
Sparse Representations for Fast, One-Shot Learning

Kenneth Yip Gerald Jay Sussman

Arti�cial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139

November 26, 1997

Abstract

Humans rapidly and reliably learn many kinds of regularities and general-

izations. We propose a novel model of fast learning that exploits the properties

of sparse representations and the constraints imposed by a plausible hardware

mechanism. To demonstrate our approach we describe a computational model of

acquisition in the domain of morphophonology. We encapsulate phonological in-

formation as bidirectional boolean constraint relations operating on the classical

linguistic representations of speech sounds in term of distinctive features. The

performance model is described as a hardware mechanism that incrementally

enforces the constraints. Phonological behavior arises from the action of this

mechanism. Constraints are induced from a corpus of common English nouns

and verbs. The induction algorithm compiles the corpus into increasingly sophis-

ticated constraints. The algorithm yields one-shot learning from a few examples.

Our model has been implemented as a computer program. The program ex-

hibits phonological behavior similar to that of young children. As a bonus the

constraints that are acquired can be interpreted as classical linguistic rules.

Keywords:

morphophonology, sparse representation, fast learning, rule induction, language

learning

Contact Information:

yip@ai.mit.edu, 617-253-8581, NE43-433, 545 Technology Square, MIT, Cam-

bridge, MA 02139.

1

1 Introduction

The ability to learn is a hallmark of intelligence. Humans rapidly and reliably learn

many kinds of regularities and generalizations. Any learning theory must explain

the search and representation biases that make fast and robust learning possible. We

propose a model of incremental one-shot learning that exploits the properties of sparse

representations and the constraints imposed by a plausible hardware mechanism.

Our particular system design is consistent with what you would expect of computer

engineers. We think naturally in terms of shift registers, bidirectional constraint

elements, bit vectors, and greedy learning algorithms. We envision these mechanisms

to be part of a set of compatible components (as those in a TTL data book) that can

be mixed and matched to construct a variety of learning models.

The performance module is implemented as a network of constraint elements and

several data registers. The constraint elements attempt to �ll in missing information

in the data registers. This mechanism allows information to be used multidirection-

ally; there are no distinguished input or output ports. There are two bene�ts of

organizing the performance module around constraints. Missing data can often be

�lled in, conferring a degree of noise immunity. Also, there is no need for additional

mechanisms to maintain correlations between separate representations that mediate

input and output.

The learning module incrementally builds the performance module by abstracting

regularities from the data. Both the raw data and the generalizations are represented

as vectors in a high-dimensional feature space. These vectors are implemented as the

constraint elements of the performance module.

A key to fast learning is sparseness of the high-dimensional feature space. This

allows simple hyperplanes to separate clusters of examples. As a consequence, a

parsimonious description (such as a minimum length description) covering a large

region of the generalization space can be induced from a few examples. This sparseness

property makes the acquisition of regularities highly e�ective.

We demonstrate our model in the domain of morphophonology|the connection

between the structure of words and their pronunciation. We attack this problem for

two reasons. First, the problem is relevant to the foundation of cognitive science, as

evidenced by the controversy between the supporters of symbolic AI and connectionist

AI.
1
Second, learning phonological regularities is an example of a class of induction

problems which presents special challenges to a learner who must form valid general-

izations on the basis of a few positive examples and no explicit corrections for wrong

behavior.

1See [16, 13, 12, 14, 6].

2

Sparseness of the representation is partially a consequence of the fact that phonemes

are not atomic but are encoded as combinations of elementary distinctive features.

These features can be thought of as abstract muscular controls of the speech organs.

The phonemes that are actually used in human languages are only a few of the possible

phonemes that can be constructed from the distinctive features.

2 Human learning

Almost every child learns how to speak and to understand his native language. At

an appropriate stage of development a child learns vocabulary with amazing speed:

typically a child learns many new words, and their correct usage, each day. The

learning is e�cient, in that a child does not need to hear the same words repeated

over and over again or to be corrected very often. Thus learning language must be

easy, but we do not have e�ective theories that explain the phenomenon.

The mystery deepens when we notice that children learn many new words without

ever hearing them. In a classic experiment by Berko [2], a number of English-speaking

children were shown representations of a fanciful being called a \wug." When asked

to say something about a situation with more than one of these beings, the children

correctly pluralized the novel word to make \wugz" (not \wugs"). In another ex-

periment [9], Marcus et. al. showed that young children who �rst use an irregular

verb properly (such as \came") would later err on the same verb (by supplementing

\came" with \comed") before they use the verb correctly again. Even more striking

is that children who have mastered the English pluralization rules can produce the

correct plural for a new word ending with a sound not present in English such as ch

in the name of the German composer Bach. If the name is pluralized, they add the

unvoiced s.

Thus children reliably exhibit behavior that indicates that they have made gener-

alizations that linguists describe with rules. Moreover, these generalizations are not

simply stated in terms of an arbitrary list of speech sounds, but in terms of signi�cant

features shared by classes of speech sounds.

Although much research has been done in this problem, it is fair to say that

no previous learning theory can account for the phonological behavior observed in

children, in a way that is consistent with the regularities that linguists have isolated.

3

3 Our approach

We focus on the acquisition of inectional morphophonology (such as pluralization and

verbal inection) where developmental data are abundant. In and of itself inectional

morphophonology is not particularly signi�cant. The reason we study this problem so

intensely is that it is a simple case of the regularities that are found in most natural

languages.

We present a theory of how to make and use phonological generalizations. Our

theory explains how the generalizations can be learned from a few randomly cho-

sen examples. For example, after seeing a dozen common nouns and their plurals,

our mechanism incorporates constraints that capture English pluralization rules: (1)

Nouns ending in one of the \hissing" sounds ([s], [z], [sh], [ch], [zh] and [j]) are plu-

ralized by adding an additional syllable [I.z] to the root word, (2) Nouns ending in a

voiced phoneme (other than the hissing sounds) are pluralized by adding a [z] sound,

and (3) Nouns ending in a voiceless consonant (other than the hissing sounds) are

pluralized by adding a [s] sound.

Our theory of acquisition di�ers signi�cantly from those based on statistics (such

as [16, 8]). It is incremental, greedy, and fast. It has almost no parameters to adjust.

Our theory makes falsi�able claims about the learning of phonological constraints: (1)

that learning requires very few examples|tens of examples in a few steps as opposed

to thousands of examples trained in thousands of epochs [7], (2) that the same target

constraints are learned independent of the presentation order of the corpus, (3) that

e�ective learning is nearly insensitive to the token frequency,
2
and (4) that learning

is more e�ective as more constraints are acquired.

We do not attack the problem of how an acoustic waveform is processed. We start

with an abstraction from linguistics (as developed by Roman Jakobson, Nikolai Tru-

betzkoy, Morris Halle, and Noam Chomsky) [3]: Speech sounds (phonemes) are not

atomic but are encoded as combinations of more primitive structures, the distinctive

features. The distinctive features refer to gestures that the speech organs (such as

tongue, lips, and vocal cords) execute during the speaking process.
3
The feature sys-

tem of Chomsky and Halle uses 14 binary-valued distinctive features. Each phoneme

is uniquely characterized by its values on the distinctive features. The distinctive-

feature representation is extremely sparse: English uses only 40 or so phonemes out

of the thousands possible feature combinations, and no human language uses many

2Clahsen et. al. showed that the German -s plural acts like a regular plural even though it applies

to a tiny fraction of the nouns [4].
3For example, the voicing feature refers to the state of the vocal cords. If a phoneme (e.g., [z]) is

pronounced with vibration of the vocal cords, the phoneme is said to be [+voice]. On the contrary,

an unvoiced phoneme (e.g., [s]) is said to be [�voice]. The plus indicates the presence of voicing,

while the minus indicates its absence.

