
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1648 September, 1998
C.B.C.L. Memo No. 165

Estimating Dependency Structure as a Hidden
Variable

Marina Meilă Michael I. Jordan Quaid Morris

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically
changing dependence relationships. We present a family of efficient algorithms based on the EM and the
Minimum Spanning Tree algorithms that learn mixtures of trees in the ML framework. The method can
be extended to take into account priors and, for a wide class of priors that includes the Dirichlet and
the MDL priors, it preserves its computational efficiency. Experimental results demonstrate the excellent
performance of the new model both in density estimation and in classification. Finally, we show that a single
tree classifier acts like an implicit feature selector, thus making the classification performance insensitive to
irrelevant attributes.

Copyright c© Massachusetts Institute of Technology, 1998

This report describes research done at the Dept. of Electrical Engineering and Computer Science, the Dept. of Brain and
Cognitive Sciences, the Center for Biological and Computational Learning and the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Dept. of Defense and by the Office of Naval Research. Michael I. Jordan is a NSF Presidential
Young Investigator. The authors can be reached at M.I.T., Center for Biological and Computational Learning, 45 Carleton
St., Cambridge MA 02142, USA. E-mail: mmp@ai.mit.edu, jordan@psyche.mit.edu, quaid@ai.mit.edu.

1 INTRODUCTION

A fundamental feature of a good model is the ability to
uncover and exploit independencies in the data it is pre-
sented with. For many commonly used models, such as
neural nets and belief networks, the dependency struc-
ture encoded in the model is fixed, in the sense that it
is not allowed to vary depending on actual values of the
variables or with the current case. However, dependency
structures that are conditional on values of variables
abound in the world around us. Consider for example
bitmaps of handwritten digits. They obviously contain
many dependencies between pixels; however, the pattern
of these dependencies will vary across digits. Imagine a
medical database recording the body weight and other
data for each patient. The body weight could be a func-
tion of age and height for a healthy person, but it would
depend on other conditions if the patient suffered from
a disease or were an athlete.
Models that are able to represent data conditioned

dependencies are decision trees and mixture models, in-
cluding the soft counterpart of the decision tree, the mix-
ture of experts. Decision trees however can only repre-
sent certain patterns of dependecy, and in particular are
not suited for representing sparse dependencies. Mix-
tures are more flexible and the rest of this paper will be
focusing on one special case called the mixture of span-
ning trees.
We will consider domains where the observed vari-

ables are related by pairwise dependencies only and these
dependencies are sparse enough to contain no cycles.
Therefore they can be represented graphically as a tree.
The structure of the dependencies may vary from one
instance to the next. We index the set of possible de-
pendency structures by a structure variable z (that can
be observed or hidden) thereby obtaining a mixture.
In the framework of graphical probability models, tree

distributions enjoy many properties that make them at-
tractive as modelling tools: they have a flexible topology,
are intuitively appealing, sampling and computing like-
lihoods are linear time, simple efficient algorithms for
marginalizing and conditioning (quadratic or less in the
dimension of the problem) exist. Fitting the best tree to
a given distribution can be done exactly and efficiently.
Trees can capture simple pairwise interactions between
variables but they can prove insufficient for more com-
plex distributions. Mixtures of trees enjoy most of the
computational advantages of trees and, in addition, they
are universal approximators over the space of all dis-
tributions. Therefore, they are appropriate as density
estimators for domains where the dependency patterns
become tree like when a possibly hidden variable is in-
stantiated. But given the rich history of mixture models
as classifiers they appear promising for these task as well.
Mixture models have been extensively used in the

statistics and neural network literature. Of relevance to
the present work are the mixtures of Gaussians, whose

distribution space, in the case of continuous variables
overlaps with the space of mixtures of trees. Mixtures
of factorial distributions, a subclass of tree distributions,
have been investigated recently by [9]. Work on fitting
a tree to a distribution in a Maximum-Likelihood (ML)
framework has been pioneered by Chow and Liu [2] and
was extended to polytrees by Pearl [13] and to mixtures
of trees with observed structure variable by Geiger [6]
and Friedman [5].
This work presents efficient algorithms for learning

mixture of trees models with unknown or hidden struc-
ture variable. The following section introduces the
model; then, section 3 develops the basic algorithm for
its estimation from data in the ML framework. Section 4
discusses the introduction of priors over mixtures of trees
models and presents several realistic factorized and non-
factorized priors for which the MAP estimate can be
computed by modified versions of the basic algorithm.
The properties of the model as a density estimator are
verified by experiments in section 5 while section 6 stud-
ies its classification performance. Section 7 concludes
the paper.

2 THE MIXTURE OF TREES
MODEL

In this section we will introduce the mixture of trees
model and the notation that will be used throughout
the paper. Let V denote the set of variables of interest.
According to the graphical model paradigm, each vari-
able is viewed as a vertex of a graph. Let rv denote the
number of values of variable v ∈ V , xv a particular value
of v, xA an assignment to the variables in the subset A
of V . To simplify notation xV will be denoted by x.
We use trees as graphical representations for families

of probability distributions over V that satisfy a com-
mon set of independence relationships encoded in the
tree topology. In this representation, an edge of the tree
shows a direct dependence, or, more precisely, the ab-
sence of an edge between two variables signifies that they
are independent, conditioned on all the other variables
in V . We shall call a graph that has no cycles a tree1

and shall denote by E its edge set.
Now we define a probability distribution T that is con-

formal with a tree. Let us denote by Tuv and Tv the
marginals of T :

Tuv(xu, xv) =
∑

xV −{u,v}

T (xu, xv, xV −{u,v})

Tv(xv) =
∑

xV −{v}

T (xv, xV −{v}).

