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Abstract

In learning problems available information is usually divided into two categories: examples of function
values (or training data) and prior information (e.g. a smoothness constraint).

This paper 1.) studies aspects on which these two categories usually di�er, like their relevance for gen-
eralization and their role in the loss function, 2.) presents a unifying formalism, where both types of
information are identi�ed with answers to generalized questions, 3.) shows what kind of generalized in-
formation is necessary to enable learning, 4.) aims to put usual training data and prior information on
a more equal footing by discussing possibilities and variants of measurement and control for generalized
questions, including the examples of smoothness and symmetries, 5.) reviews shortly the measurement of
linguistic concepts based on fuzzy priors, and principles to combine preprocessors, 6.) uses a Bayesian de-
cision theoretic framework, contrasting parallel and inverse decision problems, 7.) proposes, for problems
with non{approximation aspects, a Bayesian two step approximation consisting of posterior maximization
and a subsequent risk minimization, 8.) analyses empirical risk minimization under the aspect of non-
local information 9.) compares the Bayesian two step approximation with empirical risk minimization,
including their interpretations of Occam's razor, 10.) formulates examples of stationarity conditions for
the maximum posterior approximation with nonlocal and nonconvex priors, leading to inhomogeneous
nonlinear equations, similar for example to equations in scattering theory in physics.

In summary, this paper focuses on the dependencies between answers to di�erent questions. Because
not training examples alone but such dependencies enable generalization, it emphasizes the need of their
empirical measurement and control and of a more explicit treatment in theory.
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1 Introduction

To clarify the aimof the paper, our use of the term \prior
information" and to de�ne vocabulary and notation we
analyze the fundamental problem of generalization for a
simple toy example:

Let us assume that we are interested in the answers
y1(x1) and y2(x2) to two questions x1 and x2. We will
call these questions relevant to our application. Let us
assume we have found for y1 the value y1 = 2 in a �rst
measurement. We are interested in the future output
when measuring x1 and x2. Clearly this is not possi-
ble without further assumptions. These assumptions are
used in choosing a set F 0 of `possible states of nature' f0.
If we assume that the problem is deterministic, then the
problem is already solved for x1. We call this assumption
local as they refer to a single question. If the problem is
probabilistic and we want to determine the probability
of future answers y1 to x1 this requires the assumption of
a set of stationary distributions p(y1jx1; f0) correspond-
ing to possible states f0 for y1 so we can use the data to
reweight the probabilities p(f0). The collection of p(f0)
is what we call a `state of knowledge' and can be used
to predict future outcomes y1.

But in most real world problems there are new ques-
tions x2 for which no training examples are available.
This is the generalization problem. It seems even harder
than the learning problem for x1 for which at least local
data are available. To remedy the situation we clearly
need answers which depend on y2 at least indirectly. We
may directly use a nonlocal assumption like y2 = y + y1.
This is trivial if we know y. But this may not be the
case in the beginning and this paper analyses how infor-
mation about y may be obtained. Therefore, we want
to start with independent relevant outcome y1 and y2
(what we will call a factorial state) and try to relate all
dependencies to additional information. That means we
see y as an answer to a question q with y(q) = y2 � y1.
This nonlocal q question represents a measurement de-
vice for di�erences. We call questions depending on more
than one yi generalized questions. Examples are nonlocal
questions like y2 � y1 or questions referring to repeated
measurements of the same questions like y1+y

0
1. We can

now separate the nonlocal information in two parts: the
structural information, that is the de�nition of the non-
local question q and an empirical or controllable part,
that is the result of measuring q or controlling its an-
swer. The de�nition of q alone does not yet determine
the value or probability of y2. Only an actual measure-
ment of q relates those two questions.

This is a conceptually clear starting point to analyze
generalization. We start with an unrelated set of relevant
questions xi in which we are interested and formulate all
nonlocal information as answers to nonlocal questions.
How can we know what q measures? Clearly the de�ni-
tion of q,that is the structural information, will contain
some assumptions, speci�cally some kind of stationarity.
The de�nition of q is usually also based on previous em-
pirical information. For example, we could have tested
a di�erence device many times before using it and found
it working correctly (or at least indicating correctly its
failure). Then the stationarity assumption that it will

work correctly also for our task, seems reasonable. (In
a Bayesian approach we can give it a high subjective
probability.) Thus, structural information is based on
transfer of knowledge between tasks. Transfer means
generalization with respect to a task variable. In statis-
tics a nonlocal question corresponds for example to the
choice of a smoothness functional to be used as prior.
Likewise, rules in an expert system with dependencies
modeled by logic, fuzzy logic or Bayesian belief networks

and macroscopic variables (e.g. energy) in physics are
special cases of nonlocal questions.