4

more than 100 phonemes.

The representation of speech sounds as a sequence of discrete features is a crude

approximation to what physically takes place during speech. We make two idealiza-

tions. First, the distinctive features are discretized to binary values. Second, the

distinctive features are assumed to change synchronously. Although these idealiza-

tions are not true|the distinctive features are really analog signals and the durations

of the signals need not be aligned perfectly|they are reasonable �rst approximations

for building a mechanistic model to understand how phonological regularities might

be acquired
4
.

Our use of vectors of distinctive features to represent the phonemes does not

imply that we believe that the recognition of speech from the acoustic waveform

passes through an intermediate stage where the features are recognized and then the

phonemes are assembled from them. Perhaps other mechanisms
5
are used to obtain

the phonemic representation from the acoustic waveform, and the distinctive feature

bit representation is a result of this process, not a stage in it.

4 A Mechanistic Performance Model

Our performance model is envisioned as a hardware mechanism, limiting the range of

behavior that can be developed. A mechanism that exhibits human-like phonological

behavior gives us an upper limit on the complexity necessary to produce that behavior.

By restricting ourselves to a simple mechanism, limited in the kinds of parts that

we may postulate and in the ways they may be connected, we construct a robust

theory. Our aim is to show that phonological behavior is a natural consequence of

the organization of the hardware.

The mechanism consists of data registers and constraint elements. The data reg-

isters hold the state of the computation as linguistic events are processed. (See

Figure 1.) The linguistic information is described in terms of boolean features (bits).

The constraint elements embody phonological knowledge relating sound and meaning

patterns. For example, the plural constraints distinguish the variants of the plural

morphemes ([z], [s], and [I.z]) conditioned by the last phoneme of a common noun.

The constraint elements implement boolean relations among the values of the

4Modern phonology postulates more elaborate representation devices such as multiple tiers and

metrical grids. See [5]. These devices describe phonological phenomena that we do not address.
5For example, the phonemes may be extracted from the acoustic waveform using statistical tech-

niques on other features, such as cepstrum coe�cients [15]. We understand that current techniques

cannot reliably extract such information from noisy continuous speech. Our only concern here is that

the resulting phonemes are represented in terms of some set of distinctive features similar to the SPE

set (developed in The Sound Pattern of English [3]).

5

?

1
0
1

coronal

nasal
voice

strident

A Hardware Vision

<- past

?
?
?
?
?

?plural

?verb

?noun

timing slots

Phoneme
Register

Meaning
Register

shift control

Grammar
Register

.

-3 -2 -1 3210

Figure 1: The hardware mechanism consists of three data registers. In the Phoneme

Shift Register, each vertical stripe represents a time slot. There are slots for future

phonemes (positive time labels) as well as past phonemes (negative time labels). Each

horizontal stripe represents a distinctive feature bit. For example, if the phoneme in

time slot �3 is known to be a voiced non-nasal then in the column labeled �3 the

voice entry would be 1 and the nasal entry would be 0. If the phoneme is known to

be strident, the strident entry would be 1. If a feature is unknown, as in the coronal

bit, we leave a question mark. The Grammar Register contains bits describing the

grammatical status of the phoneme sequence. TheMeaning Register contains meaning

bits.

features in the registers.
6

If there is su�cient match between the features in the

registers and those enforced by a particular constraint element, that element becomes

active. An active element �lls in details by assigning values that satisfy the constraint

to bits in the registers that were previously unspeci�ed. If the information in the

registers is inconsistent with the relation enforced by an active constraint element,

this conict is noted.

A linguistic event might be the hearing or speaking of a word. An event is de-

scribed by three types of information: sound, grammar, and meaning. The sound

pattern of a word, represented as a sequence of discrete phonemes, is stored in a shift

register called the phoneme register. Each time slot of the phoneme register holds

a vector of 14 binary-valued distinctive features representing a particular phoneme.

(See Figure 2.) As the speech sound is heard, the phoneme sequence is shifted. The

grammatical information of the word (such as its part of speech, number, and gender)

6We do not yet have a complete hardware model for constraint elements. We are imaging that

each constraint element has thousands of ports that connect to all the slots of the shift register and

the feature bundles within each slot.

6

is stored as a vector of grammatical features in the grammar register. The meaning

register contains a set of bits that uniquely identify the meaning of the word. Our

learning theory does not depend on the assignment of the meaning bits.

[ae] [p] [l] [z] \apples"

syllabic 1 0 0 0

consonantal 0 1 1 1

sonorant 1 0 1 0

high 0 0 0 0

back 0 0 0 0

low 1 0 0 0

round 0 0 0 0

tense 0 1 0 1

anterior 0 1 1 1

coronal 0 0 1 1

voice 1 0 1 1

continuant 1 0 1 1

nasal 0 0 0 0

strident 0 0 0 1

TIME � � � -3 -2 -1 0 1 � � �

Figure 2: The sound pattern of a word is represented by a sequence of phonemes. For

example, the word \apples" consists of four phonemes. Each phoneme is uniquely

characterized by its values on the 14 distinctive features. Phonetic symbols are en-

closed in square brackets. For example, [ae] is the symbol for the low [+low], front

[�back], lax [�tense] vowel in \apples." Each feature vector is indexed by a time

instant. The column labeled by time = 0 corresponds to the most recently heard

phoneme. Phonemes with negative time indices are already heard.

The \bits" in the registers have four possible states f0, 1, ?, *g. The bits can be

set by an external linguistic event or by constraint relations. If the value of a bit is

currently unknown it contains an unknown symbol (?). If a bit is asserted to be both

1 and 0 because of a disagreement among the constraints it participates in, it is in

the conict state, which we denote by (*).

The constraint relation enforced by a constraint element is represented by a bit

vector. We refer to these bit vectors as classi�ers. A classi�er is a �nite string over

the three-symbol alphabet 0; 1;�. A \1" (or \0") typically represents the presence

(or absence) of a characteristic. A \�" means don't care, i.e., the bit's actual value

does not matter.

There are two types of classi�ers: rote-classi�er and rule-classi�er. (See Figure 3.)

7

The rote-classi�ers capture speci�c correlations among the bit patterns in the data

registers. For example, a rote-classi�er for \apple" enforces a certain constraint among

the phonemes [ae.p.l] in the phoneme register, the [+noun,�verb,�plural...] features

in the grammar register, and the bits in the meaning register. Rule-classi�ers capture

the regularities among rote-classi�ers; they can be interpreted as general phonological

constraints. Rule-classi�ers are the basis for predicting responses to novel words. If

the prediction is correct, there is no need for rote-learning the particular correlations

in question.

5 Phonological Behavior From Competing Constraint El-

ements

The basic execution cycle of the performance model consists of three steps imple-

menting a constraint propagation process:

1. Activate the most excited constraint element.

2. Enforce bit patterns in the data registers according to the relation the constraint

element represents.