Let deg v be the degree of vertex v, e.g. the number of
edges incident to v ∈ V . Then, the distribution T is

1In the graph theory literature, our definition corresponds
to a forest. The connected components of a forest are called
trees.

1

conformal with the tree (V, E) if it can be factorized as:

T (x) =

∏
(u,v)∈E Tuv(xu, xv)∏
v∈V Tv(xv)deg v−1

(1)

The distribution itself will be called a tree when no con-
fusion is possible. If the tree is connected, e.g. it spans
all the nodes in V , it is often called a spanning tree.
An equivalent representation for T in terms of condi-

tional probabilities is

T (x) =
∏
v∈V

Tv|pa(v)(xv |xpa(v)) (2)

The form (2) can be obtained from (1) by choosing an
arbitrary root in each connected component and recur-
sively substituting Tvpa(v)

Tpa(v)
by Tv|pa(v) starting from the

root. pa(v) represents the parent of v in the thus di-
rected tree or the empty set if v is the root of a con-
nected component. The directed tree representation has
the advantage of having independent parameters. The
total number of free parameters in either representation
is ∑

(u,v)∈ET

rurv −
∑
v∈V

(degv − 1)rv.

From the second representation of T one can notice that
for distribution that is conformal with a tree, all the sep-
aration properties induced by the tree structure have a
corresponding conditional independence property of the
distribution. More concretely, in a tree there is at most
one path between every two vertices. If node w is on the
path between u and v we say that w separates u and v.
Correspondingly, if we condition on w, the probability
distribution T can be decomposed into the product of
two factors, each one containing one of the variables u,
v. Hence, u and v are independent given w.
Now we define a mixture of trees to be a distribution

of the form

Q(x) =
m∑

k=1

λkT
k(x) (3)

with

λk ≥ 0, k = 1, . . . ,m;
m∑

k=1

λk = 1. (4)

The tree distributions T k are the mixture components
and λk are called mixture coefficients. From the graphi-
cal models perspective, a mixture of trees can be viewed
as a containing an unobserved choice variable z, taking
value k ∈ {1, . . .m} with probability λk. Conditioned on
the value of z the distribution of the visible variables x
is a tree. The m trees may have different structures and
different parameters. Note that because of the struc-
ture variable, a mixture of trees is not properly a belief
network, but most of the results here owe to the belief
network perspective.

3 THE BASIC ALGORITHM: ML
FITTING OF MIXTURES OF
TREES

This section will show how a mixture of trees can be
fit to an observed dataset in the Maximum Likelihood
paradigm via the EM algorithm [3]. The observations are
denoted by {x1, x2, . . . , xN}; the corresponding values
of the structure variable are {zi, i = 1, . . . N}.
Following a usual EM procedure for mixtures, the Ex-

pectation (E) step consists in estimating the posterior
probability of each mixture component (tree) to gener-
ate datapoint xi

Pr[zi = k|x1,...N ,model] = γk(i) =
λkT

k(xi)∑
k′ λk′T k′(xi)

(5)

Then the expected complete log-likelihood to be maxi-
mized by the M step of the algorithm is

E[lc |x1,...N ,model] = (6)

=
m∑

k=1

Γk[logλk +
N∑

i=1

P k(xi) log T k(xi)]

Γk =
N∑

i=1

γk(xi), k = 1, . . .m (7)

P k(xi) = γk(i)/Γk. (8)

The sums Γk represent the total number of points as-
signed to each tree. By normalizing the posteriors γk(i)
with Γk we obtain a probability distribution P k over the
data set. To obtain the new distributions T k, we have to
maximize for each k the expression that is the negative
of the crossentropy between P k and T k.

N∑
i=1

P k(xi) logT k(xi) (9)

This problem can be solved exactly as shown in [2]. Here
we will give a brief description of the procedure. First,
one has to compute the mutual information between each
pair of variables in V under the target distribution P

Iuv =
∑
xuxv

Puv(xu, xv) log
Puv(xu, xv)

Pu(xu)Pv(xv)
, u, v ∈ V, u =/v.

(10)
Second, the optimal tree structure ET is found by a
Maximum Weight Spanning Tree (MWST) algorithm us-
ing Iuv as the weight for edge (u, v),∀u, v ∈ V . Once the
tree is found, its marginals Tuv (or Tu|v), (u, v) ∈ ET are
exactly equal to the corresponding marginals Puv of the
target distribution P . They are already computed as
an intermediate step in the computation of the mutual
informations Iuv (10).
In our case, the target distribution for T k is repre-

sented by the posterior sample distribution P k. Note
2

Figure 1: The Basic Algorithm: ML Fitting of a Mixture of Trees
Input:Dataset {x1, . . . xN}

Initial model m, T k, λk, k = 1, . . . m
Procedure MWST(weights) that fits a maximum weight spanning tree over V

Iterate until convergence:
E step: compute γi

k, P k(xi) for k = 1, . . . m, i = 1, . . . N by (5), (7), (8)
M step:

M1. λk ← Γk/N, k = 1, . . . m
M2. compute marginals P k

v , P k
uv, u, v ∈ V, k = 1, . . . m

M3. compute mutual information Ik
uvu, v ∈ V, k = 1, . . . m

M4. call MWST({ Ik
uv }) to generate ETk for k = 1, . . . m

M5. T k
uv ← P k

uv, ;T k
v ← P k

v for (u, v) ∈ ETk , k = 1, . . . m

that although each tree fit to P k is optimal, for the en-
compassing problem of fitting a mixture of trees to a
sample distribution only a local optimum is guaranteed
to be reached. To complete the M step, one computes
the maximizing values for the parameters λ by

λnew
k = Γk/N.

