
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. T.R. No. 1453 January, 1994

Methods for Parallelizing Search Paths in
Parsing

Carl de Marcken
cgdemarc@ai.mit.edu

Many search problems are commonly solved with simple combinatoric algorithms that unnecessarily

duplicate and serialize work at considerable computational expense. There are a number of techniques

available that can eliminate redundant computations and perform remaining operations in parallel, ef-

fectively reducing the branching factors of these algorithms. This thesis investigates the application

of these techniques to the problem of parsing natural language into grammatical representations. The

result is a useful and e�cient programming language and compiler that can reduce some of the combi-

natoric expense commonly associated with principle-based parsing and other generate-and-test search

problems. The programming language is used to implement and test some natural language parsers, and

the improvements are compared to those that result from implementing more deterministic theories of

language processing.

Copyright c Massachusetts Institute of Technology, 1994

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Technology.

Support for the laboratory's arti�cial intelligence research is provided in part by the Advanced Research Projects Agency
of the Department of Defense under O�ce of Naval Research contract N00014-91-J-4038. The author was also supported
by the National Science Foundation under grant NSF-ASC-92-9217041, and an Air Force Graduate Laborarory Fellowship.



Acknowledgments

Among the people who have provided valuable suggestions and criticism regarding this research, I would

especially like to thank my advisor Bob Berwick for his support and prodding. Conversations with Dave

Baggett and Eric Ristad helped clarify my positions on a variety of topics.

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts Insti-

tute of Technology. Support for the laboratory's arti�cial intelligence research is provided in part by

the Advanced Research Projects Agency of the Department of Defense under O�ce of Naval Research

contract N00014-91-J-4038. The author was also supported by the National Science Foundation under

grant NSF-ASC-92-9217041, and an Air Force Graduate Laborarory Fellowship.

1



Chapter 1

Introduction

Many search problems are commonly solved with simple combinatoric algorithms that unnecessarily

duplicate and serialize work at considerable computational expense. There are a number of techniques

available that can eliminate redundant computations and perform remaining operations in parallel, ef-

fectively reducing the branching factors of these algorithms. This thesis investigates the application

of these techniques to the problem of parsing natural language into grammatical representations. The

result is a useful and e�cient programming language and compiler that can reduce some of the combi-

natoric expense commonly associated with principle-based parsing and other generate-and-test search

problems. The programming language is used to implement and test some natural language parsers, and

the improvements are compared to those that result from implementing more deterministic theories of

language processing.

1.1 Parsing as a Search Problem

Modern linguistic theory has shifted from rule-based accounts of language to generative principle-and-

parameters theories that rely on a small set of language-universal principles to explain and predict human

linguistic capacity. In these theories cross-linguistic variation is accounted for by di�ering lexicons

and simple parameters in the principles, while the basic innate principles (the universal grammar)

remain constant. This approach has greater descriptive adequacy, results in a more succinct grammatical

representation, and has more plausible learnability requirements for children than grammars built out

of thousands of construct-speci�c rules.

Chapter 2 provides a deeper introduction to principle-based theories, but here we present a simple

illustration. Imagine a parser (a computer program that builds grammatical representations from input

strings) analyzing the sentence (1).

(1) What book did John see him give Bill?

2



CHAPTER 1. INTRODUCTION 3

Among the facts that the parser must be capable of deriving about the sentence are that

(2) a. John did some seeing.

b. The sentence is a question about the book.

c. Him does not refer to the same person as John or Bill, but is otherwise free to vary.

In one particular principle-based theory, Government-and-Binding Theory, a principle named Theta

Criterion is used to account for (2a); a principle named Move-� accounts for (2b) and why book appears

at the beginning of the sentence even though it appears at the end in John saw him give Bill the book;

and a principle named Binding Theory explains (2c). These and other principles are largely independent

of one another but can interact in subtle ways to explain some very complex linguistic phenomena.

In the past most parsing was accomplished using context-free grammars (CFGs), where the problem of

�nding a representation for an entire sentence could be divided into the problem of �nding representa-

tions for subparts of the sentence. This divide-and-conquer approach led to e�cient polynomial-time

algorithms for parsing. But principle-based theories lead to grammars that seem signi�cantly more

complex than simple CFGs; current principle-based generative theories of language take the form of

parameterized �lters over essentially arbitrary structures. In e�ect the modern problem of parsing a sen-

tence reduces to �nding any representation that can meet about 20 di�erent linguistic criteria. See [4],

[5] for discussions of issues in parsing with these theories and several examples of implemented parsers.

The only known viable approach to parsing with current linguistic theories is through generate-and-test

methods. Structures are enumerated and passed through �lters that represent principles; any structure

that passes all of the �lters is considered a valid interpretation of the sentence. In order to keep this sort

of scheme feasible great e�ort is usually expended to ensure that the number of structures enumerated

is �nite, indeed small. This is usually accomplished by carefully precompiling theorems derived from the

�lters into the generation process, theorems that would eventually eliminate most of the structures later

in the process. Since the production of these theorems has not been automated (and probably never

will be, since linguists are not bound to any particular representation for their axioms), most systems

require signi�cant modi�cation to e�ciently handle small changes in the linguistic theory.

Although current theories can seem far removed from earlier models, they nevertheless permit a myriad

of optimization techniques. Many of the generators used in parsing (such as the assignment of case and

thematic roles to noun phrases) are local and compositional. Thus much of the generation process can

be decomposed and structure shared. Shared structure representations when combined with memoized

�lters allow the �ltering of many search paths at once. And most of the �lters and generators linguists

have proposed are dependent on only a small subset of all the modules in the system. This property

means that much of the generation and �ltering process can be highly parallelized, eliminating some of

the combinatorial explosion inherent in serializing generators.

This is not to say that parsing is not still inherently combinatorial. No small variant of the current

linguistic theory is known to be parsable with any method other than exponential-time search. But

there are techniques that can be applied to greatly reduce the potential costs of small variations in the

theory, and that would allow systems to be built with less e�ort put into optimization work.



CHAPTER 1. INTRODUCTION 4

1.2 Generate-and-Test Optimization Techniques

There are a wide variety of problem-speci�c optimizations that could be used to speed up many parsers,

but this thesis will concentrate on building a compiler that can optimize through two fairly general

techniques that should apply to any search problem that can be expressed as a dependent network of

generators and �lters: eliminating redundant computations, and performing operations in parallel.

1.2.1 Eliminating Redundant Computations

Many search problems like parsing can be optimized because much of the work done by conventional

techniques during the search is repetitious. Generators and �lters are being applied to identical argu-

ments several times, or to arguments that di�er only in respects irrelevant to the process at hand. This

is the result of one generator (or choice point) being local and therefore not inuencing the performance

of some other group of �lters and generators. The most basic approach to eliminating such redundant

computation involves a combination of memoization and a restructuring of the searcher dependencies.

Instead of performing a depth-�rst search through each of the generators as most implementations do, a

generator is only executed once for each element of the cross product of the sets of elements generated by

its parents in the module dependency graph. This eliminates a great deal of computation but can only

be done if the results of a generator's execution are memoizable (which is not always easy to guarantee,

since any side e�ects involved in its computation must be reproducible).

1.2.2 Performing Operations in Parallel

Many parsing systems are di�cult to adapt to parallel computers because they use side-e�ects in their

generators, which would lead to inconsistencies if two of their output values were utilized concurrently.

But some of the same methods that can be used to solve the problem of memoizing generators in an

e�ort to eliminate redundant computations can also be used to replace side-e�ecting operations with

functional ones.

1.2.3 Examples of Optimization Opportunities in a Parser

The current state of the art in linguistically motivated parsers is Sandiway Fong's Principle and Param-

eters Parser [14]. He organizes his parser into modules of generators and �lters. Each generator takes

in structures and amends them nondeterministically, usually outputting several structures for every one

taken in. Filters do not alter structure but may rule out some of their inputs. There is a partial or-

dering among the �lters and generators that reects module dependencies: �lters can not be applied

until generators have created the requisite structures, and some generators modify structures that other

generators create. Figure 1.1 shows the partial ordering among the modules of Fong's parser.

When Fong's Prolog implementation is actually run on a sentence it chooses a total ordering of modules

that obeys the partial ordering and uses it to serialize the modules into a depth-�rst search. The result is



CHAPTER 1. INTRODUCTION 5

Generator 0

Generator 1 Generator 2

Generator 4 Generator 5 Generator 6

Generator 3

Generator 7

Figure 1.1: The partial ordering of Fong's parser's modules. Dark rectangles represent generators and

light ones represent �lters.

that each generator unnecessarily multiplies the resource expenditure of the entire process. For example,

while Generator 1 and Generator 2 of Fong's parser both depend on Generator 0 neither depends on the

other. If Generator 1 is run before Generator 2 and produces m structures for every one it takes in, then

Generator 2 will operate m times in an identical fashion. Since there are �lters that depend on the cross-

product of the modi�cations of Generators 1 and 2 some multiplicative factor is conceivably necessary.

But if a lot of computation is involved in deciding what to modify rather than actually performing the

modi�cations, then each generator would do better to memoize the e�ects of its call rather than to

continually recompute them.

A greater optimization comes from completely separating the computation of truly independent modules.

Although Generators 3 and 6 help determine which of the structures produced by Generators 0 and 2

eventually lead to valid parses, the particular branching factors associated with them do not need to

cause other generators to do any extra work, because no module depends on 3 or 6 and any other

module except Generators 0 and 2. To be more concrete, suppose the serialization of Generators 0 and 2

produces n structures. Generator 6 can be run on each of the n structures and if it branches signi�cantly

may produce a � n new structures. Some serialization of generators 4, 5 and 7 may also have to be run

for each of the n structures (producing b � n new structures), but not each of the a � n ones. The a � b � n

di�erent valid parses can be represented and computed at an expense only proportional to a � n + b � n.

If a and b are large, this is a signi�cant savings over Fong's actual implementation.



CHAPTER 1. INTRODUCTION 6

1.3 Research Motivations

An important question is why we are concerned with improving the search e�ciency of principle-based

parsers. The current generation of such parsers is not prohibitively slow for many applications, and with

expected improvements in computing power any seeming laggardliness will disappear. It is important

to realize that all existing parsers implement only a small subset of linguistic theory. As more and

more language processes are introduced into the parsing procedure there is going to be a decided loss of

e�ciency. This is especially true if these processes are non-deterministic. It is important to ensure that

the cost of parsing does not increase exponentially as more principles are added to the process.

1.4 Deterministic Generators

Many of the generators involved in the parsing process are non-deterministic. For instance, in the

sentence John said that Bill saw him, the generator that builds structure representing the referent of

him must allow for both the possibility that John and him are coreferent, and the possibility that him

refers to some extra-sentential entity. The ambiguities with which the generators must cope create most

of the complexity in the parsing process. By introducing theories with more determinism much of the

ine�ciency associated with generate-and-test search can be reduced. For instance, by deterministically

choosing the antecedent of him using some context-based heuristic the ambiguity is eliminated.

Several deterministic theories for di�erent aspects of language are substituted for their more traditional

non-deterministic counterparts in some of the experiments described in this thesis, and the results are

compared with the e�ciency gains that result from improvements in search strategies and techniques.

Chapter 5 contains a discussion of the merits of these deterministic variations.

1.5 Thesis Outline

Chapter 2 is an introduction to a form of principle-and-parameters linguistic theory. It contains a

discussion of how such theories can be translated into implementations and just what the complexity of

those implementations will be. Chapter 3 presents the new search programming language, starting with

a simple example search program. It discusses the rationale for various features and how the language

is implemented. Chapter 4 then presents a subset of a linguistic theory and a detailed discussion of

how some parsers using this theory are implemented in the search language. A variety of features in the

search language are pro�led on these test parsers and the results are tabulated. The chapter concludes

with a qualitative summary of the e�cacy of each language feature. Finally, chapter 5 concludes with

generalizations from these test results and their implications for generate-and-test implementations of

linguistic theories.



Chapter 2

The Computational Nature of

Principle-Based Parsing

Most modern generative linguistics has shifted from rule-based transformational theories [6] to more

principled and modular accounts of language competence1, as exempli�ed by Chomsky's revolutionary

Lectures on Government and Binding [7]. Following other sciences, it is believed that the observable

complexities of syntax are the result of interactions between a small number of innate modules. In

this view, simple parameters in the modules or lexicon account for the variations in syntax across

languages. This principle-and-parameters approach results in more compact, language universal theories

with considerably more realistic learnability requirements.

Despite the success of principle-and-parameter theories, the natural-language processing community has

been slow to adopt them as language models. Almost all parsers still use construct-speci�c rules that

can not account for a variety of seemingly complex phenomena. But recently a strong e�ort has begun

to demonstrate the computational viability of the current linguistic approach (see [1], [4], [5], [14] among

others).

2.1 Chapter Outline

This chapter examines the computational nature of current principle-and-parameter theories. In partic-

ular, section 2.2 gives examples of principles and section 2.3 looks at the basis for the generate-and-test

searches that currently seem the most reasonable approach to parsing with principle-based theories.

1Competence theories seek to describe what a person knows, in contrast to performance theories that deal with the
more computational issue of how a person utilizes that knowledge. Section 2.3 discusses this in more detail.

7



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 8

2.2 Examples of Principles

The principles-and-parameters view of language actually encompasses a broad range of theories. For

instance, Generalized Phrase Structure Grammar (GPSG, see [15]) is a computationallymotivated theory

of language that describes syntax through context-free rules, but ones that are automatically generated

via principled \metarules". The enormous size of the resulting rule set brings the claims of GPSG's

computational viability into question (see [2] for more details) but the notion that the interaction between

a small number of metarules and feature-passing mechanisms results in the diversity of phenomena

found in syntax is clearly reminiscent of Chomsky's approach. However, this thesis will concentrate on

principles that are less well computationally speci�ed than those in GPSG; the so-called Government-

and-Binding (GB) principles that have evolved from [7] and later work have more explanatory power

than GPSG does but their computational implementation is not so intuitive. It is these sorts of principles

that we will look at, under the assumption that it is more fruitful to bring the domain of linguistics to

computer science than the other way around. See [28] for an introduction to GB theory.

Most GB principles are declarative in nature (Noun phrases receive case, not Check that each noun

phrase has received case). They are speci�ed as �lters over essentially arbitrary structures. Any structure

which passes through each of the �lters unscathed is considered a viable interpretation of a sentence.

Sentences which have structures that violate a small subset of the principles may be understandable but

ungrammatical.

To get a feel for the nature of principles, we present simpli�ed versions of 3 di�erent modules found in a

variation of GB theory. It is important to realize that there is no \standard" set of principles and that

most descriptions of principles found in the literature contain minor or even major inconsistencies and

inadequacies, as would naturally be expected in an active �eld of research. It is a great challenge to

compile a set of internally consistent or complete principles for use in a parser.

2.2.1 Binding Theory

Intuitively, binding theory tries to explain when phrases may or must be coreferent. Possible antecedents

of pronouns (him, them) and anaphors (herself, themselves) can be deduced from binding theory, as can

various properties of empty categories, unspoken (phonetically null) elements which nevertheless have

full syntactic properties. The examples of (1) should make much of this clear.

(1) a. John thought Bill saw him.

b. John thought Bill saw himself.

In (1a) the pronoun him may co-refer with John or some extrasentential person, but not with Bill.

However the anaphor himself in (1b) has just the opposite property: it must refer to Bill. Most versions

of binding theory make the distinction through locality conditions. For instance, the theory presented

in [7] contains three conditions:

� Condition A: An anaphor must be bound in its governing category.



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 9

� Condition B: A pronoun must be free in its governing category.

� Condition C: An R-expression must be free.

For the time being, we can take bound to mean coreferent and free to mean non-coreferent, and the

governing category of a phrase to be the smallest clause containing the phrase. R-expressions are similar

to proper names or other expressions with inherent reference.

The governing category for him in (1a) is Bill saw him. Condition B dictates that him must be free (not

bound) inside the governing category, so him can not refer to Bill. In (1b) Condition A makes just the

opposite restriction, that himself must refer to Bill.

(2) a. Bill was seen e.

b. { was seen Bill.

In the account in [7], sentence (2a) contains an unpronounced empty category, denoted by e. Empty

categories function as markers for argument positions that have had their words \moved" in the observ-

able surface representation. For instance, it is believed that in (2a) the underlying representation is that

found in (2b). Empty categories may have many of the same properties that anaphors and pronouns do.

In fact, Chomsky's binding theory predicts that the empty category in (2a) is an anaphor. Condition A

then explains why it must refer to Bill (i.e., why the object of see is Bill).

In its full glory binding theory is capable of explaining a wide variety of extremely complex phenomena.

Figure 2.1 contains most of the key clauses in the binding theory presented in [7]. It is not intended to

be enough information to implement or test the theory, only to give a feeling for the declarative nature

of the de�nitions used by linguists.

2.2.2 The Case Filter

Case theory was developed to explain the di�erences between sentences such as those in (3) (discussion

follows [19], section 1.4):

(3) a. It is likely John will leave.

b. * It is likely John to leave.

c. John is likely to leave.

(The asterisk, or star, is a common linguistic notation for expressing an ungrammatical sentence.) (3b)

is ungrammatical, which we can take to mean that it violates some linguistic condition. (3a) and (3b)

di�er only in the tense of the subordinate clause. The grammatical relations assigned are identical in

both sentences, and in the semantically identical (3c) the to leave causes no di�culties. So why can't

John appear in the subject position of a tenseless clause?



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 10

Assign numerical indices freely to all noun phrases, subject to Conditions A, B and C. Any noun phrases

with the same index are coreferent.

� Condition A: An anaphor must be bound in its governing category.

� Condition B: A pronoun must be free in its governing category.

� Condition C: An R-expression must be free.

� Binding: � binds � i� � c-commands � and � and � are coindexed. If � is not bound, it is free.

� C-Command: For �, � nodes in a tree, � c-commands � i� every branching node dominating �

dominates � and neither � nor � dominates the other.

� Coindexing: � and � are coindexed i� they bear the same numerical index.

� Governing Category: � is a governing category for � i� � is the minimal category containing

�, a governor for �, and a SUBJECT accessible to �.

� Government: � governs � i� � c-commands �, � is either N, V, A or P and no maximal projection

dominates � that does not dominate �. (see section 2.2.3).

� SUBJECT: Subjects and agreement are SUBJECTs.

� Accessibility: A SUBJECT � is accessible to � if � c-commands � and assignment to � of the

index of � would not result in a violation of the i-within-i �lter.

� i-within-i: Any node with index i that dominates another node with index i is ungrammatical.

� Agreement: Agreement and subject are coindexed.

Figure 2.1: A version of Binding Theory.



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 11

The hypothesized solution is a condition, the Case Filter, requiring that overt (pronounced) noun phrases

receive an abstract property called Case. Tensed verbs assign case (in English, nominative case) to their

subjects. Prepositions and transitive verbs assign oblique and accusative case to their objects. In

possessive constructs, the possessor receives genitive case. No noun phrase may be pronounced in any

position that does not receive case through one of these mechanisms. In the case of example (3a) John

receives case from the tensed verb will leave, and the pleonastic it receives case from the copula is. But

in (3b) the in�nitive to leave does not assign case to John, and the caseless John violates the Case Filter.

This problem is recti�ed in (3c), where John, which still bears the semantic role of subject of to leave,

is moved to a position where it can receive case from is.

Like binding theory, the Case Filter is used to uniformly account for a great number of seemingly

disparate phenomena. For instance, in

(4) a. Who did John say e is clever.

b. * Who did John say e to be clever.

In example (4) the grammaticality contrast seems to be the same as in (3). The structural location

where who receives its grammatical role, in the subject position of is clever, is not assigned case in (4b)

but is in (4a). So it seems that some empty categories function in the same way as noun phrases with

respect to the Case Filter, and indeed this generalization explains many grammaticality judgements.

The motivation for the Case Filter is contested. Some say it is a strictly phonological condition, others an

ingredient in a more involved process leading to semantic interpretation. Regardless of interpretation, it

functions as a simple �lter on the allowed output of the generation process, just as the binding conditions

act as �lters on the interpretation of anaphoric relations.

2.2.3 X-Bar Theory

X-Bar Theory forms the frame on which many other parts of linguistic theory are built. It describes

grammatical sentences at the tree structure level, through a small set of context-free grammar (CFG)

like rules. Slighly simpli�ed, these recursive rules are

� X ) SPECIFIER X

� X ) X COMPLEMENT

� X ) X ADJUNCT

Here, X indicates a phrasal (maximal) level category (SPECIFIERs, COMPLEMENTs and ADJUNCTs

are all phrasal level categories) and X indicates a bar level category. X ranges over all basic cate-

gory types, such as nouns (N , N , N ), verbs, adjectives, determiners, inection and complementizers

(N,V,A,D,I,C).



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 12

X

�
�
��

H
H
HH

SPECIFIER X

�
�
�

H
H
H

X COMPLEMENT

N

�
�
�
��

H
H
H
HH

D

the

N

�
�
�
�

H
H
H
H

A

interesting

N

�
�
�
�

H
H
H
H

N

idea
C

that language is innate

Figure 2.2: The basic X-Bar frame and a sample instantiation.

The right hand sides of these rules are ordered, but their order is parameterized and can vary across

languages. For instance, English is a right-branching language in which the order is essentially that

given. In other languages, the rule ordering may vary by category. In Japanese the objects in verb

phrases occur after the subject but before the verb (SOV), unlike the SVO order of English. This is

accounted for by the V ) COMPLEMENT V rule of Japanese. Figure 2.2 presents the basic X-Bar

frame and an example of how a sample phrase might be structured.

2.2.4 Move-�

Move-� is a very succinctly phrased portion of the Governement-Binding theory that has extraordinary

consequences. It states: move anything anywhere! To understand just what this implies, it is necessary

to understand the di�erent linguistic levels at which linguistic structure is used. Currently 4 levels are

hypothesized: logical form (LF), phonetic form (PF), deep structure (DS), and surface structure (SS).

Logical form is the level at which interpretation takes place, and certain relations such as scope among

quanti�ers is speci�ed. Phonetic form is the level at which an utterance is pronounced. Deep structure

is the level at which argument relations between objects are set out. These levels are related to each

other in the following way

DS

SS

��HH

PF LF



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 13

The relation between structure at the di�erent levels is not arbitrary. For the present purposes let us

just look at DS and SS. The deep structure for a question like who did John see? might be that found

in (5a) whereas the surface structure that in (5b).

(5) a. John did see who.

b. Who1 did2 John e2 see e1.

Looking at the di�erences between (5a) and (5b) it is plain that both who and did are in di�erent

positions, and that (5b) now contains two empty categories. Move-�, which allows arbitrary movement,

permits the relocation of who and did in SS to positions other their DS positions. However, Did who

John see is still ungrammatical at SS. This is because the extraordinary power seemingly granted by

move-� is constrained by a number of principles. Did who John see is ruled out because there is no

position to the left of who for did to move to. Other constraints are that movement must leave an empty

category behind (a trace of the movement); it must only move Xs and Xs and leave traces of the same

category; and movement can not be to an occupied position.

All together the constraints speci�ed by linguists temper the unlimited movement possibilities down into

a small number of relatively simple patterns. Among these are head movement (movement of did in (5)),

which is short distance movement of basic lexical categories like verbs and explains such phenomena as

the verb-second/verb-�nal alteration in German; A-movement, the short distance movement of Xs to

argument positions, which explains how objects get to subject positions in passive sentences; and A-

movement, the much longer distance movement ofXs to non-argument positions exempli�ed in questions

like (5b).

2.2.5 Uniformity of Principles

As should be clear from the principles super�cially described above, linguists do not necessarily express

their theories in any well-speci�ed formal language, and may casually use terms with far-reaching com-

putational implications. Indeed, this freedom has allowed linguistic theory to undergo radical changes

in a very short time period, and it appears to be continuing its evolution (see [9] for signi�cant recent

shift) with fundamental new characteristics introduced every few years. It is not an easy thing for a

computational linguist to pin down the �eld long enough to evaluate the state of a�airs. This makes it

di�cult to develop any computational models of language with long-term relevance. Chapter 5 expands

upon this di�culty.

2.3 Parsing with Principles

The innate principles governing language use, as described by linguists, do not explicitly state what

computational mechanism implements them. This is the distinction between competence theories and

performance theories. For many of the principles, such as move-�, it is not at all clear how the principles

a�ect either parsing or generation of language from a computational perspective. There are some recent



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 14

principle-based linguistic theories which seem on the surface to be more computationally well speci�ed

(see, for instance, [21], who tries to enumerate exactly all the elements of her theory) but these theories

are often not as rich or as descriptively adequate as others. How can one translate a generative linguist's

description of language competence into a form suitable for use in a computer parser?

2.3.1 Language Complexity

First of all, it is important to look at human languages to see how complex they really are. For instance,

it is conceivable that the principles are in extension identical to a simple context-free grammar. Were

this the case, then it would presumably be more expeditious to use such an equivalent grammar to

describe language for computational purposes than the principles as they are written. This is much of

the motivation behind GPSG. It does not in fact seem that human language is context-free, or at least

not for any reasonably small grammar ([3]). Let us look, as [3] did, at the intricacies of human language

from another perspective, that of computational complexity. We can ask whether it is likely that there

are any simple polynomial time algorithms for parsing sentences. Many principles are stated in terms of

non-deterministic search (e.g., the assign numerical indices freely to all noun phrases of binding theory).

Is ine�cient non-deterministic search really necessary for deciphering utterances, or is it merely the

derivative of a notational convenience?

Very few results about the computational complexity of language exist. Most results are dependent on

a particular theory of language. But recently Ristad ([25]) has presented a proof that binding theory

is NP-complete2 that does not depend on any formalism. He uses only basic facts about the possible

antecedents of pronouns and anaphors in English to show that one can translate the NP-complete 3-

SAT problem into a question of whether or not a sentence permits a valid assignment of antecedents

for all the pronouns and anaphors in it. Since such antecedent computation is an incontestable part of

our language faculty, this seems to indicate that language is at least NP-complete, and therefore that

e�cient deterministic algorithms for parsing can not exist. In other words, search is necessary. But

Ristad's proof is not convincing. Without going into Ristad's impressive argument, it is possible to

point out the general aw in his argument.

Ristad presents a variety of sentences containing pronouns and anaphors, and points out the restrictions

on co-reference between them (the facts that binding theory seeks to capture). For instance, he presents

(6) Before Mark, Phil and Hal were friends, he1 wanted him2 to introduce him3 to him4.

Ristad makes the point that (6) is not easy to understand (NP-complete problems are not easy to solve),

and that certain restrictions hold between the various pronouns. For instance, him1 6= him2, him2 6=

him3, him2 6= him4 and him3 6= him4. These facts can be veri�ed by attempting to read the sentence with

the various pronouns bound to di�erent combinations of the three names. By combining simple sentences

with clear linguistic judgements to produce more complex sentences, Ristad is able to encode any 3-SAT

problem as the problem of determining whether or not a sentence has a valid set of interpretations for

2
NP-complete problems are a class of problems for which no known polynomial time algorithms exist, and correspond

to problems in which a solution can be guessed and e�ciently veri�ed to be correct. These problems are all equivalent to
each other within a constant factor of processing complexity, and showing that an NP-complete problem can be translated

into another form is a proof that that form is also at least as hard as NP-complete problems.



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 15

all of its pronouns. But is this in fact a computation a human is capable of performing? Let us look at

one of Ristad's examples.

(7) Romeo wanted Juliet to love him before e wanting himself to.

In English, Romeo can not refer to Juliet; Juliet can not refer to the same thing as him; him can not

refer to the same thing as himself; Romeo refers to the same thing as the empty category e; and e refers

to the same thing as himself. Ristad makes the point that these facts imply by transitivity that Romeo

can not refer to the same thing as him. This is interesting, because in the pre�x sentence Romeo wanted

Juliet to love him the interpretation of him and Romeo as coreferent is natural.

