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Abstract

Small-world architectures may be implicated in a range of phenomena
from networks of neurons in the cerebral cortex to social networks and
propogation of viruses [1]-[2]. Small-world networks are interpolations
of regular and random networks that retain the advantages of both regu-
lar and random networks by being highly clustered like regular networks
and having small average path length between nodes, like random net-
works. While most of the recent attention on small-world networks has
focussed on the effect of introducing disorder/randomness into a regu-
lar network, we show that that the fundamental mechanism behind the
small-world phenomenon is not disorder/randomness, but the presence
of connections of many different length scales. Consequently, in order to
explain the small-world phenomenon, we introduce the concept of mul-
tiple scale networks and then state the multiple length scale hypothesis
[3]. We show that small-world behavior in randomly rewired networks
is a consequence of features common to all multiple scale networks. To
support the multiple length scale hypothesis, novel network architectures
are introduced that need not be a result of random rewiring of a regular
network. In each case it is shown that whenever the network exhibits
small-world behavior, it also has connections of diverse length scales.
We also show that the distribution of the length scales of the new connec-
tions is significantly more important than whether the new connections
are long range, medium range or short range.

1 Introduction

A small-world network [1]-[2] is a network obtained by randomly rewiring a small per-
centage of the connections of a regular network. The role of the regular connections is
similar to that of short range, topographic connections in a biological network while the
rewired random connections play the role of medium and long range connections in a bi-
ological network. Small world networks have been shown to have very interesting com-
putational properties [1]-[2]. For example,the average path length between nodes is much
smaller in small-world networks than in regular networks, even though the local topology
of small-world networks is more or less the same as that of regular networks.Also, coupled
oscillators on a small-world network converge very quickly[1]-[2]. Furthermore, small-
world networks seem to be quite reasonable models for various biological networks. For



example,the neural network of c.elegans fits the small-world framework[1]-[2].

There are strong computational reasons for expecting small-world type architectures in
biological neural networks. Fast convergence of oscillator nets is likely to be important
in quickly computing scene interpretations. Also, as Marr pointed out [4], it is unlikely
that the brain has time for more than a few iterations when trying to converge to a percept.
Consequently, the architecture of the brain should be of a kind that allows convergence
with only a few iterations (which is a defining property of small-world networks).

However, randomly rewired networks are not realistic models of real world biological
networks. This is because the medium-range and long-range connections in a biological
network are unlikely to be random. On the other hand,it is quite likely that the distribution
of connections in a network plays an important role in determining the computational
properties of the network. One might hypothesize that the distribution of short range
connections versus medium range and long range connections is responsible for various
observed properties of biological networks, which is a biologically plausible hypothesis.
For example, it has been shown that in area V1, there are both short range and long range
connections [5]. The above discussion raises some interesting questions, such as-

(1) How essential is randomness to the small-world phenomenon? Are there other
network architectures with strong clustering and with low average path length?
(2) What is the role of short range, medium range and long-range connections in determin-
ing the computational and dynamical properties of a biological network?

We show that there is a simple answer to questions (1) and (2), namely, multiple scale net-
works and the multiple length scale hypothesis respectively. In this paper, we first define
multiple scale networks followed by the statement of the multiple length scale hypothesis.
Three different network architectures are introduced. Numerical simulations of these archi-
tectures lend support to the multiple length scale hypothesis. Then small-world behavior
for randomly rewired networks is derived as a consequence of properties common to all
multiple scale networks.

2 Multiple scale networks and the multiple length scale hypothesis

2.1 Multiple scale networks

Definition 1. Let N be a network with n nodes. Let the distance between two nodes, f
and g in N be denoted by distN (f; g). Let w new connections be added to N , forming a
new network N 0. Call the set of new connectionsW , so that cardinality(W ) = w. For each
new connection ew, distN (ew) is the distance- distN (fe; ge) - in N between the endpoints
fe and ge of ew. The distribution of length scales in W is measured by the function-

D : W 7! (1;1) ; D(e) = distN (e): (1)

Definition 2. A network N 0 obtained by adding connections to the network N is multiple
scale with respect to N (denoted N 0

� N ) if -

9r � 0; and 9 length scales li; i = 1; 2 : : : r such that
0 < l1 � l2 : : :� lr � n and
8i : i � r; li 2 D(W ):

(2)

Definition 3. A network N is a multiple scale network if it has a subnetwork M with the
same number of nodes such that N �M . Note that M contains all the nodes of N but not
all the connections of N .



