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Abstract

We derive a new representation for a function as a linear combination of local correlation

kernels at optimal sparse locations and discuss its relation to PCA, regularization, sparsity

principles and Support Vector Machines. We also discuss its Bayesian interpretation and

justi�cation.

We �rst review previous results for the approximation of a function from discrete data

(Girosi, 1998) in the context of Vapnik's feature space and dual representation (Vapnik,

1995). We apply them to show 1) that a standard regularization functional with a stabilizer

de�ned in terms of the correlation function induces a regression function in the span of the

feature space of classical Principal Components and 2) that there exist a dual representations

of the regression function in terms of a regularization network with a kernel equal to a

generalized correlation function. We then describe the main observation of the paper: the

dual representation in terms of the correlation function can be sparsi�ed using the Support

Vector Machines (Vapnik, 1982) technique and this operation is equivalent to sparsify a

large dictionary of basis functions adapted to the task, using a variation of Basis Pursuit

De-Noising (Chen, Donoho and Saunders, 1995; see also related work by Donahue and

Geiger, 1994; Olshausen and Field, 1995; Lewicki and Sejnowski, 1998).

In all cases { regularization, SVM and BPD { we show that a bayesian approach jus-

ti�es the choice of the the correlation function as kernel. In addition to extending the

close relations between regularization, Support Vector Machines and sparsity, our work

also illuminates and formalizes the LFA concept of Penev and Atick (1996). We discuss

the relation between our results, which are about regression, and the di�erent problem of

pattern classi�cation.
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1 Introduction

In supervised learning problems we are given a discrete data set Dl � f(xi; zi) 7! X � ZgNi=1,
obtained by sampling N times the set X � Z according to P (x; z). The goal of learning is

to provide a deterministic function f(x) which models the relationship between X and Z and

thereby solves the associated regression problem.

A speci�c example that we will use throughout this paper is the regression problem of recon-

structing a speci�c image f given its pixel values at discrete locations in the image plane. This

paper focuses on a special version of this problem, in which prior information is available in terms

of the correlation function of images of the same type as f .

We �rst reformulate known results to show that the classical Principal Component representation

is associated with a regularization formulation of the problem, in which the stabilizer is de�ned

in terms of the correlation function of an ensemble of functions f� of the same type as the f of the

regression problem. Principal Components thus correspond to a special case of the feature space

of Vapnik (1995). Regularization provides another dual representation { in Vapnik's language {

for the regression function in terms of a weighted sum of correlation kernels each centered at a

data point xi. This dual representation contains a large number of terms if the number of data

points is large (for instance all pixels in an image). Girosi's results show that it can be sparsi�ed

using the SVM formulation (Vapnik, 1995) and that this is equivalent to enforcing a sparsity

constraint like in Chen, Donoho and Saunders (1995). Regularization, SVM and a special form

of BPD have a Bayesian interpretation: we show that this equivalence (see Wahba, 1990) can be

used to justify the use of the correlation function as the kernel.

We will also discuss how our regression results are related to corresponding classi�cation tasks

and how the kernels obtained for regression may be used for a pattern recognition problem in a

SVM classi�er, thus providing sparse features for a classi�cation task.

We �rst give our reformulation of existing results and then describe our main observations.

We assume that the reader is familiar with regularization, SVM techniques and sparsi�cation

algorithms (see Girosi, 1998).

2 Background

2.1 Reproducing Kernels and Regularization

Let us �rst summarize the basic results we will need from the theory of regularization. They

are a special case of the technique discussed by Girosi (1998) and can also be found in Wahba

(1990). Regularization techniques as developed by us to solve supervised learning problems

(Poggio and Girosi, 1989; Girosi, Jones, Poggio, 1995) were limited to shift invariant stabilizers

(tensor product and additive stabilizers are special exceptions, see Girosi et al. 1995): the

underlying kernel G(x;y) was constrained to be G(x;y) = G(x � y), strongly limiting { in the

language of Vapnik (1995){ the type of associated feature representations (the eigenfunctions of

the associated integral operator are always Fourier basis functions). It is however possible to

construct kernels of the general form G(x;y) (see Wahba, 1990; Girosi, 1998).

