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Abstract

We present distribution independent bounds on the generalization misclassification perfor-
mance of a family of kernel classifiers with margin. Support Vector Machine classifiers
(SVM) stem out of this class of machines. The bounds are derived through computations
of the Vγ dimension of a family of loss functions where the SVM one belongs to. Bounds
that use functions of margin distributions (i.e. functions of the slack variables of SVM) are
derived.
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1 Introduction

Deriving bounds on the generalization performance of kernel classifiers has been an important
theoretical topic of research in recent years [4, 8, 9, 10, 12]. We present new bounds on the gen-
eralization performance of a family of kernel classifiers with margin, from which Support Vector
Machines (SVM) can be derived. The bounds use the Vγ dimension of a class of loss functions,
where the SVM one belongs to, and functions of the margin distribution of the machines (i.e.
functions of the slack variables of SVM - see below).
We consider classification machines of the form:

min
∑m

i=1 V (yi, f(xi))

subject to ‖f‖2
K ≤ A2 (1)

where we use the following notation:

• Dm = {(x1, y1), . . . , (xm, ym)}, with (xi, yi) ∈ Rn × {−1, 1} sampled according to an un-
known probability distribution P (x, y), is the training set.

• V (y, f(x)) is the loss function measuring the distance (error) between f(x) and y.

• f is a function in a Reproducing Kernel Hilbert Space (RKHS) H defined by kernel K,
with ‖f‖2

K being the norm of f in H [11, 2]. We also call f a hyperplane, since it is such
in the feature space induced by the kernel K [11, 10].

• A is a constant.

Classification of a new test point x is always done by simply considering the sign of f(x).
Machines of this form have been motivated in the framework of statistical learning theory. We
refer the reader to [10, 6, 3] for more details. In this paper we study the generalization perfor-
mance of these machines for choices of the loss function V that are relevant for classification. In
particular we consider the following loss functions:

• Misclassification loss function:

V (y, f(x)) = V msc(yf(x)) = θ(−yf(x)) (2)

• Hard margin loss function:

V (y, f(x)) = V hm(yf(x)) = θ(1− yf(x)) (3)

• Soft margin loss function:

V (y, f(x)) = V sm(yf(x)) = θ(1− yf(x))(1− yf(x)), (4)

where θ is the Heavyside function. Loss functions (3) and (4) are “margin” ones because the only
case they do not penalize a point (x, y) is if yf(x) ≥ 1. For a given f , these are the points that

are correctly classified and have distance |f(x)|
‖f‖2 ≥ 1

‖f‖2 from the surface f(x) = 0 (hyperplane in

the feature space induced by the kernel K [10]). For a point (x, y), quantity yf(x)
‖f‖ is its margin,
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Figure 1: Hard margin loss (line with diamond-shaped points), soft margin loss (solid line),
nonlinear soft margin with σ = 2 (line with crosses), and σ = 1

2
(dotted line)

and the probability of having yf(x)
‖f‖ ≥ δ is called the margin distribution of hypothesis f . For

SVM, quantity θ(1−yif(xi))(1−yif(xi)) is known as the slack variable corresponding to training
point (xi, yi) [10].
We will also consider the following family of margin loss functions (nonlinear soft margin loss
functions):

V (y, f(x)) = V σ(yf(x)) = θ(1− yf(x))(1− yf(x))σ. (5)

Loss functions (3) and (4) correspond to the choice of σ = 0, 1 respectively. In figure 1 we plot
some of the possible loss functions for different choices of the parameter σ.

To study the statistical properties of machines (1) we use some well known results that we now
briefly present. First we define some more notation, and then state the results from the literature
that we will use in the next section.
We use the following notation:

• RV
emp(f) =

∑m
i=1 V (yi, f(xi)) is the empirical error made by f on the training set Dm, using

V as the loss function.

• RV (f) =
∫
Rn×{−1,1} V (y, f(x)) P (x, y) dx dy is the expected error of f using V as the loss

function.

• Given a hypothesis space of functions F (i.e. F = {f ∈ H : ‖f‖2 ≤ A2}), we note by hVF
γ

the Vγ dimension of the loss function V (y, f(x)) in F , which is defined as follows [1]:

Definition 1.1 Let A ≤ V (y, f(x)) ≤ B, f ∈ F , with A and B < ∞. The Vγ-dimension of V
in F (of the set of functions {V (y, f(x)) | f ∈ F}) is defined as the the maximum number h
of vectors (x1, y1) . . . , (xh, yh) that can be separated into two classes in all 2h possible ways using
rules:
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class 1 if: V (yi, f(xi)) ≥ s+ γ
class -1 if: V (yi, f(xi)) ≤ s− γ

for f ∈ F and some s ≥ 0. If, for any number m, it is possible to find m points (x1, y1) . . . , (xm, ym)
that can be separated in all the 2m possible ways, we will say that the Vγ-dimension of V in F is
infinite.