Suppose we start with a regular network Rn;k with n nodes and k connections per vertex
and add w new connections to Rn;k forming a new network Rn;k;w. Furthermore, if w �
logn and the distribution of the new connections is uniform and random-

Rn;k;w � Rn;k and Rn;k � Rn;k;w: (3)

Therefore Rn;k;w is a multiple scale network. Equation (3) holds because the new connec-
tions are chosen at random,and as a consequence, cardinality(D(W )) � w � logn. Is it
possible that the randomly rewired network Rn;k;w is a small-world network (as shown in
Watts and Strogatz [1]) because it is a multiple scale network?

2.2 The Multiple length scale hypothesis

The reduction in average path length when rewiring a network is proportional to the number
of length scales present in the new connections and the number of connections at each
length scale. In other words, any network, random or deterministic, that is a result of
adding sufficiently many connections at many different length scales to a regular network,
will exhibit small-world behavior. Moreover, the small-world behavior is not dependent on
whether the new connections are long range or short range. What matters is the number of
scales represented in the new connections.

3 Network architectures

We now review three different network architectures, the first an analytically tractable ex-
ample, the second related to communication networks and the third to social networks. In
each case, it is shown that the numerical data supports the multiple length scale hypothesis.

3.1 A regular network coupled with a tree structure (R+T networks)

For the sake of simplicity, assume that n = k2m. Then, we can divide N into 2m blocks,
each of size k. At this point, connections are drawn from the midpoint of each block to all
the other points in the block, so the R+T network has a regular subnetwork R n;k. Take all
the midpoints mj and number them from 0 to 2m � 1. The tree structure is defined on the
set of midpoints of the regular subnetwork in the following manner-

For each pair of midpoints mi and mj ; there is a an connection ei;j
connecting mi and mj if and only if i� j is a power of 2, i.e.,
9 r � m� 1 such that i� j = 2r

(4)

In an R+T network, the total number of connections is nk=2 + 2m = k22m�1 + 2m

which is- k=2 + 1=k - connections per vertex .Therefore, the tree structure adds only 1=k
connections per vertex. Moreover, it is not hard to show that the average path length,
LR+T = m + 1 �= log2m=k . Therefore, in an R+T network with n = 256; k =
8 and m = 5, the number of connections added by the tree structure is 32 andL R+T = 6. In
comparison, in a computer simulation, starting with the same regular network, 32 randomly
chosen connections were added. We got L random = 7:1 > LR+T. Note that the tree structure
forces the R+T network to be a multiple scale network, as R + T � Rn;k. Moreover, the
R+T network is quite clustered as we are adding only 1=k more connections per vertex.

3.2 Hub creation and the maximum rule

Suppose we want to reduce the average path length in a communications network, where
the wiring diagram of the network is known. In this case, what we may want to do is to
minimize path length while using as few connections as possible. One way of doing this is



Table 1: Comparison of Maximum rule and Random rewiring rule
Maximum rule Random rewiring rule

E i 825 825 825 825 825 825 825 825 825 825
w 5 10 25 50 100 5 10 25 50 100
rf 3 5 9 15 18 5 8 13 19 20
Li 25.14 24.63 25.00 24.25 24.83 24.81 25.16 24.90 25.42 25.14
Lf 18.05 14.12 9.60 7.12 5.42 16.42 12.73 9.97 8.11 5.97

to create hubs , i.e., nodes that are connected to many other nodes. In the extreme case, we
can create a ”universal” hub by adding n�1 new connections, from vertex 1 to vertex i for
all nodes i . If each vertex in the original regular network has k � logn connections then
we are adding only one connection per vertex on average. Moreover, each hub also gives
rise to connections of different length scales. However, this algorithm may not be feasible
in general. For example, if this is a model for air transport, the above network model leads
to overcrowding at the hubs (as has been noticed by everybody who flies out of a major hub
in the U.S).

Another solution to the rewiring problem in a communications network is the maximum
rule . Let Nt; t = 0; 1; 2 : : : be a network that is evolving in time. At each time step t,
a new connection is drawn between the two points that are most distant from each other
in Nt�1. In the randomized version of the maximum rule, m pairs of points are selected
randomly at each time step t and an connection is drawn between the most distant of the m
pairs (in Nt�1). The results of a computer simulation of the maximum rule are displayed
in table 1 along with the results for a randomly rewired network. In the randomly rewired
network, the rewiring is done assuming a uniform distribution of the new connections.

