriminant function L(Xtj�; �) is the scaled log-likelihood ratio:

L(Xtj�; �) = [�1=2 log
P (Xtj�)

P (Xtj�
�)
� b ] (25)

and � = f�; bg. This discriminant function encourages parameter values � that are indicative of the

+1 class relative to the \null model" P (Xtj�
�).

The following Theorem now establishes the desired connection to the Fisher kernel method.

Theorem 3 If we replace P0(�) with Eq. (23) in Theorem 2 and the discriminant function with

L(Xtj�; �) de�ned above as well as let � !1, then the objective function J(�) reduces to

J(�) =
X
t

[�t + log(1� �t=c) ]�
1

2

X
t;t0

�t�t0ytyt0Kfk(Xt; Xt0) (26)

where Kfk(Xt; Xt0) is the Fisher kernel of Eq. (20).

We note that this result is merely a formal relation between the MRE principle and the Fisher

kernel and does not necessarily provide any additional motivation.
3For many probability distributions the Fisher information matrix may not be possible to compute in closed form.

However, it is the covariance matrix of the Fisher scores and thus can be easily approximated by sampling.
4A more precise de�nition of this prior would involve setting it to zero outside the open neighborhood where the

regularity conditions may no longer hold. For large �, the e�ect of this condition vanishes and we omit it here for

simplicity.
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3.3 Graphical models

The MRE formulation can accomodate discriminant functions resulting from log-ratios of general

graphical models. The MRE distribution, i.e. P (�), in this setting is over both the parameters

and the structure of the model. Since the estimation is carried out in the space of distributions

the distinction between discrete or continuous variables is immaterial. The framework does not,

however, admit eÆcient solutions without restrictions on the class of graphical models. For example,

assuming the structure remains �xed and that the class-conditional models have no latent variables,

then the MRE distribution P (�) over the parameters can be obtained eÆciently. This requires

additional technical assumptions such as the use of conjugate priors, the parameter independence

assumption of [6] and the fact that the probability model must be tractable for any �xed setting

of the parameters. Although restricted, this class does include e.g. naive Bayes models, mixture of

tree models and so on.

For a special class of graphical models whose structure is a tree, both the parameters and the

structure can be estimated eÆciently within our discriminative framework. In the remainder, we

will consider such tree structured models.

First, we de�ne a tree distribution. Let V denote the set of variables of interest, jV j = n, xv 2 Xv
a particular value of v 2 V and X 2 X an assignment to all the variables in V . Like any graphical

model, a tree distribution is de�ned in two stages. First, one de�nes a graph (V;E), called structure,

whose vertices are the variables in V and whose edges encode dependencies between these variables.

A tree is an undirected graph over V that is connected and has no cycles. For any tree over n

vertices jEj = n � 1. Because such a tree spans all the nodes in V , it is often called a spanning

tree. Then, the tree distribution is de�ned as a product of factors corresponding to the edges and

vertices.

T (x) =

Q
(u;v)2E Tuv(xu; xv)Q
v2V Tv(xv)

deg v�1
(27)

where deg v is the degree of vertex v, i.e. the number of edges incident to v 2 V and Tuv and Tv

denote the marginals of T :

Tuv(xu; xv) =
X

v=xv;u=xu

T (X)

Tv(xv) =
X
v=xv

T (X):

When the variable x is discrete, the marginals Tuv and Tv can be represented as probability tables

denoted respectively �uv(xu; xv) and �v(xv). The values � are the parameters of the distribution.

When it will be necessary to emphasize the dependence of the tree distribution on its structure and

parameters we will use the notation T (xjE; �).

By taking the logarithm of T (X) and conveniently grouping the factors one obtains

logT (X) =
X
v2V

logTv(xv)

| {z }
w0(X)

+
X
uv2E

log
Tuv(xu; xv)

Tv(xv)Tu(xu)| {z }
wuv(X)

= w0(X) +
X
uv2E

wuv(X): (28)

In words, the log-likelihood is a sum of terms wuv(X) each corresponding to an edge (and depending

only on the values of the variables u; v associated with that edge) plus a structure independent term

w0(X) that depends on all the variables. All the terms are functions of the tree parameters �.

12



3.3.1 Discriminative learning of tree structures

A tree model is de�ned by a set of discrete variables encoding its structure and a set of continuous

variables representing its parameters. To use the MRE framework we must de�ne a prior joint distri-

bution over the structures and their associated parameters. We will assume that the structure and

the parameters are independent a priori; moreover, we shall assume that except for the functional

dependencies among the parameters that are imposed by the fact that they have to represent a valid

joint distribution overX there are no other statistical or functional dependencies. These assumptions

correspond to the parameter independence and parameter modularity assumptions of [9] (see also [6]).