The algorithm is summarized in figure 1. This proce-
dure is based on one important assumption that should
be made explicit now. It is the Parameter indepen-
dence assumption: The distribution T k

v|pa(v) for any
k, v and value of pa(v) is a multinomial with rv − 1 free
parameters that are independent of any other parameters
of the mixture.
Shared structure It is possible to constrain the m

trees to share the same structure, thus constructing a
truly Bayesian network. To achieve this, it is sufficient
to replace the weights in stepM4 of the basic algorithm
by

∑
k ΓkI

k
uv and run the MWST algorithm only once

to obtain the common structure ET . The tree stuctures
obtained by the basic algorithm are connected. The fol-
lowing section will give reasons and ways to obtain dis-
connected tree structures.
Missing variables are handled elegantly by trees.

Any number of nonadjacent missing variables can be
marginalized out in O(maxvrv) time and this bound
grows exponentially with l, the size of the largest con-
nected subset of missing variables.
Observed but unknown structure variable An

interesting special case is the situation when the struc-
ture variable is in fact one of the observed variables (or
a small subset thereof), but we don’t know which one?
To discover it, one can either: build several mixtures
by conditioning on each one of the observables and then
compare their posteriors, or: build one standard mix-
ture model and then compare the mutual information
between the structure variable and each of the others to
identify the most likely candidate.

4 MAP MIXTURES OF TREES

In the previous section we have shown how to fit the ML
mixture of spanning trees to a set of observations using

the EM algorithm. Now we will extend the above proce-
dure to the broader problem of finding the Maximum a
Posteriori (MAP) probability mixture of trees for a given
dataset. In other words, we will consider a nonuniform
prior P [model] and will be searching for the mixture of
trees that maximizes

logP [model|x1,...N] = logP [x1,...N |model] (11)
+ logP [model] + constant.

Factorized priors The present maximization problem
differs from the ML problem solved in the previous sec-
tion only by the addition of the term logP [model]. We
can as well approach it from the EM point of view, by
iteratively maximizing

E
[
logP [model|x1,...N , z1,...N]

]
= logP [model] (12)

+ E[lc(x1,...N , z1,...N |model)]

It is easy to see that the added term does not have any
influence on the E step,which will proceed exactly as
before. However, in the M step, we must be able to
successfully maximize the r.h.s. of (12). In usual EM
application this is enabled by the fact that we obtain a
separate set of equations for the parameters of each mix-
ture component. Therefore, we will look for priors over
the trees parameters that also satisfy this decomposition.
They are of the form

P [model] = P [λ1,...m]
m∏

k=1

P [Tk] (13)

This class of priors is in agreement with the param-
eter independence assumption and includes the conju-
gate prior for the multinomial distribution which is the
Dirichlet prior. A Dirichlet prior over a tree can be repre-
sented as a table of fictitious marginal probabilities P ′k

uv

for each pair u, v of variables plus an equivalent sample
size N ′ that gives the strength of the prior [8]. It is
straightforward to maximize the a-posteriori probability
of a tree: one has to replace the marginals P k

uv in step
M2 by

P̃ k
uv = (NP k

uv + N ′P ′k
uv)/(N + N ′) (14)

3

The above formula is obtained applying the derivation in
[8] to the special case of a tree distribution and consider-
ing the parametrization of the Dirichlet distribution for
which the mode is equal to the mean. Hence, the param-
eter estimates obtained in the M step will also represent
mean values of the parameters under the (Dirichlet) pos-
terior distribution.
A Dirichlet prior implies the knowledge of detailed

prior information about the model. In particular it
implies that the number of mixture components m is
known. When this is not the case, but there is informa-
tion about the marginal relations between the variables
one can introduce it in the form of one table of fictitious
marginals and and an equivalent sample size N ′. From it
one can create a fictitious dataset of size N ′ to augment
the true training set. Then, the training should proceed
just like for an ordinary ML model fitting.
MDL (Minimum Description Length) priors

are even less informative priors. They attempt to bal-
ance the number of parameters that are estimated with
the amount of data available, usually by introducing a
penalty on model complexity. For mixtures of trees one
can proceed in two fashions, differing on whether they
maintain or drop the parameter independence. First we
will describe methods to reduce the number of parame-
ters while keeping them independent.
Edge pruning and prior onm. To control the num-

ber of componentsm, one can introduce a prior P [m] and
compare model posteriors obtained from (11). To penal-
ize the number of parameters in each component notice
that adding a link (u, v) in a tree contributes ∆uv =
(ru − 1)(rv − 1) parameters w.r.t. a factorized distribu-
tion. One can also choose a uniform penalty ∆uv = 1.
Introducing a prior P [T] ∝ exp