Consider a positive de�nite functionK(x;y). It is well known that K de�nes an integral operator

with a complete system of orthogonal eigenfunctions that can be made orthonormal and ordered
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with decreasing eigenvalue1 with positive �nZ
Rd

dy K(x;y)�n(y) = �n�n(x) (1)

and the following series representation that converges absolutely and uniformly:

K(x;y) =
1X
n=1

�n�n(x)�n(y) (2)

We now de�ne a scalar product in the function space spanned by the system of �n and thus

induced by K, as follows:

< f; g >K=
X 1

�n
< f; �n >< g; �n > (3)

With this de�nitionK de�nes a Reproducing Kernel Hilbert Space (RKHS) with a corresponding

regularization functional:

H[f ] =
1

N

NX
i=1

(zi � f(xi))
2 + kfk2K (4)

where kfk2K =
P

n
<f;�n>

2

�n
is the norm in K induced by the scalar product de�ned earlier.

Minimization of 4 yields the usual solution in terms of regularization networks

f(x) �
NX
i=1

aiK(x;xi); (5)

solving the regression problem of estimating f from the discrete data (xi; zi). As we mentioned

earlier, the speci�c example we have in mind is f an image and x a vector in the plane.

2.2 Vapnik's Feature Space and Regularization

The previous section implies that any positive de�nite kernel K induces a RKHS de�ned by the

feature vector �(x) = (
p
�1�1(x);

p
�2�2(x); : : : ;

p
�n�n(x); : : :), with

�(x) � �(y) = K(x;y)

As a consequence, a function in the RKHS space spanned by the orthonormal features can be

represented2 as

f(x) =
1X
n=1

bn�n(x) (6)

and also approximated in terms of the dual representation (because of the underlying regular-

ization principle of the previous section)

f(x) =
NX
i=1

aiK(x;xi): (7)

1We use �n instead of the usual (for integral operators) 1

�n

2In the discrete case f = �b
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Instead of starting from a given K and derive the feature space we could start from any set of

orthonormal functions �n { our features { with appropriate �n and construct a regularization

kernel K(x;y) as

K(x;y) = �(x) ��(y) (8)

Remarks:

1. When the �n are a �nite set, the �n can be arbitrary (�nite) numbers, since there are no

convergence problems. In particular they can all be equal to one. Of course, the choice

of the �n de�nes the space of functions that can be represented accurately in terms of the

features.

2. All translation-invariant stabilizers (K(x;xi) = K(x � xi)) correspond to Fourier eigen-

functions and only di�er in the spectrum of the eigenvalues (for a Gaussian stabilizer the

spectrum is Gaussian �n = Ae(�n
2=2) (for � = 1)).

3. In standard regularization with translation invariant stabilizers and associated kernels, the

common experience, often reported in the literature, is that the form of the kernel does not

matter much. We conjecture that this may be because all translation invariant K induce

the same type of �n features - the Fourier basis functions. Correlation functions which are

not translation invariant can de�ne instead quite di�erent sets of features which are likely

to have quite di�erent e�ects.

2.3 PCA and Regularization

Until now we have considered the regression problem of estimating f from discrete data. In our

example of image reconstruction f would map location x on the image plane to a real value { the

image value at that location. A limit case of the regression problem is classi�cation in which the

range of f is f0; 1g. In our image example, classi�cation corresponds to estimating the binary

value of a pixel at a desired location from (binary) values at sparse locations in the (binary)

image.

From now on, we will consider a special case of the regression-classi�cation problem: we will

assume that in addition to the training data { which are values of the underlying function f at

discrete locations xi { we also have information about the class of function to which f belongs.

In particular, we will assume that the underlying correlation function is known. More formally,

the given f is taken to belong to a set of functions f� over which a probability distribution P (�)

is de�ned. In our standard example of f being a speci�c image, the f� are images of the same

type, all aligned and registered, for instance images of faces. Then the correlation function of

the random signal f { of which the f� are realizations { is

R(x;y) = E[(f�(x)f�(y)] (9)

where E[�] denotes expectation with respect to P (�). In the following we will always assume

that the average function is the null function: E[f�(x)] = 0.