In our case, this means that there is a set of parameters � = f�uv(i; j); u; v 2 V; i 2 Xu; j 2 Xvg

associated with the edges such that in any tree model containing an edge uv 2 E, the pairwise

marginals Tuv(xu; xv) are given by �uv(xu; xv) regardless of the presence of other edges in E and

their parameter values. This simpli�cation, in turn, allows the MRE formulation for only structures

(with a �xed set of parameters or a �xed distribution over their values), for parameters only, or for

both.

We start with a MRE estimation of structures only when the pairwise marginals �uv(xu; xv) are

assumed �xed. Note that each tree nevertheless makes use of a di�erent set of n � 1 edges and

thereby a di�erent set of parameters. For each class or label s 2 f1;�1g, we have a separate set of

�xed parameters �s. In the experiments below, the values of these parameters were obtained from

empirical (class-conditional) marginals. We assume a uniform prior over the class-conditional tree

structures Es.

De�nition 2 Given a set (Xt
; y

t); t = 1; : : : T of labeled examples, a set of margin variables  =

[1; : : : ; T ] and a prior distribution P0(E1; E�1; ) the MRE distribution P (E1; E�1; ) is the one

minimizing D(PkP0) subject to

X
E1;E�1

Z
P (E1; E�1; )

�
yt log

T (XtjE1; �
1)

T (XtjE�1; �
�1)
� t

�
d � 0 for t = 1; : : : T (29)

Assuming P0(E1; E�1; ) = P0(E1)P0(E�1)P0(), Lemma 2 implies that the solution is factored as

P (E1)P (E�1)P () with

P (Es) =
1

Zs
e

P
T

t=1
s�tyt[w

s
0(Xt)+

P
uv2Es

w
s
uv(Xt)]

=
W

s
0

Zs

Y
uv2Es

W
s

uv
(30)

for s = 1;�1 and

W
s

0 = e

P
t
s�tytw

s
0(Xt)

; W
s

uv
=

TY
t=1

(ws

uv
(Xt))

s�tyt ; s = 1;�1: (31)

In the above the normalization constants Zs and the factors W s are functions of the Lagrange

multipliers � which need to be set. Provided that we can obtain the normalization constants

(functions) Zs in closed form, � are set to maximize the dual objective

J(�) =  � �� logZ1 � logZ�1: (32)

where, for simplicity, we have assumed a �xed setting of the margin variables ftg.

3.4 Computing the normalization constant and its derivatives

The number of all possible tree structures over n vertices is nn�2 [23] and thus computing the

normalization constants by enumerating all the tree structures is clearly not possible for reasonable
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n. However, a remarkable graph theory result enables us to perform all the necessary summations

in closed form in polynomial time. This is the Matrix Tree Theorem quoted below.

Theorem 4 (Matrix Tree Theorem)[23] Let G = (V;E) be a multigraph and denote by auv =

avu � 0 the number of undirected edges between vertices u and v. Then the number of all spanning

trees of G is given by jAjuv(�1)
(u+v) the value of the determinant obtained from the following matrix

by removing row u and column v
5.

A =

2
6666664

deg(v1) �a12 �a13 : : : �a1;n

�a21 deg(v2) �a23 : : : �a2;n

: : :

�an;1 �an;2 : : : : : : deg(vn)

3
7777775

(33)

By extending the Matrix Tree theorem to continuous-valued A and letting the weights Wuv play

the role of auv, one can prove

Theorem 5 Let P (E) be a distribution over tree structures de�ned by

P (E) / W0

Y
uv2E

Wuv (34)

Then its normalization constant Z is equal to

Z = W0

X
E

Y
uv2E

Wuv = W0jQ(W )j (35)

with Q(W ) being the (n� 1)� (n� 1) matrix

Quv(W ) = Qvu(W ) =

�
�Wuv 1 � u < v � n� 1P

n

v0=1Wv0v 1 � u = v � n� 1
(36)

This shows that summing over the distribution of all trees, when this distribution factors according

to the trees' edges, can be done in closed form by computing the value of a order n�1 determinant,

operation that involves O(n3) operations.

