
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. January, 1999
C.B.C.L. Memo No.

An accelerated Chow and Liu algorithm:
fitting tree distributions to high-dimensional

sparse data

Marina Meilă

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

Chow and Liu [2] introduced an algorithm for fitting a multivariate distribution with a tree (i.e. a density
model that assumes that there are only pairwise dependencies between variables) and that the graph of
these dependencies is a spanning tree. The original algorithm is quadratic in the dimesion of the domain,
and linear in the number of data points that define the target distribution P . This paper shows that for
sparse, discrete data, fitting a tree distribution can be done in time and memory that is jointly subquadratic
in the number of variables and the size of the data set. The new algorithm, called the acCL algorithm,
takes advantage of the sparsity of the data to accelerate the computation of pairwise marginals and the
sorting of the resulting mutual informations, achieving speed ups of up to 2-3 orders of magnitude in the
experiments.

Copyright c© Massachusetts Institute of Technology, 1998

This report describes research done at the Dept. of Electrical Engineering and Computer Science, the Center for Biological
and Computational Learning and the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support
for the artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Dept. of Defense
and by the Office of Naval Research. The author can be reached at M.I.T., Center for Biological and Computational Learning,
45 Carleton St., Cambridge MA 02142, USA. E-mail: mmp@ai.mit.edu

1 Introduction

Chow and Liu [2] introduced an algorithm for fitting a
multivariate distribution with a tree, i. e. a density
model that assumes that there are only pairwise depen-
dencies between variables and that the graph of these
dependencies is a spanning tree. Recently, the interest
in this algorithm, hitherto called the CL algorithm, has
been revived by the introduction of several probabilistic
models that extend the spanning tree model. The mix-
ture of trees of [8, 9] is a mixture model in which each
component is a spanning tree with a possibly different
topology over the set of variables. The TANB (Tree Aug-
mented Naive Bayes) model of [5] is a mixture of trees
designed for classification. Each class density is modeled
by a tree; these trees are combined in a mixture where
the mixing proportions represent the prior probabilities
of the class variable. The name of the classifier reflects
the fact that it is an extension of the Naive Bayes classi-
fier of [1]. The CL algorithm as well as its extensions for
the mixture of trees and for the TANB model can handle
forests (acyclic graphs that are disconnected) but for the
sake of clarity throughout this paper I will assume that
all the trees that are learned are spanning trees. Also, as
in the original work of Chow and Liu, we consider that
all the variables are discrete, with finite range.
In the framework of graphical probability models tree

distribution enjoy many properties that make them at-
tractive as modeling tools: they are intuitively appeal-
ing, have low complexity and yet a flexible topology,
sampling and computing likelihoods for trees are lin-
ear time, efficient and simple algorithms for marginal-
izing and conditioning exist. Mixtures of trees enjoy all
the computational advantages of trees and, in addition,
they are universal approximators over the the space of
all distributions1.
Moreover, trees are one of the few classes of graphical

models for which structure search is tractable [6]. The
CL algorithm finds the structure and parameters of the
tree T that best fits a given distribuition P as measured
by the Kullback-Liebler (KL) divergence

KL(P ||T) =
∑

x

P (x) log
P (x)
T (x)

(1)

For this purpose, the algorithm uses the mutual in-
formation Iuv under P between each pair of variables
u, v in the domain. When P is an empirical distribu-
tion obtained from and i.i.d. set of data, the computa-
tion of all the mutual information values requires time
and memory quadratic in the number of variables n and
linear in the size of the dataset N . Then a Maximum
Weight Spanning Tree (MWST) algorithm [3] using the
computed mutual information as edge weights finds the
optimal tree structure. Finally, the parameters of the
distribution are assigned by copying the values of the

1over discrete domains

marginals of P corresponding to each edge of the tree.
The most computationally expensive step in fitting a tree
to data is the first step - computing the pairwise mutual
informations in the empirical distribution. The time and
memory requirements of this step are acceptable for cer-
tain problems but they may become prohibitive when
the dimensionality n of the domain becomes large.
An example of such a domain is information retrieval.

In information retrieval, the data points are documents
from a data base and the the variables are words from
a vocabulary. A common representation for a document
is as a binary vector whose dimension is equal to the
vocabulary size. The vector component corresponding
to a word v is 1 if v appears in the document and 0
otherwise. The number N of documents in the data base
is of the order of 103 – 104. Vocabulary sizes too can be
in the thousands or tens of thousands. This means that
fitting a tree to the data necessitates n2 ∼ 106 − 109

mutual information computations and n2N ∼ 109 −
1012 counting operations, a number much too large for
many of todays applications.
The present work shows how to improve on the time

and memory requirements of the CL algorithm in or-
der to allow the use of tree density models for higher
dimensionality domains. It will also show how this im-
provement can be carried over to learning mixtures of
trees or TANB models.
It is obvious that in general the proportionality with

the size of the data set N cannot be improved on, since
one needs to examine each data point at least once.
Hence the focus will be on improving on the dependency
on n. Here the situation is as follows: there are several
MWST algorithms, some more efficient than others, but
all the algorithms that I know of run in time at least
proportional to the number of candidate edges. For our
problem this number is n(n − 1)/2 which would result
in an algorithm that is at least quadratic in the number
of variables n. But we also have additional information:
weights are not completely arbitray; each edge uv has a
weight equal to the mutual information Iuv between the
variables u and v. Moreover, in the information retrieval
example described above, the domain has a particularity:
each document contains only a relatively small number
of words (of the order of 102) and therefore most of the
components of its binary vector representation are null.
We call this property of the data sparsity. Can we use
these facts to do better?
The answer is yes. Remark that the only way the