[
−β

∑
uv∈ET

∆uv

]
is

equivalent to maximizing the following expression for
each mixture component (the mixture index k being
dropped for simplicity)

argmax
ET

∑
uv∈ET

[ΓIuv − β∆uv] = argmax
ET

∑
uv∈ET

Wuv

(15)
To achieve this for any choice of ∆uv it suffices to re-
place the weights in stepM4 by W k

uv and to modify the
MWST procedure so as to consider only positive weight
edges. This prior is a factorized prior as well2.
Smoothing (or regularization) methods consider

one comprehensive model class (full spanning trees and
a sufficiently large m) and within it introduce a bias to-
wards a small effective number of parameters. Here we
discuss a few techniques that can be applied to trees and
direct the reader to consult the vast existing literature
related to smoothing in clustering and discrete probabil-
ity estimation for futher information on this subject.
• Penalizing the entropy of the structure variable

2Note that to use P [m] together with edge pruning one
has to compute the normalization constant in (11).

by introducing the penalty term −αH(λ1,...m). In this
case, the λk cease being decoupled, and the resulting
system of equations has to be solved numerically.
• Smoothing with the marginal. One computes the
pairwise marginals for the whole dataset P total

uv and re-
places the marginals P k

uv by

P̃ k
uv = (1− α)P k

uv + αP total
uv , 0 < α < 1 (16)

This method and several variations thereof are discussed
in [11]. Its effect is to give a small probability weight to
unseen instances and to draw the components closer to
each other, thereby reducing the effective value of m.
For the method to be effective in practice α is usually a
function of Γk and P k

uv.

5 EXPERIMENTAL RESULTS

We have tested our model and algorithms for their abil-
ity to retrieve the dependency structure in the data, as
density estimators and as classifiers.
For the first objective, we sampled 30,000 datapoints

from a mixture of 5 trees over 30 variables with rv = 4
for all vertices. All the other parameters of the generat-
ing model and the initial points for the algorithm were
picked at random. The results on retrieving the original
trees were excellent: out of 10 trials, the algorithm failed
to retrieve correctly only 1 tree in 1 trial. This bad re-
sult can be accounted for by sampling noise. The tree
that wasn’t recovered had a λ of only 0.02. Instead of re-
covering the missing tree, the algorithm fit two identical
trees to the generating tree with the highest λ. The dif-
ference between the log likelihood of the samples of the
generating model and the approximating model was 0.41
bits per example. On all the correctly recovered trees,
the approximating mixture had a higher log likelihood
for the sample set than the generating distribution.
We also tested the basic algorithm as density esti-

mator by running it on a subset of binary vector rep-
resentations of handwritten digits and measuring the
compression rate. The datasets consist of normalized
and quantized 8x8 binary images of handwritten digits
made available by the US Postal Service Office for Ad-
vanced Technology. One dataset contained images of
single digits in 64 dimensions, the second contained 128
dimensional vectors representing randomly paired digit
images. The training, validation and test set contained
6000, 2000, and 5000 exemplars respectively. The data
sets, the training conditions and the algorithms we com-
pared with are described in [4]. We tried mixtures of 16,
32, 64 and 128 trees, fitted by the basic algorithm. The
training set was used to fit the model parameters and
the validation set to determine when EM has converged.
The EM iteration was stopped after the first decrease
in the log-likelihood on the validation set. For each of
the two datasets we chose the mixture model with the
highest log-likelihood on the validation set and using it
we calculated the average log-likelihood over the test set

4

Table 1: Compression rates (bits per digit) for the single digit (Digit) and double digit (Pairs) datasets. Boldface
marks the best performance on each dataset.

m Digits Pairs
Run # 1 2 3 avg. 1 2 3 avg.
16 34.9810 34.4443 34.7127 34.7108 79.4694 79.0958 79.2068 79.2602
32 34.5525 34.5785 34.3131 34.4478 78.9818 79.0193 78.9861 78.9891
64 34.6896 35.1253 34.7343 34.8616 79.6093 79.8907 79.6397 79.7097
128 34.7459 34.8440 35.0777 34.9167 81.1271 81.1314 81.5354 81.3818

Figure 3: Performance of different algorithms on the
Australian Credit dataset. – is mixture of trees with
β = 10, - - is mixture of trees with β = 1/m, -·- is
mixture of factorial distributions.

0 5 10 15 20 25 30
80

81

82

83

84

85

86

87

88

m

%
 c

or
re

ct

(in bits per example). These results are shown in figure
2. The other algorithms mentioned in the table are the
mixture of factorial distributions (MF), the completely
factorized model (which assumes that every variable is
independent of all the others) called “Base rate” (BR),
the Helmholtz Machine trained by the wake-sleep algo-
rithm [4] (HWS), the same Helmholtz Machine where a
mean field approximation was used for training (HMF)
and a fully visible and fully connected sigmoid belief net-
work (FV). Table 1 displays the performances of all the
mixture of trees models that we tested.

The results are very good: the mixture of trees is the
absolute winner for compressing the simple digits and
comes in second as a model for pairs of digits. This sug-
gests that our model (just like the mixture of factorized
distributions) is able to perform good compression of the
digit data but is unable to discover the independence in
the double digit set. A comparison of particular interest
is the comparison in performance between the mixture of
trees and the mixture of factorized distribution. In spite
of the structural similarities, the mixture of trees per-
forms significantly better than the mixture of factorial
distribution indicating that there exists some structure
that is exploited by the mixture of spanning trees but
can’t be captured by a mixture of independent variable
models.