To optimize the Lagrange multipliers, we must compute derivatives of J(�) or, equivalently,

derivates of the log-partition functions with respect to �. It is well known that such derivatives lead

to averages with respect to the distribution in question (for details see Appendix A). In our case,

for example,

@ logZs

@�t
= syt < logT (XtjEs; �

s) >P (Es) = sy
t

2
4ws

0(X
t) +

X
u 6=v

w
s

uv(X
t)W s

uvM
s

uv

3
5 (37)

whereMs is a linear function of Q�1(W s) given in Appendix A. Inverting the matrix Q(W ) is O(n3)

and this operation can be done once before the summations in equations (37). Thus, computing

the derivatives of the normalization constant w.r.t all �t takes O(n
3 + n

2
T ) operations and O(n2)

extra space.

5Note that A as a whole is a singular matrix.
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Finally, to obtain the decision rule for any new example X we must compute averages of the

log-likelihood ratio with respect to the (marginal) MRE distribution P (E1)P (E�1):

ŷ = sgn
n P

E1;E�1
P (E1)P (E�1) log

T (XjE1;�
1)

T (XjE�1;��1)

o
(38)

= sgn
�
w
1
0(X)� w

�1
0 (X) + <

X
uv2E1

w
1
uv
(X)>P (E1) � <

X
uv2E�1

w
�1
uv
(X)>P (E�1)

	
(39)

where we have omitted a possible bias term b. The required averages can be computed analogously

to Eq. (37) yielding e.g.

<

X
uv2E1

w
1
uv
(X)>P (E1)=

X
u6=v

w
1
uv
(X)WuvM

1
uv

(40)

where M1
uv

is the same matrix as in Eq. (37) and has been already computed in the last step of the

training algorithm. Classifying a new data point therefore requires only roughly O(n2) operations.

3.5 MRE distributions over tree structures and parameters

Here we describe briey how to �nd the MRE distribution over both structures and parameters,

i.e., P (E1; �
1
; E�1; �

�1). We assume a factored prior P0(�
1)P0(�

�1) over the parameters and as be-

fore a uniform prior over the structures. In addition to the parameter independence and modularity

assumptions used earlier, we must assume that the priors P0(�
s); s = 1;�1 are likelihood equivalent

(i.e. they assign the same value to models having the same likelihood for all data sets). In this case,

the priors over parameters are forced to be Dirichlet [9] and de�ned in terms of a set of equivalent

marginal counts ~Ns
uv
(xu; xv) satisfyingX

xu

~Ns

uv(xu; xv) =
~Ns

v (xv)
X
xv

~Ns

uv(xu; xv) =
~Ns

u(xu)
X
xuxv

~Ns

uv(xu; xv) =
~Ns (41)

Because the prior over parameters is independent of the structure, the MRE distribution factor-

izes as

P (Es; �
s) =

1

Zs
P0(�

s)e
P

t
s�tyt log T (XtjEs;�

s)
(42)

To evaluate the partition function Zs, the parameters �
s can be analytically integrated out before

the summation over structures. The resulting marginal distribution over tree structures is similar

to equation (35)

P (Es) =
W

s
0

Zs

X
E

Y
uv2E

W
s

uv
(43)

with the factors W s are now functions of both � and Dirichlet distribution parameters ~Ns (see

appendix B for exact expression).

The classi�cation rule is also similar in form to equation (39) with the terms ws depending on

�, the data, and the equivalent counts as described in Appendix B.

3.6 General Bayes nets

A Bayes net with given structure can be parametrized by the set of conditional distributions

P (vjpa(v) = xpa(v)) of a variable given a con�guration of its parents. A discriminative MRE solution

can be found for the parameter distribution P (�1; ��1) assuming complete observations. Finding

the MRE distribution over structures is, however, unlikely to be feasible for other than trees (c.f.

[5]).
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Figure 7: ROC curves for the ME discriminative classi�er (full line) and the ML classi�er (dashed

line) for the splice junction classi�cation problem. The minimum test errors are 12.4% and 14%

respectively.
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Figure 8: Logarithmic weights wuv versus mutual informations Iuv for class 1 (a) respective �1 (b).

The square in position uv; u < v represents wuv while its symmetric, vu represents Iuv . Larger

values appear more back in the �gures.

3.7 Experiments

We tested our model in the �xed parameter version on the detection of DNA splice sites and

compared its performance to the performance of a classi�er using a Maximum Likelihood (ML) tree

for each class. In both cases, the tree parameters � were the ML parameters for the corresponding

class (empirical class-conditional marginals).

The domain consists of 25 variables representing sites around a (hypothetic) splice junction.