Data are pairs of question and answer and we refer
to the data related to relevant questions x1, x2 as test
data and to data related to questions x1, q with answers
available as training data. Then for independent test
questions the training data necessarily have to contain
answers to nonlocal questions to allow generalization. It
is from this point of view that we want to analyze prior
information: we start with independent relevant ques-
tions and try to give explicit explanations, namely mea-
surable prior information, for their dependencies. We
summarize three aspects we have been mentioning

1. Generalization aspect: not all relevant questions
are available for training,

2. Application aspect: not all available data corre-
spond directly to relevant questions,

3. Transfer aspect: Some aspects of the setting, like
the nature of the measuring devices, have to be
known.

Now let us switch to more realistic statistical problems
and consider a given function f : y = f(x) with x 2 X
and y 2 Y for some set X and some set Y . We allow as
response to x instead of a deterministic f(x) a random
variable which takes values y with probability p(yjx; f).
Let us consider the following two kinds of information:
A typical training example, that is a pair (x; y), and
some smoothness constraint. Let the latter be given by
a bound on a smoothness functional, like, for example,

the discretized version
P

i(
E(f(xi))�E(f(xi+�xi))

�xi
)2 < �,

where E(f(x)) denotes the regression function or expec-
tation of y = f(x) at point x.

The �rst one can clearly be interpreted as a pair of
question and answer. We see x = qx as a question
for state f about its value at x and denote the an-
swer by y = qx(f) = f(x) (i.e. f(x) denotes a ran-
dom variable), generated by a probability distribution
p(yjx; f). We write such a pair as (x; y) = (qx; yqx).
Information about smoothness can be seen as answer
to a more generalized `smoothness' question qs;� =

sign
�P

i(
E(f(xi))�E(f(xi+�xi))

�xi
)2 � �

�
. We write this

pair as (qs;�; ys;�) with qs;�(f) equal to �1 and remark
that replacing the �xed � by a random variable � with
mean � is one easy way to generalize to the case of a prob-
abilistic answer. Now note that in contrast to a simple
example data question the smoothness question depends
on more than one x{value of the function f . In this sense
the smoothness question may be seen as nonlocal. Non-
locality is also present in symmetry questions. e.g. like
qp;� = sign

�P
i(E(f(xi)) �E(f(�xi)))2 � �

�
or more
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general qs;� = sign
�P

i(E(f(xi))� E(f(sxi)))
2 � �

�
where s represents any symmetry operator under which
invariance of f is tested. Also bounds for the nonlo-
cal maximum function maxxE(f(x)) are widely used.
Those three types of bounds, on smoothness, symmetry,
and maximum functionals, are the the most frequently
used forms of prior information in practice.

There is one practical distinction between nonlocal
prior information like smoothness and standard train-
ing examples: the latter are assumed to be empirically
measurable while the `measurability' of nonlocal data
like smoothness is often quite unclear. The di�culty lies
in the fact that these nonlocal questions depend on the
whole function f(x), and for continuous x there is an in-
�nite number of function values. But, if we want to treat
nonlocal information in a similar way as standard train-
ing examples we also have to discuss the measurement of
such data. This paper shows that, besides cases where
highly parallel measurement devices are available, also
restrictions of measurement devices and the de�nition of
situations of interest and their control can be interpreted
as measurements of such questions.