If instead of a fixed s for all points we use a different si for each (xi, yi), we get what is called the
fat-shattering dimension fatγ [1]. Notice that definition (1.1) includes the special case in which
we directly measure the Vγ dimension of the space of functions F , i.e. V (y, f(x)) = f(x). We
will need such a quantity in theorem 2.2 below.
Using the Vγ dimension we can study the statistical properties of machines of the form (1) based
on a standard theorem that characterizes the generalization performance of these machines.

Theorem 1.1 (Alon et al., 1993) Let A ≤ V (y, f(x)) ≤ B, f ∈ F , F be a set of bounded
functions. For any ε ≥ 0, for all m ≥ 2

ε2
we have that if hVF

γ is the Vγ dimension of V in F for
γ = αε (α ≥ 1

48
), hVF

γ finite, then:

Pr

{
sup
f∈F

∣∣∣RV
emp(f)−RV (f)

∣∣∣ > ε

}
≤ G(ε,m, hVF

γ ), (6)

where G is an increasing function of hVF
γ and a decreasing function of ε and m, with G → 0 as

m → ∞.

In [1] the fat-shattering dimension was used, but a close relation between that and the Vγ

dimension [1] make the two equivalent for our purpose1. Closed forms of G can be derived (see
for example [1]) but we do not present them here for simplicity of notation. Notice that since
we are interested in classification, we only consider ε < 1, so we will only discuss the case γ < 1
(since γ is about 1

48
ε).

In “standard” statistical learning theory the VC dimension is used instead of the Vγ one [10].
However, for the type of machines we are interested in the VC dimension turns out not to be
appropriate: it is not influenced by the choice of the hypothesis space F through the choice of A,
and in the case that F is an infinite dimensional RKHS, the VC-dimension of the loss functions
we consider turns out to be infinite (see for example [5]). Instead, scale-sensitive dimensions
(such as the Vγ or fat-shattering one [1]) have been used in the literature, as we will discuss in
the last section.

2 Main results

We study the loss functions (2 - 5). For classification machines the quantity we are interested
in is the expected misclassification error of the solution f of problem 1. With some abuse of
notation we note this with Rmsc. Similarly we will note with Rhm, Rsm, and Rσ the expected
risks using loss functions (3), (4) and (5), respectively, and with Rhm

emp, Rsm
emp, and Rσ

emp, the

1In [1] it is shown that Vγ ≤ fatγ ≤ 1
γ V γ

2
.
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corresponding empirical errors. We will not consider machines of type (1) with V msc as the loss
function, for a clear reason: the solution of the optimization problem:

min
∑m

i=1 θ(−yif(xi))

subject to ‖f‖2
K ≤ A2

is independent of A, since for any solution f we can always rescale f and have the same cost∑m
i=1 θ(−yif(xi)).

For machines of type (1) that use V sm or V σ as the loss function, we prove the following:

Theorem 2.1 The Vγ dimension h for θ(1−yf(x))(1−yf(x))σ in hypothesis spaces FA = {f ∈
H|‖f‖2

K ≤ A2} (of the set of function {θ(1− yf(x))(1− yf(x))σ | f ∈ FA}) and y ∈ {−1, 1},
is finite for ∀ 0 < γ. If D is the dimensionality of the RKHS H, R2 is the radius of the smallest
sphere centered at the origin containing the data x in the RKHS, and B > 1 is an upper bound
on the values of the loss function, then h is upper bounded by:

• O(min(D, R2A2

γ
2
σ

)) for σ < 1

• O(min(D, (σB
σ−1

σ )2R2A2

γ2 )) for σ ≥ 1

Proof
The proof is based on the following theorem [7] (proved for the fat-shattering dimension, but as
mentioned above, we use it for the “equivalent” Vγ one).

Theorem 2.2 [Gurvits, 1997] The Vγ dimension h of the set of functions2 FA = {f ∈ H|‖f‖2
K ≤

A2} is finite for ∀ γ > 0. If D is the dimensionality of the RKHS, then h ≤ O(min(D, R2A2

γ2 )),

where R2 is the radius of the smallest sphere in the RKHS centered at the origin here the data
belong to.