The correlation functionR is positive de�nite and thus induces a RKHS with the �n de�ned by the

eigenvalue problem satis�ed by R (Hilbert-Schmidt-Mercer theorems). It follows that R provides
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a \natural" kernel { among the many possible { for solving the regression-classi�cation problem

from discrete data for f (see section 4). It also provides the standard Principal Components

representation for f in terms of a (in practice �nite) set of M �n, n = 1; �;M . The following

points hold true:

1. There exists a regularization formulation corresponding to the PCA choice

H[f ] =
NX
i=1

(zi � f(xi))
2 + kfk2R (10)

where kfk2R =
PM

n=1
<f;�n>

2

�n

2. The regression solution f is in the span of the �n and can be represented in terms of M

Principal Components (with M �nite or in�nite) as

f(x) =
MX
n=1

bn�n(x) (11)

3. f can be represented in terms of a regularization network as

f(x) =
NX
i=1

aiR(x;xi) (12)

Notice that often only an estimate of R is available and that usually this estimate may

be highly rank de�cient (see appendix C). In these cases instead of R, one can use a

regularization kernel RM (x;y) de�ned as the natural approximation of R in the space of

the available M Principal Components:

RM (x;y) =
MX
n=1

�n�n(x)�n(y) (13)

In the following we will drop the superscript M in our notation.

The two representations are equivalent (under the same error criteria) when the number of

principal components is chosen equal to be M . Notice that, unlike the global �n, the basis

functions R(x;xi) are usually quite local: consider for instance the translation invariant case of

natural images, where the �n are Fourier components, while the correlation is relatively short

range.

Notice that in equation 13 one can assume that the only available prior knowledge is which

M eigenfunctions are relevant. In the case of �nite M we can then de�ne several di�erent

regularization kernels all corresponding to the same PCA decomposition. The most natural

kernel is simply the projection operator

P (x;y) =
MX
n=1

�n(x):�n(y) (14)

P plays the role of the � function in the space of the �n. It has an associated regularization

formulation (with a stabilizer kfk2P =
PM

n=1< f; �n >
2). Thus f can be also represented as
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f(x) =
NX
i=1

~aiP (x;xi) (15)

Following the spirit of a suggestion by Penev and Atick (1996), we can de�ne generalized corre-

lation kernels parametrized by d (for M �nite) as

Rd(x;y) =
MX
n=1

(�n)
d�n(x)�n(y) (16)

of which P = R0 and R = R1 are special cases. It is not completely trivial to notice (following

Penev and Atick, 1996) that d controls the locality of the kernel. In the shift-invariant case, for

which the �n are Fourier basis functions, d acts as a �lter: low-pass for increasing d and high-

pass for decreasing d. Thus locality increases for decreasing d: for instance when Rd is a Radial

Basis Gaussian function, d controls directly the e�ective � of the Gaussian. The most interesting

values of d range between 0 and 1: R0, which is less smooth than R1, plays the role of the �

function in the space spanned by the �n while Rd with negative d are similar to \derivatives"

of the delta function (consider the example of band-limited functions for which the analog of

the delta is the sinc function). For positive integer d > 1, Rd is a so called iterated kernel: for

instance R2(x;y) =
R
dzR(x; z)R(z;y), which indicates that positive d corresponds to integral

operators (while negative d correspond to di�erential operators).

Remarks:

1. Given a set of �n the spectrum �n of the correlation function R depends on the speci�c

P (�) since

�n = E[b2n] (17)

where the bn are the coe�cients of the expansion of the function f in the set of eigenfunc-

tions �n.

2. The stabilizer in the form kfk2Rd
=
PM

n=1
<f;�n>2

�n
d has obvious smoothness properties (smooth-

ness increases with d), since the eigenfunctions (ordered as usual) typically have increasing

high-frequency content as n increases (theorems in the theory of integral equations, like in

Courant and Hilbert, 1953, relate the number of nodes or zeros of the eigenfunctions to

their index n).