There is another group of nonlocal questions, for
which data are more easily available in practice. These
are nonlocal questions depending on only a �nite (and
in practice `small enough') number of f(xi). Empirical
answers to these questions can be found by measuring
standard training examples f(x) and applying some op-
erations to the results which de�ne the questions. Ex-
amples include di�erences f(xi)� f(xj ), weighted aver-
ages

P
i wif(xi) like discrete wavelet components, sym-

metries s for speci�c points f(xi) � f(sxi), and mea-
surements of f(x) with input noise. When the expec-
tation E(f(xi)) can be approximated by 1=n

P
i f(xi),

that is by using repeated measurements, we can, at
least approximately, also measure examples depending
on E(f(xi)). Sometimes only nonlocal data are avail-
able, as in models where the variables of interest are
hidden but related by structural assumptions to several
observable variables, like for example in hidden Markov
models. However, even when the variables of interest
are observable there can be measurement devices which
measure �nite nonlocal questions with greater accuracy
than by using the measuring devices for f(x). Speci�-
cally, di�erences are often measured better directly than
by �rst looking for f(xi) then for f(xj) and then tak-
ing the di�erence. This is always the case if part of the
measurement error appears in a �nal step common to
all measuring devices, like an output scale with �xed �-
nite resolution or memory errors. We also remarked that
the de�nition of a generalized question is called a rule in
expert systems. Thus, available rules collected from ex-
perts may be incorporated as nonlocal question. Also,
many examples of measuring nonlocal questions can be
found in physics. The energy function of a macroscopic
system is highly nonlocal with respect to the microscopic
constituents. It seems that nonlocal data are often avail-
able, however in many cases their practical combination
with priors of in�nite nonlocality is probably hindered
due to the di�culties of the Frequentist approach in
statistics in dealing with nonlocal questions. That means

that for data with in�nite nonlocality the measurement
problem represents an empirical di�culty, while includ-
ing complex forms of nonlocal data, even with �nite non-
locality, yields easily to mathematical di�culties related
to solving nonlinear equations.

The paper formulates a theoretical approach in which
answers to generalized questions are treated similar to
standard training examples. In Section 2 the theoretical
framework is presented, paying particular attention to
the generalization problem. It is clari�ed that not the
(standard training) data, but the nonlocal (prior) data
enable learning.

Section 3 presents generalized questions in more de-
tail. The importance of nonlocal information for learning
makes it necessary to discuss the fundamental measure-
ment problem for nonlocal questions. For example, re-
strictions of measurement devices correspond to nonlocal
measurements.

Section 4 relates the classical approximate symmetry
priors (e.g. smoothness) to nonideal measurement de-
vices, the speci�c restriction being input noise.

Usually learning problems are de�ned and controlled
by man. Consequently, nonlocal dependencies may be
caused by internal human concepts. In addition experts
may contribute knowledge in form of verbal statements.
Section 5 discusses principal variants of including sub-
jective priors (which is meant to include priors caused
by subjects), like an interface with fuzzy priors. The
Section does not aim to give an overview over this active
and growing area of research, but presents some princi-
ples and aims in explaining the origin of nonlinearities
which appear as technical di�culties in Section 9.

Section 6 extends the theoretical framework of Section
2 to decision problems using the language of generalized
questions. Parallel and inverse settings are contrasted.

Section 7 contains a discussion of the Bayesian ap-
proach, concentrating an the saddle point approxima-
tion, leading to the two step MaP{MiR procedure.

Section 8 discusses the Frequentist approach of empir-
ical risk minimization from the Bayesian decision theo-
retic point of view. Especially the relation to the max-
imum posterior approximation in approximation and
non{approximation situations is discussed in detail.

Section 9 shows the possible use of generalized in-
formation by discussing maximum posterior variational
(mean �eld) equations for several variants of nonlinear
regularization procedures. In general those have the
form of inhomogeneous integro{di�erential equations,
like they appear for example similarly in a time inde-
pendent formulation of quantum mechanical scattering
theory.

Finally, Section 10 exempli�es the ideas of nonlinear
regularization on a numerical example.