MWST algorithm uses the edge weights is in compar-
isons. The idea the present work is based on is to
compare mutual informations between pairs of variables
without actually computing them when this is pos-
sible. This will result in a partial sorting of the edges
by mutual information. A second idea is to exploit the
sparsity of the data to speed up the most expensive step
of the algorithm: computing the marginals for all pairs

1

of variables. Combining the two will result in an algo-
rithm that (under certain assumptions) is jointly sub-
quadratic in N and n w.r.t. both running time and
memory. This algorithm, that we call accelerated CL
algorithm (acCL) will be presented and analyzed in the
rest of this paper.
I will start by briefly presenting the CL algorithm and

the notation that will be used (section 2). The next sec-
tion, 3, introduces the assumptions underlying the acCL
algorithm. Section 4 develops the algorithm proper, in
the special case of binary variables. The generalization
to variables of arbitrary arity, to non-integer counts (as
in the case of the EM algorithm) and a discussion of the
usage of the acCL algorithm in conjunction with priors
follow in sections 5, 6 and 7 respectively. Finally, exper-
imental results are presented in section 8.

2 Fitting a tree to a distribution

In this section we introduce the tree distribution, the
tree learning algorithm called the CL algorithm and the
notation that will be used throughout the paper. For
more detail on these topics the reader is recommended
to consult [2, 8, 7].
Let V denote the set of variables of interest, |V | = n.

Let v denote a variable in V , rv its number of values ,
xv a particular value of v and x an n-dimensional vector
representing an assignment to all the variables in V .

2.1 Tree distributions

We use trees as graphical representations for families
of probability distributions over V that satisfy a com-
mon set of independence relationships encoded in the
tree topology. In this representation, an edge of the tree
shows a direct dependence, or, more precisely, the ab-
sence of an edge between two variables signifies that they
are independent, conditioned on all the other variables
in V . We shall call a graph that has no cycles a tree2

and shall denote by E its edge set.
Now we define a probability distribution T that is con-

formal with a tree. Let us denote by Tuv and Tv the
marginals of T :

Tuv(xu, xv) =
∑

xV −{u,v}

T (xu, xv, xV −{u,v})

Tv(xv) =
∑

xV −{v}

T (xv, xV −{v}).

Let deg v be the degree of vertex v, e.g. the number of
edges incident to v ∈ V . Then, the distribution T is
conformal with the tree (V, E) if it can be factorized as:

T (x) =

∏
(u,v)∈E Tuv(xu, xv)∏
v∈V Tv(xv)deg v−1

(2)

2In the graph theory literature, our definition corresponds
to a forest. The connected components of a forest are called
trees.

The distribution itself will be called a tree when no con-
fusion is possible.

2.2 Mixtures of trees

We define a mixture of trees to be a distribution of the
form

Q(x) =
m∑

k=1

λkT
k(x) (3)

with

λk ≥ 0, k = 1, . . . ,m;
m∑

k=1

λk = 1. (4)

The tree distributions T k are the mixture components
and λk are called mixture coefficients. A mixture of trees
can be viewed as a containing an unobserved choice vari-
able z, taking value k ∈ {1, . . .m} with probability λk.
Conditioned on the value of z the distribution of the vis-
ible variables x is a tree. The m trees may have different
structures and different parameters. A mixture of trees
where all the trees have the same structure is equivalent
to a TANB model [5].

2.3 The CL algorithm

Let us now turn to learning trees from data. The ob-
served data are denoted byD = {x1, x2, . . . , xN}, where
each xi represents a vector of observations for all the vari-
ables in V . Learning a tree in the Maximum Likelihood
framework, means finding a tree distribution T opt that
satisfies

T opt = argmax
T

N∑
i=1

logT (xi) (5)

This problem is a special case of the more general
task of fitting a tree to a distribution P by minimizing
KL(P ||T). The fact that the tree model is factorable
allows for an efficient and elegant algorithm for solving
this problem, owed to Chow and Liu [2]. The algorithm
is briefly described here.
The algorithm is based on the fact that all the infor-

mation about a distribution P that is necessary to fit a
tree is contained in its pairwise marginals Puv. If the dis-
tribution is an empirical distribution defined by a data
set D, computing these marginals from data is a compu-
tationally expensive step and takes O(n2N) operations.
Further, to find the tree structure, given by its set

of edges E, one has to compute the mutual information
between each pair of variables in V under the target
distribution P

Iuv =
∑
xuxv

Puv(xu, xv) log
Puv(xu, xv)

Pu(xu)Pv(xv)
, u, v ∈ V, u =/v.

(6)
Since V has n variables, there are n(n− 1)/2 mutual

informations to be computed. After that, the optimal
tree structure E is found by a Maximum Weight Span-
ning Tree (MWST) algorithm using Iuv as the weight for

2

edge (u, v),∀u, v ∈ V . Computing the MWST can be
done in several ways [3, 11, 4, 10]. The one we present
here is called the Kruskal algorithm [3]. It is essentially
a greedy algorithm. The candidate edges are sorted in
decreasing order of their weights (i.e. mutual informa-
tions). Then, starting with an empty E, the algorithm
examines one edge at a time (in the order resulting from
the sort operation), checks if it forms a cycle with the
edges already in E and, if not, adds it to E. The algo-
rithm ends when n− 1 edges have been added to E.
Once the tree is found, its marginals Tuv (u, v) ∈ E

are exactly equal to the corresponding marginals Puv of
the target distribution P .

T opt
uv ≡ Puv for uv ∈ E (7)

They are already computed as an intermediate step in
the computation of the mutual informations Iuv (6).

3 Assumptions

This section presents the assumptions that help us de-
velop the accelerated CL algorithm. Of the four assump-
tions stated below, the one that is essential is the spar-
sity assumptions. The first two will be dispensed of or
relaxed later on and are made here for the sake of sym-
plifying the presentation. The last is a technical assump-
tion.