6 Classification with mixtures of trees

Classification is an common an important task for which
probabilistic models are used. Therefore, this section
will be devoted to experimentally assessing the perfor-
mance of the mixture of trees model in classification
tasks.
For all the tasks, we trained one model on the whole

training set, treating the class variable like any other
variable. In the testing phase, a new instance was classi-
fied by picking the most likely value of the class variable
given the other variables’ settings.
We investigated the performance of mixtures of trees

on four classification tasks from the UCI repository [1].
In the first experiment, the data set was the Australian
database [1]. It has 690 examples each consisting of 14
attributes and a binary class variable. Six of the at-
tributes (numbers 2, 3, 7, 10, 13 and 14) were real-valued
and they were discretized into 4 (for attribute 10) respec-
tively 5 (for all other attributes) roughly equally sized
bins. In our experiments, in order to compare with [9]
the test and training set sizes were 70 and 620 respec-
tively (a ratio of roughly 1/9). For each value of m that
was tested we ran our algorithm for a fixed number of
epochs on the training set and then recorded the per-
formance on the test set. This was repeated 20 times
for each m, each time with a random start and with a
random split between the test and the training set. In
a first series of runs all training parameters were fixed
except for m. In the second series of runs, we let β, the
edge pruning parameter, change in such a way as to keep
mβ approximatively constant. This results in roughly
the same fraction of pruned edges independently of the
number of components. The results, which are slightly
better than in the previous experiment, are presented in
figure 3. What is common to both series of experiments
is the relatively large range of values of m for which
the performance stays close to its top. We hypothesize
that this is caused by the multiple ways the models are
smoothed: edge pruning, smoothing with the marginals
and early stopping.
The best performance of the mixtures of trees in the

second case is compared to other published results for
the same dataset in table 2. For comparison, correct
classification rates obtained and cited in [9] on train-
ing/test sets of the same size are: 87.2% for mixtures of

5

Figure 2: Compression rates (bits per digit) for the single digit (•) and double digit () datasets. MST is a mixture
of spanning trees, MF is a mixture of factorial distributions, BR is the base rate model, HWS is a Helmholtz machine
trained by the Wake-Sleep algorithm, HMF is a Helmholtz machine trained using the Mean Field approximation,
FV is fully visible fully connected sigmoidal Bayes net.

 MT BR MF HWS HMF FV gzip
0

20

40

60

80

100

120

Li
ke

lih
oo

d
[b

its
/d

ig
it]

Table 2: Performance comparison between the mixture of trees model and other classification methods on the
AUSTRALIAN dataset. For mixtures of trees, we report the best result only. The results for mixtures of factorial
distribution are those reported in [9]. All the other results are from [10].

Method % correct Method % correct
Mixture of trees m = 20, β = 4 87.8 Backprop 84.6
Mixture of factorial distributions 87.2 C4.5 84.6
(D-SIDE in [9])
Cal5 86.9 SMART 84.2
ITrule 86.3 Bayes Trees 82.9
Logistic discrimination 85.9 K-nearest neighbor 81.9
Linear discrimination 85.9 AC2 81.9
DIPOL92 85.9 NewID 81.9
Radial basis functions 85.5 LVQ 80.3
CART 85.5 ALLOC80 79.9
CASTLE 85.2 CN2 79.6
Naive Bayes 84.9 Quadratic discrimination 79.3
IndCART 84.8 Flexible Bayes 78.3

Table 3: Performance of mixture of trees models on the MUSHROOM dataset. m=10 for all models.
Algorithm Correctly Soft class Test compression Train compression

classified
∑

γtrue/N (bits/datapoint) (bits/datapoint)
No smoothing .998 .997 27.63 27.09
Smooth w/ marginal 1 .9999 27.03 26.97
αM = 0.3, αP = 20
Smooth w/ uniform 1 .9997 27.39 27.02
αM = 0.3, αP = 200

6

factorial distributions and 86.9% for the next best model
(a decision tree called Cal5). The full description of the
other methods can be found in [9, 10]. It can be seen
that on this dataset the mixture of trees achieves the
best performance, followed by the mixture of factorial
distributions from [9].
The second data set used was the MUSHROOM

database [15]. This data set has 8124 instances of 23
discrete attributes (including the class variable, which is
treated like any other attribute for the purpose of model
learning). The training set comprised 6000 randomly
chosen examples, and the test set was formed by the re-
maining 2124. The smoothing methods used were a) a
penalty αP on the entropy of the mixture variable and b)
smoothing with the marginal according to (16) or simi-
larly with a uniform distribution. The smoothing coeffi-
cient αM was divided between the mixture components
proportionally to 1/Γk. For this dataset, smoothing was
effective both in reducing overfitting and in improving
classification performance. The results are shown in ta-
ble 3. The soft classification colums expresses an inter-
grated measure of the confidence of the classifier. It is
visible that besides the classification being correct, the
classifier also has achieved high confidence.
The last task was the classificaton of DNA SPLICE-

junctions. The domain consists of 60 variables , repre-
senting a sequence of DNA bases, and an additional class
variable. The task is to determine if the middle of the se-
quence is a splice junction and what is its type3. Hence,
the class variable can take 3 values (EI, IE or no junc-
tion) and the other variables take 4 values corresponding
to the 4 possible DNA bases coded here by the symbols
(C, A, G, T). The data set consists of 31175 labeled ex-
amples. We compared the Mixture of trees model with
two categories of classifiers and thus we performed two
series of experiments. A third experiment involving the
SPLICE data set will be described later.
For the first series, we compared our model’s perfor-

mance against the reported results of [16] and [12] who
used multilayer neural networks and knowledge-based
neural networks for the same task. The sizes of the train-
ing set and of the test set are reproduced from the above
cited papers; they are 2000 and 1175 examples respec-
tively. We constructed trees (m = 1) and mixtures of
m = 3 trees with different smoothing values α. Fitting
the single tree can be done in 1 step. To fit the mixture,
we separated Nvalid=300 examples out of the training
set and learned the model using the EM algorithm on
the remaining 1700. The training was stopped when