3. Deactivate previously excited constraint elements that no longer match the reg-

ister contents.

The cycle is repeated until the data registers reach a quiescent state.

A constraint element is excited if its excitation strength exceeds a certain thresh-

old. The excitation strength is measured by the Hamming distance between the

classi�er of the constraint element and the bit patterns in the data registers. Multi-

ple competing constraint elements can be excited at any instant. When an excited

constraint element is activated, it gains exclusive control over the data registers, pre-

venting other constraint elements from writing over the register contents. As the

register contents change, an activated constraint element might be deactivated and

relinquish its control.
7

The constraint propagation process is not committed to using any particular clas-

si�er in a predetermined way. A classi�er may use partial semantic information to

enforce constraints on the phoneme register. It may also use partial phonological

information to infer semantic information. The propagation process can be freely in-

termixed with the addition of new constraints and modi�cation of the existing ones.

7The hardware model assumes the constraint propagation step is fast compared to the rate of

incoming phonemes.

8

Classi�ers: Bit Vector Representation of Constraint Relations

rote-classi�er-apple

Phonemes: [ae.p.l]

Grammar: [+noun -verb -plural ...]

Meaning: [+red +round +edible +fruit ...]

rule-classi�er-voiced-plural

Phonemes: [dc.dc.dc.[+voice].z]

Source-Grammar: [+noun -plural]

Target-Grammar: [+noun +plural]

Control: [shift

direction : left

start loc : 0

unit : 1

fill symbol : ?]

[unlock

phoneme slot 0: no

phoneme slot -1: no

phoneme slot -2: no]

Figure 3: Two types of classi�ers. We use symbolic notations to simplify the description of

a classi�er. The notation [ae.p.l] refers to the 42 bits (3 � 14) representing the distinctive

features of the phonemes enclosed in the square brackets. The symbol \dc" for a phoneme

abbreviates a string of 14 don't-care bits. The notation [+noun] indicates that the noun bit

in the classi�er is on. Top: The rote-classi�er \apple" correlates the sound pattern [ae.p.l]

with the grammar and meaning bits of the word. Bottom: The rule-classi�er \voiced-plural"

relates a singular (i.e. [�plural]) common noun ending in a voiced phoneme with its plural

form. If the bit pattern in the grammar register matches the source-grammar component of

a rule-classi�er, the constraint element described by the rule-classi�er produces a plural form

by shifting the phoneme register left one slot (as speci�ed in the control component of the

rule-classi�er description) and �lling the unknowns in the terminal slot with a [z] phoneme. If

the pattern in the grammar register matches the target-grammar component, the constraint

element produces a singular form by reversing the control actions. The unlock privilege grants

(or refuses) write access by the classi�er to the last 3 phoneme slots.

To illustrate how competing constraint elements can cooperate to enforce phono-

logical and semantic constraints, we examine a simple situation. Assume that at

some time the meaning identi�er describing a red, round, edible fruit appears in the

meaning register. These bits might have been set by a vision module that has recog-

nized an apple or a picture of an apple, or perhaps by an olfactory module that has

recognized the smell of an apple. We also assume that for some reason the plural bit

of the grammar register is set, perhaps because there are two apples.

9

Suppose also that at this point the performance model has two classi�ers: a rote-

classi�er for the apple constraint, which captures the correlation between the phoneme

sequence [ae.p.l], the [+red +round +edible +fruit] meaning, and the [+noun �verb

�plural ...] grammar, and a rule-classi�er for the voiced-plural rule, which captures

the phonological rule that the plural of a noun ending in a voiced phoneme is formed

by appending a [z] phoneme to the noun.

The situation at the initial time is depicted in Figure 4. The initial situation

triggers a sequence of classi�er actions to �ll the slots of the phoneme register with the

sound sequence corresponding to the plural of \apple." The content of the meaning

register is su�cient to activate the constraint element described by the rote-classi�er

for apple. The apple constraint then attempts to set as many unknown bits as it can.

It asserts the bits describing the phoneme sequence into the phoneme register. This

encounters no resistance because all of those bits were initially unknown. The apple

constraint also sets some grammar bits. The noun bit is turned on and the verb bit

is turned o�. However, a conict arises over the setting of the plural bit. The picture

of two apples forced the plural bit on, but the apple constraint is trying to assert a

singular. Figure 4(b) shows the contents of the registers at this point.

All the phoneme bits from the apple constraint are now in the phoneme register.

The fact that there is a noun under consideration (+noun in the grammar register),

that there is a conict over the plural bit, and that the terminal [l] phoneme is

[+voice] is a su�cient trigger to activate the constraint represented by the voiced-

plural classi�er. It sends a shift left signal to the phoneme register, moving the

phonemes ae.p.l to less recent positions, and locking the determined phonemes so

that they cannot change. The most recent phoneme slot is �lled with unknowns,

which are certainly allowed to change. The apple constraint now becomes less excited

because the values it would like in the phoneme register are all in conict with the

ones that are there. The voiced-plural constraint now �lls the unknowns in the current

phoneme slot with the phoneme [z]. See Figure 4(c).

As the apple classi�er is deactivated, it drops its attempt to set the plural bit to

0. The noun, the verb, and the plural bits retain their last values. The plural bit

is still in conict, but it will put up no resistance if another constraint tries to turn

it on. In particular, the excited voiced-plural rule-classi�er restores the plural bit to

1. At this point the system reaches a quiescent state (Figure 4(d)) with a consistent

representation of the plural noun pronounced [ae.p.l.z] in the phoneme register.

Constraint elements infer meaning from sound as well as sound from meaning. For

example, using the same two classi�ers as before, the performance model can �ll in

the grammatical and semantic details as the sound pattern of \apples" is shifted into

the phoneme register. The same mechanism of constraint elements and shift registers

is e�ective for both production and comprehension of a word.

10

(a) Initial State

+red + round ...

VOICED-PLURAL

? ? ? ? ?

+voice
z
-plural
+noun

-plural
+nounl

p
ae

Rule classifier:

+round
+red

+fruit
+edible

+plural
-4 -3 -2 -1 0

<- past

?verb
?noun

Phoneme
Register

Meaning
Register

shift control

Grammar
Register

Rote classifier:
APPLE

+plural

(c) Voiced-plural classifier excited

-verb
+noun

zlpae

+red + round ...

VOICED-PLURAL

?

+voice
z
-plural
+noun

-plural
+nounl

p
ae

Rule classifier:

+round
+red

+fruit
+edible

-4 -3 -2 -1 0
<- past

Phoneme
Register

Meaning
Register

shift control

Grammar
Register

Rote classifier:
APPLE

(b) Apple classifier excited

-verb
+noun

*plural
lpae

+red + round ...

VOICED-PLURAL

? ?

+voice
z
-plural
+noun

-plural
+nounl

p
ae

Rule classifier:

+round
+red

+fruit
+edible

-4 -3 -2 -1 0
<- past

Phoneme
Register

Meaning
Register

shift control

Grammar
Register

Rote classifier:
APPLE

(d) Quiescent State

-verb
+noun

+plural
zlpae

+red + round ...

VOICED-PLURAL

?