One might think that the maximum rule is the best way to reduce the average path length,
given that the maximum rule is explicitly designed to bring the furthest nodes close to each
other. However, Table 1 shows that for w = 5, 10 and 25, the random rewiring rule does as
well or better than the maximum rule which is quite surprising . However, a comparison
of rrandom and rmax-rule explains the counterintuitive behavior. For w = 5; 10 and 25 we got
rmax-rule = 3; 5 and 9 respectively while rrandom = 5; 8 and 13 respectively. Therefore
the number of length scales in the randomly rewired network is more than the number of
length scales in the maximum rule network if the number of new connections is the same.

The comparison of the maximum rule and the random rewiring rule suggests that the
strongest determinant of small-world behavior is the presence or absence of a variety of
length scales (and not whether the new connections are short range or long range). This
hypothesis was tested in a computer simulation by selectively removing length scales
from a randomly rewired network.. The initial network was a regular network with
n = 275 and k = 6, randomly rewired by adding 50 new connections. Then, (ap-
proximately) half of the connections were removed in three different ways- The shortest
1/2 of the connections, the middle 1/2 of the connections and the longest 1/2 of the connec-
tions. The average shortest path length was computed for each of the three networks.The
results are shown in Table 2 below.

Table 2 shows that for w = 27 there is no difference in the performance of the three
networks, suggesting that the absolute length of the new connections is not as important as
their distribution.
Notation. E i is the number of connections in the initial network N i. w is the number of
new connections. Li is the average shortest path length in the initial network N i. Lf is
the average shortest path length in the final network N f. rf is the number of length scales
represented by the new connections w with respect to the distance metric in N i.



Table 2: Selective removal of length scales
Length scales removed 70 - 138 4-70 30-100

ni 825 825 825
w 27 27 28
Li 24.99 24.91 24.81
Lf 10.08 10.04 10.01

Table 3: The FOFF rule
ni 825 825 825 825
w 50 100 200 500
rf 2 4 6 19
Li 24.95 24.76 24.73 24.86
Lf 18.98 14.97 10.23 5.48

3.3 A Friend of a friend is a friend (FOFF)

The FOFF rule is a dynamical rule that is a model of social networks . At each time step t,
an connection is drawn between two nodes f and g having a common friend h that are not
connected by an connection at time t�1. Table 3 shows the result of a computer simulation
of the FOFF rule. The decrease in shortest path length for the FOFF rule is much slower
than the corresponding decrease for randomly rewired networks (see Table 3 below). For
w = 50, 100, 200 and 500 we got LFOFF = 18.98, 14.96, 10.23 and 5.48. The multiple length
scale hypothesis explains the behavior of the FOFF rule quite readily because r f grows very
slowly as a function of w. In fact, for w = 50, 100, 200 and 500 we got r f = 2, 4, 6 and 19 ,
which is a lot slower than the results for the maximum rule or the random rewiring rule.

4 Deriving small-world behavior from the multiple length scale
hypothesis

Notation. N i will always stand for the initial network andN f will always stand for the final
network. Let the set of new connections be denoted by W and the cardinality of W = w.
Throughout the ensuing discussion, e will always stand for a new connection that has been
added to the initial network N i. For a pair of nodes f and g, the distance between f and
g in N i is denoted by disti(f; g) while the distance between f and g in N f is denoted by
distf (f; g). Similarly, for each new connection e, dist i(e) is the distance (in N i) between
the endpoints f e and ge of e. r is the number of length scales in N f. D(e) is the distibution
of the connections in W . Let Rn;k be a regular network with n nodes, k connections per
vertex. Let Rn;k;w be the network that we get by adding w new connections to Rn;k .

Tight covering : A length scale l covers the network Rn;k;g if for each vertex h in Rn;k;g ,
there is a new connection e; distreg(e) �= l such that x lies between the endpoints f and g
in the regular networkRn;k. In other words, the new connections of scale l wrap around the
network. Furthermore, in order to reduce average path length, it is not enough that a length
scale l cover the network. Suppose there are two nodes f and g such that dist reg(f; g) �= l.
Ideally, we want the shortest path between f and g in Rn;k;w to contain connections of
length �= l only. In order to ensure this property of the shortest path, we have to make sure
that the end point of an connection of length �= l is close to the starting point of another
connection of length �= l, i.e., the new connections of length �= l are tightly packed. In
such a situation, we say that a covering of the network by connections of the length scale l
is tight .