2 A constructive Bayesian approach

2.1 Model and vocabulary

In this section we choose a Bayesian approach (See for
example Berger, 1985; Haussler, 1995; Bishop, 1995a,
Wolpert, 1996a) and attempt to separate in a clear man-
ner the local from the nonlocal parts in our model.
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Therefore, we begin with the construction of the local
components: We enumerate a set of basis questions x
necessary to determine the possible states we are inter-
ested in. The term constructive means that we do not
start with a model given by some chosen parameteri-
zation (see Wolpert, 1994a), however, we use the rele-
vant questions we are interested in to construct the re-
lated model. For every question we give a set of possible
answers together with a set of question speci�c answer
distributions p(yjx; f0x). Each such answer distribution
represents one possible pure local state f0x . Its index x
allows the local states to be de�ned independently and
individually for every basis question x. In this paper a
pure state is indicated by an superscript 0. We assume
the nature to be in exactly one pure state. 1 Which one,
is usually unknown to us. Thus, in contrast an fx with-
out the superscript 0 denotes not a real pure state but
a state of knowledge being equivalent to an assignment
of a probability p(f0x jfx) to every pure state, where we
often skip fx in the notation. In a learning situation we
assume the actual, usually unknown, pure state (of na-
ture) to be constant2 for the time under study, while the
state of knowledge, which reects the learning process,
changes with our information.

The independently de�ned local components are re-
lated by nonlocal states. A pure nonlocal state f0 is
de�ned through an assignment of one local state f0x to
every basis question x and a nonlocal state of knowledge
f through an assignment of a probability p(f0) to every
pure nonlocal state, with p(f0) implicitly understood as
p(f0jf). The probabilities p(f0) contain all the relations
between local components and therefore the nonlocal in-
formation.

We now de�ne the ingredients of the theoretical ap-
proach more formally:

1. A local basic model consisting of

a. a (�nite3) set X of basis questions x,

b. a (measurable4 ) space Yx of possible answers

1Thus, a pure state is maximally speci�ed. We allow here
a pure state to be probabilistic, so cases are possible where
one pure state has the same probability distribution as a mix-
ture of other pure states. In contrast to such an equivalent
mixture a pure state is a �xed point under arbitrary learning.

2Constant is meant relative to a chosen reference system,
which might also, for example, be varying in time.

3For in�nite X the corresponding functional integration
represents a stochastic process in the language of mathemat-
ics or a �eld theory in the language of physics and must
be consistently de�ned for every �nite subset. Despite tehe
existence of interacting �eld theories in physics, only func-
tional integrals with Gaussian measures are mathematically
well de�ned objects (Gardiner, 1990; van Kampen, 1992;
Schervish, 1995). Non{Gaussian functional integrals have
to be be de�ned for example by perturbation theory using
the Feynman{Kac formula or by discretization, i.e. an ultra-
violet cuto� (Glimm{Ja�e, 1987, Zinn{Justin, 1989, Bialek,
Callan, Strong, 1996, Balasubramanian, 1996). For the use
of Gaussian processes especially in Bayesian statistics see e.g.
Williams, Rasmussen, 1996; Barber, Williams, 1997; Neal,
1997.

4In the mathematical sense.

yx for every question5,

c. a (�nite6) set of probability distributions (lo-
cal elementary functions) over answers F 0

x =
fp(yjx; f0x)g for every question, the pure local
states ,

d. a set Fx of local states of knowledge fx de�ned
by assigning a probability p(f0x) to every local
pure state f0x .

A local state f0x can be considered indexing a vector
p(yjx; f0x) in the linear space F(Y; x) of functions de-
�ned on Y = Yx, i.e. f

0
x 2 F(Y; x), with norm jf0x j =P

y p(yjx; f0x) =
P

y p(yjx; f0) = 1. A state of knowl-

edge fx is in the convex hull of F 0
x , with

P
f0x
p(f0x) = 1.

We denote by C(V ) the convex hull of a set V of vectors
vi generated by linear combinations

P
i aivi with coe�-

cients ful�lling
P

i ai = 1 (e.g. i = f0x , ai = p(f0x jfx)),
and by L the linear span, generated by unrestricted lin-
ear combinations. So we have

F 0
x � Fx = C(F 0

x ) � L(F 0
x ) � F(Y; x):

Now we construct the nonlocal parts.

2. Pure nonlocal states f0, or, more shortly, pure
states, are de�ned by a set of pairs (p(yjx; f0x ); x)
containing exactly one local state for each ques-
tion: f(p(yjx; f0x); x) : f0x 2 F 0

x ; x 2 Xg to give
p(yjx; f0) = p(yjx; f0x). They form the set F 0 of
pure states or elementary functions, which is a sub-
set of the linear space of functions de�ned on Yx; X,
f0 2 F(Yx; X). We implicitly understand states
(functions) as equivalence classes de�ned with re-
spect to X by [f0]X = [f 00]X , 8x 2 X; 8y 2
Yx : p(yjx; f0) = p(yjx; f 00).