3. Since regularization has a Bayesian interpretation (Kimeldorf and Wahba, 1971; Girosi,

Jones and Poggio, 1995) we have now a probabilistic interpretation of PCA in terms of a

prior probability on the space of functions f� given by P (f) = e(�kfk
2

R
) and a Gaussian

model of the noise (see section ?? and Wahba, 1990).

4. The kernels P and R { and in general Rd { correspond to di�erent prior probabilities (they

are multivariate Gaussian priors with di�erent covariances). They de�ne, however, the

same set of basis functions �n { Vapnik's features { and are therefore expected to behave

in a similar way.

5. There is a relation between equation 12 and kriging (see Wahba, 1990).
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6. The sinc function is the translation invariant correlation function of the set of one-dimensional

band-limited functions with a at Fourier spectrum up to fc (and zero for higher frequen-

cies). Perhaps more interestingly it also corresponds to the operator P of the band-limited

functions with a given cut-o� (and with any correlation function). The sinc function is a

positive de�nite reproducing kernel with negative lobes.

7. The PCA representation equation 11 can be used to solve the problem of regression from

N discrete data at locations xl by computing the bi from

f(xl) =
MX
n=1

bn�n(xl) l = 1; �; N (18)

In general, the equations can be solved if N is at least equal to M . Note that equation 12

can be used even when N << M and equation 18 cannot be solved. The regularization

representation equation 12 can be obtained solving for the an from the data (using a =

(R+ I)�1y with positive or zero ).

8. The connection between the an of equation 12 and bn of equation 11 is given by

bk = �k

NX
j

aj�k(xj) (19)

9. As we will see later, estimates of the correlation function may often be possible from a

su�cient set of examples, even in cases in which the dimensionality of the discretized space

is very high.

10. Penev and Atick (1996) remarks that the object P corresponds to local features, similar to

local receptive �elds with compact support.

11. Wahba (1990) discusses the relation between regularization, RKHS and correlation func-

tions of Gaussian processes. In particular, f in the RKHS de�ned by R and f a sample

function from a zero-mean Gaussian stochastic process are not the same (when R has more

than a �nite number of non-zero eigenvalues).

3 Sparsi�cation of the regularization representation and

Support Vector Machines

Let us consider again the main scenario we sketched above: a space of functions is characterized

probabilistically through its correlation function R(x;y). Any function f in the space can be

represented in terms of the eigenvectors associated with R. An (approximate) representation of

f in terms of a �nite numbers of Principal Components is a natural compact approximation of

f . It is natural to ask whether we could sparsify the N-terms dual representation of f in terms

of a regularization network, that is the weighted sum of the kernels R centered at N data points.

A natural way to sparsify

f(x) =
NX
i=1

aiR(x;xi) (20)
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is to use SVM regression (Vapnik, Golowich and Smola, 1997; and Vapnik, 1995 ) with the kernel

R (or RM , see later). As shown by Girosi (1998), this corresponds to minimizing {instead of the

regularization functional 4 - the following functional

H[f ] =
1

N

NX
i=1

j zi � f(xi) j� +kfk2R (21)

where the following robust error function has been de�ned instead of the usual L2 norm on the

data term:

j x j�=
(

0 if j x j< �

j x j �� otherwise:
(22)

The function that minimizes the functional in eq. (21) depends on a �nite number of parameters,

and has in our case the following form:

f(x) =
N 0X
i=1

aiR(x;xi); (23)

where the coe�cients ai are now found by solving a quadratic programming problem. Notice

that the sum in equation (23) runs only up to N 0, where N 0 � N . The reason is that, due to the

nature of this QP problem, only a \small" number of coe�cients will be di�erent from zero, and

the data points associated to them are called support vectors (in many cases N 0 << N). Thus

we can sparsify the regularization representation of a function by using the correlation function

as the regularization kernel in equation 21.