Binary variables. All variables in V take values in
the set {0, 1}. When a variables takes value 1 we say
that it is “on”, otherwise we say it is “off”. Without
loss of generality we can further assume that a variable
is off more times than it is on in the given dataset.

Integer counts. The target distribution P is derived
from a set of observations of size N . Hence,

Pv(1) =
Nv

N
= 1− Pv(0) (8)

where Nv represents the number of times variable v is
on in the dataset. According to the first assumption,

0 < Pv(1) ≤
1
2

or 0 < Nv ≤
1
2
N (9)

We can also exclude as non-informative all the variables
that are always on (or always off) thereby ensuring the
strict positivity of Pv(1) and Nv.
Let us denote by Nuv the number of times variables

u and v are simultaneously on. We call each of these
events a cooccurrence of u and v. The marginal Puv of u
and v is given by

N.Puv(1, 1) = Nuv (10)
N.Puv(1, 0) = Nu −Nuv (11)
N.Puv(0, 1) = Nv −Nuv (12)
N.Puv(0, 0) = N −Nv −Nu +Nuv (13)

All the information about P that is necessary for fit-
ting the tree is summarized in the counts N , Nv and

Nuv, u, v = 1, . . . , n that are assumed to be non-negative
integers. From now on we will consider P to be repre-
sented by these counts.

Sparse data. Let us denote by 0 ≤ |x| ≤ n the num-
ber of variables that are on in observation x. Further,
define s, the sparsity of the data by

s = max
i=1,N

|xi| (14)

If, for example, the data are documents and the variables
represent words from a vocabulary, then s represents the
maximum number of distinct words in a document. The
time and memory requirements of the accelerated CL
algorithm that we are going to introduce depend on the
sparsity s. The lower the sparsity, the more efficient
the algorithm. From now on, s will be assumed to be a
constant and

s << n, N. (15)

Data/dimension ratio bounded The ratio of the
number of data points N vs. the dimension of the do-
main n is bounded.

N

n
≤ R (16)

This is a technical assumption that will be useful later.
It is a plausible assumption for large n and N .

4 The accelerated CL algorithm

4.1 First idea: Comparing mutual
informations between binary variables

The mutual information between two binary variables
u, v ∈ V can be expressed as:

Iuv = Hu +Hv −Huv

=
1
N
{−Nu logNu − (N −Nu) log(N −Nu) +N logN

−Nv logNv − (N −Nv) log(N −Nv) +N logN
+Nuv logNuv + (Nu −Nuv) log(Nu −Nuv)
+(Nv −Nuv) log(Nv −Nuv)
+ (N −Nu −Nv +Nuv) log(N −Nu −Nv +Nuv)
− logN} (17)

Let us focus on the pairs u, v that do not cooccur, i.e.
for which Nuv = 0. For such a pair, the above expression
simplifies to

Iuv =
1
N
{−(N −Nu) log(N −Nu)

−(N −Nv) log(N −Nv)
+(N −Nu −Nv) log(N −Nu −Nv)
+N logN} (18)

Knowing that N is fixed for the dataset, it follows that
Iuv in the 0 cooccurrence case is function of 2 variables:
Nv and Nu. Let us fix u (and consequently Nu) and

3

data variables
1

i

N

1

v

n

Figure 1: The bipartite graph representation of a sparse
data set. Each edge iv means “variable v is on in data
point i”.

analyse the variation of the mutual information w.r.t.
Nv:

∂Iuv

∂Nv
= log(N −Nv)− log(N −Nu −Nv)

= log
N −Nv

N −Nu −Nv
> 0 (19)

It follows that if Nuv = 0 then the mutual information
Iuv is monotonically increasing with Nv for a fixed u.
Put in other terms, for a given variable u and any two
variables v, v′ for which Nuv = Nuv′ = 0

Nv > Nv′ implies that Iuv > Iuv′ .

This observation allows us to partially sort the mutual
informations Iuv for non-cooccurring pairs u, v, without
computing them. First, we have to sort all the variables
by their nubmber of occurrences Nv. This gives an or-
dering of all the variables in V .

v u ⇔ Nv > Nu (20)

Then, for each u, we create the list of variable following
u and not cooccurring with it:

V0(u) = {v ∈ V, v u, Nuv = 0} (21)

This list is sorted by decreasing Nv and therefore, im-
plicitly, by decreasing Iuv. Since the data are sparse,
most pairs of variables do not cooccur. Therefore, by
creating the lists V0(u), a large number of the mutual
informations are partially sorted. We shall show how to
use this construction in section 4. Before that, let us
examine an efficient way of computing the Nuv counts
when the data are sparse.

4.2 Second idea: computing cooccurrences in a
bipartite graph data representation

The bipartite graph data representation. Let
D = {x1, . . . xN} be a set of observations over n binary
variables whose probability of being on is less than 1/2.

It is efficient to represent each observation in D as a list
of the variables that are on in the respective observation.
Thus, data point xi, i = 1, . . . N will be represented by
the list xlisti = list{v ∈ V |xi

v = 1}. The name of
this representation comes from its depiction in figure 1
as a bipartite graph (V,D, E) where each edge (vi) ∈ E
corresponds to variable v being on in observation i. The
space required by this representation is no more than

sN << nN,

and much smaller than the space required by the binary
vector representation of the same data.