3The DNA is composed of sections that are useful in cod-
ing proteins, called exons, and of inserted sections of non-
coding material called introns. Splice junctions are junctions
between an exon and an intron and they are of two types:
exon-intron (EI) represents the end of an exon and the be-
ginning of an intron whereas intron-exon (IE) is the places
where the intron ends and the next exon, or coding section,
begins.

the] likelihood of the validation set stopped decreasing.
This can be regarded as an a additonal smoothing for the
m = 3 model. The results, averaged over 20 trials, are
presented in figure 4a. It is visible that the tree and the
mixture of trees model perform very similarly, with the
single tree showing an insignificantly better classification
accuracy. Since a single tree has about three times fewer
parameters than a mixture with m = 3 we strongly pre-
fer the former model for this task. Notice also that in
this situation smoothing does not improve performance;
this is not unexpected since the data set is relatively
large. With the exception of the “oversmoothed” mix-
ture of trees model (α = 100) all the trees/mixture of
trees models significantly outperform the other models
tested on this problem. Note that whereas the mixture
of trees contains no prior knowledge about the domain,
the KBNN does.

The second set of experiments pursued a comparison
with benchmark experiments on the SPLICE data set
that are part of the DELVE data base [14]. The DELVE
benchmark uses subsets of the SPLICE database with
100, 200 and 400 examples for training. Testing is done
on 1500 examples in all cases. The algorithms tested by
DELVE and their performances are shown in figure 4.
We fitted single trees (m = 1) with different degrees of
smoothing. We also learned Naive Bayes (NB) and Tree
Augmented Naive Bayes (TANB) models [5]. The mod-
els are mixtures of factorial distributions and mixture
of trees respectively where the choice variable is visible
and represents the class variable. Thus a NB or a TANB
model can be fitted in one step, just like a tree.According
to the DELVE protocol, we run our algorithms 20 times
with different random initializations on the same train-
ing and testing sets.

The results are presented in figures 4b,c and d. Most
striking in these plots is the dramatic difference between
the methods in DELVE and the classification obtained
by a simple tree: in all cases the error rates of the tree
models are less than half of the performance of the best
model tested in DELVE! Moreover, the average error of
a single tree trained on 400 examples is 5.5%, which is
only 1.2% away from the average error of trees trained
on the 2000 examples dataset. The explanation for this
remarkable accuracy preservation with the decrease of
the number of examples is discussed later in this section.
The Naive Bayes model exhibits a behaviour that is very
similar to the tree model and only slightly less accurate.
However, augmenting the Naive Bayes model to a TANN
signinficantly hurts the classification performance. The
plots also allow us to observe the effect of the degree of
smoothing when it varies from none to very large. In
contrast to the previous experiment on SPLICE data,
here smoothing has a benefic effect on the classification
accuracy for values under a certain treshold; for larger
values the accuracy is strongly degraded by smoothing.
These accuracy profiles can be observed in tree models

7

Figure 4: Comparison of classification performance of the mixture of trees and other models on the SPLICE data
set. The models tested by DELVE are, from left to right: 1-nearest neighbor, CART, HME (hierarchical mixture
of experts)-ensemble learning, HME-early stopping, HME-grown, K-nearest neighbors, Linear least squares, Linear
least squares ensemble learning, ME (mixture of experts)-ensemble learning, ME-early stopping. TANB is the Tree
Augmented Naive Bayes classifier of [5], NB is the Naive Bayes classifier, Tree represents a mixture of trees with
m = 1, MT is a mixture of trees with m = 3. KBNN is the Knowledge based neural net, NN is a neural net.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
rr

or
 r

at
e

[%
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

or
 r

at
e

[%
]

α: 0 1 10 100 0 1 10 100

KBNN NN
︸ ︷︷ ︸

Tree
︸ ︷︷ ︸

MT m = 3
︸ ︷︷ ︸

DELVE
︸ ︷︷ ︸
Tree

︸ ︷︷ ︸
TANB

︸ ︷︷ ︸
NB

a. N train = 2000, N test = 1175 b. N train = 100, N test = 1575

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

or
 r

at
e

[%
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or
 r

at
e

[%
]