The test set had 400 examples split equally between the two classes; the training set consisted of

4724 examples, about a fourth being positives ones. For simplicity, we used a �xed margin  = 4,

the largest value that allowed perfect class separation. The number of �'s that are nonzero in this

example is 61 (out of 400) suggesting a performance level of about %15 according to Lemma 1. The

ROC curves for the two classi�ers are compared in �gure 7. MRE distribution over tree structures

is superior to a pair maximum Likelihood trees, although the parameter values are identical. The

test set error is 14.0% for the ML classi�er and 12.3% for the MRE method. The training error is

0.5% for the ML classi�er and zero for the discriminative one indicating that the MRE method is

resistant to over�tting.

Figure 8 compares the \edge weights" for the two classi�ers. These edge weights reect the

preferences assigned to tree structures in the MRE distribution or in the (single) class-conditional

maximum likelihood (ML) tree. Since the estimation criterion di�ers in the two cases, the most
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likely tree in the MRE solution does not in general equal the ML tree structure. Figure 8a) displays

w
1
uv = log(W 1

uv) factors corresponding to each edge uv in the MRE distribution for class 1 as well as

the respective mutual information values I1
uv
. Since both matrices are symmetric, one can display

both sets of values in a 25 by 25 square: the upper left half represents the ME weights whereas the

lower right half of the square shows the mutual information. Figure 8,b shows the same results for

class -1. Note that summing w1
uv

or I1
uv

across the edges of a particular tree pertains directly to the

log-probability of the tree and thus the comparison is meaningful 6.

The �gure shows that there are relatively few edges with large weights on both sides of the

diagonal. This is particularly relevant for the discriminative model of the positive examples, since

it shows that the MRE distribution decays rapidly around its peak. The maximum W
1
uv is more

than 103 times the next largest value, clearly separating edges that are discriminative and those

whose inclusion or exclusion has little e�ect on discrimination. This contrast is understandably less

pronounced for the negative examples that represent a diverse collection of spurious splice sites.

A second important remark is that neither �gure 8,a nor 8,b are symmetric w.r.t the diagonal. In

other words, not all pairs of variables that exhibit high mutual information are also discriminative.

Note for example that the subdiagonal band showing that adjacent variables are informative of

each other is almost completely e�aced under discriminative training. Our method brings out the

discriminative structure of the data, which is di�erent from its structure as a density estimator.

4 Anomaly detection

In anomaly detection we are given a set of training examples representing only one class, the

\typical" examples. We attempt to capture regularities among the examples to be able to recognize

unlikely members of this class. Estimating a probability distribution P (X j�) on the basis of the

training set fX1; : : : ; XT g via the standard maximum likelihood (or analogous) criterion is not

appropriate since there is no reason to further increase the probability of those examples that are

already well captured by the model. A more relevant measure involves the level sets

X = fX 2 X : logP (X j�) �  g (44)

These level sets are used in deciding the class membership, even in the context of ML parameter

estimation. We therefore estimate the parameters � to optimize an appropriate level set. As before,

we cast this problem as MRE:

De�nition 3 Given a probability model P (X j�), � 2 �, a set of training examples fX1; : : : ; XT g,

a set of margin variables  = [1; : : : ; T ], and a prior distribution P0(�; ) we �nd the MRE

distribution P (�; ) such that minimizes D(PkP0) subject to the constraintsZ
P (�; ) [ logP (Xtj�)� t ] d�d � 0 (45)

for all t = 1; : : : ; T .

Note that this is again a MRE projection problem whose solution can be obtained as before.

The choice of P0() in P0(�; ) = P0(�)P0() is not as straightforward as before since each margin

t needs to be close to achievable log-probabilities. We can nevertheless easily �nd a reasonable

choice e.g. by relating the prior mean of t to some ��percentile of the training set log-probabilities

generated through ML or other standard parameter estimation criterion. Denote the resulting value

by l� and de�ne the prior P0(t) as P0(t) = c e
�c (l��t) for t � l�. In this case the prior mean

of t is l� � 1=c.

6The comparison is done upto a scaling factor and an additive constant.
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Figure 9: a) Distribution of training set log-likelihoods for the MRE model (solid line) or the Bayes

model (dashed-line). b) ROC curve for the two models on an independent test set.

We have veri�ed experimentally for a simple product distribution that this choice of prior to-

gether with the MRE framework leads to a real improvement over standard (Bayesian) approach.