We now invoke a result in Girosi (1998, section 5) to claim that the result of minimizing equation

21 is the same as of sparsifying the overcomplete dictionary of R(x;xi) using Basis Pursuit De-

noising (Chen, Donoho and Saunders, 1995) (see also the sparsi�cation approaches of Olshausen

and Field, 1996, and Lewicki and Sejnowski, 1998). The proof consists of applying the Girosi

version of the Chen-Donoho cost functional to sparsify equation 20, leading to the minimization

of the following functional with respect to the coe�cients ai

E[a] =
1

2
kf(x)�

NX
i=1

aiR(x;xi)k2R + �kakL1
(24)

The solution of equation 24 is the same as the solution of minimizing 21, which is given by

equation 23. Thus a solution equivalent to the SVM solution { in which only a subset of the

data points has non-zero coe�cients, the so-called support vectors { can be obtained simply by

enforcing a sparsity constraint in an approximation scheme of the standard regularization form

with R being the correlation matrix

f(x) =
NX
i=1

aiR(x;xi)

a sparse representation is sought among a \large" number of possibly local and task-dependent

features R(x;xi).

Notice that the framework of sparsi�cation (and the equivalent SVM) allows us to consider a

dictionary of overcomplete basis functions and in particular of R not only at multiple locations

but also at multiple scales. A natural way to de�ne such a dictionary is to consider, instead of

R, Rd for several di�erent values of d and, of course, at many locations (for instance at each
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pixel in an image). In this case (see appendix) we minimize the sparsi�cation functional to select

appropriate sparse scales and locations, yielding a sparse, multi-scale representation

f(x) =
N 0;D0X
i;d

ai;dRd(x;xi); (25)

Remarks:

1. Basis Pursuit Denoising provides only a suboptimally sparse representation from a dic-

tionary (because it uses kakL1
instead of kakL0

in equation 24) but it probably has good

generalization (because in the form of equation 24 it is equivalent to SVM).

2. The form of the solution - a superposition of kernels - does not depend on the form of the

norm involved in the data term, as observed earlier by Girosi, Caprile and Poggio (1990).

In particular, it is the same for the standard L2 norm and for the robust norm de�ned by

Vapnik.

3. Our approach of sparsifying the representations of f in terms of the generalized correlation

kernel Rd is a principled way to achieve the sparsi�cation proposed by Penev and Atick

(1996).

4. Though the representations of a function f in terms of Rd are all equivalent, independent

of d, in the standard regularization case, we expect that they will have in general di�erent

properties after sparsi�cation.

4 Bayesian interpretation and why R is the kernel of

choice

Consider

min
f2H

H[f ] =
NX
i=1

(yi � f(xi))
2 + kfk2K

In the standard bayesian interpretation of RN (see for instance (see Girosi et al., 1995) the data

term is a model of the noise and the stabilizer is a prior on the regression function f . Informally

the equation follows from a MAP estimate of

P (f=y) / P (y=f)P (f)

To see the argument in more detail, let us assume that the data yi are a�ected by additive

independent gaussian noise processes, i.e. yi = f(xi) + �i with E[�i�j] = 2�i;j

P (y=f) / exp(�
X
i

(yi � f(xi))
2)

and
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P (f) / exp(�kfk2R) = exp

 
�

MX
n=1

c2n
�n

!

where M <1

f(x) =
MX
n=1

cn�n(x):

Thus the stabilizer measures the Malahanobis distance of f from the mean of f�. To see this,

let us represent f in any complete orthonormal basis  i as the vector fi =< f; i >. We assume

that the data are zero-mean in the sense that E[f�(x)] = 0 (obviously the data can always be

processed to satisfy this condition). Then we know that if P (f) is Gaussian then

P (f) / exp(�fT (�)�1f)
and f

T (�)�1f is the Malahanobis distance of f from its mean (the origin). P (f) is therefore a

multivariate Gaussian with zero mean in the Hilbert space of functions de�ned by R and spanned

by the �n, that is the space related to Principal Components.

Remarks:

1. Notice that for SVM the prior is the same Gaussian prior but the model of the noise is

di�erent and is NOT gaussian additive as in RN (see Pontil et al., 1998 ). The same is true

for BPD, given the equivalence between SVM and BPD.