Computing cooccurrences in the bipartite
graph representation First, let us note that the to-
tal number NC of cooccurrences in the dataset D is

NC =
∑
v�u

Nuv ≤
1
2
s2N (22)

where s is the previously defined sparsity of the data.
Indeed, each data point x contains at most s variables
that are on, therefore contributing at most s(s − 1)/2
cooccurrences to the sum in (22).
As it will be shown shortly, computing all the cooc-

currence counts takes the same amount of time, up to
a logarithmic factor. The following algorithm not only
computes all the cooccurrence numbers Nuv for u, v ∈ V
but also constructs a representation of the lists V0(u).
Because the data are sparse, we expect the lists V0(u)
to contain on average many more elements than their
respective “complements”

V 0(u) = {v ∈ V, v u, Nuv > 0} (23)

Therefore, instead of representing V0(u) explicitly, we
construct V0(u) representing the list of all the variables
that follow u and cooccur with u at least once, sorted
by Nv. We assume that all the variables are already
sorted by decreasing Nv, with ties broken arbitrarily and
form a list L. Hence, to traverse the virtual list V0(u)
in decreasing order of Iuv, it is sufficient to traverse the
list L startin at the successor of u, skipping the variables
contained in V 0(u).
For the variables that cooccur with u, a set of cooccur-

rence lists C(u) is created. They that contain the same
variables as V 0(u) (i.e the variables that follow u and
cooccur with it) but sorted by the mutual informations
Iuv rather then by Nv.
For each variable v we shall create a temporary stor-

age of cooccurrences denoted by cheapv organized as a
Fibonacci heap (or F-heap) [4]. Then, the cooccurrence
counts Nuv and the lists C(u), V 0(u), u ∈ V can be
computed by the following algorithm:

Algorithm ListByCooccurrence
Input list of variables sorted by decreasing Nu

dataset D = {xlisti, i = 1, . . .N}
4

1.for v = 1, . . . n
initialize cheapv

2.for i = 1, . . .N
for u ∈ xlisti

for v ∈ xlisti, v u
insert u into cheapv

3.for v = 1, . . . n // empty cheapv and construct the lists
c = 0, u = v
while cheapv not empty

unew = extract max cheapv

if (unew u) and (u v)
insert v in V 0(u) at the end
insert (v, c) in C(u)
u = unew, c = 1

else
c++

if (u v) // last insertion
insert v in V 0(u) at the end
insert (v, c) in C(u)

4.for u = 1, . . . n
for (v, c) ∈ C(u)
compute Iuv and store it in C(u) together with (v, c)

sort C(u) by decreasing Iuv

Output lists V 0(u), C(u) u = 1, . . . n
The algorithm works as follows: cheapv contains one

entry for each cooccurrence of u and v. Because we ex-
tract the elements in sorted order, all cooccurrences of
v with u will come in a sequence. We save u and keep
increasing the count c until a new value for u (denoted
above by unew) comes out of the F-heap. Then it is
time to store the count c and v in u’s lists. Since the
v’s are examined in decreasing order, we know that the
new elements in the V 0(u) lists have to be inserted at
the end. The position of the insertion in C(u) is not im-
portant, since C(u) will subsequently be sorted, but it is
important to store the number of cooccurrences c ≡ Nuv

that will enables us to compute the mutual information
Iuv in step 4 of the algorithm. The computed mutual
informations are also stored.

Running time. As shown above, an insertion at the
extremity of a list takes constant time. Extracting the
maximum of an F-heap takes logarithmic time in the size
of the heap. Thus, extracting all the elements of a heap
cheapv of size lu takes

lu∑
k=1

log k = log lu! ≤ lu log lu.

Bounding the time to empty the heaps cheapv. Ex-
tracting all elements of all heaps cheapv takes therefore
less than τ =

∑
u lu log lu. Knowing already that∑
u

lu = NC ≤ 1/2s2N (24)

it is easy to prove that the maximum of τ is attained for
all lu equal. After performing the calculations we obtain

τ ∼ O(s2N log s2N
n). The total number of list insertions

is at most proportional to τ . It remains to compute
the time needed to create cheapv. But we know that
insertion in an F-heap takes constant time and there are
NC cooccurrences to insert.
In the last step, we have to sort the lists C(u). Sort-

ing a list of length l′ takes l′ log l′ time. The sum of all
list lengths is no larger than the total number of cooc-
currences NC and by a reasoning similar to previous one
we conclude that the running time of this step is also
O(s2N log s2N

n). Therefore the whole algorithm runs in
time of the order

O(s2N log
s2N

n
). (25)

Memory requirements.The memory requirements
for the temporary heaps cheapv are equal to NC . The
space required by the final lists V 0(u), C(u) is itself no
more than proportional to the total number of cooccur-
rences NC , namely O(s2N). Thus the total space re-
quired for this algorithm is O(s2N).

4.3 Putting it all together: the acCL algorithm
and its data structures

So far, we have efficient methods for computing the cooc-
currences and for partially sorting the mutual informa-
tions of the variables in V 0(u) for all u ∈ V . What we
aim for is to create a mechanism that will output the
edges uv in the decreasing order of their mutual infor-
mation. If this is achieved, then the Kruskal algorithm
can be used to construct the optimal tree.
We shall set up this mechanism in the form of a Fi-

bonacci heap (F-heap) [4] called vheap that contains an
element for each u ∈ V , represented by the edge with the
highest mutual information among the edges uv, v u.
The maximum over this set will obviously be the max-
imum over the mutual informations of all the possible
edges not yet eliminated. The record in vheap is of the
form (c, u, v, Iuv), with v u and Iuv being the key used
for sorting. Once the maximum is extracted, the used
edge has to be replaced by the next largest (in terms of
Iuv) edge in u’s lists.
To perform this latter task it easy now: for each u we

have the list of variables cooccurring with u, already
sorted by mutual information. For the variables not
cooccurring with u we have the virtual list V0(u) sorted
by mutual information as well, but for which the mutual
information values are not yet computed. All we have to
do is to compute Iuv0 with v0 being the head of V0(u).
By comparing Iuv0 with the mutual information of the
head of C(u) we find

max
v�u

Iuv

This value, together with its corresponding u, v,Nuv is
the value to be inserted in the F-heap. Every time an