The aw in Ristad's argument stems from the fact that he assumes English speakers are capable of

calculating the complete antecedent relationships for sentences such as (7). But most listeners in fact

initially interpret him and Romeo as coreferent and then become confused or �nd the sentence ungram-

matical. In this sense the sentence is very much like a garden-path sentence such as The horse raced

past the barn fell. It is true that if one reads the sentence knowing the correct assignments then one can

verify its correctness and the sentence is processable. But most speakers on initial attempt will read up

to him, assign the antecedent Romeo to it, and get confused later in the sentence when that possibility

is precluded. There is no indication that English speakers are capable of searching the entire space to

�nd a valid interpretation after this initial failure.

Just what is the implication of this? It is likely that when English speakers come upon a pronoun they

use some sort of heuristic for picking its antecedent ([18], [16]) and then verify that all binding theory

conditions are satis�ed. A computer model without the proper heuristic algorithm (and the exact

heuristic would likely require semantic or phonological information unavailable to current computer

implementations) will have to perform search to �nd a proper antecedent assignment for pronouns, and

as Ristad proved this is going to be an NP-complete task. It is not the case that a reasonable theory

of language needs to be NP-complete, because people can not understand sentences like (7). Human

language processing undoubtedly involves heuristics that need to be part of a linguistic theory if the

theory is to adequately model human performance. So we can expect that given the current state of

knowledge, search will be necessary for an ignorant computer to process binding relationships (and

other parts of language), but that it is completely reasonable to expect that with more understanding

an e�cient computer model of human language could be built, one that did not involve search.

2.3.2 Generate and Test

The previous section makes the point that current computer implementations of language capabilities are

likely to require search. Linguists seem to make this assumption when they write descriptions of language.

For instance, binding theory is expressed in terms of �lters on antecedent relationships. Implicitly or

explicitly, some statement must be made of how these relationships are hypothesized. Usually this is in

terms of some statement such as assign numerical indices freely to all noun phrases. Move-� states move

anything anywhere. These formulations follow the traditional computer science paradigm of generate-

and-test: generate potential solutions, and later test them to make sure they are correct. If potential

solutions can be e�ciently written down and e�ciently tested, then this formulation is equivalent to



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 16

that of NP-complete problems, no more or less powerful than any other techniques su�ciently powerful

for search. So generate-and-test implementations are a natural form for computer implementations of

linguistic theories to take. This research (see [14], [4] for discussions) takes this approach to parsing, non-

deterministically generating possible parses and then e�ciently applying the tests (�lters) of linguistic

theory to verify correctness.

2.3.3 The Computational Nature of Generators

The intuitive notion of a generator is a procedure for producing structure that represents a solution to

a problem. In the case of parsing, generators produce linguistic structures that represent the important

relationships between words in an utterance. A generator need not produce a complete structure. By

following the natural modularity proposed by linguists, a binding theory generator might produce only

indices for noun phrases, given a list of these phrases, and leave the generation of quanti�er scoping to

some other generator.

In the generate-and-test paradigm it is usually assumed that generators are non-deterministic (they

produce many possible structures for a given input), but the notion of generator can be useful for

even deterministic parts of a theory. For instance, the Case Filter applies to noun phrases after case

assignment. Case assignment is usually assumed to be unambiguous and deterministic. For a given

phrase in a given structural relationship with a case-assigner, either a speci�c case is assigned or it isn't,

and this can be computed exactly without guessing. But it is still a convenient abstraction to have a

case generator that assigns case and a case �lter that applies to the result, even if the two could be

merged together or even combined with the original phrase-structure generation.

The branching factor of generators is the single most important indication of the computational cost of

parsing with a linguistic theory. Deterministic generators such as case assignment can be implemented

quite e�ciently, and if necessary could be merged with other modules. But non-deterministic generators

such as the one that assigns binding indices tend to multiply work done by other modules and are also

more dependent on input length. For instance, doubling the number of noun phrases in a sentences

is only going to cause a case assignment generator to do twice as much work, but the number of

possible assignments of numerical indices to noun phrases grows exponentially with the number of noun

phrases in a sentence. For this reason when one examines the e�ciency of a theory of language from

a computational viewpoint, one should concentrate on those modules that require non-deterministic

guessing and not worry about the total number of �lters or generators.

2.3.4 The Computational Nature of Filters

Filters are conditions on structures built by generators. They are applied to the output of one or more

generators and if they fail, the structures built by those generators are rejected. The number of �lters

found in a linguistic theory, like the number of generators, is somewhat arbitrary, since most conditions

on structures can be divided up into a number of special case �lters or combined into a single broad

�lter with substructure. Computationally the particular modularization of �lters is much less important

than the structure of generators in a parser. One important exception to this generalization is that if a

�lter can be made dependent on as few generators as possible, then it can be used early in the process



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 17

of generation to eliminate unnecessary work by other modules.

A �lter that is dependent on only one generator can always be merged with the generator. This can

lead to important e�ciency gains, because it is possible that a �lter can rule out a generator's output

part-way through the generation process. For instance, if the Case Filter is only dependent on the

deterministic case assigner, which in turn is dependent only on phrase structure, then the Case Filter

can be interleaved with the process of generating phrase structure to rule out John to sleep in a bed before

the process of generating phrase structures for the sentence is complete. As each phrase is created, case

criteria can be checked on its components, and if the Case Filter is violated then the phrase is rejected.

Filters with multiple dependencies on non-deterministic generators require a multiplicative amount of

work and are therefore far more fundamental to the computational complexity of a theory than ones with

single dependencies. If there were no module (�lter or generator) that depended on each of two non-

deterministic generators, then the two generators could be executed completely independently and no

combinatorial amount of work would result. But with a single multiply-dependent �lter the multiplicative

cross-product of results must be computed.

2.3.5 Derived Principles

It is not at all obvious that linguistic theory would be so cleanly divided into modules were that not

a principle goal of researchers. It is di�cult to produce psycholinguistic or neurological evidence that

shows the brain is divided on these lines. Although the divisions permit a reasonably parsimonious

and clear description of part of language competence, it is always possible that the processes the brain

uses to compute language cross these divisions. It might be that by \compiling" the e�ects of di�erent

principles together a single, e�cient procedure for computing language results. Correa ([10]) has taken

this approach and produced e�cient, deterministic algorithms for computing an approximation of the

e�ects of move-� and several other modules. Obviously if it could be proven that these procedures

were identical in extension to the sum of the original linguistic modules, then they would be a great

vindication of the computational tractability of linguistic theory and would show that little or no search

is involved in language.

Fong ([14]) argues that the obvious attractions of these derived principles of Correa's are overshadowed

by their shortcomings. Speci�cally, he claims that Correa's algorithms are descriptively inadequate

(they are not equivalent to the original theory formulations, let alone human competence) and that in

general the e�ort and complexity involved in compiling these derived principles prevents them from being

understood, proved accurate, or kept current with improvements in linguistic theory. It is certainly true

that, for instance, Correa's move-� algorithm is descriptively inadequate. It cannot handle sentences

with multiple gaps, such as Which book did you �le e without reading e?, which the original linguistic

theory does explain. But no linguistic theory is perfect, or the �eld would have ceased to exist. And

it would be strange indeed if the subset of language actually used by people did not have an e�cient

implementation (though it may be that some search is involved).

As an example of a derived principle, let us look at Correa's structural determination algorithm for

empty category typology. Section 2.2.1 briey mentions that empty categories have some of the same

properties as anaphors and pronouns. The following sentences contain 4 di�erent empty categories, or

positions where noun phrases seem to receive their semantic roles but are not pronounced.



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 18

(8) a. I asked about e seeing John.

b. John was seen e.

c. e saw John.

d. Who did John see e?

The empty positions marked in (8) by e need not be interpreted as full syntactic entities (though

Government-Binding theory treats them as such). For our purposes what is important is that regardless

of the theory there is some relationship between these argument positions and unspoken noun phrases.

Sentence (8a) has the interpretation that the subject role of see is arbitrarily interpreted. This is reected

by there being an independent empty category in the subject position of seeing. In (8b) John receives

the semantic role it would normally get in an active sentence from being in the position that e is in.

Sentence (8c) is ungrammatical in English, but in a language like Spanish or Italian it can mean I saw

John, where the reference of the empty subject can be determined by the morphology of the verb. And

in (8d) e is in the position that who gets its semantic interpretation from. These 4 empty categories

represent 4 di�erent ways that a noun phrase can receive semantic interpretation in a location di�erent

from where it is lexically realized. What is particularly interesting is that many of the restrictions

on the relationships between the empty positions and the noun phrases can be explained by assuming

that there are 4 di�erent types of empty categories, two which are pronominal and two which are

anaphoric: f+anaphor, +pronominalg (8a); f+anaphor, -pronominalg (8b); f-anaphor, +pronominalg

(8c); f-anaphor, -pronominalg (8d). For instance, in passive sentences like (8b) the fact that the moved

phrase must be close to the position it receives its thematic role from is explained by the fact that as

an anaphor, binding theory requires its empty category to have a local binder. The longer distance

relationship in (8d) is permitted because the empty category, being neither anaphoric nor pronominal,

is not restricted by binding theory. The untensed nature of the embedded sentence in (8a) is the result

of a complex interaction of principles that apply to a category that is both anaphoric and pronominal.

An important issue is how an empty category has its anaphoric and pronominal properties determined.

A natural answer is that it is by function- any empty category used in a question relationship (as

in (8d)) must be -anaphoric, -pronominal by stipulation. This idea, proposed by Chomsky in [8],

is called functional determination. Another possibility is that the typology is freely determined: any

possibility is possible, but all but the correct will be ruled out by some principle or other. For instance,

in (8b) the empty category can not be pronominal, because then it would be locally bound by John, in

violation of binding theory. These two possibilities have great implications for parsing. In the functional

determination case the exact relationships the category enters into must be calculated before the empty

category typology can be computed. This can be computationally expensive, since many �lters can not

be applied before the typology is known. In free determination the typology can be non-deterministically

guessed, which allows the �lters to be applied earlier but results in overgeneration early on. The two

possibilities have di�erent empirical predictions.

Correa has created an algorithm derived from a number of di�erent principles that uses clues about the

structural position an empty category is in to determine its typology. This algorithm states that an

empty category is an anaphor if it is in a position that can receive a thematic role and is either not

assigned case or not in a particular structural relation (government) with a verb or preposition. An

empty category is a pronoun if it is not in the same government relation with a verb or preposition.

These conditions can be computed easily without knowledge of the thematic or binding relations that

the empty category enters into, and the algorithm greatly cuts down search later in the parsing process.

According to Fong, the algorithm is not always as correct as the original formulation, and it does not



CHAPTER 2. THE COMPUTATIONAL NATURE OF PRINCIPLE-BASED PARSING 19

explain, for instance, how it might be relaxed to handle a slightly ungrammatical sentence.3

We explore Correa's deterministic algorithms in our tests (see Chapter 4) because of the great potential

they and other derived principles have.

2.4 Variability within the Generate-and-Test framework

The generate-and-test framework permits many possible implementations of a given linguistic theory,

even following the linguists' language closely. For instance, nothing has been said about whether prin-

ciples have to be applied to entire sentences at once. From an implementors vantage it may be simpler

to apply generators and �lters a sentence at a time, but psychologically this is implausible. People are

capable of interpreting sentences and detecting problems in sentences early on as they read them word

by word. This is an indication that principles should be applied step by step. Crocker [11] makes this

explicit in a framework motivated by psycholinguistic results that forces every module to apply incre-

mentally. Fong also discusses how some principles can be interleaved with the initial phrase-structure

generation process, and the potential gains in e�ciency that result. In the experiments in this thesis no

e�ort is made to implement linguistic theory in what seems to be a psychologically plausible manner,

since these experiments are concerned with making principle-based parsing e�cient and not in making

psychological predictions.

3One possibility is that the algorithm acts as a search ordering heuristic rather than an absolutism. The setting that
the deterministic algorithm chooses is searched before the alternate. If the search is halted after a single solution has been
found, this produces an algorithm that can handle any sentence that free determination or functional determination can,
and is much more e�cient in the general case.



Chapter 3

A Programming Language for

Search Problems

Implementing principle-based parsers is di�cult without a proper substrate, one that permits non-

deterministic generate-and-test search in a rich programming environment. In this chapter we present a

search language speci�cally designed for making modularized search problems easy to write and e�cient

to execute. It includes a variety of e�ciency-motivated programming constructs that are particularly

useful for processing linguistic structure.

3.1 Chapter Outline

The chapter starts o� with a crossword puzzle example that motivatesmany of the programming language

features and provides code from a sample search program that solves the puzzle. This section provides

brief overviews of major language features. Then section 3.3 discusses internal representations used

during search. Explicit de�nitions of how generators, �lters and search strategies are de�ned in the

language are found in sections 3.4 and 3.5. Finally, other language features are discussed, such as failure

propagation (3.6), memoization (3.7) and concurrency (3.8.)

3.2 A Crossword Puzzle Example

Imagine trying to solve a simple crossword puzzle, such as that shown in �gure 3.1. Essentially a search

needs to be done, iterating through a word list to �nd a set of four di�erent words that �t in the spaces

provided, under the constraint that certain letters of each word be identical. There are a variety of

traditional techniques for solving the problem. These include

20



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 21

Top

Bottom

Left Right

Figure 3.1: A simple crossword puzzle.

� Depth First Search: Pick a possible word for one of the spaces, say the top row. Then go through

the word list again looking for a suitable candidate for the left column, then the right column and

bottom row. At every step (or at the end) verify that all the constraints have been satis�ed, and

if no word can be found to �t in a space, backtrack and change a previous word.

� Dynamic Depth First Search (Constraint Satisfaction Search): Perform a similar search, but dy-

namically order the selection of spaces according to various heuristics such as how many words

are available for the space. Instead of backtracking to the most recent space, pick the most recent

space which is directly responsible for current failures.

Both of these techniques will most likely perform unnecessary work when trying to �nd all solutions to

this crossword puzzle. Imagine a depth �rst search that �rst selects the word aardvark for the top row.

It moves on to select the left column and searches the lengthy word list for all words 6 letters long, the

second of which must be r. For each of these words it performs a similar search on the right column,

and then proceeds with the �nal bottom row. If there are 342 possible 6 letter words with r as a second

letter, then it will search the right column 342 times and �nd the same set of words every time, since

aardvark hasn't changed.1

What most search methods lack that is relevant to this problem is the ability to encode the notion

that the left and right columns of the crossword puzzle may be searched independently, and the results

need not be combined until the bottom row is searched. The programming language discussed here is

expressly designed to make such (in)dependencies explicit, in a generate and test approach to search.

3.2.1 An Implementation

Let us look at how this crossword puzzle problem might be expressed in our programming language.

First of all, generators must be de�ned for all of the spaces (see �gure 3.2). Then �lters must be de�ned

1In the constraint satisfaction literature the method known as arc-consistency is in part designed to alleviate this

problem, by permanently pruning items from a node's search space, but it would not work in this case because all
computation on the right and left columns is dependent on aardvark.



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 22

(defgenerator TOP-WORD ()

(return-result (a-member-of *word-list*)))

(defgenerator LEFT-WORD (top-word)

(let ((possible-left-word (a-member-of *word-list*)))

(when (eq (second possible-left-word) (third top-word))

(return-result possible-left-word))))

(defgenerator RIGHT-WORD (top-word)

(let ((possible-right-word (a-member-of *word-list*)))

(when (eq (second possible-right-word) (seventh top-word))

(return-result possible-right-word))))

(defgenerator BOTTOM-WORD (left-word right-word)

(let ((possible-bottom-word (a-member-of *word-list*)))

(when (and (eq (first possible-bottom-word) (fifth left-word))

(eq (fifth possible-bottom-word) (fifth right-word)))

(return-result possible-bottom-word))))

Figure 3.2: Generators for the four crossword puzzle spaces.

(�gure 3.3) and an explicit search strategy mapped out (�gure 3.4). In this particular problem the exact

division between generators and �lters is somewhat arbitrary. A given generator could return all words,

all words that match up with previously hypothesized words for other spaces in the puzzle, or all words

that match up and are of the requisite length. We choose (somewhat arbitrarily) to have the generators

pay attention to previously hypothesized words, but to use explicit �lters to ensure that words are of

the proper length for the space they must �t in.

Generators

The role of generators is to produce any number of structures that will be used by other generators

and �lters. In this simple example the generators are essentially themselves just �lters on the words

contained in *word-list*, though in a more complex situation they could utilize side e�ects and return

locally constructed data structures.

In more detail, for every environment (collection of input arguments) in which the generator is executed

a data structure called a set is created, and all the values resulting from the generator's execution are

stored in this set, each with a list of closures that represents all side-e�ects executed to produce the

value. This set can later be used to enumerate the structures for �ltering or the execution of other

generators. Sections 3.3.1 and 3.3.2 contain a further elaboration of this process.

The programming language uses as a base Screamer([26]), an extension ofCommon Lisp. Screamer's

compiler automaticallyCPS2 converts programs, thereby allowing non-deterministic functions. Thus the

2CPS (Continuation Passing Style) conversion involves rewriting programs so that after each result is computed, a



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 23

(deffilter TOP-WORD-LENGTH (top-word)

(unless (= (length top-word) 8)

(reject)))

(deffilter LEFT-WORD-LENGTH (left-word)

(unless (= (length left-word) 6)

(reject)))

(deffilter RIGHT-WORD-LENGTH (right-word)

(unless (= (length right-word) 8)

(reject)))

(deffilter BOTTOM-WORD-LENGTH (bottom-word)

(unless (= (length bottom-word) 7)

(reject))

(succeed))

Figure 3.3: Filters for the crossword puzzle problem.

e�ect of the non-deterministic function a-member-of in the TOP-WORD generator is essentially that of

(defgenerator TOP-WORD ()

(dolist (temp *word-list*)

(return-result temp)))

Filters

Filters are used to selectively delete values from sets produced by generators. In the example, each

value is a list of letters. To permanently delete a value, the function reject is called inside the �lter. If

reject is not called the value remains in the set.

Dependency Declarations and Search Strategies

Because it is not always possible for the language to infer all module dependencies from the input

arguments to each generator and �lter, dependencies between modules must be explicitly declared with

the function define-tree-positions. One way to look at these dependencies is that each generator

must have an input stream and an output stream. The output stream is named with the generator's

name. The input stream can be the output stream from a single generator if there is only one dependency,

function (the continuation) that represents \how the result is used" is called with it. Calling a continuation more than
once results in exhaustive non-deterministic programs.



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 24

(define-tree-positions

'((top TOP-WORD)

(generate top-word LEFT-WORD)

(generate top-word RIGHT-WORD)

(cross left-word right-word LEFT-AND-RIGHT)

(generate left-and-right BOTTOM-WORD)))

(defsearcher CROSSWORD-PUZZLE

((generate TOP-WORD

(filter TOP-WORD-LENGTH top-word)

(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word))

(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word))

(generate LEFT-AND-RIGHT)

(generate BOTTOM-WORD

(filter BOTTOM-WORD-LENGTH bottom-word)))))

Figure 3.4: A search strategy for the crossword puzzle problem.

or a new stream can be created by crossing (in the sense of cross-product) two others if a generator has

multiple dependencies. In the example (�gure 3.4), the TOP-WORD generator is declared to be the top

generator, with no input dependencies (no input arguments). The LEFT-WORD and RIGHT-WORD generators

take their input from the TOP-WORD generator's output stream. The output streams from LEFT-WORD

and RIGHT-WORD are crossed to produce a new stream, LEFT-AND-RIGHT, which is used as input to the

BOTTOM-WORD generator. It is not necessary to declare the input dependencies of �lters.

Even with the generator dependencies declared, the precise ordering of the search is underspeci�ed. A

speci�c search program is created with the defsearcher macro. In the example found in �gure 3.4 the

CROSSWORD-PUZZLE program performs the search as follows: �rst the TOP-WORD generator is executed,

and for each of the values generated, the TOP-WORD-LENGTH �lter is applied. So long as the �lter does not

reject the value generated by TOP-WORD the LEFT-WORD generator is executed on the value the TOP-WORD

generator produced. Its results are also �ltered, and the set of values that results is stored away. The

same process occurs with the RIGHT-WORD generator and RIGHT-WORD-LENGTH �lter. At this point there

exists a set of left-words and a set of right-words each associated with a given top-word. The command

(generate LEFT-AND-RIGHT) forms the cross product of these two sets. For each member of this cross

product set, the BOTTOM-WORD generator and BOTTOM-WORD-LENGTH �lter is applied. Any value that is

not rejected by this �lter, when combined with the associated top, left and right words, constitutes a

solution to the crossword puzzle.

Notice that while the left and right word sets were computed and �ltered independently, they were stored

permanently so that the cross product could be rapidly enumerated for the bottom word generator. A

slight change in the program, to

(defsearcher CROSSWORD-PUZZLE



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 25

((generate TOP-WORD

(filter TOP-WORD-LENGTH top-word)

(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word)

(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word)

(generate LEFT-AND-RIGHT

(generate BOTTOM-WORD

(filter BOTTOM-WORD-LENGTH bottom-word))))))))

would have resulted in a standard depth �rst search.

3.3 Internal Representations

One reason simple search strategies are so e�ective is that they have little computational overhead

associated with them; a depth �rst search needs only to maintain a simple stack. More sophisticated

search strategies require the building of complex internal representations. This language, for example,

must permanently record all results produced by generators, and must maintain a dependency structure

between those values in order for them to be e�ciently re-enumerable, and for certain types of search

failures to be detected. This section describes the internal representations built by search programs

written in the language, and how those representations are manipulated.

3.3.1 Value Pairs and Side E�ects

Each generator executes some actions, which may include performing destructive side-e�ects, and returns

a series of values. Because other generators and �lters will make reference to these values, and because

it is important for the values to be e�ciently regenerable, the generator must essentially be memoized:

the resultant values and their associated side e�ects must be stored. We'll call the aggregate structure

of a value and a sequence of side-e�ects a value pair. Value pairs are created every time return-result

is called inside a generator, as done in the crossword example 3.2.

Fortunately, Screamer's implementation provides convenient access to side e�ects. Screamer uses

backtracking to simulate non-determinism. Each side e�ect (usually a setq form) is replaced by a

combination of the usual destructive operator and a push of a closure onto a global stack called *trail*.

The closure, when executed, e�ectively undoes the side-e�ect. When Screamer backtracks it executes

these closures as it unravels the stack and thus computations do indeed seem completely non-destructive.

We extend this mechanism by providing two alternative destructive operators into Common Lisp, set!

and set!-local. set!-local pushes two closures onto a second stack, *effects*. The �rst closure is

the same undo closure that Screamer uses; the second closure, when executed, performs the original

side-e�ect. In short, the *effects* stack contains not only a record of how to undo all side-e�ects

executed during the current thread of non-determinism, but also an e�cient encoding of how to perform

the side-e�ects themselves. When a generator outputs a value, the current value of *effects* (a list)

is joined with the value to produce a value pair. set! is the same as set!-local except that the undo



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 26

(defgenerator TEST ()

(let ((simple-list (list 'empty 'empty)))

(set! (first simple-list) (either 1 2))

(set!-local (second simple-list) (either 'A 'B))

(return-result simple-list)))

In the following table, X represents a particular list structure originally created by (list 'empty 'empty) that

is modi�ed during the execution of the TEST generator, and Y represents the second cons cell in that list.

Value Pair # Value E�ect Closures

1 X To Do: ((lambda () (rplaca Y 'A)) (lambda () (rplaca X 1)))

To Undo: ((lambda () (rplaca Y 'empty)) NIL)

2 X To Do: ((lambda () (rplaca Y 'B)) (lambda () (rplaca X 1)))

To Undo: ((lambda () (rplaca Y 'empty)) NIL)

3 X To Do: ((lambda () (rplaca Y 'A)) (lambda () (rplaca X 2)))

To Undo: ((lambda () (rplaca Y 'empty)) NIL)

4 X To Do: ((lambda () (rplaca Y 'B)) (lambda () (rplaca X 2)))

To Undo: ((lambda () (rplaca Y 'empty)) NIL)

Figure 3.5: A simple generator and the value pairs it produces.

closure is not created. This is more e�cient in cases where it is not necessary to undo e�ects upon

backtracking. Screamer o�ers a similar distinction.

To illustrate how the e�ect-recording system works, �gure 3.5 contains an example of a simple generator

and the value pairs it produces. either is a Screamer function that non-deterministically returns one

of its arguments. Notice that because one of the destructive operations uses set! and not set!-local,

there are fewer undo closures than do closures. The language also de�nes many other commondestructive

operators, such as push!, push!-local, pop!, pop!-local, inc!, inc!-local, etc.

The overhead of creating closures and adding them to the *effects* stack for every simple side-e�ect

can be signi�cant for a program, and because of this for many search problems an extremely simple

control mechanism such as that found in depth �rst searches may well be a more e�cient mechanism.

But if a generator needs to be executed many times, it is very likely that the low cost of regenerating

these memoized values will outweigh the initial overhead. This is particularly true for generators that

perform complex calculations but a relatively small number of side-e�ects.

To use a value found in a value pair, the side e�ecting closures must �rst be executed in reverse order

(from the bottom of the *effects* stack to the top, to recreate the proper temporal sequence). At this

point the structure found in value portion of the value pair is in an identical state to when it was returned

from the generator originally. Before another value from a di�erent value pair may be examined, the

undo closures from the original value pair must be executed.



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 27

The issues that arise with the interaction between side-e�ects and concurrent execution are discussed in

section 3.8.

3.3.2 Sets, Elements, Dependencies and Enumeration

All the value pairs produced by a generator must be stored in some sort of aggregate if they are to be

re-enumerated. This aggregate is called a set. Whenever a generator function is applied to some input

arguments, a new set is created. That set will contain all the value pairs produced by the generator's

application. In addition the set includes dependency information pointing back to the generator's input

arguments, and information concerning the state of the generation process.

To encapsulate the arguments that a generator takes, a data structure called an element is used. Gen-

erators get their input from the output of zero or more other generators. For example, the TOP-WORD

generator in �gure 3.2 has no input dependencies; LEFT-WORD gets its arguments from one other gener-

ator; and BOTTOM-WORD from two other generators. In the case of no input arguments a special element

type exists, a topmost-element. For the simple case where one generator feeds directly into another, the

generated-element type is used, and when the outputs of several di�erent generators must be combined

to produce a single element, the crossed-element is used.

When a generator is executed its value pairs are encapsulated in generated-elements, and then these are

placed in a set. Other single-argument generators can get their input arguments from these generated-

elements. But in the case of a generator like BOTTOM-WORD that takes several input arguments, generated-

elements must be combined into crossed-elements. Crossed-elements are built up in a binary tree fashion:

a crossed element can be created from any combination of two generated-elements or crossed-elements.

The purpose of this crossing procedure is to create a single aggregate element that represents the results

of several di�erent generators. When a generator is executed and creates a new set of value pairs, that

set contains information pointing back to the single element that represents all of the generator's input

arguments. In this way dependency information between all value pairs is maintained.

Figure 3.6 depicts the internal representation of the search in the crossword example.

A generator like BOTTOM-WORD needs input elements that have multiple dependencies. This is done by

creating a sort of virtual generator, LEFT-AND-RIGHT in the example. This virtual generator produces a

set of elements, just like a real generator, only the elements are members of two sets, not just one, and

hence the element has dependencies from two generators. One of the element's parent sets is associated

with the LEFT-WORD generator and the other with the RIGHT-WORD generator. This can be seen by looking

at the LEFT-AND-RIGHT sets in �gure 3.6.

We can now provide explicit de�nitions of sets and elements. This is done in �gure 3.7. Let us examine

these de�nitions in more detail.

� Sets: Sets hold the list of values (elements) produced by a generator. The elements slot points to a

list of all the elements contained in the set. The tree-position slot contains information about what

generator produced the set, primarily for debugging purposes. The parent-element is the element

that contained the input arguments for the generator that produced this set, in most cases. For



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 28

topmost−element
Topmost−Element−1

generated−element
complex

calico
generated−element

satire
generated−element

chilled
generated−element

rank
generated−element

cavalries
generated−element

cavalry
generated−element

coral
generated−element

aardvark
generated−element

act
generated−element

analysis
generated−element

airplane
generated−element

tippy
generated−element

crossed−element
satire−and−airplane

generated−set
TOP−WORD

generated−set
LEFT−WORD

generated−set
LEFT−WORD

generated−set
RIGHT−WORD

generated−set
RIGHT−WORD

indexing−set−from−A
LEFT−and−RIGHT

indexing−set−from−A
LEFT−and−RIGHT

indexing−set−from−B
LEFT−and−RIGHT

generated−set
BOTTOM−WORD

generated−set
BOTTOM−WORD

crossed−element
calico−and−airplane

Figure 3.6: Some objects constructed during the crossword search. Each element is drawn with a

descriptive name and its type, each set in a box with the name of its position in the dependency tree

and its type. Crossed out elements have been deleted by �lters.