Figure 9 illustrates the bene�t of the MRE approach for discriminating between true and spurious

splice sites. The examples were �xed length DNA sequences (length 25) and we used the following

product distribution of simple multinomials:

P (X j�) =

25Y
i=1

Pi(xij�i) =

25Y
i=1

�xiji (46)

where X = fx1; : : : ; x25g, xi 2 fA;C; T;Gg, and
P

xi
�xiji = 1. The model parameters f�xijig were

estimated on the basis of only true examples (7000). The estimation criterion was either Bayesian

with an independent Dirichlet prior over each component distribution f��jig or through the relative

entropy projection method with the same prior. Figure 9a) indicates, as expected, that the training

set log-likelihoods from the MRE method are more uniform and without the long tails7. This

di�erence leads to improved anomaly detection as shown by the ROC curve in Figure 9b). The test

set consisted of 1192 true splice sites and 3532 spurious ones.

We expect the e�ect to be more striking in the context of more sophisticated models such as

HMMs that may otherwise easily capture spurious regularities in the data. In the next section we

describe how such models can be used eÆciently within the MRE framework.

4.1 Extension to latent variable models

In the presence of latent variables (missing information) we can no longer use the above formula-

tion directly. This arises because logP (Xtj�) does not decompose into a sum of simple components.

We can, however, achieve an eÆcient lower bound solution. If we letXh be the set of latent variables,

we can resort to the following variational lower bound:

logP (Xtj�) �
X
Xh

Qt(Xh) logP (Xt; Xhj�) +H(Qt) (47)

where H(Qt) is the entropy of the Qt distribution. A separate transformation has to be introduced

for each training example. Note that the lower bound is reasonable in this context since the objective

7To compute these log-likelihoods from the MRE method, we used the MRE solution as the posterior distribution

over the parameters. This is suboptimal for the MRE method given that the criterion is slightly di�erent but suÆces

here for the purposes of illustration. An analogous �gure with minor di�erences could be computed on the basis ofR
P (�) logP (Xj�)d� for the two methods. In this case, the �gure would be suboptimal for the Bayesian approach.
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is to guarantee that all (or most) training examples have likelihoods above some margin threshold.

Whenever the lower bound exceeds the threshold, so does the original likelihood.

The MRE distribution P (�; ) is obtained under the following constraints:

Z
P (�; )

"X
Xh

Qt(Xh) logP (Xt; Xhj�) � t

#
d� +H(Qt) � 0 (48)

which are of the same form (linear) as before. Note that we have made an additional assumption

that Qt(Xh) is functionally independent of the parameters �. This assumption guarantees that the

MRE distribution P (�; ) can be computed eÆciently for a large class of probability models such

as mixture models and HMMs. The loss in accuracy due to this simplifying assumption vanishes

whenever the (marginal) MRE distribution P (�) becomes peaked. In principle, this means that we

can always �nd the single most discriminative setting of the parameters even with the variational

bound. Roughly speaking, we incur a loss only relative to the exact MRE approach.

The overall solution to the MRE problem is no longer unique, however, but we can �nd a locally

optimal solution iteratively as follows:

Step 1. Fix fQt(Xh)g and �nd the MRE distribution P (�; ) as before

Step 2. Fix P (�; ) and let

Qt(Xh) / exp

�Z
P (�) logP (Xt; Xhj�)d�

�
(49)

Both steps can be computed eÆciently for a large class of models such as HMMs assuming the prior

P0(�) is Dirichlet and factorizes across the parameters. More generally, the prior should be the

conjugate prior satisfying the parameter independence assumption of [6] (see also [9]).

The iterative algorithm actually converges in the sense de�ned by the following theorem:

Theorem 6 If we let P (n)(�; ) be the MRE distribution after n steps of the iterative algorithm

described above, then

D(P (1)
kP0) � D(P (2)

kP0) � : : : � D(P (n)
kP0) (50)

The theorem is easy to understand as follows: each time we optimize any of the Qt(Xh) dis-

tributions, we maximize the associated lower bound. This maximization relaxes the corresponding

constraint on the MRE distribution and allows the relative entropy to be decreased.

5 Uncertain or incompletely labeled examples

Examples with uncertain labels are hard to deal with in any standard discriminative classi�cation

method, probabilistic or not. Note the di�erence between labels that are inherently stochastic and

those that are predictable but merely missing (the case considered here). Uncertain labels can be

handled in a principled way within the maximum entropy formalism: let y = fy1; : : : ; yT g be a set

of binary variables corresponding to the labels for the training examples. We can de�ne a prior

uncertainty over the labels by specifying P0(y); for simplicity, we can take this to be a product

distribution

P0(y) =
Y
t

Pt;0(yt) (51)
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where a di�erent level of uncertainty can be assigned to each example. We may, for example,

set Pt;0(yt) = 1 whenever yt is observed and Pt;0(yt) = 0:5 if the label is missing. The MRE

solution is found by calculating the relative entropy projection from the overall prior distribution