2. Thus also for SVM (regression) and BPD the prior P (f) gives a probability measure to f

in terms of the Malahanobis distance in the Hilbert space de�ned by R and identical to

the space of the Principal Components.

3. There is a natural probabilistic interpretation of the data term (see Girosi et al., 1995).

As we have mentioned, in the case of standard regularization, the data term norm (a L2

norm) corresponds to a Gaussian model of the noise, that is the conditional probability of

the data zi given the function is a Gaussian. Other norms can be interpreted as shown by

Girosi, Caprile and Poggio (1990) in probabilistic terms as di�erent models of the noise.

Pontil et al. (1998) have derived the noise model corresponding to Vapnik's � insensitive

norm.

4.1 Why R is the kernel of choice.

Assume that the problem is to estimate f from sparse data yi at location xi. From the previous

description it is clear that choosing a kernel K is equivalent to assuming a Gaussian prior on f

with covariance equal to K. Thus an empirical estimate of the correlation function associated

with a function f should be used, whenever available. Notice that in the Bayesian interpretation

a Gaussian prior is assumed in regularization as well as in SVM (and in the equivalent BPD

formulation). Thus when empirical data are available on the statistics of the family of functions

f� one should check that P (f) is Gaussian and make it zero-mean. Then an empirical estimate

of the correlation function E[(f�(x)f�(y)] can be used as the kernel.

The relation between positive de�nite kernels and correlation functions R of Gaussian random

processes is characterized in details in Wahba (1990), Theorem 5.2.
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5 Conclusions

We know from Wahba (1990) and Girosi (1998) that, given a positive de�nite K,

1. a regularization functional can be de�ned

2. a function in the RKHS can be represented in terms of the non-linear features provided

by the orthonormal eigenfunctions of K and also in terms of a linear combination of the

kernels K evaluated at sparse points

3. the data term in the regularization functional can be modi�ed to yield a SVM formulation

4. minimizing the SVM functional is the same as sparsifying the regularization representation,

that is the dictionary of K(x;xi).

Here we consider the case in which the kernel K is a very special \object" { the correlation

function R(x;y) and justify this choice in terms of the Bayesian interpretation of regularization,

SVM and BPD . We focus on its role in regression (function approximation from sparse data)3.

We show that

1. a function can be represented either by the Principal Components induced by the associated

correlation function or in a dual way by the regularization solution - a weighted sum of

correlation kernels evaluated at N data points.

2. the representation in terms of the correlation kernel can be sparsi�ed using the SVM

technique or, in a completely equivalent way, by using the basis pursuit denoising technique

on the dictionary of R(x;xi). Notice that this representation is not only compact (see Chen,

Donoho and Saunders, 1995) but it is also likely to achieve good generalization, (since the

SVM cost functional implements Vapnik's theory of risk minimization).

In our case SVM can be therefore regarded as a \sparse" version of a regularization network with

a kernel derived directly from the correlation function. The regression problem we consider is a

problem of signal reconstruction; is very di�erent from the problem of pattern classi�cation (see

Appendix). Following the spirit of Penev and Atick, the same sparsi�ed kernels computed for

regression may be used with SVM classi�ers { in the same way in which principal components

are often used { e�ectively representing a choice of sparse feature from an appropriate large

dictionary of basis functions (provided by the R(x;xi)).

Correlation functions that are shift invariant are not very interesting from the point of view

of the representations discussed here: they all correspond to the same set of Fourier features.

Of course, the correlation function corresponding to a large set of images of di�erent scenes and

objects will be translation and scale invariant (see Penev and Atick, 1996 and references therein).

Properly aligned images of objects of the same type (such as for instance faces or people, see

Papageorgiou et al., 1998) instead yield correlation functions which are not shift invariant (see

Sirovich and Kirby, 1988; see also Turk and Pentland, 1990). The associated �n features capture

information about the category of objects. They are however global. The correlation kernels

R(x;xi) (or the corresponding P (x;xi)), instead yield local \features", which can be sparsi�ed

3Atick and Penev were probably the �rst to study the correlation function R in the context or regression.
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and thereby simultaneously optimized for generalization. Results from experiments in progress

are promising.