︸ ︷︷ ︸
DELVE

︸ ︷︷ ︸
Tree

︸ ︷︷ ︸
TANB

︸ ︷︷ ︸
NB

︸ ︷︷ ︸
DELVE

︸ ︷︷ ︸
Tree

︸ ︷︷ ︸
NB

c. N train = 200, N test = 1575 d. N train = 400, N test = 1575

8

Figure 5: Cumulative incidence matrix of 20 trees fit to 2000 examples of the SPLICE data set with no smoothing.
The size of the square at coordinates ij represents the number of trees (out of 20) that have an edge between variables
i and j. No square means that this number is 0. Only the lower half of the matrix is shown. The class is variable
0. The group of squares at the bottom of the figure shows the variables that are connected directly to the class.
Only these variable are relevant for classification. Not surprisingly, they are all located in the vicinity of the splice
junction (which is between 30 and 31). The subdiagonal “chain” shows that the rest of the variables are connected
to their immediate neighbors. Its lower-left end is edge 2–1 and its upper-right is edge 60-59.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

Figure 6: The encoding of the IE and EI splice junctions as discovered by the tree learning algorithm compared to the
ones given in J.D. Watson & al., “Molecular Biology of the Gene”[17]. Positions in the sequence are consistent with
our variable numbering: thus the splice junction is situated between positions 30 and 31. Symbols in boldface indicate
bases that are present with probability almost 1, other A,C,G,T symbols indicate bases or groups of bases that have
high probability (>0.8), and a – indicates that the position can be occupied by any basis with a non-negligible
probability.

EI junction
Exon Intron

28 29 30 31 32 33 34 35 36
Tree CA A G G T AG A G
True CA A G G T AG A G T

IE junction
Intron Exon

15 16 . . . 25 26 27 28 29 30 31
Tree – CT CT CT – – CT A G G
True CT CT CT CT – – CT A G G

9

as wel as in the TANN and Naive Bayes models and they
are similar to the bias-variance tradeoff curves commonly
encountered in machine learning applications. Also not
surprisingly, the effect diminishes with the increasing size
of the data set (and is almost invisible for a training set
size of 400).
Discovering structure. Figure 5 presents a sum-

mary of the tree structures learned from the N=2000
example set in the form of a cumulated incidence ma-
trix. The incidence matrices of the 20 graph structures
obtained in the experiment have been added up4 The
size of the black square at coordinates i, j in the fig-
ure is proportional to the value of the i, j-th element
of the cumulated incidence matrix. No square means
that the respective element is 0. Since the incidence ma-
trix are symmetric, only half the matrix is shown. From
figure 5 we can see first that the tree structure is ex-
tremely stable over the 20 trials. Variable 0 represents
the class variable; the hypothetic splice junction is sit-
uated between variables 30 and 31. The figure shows
that the splice junction (variable 0) depends only on
DNA sites that are in its vicinity. The sites that are
remote from the splice junction are dependent on their
immediate neighbors. Moreover, examining the tree pa-
rameters, for the edges adjacent to the class variable, we
observe that these variables build certain patterns when
the splice junction is present, but are random and almost
uniformly distributed in the absence of a splice junction.
The patterns extracted from the learned trees are shown
in figure 6. The same figure displays the “true” encod-
ings of the IE and EI junctions as given in [17]. The
ressemblance between the two encodings is almost per-
fect. Thus, we can conclude that for this domain, the
tree model not only provides a good classifier but also
discovers the true undelying model of the physical reality
that generates the data! Remark also that the algorithm
arrives at this result without any prior knowledge: it does
not know which one is the class variable and it doesn’t
even know that 60 variables out of 61 are in a sequence.
The single tree classifier as an automatic fea-

ture selector. Let us examine the single tree classifier
that was used for the SPLICE data set more closely.
According to the separation properties of the tree dis-
tribution, the probability of the class variables depends
only on its neighbors, that is on the variables to which
the class variable is connected by tree edges. Hence, a
tree acts as an implicit variable selector for classification:
only the variables adjacent to the queried variable will
be relevant for determinig it’s probability distribution.
This property also explains the observed preservation of
the accuracy of the tree classifier when the size of the
training set decreases: out of the 60 variables, only 18
are relevant to the class; moreover, the dependence is

4The reader is reminded that the incidence matrix of a
graph has a 1 in position ij if the graph has an edge connect-
ing vertices i and j and a 0 otherwise.

parametrized as 18 independent pairwise probability ta-
bles Tclass,v. Such parameters can be accurately fit from
relatively few examples. Hence, as long as the training
set contains enough data to establish the correct depen-
dency structure, the classification accuracy will degrade
slowly with the decrease in the size of the data set.
Sensitivity to irrelevant features To verify that

indeed the single tree classifier acts like a feature selec-
tor, we performed the following experiment, using again
the SPLICE data. We augmented the variable set with
another 60 variables, each taking 4 values with randomly
and idependently assigned probabilities. The rest of the
experimental conditions (training set, test set and num-
ber of random restarts) were identical to the first exper-
iment. We fitted a set of models with m = 1 and no
smoothing and compared its structure and performance
to the corresponding model set in the first experiment
series. The structure of the new models, in the form
of a cumulative incidence matrix, is shown in figure 7.
We see that the structure over the original 61 variables
is unchanged and stable; the 60 noise variables connect
in a random uniform patterns to the original variables
and among each other. As expected after examining the
structure, the classification performance of the new trees
is not affected by the newly introduced variables: in fact
the average accuracy of the trees over 121 variables is
95.8%, 0.1% higher than the accuracy of the original
trees5.