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 29

indexing sets (explained below) the slot is used in a slightly di�erent manner. fully-generated?

is true if the generation process is complete. deleted? is true if the set has been deleted (see

section 3.6).

� Generated Sets: Generated sets are just a subclass of sets that are directly created by a generator,

as opposed to indexing sets.

� Indexing Sets: Indexing sets are built when the results of several generators need to be combined.

When a crossed position is generated, an indexing-set-from-A is built for each element of one parent

generator, and an indexing-set-from-B for each element of the other.

� Simple Elements: Elements are used to represent the input arguments for generators and to hold

value produce by generators.. Simple elements are the parents of all other elements. The deleted?

slot is true if the element has been deleted. The daughter-sets slot contains all the sets that have

been generated from the element.

� Topmost Elements: Topmost elements are elements with no dependencies and no associated value

pairs, used to represent the dependencies of a top level generator.

� Generated Elements: Generated elements are created when a generator is applied to its input

arguments. The value-pair slot contains the resulting value pair, and the associated-set is the set

that the element is put into.

� Crossed Elements: Crossed elements represent a dependency on several di�erent generators, and

hence have two associated sets, index-set-A and index-set-B.

Enumeration

The representation built up during the search (�gure 3.6) can be used to e�ciently enumerate partial

and complete solutions. Let us look at a search program for the crossword puzzle again:

(defsearcher CROSSWORD-PUZZLE

((generate TOP-WORD

(filter TOP-WORD-LENGTH top-word)

(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word))

(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word))

(generate LEFT-AND-RIGHT)

(generate BOTTOM-WORD

(filter BOTTOM-WORD-LENGTH bottom-word)))))

Generating the TOP-WORD position is easy, because it has no input arguments. But look at the generation

of BOTTOM-WORD. The generator function must be called on every possible pair of left and right words,

which are in turn dependent on the top word. So before BOTTOM-WORD can be generated, TOP-WORD must

be re-enumerated. For every one of the elements produced by this enumeration, a set for the LEFT-WORD

position and a set for the RIGHT-WORD position exists. Either of these can be used to further enumerate



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 30

;;;

;;; SETs

;;;

(defclass set ()

((elements :accessor set-elements :initform nil :type list)

(tree-position :accessor set-tree-position :initarg :tree-position :type symbol)

(parent-element :reader parent-element :initarg :parent-element :type simple-element)

(fully-generated? :accessor fully-generated? :initform nil :type symbol)

(deleted? :accessor deleted? :initform nil :type symbol)))

(defclass generated-set (set) ())

(defclass indexing-set (set) ())

(defclass indexing-set-from-A (indexing-set) ())

(defclass indexing-set-from-B (indexing-set) ())

;;;

;;; ELEMENTs

;;;

(defclass simple-element ()

((deleted? :accessor deleted? :initform nil :type symbol)

(daughter-sets :accessor daughter-sets :initform nil :type (or cons nil))))

(defclass topmost-element (simple-element) ())

(defclass generated-element (simple-element)

((value-pair :reader element-value-pair :initarg :value :type value-pair)

(associated-set :accessor associated-set :initarg :associated-set :type set)))

(defclass crossed-element (simple-element)

((index-set-A :reader index-set-A :initarg :index-set-A :type indexing-set)

(index-set-B :reader index-set-B :initarg :index-set-B :type indexing-set)))

Figure 3.7: The de�nitions of sets and elements.



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 31

the tree. Say the LEFT-WORD position is chosen. Then it is enumerated, producing a number of elements.

For each of these elements there exists an indexing-set-from-A set that represents the LEFT-AND-RIGHT

tree position. This is then enumerated, and the elements produced contain backpointers that allows the

RIGHT-WORD position to be set. Once all of these tree positions are set, the BOTTOM-WORD generator can

be applied.

In general enumeration can be complex. The precise ordering of tree positions in the enumeration process

can a�ect the e�ciency of a search.

3.4 Speci�cation of Generators and Filters

The crossword example generator and �lter de�nitions in �gures 3.2 and 3.3 are fairly self-explanatory,

but we provide a slightly more precise description of the search language syntax here.

Generators are de�ned with the defgenerator macro, which takes the form (defgenerator name

(&rest positions) &rest body). positions is a list of the generator's input arguments, which must

be the names of tree positions, or a list of a variable name to bind locally and a tree position name. For

instance,

(defgenerator CHAIN-FORMATION (PHRASE-STRUCTURE)

;; The result of CHAIN-FORMATION is a set (list) of chains, each a list

;; of noun phrases linked by movement.

;;

;; Compute all chains.

(let ((chain-state (do-chain-formation phrase-structure)))

;; Unless there are either incomplete chains...

(unless (or (chain-state-partial-chains chain-state)

;; Or noun phrases that have not been incorporated into chains...

(chain-state-free-phrases chain-state))

;; then return the list of completed chains.

(return-result (chain-state-completed-chains chain-state)))))

(defgenerator FREE-INDEXING ((list-of-chains CHAIN-FORMATION))

;; Return a list of chain sets, that looks like

;;

;; ((REFERENTIAL-INDEX-1 CHAIN-1-1 CHAIN-1-2 ...)

;; (REFERENTIAL-INDEX-2 CHAIN-2-1 ...)

;; )

;;

;; where each referential index is an integer and each chain is a list

;; of phrases. The chains paired with a referential index all co-refer.

;;

(when list-of-chains

(return-result

(loop for integer-set in (freely-index (length list-of-chains))

for referential-index from 1

collect (cons referential-index



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 32

(mapcar #'(lambda (i) (nth i list-of-chains))

integer-set))))))

At any time during the execution of a generator the function return-result can be called to output

a value. Depending on the particular search strategy, the execution of the generator function may or

may not be temporarily halted while other aspects of the search process are performed. The body of a

generator may be non-deterministic.

Filters are de�ned with the deffilter macro, which looks very much like defgenerator: (deffilter

name (&rest positions) &rest body). A �lter rejects the current search path if and only if some-

where in its dynamic scope it executes the reject function. For instance,

(deffilter CONDITION-A ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING)

ANAPHOR?)

;; For each phrase in the phrase-structure tree TREE...

(map-up-phrase-structure tree (phrase)

;; If that phrase is an anphoric noun phrase...

(when (and (np? phrase) (is-anaphor? phrase))

;; Find the governing category for the phrase...

(let ((gc (governing-category phrase)))

;; If there is a gov. cat. and no binder for the phrase within it...

(unless (or (null gc) (find-binders phrase gc indices))

;; Reject this parse.

(reject))))))

(deffilter subjacency ((chains CHAIN-FORMATION))

(dolist (chain chains) ;; For every chain...

(mapl #'(lambda (chain-part)

(let ((phrase1 (first chain-part))

(phrase2 (second chain-part)))

;; Phrase1 and Phrase2 are consecutive (movement slots) in the chain.

(when (and phrase1 phrase2)

;; If they are not subjacent, reject the chains.

(unless (subjacent phrase1 phrase2)

(reject)))))

chain)))

Because it may be useful to signal a halt to the search process after a single solution is found, the special

function succeed, when executed inside the dynamic scope of a generator or �lter, halts the search

process.



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 33

3.5 Speci�cation of Dependencies and Search Strategies

3.5.1 Dependency Declarations

The de�nitions of generators and �lters are not su�cient to determine the search dependencies. For

instance, a �lter may not explicitly need the value that a certain generator produces while it still relies

on that generator's side-e�ects having taken place. Binding theory Condition A, presented in section 3.4

relies on previous side-e�ects to have set the anaphoric property of noun phrases, though no reference

needs to be made in the argument list to the ANAPHOR? generator. Therefore the dependencies between

various generators and �lters must be explicitly declared. This is done by explicitly declaring the entire

dependency graph. In the example, for instance,

(define-tree-positions

'((top TOP-WORD)

(generate top-word LEFT-WORD)

(generate top-word RIGHT-WORD)

(cross left-word right-word LEFT-AND-RIGHT)

(generate left-and-right BOTTOM-WORD)))

Every module (generator or �lter) must take its input arguments from a single named position in the

dependency graph. Positions are named either by generators or, in the case of multiple dependencies, by

explicitly creating a crossed position. All of this is done through the define-tree-positions function,

which takes a list of clauses, each clause which de�nes a single position in the dependency graph. The

possible position de�nition clauses are:

� (top generator-name): De�ne the new position generator-name that represents the output of

generator generator-name, which has no dependencies.

� (generate parent-position generator-name): De�ne the new position generator-name. The gener-

ator generator-name is dependent on the position parent-position and its ancestors.

� (cross parent-position-1 parent-position-2 new-position-name): De�ne the new position new-

position-name, which combines all the information from parent-position-1 and parent-position-2.

No ordering is guaranteed, so there should be no interactions between the side-e�ects of the gen-

erators in the ancestors of the two parent positions.

It is often necessary to explicitly create one position which combines the results of all generators, so that

there is a single element created that represents the solution to the global search. This is because there

is no explicit mechanism in the language for outputting results. The most basic way to get at the results

of a search is to execute on the cross-product of all generators a single �lter that prints (or otherwise

outputs) the value of each generator position, after the seach process is complete.

Notice that �lters do not need to be declared anywhere. This is because modules are not expected to be

dependent on whether or not particular �lters have been applied. If they are, then either the �lter can

be guised as a generator that either outputs its input or doesn't, or the �lter dependency can simply be

incorporated into the search strategy.



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 34

(defsearcher CROSSWORD-PUZZLE

((generate TOP-WORD

(filter TOP-WORD-LENGTH top-word)

(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word))

(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word))

(generate LEFT-AND-RIGHT)

(generate BOTTOM-WORD

(filter BOTTOM-WORD-LENGTH bottom-word)))))

(defsearcher CROSSWORD-PUZZLE

((generate TOP-WORD

(filter TOP-WORD-LENGTH top-word)

(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word)

(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word)

(generate LEFT-AND-RIGHT

(generate BOTTOM-WORD

(filter BOTTOM-WORD-LENGTH bottom-word))))))))

Figure 3.8: Two search programs for the crossword puzzle example.

3.5.2 Search Programs

Search programs are built with the defsearcher macro. The speci�cation of the program orders the

application of generators and �lters, speci�es concurrency, and declares whether one process has scope

over another, or whether they are executed completely separately. As examples, the two search programs

provided for the crossword puzzle are reprinted in �gure 3.8.

The search programs must include a generation step for each tree position. But once generated, a

position need not be regenerated. So, for instance, in the �rst program in �gure 3.8 the lines

(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word))

(generate LEFT-AND-RIGHT)

�rst cause the RIGHT-WORD generator to run. For each of the resulting values, the RIGHT-WORD-LENGTH

�lter is applied. Then after this initial generation is complete, the LEFT-AND-RIGHT crossed position is

generated. This process is dependent on the RIGHT-WORD position, but since that position has already

been generated and stored away, it can be re-enumerated quickly to create the input arguments for the

second generation process. In the second program this overhead is dispensed with:



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 35

(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word)

(generate LEFT-AND-RIGHT

Here, after each element is generated by RIGHT-WORD the �lter is executed, and then the LEFT-AND-RIGHT

generator is applied. It only generates those crossed elements which include the one RIGHT-WORD currently

being generated. This saves on some small overhead associated with re-enumerating RIGHT-WORD but

introduces other potential ine�ciencies, as is discussed in section 3.6.

There are a number of di�erent clauses that can be used to construct search programs. The defsearcher

macro functions as a compiler. It creates a function of no arguments that executes the search. All input

and output must be made by individual generators and �lters through special mechanisms, such as global

variables. defsearcher takes the following form: (defsearcher program-name body), where body is

a list of clauses. Each clause is executed in sequence. The possible clause constructors are:

� (generate position body): Enumerate any unbound parent positions, and execute the generator

associated with position. As each result is returned, bind the position to that value and execute

body.

� (pgenerate position body): Similar to generate, except that as each value is generated, a separate

process is created for it, and body is executed concurrently in each process. When all are complete,

execution of the pgenerate halts. See section 3.8 for more information.

� (filter �lter-name parent-position): Enumerate any unbound parent positions, and apply the

�lter function. If it rejects the input, delete the element containing the input arguments and

advance its enumerator. See section 3.6 for more information.

� (cobegin body): Start separate processes for each of the clauses in body, and execute them con-

currently. When all are complete, the cobegin halts.

� (with position body ): Like generate, except that it assumes position has already been generated

and only needs to be enumerated.

� (pwith position body ): See pgenerate and with.

3.6 Failure Propagation

Propagation of failure is a classic problem in the search literature. In certain searches detecting the

proper branch point to retreat to after a failure can greatly improve search e�ciency, but in others the

overhead associated with this computation turns out to be far more costly than the search itself. There

are a few special considerations that need to be thought about for the search mechanisms used by this

language.

First of all, recall that all value pairs produced by generators are encapsulated in elements and stored in

sets. When a �lter is executed, its function is applied to a particular element that represents its input

arguments. If it rejects its input, then that element is deleted from its set, and a future enumeration of



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 36

the set will not produce that element. Because a complete representation has been built of all the values

produced during the search, deletion can be propagated beyond the local �lter.

Imagine the following case related to the crossword puzzle example: suppose that the TOP-WORD generator

produces the word sequoias. The next generator that will be executed is the LEFT-WORD generator, which

will have to produce a word with q as its second letter. If the word list does not contain any 6 letter

words with q in second position, then at the end of the LEFT-WORD generation process there will be no

elements remaining in the new set (either none will have been produced, or those few produced will have

been deleted by the LEFT-WORD-FILTER). This is an indication that the word sequoias is at fault for the

failures, and can be deleted. If it is not, then the RIGHT-WORD generator will be applied needlessly to

sequoias, producing values that will never be used.

In general, whenever a set that has been fully generated has its last element deleted, then the parent

element to that set can also be deleted. It is not always trivial to ensure that a set has indeed been fully

generated though. If we look at the following searcher

(generate A

(generate B)

(generate A-CROSS-B)

(filter foo-filter A-CROSS-B)))

one might expect that the crossed position A-CROSS-B has been fully generated, and therefore that if

the �lter deletes the last element from one of the indexing sets, the parent to that indexing set can be

deleted too. But that is not the case here. An indexing set that points back to an element of A will

indeed have been fully enumerated. But an indexing set that points back to B (and contains one element

for each a 2 A) will not be complete, because A is still being generated. For this reason it is not always

advantageous to nest generation as much as possible.

3.6.1 Non-Local Exits

When a failure has been encountered, either because a �lter has rejected its input arguments, or because

a generator has produced no values, some exit to an antecedent tree position must be performed, in

oreder to get a new value for that position. In most cases the exit will be to the tree position that is

being fed into the �lter or generator. But if the failure has propagated beyond its starting point then

the exit may be to a position further up in the dependency graph that must have its value changed.

A common strategy in searches is to backtrack to the closest (dynamic) superior branch point when a

failure occurs. This is often because it is di�cult or computationally expensive to determine the nearest

branch point that is actually at fault in a failure. But since the search con�guration is statically de�ned

in this language it is very easy to compute the proper branch point to backtrack to. Thus in a depth

�rst search de�ned with

(defsearcher CROSSWORD-PUZZLE

((generate TOP-WORD



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 37

(filter TOP-WORD-LENGTH top-word)

(generate LEFT-WORD

(filter LEFT-WORD-LENGTH left-word)

(generate RIGHT-WORD

(filter RIGHT-WORD-LENGTH right-word)

...)))))

if the RIGHT-WORD generator fails to generate any values, then the search does not backtrack to the closest

dynamic branch point (the LEFT-WORD generator) but instead the closest branch point that RIGHT-WORD

is actually dependent on, TOP-WORD.

3.6.2 User-Declared Data Dependencies

It is common in natural language applications that there is shared substructure in the values produced

by a generator. For instance, a phrase-structure generator may produce many parse trees that share

a common phrase. In the ambiguous sentence I saw a man with a telescope the attachment of the

prepositional phrase with a telescope varies but the word I is still unambiguously parsed as a pronoun.

Imagine a �lter being applied to the two possible phrase structure trees for this sentence. If it is concerned

with the prepositional phrase then indeed it will do di�erent work on the two values output by the

generator, but if it, for instance, ruled out sentences with accusative pronouns in subject position, then

it would redundantly apply to I twice. This overhead can essentially be eliminated with memoization,

see section 3.7. But look at the sentence Me saw a man with a telescope; in this case the �lter would

rule out the sentence twice. Depending on the particular ordering of generators and �lters it is quite

conceivable that a signi�cant amount of unnecessary processing will be done on the second value in

between the time that the �rst value is ruled out by the �lter and the time that the �lter rules out the

second value for the same reason.

For this reason a mechanism has been built that allows the user to de�ne data dependencies among

values, so that when a substructure in one value is rejected all other values with the same substructure

are also deleted at the same time. It is used by de�ning a class for the substructure using a special macro

that adds slots for dependency information and links to value pairs. Any object which is an instantiation

of a class de�ned with this macro can be made dependent on any other such object, and any value pair

dependent on any number of such objects. When any one of these objects is explicitly rejected (using

an alternative form of reject then all elements with value pairs dependent on the object are deleted.

Although the de�nitions of dependent object classes is done with the defmstructure macro which will

not be fully de�ned until section 3.7, the :allow-dependencies t section of the following de�nition

declare that the phrase class allows dependency declarations.

(defmstructure (phrase :allow-dependencies t)

((category :initarg :category :accessor phrase-category :type symbol)

(daughters :initarg :daughters :accessor phrase-daughters :type list)

(parent ... )))

Inside any generator or �lter one phrase can now be declared to be dependent on another with (is-part-of



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 38

substructure dependent-structure):

(let ((phrase (make-instance 'phrase

:category category

:daughters daughters)))

(dolist (daughter-phrase daughters)

(is-part-of daughter-phrase phrase)))

Any value returned with return-result that is a dependency structure will be deleted if one of its

substructures is rejected. And, whenever one dependency substructure is rejected (with a command like

(reject phrase)), then all objects dependent on that structure are also rejected.

Unfortunately, this mechanism is not always as useful as it might seem, because often it is not a particular

object that is at fault, but an object in conjunction with a variety of other side e�ecting operations or

other objects. For instance, in Me saw a man with a telescope it is not me per se that is at fault, but

me in subject position. In the sentence Everyone but me saw a man with a telescope, me could not be

deleted. Unless this combination of an object and its sentential position are somehow encapsulated in a

greater dependency object, this mechanism would not be useful. Section 4.2.1 presents some macros for

performing this encapsulation that are used in an actual parser implementation.

3.7 Memoization

Natural language problems seem characterized by large numbers of local ambiguities, which are often

expressed by building data structures that combine a small set of objects in a variety of di�erent ways.

Many of the same operations are performed on the same objects in each structure variation, and thus

it is usually a signi�cant optimization to memoize ([23], [13]), or store the results of an operation for

future reuse. This is a variation of the technique used to allow generators to e�ciently reproduce their

results. The language provides a variety of macros that de�ne memoized functions that maintain a table

of the results of their application.

Although memoization of simple functions is easily added to Common Lisp(see [24]), some extra care

was taken to allow memoizable non-deterministic functions and e�cient argument indexing. One of the

common sources of ine�ciency in memoized functions is the lookup of function arguments. At the start

of a function call, the table pairing input arguments and results must be checked to see if the current

arguments have been used before. For some classes of functions, such as those that take a single small

integer argument, it is possible to e�ciently store the table in the form of an array or a hash table. But

for many functions that occur in natural language applications the input arguments are more likely to

be complex data structures that are not easily indexed.

One solution is reserve a slot in a data structure for a given memoized function. When passed an ar-

gument structure, quickly checking a slot on that structure is su�cient to �nd a previously computed

function value, if it exists. This e�cient memoization technique is provided in the language through

memoizing structures, or mstructures. The defmstructure macro allows one to declare classes of ob-

jects that can memoize. For example, in �gure 3.9 the phrase class is de�ned to memoize 3 functions,



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 39

(defmstructure (phrase :allow-dependencies t)

((category :initarg :category :accessor phrase-category :type symbol)

(daughters :initarg :daughters :accessor phrase-daughters :type list)

...)

(ENUMERATE-PHRASE ANNOTATE-PHRASE-WITH-CASE DO-CHAIN-FORMATION))

(defndm do-chain-formation ((phrase) phrase)

(case (length (phrase-daughters phrase))

(0 ...)

...))

(defm! annotate-phrase-with-case ((phrase) phrase)

...)

Figure 3.9: An example illustrating the use of memoizing structures.

enumerate-phrase, annotate-phrase-with-case and do-chain-formation.

The four macros available for de�ning memoized functions that use mstructures for e�ciency are defm,

defndm, defm! and defndm!. defndm and defndm! are for non-deterministic functions, and defm! and

defndm! record and reproduce side e�ects. Instead of the standard argument list found in a function

de�nition, both an argument list and the name of the single argument that holds the mstructure must

be provided. The similar macros defmemo, defndmemo, defmemo! and defndmemo! de�ne memoizing

functions that do not use mstructures, but store their results in ordinary hash tables.

Like the user-de�nable failure propagation mechanism, e�cient memoization is not as useful as it might

seem, because often a function's operations can not be easily speci�ed just on the basis of its input

arguments. The same structure may be passed to a function in two di�erent contexts, with some side-

e�ected slot containing a di�erent value each time. The equality test on the arguments will not recognize

the di�erence, and an (incorrect) memoized result will be returned at some point. Thus memoization

must be used with some care.

An example of how care must be taken in memoization comes from binding theory. If we look at the

de�nition of Condition A, from �gure 2.1, it says that an anaphor must be bound in its governing

category. Section 3.4 contains the CONDITION-A �lter that implements this requirement. We might

be tempted to memoize the computation of a phrase's governing category. But this won't work very

well, because a single phrase can be shared between a large number of di�erent tree structures, and its

governing category may be di�erent in each one. The memoization of the c-commander function (see

Appendix B) gets around this problem by including in the function argument list the top level phrase

of the tree structure. The c-commanders of a phrase are unique inside a given tree structure root.



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 40

3.8 Concurrency

In this search language, independent modules are made computationally independent. It is an obvious

e�ciency-motivated extension to make them computationally concurrent. If di�erent modules can be

executed at the same time, and even di�erent search branches of a single module at the same time,

then potentially the time cost of a complex search can be greatly reduced. Although the language has

not actually been implemented on a concurrent computer system, the compiler can produce code with

the necessary structure for concurrent execution, to the point that the code can be run in a simulated

parallel environment such as Lucid Common Lisp's processes.

Rather than go through the details of all the many additions and changes that must be made to the

compiler to handle non-local exits, race-free modi�cations to the search state structure, process creation,

and countless other minutiae, we will merely talk about some of the high level problems that must be

dealt with when extending this language to handle concurrency in some form or other. Certainly the

most important aspect that we will not touch upon is information passing between processes. The

�ne points of this are too dependent on the particulars of individual computer architectures and search

programs.

3.8.1 Making Common Lisp Functional

Concurrent computing is usually the domain of functional (non side-e�ecting) languages, and for a very

good reason. If two di�erent processes both e�ect a di�erent change on the same memory location, then

neither can be certain of its value. Given the existence of operations in this language like this one from

example 3.5,

(set! (first simple-list) (either 1 2))

it should be obvious that it will be non-trivial to execute the two branches to this statement concurrently,

or even to have two di�erent modules operate on the two di�erent results at the same time.

The solution to this problem is to turn Common Lisp's side-e�ecting operations into non-destructive

operators. Instead of a given writable location containing a readable value, it will contain a unique index.

That index can be used to look back in the list of side-e�ects maintained for backtracking purposes (see

section 3.3.1) to �nd the value the last side-e�ecting operation assigned to the location. For e�ciency

reasons not all side-e�ects use this mechanism, but only those explicitly declared to be potential conicts

under concurrent execution; it is possible that a su�ciently rich type and e�ect system (see [20], [27])

could deduce such conicts automatically.

Looking at �gure 3.10, to declare a memory location to be a potential conict point for concur-

rency it must be a slot in an mstructure. In addition to the normal slot de�nition arguments, the

:nondestructive keyword can be given. This declares that all read and write operations to this slot

should be nondestructive. The argument given to the keyword is a list of all the generators that can

potentially modify the slot, and this information is used to prune the search of the side-e�ects list. Once



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 41

(defmstructure (phrase :allow-dependencies t)

((category :initarg :category :accessor phrase-category :type symbol)

(daughters :initarg :daughters :accessor phrase-daughters :type list)

(parent :initform nil :accessor phrase-parent :NONDESTRUCTIVE (PHRASE-STRUCTURE))

...)

(...))

(defgenerator phrase-structure (...)

...

(set! (phrase-parent phrase) (either parent-A parent-B))

...)

(deffilter filter-parent (...)

...

(if (predicate? (phrase-parent phrase))

...)

...)

Figure 3.10: An example illustrating how non-destructive side-e�ectors are declared and used.

this declaration has been made, the slot of a particular phrase will actually contain an index symbol

such as :parent-119 and a write operation such as the set! in the phrase-structure generator in

�gure 3.10 is translated to

(push (cons (phrase-parent phrase) ;; The index.

(either parent-A parent-B)) ;; The value.

*effects*)

and a read like the (phrase-parent phrase) in the �lter in �gure 3.10 translated to something along

the lines of

(cdr (assoc (phrase-parent phrase) ;; The index

*effects*))

Here the overhead of a given read or write can be signi�cant if many of them are performed and the list

of e�ects grows large, but this mechanism does allow incompatible values to exist in di�erent processes

concurrently.



CHAPTER 3. A PROGRAMMING LANGUAGE FOR SEARCH PROBLEMS 42

3.8.2 Specifying Concurrency

Section 3.5.2 enumerates the possible constructors for search programs, which include pgenerate, pwith

and cobegin.

The pgenerate constructor executes a generator, then takes and runs its body on each generated element

in parallel. The actual gain of this is hard to judge- it certainly would not reduce the time complexity

of a search, since the generation process is still linear and whatever mechanism is used by the body to

retrieve information from the ancestors of the generator is likely to be time dependent on the number

of processes requesting information. But most likely some signi�cant savings could result, especially in

problems with little communication needs. pwith is very similar to pgenerate.

cobegin executes each statement of its body in parallel, and serves as a mechanism for running several

modules concurrently. So, for instance, after a generator has been executed several di�erent �lters could

be run over its results instead of just one at a time.

3.8.3 Overheads and Testing

It is important to realize that the high level concurrency constructs in this language are not practical for

many applications, and have not been tested in any kind of representative environment. Although they

can be used to the point of verifying correctness, the particular environment they have been tested in

(interleaved processes in Lucid Common Lisp) provides communication mechanisms transparently and

otherwise allows many important aspects of concurrent computing to be glossed over. Furthermore, the

high overhead associated with creating new processes swamps out the cost of the computation actually

involved with the problem, and therefore renders empirical timing results meaningless.



Chapter 4

Tests and Results

The goal of this research was not to produce a particularly e�cient, complete or psychologically plausible

implementation of any particular human language competence or performance theory, but to create a

convenient programming environment for experimenting with natural language problems and to test the

viability of various e�ciency-motivated search techniques. To this end, several relatively complex (though

linguistically incomplete) principle-and-parameters based parsers were implemented in the language and

tested under various search options.

4.1 Chapter Outline

This chapter introduces the parsers and their relevant computational properties, by describing each

module one by one in section 4.2. To illustrate exactly how the modules work, a sample parse of a

simple sentence is presented in section 4.2.2. Section 4.3 then describes the tests performed on the

parsers and presents numerical results for a large number of di�erent parser/parameter combinations.