It is suggestive to speculate that cortex may use machinery to align and normalize visual inputs

so that dictionaries of object speci�c features can be learned without being a�ected by arbitrary

translations and scalings. At earlier stages of the visual system, however, one may expect from

our results that translation invariant correlation functions associated with non-aligned images of

di�erent types will determine basis functions similar to local Fourier components. It is interesting

to speculate that the correlation functions associated with images at di�erent scales may be

learned separately, providing receptive �elds at multiple resolutions.

Acknowledgments We would like to thank Mike Oren, Amnon Shashua, Alessandro Verri.
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A Multiple scales correlation kernels for regularization,

sparsi�cation and SVM

A.1 Multiple scales and classical regularization

Let us consider here the multiple scale generalized correlation Rd of equation 16. Let us assume

that f(x) = f1(x) + f2(x), where f1 and f2 represent the components of f at two di�erent

scales (the generalization to the case of more than two scales is cumbersome but possible). The

functional to be minimized is

H[f ] =
NX
i=1

(zi � f1(xi))
2 + �

NX
i=1

(zi � f1(xi)� f2(xi))
2 + 1kf1k2R1

+ 2kf2k2R2

where � is a positive, small number. The underlying idea is that f1 is a coarse approximation to

the data at one scale, while f2 is a re�nement at a �ner scale (f2 approximates the residuals of

f1).

A.2 Multiple scales and sparsi�cation and SVM

The sparsity functional of Chen et al. can be used to choose a sparse subset from the dictionary

of basis functions Rd(x;xi), with i and d ranging over a \large" set of locations and scales.

One possible way of obtaining equation 25 from the SVM technique is the following. We assume

that f(x) = f1(x) + f2(x), where f1 and f2 represent the components of f at two di�erent

scales (the generalization to the case of more than two scale is immediate). The functional to be

minimized is

H[f ] =
NX
i=1

j zi � f1(xi) j�1 +�
NX
i=1

j zi � f1(xi)� f2(xi) j�2 +1kf1k2R1
+ 2kf2k2R2

where �1 > �2, and a � is a positive, small number. The �nal result is

f(x) =
N 0;D0X
i;d

ai;dRd(x;xi); (26)

B Principal Components under Regularization and Spar-

si�cation

As we discussed, minimization of the regularization functional 10 de�nes a regression function f

that is in the span of the features space of the Principal Components (that is the eigenfunctions

of R). As we mentioned the solution f of the regression problem can be represented in terms

of �n and equivalently in terms of R(x;xi). It is interesting to look at the solution when it is

expressed in terms of the principal components. We do this in the case in which we have an

in�nite number of data points, which corresponds to the case in which we actually know the

function we want to approximate. Therefore, we plug the PC representation

12



f(x) =
MX
n=1

bn�n(x) (27)

in the regularization functional:

H[f ] = kg(x)� f(xk2L2
+ kfk2R (28)

where we denoted by g the function we want to approximate. The solution of the minimization

problem is

bn =

�
1 +



�n

�
�1

< �n; g(x) > : (29)

Notice that for  = 0 we have the usual solution: bn is simply the result of projecting the target

function g(x) on the principal component �n. For  > 0, the e�ect of regularization is to decrease

all bn by a factor which depends on the corresponding eigenvalue of the correlation matrix.

It is interesting to compare these regularization solutions to the sparsi�cation and SVM solution

(which are the same). We consider the minimization with respect to bn of

E[b] =
1

2
kg(x)� f(xk2

H
+ �kbkL1

(30)

In this case the solution is

bn = j < g; �n > �n�j+ + j < g; �n > +n�j� (31)

where jxj+ (jxj�) is equal to x when x is positive (negative) and equal to 0 otherwise. The

dependency of bn on < g; �n > is plotted in �gure (1). In this case, if the principal component n

has a projection which is too small it is simply not used. The non-zero coe�cients are shrunk by

a factor that depends on the sparsi�cation parameter � (and correspondingly on the � insensitive

norm of SVM) and on the eigenvalue of the correlation matrix.