3. A nonlocal state of knowledge f , or, more shortly,
a state of knowledge is de�ned through as-
signing probabilities p(f0jf), or often shortly
p(f0), to the pure states f0 2 F 0 of
the model. Thus, f denote convex combi-
nations of pure states f0, i.e. p(yjx; f) =P

f02F0 p(f0)p(yjx; f0); with
P

f02F0 p(f0) = 1;.

The set F of possible states of knowledge (also
called mixture states) f of the model form the con-
vex hull F = C(F 0) of F 0 � NxL(F 0

x ). By con-

struction we have p(f0jx) = p(f0) stating indepen-
dence between states f0 and basic questions x. A
state of knowledge is called factorial with respect
to X i� p(f0) =

Q
x p(f

0
x ); 8f0 2 F 0. It is fully de-

termined by its local probabilities p(f0x) assigned
to each local state for question x.7

This paper discusses prede�ned dependencies between
answers to di�erent questions. The role of such structural
information is discussed in section 2.3. Structural infor-
mation is implemented by de�ning generalized questions.

5The set Yx can be assumed x{independent without loss
of generality, so we will usually write Yx = Y .

6The case of an in�nite space F 0
x requires the de�nition of

a measure df0x .
7
P

f
0
x2F

0
x
p(f0x) = 1;8x 2 X ensures

P
f02F0 p(f

0) = 1.
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4. A generalized question is any probabilistic func-
tional q(f) of f . A probabilistic functional q
is a probabilistic mapping from the space F
of functions f to a space yq of answers y =
q(f) given by probability distributions p(yjq; f) =P

f02F0 p(f0)p(yjq; f0) de�ned by p(yjq; f0). We

require the f0{dependency of p(yjq; f0) to be ex-
pressible in terms of only the p(yjx; f0).8 9 10 We
de�ne some set Q of generalized questions to be
measurable (or observable) by assuming, for every
question in Q, the existence of a measuring device
producing the corresponding answer. As consis-
tency condition we require any question depending
on a �nite number of answers to measurable ques-
tions also to be measurable. We call the set of
x 2 X on which the q 2 Q depend the basis

11 of
Q and denote it by XQ. Skipping the unobserv-
able elements x =2 XQ we write X = XQ. Data D
are pairs of questions and corresponding answers
(q; yq). In section 3.1 we will show how to write
generalized questions explicitly, and section 3.2 dis-
cusses the measurement processes.

For applications we use a decision theoretic framework
(see also Section 6) and separate the two subsets

5. QD � Q of available or training questions for which
answers are available.12 The basis of QD will be

denoted by XQD

= XD � X. DQD denotes the set
of all possible data which only depend on questions
q 2 QD. We denote by qD, and analogous for other
sets of questions, vectors with components qDi 2
QD. Here, qDi = qDj 2 QD; i 6= j is also allowed.13

By qD 2 QD we mean that qDi 2 QD for every

component of the vector. If a vector appears in QD

8Aside from the possibility that a functional is not de�ned
for a speci�c f0, there exists the possibility of a functional
having only a certain probability of being not de�ned if ap-
plied to a function f0, like q(f0) = 1=y if p(y = 0jx; f0) 6= 0.
Formally one can add the value 'unde�ned' to the space Y ,
as it is common in programming.

9One could allow a dependence of the de�nition of q, i.e.
the p(yjq; f; f0), from the state of knowledge f (which is
known, as the name indicates), i.e. from the p(f0jf). How-
ever, this is only important when studying the dependence
from f . A dependence p(f0jq) would mean that selecting q
already changes the hidden variable f0. By de�nition of the
model we have p(yjx; f; f0) = p(yjx; f0) and p(f0) = p(f0jx)
for the basic questions.

10Compare for example with similar concepts in Ratsaby
& Maiorov, 1996 and Smola & Sch�olkopf, 1997.

11This is not a linear basis of a vector space (Compare
Je�rey, 1968).