Finally, section 4.4 summarizes signi�cant qualitative features of these results.

4.2 The Test Parsers

The parsers are all search programs that seek to derive annotated parse trees (deep structures) for

surface sentences, given as input a list of words. As with most GB-parsers (see [14], [12], [17]) they do

this by starting with a covering context-free grammar for surface-structure, one that encompasses all

legal transformations of a deep structure by the move-� principle. After deriving the surface structure

of an entire sentence using standard CFG techniques, they reconstruct the movement sequence and also

derive other ancillary information, such as antecedence relations between pronouns. This is not by any

means all that a practical parser must do, and the parsers do not exhibit particularly broad linguistic

coverage. For instance, the parsers do not derive important scoping information for quanti�ers and are

43



CHAPTER 4. TESTS AND RESULTS 44

not able to derive the structure of questions about adjuncts. These and many other failings could be

remedied relatively easily were the primary goal of this research to implement a more comprehensive

language module.

There are only minor variations between the parsers, stemming from variations in the linguistic theory

implemented. The changes were designed to test the e�ects of deterministic theories on the search.

Because the majority of the modules in the parsers are identical, the parsers will be described together,

module by module. Actual code for the parsers is provided in Appendix B, and section 4.2.2 provides a

detailed sample execution of a parser.

See [28] for a more comprehensive introduction to the linguistic theories represented by these modules.

4.2.1 The Modules

The generators and �lters that make up the test parsers are described in this section. For each one, a

short description of the part of linguistic theory it implements is described, along with the intermodule

dependencies and a description of any special language features used to implement the theory. First,

though, some macros used by several modules and speci�c to linguistic structure are described.

Tree Structure Macros

Many of the modules map over phrase structure trees built by the �rst module of the parser. A variety

of macros are de�ned to facilitate these mappings. Among these are map-up-phrase-structure and

map-up-phrase-structure-nd which are used to apply a body of code to each phrase in a tree. For

instance,

(deffilter CONDITION-A ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING)

ANAPHOR?)

;; For each phrase in the phrase-structure tree TREE...

(map-up-phrase-structure tree (phrase)

;; If that phrase is an anphoric noun phrase...

(when (and (np? phrase) (is-anaphor? phrase))

;; Find the governing category for the phrase...

(let ((gc (governing-category phrase)))

;; If there is a gov. cat. and no binder for the phrase within it...

(unless (or (null gc) (find-binders phrase gc indices))

Reject this parse.

(reject))))))

Another useful set of macros deal with the problem of memoization over combinations of phrases and

side-e�ects. Imagine trying to memoize the Case Filter on phrases. Since case theory depends on

whether phrases are anaphoric or not, any case-checking function will need the anaphoric property of



CHAPTER 4. TESTS AND RESULTS 45

a phrase to be an argument. But the anaphoric nature of empty categories is set destructively by a

non-deterministic module, and therefore can not easily be referenced as an argument. The solution is

to build new structures that encapsulate the anaphoric side-e�ect with the phrase object, and memoize

on that new object. Obviously there is an overhead associated with this, but the new object can also

be used for user-declared failures (see section 3.6.2), and the process can be built into macros that hide

the details of the operations. These same macros can be used for other theories. The new structures

built are called virtual trees. The following code illustrates the use of virtual trees to provide a single

rejectable object that represents phrases and their anaphoric setting.

(defgenerator ANAPHOR? ((tree OPERATOR-ASSIGNMENT))

(return-result (annotate-empty-categories-with-anaphor-feature tree)))

(defndm! annotate-empty-categories-with-anaphor-feature ((phrase) phrase)

(virtual-map-up-phrase-structure

(phrase annotate-empty-categories-with-anaphor-feature)

(when (np? phrase)

(if (empty? phrase)

(unless (phrase-anaphor? phrase)

(set!-local (phrase-anaphor? phrase) (either '+ '-)))

(if (word? phrase)

(set!-local (phrase-anaphor? phrase) (feature-value phrase 'anaphor)))))))

(deffilter EMPTY-CASE-FILTER ((virtual-tree ANAPHOR?) CASE-ASSIGNMENT)

;; Filter that says +A ecs must not get case, -As must (if in A positions).

(virtual-phrase-map virtual-tree (phrase :category category)

(when (and (eq category 'n2) (empty? phrase) (a-position? phrase))

(let ((ana (phrase-anaphor? phrase))

(case (phrase-assigned-case phrase)))

(when (or (and (eq '+ ana) case)

(and (eq '- ana) (not case)))

;; It is not the empty category itself that is responsible

;; for the failure, but whatever domain that should contain

;; a case assigner. This is usually the parent phrase of

;; the empty category, though if ECM were handled we would

;; have to be more careful. Reject up one level of the tree

;; from PHRASE.

(virtual-reject 1))))))

Now we present the modules that make up the parsers.

PHRASE-STRUCTURE generator

The phrase-structure generator gets a sequence of words from a global variable (it has no formal

dependencies) and uses a tabular CFG parser and a small lexicon and grammar to non-deterministically

produce phrase structure trees of that sentence. The grammar the parsers use is a subset of a covering

grammar for the surface-structure of English, and includes empty categories. The parser inserts empty

categories without any particular movement clues (this contrasts with parsers that only insert empty



CHAPTER 4. TESTS AND RESULTS 46

categories, for example, to the right of question words like who that indicate probable movement). This

leads to overproduction, so that a sentence such as John likes to bicycle generates 24 di�erent parse

trees, including

(C2

(C1 (C0)

(I2 (N2 JOHN)

(I1 (I0)

(V2

(V1 (V1 (V0 LIKES) (N2))

(P2

(P1 (P0 TO)

(C2

(C1 (C0)

(I2 (N2)

(I1 (I0)

(V2 (V1 (V0 BICYCLE)

(N2)))))))))))))))

(C2

(C1 (C0)

(I2 (N2 JOHN)

(I1 (I0)

(V2

(V1 (V0 LIKES)

(C2

(C1 (C0)

(I2 (N2)

(I1 (I0 TO)

(V2 (V1 (V0 BICYCLE)))))))))))))

The second tree is correct for the sentence, but the �rst illustrates some of the problems that result from

not using enough information in the initial parsing process, such as incorrect argument structure for

verbs and prepositions and a surfeit of empty categories. A more psychologically plausible parser would

utilize this information early in the construction of sentential structure (see [11], [14]), in some sort of

interleaved approach.

The phrase-structure generator outputs any number of tree structures, each in the form of a root

phrase. Each phrase may have any number of daughter phrases, and some phrases may be shared

between trees. Each phrase is a structure that also contains slots for information produced by other

modules.

Language Facilities

The phrase-structure module uses the user declared data dependency feature to make each phrase

a fundamental part of the phrases that contain it. This way, if any �lter can rule out a particular

sub-phrase many di�erent parse trees can be eliminated at once. Most of the memoization involved in

context-free parsing is handled explicitly by the chart parser, but one interesting function is



CHAPTER 4. TESTS AND RESULTS 47

(defm! set-phrase-parents ((phrase) phrase)

(mapc #'(lambda (daughter)

(set-phrase-parents daughter)

(set!-local (phrase-parent daughter) phrase))

Since phrases are shared, it is not possible for them to have a single slot always pointing to their parents.

The set-phrase-parents function is applied to the root node of parse trees as they are enumerated. It

destructively sets the parent slots of all phrases within the current parse tree. The side-e�ects are stored

along with the root node. The function can be memoized over each phrase, which speeds up the initial

process of producing the value pair. The memoization is performed using mstructures (see section 3.7).

THETA-ROLE-ASSIGNMENT generator

For the purposes here, theta (short for thematic) roles can be thought of as the deep structure argument

relations assigned by verbs to their subjects and objects. Di�erent verbs assign di�erent thematic

roles, and therefore can take di�erent combinations of arguments. For instance, one form of bicycle

assigns an agent role to its subject (John bicycled) and another assigns a role to an object also (John

bicycled the Schwinn), but no form assigns the clausal role that a verb like think does. This generator

deterministically assigns thematic roles from verbs, prepositions and other words to phrases in particular

structural relations with them, such as subjects. It fails when the assigning word is in the wrong sort of

structural relation to assign the role (such as the verb bicycle with a clausal argument). The assignment

is done by storing a theta-role symbol directly on the phrase that is the recipient of the role.

Structural positions in which thematic roles can be assigned (not must) are called argument positions,

or A-positions. These include the classical subject position, and the complement position of verbs and

prepositions. Non-argument positions are called Abar-positions.

Since theta-role assignment is on the basis of an inherent lexical property of a word and a structural rela-

tion, the generator need only be dependent on the phrase-structure generator. The theta-criterion

�lter works to �lter out structures based on theta-role assignment and movement relations.

Language Facilities

Theta assignment is on the phrasal level under particular structural relationships, and can therefore be

memoized on a phrase. This means that assignment applies only once to a phrase, regardless of how

many times that phrase might appear in di�erent parses. The only restriction one must be wary of is

that it must be memoized on a phrase at least as high as both the assigner and assignee. The mstructures

described in section 3.7 are used so that argument lookup during memoization is particularly e�cient.

CASE-ASSIGNMENT generator

Case assignment, like theta-role assignment, is on the basis of structural relations between a word with

certain properties and a phrase. Just as in theta-role assignment, a symbol indicating the type of case



CHAPTER 4. TESTS AND RESULTS 48

assigned is deterministically stored on the phrase that receives the case.

Language Facilities

Case assignment is very similar to theta-role assignment, and many of the same optimizations are used.

But although case-assignment in these parsers is deterministic, the code allows for a non-deterministic

theory. This necessitates a few changes, such as the use of virtual trees so that case is encapsulated with

phrases.

(defgenerator CASE-ASSIGNMENT ((tree PHRASE-STRUCTURE))

(if (eq (phrase-category tree) 'n2) ;; Top-level NP

(assign-case tree 'NOM))

(return-result (annotate-phrase-with-case tree)))

(defm! annotate-phrase-with-case ((phrase) phrase)

(virtual-map-up-phrase-structure (phrase annotate-phrase-with-case)

(when (eq phrase (core-phrase phrase))

(cond ((p1? phrase)

(when (and (complement phrase) (np? (complement phrase)))

(assign-case (complement phrase) 'acc)))

...

LEXICAL-CASE-FILTER �lter

The Case Filter, described in section 2.2.2, �lters out some noun phrases that have not been assigned

case. These noun phrases can be divided into two categories, lexically realized and empty categories.

Empty categories do not necessarily have to receive case; this depends on their particular type. Lexically

realized noun phrases must always receive case. The Case Filter has been divided into two parts, so

that it can be applied early in the search process to lexically realized noun phrases and later to empty

categories whose typology is not determined at the beginning of the search.

The lexical-case-filter is naturally dependent on the case-assignment generator.

Language Facilities

The Case Filter could be memoized over the virtual tree structure produced by case-assignment,

though it is not. It rejects the speci�c data structure representing a combination of case and phrase

structure so that all parse trees combining the combination are eliminated.

OPERATOR-ASSIGNMENT generator

Certain empty categories do not easily �t into the standard typology of being either anaphors, pronom-

inals, neither or both (see section 2.3.5). These include operators, which only appear in certain unam-

biguous structural positions. The operator-assignment generator deterministically sets the type of



CHAPTER 4. TESTS AND RESULTS 49

empty categories that can be unambiguously determined by their structural location; it is dependent

only on the structural forms generated by phrase-structure.

ANAPHOR? generator

As discussed in section 2.3.5, empty categories are usually assumed to have features associated with them.

In particular, most empty categories fall into the typology of being either �anaphoric and �pronominal.

These features can not be determined from the surface realization the empty phrase (there is no surface

realization), but various theories di�er as to how the features are set.

One possibility is to non-deterministically guess the value of each of these features. Call this the free

determination of empty categories. Another (as per [8]) is to determine the particular functional rela-

tionships the empty category enters into and work backwards, specifying that, for instance, it can not

be a pronominal if it is locally bound. This is called the functional determination of empty categories.

A third possibility ([10] is to use structural information about the location of the empty category in

the phrase-structure tree, combined with lexical information such as case, to determine the type of the

empty category. This is called structural determination of empty categories.

It is not entirely clear exactly what empirical di�erences arise from the three di�erent approaches. Fong,

in [14], cites an example sentence that structural determination might predict as grammatical when in

fact it isn't, a mistake that the functional determination theory of [8] doesn't make, but it is not clear

that there aren't other mechanisms that could explain the ungrammaticality. Free determination, which

would examine all possibilities, would certainly make the same (possibly incorrect) prediction about

Fong's sentence. It seems that free determination overgenerates in several cases, though that may reect

the lack of a di�erent constraint.

All three of these di�erent mechanisms have been implemented, and all have di�erent dependencies.

The free determination hypothesis merely guesses whether an empty category is an anaphor and thus

needs not rely on any other information, so under this hypothesis anaphor? is dependent only on

operator-assignment (and operator-assignment's parent, phrase-structure).

Functional determination requires knowledge of movement and binding relationships. These can be

computed before the type of an empty category is known, but only at a signi�cant computational cost

that arises from doing non-deterministic search on many structures that would be ruled out by �lters

that rely on empty category typology. The solution to this problem taken here is to implement functional

determination as a �lter that applies only after movement and binding relations have been computed on

empty categories determined by free determination.

Structural determination relies only on structural and lexical information to determine empty category

types. In Correa's system, anaphor? is dependent on both operator-assignmentand case-assignment

while pronominal? is dependent only on operator-assignment.

Language Facilities

For free determination and functional determination, the anaphor? generator sets the anaphoric and



CHAPTER 4. TESTS AND RESULTS 50

pronominal properties of empty categories without checking any structural relationships. This process

can be memoized on the empty category itself. For structural determination this is not possible, since

some structural context needs to be captured. Virtual trees are used in either case to capture a com-

bination of anaphoric nature and phrase, which is used in the empty-case-filter for e�cient error

propagation.

(defgenerator ANAPHOR? ((tree OPERATOR-ASSIGNMENT))

(return-result (annotate-empty-categories-with-anaphor-feature tree)))

(defndm! annotate-empty-categories-with-anaphor-feature ((phrase) phrase)

(virtual-map-up-phrase-structure (phrase annotate-empty-categories-with-anaphor-feature)

(when (np? phrase)

(if (empty? phrase)

(unless (phrase-anaphor? phrase)

(set!-local (phrase-anaphor? phrase) (either '+ '-)))

...

PRONOMINAL? generator

See anaphor? above.

EMPTY-CASE-FILTER �lter

As discussed in the section on the lexical-case-filter, the case �lter is divided into two parts. The

empty-case-filter ensures that empty categories which are anaphoric do not received case, and that

non-anaphoric empty categories in certain positions do receive case. It is therefore dependent on both

the case-assignment generator that assigns case and the anaphor? generator that determines the

anaphoric nature of empty categories.

Language Facilities

The empty-case-filter is presented in section 4.2.1. It maps over the virtual trees created by anaphor?,

which allows it to delete several parses at once if functional determination is in e�ect. Structural

determination does not use memoization to share anaphoric structure, so for structural determination

this �lter does not gain in e�ciency by using virtual trees.

CHAIN-FORMATION generator

Chain formation is the process by which movement histories (chains) between D-structure and S-structure

are derived. Empty categories inserted by the phrase-structure generator into its parse trees are linked

with phrases that have moved to positions di�erent from their D-structure locations. The output is a

list of chains of phrases, where each chain is a list of phrases that represents a set of phrases intimately



CHAPTER 4. TESTS AND RESULTS 51

linked by movement. These phrases are assumed to corefer, and bear the same referential index with

respect to binding theory.

Two di�erent theories of chain-formation have been implemented, the �rst based loosely on the non-

deterministic chain-formation mechanism in [14] and the second on the deterministic algorithm in [10].

Both build chains phrase by phrase, working up from the bottom of the phrase structure trees and

combining chains at each node. Fong's algorithm essentially builds all possible chains of noun phrases in

which one phrase c-commands the next in a chain, where the de�nition of c-command is (as in �gure 2.1):

For �, � nodes in a tree, � c-commands � i� every branching node dominating � dominates � and neither

� nor � dominates the other. Correa's algorithm deterministically builds chains by compiling in �lters

that use information about the exact position each phrase is in. The result is a very e�cient algorithm,

with more dependencies (though only on deterministic generators) but poorer empirical judgements:

Correa's chain-formation algorithm can not explain parasitic gap sentences. Parasitic gap sentences

involve movement that creates more than one empty position, such as which book did you �le e without

reading e?. Without any mechanism for merging chains or binding an empty category that is not part of

a chain, at some point his algorithm will fail on this sentence. Despite the current de�ciency, it is quite

possible that a modi�ed version of his chain formation algorithm could be made to work with parasitic

gap sentences.

The non-deterministic chain-formation algorithm is dependent only on the phrase-structure gener-

ator. Correa's deterministic algorithm is dependent on phrase-structure, theta-role-assignment,

anaphor? and pronominal?.

Language Facilities

Both chain formation algorithms work bottom-up, creating subchains for every daughter phrase before

using that information to create the chains for the parent. The non-deterministic implementation of

chain formation does not use information beyond the level of the parent phrase, and thus the algorithm

can be memoized by phrase, saving work when multiple parses share phrase structure. But Correa's

deterministic algorithmmakes reference to theta-roles and other information from beyond the immediate

locality, so memoization is not used.

SUBJACENCY �lter

Subjacency is a condition on movement chains that ensures successive stages of movement are not

separated by more than a small distance, de�ned in terms of the number of intervening nodes in the

phrase-structure tree. This notion of locality is captured in many di�erent ways in di�erent linguistic

theories, but here is implemented in a fairly traditional manner. The subjacency �lter is dependent

only on the chain-formation generator and of course, the phrase structure trees themselves.

THETA-CRITERION �lter

One of the most fundamental (and long-lived) principles in the Government-Binding theories is the theta

(thematic) criterion, which states that every noun phrase must receive one and only one thematic role.



CHAPTER 4. TESTS AND RESULTS 52

Thematic roles are semantic roles such as agent and patient assigned by verbs and prepositions. The

notion has been extended to state that every movement chain must receive one and only one role.

The theta-criterion �lter is dependent on both the theta-assignment and chain-formation gener-

ators, and checks that each movement chain produced by chain-formation contains exactly one noun

phrase that has received a theta-role from theta-assignment.

FREE-INDEXING generator

In �gure 2.1 a version of binding theory is presented that states: assign numerical indices freely to all

noun phrases, subject to Conditions A, B and C. The free-indexing generator implements the assign

numerical indices portion of binding theory, by non-deterministically partitioning the chains produced

by the chain-formation algorithm into di�erent sets (each set corresponds to a di�erent numerical

index).

Language Facilities

The free indexing procedure really only needs to know the number of di�erent chains, not the exact nature

of each of them, to compute the possible partitions. And there is a simple compositional algorithm for

computing the possible partitions for n chains given the possible partitions for n � 1 chains. This

algorithm can be memoized on n for e�ciency.

(defndmemo freely-index ((n) () eql)

;; Nondeterministically return a partition on the integers 0 through

;; N-1. Each partition is a list of lists of integers. For example, the

;; five values returned by (freely-index 3) are

;;

;; ((2) (1) (0))

;; ((2 1) (0))

;; ((2 0) (1))

;; ((2) (1 0))

;; ((2 1 0))

;;

(unless (zerop n)

(let ((indexing (freely-index (1- n))))

(either

;; Put integer into its own partition.

`((,(1- n)) ,@indexing)

;; Put integer into some existing partition.

(let ((index-set-to-merge-with (a-member-of indexing)))

`((,(1- n) ,@index-set-to-merge-with)

,@(remove index-set-to-merge-with indexing)))))))



CHAPTER 4. TESTS AND RESULTS 53

CONDITION-C-REXP �lter

Binding theory condition C (section 2.2.1) states that R-expressions (names, for our purposes) must

not be bound. This translates into a requirement that no phrase c-commands an R-expression with

the same numerical index (see free-indexing). The theory treats certain types of empty categories

as R-expressions, and therefore, as with the Case Filter, condition C is divided into two parts. The

condition-c-rexp �lter applies only to overt noun phrases and not empty categories, and can thus be

applied before the typology of empty categories is determined.

condition-c-rexp is dependent on the indices assigned by free-indexing and, of course, the structural

relations inherent in phrase-structure.

CONDITION-C-VAR �lter

The condition-c-var �lter acts as condition-c-rexp except that it applies only to empty categories

that are non-anaphoric and non-pronominal. As such, it applies only after anaphor?, pronominal?, and

free-indexing have been generated.

COINDEX-OPERATOR �lter

Operators (see the operator-assignment generator) are a particular type of empty category used to

represent scoping information. In this parser, relative clause constructions such as the man that John

saw are assumed to have the following structure

[[NP the man][CP [OP e] [that John saw e]]]

The empty object of saw bears the same reference as the man, and has somehow moved from its base

position. This is captured by the object moving (being part of the same chain) to the position of the

operator [OP e]. The operator is then coindexed with the noun phrase the man. The coindex-operator

�lter checks that whatever index is assigned by the free-indexing generator to the noun phrase the

man has also been assigned to the operator, and hence (since all members of a chain bear the same

reference) to the object of saw.

I-WITHIN-I �lter

The i-within-i �lter captures a fairly basic condition that one phrase not bear the same referential

index as another phrase it contains. This rules out phrases like

[hisi friend]i

where his and friend are coindexed. The �lter is dependent on free-indexing, which labels chains with



CHAPTER 4. TESTS AND RESULTS 54

indices.

CONDITION-A �lter

Condition A of binding theory (section 2.2.1) states that anaphors (words like himself and themselves)

must have an antecedent within a local domain. It applies to all noun phrases that have anaphoric

properties, including some empty categories. For each noun phrase condition-a computes the local

domain, then checks that there is another noun phrase within the domain that has the same referential

index.

The condition-a �lter can only be applied after both the anaphoric property and referential index of

a noun phrase has been computed, and therefore it is dependent on free-indexing and anaphor?.

CONDITION-B �lter

The condition-b �lter parallels condition-a, except that it veri�es pronominal noun phrases do not

have local binders, and is dependent on the pronominal? generator rather than anaphor?.

LICENSE-CHAINS �lter

There are a number of conditions on movement histories (chains) that are not directly enforced by the

chain-formation generator, in part because they derive from di�erent aspects of the linguistic theory

and in part because they depend on information not available at the time chains are produced. The

license-chains �lter checks that chains produced by chain-formation indeed satisfy other criteria.

Among the conditions enforced:

� Each non-trivial chain includes at least one trace (-pronominal empty category).

� Operators must bind variables (-pronominal, -anaphor empty categories).

� Operators must head (complete) a chain they are included in.

� English does not permit +pronominal, -anaphor empty categories.

� The empty category resulting from the movement of a question word must be licensed by an

operator in the same movement chain.

� Only lexical items, operators, variables, and +pronominal empty categories may head chains.

Obviously, the eclectic nature of this �lter necessitates dependencies on a variety of generators: anaphor?,

pronominal? and chain-formation.



CHAPTER 4. TESTS AND RESULTS 55

Phrase Structure

Theta Assignment Operator Assignment Case AssignmentChain Formation

Free Indexing Anaphor?Pronominal?

Anaphor?Pronominal?

Phrase Structure

Free Indexing

Chain Formation

Figure 4.1: The dependencies between generators in the parser used for the example. The box contains

the dependency graph among non-deterministic generators.

FUNCTIONAL-DETERMINATION �lter

Functional determination is described above in the section on the anaphor? generator. It is a theory

of how the typology of empty categories is determined. In particular, it states that the anaphoric and

pronominal nature of an empty category is determined by the functional relationships the empty category

enters in to. This is implemented by non-deterministically guessing the nature of the empty category

and later (in the functional-determination �lter) checking that the values were guessed correctly.

The �lter uses information on structural positions, binders, and chains. It is dependent on the generators

chain-formation, anaphor?, pronominal? and free-indexing in addition to basic phrase-structure.

4.2.2 An Example Parse

The general function of the above modules should be clearer after seeing an example of their execution.

This section presents a sample parse of the sentence Who did John say that he saw?, by a parser

using functional determination and the non-deterministic chain-formation algorithm. The dependency

structure of the generators in the parser is shown in �gure 4.1. The search strategy separates the

execution of conceptually independent modules.



CHAPTER 4. TESTS AND RESULTS 56

The �rst module to be executed is the phrase-structure generator, which non-deterministically parses

the input sentence into phrase structure trees. It looks each word up in its small dictionary to determine

its part of speech and special features (for instance, that he is a pronoun), then uses a simple context-free

chart parser with a small grammar to produce the following four phrase structure trees:

(C2 (N2 WHO)

(C1 (I0 DID)

(I2 (N2 JOHN)

(I1 (I0)

(V2

(V1 (V0 SAY)

(C2 (N2)

(C1 (C0 THAT)

(I2 (N2 HE)

(I1 (I0)

(V2 (V1 (V0 SAW)))))))))))))

(C2 (N2 WHO)

(C1 (I0 DID)

(I2 (N2 JOHN)

(I1 (I0)

(V2

(V1 (V0 SAY)

(C2 (N2)

(C1 (C0 THAT)

(I2 (N2 HE)

(I1 (I0)

(V2 (V1 (V0 SAW) (N2)))))))))))))

(C2 (N2 WHO)

(C1 (I0 DID)

(I2 (N2 JOHN)

(I1 (I0)

(V2

(V1 (V0 SAY)

(C2

(C1 (C0 THAT)

(I2 (N2 HE)

(I1 (I0)

(V2 (V1 (V0 SAW)))))))))))))

(C2 (N2 WHO)

(C1 (I0 DID)

(I2 (N2 JOHN)

(I1 (I0)

(V2

(V1 (V0 SAY)

(C2

(C1 (C0 THAT)

(I2 (N2 HE)

(I1 (I0)

(V2 (V1 (V0 SAW) (N2)))))))))))))

The variation between the 4 trees is slight. The only di�erences are whether or not there is an empty



CHAPTER 4. TESTS AND RESULTS 57

object to the verb saw and whether or not there is an empty category in the speci�er position of the

embedded clause that he saw.

Then theta-role-assignment applies. Since the dictionary includes the information that saw assigns a

role to an object noun phrase or clause, the two phrase structures with no phrase in complement position

of saw fail and are discarded. For the remaining two structures, John receives a theta-role from say, he

and the empty category in object position from saw.

Operator-assignment applies to the two phrase structures. Since neither have an empty category in

an operator position, the generator outputs two unchanged structures.

Case-assignment assigns case from the two �nite verbs in the sentence, nominative case to John and

he and accusative case to the empty category in object position. At the end of this process, the two

structures look something like:

(C2 (N2 WHO)

(C1 (I0 DID)

(I2 (N2 SUBJECT NOM JOHN)

(I1 (I0)

(V2

(V1 (V0 SAY)

(C2 (C1 (C0 THAT)

(I2 (N2 SUBJECT NOM HE)

(I1 (I0)

(V2 (V1 (V0 SAW)

(N2 OBJECT ACC)))))))))))))

(C2 (N2 WHO)

(C1 (I0 DID)

(I2 (N2 SUBJECT NOM JOHN)

(I1 (I0)

(V2

(V1 (V0 SAY)

(C2 (N2)

(C1 (C0 THAT)

(I2 (N2 SUBJECT NOM HE)

(I1 (I0)

(V2 (V1 (V0 SAW)

(N2 OBJECT ACC)))))))))))))

Here the actual theta-roles see and say would have assigned have for convenience been replaced with

SUBJECT and OBJECT. The lexical-case-filter then checks that the lexically realized noun phrases

in argument positions (who is not in an argument position) have been assigned case. In both structures

John and he have received case, so both structures pass.

The anaphor? generator is now executed, which non-deterministically assigns the values + and - to

the anaphoric property of empty categories not in the position of speci�er of embedded clauses. In

other words, the values are assigned to the empty category in object position of saw, but not to the

empty category immediately preceding that. Since this process applies to both structures, the two



CHAPTER 4. TESTS AND RESULTS 58

input phrase structures produce four di�erent phrase structures annotated with anaphoric features.