5

u P
Pq

�
�1 list of v u, Nuv > 0, sorted by Iuv

list of v u, Nuv = 0, sorted by Nv

−→F-heap of size n

Nu

E

E

EE

�

�

��

Figure 2: The acCL algorithm: the data structure that supplies the next weightiest candidate edge. Vertically to the
left are the variables, sorted by decreasing Nu. For a given u, there are two lists: C(u), the list of variables v u,
sorted in decreasing order of Iuv and (the virtual list) V0(u) sorted by decreasing Nv. The maximum of the two first
elements of these lists is max

v�u
Iuv that is inserted into an F-heap.The overal maximum of Iuv can then be extracted

as the maximum of the F-heap.

edge (u, v,Nuv, Iuv) is inserted in vheap, v is deleted
from it’s coresponding list. The data structures involved
in this process are schematically shown in figure 4.3.
With this mechanism in place the Kruskal algorithm

[3] can be used to construct the desired spanning tree.
The outline of the algorithm is

Algorithm acCL

Inputvariable set V of size n
dataset D = {xlisti, i = 1, . . . N}

1.compute Nv for v ∈ V
create vlist, list of variables in V sorted by decreasing Nv

2.ListByCooccurrence
3.create vheap

for u ∈ vlist
v = argmax

headCu,headV0(u)
Iuv

insert (c, u, v, Iuv) in vheap
4.E = KruskalMST(vheap); store the c = Nuv values

for the edges added to E
5. for uv ∈ E

compute the probability table Tuv using Nu, Nv,
Nuv and N .

Output T

4.4 Time and storage requirements

Running time In the first step we have to compute the
variables’ frequencies Nv. This can be done by scanning
trough the data points and by increasing the correspond-
ingNv each time v is found in xlisti for i = 1, . . .N . This
procedure will take at most sN operations. Adding in
the time to initialize all Nv (O(n)) and the time to sort
the Nv values (O(n log n)) gives an upper bound on the
running time for step 1 of the acCL algorithm of

O(n logn+ sN)

The running time of the second step is already estimated
to

O(s2N log
s2N

n
)

Step 3, constructing a Fibonacci heap of size n, takes
constant time per insertion, thus

O(n)

An additional amount of time may be needed to extract
elements from the virtual lists V0(u) by skipping the
cooccurring elements, but this time will be accounted
for in step 4.
Step 4 is the Kruskal algorithm. Each extraction from

vheap is O(log n). All the extractions from the virtu-
ally represented V0(u) take no more than nK +NC time
steps since there are at mostNC elements that have to be
skipped. An extraction from C(u) takes constant time.
nK is the number of steps taken by Kruskal’s algorithm.
After choosing a candidate edge, the Kruskal algorithm
checks if it forms a cycle with edges already included in
the tree, and if not, it includes it too. By using an effi-
cient disjoint set representation [3] the former operation
can be performed in constant time; the second opera-
tion, equivalent to insertion in a list, can be performed
in constant time as well. Therefore, the running time for
this step is

O(nK logn+NC)

The last step computes n− 1 probability tables, each of
them taking constant time. Thus, its running time is

O(n)

Adding up these five terms we obtain the upper bound
for the running time of the acCL algorithm as

O(n logn+ sn+ s2N log
s2N

n
+ nK log n) (26)

Ignoring the logarithmic factors the bound becomes

Õ(sn+ s2N + nK) (27)

For constant or bounded s, the above bound is a poly-
nomial of degree 1 in the three variables n, N and nK .
However, we know that nK the total number of edges
inspected by Kruskal’s algorithm has the range

n− 1 ≤ nK ≤ n(n− 1)
2

. (28)

Hence, in the worst case the above algorithm is quadratic
in n. However, there are reasons to believe that in prac-
tice the dependence of nK on n is subquadratic. Ran-
dom graph theory suggests that if the distribution of the

6

5 500 1000 2000 3000
0

0.5

1

1.5

2

2.5
x 10

4

n

st
ep

s

Figure 3: The mean (full line), standard deviation and
maximum (dotted line) of Kruskal algorithm steps nK

over 1000 runs plotted against n logn. n ranges from 5
to 3000. The edge weights were sampled from a uniform
distribution.

weight values is the same for all edges, then Kruskal’s
algorithm should take a number of steps proportional to
n logn [12]. This result is sustained by experiments we
have conducted: we ran Kruskal algorithm on sets of ran-
dom weights over domains of dimension up to n = 3000.
For each n, 1000 runs were performed. Figure 3 shows
the average and maximum nK plotted versus n logn.
The curves display a close to linear dependence.

Memory requirements To store data and results we
need: O(sN) for the dataset in the bipartite graph repre-
sentation, O(n) to store the variables and another O(n)
to store the resulting tree structure and parametrization.
The additional storage required by the algorithm in-

cludes O(n) for v − list, then O(s2N) for all the lists
created in step 2 of the algorithm. In step 3, vheap is
created taking up O(n) memory. The Kruskal algorithm
requires O(n) storage to keep track of the tree topology.
Computing the probability tables in step 5 requires no
additional storage besides that taken up by the distribu-
tion itself.
Hence, the total space used by the algorithm is

O(s2N + n). (29)