+voice
z
-plural
+noun

-plural
+nounl

p
ae

Rule classifier:

+round
+red

+fruit
+edible

-4 -3 -2 -1 0
<- past

Phoneme
Register

Meaning
Register

shift control

Grammar
Register

Rote classifier:
APPLE

Figure 4: Generating sound from meaning. (a) Initial state: The performance model has

two classi�ers: a rote-classi�er for the apple constraint and a rule-classi�er for the voiced-

plural constraint. An event �lls the meaning register with features describing an apple,

and the grammar register with the [+plural] feature. (b) Apple constraint excited: The

apple constraint �res and writes the sound sequence [ae.p.l] into the phoneme register. Some

unknown grammatical bits (such as ?noun and ?verb) are also �lled by the apple classi�er.

Note that a conict arises over the assignment of the plural bit. (c) Voiced-plural constraint

excited: The voiced-plural constraint sends a shift left signal to the phoneme register, and �lls

the unknown terminal slot with the [z] phoneme. The voiced-plural constraint also restores

the conict plural bit to 1. The apple constraint is deactivated. (d) Quiescent state: The

system reaches a consistent state with the pronunciation of \apples," [ae.p.l.z], in the phoneme

register. No new constraints are excited.

6 Learning Classi�ers

In a full system, there are many classi�ers. How are the classi�ers learned?

Initially the learner has no classi�ers. The learner must acquire the classi�ers

from example words presented to it. We assume a sequence of words is presented to

11

the learner. Each presentation of a word triggers an event that �lls the data registers

with the appropriate sound, grammar, and meaning information. If the learner can

�ll in the details of the word without error, then it proceeds to the next word. The

learner might fail either because there are not any applicable classi�ers or because

competing classi�ers �ght to assert inconsistent values in the registers. In the �rst

failure situation, a new rote-classi�er is created to remember the bit patterns in the

data registers. In the second failure situation, the �ghting classi�ers are incrementally

re�ned.

Let us consider a simple example to illustrate the basic operations of the learning

procedure. Suppose that to begin with the learner has no classi�ers and is presented

four noun pairs and one verb pair in random order: cat/cats [k.ae.t.s], dog/dogs

[d.).g.z], duck/ducks [d.^.k.s], gun/guns [g.^.n.z], and go/went [w.�.n.t].

A rote-classi�er is created for each of the words.

The learning algorithm �rst �nds correlations among pairs of rote-classi�ers that

have the same meaning bits. One element of each pair of correlated classi�ers is

labeled positive and the other negative.8 The criterion for this labeling is arbitrary,

but consistently applied across all pairs. The pairs are grouped into sets. Each set is

de�ned by a grammar type and a shift speci�cation that maximally aligns the positive

and negative element of a pair. The learning algorithm then attempts to produce a

summary description of the pairs in each set.

An example of how the algorithm works is given in Figure 5. The rote-classi�ers

\cat" and \cats" are correlated because they share the same meaning bits. There are

10 such correlations. These 10 rote-classi�er pairs are divided into two sets: the �rst

one is related to changes in the plural bit, and the second to changes in the past-tense

bit. The algorithm looks for a summary description of the phoneme bit pattern that

covers all the rote-classi�ers with the [+plural] feature (the positive example) and

avoids all the ones with [�plural] feature (the negative examples). A description is

said to cover an example if the example is consistent with all the conditions in the

description.

Starting with the phoneme bits of a rote-classi�er as the initial description, the

generalization algorithm performs a speci�c-to-general search in the space of possible

descriptions.
9
For example, an initial description, the seed, might be the phoneme

bits for \cats." The seed is a bit vector of 56 bits (14 bits for each of the 4 phonemes

[k.ae.t.s]), which can be thought of as a logical conjunction of boolean features:

8These negative examples are not externally provided \near misses" to inhibit incorrect behavior.

Here the positive and negative labels are arbitrary distinctions.
9Our generalization algorithm di�ers from the version space algorithm [10] in two respects. First,

our algorithm does not maintain all the most general and most speci�c generalizations consistent with

the current set of examples. Second, our algorithm handles disjunctive generalizations and noise.

12

Grouping rote classifiers into correlation types

s or z

dc.dc.dc.--00000-11-101

??????????????

??????????????

+verb +past

+verb -past ???????????????????????? 0101100000100010101011001100

010110000010001010100000110001100000111010

010000001110001010100000110001011001000000

01000000111000101010000011000101100100000001000001110101

01011000001000101010000011000110000011101001000000111101

00111010001100101000000011000110000011101001000001110000

+noun -plural

+noun -plural

+noun +plural

+noun +plural

ε tnw

? og

zn^g

? n^g

sk^d

k^d?

?

+

+

-

-

-

+

-

-

+

+

k ae t?

?

k ae t s

d) g

d) g z

010110010000001010010000110001000001110000

01011001000000101001000011000100000111000001000001110101

+noun -plural

+noun +plural

+noun +plural

+noun -plural 010000001110001010110000110001011000001000

01000000111000101011000011000101100000100001000000111101

??????????????

??????????????

Initial Classifier Pool Common phoneme pattern
(only the phoneme patterns are shown)(abbreviated form)

Figure 5: Learning of classi�ers consists of two steps: (1) Grouping of rote-classi�ers into cor-

relation types (middle column), and (2) Generalizing rote-classi�ers belonging to the same cor-

relation type (right column). In this example, the initial classi�er pool has 10 rote-classi�ers

(shown in an abbreviated form in the left column). The rote-classi�ers are divided into two

correlation types. The �rst correlation type (relating a common noun and its plural) has

8 rote-classi�ers. Each rote-classi�er is labeled with a plus to indicate that it is the plural

form or a minus to indicate the singular form. The learner �nds a rule-classi�er whose sound

pattern (right column) covers all positive examples and avoids the negative ones. The second

correlation type (relating a verb stem and its past) has two rote-classi�ers. The learner will

not generalize this group of classi�ers until more such examples have been accumulated.

01011001000000101001000011000100000111000001000001110101

<------ k ---><----- ae --><----- t ----><----- s ---->

The generalization space of possible phoneme bits for a classi�er is O(3
n
), where

n is the number of phoneme bits. (See Figure 6.) For example the generalization

space for classi�ers with four phonemes contains O(3
56
) instances. To explore this

huge space, the generalization process relies on three search biases:

1. Whenever possible it revises the current best classi�ers instead of starting from

scratch,

2. It prefers classi�ers that contain the most recently heard phonemes, and

3. It is non-aggressive: the search terminates on the �rst few classi�ers found to

13

cover a given set of correlations without deliberately looking for the minimal

classi�ers (i.e., those with the largest number of don't cares).

2-cube

1-cube

multiple generalizatons disjunctive rules

Generalization by Cube Growing

011 111

110

100000

001 101
010010

101001

000 100

110

111011

number of generalizations = O(3)n

Figure 6: Classi�er generalization as cube growing. A relation with n boolean vari-

ables de�nes an n-dimensional instance space with 3
n
possible instances. The posi-

tive examples (solid dots) and negative examples (circles) occupy the vertices of an

n-dimensional cube. Generalization can be thought of as �nding a collection of m-

cubes (0 � m � n) covering the positive ones without overlapping the negative ones.

A 0-cube is a point, 1-cube is a line, and so on. There may be multiple m-cubes that

cover the same positive examples (as shown by the two 2-cubes in the left diagram).