Once the anaphoric properties have been determined, the empty-case-filter can be applied to empty

noun phrases in argument positions (the empty category that is the complement of saw). It requires

that +anaphor empty categories be caseless. Since two of the annotated phrase structures label the

complement of saw as being anaphoric, and since saw has assigned it case, these two paths are �ltered

out and the empty category complement of saw is unambiguously non-anaphoric. In fact, the failure

propagation mechanism actually rules out both after the �rst one has been analyzed, so the �lter is

actually only applied once.

Now the non-deterministic chain-formation generator is applied to the two phrase structures. The

algorithm has a high branching factor, and 14 di�erent chain possibilities result. 11 of these movement

chains are for the structure with two empty categories, 3 for the structure with one empty category.

Looking just at the 3,

((<Phrase N2: WHO>) (<Phrase N2: JOHN> <Phrase N2:>) (<Phrase N2: HE>))

((<Phrase N2: WHO>) (<Phrase N2: JOHN>) (<Phrase N2: HE> <Phrase N2:>))

((<Phrase N2: WHO>) (<Phrase N2: JOHN>) (<Phrase N2: HE>) (<Phrase N2:>))

Of the 3 movement chain sets produced, the �rst indicates that John moved from the position of the

empty category, the second has he moving from that position, and in the third all four noun phrases

are parts of separate chains (no movement took place). None of these or the other 11 chains are ruled

out by the subjacency �lter that is applied to them. But a much stronger requirement is then applied,

the theta-criterion. This requires that every chain receive exactly one theta-role. In the three chains

listed, the chain including who never receives a theta-role and thus all are �ltered out. In fact, only one

chain set of 14 survives this �lter:

((<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>)

(<Phrase N2: JOHN>)

(<Phrase N2: HE>))

Here John and he are in their own chains, and the chain containing who and two empty categories

receives its theta-role by virtue of the empty category in complement position of saw. Since all of the 3

chain sets for the one phrase structure are �ltered, the phrase structure is also deleted.

Now the free-indexinggenerator applies, to the one remaining chain set produced by chain-formation.

It partitions the chains into di�erent sets with the same referential index. There are 3 chains in the one

chain set that survived the theta criterion, and the �ve partitions free-indexing produces look like:

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>)] [(<Phrase N2: JOHN>)] [(<Phrase N2: HE>)]

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: JOHN>)] [(<Phrase N2: HE>)]

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>)] [(<Phrase N2: JOHN>) (<Phrase N2: HE>)]

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: HE>)] [(<Phrase N2: JOHN>)]

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: JOHN>) (<Phrase N2: HE>)]

In the �rst partition the reference of he, John and who is disjoint, and in the last partition all noun phrases

are coreferential. Now four di�erent �lters apply to these �ve partitions without whittling down their



CHAPTER 4. TESTS AND RESULTS 59

numbers. condition-c-rexp veri�es that John is not bound by a noun phrase in an argument position

but the only potential binder is who and that is not in an argument position. coindex-operator has no

e�ect because there are no operators. i-within-i does not apply to any case here, and condition-a

applies only to anaphoric elements, which are nonexistent in this structure.

The pronominal? generator is now applied to the phrase structures. Note that it is not applied to

the �ve values produced by free-indexing but only to the one remaining valid phrase structure. It

non-deterministically assigns the values + and - to the pronominal property of the empty category that

is the complement of saw, producing two output values. Now the condition-b �lter is applied. It is

dependent on both free-indexing and pronominal?. Since the one phrase structure has 5 indexings

and 2 di�erent pronominal values, the result is a cross product of ten di�erent inputs to the �lter. Of

these, binding theory condition B rules out the two in which the empty category is a pronoun and there

is local binder for that pronoun (he, in fact). These correspond to the following two free-indexing

values:

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: HE>)] [(<Phrase N2: JOHN>)]

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: JOHN>) (<Phrase N2: HE>)]

The pronoun he escapes condition B because there are no potential binders within its locality domain,

the clause that he saw.

The license-chains �lter is applied and is dependent on chains and the anaphoric and pronominal

properties of empty categories. The one remaining phrase structure has only one chain, only one possible

assignment of anaphoric features, and two possible assignments of pronominality to the empty category

in complement position of saw. license-chains rules out the +pronominal possibility on the grounds

that English does not permit empty categories that are pronominal but not anaphoric. At this stage

the single phrase structure has unambiguous empty category typology, one possible chain, and still 5

possible indexings. The condition-c-var rules out

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: JOHN>)] [(<Phrase N2: HE>)]

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: HE>)] [(<Phrase N2: JOHN>)]

[(<Phrase N2: WHO> <Phrase N2:> <Phrase N2:>) (<Phrase N2: JOHN>) (<Phrase N2: HE>)]

because the non-anaphoric, non-pronominal empty category would be illegally bound by either John or

he.

Finally, the functional-determination �lter is applied for the one phrase structure to the last two possible

indexings, the only possible chain, and the unambiguous empty category typology. It �nds that the empty

categories have the proper anaphoric and pronominal values for their usage, and �lters neither structure.

The parser's output is shown in �gure 4.2

The only di�erence between these two structures is whether John and he corefer or are disjoint in

reference. The �rst number in each noun phrase (N2) is a referential index, and the second number in

parenthesis reects the chain a noun phrase is part of. Figure 4.3 summarizes the work each module

performs during the parse.



CHAPTER 4. TESTS AND RESULTS 60

(C2 (N2 1 (0) WHO)

(C1 (I0 DID)

(I2 (N2 2 (1) SUBJECT NOM JOHN)

(I1 (I0)

(V2

(V1 (V0 SAY)

(C2 (N2 1 (0) -A -P)

(C1 (C0 THAT)

(I2 (N2 3 (2) SUBJECT NOM -A +P HE)

(I1 (I0)

(V2

(V1 (V0 SAW)

(N2 1

(0)

OBJECT

ACC

-A

-P)))))))))))))

(C2 (N2 1 (0) WHO)

(C1 (I0 DID)

(I2 (N2 2 (1) SUBJECT NOM JOHN)

(I1 (I0)

(V2

(V1 (V0 SAY)

(C2 (N2 1 (0) -A -P)

(C1 (C0 THAT)

(I2 (N2 2 (2) SUBJECT NOM -A +P HE)

(I1 (I0)

(V2

(V1 (V0 SAW)

(N2 1

(0)

OBJECT

ACC

-A

-P)))))))))))))

Figure 4.2: The two parse trees �nally output by the parser for the sentence Who did John say that he

saw?



CHAPTER 4. TESTS AND RESULTS 61

Module # of inputs # of outputs max outputs/input

FUNCTIONAL-DETERMINATION 2 2 1

CONDITION-C-VAR 5 2 1

LICENSE-CHAINS 2 1 1

CONDITION-B 10 8 1

PRONOMINAL? 1 2 2

CONDITION-A 5 5 1

I-WITHIN-I 5 5 1

COINDEX-OPERATOR 5 5 1

CONDITION-C-REXP 5 5 1

FREE-INDEXING 1 5 5

THETA-CRITERION 14 1 1

SUBJACENCY 14 14 1

CHAIN-FORMATION 2 14 11

EMPTY-CASE-FILTER 3 2 1

ANAPHOR? 2 4 2

LEXICAL-CASE-FILTER 2 2 1

CASE-ASSIGNMENT 2 2 1

OPERATOR-ASSIGNMENT 2 2 1

THETA-ROLE-ASSIGNMENT 4 2 1

PHRASE-STRUCTURE 1 4 4

Figure 4.3: For each module, the number of times it was applied to an input argument is printed in the

�rst column; the second column holds the total number of values the module output (or in the case of

�lters, accepted); the third column holds the maximum number of outputs for any single input. Were

all branches of a module executed concurrently with no overhead, the third column would reect the

amount of time spent in execution.



CHAPTER 4. TESTS AND RESULTS 62

4.3 Test Results

Again, the goal of this research was not to create a particularly e�cient implementation of any given

linguistic theory. So the metric by which the programming language and parser implementation will

be judged is neither how much time and memory was expended during the search, nor how many

grammatical constructs were correctly parsed. What we are interested in is an abstract notion of how

much less (or more) computation a linguistic theory of parsing entails if implemented using the sorts

of search techniques presented in chapter 3 instead of more standard depth �rst search techniques, and

whether the added overhead of the techniques outweighs any small improvement.

To gather empirical data on performance variations, the di�erent parsers described in section 4.2 were

run on a number of di�erent sentences. The sentences are not in any way representative of English

text and are merely designed to exercise di�erent modules to the extent that any anomalies could be

detected. The resulting data is in the form of number of input and output values to each module. For

instance, over x number of sentences module case-filter was executed on y inputs and �ltered out z

of them. This sort of data was collected under a variety of di�erent search strategies, sometimes with

several di�erent parts of the search language disabled. Thus improvements resulting directly from one

technique or another can be observed.

One of the important aspects of the search language is its potential for concurrent execution. Although

the implementations were tested in a simulated parallel environment, there are an enormous number

of details relating to implementing such parsers in a truly concurrent environment that could not be

adequately addressed here. So the only data provided on concurrent execution assumes in�nite resources

and zero overhead for both process creation and communication. Obviously this would not be the case

in any realistic scenario.

Actual execution times and memory usages are not provided. Neither the search language nor the parsers'

implementations were optimized for e�ciency and such results would be misleading. We assume that

the amount of computational resources expended by a module is directly proportional to the maximum

of the number of inputs to it and the number of outputs from it. This is not necessarily true, and certain

modules have smaller coe�cients associated with them than others, but our goal is only to provide

generalizations about the value of various search techniques, not to provide quantitative exactitudes.

4.3.1 Test Implementations

Three linguistic theories are tested, each under two di�erent search strategies. The base of all three

theories is described in section 4.2.1, and the variations are: FD, functional determination of empty

categories implemented as a �lter over freely determined empty categories, with a non-deterministic

chain formation algorithm; SD, Correa's structural determination algorithm for empty category typology

(the functional determination �lter is also applied at the end of the search) with a non-deterministic

chain formation algorithm; and CF, structural determination with Correa's deterministic chain formation

algorithm. Each of the three linguistic theories is implemented both in a form that modularizes search

as much as possible and as a standard depth-�rst-search implementation ordered in as e�cient a manner

as possible.



CHAPTER 4. TESTS AND RESULTS 63

Phrase Structure

Theta Assignment Operator Assignment Case Assignment

Anaphor?

Chain Formation

Free Indexing Pronominal?

Phrase Structure

Free Indexing

Chain Formation

Figure 4.4: The dependencies between the generators in SD, the structural-determination parser.

The generator dependencies of the three linguistic theories are shown in �gures 4.1, 4.4 and 4.5. In

each case the dashed box diagrams the dependencies between non-deterministic generators (see sec-

tion 2.3.3 for a discussion of why this is important). The exact search strategies for the modular and

DFS implementations of each theory can be found in Appendix B.

The three parsers all produce slightly di�erent output for the testbed of sentences, because structural

determination produces slightly di�erent empirical results than functional determination, and because

Correa's deterministic chain formation algorithm does not work with the parasitic gap sentences in the

testbed, unlike the non-deterministic algorithm found in FD and SD.

4.3.2 Result Summary

Figure 4.6 presents quantitative estimates of the work done by each of the six implementations under a

variety of di�erent search parameters. As discussed above, the numbers are the sum over each sentence

of the sum of the work done by each module, where each module's work is de�ned to be the maximum

of the number of input values and the number of values it produced (for a given sentence). To provide

some sense of how much improvement could be gained by a concurrent implementation, the sum is also

computed assuming that after each generator is executed, di�erent processes apply to each result. This

means that each module only contributes the maximum of the input and output over the single most

complex call, not all its executions. Of course a further concurrency optimization would be to execute

di�erent modules in parallel if their dependencies permit it, such as doing all case theory work separately



CHAPTER 4. TESTS AND RESULTS 64

Phrase Structure

Theta Assignment Operator Assignment Case Assignment

Anaphor?

Chain Formation

Free Indexing

Phrase Structure

Free Indexing

Pronominal?

Figure 4.5: The dependencies between the generators in CF, the structural-determination parser with

deterministic chain formation.

from theta theory work, which would result in even lower numbers.

For each of the 3 linguistic theories and search strategies, �ve other parameters are varied. The �rst

(Dep.) is + if user-declared data-dependency failures (mstructure failures) are used; the second (Non-

Local) is + if non-local backtracking is used; the third (Memo.) is + if memoized functions are used;

the fourth (All Values) is + if all paths are explored and the search procedure is not stopped after one

solution is found; and the �fth (SD) is + if pure structural determination is used rather than using the

algorithm as a heuristic to order the empty category typology search.

4.4 Qualitative Summary

This section interprets the results from �gure 4.6, discussing the e�ciency gains di�erent search tech-

niques produce. Frequent references are made to the test numbers in �gure 4.6.

4.4.1 Modularity of Search

Most of the facilities the search language provides are there to allow independent modules to be executed

independently, without the combinatorial explosion that would normally result from a depth �rst search.

How much does this facility actually improve the search e�ciency of the test parsers?



CHAPTER 4. TESTS AND RESULTS 65

Test Parser Mod/DFS Dep. Non-Local Memo. All Values SD App. Standard k

1 FD Mod + + + + A 3775 (1) 594 (1)

2 FD Mod + + - + B 3798 (1)

3 FD Mod + - + + (1) (1)

4 FD Mod + + + - (1) (1)

5 FD Mod - + + + C 3807 (1) (1)

6 FD DFS + + + + D 5323 (2) 588 (2)

7 FD DFS + + + - E 3526 (3) 404 (3)

8 FD DFS + - + + (2) (2)

9 FD DFS + - + - (3) (3)

10 FD DFS - + + + 5386 593

11 FD DFS - + + - 3549 (3)

12 SD Mod + + + + + F 2732 (4) 556 (4)

13 SD Mod + + + + - G 3781 594

14 SD Mod + + + - + (4) (4)

15 SD Mod - + + + + 2733 (4)

16 SD DFS + + + + + 3095 555

17 SD DFS + + + + - 5367 589

18 SD DFS + + + - + 2379 439

19 SD DFS + + + - - 3491 404

20 CF Mod + + + + + H 823 (5) 410 (5)

21 CF Mod + + + + - 1018 450

22 CF Mod + + + - + (5) (5)

23 CF Mod - + + + + 824 (5)

24 CF DFS + + + + + I (5) 409

25 CF DFS + + + - + J 677 323

26 CF DFS + + + - - 819 352

Figure 4.6: Quantitative test results. Numbers in parenthesis are references to previous values.

Appendix A contains a breakdown of computation by module for each of the tests in �gure 4.6 that have

a letter by them.



CHAPTER 4. TESTS AND RESULTS 66

In the base case, comparing the modular and DFS versions of the FD parser (tests 1 and 6) the modu-

larization results in a fairly signi�cant reduction in work (29%), from 5323 to 3775. Examining the data

in Appendix A more carefully it is clear where such improvement has come from. The pronominal?

generator is called only 23 times (for 56 outputs) in the modularized parser, but in the DFS parser the

redundant e�ort of calling the module after every other generator results in 216 calls with 1022 outputs.

No matter how the search is rearranged, in DFS some generators will needlessly be executed after each

branch of a non-deterministic generator.

Changes in the parser, however, quickly improve DFS's relative e�ciency. For instance, in parsers with

fewer non-deterministic generators it is possible to create a better ordering, and the di�erence between

the modular and DFS versions of SD (tests 12 and 16) is only 3095 vs. 2732. Figure 4.5 indicates that

because there is only one non-deterministic generator other than phrase-structure it can be ordered

last and DFS can be just as e�cient as a modular approach. Tests 20 and 24 bear this conclusion out.

Depth �rst search actually becomes substantially more e�cient than a modular approach if only one

solution is required1 instead of a full search. The modular parsers have essentially computed every value

before any can be outputed, whereas DFS can stop before many avenues of the search have been explored.

For the FD parser, returning one value (tests 4 and 7) does not improve the performance of the modular

version at all but DFS reduces to 3526, slightly more e�cient than modular. Similar improvements can

be found for SD (tests 14 and 18) and FD (tests 22 and 25).

4.4.2 Failure Propagation

The user-declared data-dependencies (section 3.6.2) that the search language provides (in conjunction

with memoization) the opportunity to gain extra e�ciency by sharing data structures, since the failure

of any single component can squash several search paths at once. Tests 1 and 5; 12 and 15; 20 and

23 compare the base modular parsers with ones where this failure propagation mechanism has been

disabled. The results are similar for the DFS versions in tests 6 and 10; 7 and 11.

In the FD parser there is a noticable, though small, improvement with the user-declared failure propaga-

tion mechanism (3775 vs. 3807). Comparing the data in Appendix A, we can see that the lexical-case-filter

was applied 43 times in one case and 42 in the other. Apparently one search path was eliminated through

the propagation of failure. The empty-case-filter utilized the mechanism to a greater extent, being

applied 54 times instead of 85. But in the SD and FD parsers the anaphor? generator is deterministic

and therefore the empty-case-filter is never applied more than 40 times, and the only savings is the

single unit from the lexical-case-filter.

4.4.3 Concurrency

In �gure 4.6 the numbers under the k column reect the number of calls made in the longest search

thread, assuming that after every generator applies each of its results are processed concurrently. It does

not assume that modules with no interdependencies are processed concurrently. The numbers are very

1This is perfectly reasonable in many parsing contexts.



CHAPTER 4. TESTS AND RESULTS 67

low when compared with the standard sequential model, and would be much lower still were independent

modules processed concurrently.

As previously discussed, these numbers are misleading, since they do not reect the profound e�ects

di�erent computer architectures and consequent processing overheads would have on a concurrent im-

plementation. For now, these numbers illustrate two important points: the �rst is that with unlimited

parallelism the non-determinism found in the FD parser is little less e�cient than the more deterministic

SD and CF parsers; and the second is that concurrency holds great potential for improved e�ciency.

4.4.4 Non-Local Exits

The non-local exiting described in section 3.6.1 is not exercised in these tests and therefore does not

improve performance at all (tests 6 and 8; 7 and 9).

4.4.5 Pure vs. Ordered Structural Determination

Structural determination of empty category typology can be implemented to deterministically set the

anaphoric and pronominal character of each empty category, or as an ordering on the search, so that the

value for each that is chosen �rst is the one that structural determination would select. This sidesteps

Fong's criticism that structural determination is not be descriptively adequate, so long as the functional

determination �lter is eventually applied.

The data in Appendix A (A, F) shows that structural determination does produce di�erent results than

functional determination. The functional determination �lter is applied in the SD parser even though

structural determination is used to initially set empty category typology. Only 23 solutions are found

by this combination, though the FD parser �nds 27. So using structural determination as an e�ciency-

motivated ordering heuristic is indeed necessary if descriptive equivalence is to be maintained.

Of course, as tests 1 and 13 show, there is no e�ciency gain if all search paths are examined. And to

e�ciently extract only one solution, DFS must be used. Looking at tests 18 and 19 we can see that

achieving the accuracy the ordering brings costs some (3491 vs. 2379) but is still cheaper than examining

all solutions without SD (test 1, 3775).

4.4.6 Memoization

Memoization (section 3.7) can improve performance in two ways. The �rst is by causing a function

that is applied to the same argument multiple times to do less work. The second (section 3.6.2) is that

since a memoized function returns identical results when applied to the same argument, data structures

returned will be shared and therefore will further improve memoization potential and allow user-declared

data dependency failure to apply in more cases. Unfortunately, since memoization is inherent in the

tabular CFG parser used in the phrase-structure generator, it is di�cult to turn it o� for testing



CHAPTER 4. TESTS AND RESULTS 68

Function Calls with Memo. Hits Misses Calls without Memo.

C-COMMANDER 4827 4406 421 17425

FREELY-INDEX 58 22 36 110

DO-CHAIN-FORMATION 586 199 387 10212

SET-PHRASE-PARENTS 906 276 630 1772

ANNOTATE-PHRASE-WITH-CASE 501 96 405 927

ANNOTATE-PHRASE-WITH-THETA 1109 350 759 1604

ANNOTATE-EMPTY-CATEGORIES- 395 61 334 626

WITH-ANAPHOR-FEATURE

ANNOTATE-EMPTY-CATEGORIES- 488 101 387 1025

WITH-PRONOMINAL-FEATURE

Figure 4.7: Memoization results. Presented for each memoized function are the number of calls to it

with memoization, the number of times a hit occurred (the function had already been computed on the

arguments), the number of misses, and the number of calls without memoization enabled.

purposes. So although the following results indicate that memoization does not generate spectacular

improvements, they do not tell the whole story.

Tests 1 and 2 compare the e�ect memoization has on the number of times modules are called in the base

FD parser. There is actually a di�erence, 3798 vs. 3775, reecting (as described above) how the common

data structures output by memoized functions allow greater use of user-declared data dependencies. So

not surprisingly, the improvements come in lexical-case-filter and empty-case-filter, the same

modules that user-declared data dependencies a�ect.

Of course the primary means by which memoization improves e�ciency is in terms of function calls,

which are not listed in the data from �gure 4.6. Figure 4.7 compares tests 1 and 2 in terms of function

calls to memoized functions.

From �gure 4.7 it is clear that memoization has an enormous impact on these functions. Without

memoization c-commander is called 17,425 times but with memoization it is only called 4827 times,

and 421 of these times a memoized set of values is returned. For do-chain-formation only 387 new

values need to be computed instead of 10,212. If these �gures seem high, remember that every hit

on a memoized function also eliminates all the recursive calls that would have been made during the

application.



Chapter 5

Conclusions

This chapter summarizes the test results presented in chapter 4, discussing their implications for the

search language and principle-based parsers, and to what extent these results can be generalized. It then

examines the implications of deterministic linguistic theories and talks about future directions for this

research.

5.1 An Evaluation of the Search Language

There is a lot of moderately interesting information that can be gleaned from tests like those in chapter 4:

how a special search mechanism makes certain parsing computations more or less e�cient; what e�ect a

small variation in linguistic theory has on descriptive adequacy or computational cost; whether certain

tools in the programming environment make it easier to implement various linguistic conditions. Rather

than exploring such details, we draw two broad generalizations from the experience of coding and running

the test parsers in the search language:

� The programming language makes it very easy to implement generate-and-test search problems,

especially this particular brand of principle-based parsers. Easier, in fact, than other languages

designed speci�cally for this purpose like Fong's Prolog-based system because of the richness of

the Screamer/Common Lisp base and natural module connection mechanism.

� Modularity in search, error propagation in data structures, memoization and other special tech-

niques improve the e�ciency of a parser implementation to some extent or other, but the small

changes they create pale in respect to the e�ect of a change in the search problem itself, such as

the substitution of deterministic linguistic modules for modules with high branching factors.

These statements reect the particular experiences from the tests described in chapter 4 and others not

described here. It is an important question whether they generalize to other parsers and theories, such as

69



CHAPTER 5. CONCLUSIONS 70

ones that might be more psychologically plausible in their use of word-by-word information. While it's

true that it is easy to formulate a problem that is greatly a�ected by the features of the search language

(for instance, undoubtably modularization would have compared very well to a DFS implementation

that used a worst-case ordering), there is no reason to believe that other linguistic theories will be any

more decomposable than the simple subset of Government-Binding implemented here, or that theories

will lead to so much shared structure that fancy error propagation techniques are far more e�cient than

the brute speed of a simple implementation. A reasonable expectation is that the statements are broadly

relevant.

The one exception to the second remark may be concurrency. This research shows that there is no

reason in theory that a principle-based parser can not be run in a concurrent environment with greatly

improved execution time, but it has not demonstrated that the constants involved would necessarily

make such an implementation worthwhile.

These results are not particularly surprising. The problem of syntactically parsing word strings is

well-known to be highly combinatoric, given no determinism-inducing heuristics or semantic constraints.

There are obvious limits to howmuch even the most sophisticated search engine can improve the e�ciency

of an inherently complex problem. Reducing the complexity of the problem through deterministic

linguistic theories is the only reasonable approach to improving search e�ciency.

5.2 Deterministic Linguistic Theories

Why didn't modularization of search help more than it did? Given the number of generators in the

basic functional-determination parser one could reasonably have expected modularization to have a big

impact. The answer lies in the nature of the generator dependencies. Many are deterministic, but the 3

generators with the highest branching factors (phrase-structure, chain-formation and free-indexing) are

all in a dependency chain. They can not run independently. Even using a deterministic chain-formation

theory (and this can only be done by moving some aspects of chain formation, such as the insertion

of empty categories, into other generators) phrase-structure still feeds directly into free-indexing. This

will be true in any reasonable linguistic theory, and it is impossible under the implied parsing-problem

speci�cation to make either phrase-structure or free-indexing deterministic, since a given string of words

can be ambiguous with respect to both structure and anaphoric reference.

Much of the reason that the linguistic theory must be implemented non-deterministically is because of

the lack of information the theory assumes. In a more psychologically plausible linguistic setting a parser

would have knowledge about what tree structures were preferred, and what the likely antecedent for a

given pronoun is. It is quite conceivable that with this information an adequate deterministic theory of

free-indexing (see [18], [16]) or phrase-structure ([22]) exists. Therefore it is not unreasonable to expect

that there is a descriptively accurate, e�ciently implementable, deterministic theory of language waiting

to be discovered. Correa's deterministic algorithms are not descriptively adequate, but that is no reason

to abandon the search for better ones.

Deterministic theories eliminate the need for search, and also are an indication of how a seemingly small

change in linguistic theory can have enormous computational consequence. For this reason much of this

research and others in its vein are likely to be wasted e�ort. In such dynamic conditions, it is fruitless



CHAPTER 5. CONCLUSIONS 71

to think much about implementing current theories in more e�cient ways when in the future the theory

itself will probably have changed into a completely di�erent character, one that may well have an obvious

e�cient implementation. And certainly if the goal is to produce a practical parser based on the current

(awed) theories, there is little lost by taking advantage of e�cient algorithms like Correa's.

5.3 Future Work

If changes in linguistic theory are likely to a�ect the way we build parsers and the computational nature

of these implementations far more than the availability of better tools, then it is more fruitful to explore

variations in linguistic theory than to expand on this or other search languages. The one interesting and

potentially great source of e�ciency that is left largely unexplored in this work is concurrent execution of

various search paths. The search language described here demonstrates that it is not necessary to rethink

or recode a search problem to take advantage of concurrency, but the work of actually implementing the

search language in a concurrent environment and testing the resulting parsers has been left for future

work.



Appendix A

Test Results

This appendix presents detailed information about the tests described in �gure 4.6. For each of the 10

lettered tests the number of inputs to and outputs from each module are listed, summed over the 15 test

sentences.

For each test, there is a list that looks like

FUNCTIONAL-DETERMINATION 62 27

...

CHAIN-FORMATION 40 221

...

THETA-ROLE-ASSIGNMENT 80 43

PHRASE-STRUCTURE 15 80

In this case, reading from the bottom, the phrase-structure generator was called on 15 di�erent values

(15 sentences) and output a total of 80 di�erent phrase structure trees. The theta-role-assignment

generator was executed on 80 di�erent inputs (the 80 trees) but output only 43 values, indicating that it

failed completely for some inputs. In contrast, the chain-formation generator was called on 40 di�erent

structures but output a total of 221 di�erent chains. Finally, the functional-determination �lter was

called 62 times and rejected all but 27 values. Since the functional-determination �lter is dependent

on all of the non-deterministic generators, for each of tests the output column of this �lter is the number

of di�erent solutions found by the parser. In the above case, the 15 sentences had a total of 27 di�erent

parses (though some had none).