5 Generalization to discrete variables of
arbitrary arity

This section will show how the Chow and Liu algorithm
can be accelerated in discrete domains where the vari-
ables can take more than two values. We shall assume
that a variable v ∈ V takes rv values, 2 ≤ rv ≤ rMAX .
The algorithm that we are going to develop is a simple

extension of the acCL algorithm. Therefore, we shall
present only the ideas that lead to extension and the
modifications to the acCL algorithm that they imply.
The acCL algorithms introduced previously were ex-

ploiting the data sparsity. If they are to be generalized,
it is first necessary to extend the notion of sparsity itself.
Thus, in the forthcoming we shall assume that for each
variable exists a special value that appears with higher
frequency than all the other values. This value will be
denoted by 0, without loss of generality. For example, in
a medical domain, the value 0 for a variable would rep-
resent the “normal” value, whereas the abnormal values
of each variable would be designated by non-zero values.
Similarly, in a diagnostic system, 0 will indicate a normal
or correct value, whereas the non-zero values would be
assigned to the different failure modes associated with
the respective variable.
An occurence for variable v will be the event v �= 0 and

a cooccurrence of u and v means that u and v are both
non-zero in the same data point. Therefore, we define
|x| as the number of non-zero values in observation x

|x| = n−
∑
v∈V

δxv (30)

The sparsity s will be the maximum of |x| over the data
set, as before.
From the above it can be anticipated that the high fre-

quency of the 0 values will help accelerate the tree learn-
ing algorithm. As before, we shall represent only the
occurrences explicitly, creating thereby a compact and
efficient data structure. Moreover, we shall demonstrate
presorting mutual informations for non-cooccurring vari-
ables in this case can be done in the same way as before.

5.1 Computing cooccurrences

Following the previously introduced idea of not repre-
senting 0 values explicitly, each data point x will be re-
placed by the list xlist of the variables that occur in
it. However, since there can be more than one non-zero
value, the list has to store this value along with the vari-
able index. Thus

xlist = list{(v, xv), v ∈ V, xv �= 0}.

Similarly, a cooccurrence will be represented by the
quadruple (u, xu, v, xv), xu, xv �= 0. Counting and stor-
ing cooccurrences can be done in the same time as before
and with a proportionally larger amount on memory, re-
quired by the additional need to store the (non-zero)
variable values.
Instead of one cooccurrence count Nuv we shall now

have a two-way contingency table N ij
uv. Each N ij

uv repre-
sents the number of data points where u = i, v = j, i, j �=
0. This contingency table, together with the marginal
counts N j

v (defined as the number of data points where
v = j, j �= 0) and with N completely determine the

7

joint distribution of u and v (and consequently the mu-
tual information Iuv). Constructing the cooccurrence
contingency tables multiplies the storage requirements
of this step of the algorithm by O(r2

MAX) but does not
change the running time.

5.2 Presorting mutual informations

As in subsection 4.1, our goal is to presort the mutual
informations Iuv for all v u that do not cooccur with
u. We shall show that this can be done exactly as be-
fore. The derivations below will be clearer if they are
made in terms of probabilities; therefore, we shall use
the notations:

Pv(i) =
N i

v

N
, i �= 0 (31)

Pv0 ≡ Pv(0) = 1−
∑
i�=0

Pv(i) (32)

The above quantities represent the (empirical) probabil-
ities of v taking value i �= 0 and 0 respectively. Entropies
will be denoted by H.

A “chain rule” expression for the entropy of a
discrete variable. The entropyHv of any multivalued
discrete variable v can be decomposed in the following
way:

Hv = (33)

= −Pv0 logPv0 −
∑
i�=0

Pv(i) logPv(i)

= −Pv0 logPv0 − (1− Pv0)
∑
i�=0

Pv(i)
(1− Pv0)

[
log

Pv(i)
(1− Pv0)

+ log(1− Pv0)]
= −Pv0 logPv0 − (1− Pv0) log(1− Pv0)︸ ︷︷ ︸

Hv0

−(1− Pv0)
∑
i�=0

Pv(i)
(1− Pv0)

log
Pv(i)

(1− Pv0)︸ ︷︷ ︸
−Hv

= Hv0 + (1− Pv0)Hv (34)

This decomposition represents a sampling model
where first we choose whether v will be zero or not,
and then, if the outcome is “non-zero” we choose one of
the remaining values by sampling from the distribution
Pv|v �=0(i) = Pv(i)

1−Pv0
. Hv0 is the uncertainty associated

with the first choice, whereas Hv ≡ Hv|v �=0 is the en-
tropy of the outcome of the second one. The advantage
of this decomposition for our purpose is that it separates
the 0 outcome from the others and “encapsulates” the
uncertainty of the latters in the number Hv.

The mutual information of two non-cooccurring
variables We shall use the above fact to find an ex-

pression of the mutual information Iuv of two non cooc-
curring variables u, v in terms of Pu0, Pv0 and Hu only.

Iuv = Hu −Hu|v (35)

The second term, the conditional entropy of u given v is

Hu|v = Pv0Hu|v=0 +
∑
j �=0

Pv(j)Hu|v=j︸ ︷︷ ︸
0

(36)

The last term in the above equation is 0 because, for
any non-zero value of v, the condition Nuv = 0 implies
that u has to be 0. Let us now develop Hu|v=0 using the
decomposition in equation (34).