It may also require more than one m-cube to cover the positive examples (as shown

by the 1-cube and 2-cube in the right diagram). The generalization algorithm uses a

beam search with inductive biases to �nd disjunctive generalizations.

The generalization procedure is a beam search with a simple goodness function.

The best k candidate generalizations are retained for further generalizations. The

goodness of a cube is equal to the sum of Pc and Nc, where Pc is the number of

positive examples the cube covers, and Nc is the number of negative examples it does

not cover. To break ties in the goodness score, the search prefers larger cubes with

higher Pc. See Figure 7 for details.

At each iteration the algorithm generates new candidate generalizations by raising

the phoneme bits (i.e. changing 0's and 1's to don't cares), one or two bits at a time.

The phonemes are ordered by recency. The bits of the least recently heard phoneme

are raised �rst. The search terminates when either all positive examples are covered

or a negative example is covered.
10

10The generalization algorithm has a dual, the specialization algorithm, which re�nes overly-general

rule-classi�ers to avoid negative examples.

14

Procedure GENERALIZE

Input: PSET is a set of positive examples.

NSET is a set of negative examples.

Output: GSET is a set of generalizations.

Representation:

All examples and generalizations are represented as bit vectors. Each bit vector consists of

multiple slots. Each slot is an unordered set of distinctive features.

Algorithm:

The generalization space is the set of 3n bit vectors where n is the length of the bit vec-

tor. GENERALIZE starts from a seed, a randomly chosen element of PSET, and �nds

generalizations by a beam search with width k. The beam search aims to minimize a cost

function.

Let G be a candidate generalization. The beam search is de�ned by the following functions:

1. Cost Function = Pc + Nc

where Pc is the number of elements in PSET not covered by G, and Nc is the number

of elements in NSET covered by G. Ties are broken by preferring generalizations with

more don't cares.

2. Successor Function

Let a de�nite slot be a slot with at least one bit that is not a don't care. De�ne the

successors of G to be the set of all bit vectors obtained by setting one or two bits of

the leftmost de�nite slot of G to don't cares.

3. Termination Function

Let GSET be the set of the current k generalizations being considered. The search

terminates if, for all G 2 GSET, G satis�es one of the three conditions:

(a) G covers the entire PSET.

(b) G overlaps NSET.

(c) All the successors of G overlaps NSET.

Figure 7: Algorithmic description of the generalization procedure. The beam width

k is set to 2 for all the examples and experiments described in this paper.

The search (with beam width k = 2) eventually produces a description G that cov-

ers all four positive examples and avoids all four negative examples. The description

says that all positive examples end with either the [s] or [z] phoneme.
11

G: [dc.dc.dc.{s,z}]

The next step in the summarization process is to verify the covering description.

The description G is overly general because applying it to the negative examples gives

not only the correct plural forms (such as [k.ae.t.s]) but also incorrect ones (such as

11The symbol \dc" abbreviates 14 don't-care bits.

15

*[k.ae.t.z]). The incorrect ones are treated as near misses (i.e., negative examples

that are slightly di�erent from the positive ones). The learning algorithm assumes

a general uniqueness heuristics: there is only one way to satisfy the requirements.

Since [k.ae.t.s] is the known positive example, the system-generated [k.ae.t.z] must be

incorrect. Near misses greatly speed up the discovery of correct generalizations.
12

The generalization algorithm is re-invoked with the addition of these new negative

examples:

Seed : [k.ae.t.s]

Positives: [k.ae.t.s] [d.).g.z] [d.^.k.s] [g.^.n.z]

Negatives: *[k.ae.t.z] *[d.).g.s] *[d.^.k.z]

*[g.^.n.s] [k.ae.t] [d.).g] [d.^.k] [g.^.n]

This time the search results in a disjunction of three generalizations G1, G2, and

G3:

G1: [dc.dc.[-voice].s]

G2: [dc.dc.[+voice,-strident].z]

G3: [dc.dc.[+voice,-continuant].z]

The generalization G1 covers two positive examples: \cats" and \ducks." G1

describes a correlation between the penultimate voiceless phoneme and a terminal [s]

phoneme. The generalizations G2 and G3 overlap in their coverings. They both cover

the remaining two positive examples: \dogs" and \guns." G2 says that a terminal [z]

phoneme is preceded by a phoneme that has the [+voice] and [�strident] features.
13

G3 correlates a terminal [z] phoneme with a preceding voiced non-continuant.
14

The

three generalizations are veri�ed as before. However, this time the generalizations

are consistent: there are not any new exceptions or near misses. Note that after

seeing only 4 positive examples, the learner is able to acquire constraints on the

plural formation that closely resemble those found in linguistics texts[1]. These rule-

classi�ers are now available for constraint propagation, and are subject to further

re�nement when new examples appear.

12Winston [17] emphasized the usefulness of near misses in his ARCH learning program. In our

program, the near misses are not supplied by a teacher or given in the input. They are generated

internally.
13The strident feature refers to noisy fricatives and a�ricates. In English there are eight stridents:

[s,z,f,v,ch,j,sh,zh].
14A phoneme is a non-continuant or a stop if the passage of air through the month is stopped

completely for a brief period. [b,d,g,p,t,k] and the nasals [m,n] are examples of stops.

16

7 Experimental Results

The corpus used to develop the learning program comes from the CELEX lexical

databases of English (version 2.5) obtained from the Linguistic Data Consortium. We

select 250 words (50 common nouns and 200 verbs) that �rst-graders might know. The

corpus includes most of the regular and irregular verbs used in the psycholinguistic

experiments of Marcus et. al. [9] on English tenses.

The data record for each word in the corpus consists of �ve pieces of information:

(1) word identi�er, (2) word spelling, (3) a unique meaning identi�er (e.g., \cat" and

\cats" have the same meaning id, but \cat" and \dog" do not), (4) its pronunciation

as a sequence of phonemes, (5) its grammatical status (16 grammatical bits indicating

whether the word is a noun or verb, singular or plural, present or past, etc.). The

spelling information is not used by the learner; it is only for the human experimenter

to read.

word spelling meaning phonetic grammar

id id symbols

12789 cat 6601 k.ae.t. Noun Sing ...

12956 cats 6601 k.ae.t.s. Noun Plu ...

25815 dog 13185 d.).g. Noun Sing ...

25869 dogs 13185 d.).g.z. Noun Plu ...

The data records are pre-processed to produce bit vector inputs for the perfor-

mance model and learner. The output of the performance model and learner is a set

of bit vectors that typically have a straightforward symbolic interpretation.

To test the performance of the program on past-tense inection, we use the same

dataset that MacWhinney [8], Ling [6], and Mooney and Cali� [11] used. The dataset

contains approximately 1400 stem/past-tense pairs. We randomly choose 500 verb

pairs as the test set. The test set is disjoint from the training set. The program is

trained on progressively larger samples from the training set. Starting from a training

sample of 10 examples, we measure the predictive accuracy of the program on the

test set at 10-example intervals. The mean and standard deviation of the accuracy

are calculated over 5 trials. During each trial, the choice and order of the training

examples presented to the program are randomized.

In all the experiments below, we use the same parameter settings for the beam

search width (k = 2) in the generalization algorithm and the excitation threshold for

classi�ers. The results are not sensitive to the particular parameter settings.