Let 2N be the largest number of points {(x1, y1), . . . , (x2N , y2N)} that can be shattered using the
rules:

class 1 if θ(1− yif(xi))(1− yif(xi))
σ ≥ s+ γ

class − 1 if θ(1− yif(xi))(1− yif(xi))
σ ≤ s− γ

(7)

for some s with 0 < γ ≤ s. After some simple algebra these rules can be decomposed as:

class 1 if f(xi)− 1 ≤ −(s + γ)
1
σ (for yi = 1 )

or f(xi) + 1 ≥ (s+ γ)
1
σ (for yi = −1 )

class − 1 if f(xi)− 1 ≥ −(s− γ)
1
σ (for yi = 1 )

or f(xi) + 1 ≤ (s− γ)
1
σ (for yi = −1 )

(8)

From the 2N points at least N are either all class -1, or all class 1. Consider the first case (the
other case is exactly the same), and for simplicity of notation let’s assume the first N points are

2As mentioned above, in this case we can consider V (y, f(x)) = f(x).
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class -1. Since we can shatter the 2N points, we can also shatter the first N points. Substituting
yi with 1, we get that we can shatter the N points {x1, . . . ,xN} using rules:

class 1 if f(xi) + 1 ≥ (s+ γ)
1
σ

class − 1 if f(xi) + 1 ≤ (s− γ)
1
σ

(9)

Notice that the function f(xi) + 1 has RKHS norm bounded by A2 plus a constant C (equal to
the inverse of the eigenvalue corresponding to the constant basis function in the RKHS - if the
RKHS does not include the constant functions, we can define a new RKHS with the constant
and use the new RKHS norm). Furthermore there is a “margin” between (s+ γ)

1
σ and (s− γ)

1
σ

which we can lower bound as follows.
For σ < 1, assuming 1

σ
is an integer (if not, we can take the closest lower integer),

1

2

(
(s+ γ)

1
σ − (s− γ)

1
σ

)
=

1

2
((s+ γ)− (s− γ))




1
σ
−1∑

k=0

(s+ γ)
1
σ
−1−k(s− γ)k


 ≥ γγ

1
σ
−1 = γ

1
σ .(10)

For σ ≥ 1, σ integer (if not, we can take the closest upper integer) we have that:

2γ =
(
(s+ γ)

1
σ

)σ
−
(
(s− γ)

1
σ

)σ
= ((s+ γ)

1
σ − (s− γ)

1
σ )

(
σ−1∑
k=0

((s+ γ)
1
σ )σ−1−k((s− γ)

1
σ )k
)
≤

≤ ((s+ γ)
1
σ − (s− γ)

1
σ )σB

σ−1
σ

from which we obtain:
1

2

(
(s+ γ)

1
σ − (s− γ)

1
σ

)
≥ γ

σB
σ−1

σ

(11)

Therefore N cannot be larger than the Vγ dimension of the set of functions with RKHS norm

≤ A2 +C and margin at least γ
1
σ for σ < 1 (from eq. (10)) and γ

σB
σ−1

σ
for σ ≥ 1 (from eq. (11)).

Using theorem 2.2, and ignoring constant factors (also ones because of C), the theorem is proved.
2

In figure 2 we plot the Vγ dimension for R2A2 = 1, B = 1, γ = 0.9, and D infinite. Notice
that as σ → 0, the dimension goes to infinity. For σ = 0 the Vγ dimension becomes the same
as the VC dimension of hyperplanes, which is infinite in this case. For σ increasing above 1, the
dimension also increases: intuitively the margin γ becomes smaller relatively to the values of the
loss function.
Using theorems 2.1 and 1.1 we can bound the expected error of the solution f of machines (1):

Pr
{∣∣∣RV

emp(f)−RV (f)
∣∣∣ > ε

}
≤ G(ε,m, hγ), (12)

where V is V sm or V σ. To get a bound on the expected misclassification error Rmsc(f) we use
the following simple observation:

V msc(y, f(x)) ≤ V σ(y, f(x)) for ∀ σ, (13)
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Figure 2: Plot of the Vγ dimension as a function of σ for γ = .9

So we can bound the expected misclassification error of the solution of machine (1) under V sm

and V σ using the Vγ dimension of these loss functions and the empirical error of f measured using

again these loss functions. In particular we get that for ∀σ, with probability 1− G(ε,m, h
V σ
F

γ ):

Rmsc(f) ≤ Rσ
emp(f) + ε (14)

where ε and γ are related as stated in theorem 1.1.