P0(�; ; y) = P0(�)P0()P0(y) to the admissible set of distributions P (no longer directly function

of the labels) that are consistent with the constraints:X
y

Z
�;

P (�; ; y) [ ytL(Xt;�)� t ] d� d � 0 (52)

for all t = 1; : : : ; T . The prior distribution P0() in this formulation encourages decision rules that

achieve large classi�cation margins for the examples (most of the probability mass is assigned to

values t � 0). This preference towards large margins creates dependencies between the (a priori)

unknown labels and the parameters � of the discriminant function. Consequently, even unlabeled

examples will contribute to the (marginal) MRE distribution P (�) that speci�es the decision rule.

We may alternatively view the MRE formulation as a transduction algorithm [22] whose objective

is to determine the class labels for a set of unlabeled training examples.

While this provides a principled framework for dealing with uncertain or partially labeled ex-

amples, the MRE solution itself is not in general feasible to obtain. For example, in the context

of support vector machines (for an alternative approach see [2]), the MRE distribution over the

labels will be (roughly speaking) a Boltzmann machine and therefore not manageable in general via

exact calculations. We can nevertheless employ eÆcient approximate methods to obtain an iterative

algorithm for self-consistent probabilistic assignment of the uncertain labels.

5.1 Feasible approximation

To be able to deal with uncertain labels in a feasible way, we solve instead the following MRE

problem with additional constraints:

De�nition 4 Given a parametric discriminant function L(X;�), a set of margin variables  =

[1; : : : ; T ], a set of class variables y = [y1; : : : ; yT ], and a prior distribution

P0(�; ; y) = P0(�)

"Y
t

P0(t)

# "Y
t

P0;t(yt)

#
(53)

we �nd a constrained MRE distribution P (�; ; y) of the form P (�; )P (y) that minimizes D(PkP0)

subject to the constraintsX
y

Z
�;

P (�; )P (y) [ ytL(Xt;�)� t ] d� d � 0 (54)

for all t = 1; : : : ; T .

We may view this as a type of mean �eld approximate since the MRE distribution is forced

to factorize to make the problem tractable. The solution is no longer unique but can be obtained

through the following two-stage iterative algorithm:

Step 1. Fix P (y) and let pt =
P

y
P (y)yt. We �nd P (�; ) as the MRE solution subject to the

constraints Z
�;

P (�; ) [ ptL(Xt;�)� t ] d� d � 0 (55)

Note that since the prior factorizes across f�; g the MRE solution factorizes as well, i.e.,

P (�; ) = P (�)P ().
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Step 2. Fix the marginal P (�) obtained in the previous step and �nd the MRE solution P
0(y; )

subject to

X
y

Z
P
0(y; )

�Z
�

P (�) [ yt L(Xt;�)� t ] d�

�
d � 0 (56)

for all t. Update P (y)  (1 � �)P (y) + �P
0(y) or simply set pt  (1 � �)pt + �p

0
t where

p
0
t
=
P

y
P
0(y)yt.

The fact that we include P () also in the second step is necessary since any adjustments to

the labels must be compensated by an increased margin. The distribution P (y) is updated via

relaxation to ensure a more controlled adjustment of the labels; any large change in P (y) is likely to

induce a signi�cant subsequent modi�cation to the solution of the �rst step. Although the iterative

algorithm remains stable even if larger changes are made, we believe the relaxation update leads

to better local optima. Moreover, since the admissible set is convex and because the minimization

objective (relative entropy) is also convex, the relaxation update always yields a change in the

appropriate direction. The solution to either step is well de�ned and can be obtained in closed

form assuming the problem is tractable when we have complete information about the labels. The

iterative algorithm is well-behaved in the sense of the following theorem:

Theorem 7 Let P (n)(�; ; y) = P
(n)(�; )P (n)(y) be the constrained MRE solution after n itera-

tions. Then for all 0 � � � 1, where � is the step size used in the algorithm, we have

D(P (1)
kP0) � D(P (2)

kP0) � : : : � D(P (n)
kP0) (57)

The result holds also after either step of the two-stage iterative algorithm.

5.2 Example: support vector machines

Here we provide a preliminary numeral assessment of how the above algorithm is able to make use

of unlabeled examples in the context of predicting DNA splice sites with support vector machines.