Let Rn;k;g be a regular network that has been rewired by adding w new connections. Fur-



thermore assume that there is a scaling factor s and length scales s i; i � logsn such the
new connections are chosen randomly and that their distribution is uniform with respect to
the length scales, i.e.,

P
�
e 2 W : sk � distreg(e) � sk+1

�
= P

�
e 2W : sl � distreg(e) � sl+1

�

8 0 � k; l � logsn
(5)

Let k �= logsn and let w �= n � nk. (5) implies that the number of connections per
length scale is approximately n

log
s
n

. If si > logsn , the connections of that length scale

almost certainly coverRn;k;w (see the beginning of this section for a definition of ”cover”).
The average distance between successive connections of length s i is about logsn �= k,
which means that in Rn;k;w successive connections are separated by about an connection
since k �= logsn. Therefore, if si > logsn, the connections of scale si tightly cover the
network. Let f and g be two nodes such that

logsn � si � distreg(f; g) � si+1; i � logsn: (6)

The following inequality is an easy consequence of the fact that the scales tightly cover the
network-

distf (f; g) � 2s+ distf (h; g) (7)

Where h is an intermediate point such that si�1 � distreg(h; g) � si. Inequality (7) gives
rise to

distf (f; g) � 2s:logs(distreg(f; g)) (8)

showing that the distance in the final network is uniformly logarithmic for all pairs f and g,
replicating the qualitative behavior of small-world networks.

Shortest path algorithms. Given two nodes in a network how can we find the shortest
path between the two? In a random network there seems to be no way out besides checking
all paths and then picking the shortest of the lot. From a computational point of view this
is an extremely expensive algorithm, involvingO(n2) computations on average. The same
problem seems to arise in the case of a regular network modified by adding a few random
connections. Even though the network is small-world and the behavior of the average
shortest path length is known, there is no efficient way of determining the shortest path
between two points. Once again, the multiple length scale hypothesis helps in formulating
a better algorithm for the problem of finding the shortest path between two nodes.
Suppose a network N has many different length scales s i; i � logsn . Furthermore
assume that all the length scales si tightly cover the network N . Let f and g be two nodes
in N . Let h be an intermediate vertex in the shortest path P(f ,g) from f to g. Define

k = max
�
l : sl � distreg(f; g)

	

� =
�
e 2 W : sk � distreg(f; g) � sk+1

	

� = f9z : e 2 � such that e is an connection from h to zg
(9)

Then, there is an connection connection eh in P(f ,g) starting at h (going towards g) satis-
fying the following properties-

eh 2 � and if y is the other vertex of eh; then
distreg(y; g) � distreg(y

0; g) 8 y0 2 �
(10)

Two properties of the shortest path algorithm follow from (10)
(i) The shortest path algorithm is local, i.e., at each intermediate vertex h in the shortest
path P(f ,g) from f to g, the next connection in P(f ,g) is in the neighborhood of h.
(ii)At each intermediate vertex h, the shortest path algorithm considers a small subset of
the connections in the local neighborhood of h, namely the ones that are of the right scale.

From (i) and (ii) it follows that the shortest path algorithm performs O(log s(distreg(f; g)))
computations, which is �= O(logsn) computations when computing the shortest path from
f to g. In comparison, for an arbitrary network we need to perform O(n 2) computations.



5 Conclusion

There is no universal network architecture that is an optimal solution to all problems. Nev-
ertheless it would be extremely useful to have a class of network architectures that are near
optimal for a wide variety of problems. Networks with connections of multiple scales are
an especially rich class of models that provide a unified framework for describing and mod-
eling a variety of networks [3]. Multiple scale networks can be used to model both random
and deterministic networks. This paper shows that properties common to all multiple scale
networks explains the small-world phenomenon and that the shortest path problem is also
much simpler to solve in multiple scale networks.

Multiple scale networks are tractable, both analytically and by computer simulations. We
will be better equipped to understand the behavior of real world networks if we focus
our attention on the distribution of length scales in networks as opposed to the effect of
introducing increasing amounts of disorder into a regular network.

Methods: A note about the algorithm and the tables

The same network algorithm is used in all the simulations. All the rewiring rules
mentioned in this paper are initialized on a regular network with n = 275 nodes and
k = 6 connections per vertex. 1000 pairs of nodes are then selected at random and the
shortest distance between all the pairs is found. The algorithm also keeps track of the
number of connections added at any stage. All the networks are plots of the existence or
non-existence of a length scale in the new connections. For a network with 275 nodes,
the value of the function distreg(f; g) is divided into 20 blocks. For each new connection
with nodes f and g; distreg(f; g) is computed and then the Y- value of the appropriate block
between 1 and 20 is changed from 0 to 1.
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