Unfortunately we cannot use theorems 2.1 and 1.1 for the V hm loss function. For this loss
function, since it is a binary-valued function, the Vγ dimension is the same as the VC-dimension,
which, as mentioned above, is not appropriate to use in our case. Notice, however, that for
σ → 0, V σ approaches V hm pointwise (from theorem 2.1 the Vγ dimension also increases towards
infinity). Regarding the empirical error, this implies that Rσ → Rhm, so, theoretically, we can
still bound the misclassification error of the solution of machines with V hm using:

Rmsc(f) ≤ Rhm
emp(f) + ε+max(Rσ

emp(f)−Rhm
emp(f), 0), (15)

where Rσ
emp(f) is measured using V σ for some σ. Notice that changing σ we get a family of

bounds on the expected misclassification error. Finally, we remark that it could be interesting to
extend theorem 2.1 to loss functions of the form θ(1−yf(x))h(1−yf(x)), with h any continuous
monotone function.

3 Discussion

In recent years there has been significant work on bounding the generalization performance of
classifiers using scale-sensitive dimensions of real-valued functions out of which indicator func-
tions can be generated through thresholding (see [4, 9, 8],[3] and references therein). This is
unlike the “standard” statistical learning theory approach where classification is typically stud-
ied using the theory of indicator functions (binary valued functions) and their VC-dimension [10].
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The work presented in this paper is similar in spirit with that of [3], but significantly different
as we now briefly discuss.
In [3] a theory was developed to justify machines with “margin”. The idea was that a “better”
bound on the generalization error of a classifier can be derived by excluding training examples
on which the hypothesis found takes a value close to zero (as mentioned above, classification
is performed after thresholding a real valued function). Instead of measuring the empirical
misclassification error, as suggested by the standard statistical learning theory, what was used
was the number of misclassified training points plus the number of training points on which the
hypothesis takes a value close to zero. Only points classified correctly with some “margin” are
considered correct. In [3] a different notation was used: the parameter A in equation (1) was
fixed to 1, while a margin ψ was introduced inside the hard margin loss, i.e θ(ψ−yf(x)). Notice
that the two notations are equivalent: given a value A in our notation we have ψ = A−1 in the
notation of [3]. Below we adapt the results in [3] to the setup of this paper, that is, we set ψ = 1
and let A vary. Two main theorems were proven in [3].

Theorem 3.1 (Bartlett, 1998) For a given A, with probability 1 − δ, every function f with
‖f‖2

K ≤ A2 has expected misclassification error Rmsc(f) bounded as:

Rmsc(f) < Rhm
emp(f) +

√
2

m
(dln(34em/d) log2(578m) + ln(4/δ), (16)

where d is the fat-shattering dimension fatγ of the hypothesis space {f : ‖f‖2
K ≤ A2} for γ = 1

16A
.

Unlike in this paper, in [3] this theorem was proved without using theorem 1.1. Although prac-
tically both bound (16) and the bounds derived above are not tight and therefore not practical,
bound (16) seems easier to use than the ones presented in this paper.
It is important to notice that, like bounds (12), (14), and (15), theorem 3.1 holds for a fixed A
[3]. In [3] theorem 3.1 was extended to the case where the parameter A (or ψ in the notations of
[3]) is not fixed, which means that the bound holds for all functions in the RKHS. In particular
the following theorem gives a bound on the expected misclassification error of a machine that
holds uniformly over all functions:

Theorem 3.2 (Bartlett, 1998) For any f with ‖f‖K < ∞, with probability 1 − δ, the mis-
classification error Rmcs(f) of f is bounded as:

Rmsc(f) < Rhm
emp(f) +

√
2

m
(dln(34em/d) log2(578m) + ln(8‖f‖/δ), (17)

where d is the fat-shattering dimension fatγ of the hypothesis space consisting of all functions in
the RKHS with norm ≤ ‖f‖2

K, and with γ = 1
32‖f‖ .

Notice that the only differences between (16) and (17) are the ln(8‖f‖/δ) instead of ln(4/δ), and
that γ = 1

32‖f‖ instead of γ = 1
16A

.