A detailed formulation of the algorithm for SVMs can be found in Appendix C. We generated three

training sets of examples corresponding to whether 1) all the labels were known, 2) labels were

provided only for about 10% randomly chosen examples and the remaining 90% were unlabeled but

available, and 3) only the 10% labeled examples were used for training. The full training set in this

case consisted of 500 true DNA splice sites and 500 spurious ones (false examples). The examples

were �xed length (25) strings of DNA letters (A,C,T,G) which were translated into bit vectors using

a four bit encoding (e.g. A! [1000]). Figure 10 gives ROC curves based on an independent test set

(1192 true examples and 3532 false examples) for SVMs trained with one of the three training sets.

Note that when the training set is fully labeled the algorithm reduces to the standard formulation.

The �gures show that even the approximate formulation8 is able to reap most of the bene�t from

the unlabeled examples. The �nding is also robust against the choice of the kernel function as is

seen by comparing Figure 10a) and 10b). The �ndings are preliminary.

6 Discussion

We have presented a general approach to discriminative training of model parameters, structures,

or parametric discriminant functions. The formalism is based on the minimum relative entropy prin-

ciple reducing all calculations to relative entropy projections. Quite remarkably, we can eÆciently

8In our experiments, � = 0:1 and the iterative algorithm was run for 10 iterations. The bene�t may vary as a

function of � and the number of iterations, particularly if � is too large. The prior probability P0(y) =
Q

t
P0;t(yt)

over the labels were set to 0 or 1 when the label for yt was observed and to 0:5 for the unlabeled ones.
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Figure 10: a) test set ROC curves based on a training set with fully labeled examples (solid line),

90% unlabeled and 10% labeled (dot-dashed), only the 10% labeled examples (dashed). In a) a

linear kernel was used and in b) a Gaussian kernel.

and exactly compute the best discriminative distribution over tree structures within this framework.

The MRE idea gives, in addition, a natural discriminative formulation of anomaly detection prob-

lems or classi�cation problems involving partially labeled examples. EÆcient algorithms were also

given to exploit such formulations.
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A Computing averages under a factored distribution over tree structures

Lemma 4 If P (E) is given by equation (34) and f; g are functions of E additive in the edges (i.e.

f(E) =
P

uv2E fuv) then

< f(E) >P =
1

Z

@jQ(We
�f )j

@�

���
�=0

(58)

< f(E)g(E) >P =
1

Z

@
2jQ(We

�f+�g)j
@�@�

���
�=�=0

(59)
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This lemma can be easily proved by equating jQ(We
�f )j with its de�nition (36) and then taking

derivatives of both sides. Then, remembering that for any matrix A with elements Aij

@jAj

@Aij

= jAj(A�1)ij (60)

one obtains, after conveniently grouping the terms, the result of Lemma 5:

Lemma 5 Let P (E) and Q be given by equations (34) and (36) respectively, M be a symmetric

matrix with 0 diagonal de�ned by

Muv = Mvu =

�
1
2
[(Q�1)uu + (Q�1)vv � 2(Q�1)uv)]; u; v < n

1
2
(Q�1)vn v < u = n

(61)

and f a function of the structure E satisfying f(E) =
P

uv2E fuv. Then the average of f under P

is

< f(E) >P =
X
E

P (E)f(E) =

nX
u;v=1

fuvWuvMuv : (62)

B Integrating over the parameters P (Es; �
s)

Let us de�ne

N
s

uv(xu; xv) =
X

t:v=xv;u=xu

s�tyt N
s

uv(xv) =
X

t:v=xv

s�tyt (63)

�
s

uv =
Y
xu

Y
xv

�(Ns
uv(xu; xv) +

~Ns
uv(xu; xv))

�( ~Ns
uv
(xuxv))

(64)

�
s

v =
Y
xv

�(Ns
v (xv) +

~Ns
v (xv))

�( ~Ns
v
(xv))

(65)

With these notations we can express W s
uv and W s

0 in equation (43) as

W
s

uv
=

�
s
uv

�s
u
�s
v

and W
s

0 =
�( ~Ns)

�(Ns + ~Ns)

Y
v2V

�
s

v
(66)

In the above, �() denotes Euler's Gamma function. Note that the \counts" N
s
uv

can be either

positive or negative, so that the variables � may not be de�ned for arbitrary values of �. All the

above expressions exist, however, for � = 0; in this case W s
uv

=W
s
0 = 1.