72



APPENDIX A. TEST RESULTS 73

A. Test 1. [FD, modular.]

FUNCTIONAL-DETERMINATION 62 27

CONDITION-C-VAR 146 69

LICENSE-CHAINS 99 19

CONDITION-B 1022 727

PRONOMINAL? 23 56

CONDITION-A 234 216

I-WITHIN-I 234 234

COINDEX-OPERATOR 242 234

CONDITION-C-REXP 297 242

FREE-INDEXING 35 297

THETA-CRITERION 217 35

SUBJACENCY 221 217

CHAIN-FORMATION 40 221

EMPTY-CASE-FILTER 54 40

ANAPHOR? 40 85

LEXICAL-CASE-FILTER 42 40

CASE-ASSIGNMENT 43 43

OPERATOR-ASSIGNMENT 43 43

THETA-ROLE-ASSIGNMENT 80 43

PHRASE-STRUCTURE 15 80

B. Test 2. [FD, modular, no memoization.]

FUNCTIONAL-DETERMINATION 62 27

CONDITION-C-VAR 146 69

LICENSE-CHAINS 99 19

CONDITION-B 1022 727

PRONOMINAL? 23 56

CONDITION-A 234 216

I-WITHIN-I 234 234

COINDEX-OPERATOR 242 234

CONDITION-C-REXP 297 242

FREE-INDEXING 35 297

THETA-CRITERION 217 35

SUBJACENCY 221 217

CHAIN-FORMATION 40 221

EMPTY-CASE-FILTER 76 40

ANAPHOR? 40 85

LEXICAL-CASE-FILTER 43 40

CASE-ASSIGNMENT 43 43

OPERATOR-ASSIGNMENT 43 43

THETA-ROLE-ASSIGNMENT 80 43

PHRASE-STRUCTURE 15 80

C. Test 5. [FD, modular, no data dependency fail-

ures.]

FUNCTIONAL-DETERMINATION 62 27

CONDITION-C-VAR 146 69

LICENSE-CHAINS 99 19

CONDITION-B 1022 727

PRONOMINAL? 23 56

CONDITION-A 234 216

I-WITHIN-I 234 234

COINDEX-OPERATOR 242 234

CONDITION-C-REXP 297 242

FREE-INDEXING 35 297

THETA-CRITERION 217 35

SUBJACENCY 221 217

CHAIN-FORMATION 40 221

EMPTY-CASE-FILTER 85 40

ANAPHOR? 40 85

LEXICAL-CASE-FILTER 43 40

CASE-ASSIGNMENT 43 43

OPERATOR-ASSIGNMENT 43 43

THETA-ROLE-ASSIGNMENT 80 43

PHRASE-STRUCTURE 15 80

D. Test 6. [FD, DFS.]

FUNCTIONAL-DETERMINATION 62 27

CONDITION-C-VAR 131 62

LICENSE-CHAINS 727 131

CONDITION-B 1022 727

PRONOMINAL? 216 1022

CONDITION-A 234 216

I-WITHIN-I 234 234

COINDEX-OPERATOR 242 234

CONDITION-C-REXP 297 242

FREE-INDEXING 35 297

THETA-CRITERION 217 35

SUBJACENCY 221 217

CHAIN-FORMATION 40 221

EMPTY-CASE-FILTER 54 40

ANAPHOR? 40 54

LEXICAL-CASE-FILTER 42 40

CASE-ASSIGNMENT 43 42

OPERATOR-ASSIGNMENT 43 43

THETA-ROLE-ASSIGNMENT 80 43

PHRASE-STRUCTURE 15 80

E. Test 7. [FD, DFS, one solution.]

FUNCTIONAL-DETERMINATION 29 11

CONDITION-C-VAR 57 29

LICENSE-CHAINS 475 57



APPENDIX A. TEST RESULTS 74

CONDITION-B 657 475

PRONOMINAL? 140 657

CONDITION-A 157 140

I-WITHIN-I 157 157

COINDEX-OPERATOR 165 157

CONDITION-C-REXP 209 165

FREE-INDEXING 32 209

THETA-CRITERION 137 32

SUBJACENCY 139 137

CHAIN-FORMATION 35 139

EMPTY-CASE-FILTER 47 35

ANAPHOR? 35 47

LEXICAL-CASE-FILTER 37 35

CASE-ASSIGNMENT 38 37

OPERATOR-ASSIGNMENT 38 38

THETA-ROLE-ASSIGNMENT 66 38

PHRASE-STRUCTURE 15 66

F. Test 12. [SD, modular.]

FUNCTIONAL-DETERMINATION 42 23

CONDITION-C-VAR 86 42

LICENSE-CHAINS 34 16

CONDITION-B 216 204

PRONOMINAL? 23 23

CONDITION-A 234 216

I-WITHIN-I 234 234

COINDEX-OPERATOR 242 234

CONDITION-C-REXP 297 242

FREE-INDEXING 35 297

THETA-CRITERION 217 35

SUBJACENCY 221 217

CHAIN-FORMATION 40 221

EMPTY-CASE-FILTER 40 40

ANAPHOR? 40 40

LEXICAL-CASE-FILTER 42 40

CASE-ASSIGNMENT 43 43

OPERATOR-ASSIGNMENT 43 43

THETA-ROLE-ASSIGNMENT 80 43

PHRASE-STRUCTURE 15 80

G. Test 13. [SD, modular, ordered SD.]

FUNCTIONAL-DETERMINATION 69 27

CONDITION-C-VAR 146 69

LICENSE-CHAINS 99 19

CONDITION-B 1022 727

PRONOMINAL? 23 56

CONDITION-A 234 216

I-WITHIN-I 234 234

COINDEX-OPERATOR 242 234

CONDITION-C-REXP 297 242

FREE-INDEXING 35 297

THETA-CRITERION 217 35

SUBJACENCY 221 217

CHAIN-FORMATION 40 221

EMPTY-CASE-FILTER 53 40

ANAPHOR? 40 85

LEXICAL-CASE-FILTER 42 40

CASE-ASSIGNMENT 43 43

OPERATOR-ASSIGNMENT 43 43

THETA-ROLE-ASSIGNMENT 80 43

PHRASE-STRUCTURE 15 80

H. Test 20. [CF, modular.]

FUNCTIONAL-DETERMINATION 23 15

I-WITHIN-I 27 23

COINDEX-OPERATOR 29 27

CONDITION-C-VAR 40 29

CONDITION-C-REXP 50 40

CONDITION-B 55 50

CONDITION-A 59 55

FREE-INDEXING 11 59

LICENSE-CHAINS 11 11

THETA-CRITERION 11 11

SUBJACENCY 11 11

CHAIN-FORMATION 40 11

PRONOMINAL? 40 40

EMPTY-CASE-FILTER 40 40

ANAPHOR? 40 40

LEXICAL-CASE-FILTER 42 40

CASE-ASSIGNMENT 43 42

OPERATOR-ASSIGNMENT 43 43

THETA-ROLE-ASSIGNMENT 80 43

PHRASE-STRUCTURE 15 80

I. Test 24. [CF, DFS.]

FUNCTIONAL-DETERMINATION 23 15

I-WITHIN-I 27 23

COINDEX-OPERATOR 29 27

CONDITION-C-VAR 40 29

CONDITION-C-REXP 50 40

CONDITION-B 55 50

CONDITION-A 59 55

FREE-INDEXING 11 59

LICENSE-CHAINS 11 11



APPENDIX A. TEST RESULTS 75

THETA-CRITERION 11 11

SUBJACENCY 11 11

CHAIN-FORMATION 40 11

PRONOMINAL? 40 40

EMPTY-CASE-FILTER 40 40

ANAPHOR? 40 40

LEXICAL-CASE-FILTER 42 40

CASE-ASSIGNMENT 43 42

OPERATOR-ASSIGNMENT 43 43

THETA-ROLE-ASSIGNMENT 80 43

PHRASE-STRUCTURE 15 80

J. Test 25. [CF, DFS, one solution.]

FUNCTIONAL-DETERMINATION 17 9

I-WITHIN-I 21 17

COINDEX-OPERATOR 23 21

CONDITION-C-VAR 29 23

CONDITION-C-REXP 32 29

CONDITION-B 32 32

CONDITION-A 34 32

FREE-INDEXING 11 34

LICENSE-CHAINS 11 11

THETA-CRITERION 11 11

SUBJACENCY 11 11

CHAIN-FORMATION 38 11

PRONOMINAL? 38 38

EMPTY-CASE-FILTER 38 38

ANAPHOR? 38 38

LEXICAL-CASE-FILTER 40 38

CASE-ASSIGNMENT 41 40

OPERATOR-ASSIGNMENT 41 41

THETA-ROLE-ASSIGNMENT 74 41

PHRASE-STRUCTURE 15 74



Appendix B

Parser Code

This appendix presents the actual code needed to implement the test parsers described in chapter 4.

B.1 FD Parser

(defmstructure (phrase :allow-dependencies t)

((category :initarg :category :accessor phrase-category :type symbol)

(daughters :initarg :daughters :accessor phrase-daughters :type list)

(parent :initform nil :accessor phrase-parent :nondestructive (phrase-structure))

(inherent-features :initform nil :initarg :inherent-features

:accessor phrase-inherent-features :type list)

(theta-role :initform nil :accessor phrase-theta-role :type symbol

:nondestructive (theta-role-assignment))

(anaphor? :initform nil :accessor phrase-anaphor? :type symbol

:nondestructive (anaphor? operator-assignment))

(pronominal? :initform nil :accessor phrase-pronominal? :type symbol

:nondestructive (pronominal? operator-assignment))

(assigned-case :initform nil :accessor phrase-assigned-case :type symbol

:nondestructive (case-assignment)))

(set-phrase-parents annotate-phrase-with-case

do-chain-formation

annotate-phrase-with-theta

annotate-empty-categories-with-anaphor-feature

annotate-empty-categories-with-pronominal-feature)

)

(define-tree-positions '((top PHRASE-STRUCTURE)

(generate phrase-structure THETA-ROLE-ASSIGNMENT)

(generate phrase-structure CHAIN-FORMATION)

(generate phrase-structure OPERATOR-ASSIGNMENT)

(generate phrase-structure CASE-ASSIGNMENT)

76



APPENDIX B. PARSER CODE 77

(generate chain-formation FREE-INDEXING)

(generate operator-assignment ANAPHOR?)

(generate operator-assignment PRONOMINAL?)

(cross free-indexing anaphor? ANAPHOR-FI)

(cross free-indexing pronominal? PRON-FI)

(cross chain-formation theta-role-assignment CF-TR)

(cross case-assignment anaphor? CA-A)

(cross anaphor? pronominal? ANAPRO)

(cross anapro chain-formation VARIABLES)

(cross pron-fi anaphor-fi A1)

(cross a1 ca-a A2)

(cross a2 variables a3)

(cross a3 cf-tr ALL)

))

(defsearcher MOD-PARSER ((generate PHRASE-STRUCTURE)

(generate THETA-ROLE-ASSIGNMENT)

(generate OPERATOR-ASSIGNMENT)

(generate CASE-ASSIGNMENT)

(filter LEXICAL-CASE-FILTER case-assignment)

(generate ANAPHOR?)

(generate CA-A)

(filter EMPTY-CASE-FILTER ca-a)

(generate CHAIN-FORMATION)

(filter SUBJACENCY chain-formation)

(generate CF-TR)

(filter THETA-CRITERION cf-tr)

(generate FREE-INDEXING)

(filter CONDITION-C-REXP free-indexing)

(filter COINDEX-OPERATOR free-indexing)

(filter I-WITHIN-I free-indexing)

(generate ANAPHOR-FI)

(filter CONDITION-A anaphor-fi)

(generate PRONOMINAL?)

(generate PRON-FI)

(filter CONDITION-B pron-fi)

(generate ANAPRO)

(generate VARIABLES)

(filter LICENSE-CHAINS variables)

(generate A1)

(filter CONDITION-C-VAR a1)

(generate A2)

(filter FUNCTIONAL-DETERMINATION a2)

(generate A3)

(generate ALL)

(filter PRINTER all)

))

(defsearcher DFS-PARSER ((generate PHRASE-STRUCTURE

(generate THETA-ROLE-ASSIGNMENT

(generate OPERATOR-ASSIGNMENT

(generate CASE-ASSIGNMENT

(filter LEXICAL-CASE-FILTER case-assignment)



APPENDIX B. PARSER CODE 78

(generate ANAPHOR?

(generate CA-A

(filter EMPTY-CASE-FILTER ca-a)

(generate CHAIN-FORMATION

(filter SUBJACENCY chain-formation)

(generate CF-TR

(filter THETA-CRITERION cf-tr)

(generate FREE-INDEXING

(filter CONDITION-C-REXP free-indexing)

(filter COINDEX-OPERATOR free-indexing)

(filter I-WITHIN-I free-indexing)

(generate ANAPHOR-FI

(filter CONDITION-A anaphor-fi)

(generate PRONOMINAL?

(generate PRON-FI

(filter CONDITION-B pron-fi)

(generate ANAPRO

(generate VARIABLES

(filter LICENSE-CHAINS variables)

(generate A1

(filter CONDITION-C-VAR a1)

(generate A2

(filter FUNCTIONAL-DETERMINATION a2)

(generate A3

(generate ALL

(filter PRINTER all)

))))))))))))))))))))

B.2 SD Parser

(defmstructure (phrase :allow-dependencies t)

((category :initarg :category :accessor phrase-category :type symbol)

(daughters :initarg :daughters :accessor phrase-daughters :type list)

(parent :initform nil :accessor phrase-parent :nondestructive (phrase-structure))

(inherent-features :initform nil :initarg :inherent-features

:accessor phrase-inherent-features :type list)

(theta-role :initform nil :accessor phrase-theta-role :type symbol

:nondestructive (theta-role-assignment))

(anaphor? :initform nil :accessor phrase-anaphor? :type symbol

:nondestructive (anaphor? operator-assignment))

(pronominal? :initform nil :accessor phrase-pronominal? :type symbol

:nondestructive (pronominal? operator-assignment))

(assigned-case :initform nil :accessor phrase-assigned-case :type symbol

:nondestructive (case-assignment)))

(set-phrase-parents annotate-phrase-with-case do-chain-formation

annotate-phrase-with-theta)

)

(define-tree-positions '((top PHRASE-STRUCTURE)



APPENDIX B. PARSER CODE 79

(generate phrase-structure THETA-ROLE-ASSIGNMENT)

(generate phrase-structure CHAIN-FORMATION)

(generate phrase-structure OPERATOR-ASSIGNMENT)

(generate phrase-structure CASE-ASSIGNMENT)

(generate chain-formation FREE-INDEXING)

(cross operator-assignment case-assignment OP-CASE)

(generate op-case ANAPHOR?)

(generate operator-assignment PRONOMINAL?)

(cross free-indexing anaphor? ANAPHOR-FI)

(cross free-indexing pronominal? PRON-FI)

(cross chain-formation theta-role-assignment CF-TR)

(cross case-assignment anaphor? CA-A)

(cross anaphor? pronominal? ANAPRO)

(cross anapro chain-formation VARIABLES)

(cross pron-fi anaphor-fi A1)

(cross a1 variables a2)

(cross a2 cf-tr ALL)

))

(defsearcher MOD-PARSER ((generate PHRASE-STRUCTURE)

(generate THETA-ROLE-ASSIGNMENT)

(generate OPERATOR-ASSIGNMENT)

(generate CASE-ASSIGNMENT)

(filter LEXICAL-CASE-FILTER case-assignment)

(generate OP-CASE)

(generate ANAPHOR?)

(filter EMPTY-CASE-FILTER anaphor?)

(generate CHAIN-FORMATION)

(filter SUBJACENCY chain-formation)

(generate CF-TR)

(filter THETA-CRITERION cf-tr)

(generate FREE-INDEXING)

(filter CONDITION-C-REXP free-indexing)

(filter COINDEX-OPERATOR free-indexing)

(filter I-WITHIN-I free-indexing)

(generate ANAPHOR-FI)

(filter CONDITION-A anaphor-fi)

(generate PRONOMINAL?)

(generate PRON-FI)

(filter CONDITION-B pron-fi)

(generate ANAPRO)

(generate VARIABLES)

(filter LICENSE-CHAINS variables)

(generate A1)

(filter CONDITION-C-VAR a1)

(filter FUNCTIONAL-DETERMINATION a1)

(generate A2)

(generate ALL)

(filter PRINTER all)

))

(defsearcher DFS-PARSER ((generate PHRASE-STRUCTURE

(generate THETA-ROLE-ASSIGNMENT



APPENDIX B. PARSER CODE 80

(generate OPERATOR-ASSIGNMENT

(generate CASE-ASSIGNMENT

(filter LEXICAL-CASE-FILTER case-assignment)

(generate OP-CASE

(generate ANAPHOR?

(filter EMPTY-CASE-FILTER anaphor?)

(generate CHAIN-FORMATION

(filter SUBJACENCY chain-formation)

(generate CF-TR

(filter THETA-CRITERION cf-tr)

(generate FREE-INDEXING

(filter CONDITION-C-REXP free-indexing)

(filter COINDEX-OPERATOR free-indexing)

(filter I-WITHIN-I free-indexing)

(generate ANAPHOR-FI

(filter CONDITION-A anaphor-fi)

(generate PRONOMINAL?

(generate PRON-FI

(filter CONDITION-B pron-fi)

(generate ANAPRO

(generate VARIABLES

(filter LICENSE-CHAINS variables)

(generate A1

(filter CONDITION-C-VAR a1)

(filter FUNCTIONAL-DETERMINATION a1)

(generate A2

(generate ALL

(filter PRINTER all)

)))))))))))))))))))

B.3 CF Parser

(defmstructure (phrase :allow-dependencies t)

((category :initarg :category :accessor phrase-category :type symbol)

(daughters :initarg :daughters :accessor phrase-daughters :type list)

(parent :initform nil :accessor phrase-parent :nondestructive (phrase-structure))

(inherent-features :initform nil :initarg :inherent-features

:accessor phrase-inherent-features :type list)

(theta-role :initform nil :accessor phrase-theta-role :type symbol

:nondestructive (theta-role-assignment))

(anaphor? :initform nil :accessor phrase-anaphor? :type symbol

:nondestructive (anaphor? operator-assignment))

(pronominal? :initform nil :accessor phrase-pronominal? :type symbol

:nondestructive (pronominal? operator-assignment))

(assigned-case :initform nil :accessor phrase-assigned-case :type symbol

:nondestructive (case-assignment)))

(set-phrase-parents annotate-phrase-with-case get-chains

annotate-phrase-with-theta)

)



APPENDIX B. PARSER CODE 81

(define-tree-positions '((top PHRASE-STRUCTURE)

(generate phrase-structure THETA-ROLE-ASSIGNMENT)

(generate phrase-structure OPERATOR-ASSIGNMENT)

(generate phrase-structure CASE-ASSIGNMENT)

(cross case-assignment operator-assignment OP-CASE)

(generate op-case ANAPHOR?)

(generate operator-assignment PRONOMINAL?)

(cross anaphor? pronominal? ANAPRO)

(cross anapro theta-role-assignment anaprotheta)

(generate anaprotheta CHAIN-FORMATION)

(generate chain-formation FREE-INDEXING)

))

(defsearcher MOD-PARSER ((generate PHRASE-STRUCTURE)

(generate THETA-ROLE-ASSIGNMENT)

(generate OPERATOR-ASSIGNMENT)

(generate CASE-ASSIGNMENT)

(filter LEXICAL-CASE-FILTER case-assignment)

(generate OP-CASE)

(generate ANAPHOR?)

(filter EMPTY-CASE-FILTER anaphor?)

(generate PRONOMINAL?)

(generate ANAPRO)

(generate ANAPROTHETA)

(generate CHAIN-FORMATION)

(filter SUBJACENCY chain-formation)

(filter THETA-CRITERION chain-formation)

(filter LICENSE-CHAINS chain-formation)

(generate FREE-INDEXING)

(filter CONDITION-A free-indexing)

(filter CONDITION-B free-indexing)

(filter CONDITION-C-REXP free-indexing)

(filter CONDITION-C-VAR free-indexing)

(filter COINDEX-OPERATOR free-indexing)

(filter I-WITHIN-I free-indexing)

(filter FUNCTIONAL-DETERMINATION free-indexing)

(filter PRINTER free-indexing)

))

(defsearcher DFS-PARSER ((generate PHRASE-STRUCTURE

(generate THETA-ROLE-ASSIGNMENT

(generate OPERATOR-ASSIGNMENT

(generate CASE-ASSIGNMENT

(filter LEXICAL-CASE-FILTER case-assignment)

(generate OP-CASE

(generate ANAPHOR?

(filter EMPTY-CASE-FILTER anaphor?)

(generate PRONOMINAL?

(generate ANAPRO

(generate ANAPROTHETA

(generate CHAIN-FORMATION

(filter SUBJACENCY chain-formation)

(filter THETA-CRITERION chain-formation)



APPENDIX B. PARSER CODE 82

(filter LICENSE-CHAINS chain-formation)

(generate FREE-INDEXING

(filter CONDITION-A free-indexing)

(filter CONDITION-B free-indexing)

(filter CONDITION-C-REXP free-indexing)

(filter CONDITION-C-VAR free-indexing)

(filter COINDEX-OPERATOR free-indexing)

(filter I-WITHIN-I free-indexing)

(filter FUNCTIONAL-DETERMINATION free-indexing)

(filter PRINTER free-indexing)

)))))))))))))

B.4 Inputs

;;;

;;; The Test Sentences

;;;

(defparameter *sentences*

'((John was killed)

(who did John say that he saw)

(the man that John saw)

(that John saw Mary kill herself)

(John likes to bicycle)

(John saw Mary)

(who did John give a picture of to)

(what did you file without reading)

(Mary saw herself)

(Bill said that he saw Mary shoot him)

(who did Mary say was killed)

(John to see Mary) ;; *

(what did you reading) ;; *

(John promised kill himself) ;; *

(who did John kill Mary) ;; *

))

;;;

;;; The Grammar

;;;

(defparameter *grammar*

'((I2 => (N2) I1)

;; Sentential Subject.

;; (I2 => (C2) I1)

(I1 => (I0) V2)

;; Topicalization.

;; (I2 => N2 I2)

(I0 =>)

(N2 => D2 N1)

;; "Who did John kill [np [t] [that he liked]]?"



APPENDIX B. PARSER CODE 83

;;(N2 => (N2) C2)

(N2 ==> N2 C2)

(N2 => N2 P2)

(N2 =>)

(N1 => N0)

(D2 => (D0))

(D0 =>)

(V2 => V1)

(V1 => V1 P2)

(V1 => V0)

(V1 => V0 (N2))

(V1 => V0 C2)

(C2 => C1)

(C2 => (N2) C1)

(C1 => (C0) I2)

(C1 => I0 I2)

(C0 =>)

(P2 => P1)

(P1 => P0 (N2))

(P1 => P0 C2)

))

;;;

;;; The Lexicon

;;;

(defparameter *lexicon*

'((john (n2 (r-expression . +)))

(bill (n2 (r-expression . +)))

(mary (n2 (r-expression . +)))

(i (n2 (pronoun . +) (anaphor . -) (required-case . nom)))

(you (n2 (pronoun . +) (anaphor . -) (required-case . nom)))

(he (n2 (pronoun . +) (anaphor . -) (required-case . nom)))

(she (n2 (pronoun . +) (anaphor . -) (required-case . nom)))

(him (n2 (pronoun . +) (anaphor . -) (required-case . acc)))

(her (n2 (pronoun . +) (anaphor . -) (required-case . acc)))

(it (n2 (pronoun . +) (anaphor . -)))

(myself (n2 (pronoun . -) (anaphor . +)))

(himself (n2 (pronoun . -) (anaphor . +)))

(herself (n2 (pronoun . -) (anaphor . +)))

(likes (v0 (theta . np-cp)))

(liked (v0 (theta . np-cp)))

(like (v0 (theta . np-cp)))

(promise (v0 (theta . cp)) (n0))

(promised (v0 (theta . cp)))

(promising (v0 (theta . cp) (tense . -)))

(think (v0 (theta . cp)))

(thinks (v0 (theta . cp)))

(seems (v0 (theta . subjectless-cp)))

(seem (v0 (theta . subjectless-cp)))

(know (v0 (theta . np-cp)))

(knows (v0 (theta . np-cp)))

(bicycle (v0 (theta . none)) (n0))



APPENDIX B. PARSER CODE 84

(saw (v0 (theta . np-cp)) (n0))

(said (v0 (theta . cp)))

(say (v0 (theta . cp)))

(see (v0 (theta . np-cp)))

(walk (v0 (theta . np-none)) (n0))

(walks (v0 (theta . np-none)) (n0))

(walked (v0 (theta . np-none)))

(walking (v0 (theta . np-none) (tense . -)))

(won (v0 (theta . np-none)))

(win (v0 (theta . np-none)) (n0))

(bothered (v0 (theta . np)))

(to (i0 (tense . -)) (p0 (theta . np)))

(of (p0 (theta . np)))

(without (p0 (theta . np-cp)))

(with (p0 (theta . np)))

(killed (v0 (theta . np)))

(kill (v0 (theta . np)))

(shoot (v0 (theta . np)))

(give (v0 (theta . np)))

(read (v0 (theta . np)))

(giving (v0 (theta . np) (tense . -)))

(reading (v0 (theta . np) (tense . -)))

(file (v0 (theta . np)))

(the (d0))

(a (d0))

(ball (n0))

(man (n0))

(dog (n0))

(picture (n0))

(book (n0))

(men (n0))

(did (i0))

(was (i0 (passive . +)))

(is (i0))

(were (i0))

(what (n2 (wh . +)))

(who (n2 (wh . +)))

(whom (n2 (wh . +)))

(why (adv (wh . +)))

(when (adv (wh . +)))

(where (adv (wh . +)))

(how (adv (wh . +)))

(that (c0))))

B.5 Phrase Structure Generator

(defgenerator PHRASE-STRUCTURE ()

;; Build up phrase-structure representations for the words in the variable

;; *SENTENCE*.

(parse (mapcar #'(lambda (word)



APPENDIX B. PARSER CODE 85

(mapcar #'(lambda (e) (list* (car e) `(word . ,word) (cdr e)))

(cdr (assoc word *lexicon*))))

*sentence*)

*grammar*))

(defoption '*print-phrase-structures* nil "Print Phrase Structures" :parser)

(defun parse (input grammar)

;; Use a chart parser to generate phrase-structure trees.

(let ((rules (order-rules grammar))

(categories (all-categories grammar))

(n (length input)))

(declare (fixnum n))

(let ((l (length categories))

(chart (make-array (list (1+ n) (1+ n) (length categories))

:initial-element nil)))

(declare (fixnum l))

(dotimes (i n)

(declare (fixnum i))

(dolist (word (nth i input))

(add-to-chart chart i (+ i 1) (position (car word) categories) (car word) nil

(cdr word))))

(dotimes (k (1+ n))

(declare (fixnum k))

(dotimes (i (1+ (- n k)))

(declare (fixnum i))

(dolist (r rules)

(case (- (length (the list r)) 2)

(0 (when (zerop k)

(add-to-chart chart i i (position (car r) categories) (car r) nil :empty)))

(1 (unless (and (symbolp (third r)) (= k 0))

(for-effects

(let ((d (transform-empty

(a-member-of

(aref chart i (+ i k) (position (core-cat (third r))

categories))))))

(unless (comp-checker-special-1 d (car r)) (fail))

(add-to-chart chart i (+ i k) (position (car r) categories) (car r)

(list d))))))

(2 (dotimes (j (1+ k))

(declare (fixnum j))

(unless (or (and (= j 0) (symbolp (third r)))

(and (= j k) (symbolp (fourth r))))

(for-effects

(let ((d1 (transform-empty

(a-member-of

(aref chart i (+ i j) (position (core-cat (third r))

categories)))))

(d2 (transform-empty

(a-member-of

(aref chart (+ i j) (+ i k) (position (core-cat (fourth r))

categories))))))

(unless (comp-checker-special-2 d1 d2 (car r)) (fail))



APPENDIX B. PARSER CODE 86

(add-to-chart chart i (+ i k) (position (car r) categories) (car r)

(list d1 d2)))))))

(otherwise (error "Rule is illegal ~S!" r))))))

(let ((phrase (a-member-of (aref chart 0 n (an-integer-between 0 (1- l))))))

;; Only output CPs and NPs.

(when (or (cp? phrase) (np? phrase))

(set-phrase-parents phrase)

(when *print-phrase-structures* (print (phrase-tree phrase)))

(return-result phrase))))))

(defun core-cat (cat) (if (symbolp cat) cat (first cat)))

(defm! set-phrase-parents ((phrase) phrase)

;; Phrases are shared between different parses, but the PHRASE-PARENT slot

;; of a phrase must vary between each parse. This function sets it using

;; set!-local so that as each parse is enumerated the PHRASE-PARENT slots

;; are properly updated.