So far we studied machines of the form (1), where A is fixed a priori. In practice learning
machines used, like SVM, do not have A fixed a priori. For example in the case of SVM the
problem is formulated [10] as minimizing:

min
∑m

i=1 θ(1− yif(xi))(1− yif(xi)) + λ‖f‖2
K (18)
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where λ is known as the regularization parameter. In the case of machines (18) we do not know
the norm of the solution ‖f‖2

K before actually solving the optimization problem, so it is not clear
what the “effective” A is. Since we do not have a fixed upper bound on the norm ‖f‖2

K a priori,
we cannot use the bounds of section 2 or theorem 3.1 for machines of the form (18). Instead,
we need to use bounds that hold uniformly for all A (or ψ if we follow the setup of [3]), for
example the bound of theorem 3.2, so that the bound also holds for the solution of (18) we find.
In fact theorem 3.2 has been used directly to get bounds on the performance of SVM [4]. A
straightforward applications of the methods used to extend theorem 3.1 to 3.2 can also be used
to extend the bounds of section 2 to the case where A is not fixed (and therefore hold for all f
with ‖f‖ < ∞), and we leave this as an exercise.
There is another way to see the similarity between machines (1) and (18). Notice that the
formulation (1) the regularization parameter λ of (18) can be seen as the Lagrange multiplier
used to solve the constrained optimization problem (1). That is, problem (1) is equivalent to:

maxλminf

m∑
i=1

V (yi, f(xi)) + λ(‖f‖2
K − A2) (19)

for λ ≥ 0, which is similar to problem (18) that is solved in practice. However in the case of
(19) the Lagrange multiplier λ is not known before having the training data, unlike in the case
of (18).
So, to summarize, for the machines (1) studied in this paper, A is fixed a priori and the “regular-
ization parameter” λ is not known a priori, while for machines (18) the parameter λ is known a
priori, but the norm of the solution (or the effective A) is not known a priori. As a consequence
we can use the theorems of this paper for machines (1) but not for (18). To do the second we
need a technical extension of the results of section 2 similar to the extension of theorem 3.1 to
3.2 done in [3]. On the practical side, the important issue for both machines (1) and (18) is
how to choose A or λ. We believe that the theorems and bounds discussed in sections 2 and
3 cannot be practically used for this purpose. Criteria for the choice of the regularization pa-
rameter exist in the literature - such as cross validation and generalized cross validation - (for
example see [10, 11],[6] and references therein), and is the topic of ongoing research. Finally,
as our results indicate, the generalization performance of the learning machines can be bounded
using any function of the slack variables and therefore of the margin distribution. Is it, however,
the case that the slack variables (margin distributions or any functions of these) are the quan-
tities that control the generalization performance of the machines, or there are other important
geometric quantities involved? Our results suggest that there are many quantities related to the
generalization performance of the machines, but it is not clear that these are the most important
ones.

Acknowledgments We wish to thank Peter Bartlett for useful comments. Acknowledgments

References

[1] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uni-
form convergnce, and learnability. J. of the ACM, 44(4):615–631, 1997.

[2] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 686:337–404, 1950.

8



[3] P. Bartlett. The sample complexity of pattern classification with neural networks: the
size of the weights is more important that the size of the network. IEEE Transactions on
Information Theory, 1998.

[4] P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machine and
other patern classifiers. In C. Burges B. Scholkopf, editor, Advances in Kernel Methods–
Support Vector Learning. MIT press, 1998.

[5] T. Evgeniou and M. Pontil. On the v-gamma dimension for regression in reproducing kernel
hilbert spaces. A.i. memo, MIT Artificial Intelligence Lab., 1999.

[6] T. Evgeniou, M. Pontil, and T. Poggio. A unified framework for regularization networks
and support vector machines. A.I. Memo No. 1654, Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, 1999.

[7] L. Gurvits. A note on scale-sensitive dimension of linear bounded functionals in banach
spaces. In Proceedings of Algorithm Learning Theory, 1997.

[8] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk
minimization over data-dependent hierarchies. IEEE Transactions on Information The-
ory, 1998. To appear. Also: NeuroCOLT Technical Report NC-TR-96-053, 1996,
ftp://ftp.dcs.rhbnc.ac.uk/pub/neurocolt/tech reports.

[9] J. Shawe-Taylor and N. Cristianini. Robust bounds on generalization from the margin distri-
bution. Technical Report NeuroCOLT2 Technical Report NC2-TR-1998-029, NeuroCOLT2,
1998.

[10] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[11] G. Wahba. Splines Models for Observational Data. Series in Applied Mathematics, Vol. 59,
SIAM, Philadelphia, 1990.

[12] R. Williamson, A. Smola, and B. Scholkopf. Generalization performance of regularization
networks and support vector machines via entropy numbers. Technical Report NC-TR-98-
019, Royal Holloway College University of London, 1998.

9