17

Experiment 1: Learning regular past-tense

The �rst experiment tests the performance of the program on past-tense inection

using regular verbs only. Although the task is simplistic, it does allow quantitative

comparisons with previous work. Figure 8 presents the learning curves from four

programs: K&G (our program), FOIDL (a program based on inductive logic pro-

gramming) [11], SPA (a program based on decision trees) [6], and M&L (a program

based on arti�cial neural network) [8].

0

20

40

60

80

100

0 100 200 300 400 500 600 700

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Number of training examples

"K&G"
"FOIDL"

"SPA"
"M&L"

Figure 8: Comparison of learning curves for learning regular past tenses.

The graph shows that K&G gives the best accuracy result. FOIDL is the next

best performer. K&G has the steepest learning curve. It reaches 90+% performance

with 20 examples.

Figure 9 shows a closer look at the performance of K&G and FOIDL. The standard

deviation of K&G's learning curve is also plotted. It shows that the accuracy results

vary by less than 1% over di�erent trials after 30 examples.

The learning curve of K&G saturates at the 99.8% asymptote. K&G gives wrong

prediction on one test example \depict" [d.I.p.I.k.t] even though it has acquired the

correct \add-Id" classi�er. The reason is that the last three phonemes of \depict"

match the phonemes of the word \picked" [p.I.k.t]. The rote-classi�er corresponding

to \picked" is excited and controls the phoneme register. It prevents the more general

\add-Id" rule-classi�er from �ring. Since \picked" is already a past-tense inection,

18

0

20

40

60

80

100

0 20 40 60 80 100 120

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Number of training examples

"K&G"
"K&G-errorbar"

"FOIDL"

0

20

40

60

80

100

0 20 40 60 80 100 120

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Number of training examples

"K&G"
"K&G-errorbar"

"FOIDL"

Figure 9: A closer look at the learning curves of K&G and FOIDL.

the program returns \depict" unchanged as its past tense.

While the performance model of K&G does not achieve 100% on the regular verbs,

it makes correct predictions on irregular verbs which would otherwise be missed. For

example, \become" is correctly pluralized because its last 3 phonemes match those

of the word \come."

It is instructive to examine the internal representations of generalizations actually

acquired by K&G. The following classi�ers are typical:

1. [dc.dc.[+voice,+sonorant].d]

2. [dc.dc.[+voice,-coronal].d]

3. [dc.dc.[-low,-round,-tense,+continuant].d]

4. [dc.dc.[-voice,+strident].t]

5. [dc.dc.[-voice,-coronal,-continuant].t]

6. [dc.{d,t}.I.d]

Rule-classi�ers 1, 2, and 3 together cover all the verb stems that end in a voiced

phoneme other than [d]. These rule-classi�ers overlap in the examples they cover.

Rule-classi�er 1 covers the majority of these cases (all the vowels, nasals, liquids, and

glides). Rule-classi�er 2 covers the voiced non-coronal stops ([b] and [g]) as well as

some of the cases covered by rule-classi�er 1, while rule-classi�er 3 covers the voiced

stridents.

19

Similarly, rule-classi�ers 4 and 5 cover verb stems that end in an unvoiced phoneme

other than [t]. Rule-classi�er 4 covers stems ending in [k] or [p], while rule-classi�er

5 covers the unvoiced stridents.

Experiment 2: Learning past tenses using all verbs

The second experiment compares the accuracy when both regular and irregular verbs

are used in the training/test sets. Figure 10 shows that the performance of K&G and

FOIDL are comparable up to 25 examples. Thereafter K&G is more accurate and

reaches a higher asymptote: 95% versus 90%. SPA has a 76% testing accuracy and

M&L 57% after training with 500 examples.

0

20

40

60

80

100

0 20 40 60 80 100 120 140

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Number of training examples

"K&G2"
"FOIDL2"

"K&G2-errorbar"

Figure 10: Comparison of learning curves for learning all past tenses.

The better performance of K&G can be attributed to its ability to form limited

generalizations with irregular verbs (e.g., the "come/become" example mentioned in

previous section). When we examine its internal representations, we �nd generaliza-

tions such as:

[dc.dc.ae.ng] rang, sang

[dc.dc.a.t] forgot, got, shot

[dc.E.n.t] bent, lent, meant, spent

[dc.dc.{r,l}.u] blew, drew, grew

20

[dc.dc.).t] bought, brought, caught, taught

[dc.dc.o.z] chose, froze, rose

Since irregular verb forms are in general idiosyncratic and not productive (such as

go/went), we expect they fall into many sub-classes. The results con�rm our expecta-

tion. The learner is able to �nd the more common patterns (such as blew/drew/grew

and bought/caught/taught). The results suggest that most irregulars are just learned

by rote and the learner makes limited generalizations about these forms.

Experiment 3: Learning regular past-tense in the presence of noise

This experiment tests the accuracy of K&G when the training set is noisy. The issue

of noise is critical for a generalizer like K&G that induces strong generalizations from

very few examples. One might think that small amount of noise would have a large

(negative) e�ect on its performance.

To test K&G's noise tolerance, we randomly mutate the su�x of a few past-tense

examples in the training set. For example, a [d] su�x must be changed to a [t] or

[I.d]. The same test set of 500 regular verbs from experiment 1 is used.

Figure 11 shows that the performance of K&G degrades by 6% at the 4% noise

level. The variance of the accuracy is large compared to that shown in Figure 9.
15

Although the averaged learning curve is useful is showing noise-tolerance, it does

not give much insight into how the program is able to isolate the exceptions. To un-

derstand why the program works, we have to look at a learning curve for an individual

trial. See Figure 12.

Typically, the accuracy drops or stays at as the program hits a noise example. As

more examples come in, it becomes less costly to ignore the exception. The program

�nds generalizations that cover most of the positives and isolates the exception into

a separate class. Since noise examples do not readily repeat (because the su�x

is randomly mutated), it is unlikely that the exceptions cluster. This is how self-

repairing occurs.

Experiment 4: Learning plurals

This experiment tests the performance of the learner on the pluralization task. There

is no standard test set for pluralization. We run tests similar to the past-tense exper-

iments on 200 randomly selected common nouns from the CELEX lexical databases.

15It would be nice to have comparison data on noise tolerance of other systems.

21

0

20

40

60

80

100

0 10 20 30 40 50 60 70

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Number of training examples

"K&G"
"K&G-noise2"
"K&G-noise4"

"K&G-noise2-errorbar"

Figure 11: Performance on regular past-tense in the presence of 2% and 4% noise.

0

20

40

60

80

100

0 10 20 30 40 50 60 70

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Number of training examples

"K&G-noise1"

Figure 12: A learning curve for an individual trial. When the program hits a noise

example, its accuracy drops. The accuracy starts to rise again as the program en-

counters more (good) examples.

22

We obtain a similar steep learning curve with accuracy hitting 99+% after 20 exam-

ples.

The formation of English plurals is unusually regular. There are very few irregular

plural nouns. This property of English might lead one to propose learning mechanisms

that exploit the statistics of regular plurals by training on a large number of examples

so that any new test noun is su�ciently similar to a known one to produce the closest

matched plural ending.