12This is related to learning (see 11., below). The set QD

depends on what part of information is considered part of the
prior A prior fI can be expressed depending on some data D0

and another prior fI
0

according to p(f0jD) = p(f0jf(D;fI))

= p(f0jf(D;fI(D0; fI
0

))=p(f0jD;D0). Note that here the
sloppy notation p(f0jD) = p(f0jD;D0) refers to di�erent pri-
ors on the right and left hand side which are not explicitly
indicated.

13In as far as no linear structure is needed qD can also be
seen as a set, with dummy indices for repeated elements.

we understand not the vector but its components
to be elements. An data vector D is a question{
answer pair (qD ; yD). We may decompose D into
lower dimensional vectors Di = (qDi ; y

D
i ) � DQD ,

i 2 I.

6. Ql � Q of relevant or test questions de�ning the
possible application situations. The basis of Ql is

denoted byXQl

= Xl � X,DQl the set of all possi-

ble data depending on Ql, and we use Dl to denote
a test data vector14 i.e. a set of pairs (ql; yql) 2 DQl .

The set Ql is called relevant, because

7. we assume a given loss function l(ql; yql ; z), de�ned

for all ql 2 Ql, i.e. application situations. The loss
function depends on the question ql, the answer yql
and potentially also on additional variables z 2 Z.
We will call z the action variables as we usually
allow them to be controlled.

We include the possibility to control the action vari-
ables z 2 Z within the loss function by an active choice

of an action state f̂ 2 F̂ . Thus, we de�ne

8. a family f̂ 2 F̂ of possible action states produc-
ing the probabilistic action z 2 Z according to

p(zjql; y; f̂) for ql 2 Ql.

We write ~l(ql; y; f̂) for the e�ective loss if the z variables
in l(ql; y; z) can be integrated out.

The possible application situations, i.e. the relevant
or test questions ql, are generated by

9. a test question ql{producing device p(qjyc; zc)
which, conditioned on a subset c of `past' values
of yc 2 Y and zc 2 Z, does not depend on f0, f or

f̂ .

The probability distributions p(yjq; f0), p(qjyc; zc), and
p(zjql; y; f̂) de�ne a f̂{dependent loss distribution

p(ljf; f̂):15

p(ljf; f̂) =
Z
dq

Z
dy

Z
dz p(qjyc; zc)

�p(yjq; f)p(zjq; y; f̂ )�(l(q; y; z) � l):

The normative component is represented by the require-
ment to minimize

10. a risk functional r[p(ljf; f̂)], which is a mapping

from the loss distribution p(ljf; f̂ ) into a subset of
the real numbers, bounded from below. A common
risk functional is the expectation of l or expected

risk r(f; f̂ ) =
R
dl p(ljf; f̂)l. 16

New available data D require updating of an initial
state of knowledge fI to obtain a new f .

14Not to be confused with the validation set of empirical
test data like it is used in cross{validation (see Section8.4).

15See Section 3 and Section 6 for details and justi�cation
of the chosen components and their probability distributions.

16Minimizing an expected loss was already proposed by
(Laplace, 1810ab) and later revived by (Wald, 1938) (See
the historical remarks in (Le Cam, Yang, 1990)). A general
formalization can be found in (Le Cam, 1986).
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11. A learning model is a mapping f = f(D; fI ) from
F to F parameterized by D. The initial state will
be called prior state. The Bayesian learning model
is de�ned by

p(f0jf(D; fI )) = p(yD jqD; f0)p(f0jfI )
p(yD jqD) :

We will from now on skip fI in the notation and
write p(f0jf(D; fI )) = p(f0jD) and p(f0jfI ) =
p(f0). We can write this in a form

p(f0jD) =
P

f 00 T
D(f0; f 00)p(f 00)P

f 000

P
f 00 T

D(f 000; f 00)p(f 00)
;

or shortly, in matrix notation

pD =
Tp

TrTP
;

with P (f 00; f 000) = p(f 00) and Tr denoting the
trace. The so de�ned matrix

TD(f 00; f0) = �f 00;f0p(y
D jqD; f0);

is diagonal in f0{representation. This shows that
the pure states f0 represent the possible �xed
points of learning.17

Section 2.2 discusses learning in factorial states.
The local basic model including the local probabilities

p(f0x) represent the local part of prior information, the
de�nition of generalized questions the structural part of
prior information. Thus, a factorial state has only lo-
cal and structural prior information and in any state
of knowledge the nonlocal, nonstructural information
should be information resulting from measurement or
control added to a factorial starting state. After clar-
ifying the importance of nonlocal information we will
discuss their possible measurement. Table 1 summarizes
some of the notations.