Hu|v=0 = Hu0|v=0 + (1− Pu=0|v=0)Hu|u�=0,v=0 (37)

Because u and v are never non-zero in the same time,
all non-zero values of u are paired with zero values of v.
Hence, knowing that v = 0 brings no additional infor-
mation once we know that u �= 0. In probabilistic terms:
Pr[u = i|u �= 0, v = 0] = Pr[u = i|u �= 0] and

Hu|u�=0,v=0 = Hu (38)

The term Hu=0|v=0 is the entropy of a binary variable
whose probability is Pr[u = 0|v = 0]. This probability
equals

Pr[u = 0|v = 0] = 1−
∑
i�=0

Pu|v=0(i)

= 1−
∑
i�=0

Pu(i)
Pv0

= 1− 1− Pu0

1− Pv0
(39)

Note that in order to obtain a non-negative probability
in the above equation one needs

1− Pu0 ≤ Pv0

a condition that is always satisfied if u and v do not
cooccur.
Replacing the previous three equations in the formula

of the mutual information, we get

Iuv = Pu0 logPu0 − Pv0 logPv0 (40)
+(Pu0 + Pv0 − 1) log(Pu0 + Pv0 − 1)

an expression that, remarkably, depends only on Pu0 and
Pv0. Taking its partial derivative with respect to Pv0

yields
∂Iuv

∂Pv0
= log

Pv0 + Pu0 − 1
Pv0

< 0 (41)

a value that is always negative, independently of Pv0.
This shows the mutual information increases monoton-
ically with the “occurrence frequency” of v given by
1 − Pv0. Note also that the above expression for the

8

derivative is a rewrite of the result obtained for binary
variables in (19).
We have shown that the acCL algorithm can be ex-

tended to variables taking more than two values by mak-
ing only one (minor) modification: the replacement of
the scalar counts Nv and Nuv by the vectors N j

v , j �= 0
and, respectively, the contingency tables N ij

uv, i, j �= 0.

6 Using the acCL algorithm with EM

So far it has been shown how to accelerate the CL al-
gorithm under the assumption that the target probabil-
ity distribution P is defined in terms of integer counts3

N, Nv, Nuv, u, v ∈ V . This is true when fitting one tree
distribution to an observed data set or in the case of clas-
sification with TANB models where the data points are
partitioned according to the observed class variable. But
an important application of the CL algorithm are mix-
tures of trees [8], and in the case of learning mixtures by
the EM algorithm the counts defining P for each of the
component trees are not integer.
Each Expectation step of the EM algorithm computes

the posterior probability of each mixture component k of
having generated data point xi. This values is denoted
by γk(i). The values γ have the effect of “weighting” the
points in the dataset D with values in [0, 1], different for
each of the trees in the mixture. The counts Nk

v and
Nk

uv corresponding to tree T k are defined in terms of the
γ values as

Nk =
N∑

i=1

γk(i) (42)

Nk
v =

∑
i:xi

v=1

γk(i) (43)

Nk
uv =

∑
i:xi

v=1∧xi
u=1

γk(i). (44)

These counts are in general not integer numbers. Let
us examine steps 1 and 2 of the acCL algorithm and
modify them in order to handle weighted data.
First, remark that if the mixture has m components,

step 1 will have to sort the variables m times, producing
m different vlists, one for each of the components. Com-
puting the Nk

v values is done similarly to the previous
section; the only modification is that for each occurrence
of v in a data point one adds γk(i) to Nk

v instead of incre-
menting a counter. Remark that no operations are done
for pairs of variables that do not cooccur in the original
data set, preserving thereby the algorithm’s guarantee
of efficiency.
For step 2, a similar approach is taken. At the time

of inserting in cheapk
u one must store not only v but also

γk(i). When the heap is emptied, the current “count” c
sums all the γk(i) values corresponding to the given v.

3In this and the subsequent sections we return to the bi-
nary variable assumption for the sake of notational simplicity.

Note also that one can use the fact that the data are
sparse to accelerate the E step as well. One can precom-
pute the “most frequent” likelihood T k

0
∆= T k(0, . . . , 0)

for each k. Then, if v is 1 for point xi one multiplies

T k
0 by the ratio

T k
v|pa(v)(1|pa(v))

T k
v|pa(v)(0|pa(v))

also precomputed. This

way the E step will run in O(msN) time instead of the
previously computed O(mnN).

7 Factorized priors and the acCL
algorithm

All of the above assumes that the tree or mixture is to
be fit to the data in the maximum likelihood framework.
This section will study the possibility of using priors in
conjunction with the acCL algorithm. The classes of
priors that we shall be concerned with are the decom-
posable priors that preserve the parameter independence
assumptions on which the CL algorithm is based. For an
in-depth discussion of decomposable priors the reader is
invited to consult [7]. We shall first examine priors on
the tree’s structure having the form

P (E) ∝ exp

(
−
∑

uv∈E

βuv

)

This prior translates into a penalty on the weight of edge
uv as seen by a MWST algorithm

Wuv ← Iuv −
βuv

N

It is easily seen that for general βuv values such a mod-
ification cannot be handled by the acCL algorithm. In-
deed, this would affect the ordering of the edges out-
going from u in a way that is inpredictable from the
counts Nv, Nuv. However, if βuv is constant for all pairs
u, v ∈ V , then the ordering of the edges is not affected.
All we need to do to use an acCL algorithm with a con-
stant penalty β is to compare the Iuv of each edge, at
the moment it is extracted from vheap by Kruskal’s al-
gorithm, with the quantity β

N . The algorithm stops as
soon as one edge is found whose mutual information is
smaller than the penalty β

N and proceeds as before oth-
erwise. Of course, in the context of the EM algorithm,
N is replaced by Nk and β can be different for each com-
ponent of the mixture. Remark that if all the variables
are binary (or have the same number of values) an MDL
type edge penalty translates into a constant βuv.
Regarding Dirichlet priors on the tree’s parameters,

it is known [7] that they can be represented as a set of
fictitious counts N ′

uv, u, v ∈ V and that maximizing the
posterior probability of the tree is equivalent to minimiz-
ing the KL divergence

KL(P̃ ||T)

with P̃ a mixture between the empirical distribution P
9

and the fictitious distribution P ′ defined by N ′
uv.