(mapc #'(lambda (daughter)

(set-phrase-parents daughter)

(set!-local (phrase-parent daughter) phrase))

(phrase-daughters phrase)))

(defun add-to-chart (chart i j k category daughters &optional features)

(let ((phrase (if (eq features :empty)

category

(make-instance 'phrase

:category category

:inherent-features features

:daughters daughters))))

;; Declare PHRASE to be dependent its daughters.

(dolist (daughter daughters)

(is-part-of daughter phrase))

(push phrase (aref chart i j k))))

(defun transform-empty (phrase)

(if (typep phrase 'phrase)

phrase

(make-instance 'phrase

:category phrase

:daughters nil)))

(defun all-categories (rules)

(let ((categories nil))

(dolist (r rules)

(pushnew (first r) categories)

(setf categories (union categories (mapcar #'core-cat (cddr r)))))

categories))

(defun order-rules (rules)

(let ((empty-categories (empty-categories rules))

(rules (copy-list rules)))

(do ((change t change))

((null change))



APPENDIX B. PARSER CODE 87

(setq change nil)

(mapl #'(lambda (l)

(let ((r2 (first l)))

(mapl #'(lambda (ll)

(let ((r1 (car ll)))

(if (or (and (eq (first r1) (core-cat (third r2)))

(or (null (core-cat (fourth r2)))

(find (core-cat (fourth r2)) empty-categories)))

(and (eq (first r1) (core-cat (fourth r2)))

(or (null (core-cat (third r2)))

(find (core-cat (third r2)) empty-categories))))

(setf change t

(first l) r1

(first ll) r2

r2 r1))))

(rest l))))

rules))

rules))

(defun empty-categories (rules)

(let ((empty-categories (mapcar #'car (remove-if #'cddr rules))))

(do ((old-ecs nil empty-categories))

((eq old-ecs empty-categories))

(dolist (r rules)

(if (every #'(lambda (c) (find c empty-categories)) (cddr r))

(pushnew (car r) empty-categories))))

empty-categories))

(defmethod print-object ((p phrase) stream)

(format stream "<Phrase ~S:~{ ~S~}>" (phrase-category p)

(if (null (phrase-daughters p))

(let ((w (feature-value p 'word)))

(and w (list w)))

(mapcar #'phrase-category (phrase-daughters p)))))

(defun phrase-tree (phrase)

(append (list (phrase-category phrase))

(if (null (phrase-daughters phrase))

(let ((word (feature-value phrase 'word)))

(and word (list word))))

(mapcar #'phrase-tree (phrase-daughters phrase))))

B.6 Binding Theory

(deffilter CONDITION-A ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING) ANAPHOR?)

(map-up-phrase-structure tree (phrase)

(when (and (np? phrase) (is-anaphor? phrase))

(let ((gc (governing-category phrase)))

(unless (or (null gc) (find-binders phrase gc indices))



APPENDIX B. PARSER CODE 88

(reject))))))

(deffilter CONDITION-B ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING) PRONOMINAL?)

(map-up-phrase-structure tree (phrase)

(when (and (np? phrase) (is-pronominal? phrase))

(let ((gc (governing-category phrase)))

(unless (or (null gc) (not (find-binders phrase gc indices)))

(reject))))))

(deffilter CONDITION-C-REXP ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING))

(map-up-phrase-structure tree (phrase)

(when (r-expression? phrase)

(if (find-if #'a-position? (find-binders phrase tree indices))

(reject)))))

(deffilter CONDITION-C-VAR ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING)

ANAPHOR? PRONOMINAL?)

(map-up-phrase-structure tree (phrase)

(when (variable? phrase)

(let ((binders (find-binders phrase tree indices)))

(if (and (find-if #'a-position? binders)

;; Addition to theory- condition C does not apply to wh-t's

;; with anaphor antecedents. Allows Topicalization of form

;; "Himself, John likes"

(not (find-if #'is-anaphor? binders)))

(reject))))))

(defun find-binders (phrase top-phrase bindings)

(let ((phrases-with-index (get-phrases-with-index (get-index phrase bindings) bindings)))

(remove-if-not #'(lambda (p) (member p phrases-with-index))

(all-values (c-commander phrase top-phrase)))))

(defun local-binder (phrase bindings inside-of)

(let ((phrases-with-index (get-phrases-with-index (get-index phrase bindings) bindings)))

(find-if #'(lambda (p) (member p phrases-with-index))

(all-values (c-commander phrase inside-of)))))

(defun governing-category (phrase)

(first

(all-values

(let ((governor (governor phrase)))

(unless governor (fail))

(minimal-phrase-containing (list phrase governor)

:restricted-to '(N2 I2))))))

(defndmemo c-commander ((phrase inside-of &key (restricted-to t))

(phrase inside-of restricted-to))

(if (eq phrase inside-of) (fail))

(let ((parent (phrase-parent phrase)))

(unless parent (fail))

(if (= 1 (length (phrase-daughters parent)))

(c-commander parent inside-of :restricted-to restricted-to)

(let ((sister (a-member-of (phrase-daughters parent))))



APPENDIX B. PARSER CODE 89

(if (eq sister phrase) (fail))

(if (and (listp restricted-to)

(not (member (phrase-category sister) restricted-to)))

(fail))

(either sister

(c-commander parent inside-of

:restricted-to restricted-to))))))

(defun governor (phrase)

(let ((potential-governor

(c-commander phrase (smallest-maximal-projection-containing phrase)

:restricted-to '(v0 p0 i1))))

(if (i1? potential-governor)

(let ((i0 (head potential-governor))

(v0 (head (bar-node (complement potential-governor)))))

(if (or (eq '- (feature-value i0 'tense))

(eq '- (feature-value v0 'tense)))

(fail))))

potential-governor))

(defun smallest-maximal-projection-containing (phrase)

(let ((parent (phrase-parent phrase)))

(unless parent (fail))

(if (level-2? parent) parent (smallest-maximal-projection-containing parent))))

(defun is-pronominal? (phrase)

(eq '+ (phrase-pronominal? phrase)))

(defun is-anaphor? (phrase)

(eq '+ (phrase-anaphor? phrase)))

B.7 Free Determination of Empty Categories

(defgenerator ANAPHOR? ((tree OPERATOR-ASSIGNMENT))

(return-result (annotate-empty-categories-with-anaphor-feature tree)))

(defndm! annotate-empty-categories-with-anaphor-feature ((phrase) phrase)

;; Do not assign binding category features to ecs in Comp.

(virtual-map-up-phrase-structure

(phrase annotate-empty-categories-with-anaphor-feature)

(when (np? phrase)

(if (empty? phrase)

(unless (phrase-anaphor? phrase)

(set!-local (phrase-anaphor? phrase) (either '+ '-)))

(if (word? phrase)

(set!-local (phrase-anaphor? phrase) (feature-value phrase 'anaphor)))))))

(defgenerator PRONOMINAL? ((tree OPERATOR-ASSIGNMENT))

(return-result (annotate-empty-categories-with-pronominal-feature tree)))



APPENDIX B. PARSER CODE 90

(defndm! annotate-empty-categories-with-pronominal-feature ((phrase) phrase)

;; Do not assign binding category features to ecs in Comp.

(virtual-map-up-phrase-structure

(phrase annotate-empty-categories-with-pronominal-feature)

(when (np? phrase)

(if (empty? phrase)

(unless (phrase-pronominal? phrase)

(set!-local (phrase-pronominal? phrase) (either '+ '-)))

(if (word? phrase)

(set!-local (phrase-pronominal? phrase) (feature-value phrase 'pronoun)))))))

B.8 Structural Determination of Empty Categories

(defgenerator ANAPHOR? ((tree OPERATOR-ASSIGNMENT) CASE-ASSIGNMENT)

;; Although a strictly deterministic theory like Structural

;; Determination should not need to use virtual trees, they are used

;; because when *pure-sd* is false structural determination is used

;; only to order the non-deterministic choices.

(return-result (annotate-empty-categories-with-anaphor-feature tree)))

(defun annotate-empty-categories-with-anaphor-feature (phrase)

;; Do not assign binding category features to ecs in Comp. Cannot memoize

;; here because properties depend on phrase's parents.

(virtual-map-up-phrase-structure

(phrase annotate-empty-categories-with-anaphor-feature)

(when (np? phrase)

(if (empty? phrase)

(unless (c-spec? phrase)

(let ((plus? (and (a-position? phrase)

(or (not (is-lexically-governed? phrase))

(not (phrase-assigned-case phrase))))))

(set!-local (phrase-anaphor? phrase)

(if *pure-sd*

(if plus? '+ '-)

(if plus?

(either '+ '-)

(either '- '+))))))

(if (word? phrase)

(set!-local (phrase-anaphor? phrase) (feature-value phrase 'anaphor)))))))

(defgenerator PRONOMINAL? ((tree OPERATOR-ASSIGNMENT))

;; Although a strictly deterministic theory like Structural

;; Determination should not need to use virtual trees, they are used

;; because when *pure-sd* is false structural determination is used

;; only to order the non-deterministic choices.

(return-result (annotate-empty-categories-with-pronominal-feature tree)))



APPENDIX B. PARSER CODE 91

(defun annotate-empty-categories-with-pronominal-feature (phrase)

;; Do not assign binding category features to ecs in Comp.

(virtual-map-up-phrase-structure

(phrase annotate-empty-categories-with-pronominal-feature)

(when (np? phrase)

(if (empty? phrase)

(unless (c-spec? phrase)

(let ((plus? (not (is-lexically-governed? phrase))))

(set!-local (phrase-pronominal? phrase)

(if *pure-sd*

(if plus? '+ '-)

(if plus?

(either '+ '-)

(either '- '+))))))

(if (word? phrase)

(set!-local (phrase-pronominal? phrase) (feature-value phrase 'pronoun)))))))

B.9 Case Theory

(defgenerator CASE-ASSIGNMENT ((tree PHRASE-STRUCTURE))

(if (eq (phrase-category tree) 'n2) ;; Top-level NP

(assign-case tree 'NOM))

(return-result (annotate-phrase-with-case tree)))

(defm! annotate-phrase-with-case ((phrase) phrase)

;; Since case assignment is deterministic, we do not really need to use virtual

;; trees, but this is done for compatibility with a non-deterministic theory of

;; case assignment.

(virtual-map-up-phrase-structure

(phrase annotate-phrase-with-case)

(when (eq phrase (core-phrase phrase))

(cond ((p1? phrase)

(when (and (complement phrase) (np? (complement phrase)))

(assign-case (complement phrase) 'acc)))

((i1? phrase)

(unless (eq '+ (feature-value (head phrase) 'passive))

(let ((v1 (bar-node (complement phrase))))

(when (and (v1? v1) (np? (complement v1)))

(assign-case (complement v1) 'acc)))))

((np? phrase)

(let ((inherent-case (feature-value phrase 'inherent-case)))

(when inherent-case (assign-case phrase inherent-case))))

((ip? phrase)

(when (np? (spec-of phrase))

(let ((i0 (head (bar-node phrase)))

(v0 (head (bar-node (complement (bar-node phrase))))))

(unless (or (eq '- (feature-value i0 'tense))

(eq '- (feature-value v0 'tense)))



APPENDIX B. PARSER CODE 92

(assign-case (spec-of phrase) 'nom)))))))))

(deffilter EMPTY-CASE-FILTER ((virtual-tree ANAPHOR?) CASE-ASSIGNMENT)

;; Filter that says +A ecs must not get case, -As must (if in A positions).

(virtual-phrase-map

virtual-tree (phrase :category category)

(when (and (eq category 'n2) (empty? phrase) (a-position? phrase))

(let ((ana (phrase-anaphor? phrase))

(case (phrase-assigned-case phrase)))

(when (or (and (eq '+ ana) case)

(and (eq '- ana) (not case)))

;; It is not the empty category itself that is responsible

;; for the failure, but whatever domain that should contain

;; a case assigner. This is usually the parent phrase of

;; the empty category, though if ECM were handled we would

;; have to be more careful. Reject up one level of the tree

;; from PHRASE.

(virtual-reject 1))))))

(deffilter LEXICAL-CASE-FILTER ((virtual-tree CASE-ASSIGNMENT))

;; Filter that Lexical NPs must get case if in a-position.

(virtual-phrase-map

virtual-tree (phrase :category category)

(when (and (eq category 'n2) (not (empty? phrase)) (a-position? phrase))

(unless (phrase-assigned-case (core-phrase phrase))

(unless (and (eq '+ (feature-value phrase 'wh))

(cp? (phrase-parent phrase)))

;; It is not the noun phrase itself that is responsible

;; for the failure, but whatever domain that should contain

;; a case assigner. This is usually the parent phrase of

;; the noun phrase, though if ECM were handled we would

;; have to be more careful. Reject up one level of the tree

;; from PHRASE.

(virtual-reject 1))))))

(defparameter *case-compatibilities*

'((nom nom-acc)

(acc nom-acc)))

(defun assign-case (phrase case)

(let ((core-phrase (core-phrase phrase)))

(unless (check-case-compatibility (phrase-assigned-case core-phrase)

(feature-value core-phrase 'required-case)

case)

(fail))

(set!-local (phrase-assigned-case core-phrase) case)))

(defun check-case-compatibility (previously-assigned-case

required-case

assigned-case)

(labels ((compatible? (c1 c2)

(find-if #'(lambda (case-list) (and (member c1 case-list) (member c2 case-list)))

*case-compatibilities*)))



APPENDIX B. PARSER CODE 93

(and (or (not previously-assigned-case)

(compatible? previously-assigned-case assigned-case))

(or (not required-case)

(compatible? required-case assigned-case)))))

B.10 Theta Theory

(defgenerator THETA-ROLE-ASSIGNMENT ((tree PHRASE-STRUCTURE))

;; Assign thematic roles from tensed verbs to subject, verbs

;; to objects, and prepositions to their objects. Rather than

;; storing exact theta roles in the lexicon, the shorthand

;; REFERENCE, SUBJECT and OBJECT symbols are used.

(when (np? tree) ;; Top-level NP

(set!-local (phrase-theta-role (core-phrase tree)) 'REFERENCE))

(return-result (annotate-phrase-with-theta tree)))

(defm! annotate-phrase-with-theta ((phrase) phrase)

(let ((daughters (phrase-daughters phrase))

(category (phrase-category phrase)))

(mapc-nd #'annotate-phrase-with-theta daughters)

(when (eq (core-phrase phrase) phrase)

(case category

((v1 p1)

;; Assign roles from verbs and prepositions to their complements.

(let ((x (complement phrase)))

(cond ((null x)

(if (or (not (feature-value (head phrase) 'theta))

(member (feature-value (head phrase) 'theta) '(none)))

t

(fail)))

((np? x)

(if (or (not (feature-value (head phrase) 'theta))

(member (feature-value (head phrase) 'theta)

'(np np-cp np-none)))

(set!-local (phrase-theta-role (core-phrase x)) 'OBJECT)

(fail)))

((cp? x)

(if (or (not (feature-value (head phrase) 'theta))

(member (feature-value (head phrase) 'theta)

'(cp np-cp subjectless-cp)))

t

(fail))))))

(i2

;; Assign roles from tensed verbs to their subjects.

(let ((i0 (head (bar-node phrase)))

(v0 (head (bar-node (complement (bar-node phrase))))))

(unless (or (and (i0? i0) (eq '+ (feature-value i0 'passive)))

(eq 'subjectless-cp (feature-value v0 'theta)))

(set!-local (phrase-theta-role (core-phrase (spec-of phrase))) 'SUBJECT))))))



APPENDIX B. PARSER CODE 94

phrase))

(deffilter THETA-CRITERION ((chains CHAIN-FORMATION) THETA-ROLE-ASSIGNMENT)

;; Enforce criterion that every chain receive exactly one thematic role.

(unless (every #'(lambda (chain)

(= 1 (count-if #'(lambda (phrase)

(phrase-theta-role (core-phrase phrase)))

chain)))

chains)

(reject)))

B.11 Basic Chain Formation

;;; Chain Formation. The process of chain formation automatically handles

;;; subjacency, though this could be removed. The particular algorithm borrows

;;; loosely from that found in Sandiway Fong's PhD thesis.

(defstruct chain-state

(partial-chains nil :type list)

(free-phrases nil :type list)

(completed-chains nil :type list)

(marked-things nil :type list))

(defgenerator CHAIN-FORMATION ((tree PHRASE-STRUCTURE))

;; The result of CHAIN-FORMATION is a set (list) of chains, each a list

;; of noun phrases linked by movement.

(let ((result (do-chain-formation tree)))

(unless (or (chain-state-partial-chains result)

(chain-state-free-phrases result))

(return-result (chain-state-completed-chains result)))))

(defun get-chain-index (phrase chains)

(position (core-phrase phrase) chains :test #'member))

(defndm do-chain-formation ((phrase) phrase)

(case (length (phrase-daughters phrase))

(0 (if (np? phrase)

(if (empty? phrase)

(either (make-chain-state :partial-chains (list (list phrase)))

(make-chain-state :free-phrases (list phrase))

(make-chain-state :completed-chains (list (list phrase))))

(either (make-chain-state :free-phrases (list phrase))

(make-chain-state :completed-chains (list (list phrase)))))

(make-chain-state)))

(1 (subjacency-mark

(if (and (np? phrase)

(eq (core-phrase phrase) phrase))

(merge-higher-np phrase (do-chain-formation (first (phrase-daughters phrase))))

(do-chain-formation (first (phrase-daughters phrase))))



APPENDIX B. PARSER CODE 95

phrase))

(otherwise

(subjacency-mark

(if (and (np? phrase)

(eq phrase (core-phrase phrase)))

(merge-higher-np phrase (do-multiple-chain-formation (phrase-daughters phrase)))

(do-multiple-chain-formation (phrase-daughters phrase)))

phrase))))

(defun subjacency-mark (result potential-bounding-phrase)

(if (member (phrase-category potential-bounding-phrase) *bounding-nodes*)

(if (or (intersection (mapcar #'car (chain-state-partial-chains result))

(chain-state-marked-things result))

(intersection (chain-state-free-phrases result)

(chain-state-marked-things result)))

(fail);; Already marked, now passing through second bounding node.

(make-chain-state :partial-chains (chain-state-partial-chains result)

:free-phrases (chain-state-free-phrases result)

:completed-chains (chain-state-completed-chains result)

:marked-things

(set-difference

(append (chain-state-free-phrases result)

(mapcar #'car (chain-state-partial-chains result)))

(all-parts potential-bounding-phrase))))

result))

(defun do-multiple-chain-formation (list-of-daughters)

(if (null (cdr list-of-daughters))

(do-chain-formation (first list-of-daughters))

(let ((result1 (do-chain-formation (first list-of-daughters)))

(result2 (do-multiple-chain-formation (rest list-of-daughters))))

;; Do we want to rule out cases with Free Phrases (because of

;; the c-command requirement)? Let's go for it!

(let ((chain (merge-chain-formations result1 result2)))

(if (chain-state-free-phrases chain)

(fail)

chain)))))

(defun merge-chain-formations (result1 result2)

(let ((completed-chains (append (chain-state-completed-chains result1)

(chain-state-completed-chains result2))))

(let ((c1 (submerge (chain-state-partial-chains result1)

(chain-state-free-phrases result2)

completed-chains

(chain-state-marked-things result2)

(chain-state-marked-things result1))))

(let ((c2 (submerge (chain-state-partial-chains result2)

(chain-state-free-phrases result1)

(third c1)

(chain-state-marked-things result1)

(chain-state-marked-things result2))))

(make-chain-state :partial-chains (append (first c1) (first c2))

:free-phrases (append (second c1) (second c2))



APPENDIX B. PARSER CODE 96

:completed-chains (third c2)

:marked-things (append (chain-state-marked-things result1)

(chain-state-marked-things result2)))))))

(defun merge-higher-np (phrase result)

(either (make-chain-state :partial-chains (chain-state-partial-chains result)

:free-phrases (cons phrase (chain-state-free-phrases result))

:completed-chains (chain-state-completed-chains result)

:marked-things (chain-state-marked-things result))

(make-chain-state :partial-chains (chain-state-partial-chains result)

:free-phrases (chain-state-free-phrases result)

:completed-chains (cons (list phrase)

(chain-state-completed-chains result))

:marked-things (chain-state-marked-things result))))

(defun submerge (partial-chains free-phrases completed-chains marked-free-phrases

marked-partial-chains)

(either (list partial-chains free-phrases completed-chains)

(let ((free-phrase (a-member-of free-phrases))

(partial-chain (a-member-of partial-chains)))

(if (and (member free-phrase marked-free-phrases)

(member (car partial-chain) marked-partial-chains))

(fail) ;; Subjacency

(let ((new-chain (cons free-phrase partial-chain))

(old-free-phrases (remove free-phrase free-phrases))

(old-partial-chains (remove partial-chain partial-chains)))

(either (submerge old-partial-chains

old-free-phrases

(cons new-chain completed-chains)

marked-free-phrases

marked-partial-chains)

(if (empty? free-phrase)

(submerge (cons new-chain old-partial-chains)

old-free-phrases

completed-chains

marked-free-phrases

marked-partial-chains)

(fail))))))))

B.12 Correa Chain Formation

;;; Correa's deterministic Chain Formation. See "Empty Categories, Chains, and Parsing"

;;; in R.C.Berwick et al, Principle Based Parsing (1991).

(defgenerator CHAIN-FORMATION ((tree PHRASE-STRUCTURE) THETA-ROLE-ASSIGNMENT ANAPHOR? PRONOMINAL?)

(let ((result (get-chains tree)))

(unless (or (first result) (second result))

(return-result (third result)))))



APPENDIX B. PARSER CODE 97

(defun get-chain-index (phrase chains)

(position (core-phrase phrase) chains :test #'member))

(defun get-chains (phrase)

;; Return: (PARTIAL-A-CHAIN PARTIAL-ABAR-CHAIN COMPLETED-CHAINS)

(let ((result

(cond ((and (ip? phrase) (core-phrase? phrase) (find-if #'np? (phrase-daughters phrase)))

(let* ((i1 (bar-node phrase))

(i1-chains (get-chains i1))

(np (spec i1))

(np-chains (get-chains np)))

(if (and (not (and (variable? np) (second i1-chains)))

(not (and (first i1-chains) (phrase-theta-role (core-phrase np))))

(or (first i1-chains) (phrase-theta-role (core-phrase np))))

(list (if (np-trace? np) (cons (core-phrase np) (first i1-chains)) nil)

(if (variable? np)

(cons (core-phrase np) (first i1-chains))

(second i1-chains))

(if (or (np-trace? np) (variable? np))

(third i1-chains)

(cons (cons (core-phrase np) (first i1-chains))

(append (third i1-chains) (third np-chains)))))

(fail))))

((cp? phrase)

(if (np? (spec (bar-node phrase)))

(let* ((np (spec (bar-node phrase)))

(np-chains (get-chains np))

(c1 (bar-node phrase))

(c1-chains (get-chains c1)))

(if (and (second c1-chains)

(or (variable? np) (operator? np)))

(list (first c1-chains)

(if (variable? np) (cons (core-phrase np) (second c1-chains)) nil)

(if (variable? np)

(third c1-chains)

(cons (cons (core-phrase np) (second c1-chains))

(append (third np-chains) (third c1-chains)))))

(fail)))

(let* ((c1 (bar-node phrase))

(c1-chains (get-chains c1)))

(if (not (second c1-chains))

c1-chains

(fail)))))

((find-if #'np? (phrase-daughters phrase))

(let* ((o (find-if-not #'np? (phrase-daughters phrase)))

(o-chains (get-chains o))

(np (find o (phrase-daughters phrase) :test-not #'eq))

(np-chains (get-chains np)))

(if (and (not (and (variable? np) (second o-chains)))

(not (and (np-trace? np) (first o-chains))))

(list (if (np-trace? np) (list (core-phrase np)) (first o-chains))

(if (variable? np) (list (core-phrase np)) (second o-chains))

(if (or (np-trace? np) (variable? np))



APPENDIX B. PARSER CODE 98

(third o-chains)

(cons (list (core-phrase np))

(append (third o-chains) (third np-chains)))))

(fail))))

((= 2 (length (phrase-daughters phrase)))

(let ((o1 (get-chains (first (phrase-daughters phrase))))

(o2 (get-chains (second (phrase-daughters phrase)))))

(if (and (not (and (first o1) (first o2)))

(not (and (second o1) (second o2))))

(list (or (first o1) (first o2))

(or (second o1) (second o2))

(append (third o1) (third o2)))

(fail))))

((= 1 (length (phrase-daughters phrase)))

(get-chains (first (phrase-daughters phrase))))

(t (list nil nil nil)))))

result))

B.13 Free Indexing

(defgenerator FREE-INDEXING ((list-of-chains CHAIN-FORMATION))

;; Return a list of chain sets, that looks like

;;

;; ((REFERENTIAL-INDEX-1 CHAIN-1-1 CHAIN-1-2 ...)

;; (REFERENTIAL-INDEX-2 CHAIN-2-1 ...)

;; )

;;

;; where each referential index is an integer and each chain is a list

;; of phrases. The chains paired with a referential index all co-refer.

;;

(when list-of-chains

(return-result

(loop for integer-set in (freely-index (length list-of-chains))

for referential-index from 1

collect (cons referential-index

(mapcar #'(lambda (i) (nth i list-of-chains))

integer-set))))))

(defndmemo freely-index ((n) () eql)

;; Nondeterministically return a partition on the integers 0 through

;; N-1. Each partition is a list of lists of integers. For example, the

;; five values returned by (freely-index 3) are

;;

;; ((2) (1) (0))

;; ((2 1) (0))

;; ((2 0) (1))

;; ((2) (1 0))

;; ((2 1 0))

;;



APPENDIX B. PARSER CODE 99

(unless (zerop n)

(let ((indexing (freely-index (1- n))))

(either

;; Put integer into its own partition.

`((,(1- n)) ,@indexing)

;; Put integer into some existing partition.

(let ((index-set-to-merge-with (a-member-of indexing)))

`((,(1- n) ,@index-set-to-merge-with)

,@(remove index-set-to-merge-with indexing)))))))

(defun get-index (phrase index-list)

(car (find (core-phrase phrase) index-list

:key #'cdr

:test #'(lambda (p chain-list)

(some #'(lambda (chain) (member p chain)) chain-list)))))

(defun get-phrases-with-index (index index-list)

(apply #'append (mapcar #'all-parts (apply #'append (cdr (assoc index index-list))))))

B.14 Functional Determination Filter

(deffilter FUNCTIONAL-DETERMINATION ((chains CHAIN-FORMATION)

(tree PHRASE-STRUCTURE)

(indices FREE-INDEXING)

ANAPHOR?

PRONOMINAL?)

;; Enforce the effects of Functional Determination.

;; For a description of the theory of functional determination,

;; see Chomsky "Some Concepts and Consequences of the Theory

;; of Govenment and Binding", pg. 34.

(map-up-phrase-structure

tree (phrase)

(when (and (np? phrase) (empty? phrase) (not (operator? phrase)))

(when (a-position? phrase)

(let ((lb (local-binder phrase indices tree)))

(if (and lb (a-bar-position? lb))

(unless (variable? phrase)

(reject))

(when (variable? phrase)

(reject)))

(unless (variable? phrase)

(unless (is-anaphor? phrase)

(reject))

(when (or (null lb)

(and (a-position? lb)

(not (eql (get-chain-index lb chains)

(get-chain-index phrase chains)))))

(unless (is-pronominal? phrase)

(reject)))))))))



APPENDIX B. PARSER CODE 100

B.15 Subjacency, I-within-I

(deffilter I-WITHIN-I ((indices FREE-INDEXING))

(dolist (index-set indices)

(let ((all-daughter-phrases nil)

(all-indexed-phrases nil))

(dolist (chain (cdr index-set))

(dolist (phrase chain)

(if (member phrase all-daughter-phrases)

(reject)

(labels ((add-phrase (p)

(when (member p all-indexed-phrases)

(reject))

(unless (member p all-daughter-phrases)

(push p all-daughter-phrases)

(mapc #'add-phrase (phrase-daughters p)))))

(add-phrase phrase)

(push phrase all-indexed-phrases))))))))

(defparameter *bounding-nodes* '(i2 n2))

(deffilter subjacency ((chains CHAIN-FORMATION))

;; Enforce the subjacency requirement on chains.