7 CONCLUSIONS

This paper has shown a way of modeling and exploit-
ing sparse dependency structure that is conditioned on
values of the data. Without literally being a belief net,
the mixture of trees that we introduced, by playing on
variable topology independencies, is one in spirit. Trees
do not suffer from the exponential computation demands
that plague both inference and structure finding in wider
classes of belief nets. The algorithms presented here are
linear inm and N and quadratic in |V |. The loss in mod-
elling power is compensated by using mixtures instead
of single trees. The possibility of pruning a mixture of
trees can play a role in classification, as a means of au-
tomatically selecting the variables that are relevant for
the task.
The importance of using the right priors in construct-

ing models for real-world problems can hardly be under-
estimated. In this context, two issues arise: 1. how is it
possible to devise good priors over the class of mixtures
of trees models ? and 2. what is the computational bur-
den involved in taking priors into account ? The present
paper has offered partial answers to both these ques-
tions: it has presented a broad class of priors that are
efficiently handled in the framework of our algorithm and

5The standard deviation of the accuracy is 3.5% making
this difference insignificant.

10

Figure 7: The cumulated incidence matrix for 20 trees over the original set of variables (0-60) augmented with 60
“noisy” variables (61-120) that are independent of the original ones. The matrix shows that the tree structure over
the original variables is preserved.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101106111116121
01
6

11
16
21
26
31
36
41
46
51
56
61
66
71
76
81
86
91
96

101
106
111
116

it has shown that this class includes important priors like
the MDL prior and the Dirichlet prior.
Classification is one of the most common and impor-

tant tasks that are required from automatically learned
models. Therefore in our experiments it has received
special attention. The experiments have demonstrated
excellent classification performance for the mixture of
trees model as well as for the single tree model. We have
shown that, for the single tree classifier, the tree struc-
ture acts like an implicit feature selector, which gives
this model good capabilities in the presence of large sets
of irrelevant attributes.

ACKNOWLEDGEMENTS
Thanks to Brendan Frey for making the digits datasets
available to us.

References

[1] U. C. Irvine Machine Learn-
ing Repository. ftp://ftp.ics.uci.edu/pub/machine-
learning-databases/.

[2] C. K. Chow and C. N. Liu. Approximating discrete
probability distributions with dependence trees.
”IEEE Transactions on Information Theory”, IT-
14(3):462–467, May 1968.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety, B, 39:1–38, 1977.

[4] Brendan J. Frey, Geoffrey E. Hinton, and Pe-
ter Dayan. Does the wake-sleep algorithm pro-
duce good density estimators? In D. Touretsky,
M. Mozer, and M. Hasselmo, editors, Neural Infor-
mation Processing Systems, number 8, pages 661–
667. MIT Press, 1996.

[5] Nir Friedman and Moses Goldszmidt. Building clas-
sifiers using Bayesian networks. In Proceedings of
the National Conference on Artificial Intelligence
(AAAI 96), pages 1277–1284, Menlo Park, CA,
1996. AAAI Press.

[6] Dan Geiger. An entropy-based learning algorithm
of bayesian conditional trees. In Proceedings of the
8th Conference on Uncertainty in AI, pages 92–97.
Morgan Kaufmann Publishers, 1992.

[7] B. German. Glass identification database. U.C.
Irvine Machine Learning Repository.

[8] David Heckerman, Dan Geiger, and David M.
Chickering. Learning Bayesian networks: the com-

11

bination of knowledge and statistical data. Machine
Learning, 20(3):197–243, 1995.

[9] Petri Kontkanen, Petri Myllymaki, and Henry Tirri.
Constructing bayesian finite mixture models by the
EM algorithm. Technical Report C-1996-9, Uni-
veristy of Helsinky, Department of Computer Sci-
ence, 1996.

[10] D. Michie, D. J. Spiegelhalter, and C. C. Taylor.
Machine Learning, Neural and Statistical Classifi-
cation. Ellis Horwood Publishers, 1994.

[11] Hermann Ney, Ute Essen, and Reinhard Kneser. On
structuring probabilistic dependences in stochastic
language modelling. Computer Speech and Lan-
guage, 8:1–38, 1994.

[12] Michiel O. Noordewier, Geoffrey G. Towell, and
Jude W. Shawlik. Training Knowledge-Based Neu-
ral Networks to recognize genes in DNA sequences.
In Richard P. Lippmann, John E. Moody, and
David S. Touretztky, editors, Advances in Neural
Information Processing Systems, volume 3, pages
530–538. Morgan Kaufmann Publishers, 1991.

[13] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufman Publishers, San Mateo, CA, 1988.

[14] Carl E. Rasmussen, Radford M. Neal, Geoffrey E.
Hinton, Drew van Camp, Michael Revow, Zoubin
Ghahramani, R. Kus-
tra, and Robert Tibshrani. The DELVE Manual.
http://www.cs.utoronto.ca/ delve, 1996.

[15] Jeff Schlimmer. Mushroom database. U.C. Irvine
Machine Learning Repository.

[16] Geoffrey Towell and Jude W. Shawlik. Interpreta-
tion of artificial neural networks: Mapping Knowl-
edge Based Neural Networks into rules. In John E.
Moody, Steve J. Hanson, and Richard P. Lippmann,
editors, Advances in Neural Information Processing
Systems, volume 4, pages 9–17. Morgan Kaufmann
Publishers, 1992.

[17] James D. Watson, Nancy H. Hopkins, Jeffrey W.
Roberts, Joan Argetsinger Steitz, and Alan M.
Weiner. Molecular Biology of the Gene, volume I.
The Benjamin/Cummings Publishing Company, 4
edition, 1987.

12