Finally, we consider a very di�erent problem: we perform exact sparsi�cation with respect to the

average reconstruction error over the space of \images" f� rather than with respect to a single

image. We follow Girosi (1998) and minimize an appropriate functional H, that is

min
�
H[�] =

1

2
E[kf� �

X
n

< f�; �n > �n(x)�nk2] + �
X
n

�n (32)

where �n are binary random variables with values in f0; 1g, E[�] denotes the expectation with

respect to P (�) and the �n are the eigenfunctions of R. In this simple case of orthonormal �n
we �nd that (�(x) is 1 if x > 0 and 0 otherwise)

�n = �(�n � �)

Thus only those Principal Components are chosen that correspond to eigenvalues larger that the

sparsity and SVM parameter �.
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<g, φ  >n

ε γ
n

Figure 1: The value of the coe�cient bn as a function of the projection < g; �n > of the data g

on the principal component �n.
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C The discrete case

It is often believed that the estimation from data of the correlation function R is impossible

or very di�cult, because of the `di�culty of sampling the space f�. In practice, however, the

functions f� (as well as �n) must be represented as vectors in a �nite dimensional space, albeit

of possibly very high dimensionality V . Thus, though the correlation matrix R = FF T with

F a V xQ matrix with columns f� may be highly rank de�cient, it is possible to obtain useful

estimates of it in terms of its M Principal Components, where M � T with T being the number

of the observations f�, even when T << V . The best technique is to compute the Singular Value

Decomposition of F , that is F = UDV T where the columns of U are the eigenvectors of FF T ,

the columns of V are the eigenvectors of F TF and the diagonal matrix D contains the singular

values. Thus an estimate of R can be obtained as the RM of equation 13.

Assume that values of an unknown vector (say an image) f are given at a discrete set of points

and that an estimate of the underlying correlation matrix is available as RM . Then f can be

reconstructed either as

fx =
MX
n=1

bi�n;x (33)

or as

fx =
N 0X
i=1

aiR
M
x;xi

(34)

D Pattern Classi�cation

Our standard example in the paper is the problem of image reconstruction from sparse pixel

values. This is very di�erent from the problem of classifying images, for instance classifying

whether an image is an image of a face or not. To see this consider the spaces involved:

1. Image reconstruction. In the case of image reconstruction we would like to approximate

the map

f : R2 7! R

from its values at sparse points in R2. The equivalent problem of binary pixel classi�cation

synthesizes a map

f : R2 7! f0; 1g:

For solving this problem we could use any positive de�nite function K(x;y), such as the

Gaussian.

2. Pattern classi�cation. For pattern classi�cation the problem is quite di�erent: we have

several images, which are vectors of N components (pixels) and each image is associated

with a binary label. The goal is to learn the map
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g : RN 7! f0; 1g

If I replace f0; 1g with R we have the corresponding (di�cult !) regression problem.

The two problems are quite di�erent. They are somewhat related however in the special case

of problem (1) that we consider in this paper. In this case we have to solve the regression (or

possibly binary regression) problem for pixels of an image f(x) but we also know the generalized

correlation function R(x;y) of the set of similar images f�(x). As we discussed, R provides a

"natural" choice for the regression kernel K. An estimate of R is given by FF T . In problem

(2) the input space consist of vectors f(�) that may be related to the functions f� of problem

(1) by de�ning each component indexed by x of f(�) as f�(x). One way to solve problem (2)

(classi�cation or even regression) is to use regularization or SVM with a kernel K(�; �) equal

to the dot product, that is K(�; �) =< f�; f� >. The corresponding matrix needed from the

data is then F TF . Obviously, the Q �Q matrix F TF and the N � N matrix FF T are closely

related4. Notice that in practice it is very di�cult if not impossible to estimate empirically

the correlation function in a classi�cation problem: that is equivalent to estimate the su�cient

(Gaussian) statistics characterizing the classi�cation functions (in our example on the images

and not of the images as in the regression case).
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