(dolist (chain chains)

(mapl #'(lambda (chain-part)

(let ((phrase1 (first chain-part))

(phrase2 (second chain-part)))

(when (and phrase1 phrase2)

(unless (subjacent? phrase1 phrase2)

(reject)))))

chain)))

(defun subjacent? (phrase1 phrase2)

(let ((pp1 (all-phrase-parents phrase1))

(pp2 (all-phrase-parents phrase2)))

(let ((s1 (set-difference pp1 pp2))

(s2 (set-difference pp2 pp1)))

(> 2 (max (count-if #'(lambda (phrase)

(member (phrase-category phrase) *bounding-nodes*)) s1)

(count-if #'(lambda (phrase)

(member (phrase-category phrase) *bounding-nodes*)) s2)

)))))

B.16 License Chains

(defoption '*little-pro* nil "Little pro" :generator)

(deffilter LICENSE-CHAINS ((chains CHAIN-FORMATION) ANAPHOR? PRONOMINAL?)



APPENDIX B. PARSER CODE 101

;; Enforce various conditions on chains and empty categories.

(dolist (chain chains)

;; At least one trace per chain.

(when (> (length chain) 1)

(unless (some #'(lambda (v) (and (empty? v) (eq '- (phrase-pronominal? v))))

chain)

(reject)))

;; Operators must bind variables.

(if (and (some #'operator? chain)

(not (some #'variable? chain)))

(reject))

;; If there is an operator, it must be at head of chain.

(if (or (> (count-if #'operator? chain) 1)

(some #'operator? (rest chain)))

(reject))

;; Wh-trace in Comp must be licensed by an operator.

(if (some #'(lambda (c) (and (variable? c) (c-spec? c))) chain)

(unless (some #'operator? chain)

(reject)))

;; English does not have -anaphor, +pronominal empty categories.

(unless *little-pro*

(if (some #'(lambda (v)

(and (empty? v)

(eq '- (phrase-anaphor? v))

(eq '+ (phrase-pronominal? v))))

chain)

(reject)))

(let ((head (first chain)))

;; Only lexical items, operators, variables, PRO and pro may head a chain.

(unless (or (not (empty? head)) (eq (phrase-pronominal? head) '+) (variable? head)

(operator? head))

(reject)))))

B.17 Operator Assignment

(defgenerator OPERATOR-ASSIGNMENT ((phrase PHRASE-STRUCTURE))

;; Make empty categories in operator position be operators by setting their

;; anaphoric and pronominal values to be "o" instead of either + or -.

(return-result (operator-assigner phrase)))

(defun operator-assigner (phrase)

(dolist (daughter (phrase-daughters phrase))

(operator-assigner daughter))

(when (and (c-spec? phrase) (empty? phrase))

(let ((value (if (np? (spec (phrase-parent phrase))) 'o '-)))

(set!-local (phrase-anaphor? phrase) value)

(set!-local (phrase-pronominal? phrase) value)))

phrase)



APPENDIX B. PARSER CODE 102

B.18 Other Modules

(deffilter coindex-operator ((tree PHRASE-STRUCTURE) (indices FREE-INDEXING))

(map-up-phrase-structure

tree (phrase :daughters daughters)

(when (and (np? phrase) (= 2 (length daughters))

(find-if #'np? daughters) (find-if #'cp? daughters))

;; PHRASE is a NP with an CP daughter that contains an operator.

(let ((operator (spec-of (find-if #'cp? daughters))))

(unless (and (np? operator)

(= (get-index (find-if #'np? daughters) indices)

(get-index operator indices)))

(reject))))))

(defoption '*lexical-np-in-comp* nil "Lexical NP in Comp")

(defun comp-checker-special (phrase1 phrase2 category)

;; Return T if comp is OK.

(let ((phrases (list phrase1 phrase2)))

(not (cond ((eq category 'c2)

(let ((np (find-if #'np? phrases))

(c1 (find-if #'c1? phrases)))

(and np c1

(or

;; Prevent lexical NP and lexical C in comp.

(and (not (empty? np)) (c0? (head c1)))

;; Lexical NP must be +wh.

(not (or (empty? np) *lexical-np-in-comp* (eq '+ (feature-value np 'wh))))

;; Prevent I unless accompanied by lexical NP in comp.

(and (i0? (head c1)) (empty? np))))))

((eq category 'n2)

;; Prevent name or pronoun in relative clause.

(let ((np (core-phrase (find-if #'np? phrases)))

(c2 (find-if #'cp? phrases)))

(and np c2

(or (feature-value np 'r-expression)

(feature-value np 'pronoun)

(feature-value np 'anaphor)))))))))

(defun comp-checker-special-2 (phrase1 phrase2 category)

;; Return T if OK.

(let ((phrases (list phrase1 phrase2)))

(not (cond ((eq category 'c2)

(let ((np (find-if #'np? phrases))

(c1 (find-if #'c1? phrases)))

(and np c1

(or

;; Prevent lexical NP and lexical C in comp.

(and (not (empty? np)) (c0? (head c1)))

;; Lexical NP must be +wh.

(not (or (empty? np) *lexical-np-in-comp* (eq '+ (feature-value np 'wh))))

;; Prevent I unless accompanied by lexical NP in comp.



APPENDIX B. PARSER CODE 103

(and (i0? (head c1)) (empty? np))))))

((eq category 'n2)

;; Prevent name or pronoun in relative clause.

(let ((np (core-phrase (find-if #'np? phrases)))

(c2 (find-if #'cp? phrases)))

(and np c2

(or (feature-value np 'r-expression)

(feature-value np 'pronoun)

(feature-value np 'anaphor)))))))))

(defun comp-checker-special-1 (phrase category)

;; Return T if OK.

(not (cond ((eq category 'c2)

(let ((c1 phrase))

(i0? (head c1))))

(t nil))))

B.19 General Utility Functions

(defparameter *heads* '(a0 n0 v0 d0 c0 p0 i0 p0))

(defparameter *1cats* '(a1 n1 v1 d1 c1 p1 i1))

(defparameter *2cats* '(a2 n2 v2 d2 c2 p2 i2))

(defun np? (phrase) (and phrase (eq (phrase-category phrase) 'n2)))

(defun cp? (phrase) (and phrase (eq (phrase-category phrase) 'c2)))

(defun c1? (phrase) (and phrase (eq (phrase-category phrase) 'c1)))

(defun c0? (phrase) (and phrase (eq (phrase-category phrase) 'c0)))

(defun ip? (phrase) (and phrase (eq (phrase-category phrase) 'i2)))

(defun i1? (phrase) (and phrase (eq (phrase-category phrase) 'i1)))

(defun i0? (phrase) (and phrase (eq (phrase-category phrase) 'i0)))

(defun vp? (phrase) (and phrase (eq (phrase-category phrase) 'v2)))

(defun v1? (phrase) (and phrase (eq (phrase-category phrase) 'v1)))

(defun p1? (phrase) (and phrase (eq (phrase-category phrase) 'p1)))

(defun level-0? (phrase) (member (phrase-category phrase) *heads*))

(defun level-1? (phrase) (member (phrase-category phrase) *1cats*))

(defun level-2? (phrase) (member (phrase-category phrase) *2cats*))

(defun complement? (phrase) (eq phrase (complement phrase)))

(defun head? (phrase) (eq phrase (head phrase)))

(defun spec? (phrase) (eq phrase (spec phrase)))

(defun empty? (phrase)

;; Is PHRASE lexically realized?

(and (null (phrase-daughters phrase))

(not (word? phrase))))

(defun word? (phrase)

;; Is PHRASE a lexically realized word?

(feature-value phrase 'word))



APPENDIX B. PARSER CODE 104

(defun c-spec? (phrase)

;; Is PHRASE in Spec of C?

(and (cp? (phrase-parent phrase)) (spec? phrase)))

(defun operator? (phrase)

;; Is PHRASE an operator?

(and (c-spec? phrase)

(or (not (empty? phrase))

(and (eq 'o (phrase-anaphor? phrase))

(eq 'o (phrase-pronominal? phrase))))))

(defun variable? (phrase)

;; Is PHRASE a variable (-pro, -ana empty category)?

(and (np? phrase)

(empty? phrase)

(eq '- (phrase-anaphor? phrase))

(eq '- (phrase-pronominal? phrase))))

(defun np-trace? (phrase)

;; Is PHRASE an NP-trace (-pro, +ana empty category)

(and (np? phrase)

(empty? phrase)

(eq '+ (phrase-anaphor? phrase))

(eq '- (phrase-pronominal? phrase))))

(defun r-expression? (phrase)

;; Is PHRASE an R-expression?

(and (not (empty? phrase))

(eq '+ (feature-value phrase 'r-expression))))

(defun is-lexically-governed? (phrase)

;; Nothing fancy- no barriers.

(let ((pp (phrase-parent phrase)))

(or (and (v1? pp) (complement? phrase))

(and (p1? pp) (complement? phrase))

(and (ip? pp) (spec? phrase)

(not (eq '- (feature-value (head (bar-node phrase)) 'tense)))))))

(defun core-phrase (phrase)

;; Gets at core phrase for adjunction phenomena. For instance, when applied

;; to [NP [NP] [PP]] returns the inner NP.

(when phrase

(let ((potential-core (find (phrase-category phrase) (phrase-daughters phrase)

:key #'phrase-category)))

(if potential-core

(core-phrase potential-core)

phrase))))

(defun core-phrase? (phrase)

;; Is PHRASE a core, or is it the result of some adjunction?

(not (adjunction? phrase)))

(defun adjunction? (phrase)



APPENDIX B. PARSER CODE 105

;; Is PHRASE the result of adjunction?

(when phrase

(find (phrase-category phrase) (phrase-daughters phrase) :key #'phrase-category)))

(defun complement (phrase)

;; Given the standard x-bar structure

;; [Y ... [X2 SPEC [X1 HEAD COMP]]], for input

;;

;; X1 return COMP

;; X2 return (complement Y)

;; HEAD return COMP

;; COMP return COMP

;; SPEC return (complement Y)

;;

(when phrase

(cond ((level-1? phrase)

;; Check that it's not adjunction

(if (find-if #'level-0? (phrase-daughters (core-phrase phrase)))

(find-if #'level-2? (phrase-daughters (core-phrase phrase)))))

((level-0? phrase)

(complement (phrase-parent phrase)))

((level-2? phrase) (complement (phrase-parent phrase))))))

(defun spec (phrase)

;; Given the standard x-bar structure

;; [X2 SPEC [X1 HEAD COMP]], for input

;;

;; X1 return SPEC

;; SPEC return SPEC

;; otherwise return nil.

;;

(when phrase

(let ((pp (phrase-parent phrase)))

(and pp (level-2? pp) (find-if-not #'level-1? (phrase-daughters pp))))))

(defun spec-of (phrase)

;; Given the standard x-bar structure

;; [X2 SPEC [X1 HEAD COMP]], for input

;;

;; X2 return SPEC

;; otherwise return nil.

;;

(when phrase

(and (level-2? phrase) (find-if-not #'level-1? (phrase-daughters phrase)))))

(defun head (phrase)

;; Given the standard x-bar structure

;; [Y [X2 SPEC [X1 HEAD COMP]]], for input

;;

;; X1 return HEAD

;; HEAD return HEAD

;; COMP return HEAD

;; otherwise return nil.



APPENDIX B. PARSER CODE 106

;;

(when phrase

(cond ((level-1? phrase)

(find-if #'level-0? (phrase-daughters (core-phrase phrase))))

((phrase-parent phrase)

(let ((pp (phrase-parent phrase)))

(when (level-1? pp)

(head pp)))))))

(defun bar-node (phrase)

;; Given the standard x-bar structure

;; [Y [X2 SPEC [X1 HEAD COMP]]], for input

;;

;; X2 return X1

;; COMP return (bar-node COMP)

;; SPEC return X1

;; otherwise return nil.

;;

(when phrase

(or (and (level-2? phrase)

(find-if #'level-1? (phrase-daughters phrase)))

(let ((pp (phrase-parent phrase)))

(and pp (level-2? pp) (core-phrase (find-if #'level-1? (phrase-daughters pp))))))))

(defun all-parts (phrase)

;; Return a list of all phrases that have resulted from adjunction to

;; the core phrase of PHRASE.

(labels ((all-parts-1 (phrase)

(cons phrase

(if (and (phrase-parent phrase)

(eq (phrase-category (phrase-parent phrase))

(phrase-category phrase)))

(all-parts-1 (phrase-parent phrase))))))

(all-parts-1 (core-phrase phrase))))

(defun top-part (phrase)

;; Return the largest phrase that has resulted from adjunction to PHRASE.

(if (and (phrase-parent phrase)

(eq (phrase-category (phrase-parent phrase))

(phrase-category phrase)))

(top-part (phrase-parent phrase))

phrase))

(defun a-position? (pphrase)

;; Is PPHRASE in an argument position?

;; This is defined as: Subject, Object, or Object of Preposition (for now).

(let ((phrase (top-part pphrase)))

(let ((pp (phrase-parent phrase)))

(and pp (eq pp (core-phrase pp))

(or (and (ip? pp) (spec? phrase))

(and (v1? pp) (complement? phrase))

(and (p1? pp) (complement? phrase)))))))



APPENDIX B. PARSER CODE 107

(defun a-bar-position? (phrase)

;; Is PHRASE in a non-argument position?

(not (a-position? phrase)))

(defun all-phrase-parents (phrase)

(labels ((all-phrase-parents-1 (phrase)

(unless (null (phrase-parent phrase))

(cons (phrase-parent phrase) (all-phrase-parents-1 (phrase-parent phrase))))))

(all-phrase-parents-1 (top-part phrase))))

(defun feature-value (phrase feature)

(cdr (assoc feature (phrase-inherent-features phrase))))

B.20 Tree Structure Walkers

;;;

;;; Failures can not always be attributed directly to nodes in a

;;; phrase structure tree, but only to nodes in combination with

;;; features assigned by generators. For instance, in the structure

;;;

;;; Who did you [VP see [NP +anaphor]]

;;;

;;; the empty category [NP +anaphor] illegally receives case. It

;;; would be nice to use mstructures to fail all trees containing the

;;; VP, but the blame really lies with the combination of the case

;;; assigning verb AND the assignment of the +anaphor feature to the

;;; empty NP.

;;;

;;; The following facilities provide functions that can be used when

;;; performing destructive operations like assignment of anaphoric

;;; properties to build tree-like mstructures, so that when such a

;;; failure occurs there is a specific node that can be rejected,

;;; potentially saving a great deal of effort if other paths also

;;; contain the same node.

(defmstructure (virtual-phrase :allow-dependencies t)

((real-phrase :initarg :real-phrase :accessor virt-phr-real-phrase :type phrase)

(virtual-phrase-daughters :initarg :daughters :accessor virt-phr-daughters

:type (list virtual-phrase))

(value :initarg :value :accessor virt-phr-value))

()

)

(defmacro virtual-map-up-phrase-structure ((phrase function) &rest body)

;; Create "virtual" phrase structure, as described above, so that

;; "reject" can kill many threads at once. The code BODY is

;; executed to non-deterministically produce values, potentially

;; executing side-effects. The code is presumed to apply to the node PHRASE

;; and the function FUNCTION is then executed on the daughters of PHRASE to

;; produce more values. For example,



APPENDIX B. PARSER CODE 108

;;

;; (defndm! assign-case ((phrase) phrase)

;; (virtual-map-up-phrase-structures

;; (phrase assign-case)

;; (when ...

;; (set!-local (phrase-case phrase) (either :accusative :oblique)))))

;;

(let ((phrase-symbol (gensym "phrase-"))

(daughters-symbol (gensym "daughters-")))

`(let ((,phrase-symbol ,phrase))

(let ((,daughters-symbol

(case (length (phrase-daughters ,phrase-symbol))

(0 nil)

(1 (list (,function (first (phrase-daughters ,phrase-symbol)))))

(2 (list (,function (first (phrase-daughters ,phrase-symbol)))

(,function (second (phrase-daughters ,phrase-symbol))))))))

(let ((value (progn ,@body)))

(let ((virtual-phrase

(make-instance 'virtual-phrase

:daughters ,daughters-symbol

:real-phrase ,phrase-symbol :value value)))

(dolist (daughter ,daughters-symbol)

(is-part-of daughter virtual-phrase))

virtual-phrase))))))

(defmacro virtual-phrase-map

(virtual-phrase (phrase &key category daughters virtual) &rest body)

;; This macro uses the same syntax as MAP-UP-PHRASE-STRUCTURE (see

;; below). It applies to virtual trees produced with

;; VIRTUAL-MAP-UP-PHRASE-STRUCTURE, rooted with the virtual phrase

;; VIRTUAL-PHRASE. If VIRTUAL is provided, BODY is executed with

;; the symbol VIRTUAL bound to the current virtual phrase, which can

;; be rejected. Alternatively, VIRTUAL-REJECT can be used (see

;; below). For example,

;;

;; (deffilter case-filter ((virtual-tree CASE-ASSIGNMENT))

;; (virtual-phrase-map virtual-tree (phrase)

;; (when (case-not-assigned? phrase)

;; ;; Reject parent of PHRASE.

;; (virtual-reject 1))))

;;

(let ((virt-phr-symbol (gensym "virt-phr-")))

`(virtual-map-over-phrase-structure-fn

#'(lambda (,virt-phr-symbol list-of-previous-virtual-phrases)

list-of-previous-virtual-phrases

(let ((,phrase (virt-phr-real-phrase ,virt-phr-symbol))

,@(if category

`((,category (phrase-category

(virt-phr-real-phrase ,virt-phr-symbol)))))

,@(if daughters

`((,daughters (phrase-daughters

(virt-phr-real-phrase ,virt-phr-symbol)))))

,@(if virtual `((,virtual ,virt-phr-symbol))))



APPENDIX B. PARSER CODE 109

,@body))

,virtual-phrase nil)))

(defmacro virtual-reject (&optional (number 0))

;; Reject current "virtual" phrase. See above. If NUMBER is provided then

;; the nth parent is rejected.

`(reject (or (nth ,number list-of-previous-virtual-phrases)

(first list-of-previous-virtual-phrases))))

(defun virtual-map-over-phrase-structure-fn (function virtual-phrase previous-list)

(let ((new-list (cons virtual-phrase previous-list)))

(dolist (daughter (virt-phr-daughters virtual-phrase))

(virtual-map-over-phrase-structure-fn function daughter new-list))

(funcall function virtual-phrase new-list)))

;;;

;;; Macro Facilities for mapping over phrase structure trees.

;;;

(defmacro map-up-phrase-structure (top-phrase (phrase &key category daughters)

&rest body)

;; Map over every node in the phrase structure tree with root

;; TOP-PHRASE, from the bottom of the tree up, executing for each

;; node the deterministic code BODY in an environment with the

;; symbol PHRASE bound to the current NODE, and the symbol CATEGORY

;; bound to that phrase's category, and the symbol DAUGHTERS bound

;; to the list of that phrase's daughter nodes.

`(map-up-phrase-structure-fn

#'(lambda (,phrase)

(let (,@(if category `((,category (phrase-category ,phrase))))

,@(if daughters `((,daughters (phrase-daughters ,phrase)))))

,@body))

,top-phrase))

(defmacro map-up-phrase-structure-nd (top-phrase (phrase &key category daughters)

&rest body)

;; Map over every node in the phrase structure tree with root

;; TOP-PHRASE, from the bottom of the tree up, executing for each

;; node the non-deterministic code BODY in an environment with the

;; symbol PHRASE bound to the current NODE, and the symbol CATEGORY

;; bound to that phrase's category, and the symbol DAUGHTERS bound

;; to the list of that phrase's daughter nodes.

`(map-up-phrase-structure-fn-nd

#'(lambda (,phrase)

(let (,@(if category `((,category (phrase-category ,phrase))))

,@(if daughters `((,daughters (phrase-daughters ,phrase)))))

,@body))

,top-phrase))

(defmacro map-down-phrase-structure (top-phrase (phrase &key category daughters)

&rest body)

;; Map over every node in the phrase structure tree with root

;; TOP-PHRASE, from the top of the tree down, executing for each



APPENDIX B. PARSER CODE 110

;; node the deterministic code BODY in an environment with the

;; symbol PHRASE bound to the current NODE, and the symbol CATEGORY

;; bound to that phrase's category, and the symbol DAUGHTERS bound

;; to the list of that phrase's daughter nodes.

`(map-down-phrase-structure-fn

#'(lambda (,phrase)

(let (,@(if category `((,category (phrase-category ,phrase))))

,@(if daughters `((,daughters (phrase-daughters ,phrase)))))

,@body))

,top-phrase))

(defmacro map-down-phrase-structure-nd (top-phrase (phrase &key category daughters)

&rest body)

;; Map over every node in the phrase structure tree with root

;; TOP-PHRASE, from the top of the tree down, executing for each

;; node the non-deterministic code BODY in an environment with the

;; symbol PHRASE bound to the current NODE, and the symbol CATEGORY

;; bound to that phrase's category, and the symbol DAUGHTERS bound

;; to the list of that phrase's daughter nodes.

`(map-down-phrase-structure-fn-nd

#'(lambda (,phrase)

(let (,@(if category `((,category (phrase-category ,phrase))))

,@(if daughters `((,daughters (phrase-daughters ,phrase)))))

,@body))

,top-phrase))

(defun map-up-phrase-structure-fn (function phrase)

(dolist (daughter (phrase-daughters phrase))

(map-up-phrase-structure-fn function daughter))

(funcall function phrase))

(defun map-down-phrase-structure-fn (function phrase)

(funcall function phrase)

(dolist (daughter (phrase-daughters phrase))

(map-down-phrase-structure-fn function daughter)))

(defun map-up-phrase-structure-fn-nd (function phrase)

(dolist (daughter (phrase-daughters phrase))

(map-up-phrase-structure-fn-nd function daughter))

(funcall-nondeterministic function phrase))

(defun map-down-phrase-structure-fn-nd (function phrase)

(funcall-nondeterministic function phrase)

(dolist (daughter (phrase-daughters phrase))

(map-down-phrase-structure-fn-nd function daughter)))

;;;

;;; Provide a function for finding minimal phrases meeting certain conditions.

;;; This is useful for binding theory.

;;;

(defun minimal-phrase-containing (phrase-list &key (restricted-to t))

;; Return the small phrase strictly containing all the phrases in



APPENDIX B. PARSER CODE 111

;; PHRASE-LIST, such that the phrase also is of type RESTRICTED-TO,

;; should that argument be provided.

(let ((smallest-containers

(mapcar #'(lambda (phrase)

(first-parent-restricted-to phrase restricted-to))

phrase-list)))

(let ((minimal-phrase (first smallest-containers)))

(dolist (starting-phrase (rest smallest-containers))

(do ((phrase starting-phrase (phrase-parent phrase)))

((or (null phrase) (eq phrase minimal-phrase))

(if (null phrase) (setq minimal-phrase phrase)))))

minimal-phrase)))

(defun first-parent-restricted-to (phrase category-restrictions)

;; Find the smallest phrase strictly containing PHRASE and of a

;; category found in the list CATEGORY-RESTRICTIONS.

(let ((parent (phrase-parent phrase)))

(unless parent (fail))

(if (or (eq category-restrictions t)

(member (phrase-category parent) category-restrictions))

parent

(first-parent-restricted-to parent category-restrictions))))



Bibliography

[1] G. Edward Barton. Towards a principle-based parser. Memo A.I. Memo No. 788, MIT Arti�cial

Intelligence Lab., Cambridge, Massachusetts, July 1984.

[2] G. Edward Barton. The computational structure of natural language. Phd thesis, MIT Electrical

Engineering and Computer Science, Cambridge, Massachusetts, June 1987.

[3] G. Edward Barton, Robert C. Berwick, and Eric S. Ristad. Computational Complexity and Natural

Language. MIT Press, Cambridge, MA, 1987.

[4] Robert C. Berwick. Principle-based parsing. Memo 972, MIT Arti�cial Intelligence Lab., Cambridge,

Massachusetts, June 1987.

[5] Robert C. Berwick, Steven P. Abney, and Carol Tenny, editors. Principle-Based Parsing: Compu-

tation and Psycholinguistics. Kluwer Academic Publishers, Norwell, Massachusetts, 1991.

[6] Noam A. Chomsky. Aspects of The Theory of Syntax. MIT Press, Cambridge, MA, 1965.

[7] Noam A. Chomsky. Lectures on Government and Binding. Foris, Dordrecht, Holland, 1981.

[8] Noam A. Chomsky. Some Concepts and Consequences of the Theory of Government and Binding.

MIT Press, Cambridge, MA, 1982.

[9] Noam A. Chomsky. A minimalist program for linguistic theory. Occasional Paper in Linguistics 1,

MIT Department of Linguistics, 1992.

[10] Nelson Correa. Empty categories, chain binding, and parsing. In Robert C. Berwick, Steven P.

Abney, and Carol Tenny, editors, Principle-Based Parsing: Computation and Psycholinguistics.

Kluwer Academic Publishers, 1991.

[11] Matthew W. Crocker. A Logical Model of Competence and Performance in the Human Sentence

Processor. PhD thesis, University of Edinburgh, Edinburgh, Scotland, 1992.

[12] Bonnie Jean Dorr. UNITRAN: A principle-based approach to machine translation. Master's thesis,

Massachusetts Institute of Technology, Cambridge, MA, 1987.

[13] A. J. Field and P. G. Harrison. Functional Programming. Addison-Wesley, Reading, MA, 1988.

[14] Sandiway Fong. Computational Properties of Principle-Based Grammatical Theories. PhD thesis,

Massachusetts Institute of Technology, Cambridge, Massachusetts, 1991.

[15] Gerald Gazdar, Ewan Klein, Geo�rey Pullam, and Ivan Sag. Generalized Phrase Structure Gram-

mar. Harvard University Press, Cambridge, Massachusetts, 1985.

112



BIBLIOGRAPHY 113

[16] Jerry R. Hobbs. Resolving pronoun references. Lingua, pages 311{338, 1978.

[17] Mark Johnson. Deductive parsing. In Robert C. Berwick, Steven P. Abney, and Carol Tenny, editors,

Principle-Based Parsing: Computation and Psycholinguistics. Kluwer Academic Publishers, 1991.

[18] Shalom Lappin and Herbert Leass. A syntactically based algorithm for pronominal anaphora reso-

lution. In Proc. of the Univ. of Pennsylvania Cognitive Science Colloquium, Philadelphia, Pennsyl-

vania, 1992.

[19] Howard Lasnik and Juan Uriagereka. A Course in GB Syntax: Lectures on Binding and Empty

Categories. MIT Press, Cambridge, MA, 1988.

[20] John M. Lucassen. Types and e�ects: Towards the integration of functional and imperitive pro-

gramming. Memo MIT/LCS/TR-408, MIT Laboratory for Computer Science, Cambridge, Mas-

sachusetts, August 1987.

[21] Maria Rita Manzini. Locality. MIT Press, Cambridge, MA, 1992.

[22] Mitchell Marcus. A Theory of Syntactic Recognition for Natural Language. MIT Press, Cambridge,

MA, 1980.

[23] Donald Michie. Memo functions and machine learning. Nature, 218:19{22, April 1968.

[24] Peter Norvig. Techniques for automatic memoization with applications to context-free parsing.

Computational Linguistics, 17(1):91{98, March 1991.

[25] Eric Sven Ristad. The anaphora problem. Information and Computation, in press.

[26] Je�rey Mark Siskind and David Allen McAllester. Screamer: A portable e�cient implementation

of nondeterministic common lisp.

[27] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type region and e�ect inference. Memo EMP-

CRI E/150, Ecole des Mines de Paris, Paris, France, December 1991.

[28] Henk van Riemsjijk and Edwin Williams. Introduction to the Theory of Grammar. MIT Press,

Cambridge, MA, 1986.