But there is evidence that the statistical property may not be essential to the

acquisition of regular rules. For example, Marcus et. al. [9] and Clahsen [4] showed

that the German -s plural behaves like a regular rule despite the fact that the rule

applies to fewer than 30 common nouns. This observation raises the question of how

a child can acquire regular rules from very few examples. The experiment will show

that our learner can acquire generalizations that closely resemble those described in

linguistics texts after seeing on the order of 10 examples.

It is more instructive to look at the generalizations actually acquired:

1. [dc.dc.[+voice,-strident].z]

2. [dc.dc.{y,e,I,v}.z]

3. [dc.dc.[-voice,-strident].s]

4. [dc.dc.[-voice,-coronal].s]

5. [dc.[+coronal,+strident].I.z]

Rule-classi�ers like 1 and 3 are acquired after the presentation of as few as 4 or

5 examples. This surprises us considering that even a strong generalizer like FOIDL

just memorizes what it sees for such few examples.
16

Notice that we can almost read o� the standard English pluralization rules from

these classi�ers. There are, however, two di�erences. First, the standard English

pluralization rules are typically ordered (see, for example, [1]):

a. If the noun ends in a phoneme containing the features [+strident, +coronal] (i.e.,

one of the sounds [s], [z], [sh], [zh], [ch], [j]), the plural a�x is [I z].

Otherwise,

b. If the noun ends in a [+voice] phoneme, the a�x is [z].

c. If the noun ends in a [�voice] phoneme, the a�x is [s].

In our system, the classi�ers are activated in parallel, with the most excited ones

gaining control over the data registers.

The second di�erence is that the unvoiced-plural rule c is represented by a dis-

junction of two rule-classi�ers, 3 and 4, in our system. Rule-classi�er 3 covers nouns

16Personal communication from Cynthia Ann Thomps.

23

ending in consonants [t], [k], [p], or [th]. Rule-classi�er 4 covers nouns ending in the

strident [f] or the non-coronal
17

stops [k] and [p]. Similarly, the voiced-plural rule b

is split into rule-classi�ers 1 and 2.

The learner also exhibits intermediate behaviors similar to those of young children

[2]. After rule-classi�er 1 and rule-classi�er 3 are acquired, the performance program

produces plurals like *foot[s] and *man[z]. Upon presentation of the nonce word

\wug," it gives wug[z]. For nonce words ending in a strident like \tass" or \gutch,"

it gives the unaltered singular forms as plurals.

There is however a remaining mystery regarding the \add-[I.z]" rule. Berko in

her study of children's learning of English morphology made the following observa-

tion. While the �rst-graders can apply the \add-[z]" and \add-[s]" pluralization rules

productively to new words, they fail to apply the \add-[I.z]" rule to nonce words like

\tass" or \gutch." When asked to produce the plural of a nonce word ending in [s] or

[ch], they either repeat the word in its singular form or fail to respond. In no cases do

they give wrong answers like tass[z], tass[s], or gutch[z], and only in few cases do they

respond with gutch[s]. The children fail to use the [I.z] rule productively despite the

fact that they can recognize and use real words like \glass" and \glasses" correctly.

Although the intermediate result of experiment 1 is consistent with Berko's in-

terpretation of the developmental data, the result depends on the higher density of

English plurals ending in non-stridents. Contrary to Berko's interpretation, our the-

ory predicts that the learner would have no di�culty in acquiring the add-[I.z] rule

before the add-[s] or add-[z] rules if it were given the plurals ending in stridents �rst.
18

17The coronal feature refers to phonemes articulated by raising the tongue toward the alveolar

ridge and the hard palate.
18There is some evidence to support this prediction. It is possible that Berko's observation on

the add-[I.z] rule for plural formation is not entirely robust because the same Berko subjects perform

quite well in adding [I.z] to form the third person singular verbs and possessives. Of course, we cannot

at this stage rule out Berko's interpretation. It might be the case that the plural formation involves

mechanisms more complicated than the addition of the [s] or [z] or [I.z] ending. For instance, Pinker

and Prince [13] suggests that, instead of the three rules for adding plural endings, one might have a

combination of di�erent morphological and phonological rules that produce the same pronunciation.

In their account, there is a morphological rule that adds [z] to a stem. The phonetic content of the

\stem + [z]" is then modi�ed by two competing phonological rules. The �rst rule, devoicing, changes

the terminal [z] to [s] under certain contexts. The second rule, vowel insertion, inserts the vowel [I]

between two word-�nal adjacent consonants that sound too similar. According to this account, the

di�culty in producing plurals like \tasses" may be correlated with the child's additional e�ort in

acquiring the vowel insertion rule.

24

Experiment 5: Learning plurals in the presence of noise

In this experiment, we examine the behavior of the learner when the input contains

error. The learner is given the same training set from experiment 5 plus an additional

incorrect plural form cat[z].

The incorrect form does not a�ect the acquisition of the correct phonological

constraints. The learner is able to isolate the exception, cat[z], by a single-classi�er:

6. [dc.[-tense,-strident],t,z] 19

The same �ve rule-classi�ers are acquired as in the previous experiment.

Experiment 6: Learning plural and past-tense rules together

In this experiment, we use 25 plural pairs and 25 past-tense pairs. The 50 examples

are randomized. In addition to the rule-classi�ers similar to those shown in previous

experiments, K&G �nds generalizations that we do not expect: two higher-order

correlations relating the plural and past tense rule-classi�ers. The two new higher-

order rule-classi�er enforce the constraint that the voicing bits of the ending phoneme

of the stem and the a�x must match:

[dc.dc.[-voice].[-voice]]

[dc.dc.[+voice].[+voice]]

These rule-classi�ers can be interpreted as the voicing assimilation rule described

in linguistics texts (such as [1]). Voicing assimilation captures cross-categorical gener-

alizations governing the formation of not only plural nouns and past-tense verbs, but

also third-person singular verbs, possessive nouns, and several other morphological

categories.

Linguists explain complicated phonological processes in terms of the interactions of

nearly independent and widely applicable rules. Our learning theory gives a plausible

mechanism to produce this kind of compact, elegant phonological rules.

8 Evaluation

The K&G program achieves a human-level performance on the past-tense inection

and pluralization tasks. It shows not only nice noise tolerance, but also intermediate

behavior consistent with what is observed about little children.

19The tense feature refers to phonemes produced with considerable muscular e�ort and a long

duration.

25

Two factors contribute to the program's generalization power. First, the dis-

tinctive feature representation exploits a property of language: that very few of the

possible phonemes are actually used in all human languages. Since the high dimen-

sional distinctive feature space is sparsely populated, one can imagine relatively simple

hyperplanes will cleanly separate classes of examples.

Second, the search in the generalization space has two important biases: small

descriptions and local correlations. Preferring generalizations with more don't cares

(or equivalently few number of bits) is a weak form of minimal length description.

It works because the generalization space is sparse. Generalizing a rote-classi�er

sequentially from left to right embodies a locality assumption; it rules out arbitrarily

long distance correlations. The locality bias dramatically reduces the number of

candidate generalizations to be considered.

For learning to be e�ective, these two factors have to work together. A learner

looking for small descriptions would not fare well in a dense space because there are no

simple separating hyperplanes (as in the XOR problem). Similarly a learner looking

for local correlations would not be able to learn regularities that depend on arbitrarily

long distance relationship.
20

We should point out that our analysis of why our program works depends on

rather general concepts of high-dimensional space, sparseness, minimal description,

and locality. We would not be surprised that mechanisms such as shift registers, bit

vectors, and cube-covering biases will be generally e�ective in the extraction of local

space-time correlations.