P̃ =
N

N +N ′P +
N ′

N +N ′P
′ (45)

In this situation, the basic sparsity assumption that the
acCL algorithm relies on may be challenged. Recall that
it is important that most of the Nuv values are 0. If
the counts N ′

uv violate this assumption then the acCL
algorithms become inefficient. In particular, the acCL
algorithm degrades to a standard CL algorithm. Having
many or all N ′

uv > 0 is not a rare case. In particular, it
is a characteristic of the non-informative priors that aim
at smoothing the model parameters. This means that
smoothing priors and the acCL algorithm will in general
not be compatible.
Somehow suprisingly, however, the uniform prior given

by

N ′
uv =

1
rurv

N ′ (46)

constitutes an exception: for this prior, in the case of bi-
nary variables, all the fictitious cooccurrence counts are
equal to N ′/4. Using this fact, one can prove that for
very small and for large values of N ′ (> 8) the order
of the mutual informations in V0(u) is preserved and re-
spectively reversed. This fact allows us to run the acCL
algorithm efficiently after only slight modification.

8 Experiments

The following experiments compare the (hypothesized)
gain in speed of the acCL algorithm w.r.t the traditional
Chow and Liu method under controlled conditions on
artificial data.
The binary domain has a dimensionality n varying

from 50 to 1000. Each data point has a fixed number
s of variables being on. The sparsity s takes the val-
ues 5, 10, 15 and 100. The small values were chosen
to gauge the advantage of the accelerated algorithm un-
der extremely favorable conditions. The larger value will
help us see how the performance degrades under more
realistic circumstances. Each data point (representing
a list of variables being on) was generated as follows:
the first variable was picked randomly from the range
1, . . . n; the subsequent points were sampled from a ran-
dom walk with a random step size between -4 and 4. For
each pair n, s a set of 10,000 points was generated.
Each data set was used by both CL and acCL to fit one

tree distribution and the running times were recorded
and plotted in figure 4. The improvements over the tra-
ditional version for sparse data are spectacular: learn-
ing a tree over 1000 variables from 10,000 data points
takes 4 hours by the traditional algorithm and only 4
seconds by the accelerated version when the data are
sparse (s = 15). For s = 100 the acCL algorithm takes
2 minutes to complete, improving on the traditional al-
gorithm by a factor of “only” 123.

What is also noticeable is that the running time of
the accelerated algorithm seems to be almost indepen-
dent of the dimension of the domain. On the other side,
the number of steps nK (figure 5) grows with n. This
observation implies that the bulk of the computation lies
with the steps preceding the Kruskal algorithm proper.
Namely, that it is in computing cooccurrences and or-
ganizing the data that most of the time is spent. This
observation would deserve further investigation for large
real-world applications.
Figure 4 also confirms that the running time of the

traditional CL algorithm grows quadratically with n and
is independent of s.

9 Concluding remarks

This paper has presented a way of taking advantages
of sparsity in the data to accelerate the tree learning
algorithm.
The method achieves its performance by exploiting

characteristics of the data (sparsity) and of the prob-
lem (the weights represent mutual informations) that
are external to the Maximum Weight Spanning Tree al-
gorithm proper. Moreover, it has been shown empiri-
cally that a very significant part of the algorithms’ run-
ning time is spent in computing cooccurrences. This
prompts future work on applying trees and mixtures of
trees to high-dimensional tasks to focus on methods for
structuring the data and for computing or approximat-
ing marginal distributions and mutual informations in
specific domains.

Acknowledgements

I am indebted to Paul Viola for suggesting this topic and
to David Karger for many stimulating discussions along
the way.

References

[1] Peter Cheeseman and John Stutz. Bayesian clas-
sification (AutoClass): Theory and results. AAAI
Press, 1995.

[2] C. K. Chow and C. N. Liu. Approximating discrete
probability distributions with dependence trees.
”IEEE Transactions on Information Theory”, IT-
14(3):462–467, May 1968.

[3] Thomas H. Cormen, Charles E. Leiserson, and
Ronald R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[4] Michael L. Fredman and Robert Endre Tarjan. Fi-
bonacci heaps and their uses in improved network
optimization algorithms. Jounal of the Associa-
tion for Computing Machinery, 34(3):596–615, July
1987.

10

50 100 200 1000

 2

 5

 10

 1m

 2m

10m

30m

 1h

 4h

 s=15

 s=100

 s=5
 s=10

 n

Time

Figure 4: Real running time for the accelerated (full line) and traditional (dotted line) TreeLearn algorithm versus
number of vertices n for different values of the sparsity s.

50 100 200 1000
10

2

10
3

10
4

10
5

10
6

 s=100

 s=10
 s=5

 s=15

 n

 Kruskal

Figure 5: Number of steps of the Kruskal algorithm nK versus domain size n measured for the acCL algorithm for
different values of s

11

[5] Nir Friedman, Dan Geiger, and Moises Goldszmidt.
Bayesian network classifiers. Machine Learning,
29:131–163, 1997.

[6] David Heckerman, Dan Geiger, and David M.
Chickering. Learning Bayesian networks: the com-
bination of knowledge and statistical data. Machine
Learning, 20(3):197–243, 1995.

[7] Marina Meilă. Learning with Mixtures of Trees.
PhD thesis, Massachusetts Institute of Technology,
1999.

[8] Marina Meilă and Michael Jordan. A top-down ap-
proach to structure learning. Technical report, Mas-
sachusetts Institute of Technology, CBCL Report,
1998. (in preparation).

[9] Marina Meilă and Michael I. Jordan. Estimating
dependency structure as a hidden variable. In M. I.
Jordan and Sara Solla, editors, Neural Information
Processing Systems, number 10, page (to appear).
MIT Press, 1998.

[10] R. Sibson. SLINK: an optimally efficient algorithm
for the single-link cluster method. The Computer
Journal, 16, 1973.

[11] Robert Endre Tarjan. Data structures and net-
work algorithms. Society for Industrial and Applied
Mathematics, 1983.

[12] Douglas B. West. Introduction to Graph Theory.
Prentice Hall, 1996.

12