The classi�cation rule is given by equation (39) with w
s
uv(X); ws

0(X) rede�ned as

w
s

uv
(X) = 	[Ns

uv
(xuxv) + ~Ns

uv
(xuxv)]�	[Ns

v
(xv) + ~Ns

v
(xv)]�	[Ns

u
(xu) + ~Ns

u
(xu)] (67)

w
s

0(X) =
X
v2V

	[Ns

v (xv) +
~Ns

v (xv)]�	[Ns + ~Ns] (68)

with 	 representing the derivative of the log-Gamma function:

	(z) =
d

dz
log �(z) (69)

Note the similarity with the �xed parameter case: the classi�cation rule is still an average of a

log-likelihood di�erence; the 	 functions arise from averaging the log-likelihood under the MRE

distribution of the � parameters.
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C Uncertain labels and support vector machines

We provide here more details about the two step feasible algorithm for dealing with partially la-

beled examples in the context of support vector machines. We start by de�ning the prior distribution

over all the parameters as

P0(�; b; ; y) = P0(�)P0(b)P0()P0(y) (70)

where P0(�) is N (0; I) and P0(b) approaches a non-informative prior. By the non-informative prior

we mean here a limit of P0(bjk) = N (0; I � k) as k ! 1. The prior over the labels is assumed to

factorize across the examples, i.e.,

P0(y) =
Y
t

P0;t(yt) (71)

where, for example, we can set each P0;t(yt) = 1 whenever the corresponding label yt is known and

P0;t(yt) = 0:5; yt = �1 for all unlabeled examples. We use here P0() from eq. (9); the alternatives

were discussed in the text.

Let now pt =
P

y
P0(y)yt =

P
yt
P0;t(yt)yt, where pt is the mean value of the label. With these

initializations, the two step algorithm is given as follows:

Step 1. We �x fptg and �nd the MRE solution for P (�; b; ). Based on Lemma 3 P (�; ) and P (b)

can be found separately. For P (�; ) the the Lagrange multipliers are obtained by maximizing

(analogously to Theorem 2):

J�;(�) =
X
t

[�t + log(1� �t=c) ]�
1

2

X
t;t0

�t�t0ptpt0(X
T

t
Xt0) (72)

subject to the constraint that
P

t
�tpt = 0. This is no more diÆcult to solve than the original

SVM optimization problem with hard labels.

As for the bias term b, we only need its mean relative to the MRE solution, i.e., �b =
R
P (b)b db.

This can be computed as the limit of the means corresponding to proper priors P0(bjk) (each

MRE solution P (bjk) based on P0(bjk) is a Gaussian with a well-de�ned mean). We omit the

algebra and instead provide the answer in terms of the following averages:

�Lt =

Z
P (�) (�TXt) d� =

X
t0

�t0pt0(X
T

t Xt0) (73)

�t =

Z
P () t d = 1�

1

c� �t
(74)

The desired mean �b is now given by

�b = argmax
b

n
min
t
( pt(�Lt + b)� �t )

o
(75)

This setting optimizes the most critical constraints of eq. (55). In other words, �b maximizes

the minimum of the left hand sides of eq. (55).

Step 2. To update the MRE distribution over the labels, we �x P (�; b) and �nd P
0(y; ) subject toX

y

Z
P
0(y; )

Z
�;b

P (�; b)
�
yt(�

T
Xt + b)� t

�
d�dbd

=
X
y

Z
P
0(y; )

�
yt(�Lt +�b)� t

�
d � 0 (76)
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Analogously to the �rst step, the Lagrange multipliers are found by maximizing the corre-

sponding �logZ (algebra omitted):

Jy;(�
0) =

X
t

(
�
0
t
+ log(1� �

0
t
=c)� log

X
yt=�1

P0;t(yt)e
yt�

0

t(
�Lt+�b)

)
(77)

Note that the Lagrange multipliers here are not tied and can be optimized independently for

each t. This happens because we have assumed that the prior distribution factorizes across the

examples and because the discriminant function does not tie the variables together. Each of

the one dimensional convex optimization problems are readily solved by any standard methods

(e.g. Newton-Raphson). The resulting MRE distribution over the labels, P 0(y) is given by

P
0(y) =

Y
t

P
0
t
(yt) (78)

where

P
0
t
(yt) =

1

Zt
P0;t(yt) e

yt�
0

t(
�Lt+�b) (79)

We can easily compute p0
t
=
P

yt
P
0
t
(yt)yt from this result. Finally, the updates

pt  (1� �)pt + �p
0
t

(80)

complete the second step.

The decision rule for a new example X is given by

ŷ = sign

 X
t

�tpt(X
T

t X) + �b

!
(81)

where f�tg and �b are the solutions to the �rst step of the iterative algorithm.
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