9 Philosophical Discussion

Over the past few years there has been a heated debate between advocates of \Con-

nectionism" and advocates of more traditional \Symbolic Arti�cial Intelligence." We

believe that contemplation of our mechanism for acquiring and using phonological

knowledge can shed considerable light on this question.The essence here is in under-

standing the relationship between the signals in the neural circuits of the brain and

the symbols that they are said to represent.

Consider �rst an ordinary computer. Are there symbols in the computer? No,

there are transistors in the computer, and capacitors, and wires interconnecting them,

etc. It is a connectionist system. There are voltages on the nodes and currents in the

wires. We as programmers interpret the patterns of voltages as representations of our

symbols and symbolic expressions. We impose patterns we call programs that cause

20It is entirely plausible that some form of hierarchical structures has to evolve in order to allow

for certain kind of non-local regularities to become local in a more abstract representation.

26

the patterns of data voltages to evolve in a way that we interpret as the manipulation

of symbolic expressions that we intend. Thus the symbols and symbolic expressions

are a compact and useful way of describing the behavior of the connectionist system.

We as engineers arrange for our connectionist system to exhibit behavior that we can

usefully describe as the manipulation of our symbols.

In much the same way, auditory signals are analog trajectories through a low-

dimensional space|a time-series of acoustic pressure. By signal processing these

are transformed into trajectories in a high-dimensional space that linguists abstract,

approximate, and describe in terms of phonemes and their distinctive features. This

high-dimensional space is very sparsely populated by linguistic utterances. Because

of the sparsity of this space, we can easily interpret con�gurations in this space

as discrete symbolic expressions and interpret behaviors in this space as symbolic

manipulations.

It may be the case that the linguistic representation is necessarily sparse because

that is the key to making a simple, e�cient, one-shot learning algorithm. Thus sparse-

ness of the representation, and the attendant possibility of symbolic description, is

just a consequence of the fact that human language is learnable and understandable by

mechanisms that are evolvable and implementable in realistic biological systems. In

fact, we believe this model of learning is applicable to problem areas outside phonol-

ogy.

So in the case of phonology at least, the Connectionist/Symbolic distinction is a

matter of level of detail. Everything is implemented in terms of neurons or transistors,

depending on whether we are building neural circuits or hardware. However, because

the representation of linguistic information is sparse, we can think of the data as bits

and the mechanisms as shift registers and boolean constraints. If we were dealing with

the details of muscle control we would probably have a much denser representation

and then we would want to think in terms of approximations of multivariate functions.

But when it is possible to abstract symbols we obtain a tremendous advantage. We get

the power to express descriptions of mechanisms in a compact form that is convenient

for communication to other scientists, or as part of an engineering design.

So what of signals and symbols? There are signals in the brain, and when possible,

there are symbols in the mind.

10 Conclusion

We have demonstrated a performance module that can be implemented by simple

physical hardware (or perhaps neural mechanisms?) with a small variety of parts,

and a learning module that has been successful for learning a portion of English

27

morphophonology. Our performance module uses constraint elements to �ll in in-

formation in multiple ways. The same constraint element can enforce inections or

remove the inections to recover the sound corresponding to the word stem. The

learning module yields almost one-shot learning, similar to that observed in children:

It takes only a few carelessly chosen examples to learn the important rules; there

is no unreasonable repetition of the data; and there is no requirement to zealously

correct erroneous behavior. The mechanism tolerates noise and exceptions. It learns

higher-order constraints as it knows more. Furthermore, the intermediate states of

learning produce errors that are just like the errors produced by children as they are

learning phonology.

Fast learning occurs because the learning module exploits the sparseness of the

generalization space, and has built-in biases to construct crucial negative examples

and to seek local minimum description.

What have we learned about making e�ective language learners? We believe

that human languages and the learning mechanisms have to co-evolve in such a way

that they bootstrap each other. The features of language that tend to survive are

those that are easily learnable and generalizable. For example, sparse local space-

time correlations tend to be easily learnable by generalizers that have locality and

small description biases. On the other hand, if the generalizer evolves a new form of

representation (e.g., a hierarchical structure), new features of the languages become

easily learnable and hence can survive. There is an intimate relation between the

properties of the languages and the mechanisms that learn them.

Acknowledgments

We thank Morris Halle for teaching us elementary phonology and helping us to

get started in this research. We thank Tom Knight for showing us that an electrical

implementation of constraints is feasible. We thank Julie Sussman for numerous

criticisms and suggestions to improve the presentation of the material. We thank

Patrick Winston for his thoughtful critique and ideas for extending this work to

elucidate questions on the general principles of language and learning. We thank Hal

Abelson, Jon Allen, Rodney Brooks, Mike Maxwell, Steve Pinker, Elisha Sacks, Peter

Szolovits, and Feng Zhao for comments on the manuscript. We thank Ben Kuipers,

Cynthia Ann Thomps, and Raymond Mooney for their questions and suggestions.

References

[1] Adrian Akmajian, Richard Demers, and Robert Harnish. Linguistics: An Intro-

duction to Language and Communication. MIT Press, 3rd edition, 1990.

[2] J. Berko. The child's learning of English morphology. Word, 14, 1958.

28

[3] Noam Chomsky and Morris Halle. The Sound Pattern of English. Harper and

Row, 1968.

[4] Harold Clahsen, Monika Rothweiler, and Andreas Woest. Regular and irregular

inection of German noun plurals. Cognition, 45(3), 1992.

[5] Michael Kenstowicz. Phonology in Generative Grammar. Blackwell Publishers,

1994.

[6] Charles Ling and Marin Marinov. Answering the connectionist challenge: A

symbolic model of learning the past tenses of English verbs. Cognition, 49(3),

1993.

[7] Brian MacWhinney. Connections and symbols: closing the gap. Cognition, 49,

1993.

[8] Brian MacWhinney and Jared Leinbach. Implementations are not conceptual-

izations: Revising the verb learning model. Cognition, 40, 1991.

[9] Gary Marcus, Steven Pinker, Michael Ullman, Michelle Hollander, T. John

Rosen, and Fei Xu. Overregularization in Language Acquisition, volume 57.

Monographs of the Society for research in child development, 1992.

[10] Tom Mitchell. Generalization as search. Arti�cial Intelligence Journal, 18, 1982.

[11] Raymond Mooney and Mary Elaine Cali�. Induction of �rst-order decision lists:

results on learning the past tense of English verbs. JAIR, 3, 1995.

[12] Steven Pinker. Rules of language. Science, 253, 1991.

[13] Steven Pinker and Alan Prince. On language and connectionism: Analysis of

a parallel distributed processing model of language acquisition. Cognition, 28,

1988.

[14] Sandeep Prasada and Steven Pinker. Generalization of regular and irregular

morphological patterns. Cognition, 45(3), 1992.

[15] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition.

Prentice Hall, 1993.

[16] D Rumelhart and J.L. McClelland. On learning the past tenses of English verbs.

In Parallel Distributed Processing: Exploration in the microstructure of cognition.

MIT Press, 1986.

[17] Patrick Winston. Learning structural descriptions from examples. In The Psy-

chology of Computer Vision. McGraw-Hill, 1975.

29