Examples of basis questions

The basis questions p(yjx; f0) de�ne the answer prob-
abilities for the available data QD and relevant ques-
tions Ql. Their de�nition is therefore not independent
of the available measurement devices for QD and Ql,
and they cannot be chosen arbitrarily. Choosing a set of
p(yjx; f0) is part of the local prior knowledge. Mainly
interested in generalization we do here not concentrate
on the local part. We assume a formulation of the prob-
lem with a local prior p(f0x ) where the local part is learn-
able, i.e. where the local state of knowledge p(f0x jfx(Dx))
asymptotically converges to one f0x under local ques-
tions x. according to some convergence criteria of our
choice. This is without loss of generality, because we
could always consider questions about the possible densi-
ties p(yjx; f0), i.e. study the density approximation prob-
lem. Practically, this does not change the situation, but
splits formally the local part into several parts, so the

17Notice, that if TD has degenerate eigenvalues, also non-
pure states may be unchanged. See Theorem in Section 2.2.

Notations

x 2 X basis questions
q 2 Q generalized questions
y 2 Y (probabilistic) answers
ŷ; q̂ (probabilistic) actions
z internal variables

D = (Dq ; Dy) data
f0 2 F 0 pure states
f 2 F states of knowledge

f̂ 2 F̂ action states
p(yjq; f0) probability (or density)

for answer y under question q
in state f0

p(zjx; y; q) probability (or density)
for internal z given data (x; y)
in question q

p(ŷjq; f̂) probability (or density)
for action ŷ under question q

in action state f̂

p(q̂jy; f̂) same in inverse model for action q̂
p(f0jf) probability of f0 under f
�yx(f

0) regression function at x in state f0

L = lnp log-probability
l(q; y; z) loss function
~l(q; y; f̂ ) loss function integrated

over probabilistic action or
for deterministic action

r risk functional

Table 1: Some notations frequently used in this paper
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problem appears as a nonlocal one. 18 Also, in a possi-
ble loss function for density

Also, x must not necessarily be a single minimal com-
ponent, but we can combine many x (with e.g. previ-
ously learned dependencies) to a larger x vector. Tech-
nically, one x just denotes one independently parameter-
ized of subset of F 0, and the question of generalization
is the question of generalization between such sets.

Basis questions can be Gaussian

p(yjx; f0) / e
�

(y��yx(f
0))2

2�2x ;

so that states f0 are parameterized by their regression
function �yx(f

0). In general, the parameterization of the
p(yjx; f0) (and therefore of the states) can be arbitrary,
e.g. also the variance �2x or higher order moments can be
f0{dependent.

Consider as a more complex example image y produc-
ing states (generative models), e.g. with x having the
values face and non{face. States f0 are de�ned by their
generation probabilities for images of faces p(yjface; f0)
and of non{faces p(yj non{face; f0). Generation of faces
in a state f0 could be de�ned

p(yj face; f0) =
Z
dv p(vj face; f0)p(yjv; face; f0);

with v being an index for the di�erent variants of a face.
Possible variants include for example interpersonal dif-
ferences, varying view points or changing illumination
conditions. Using some interpolation scheme, like op-
tical ow and correspondence of some reference points,
a continuous v could be constructed out of a discrete
set of examples. Also, human prior knowledge may be
that faces have constituents j like two eyes, mouth and
nose appearing and being combined in di�erent variants.
In the easiest version with independent constituents one
could choose

p(yjv; face; f0) / e
�
P

i;j

(d
v;j

i
)2

2�2(i;j;v) ;

using some distance (dv;ji (yi))
2 = jjyi� yiv;j jj2 with i be-

ing the pixel index and yv;ji = yv;ji (f0) being a template
for variant v for constituent j. Then the p(vj face; f0)
parameterize the face states.

2.2 Analysis of generalization

2.2.1 Minimal models and su�cient data

The ability to generalize is essential for any real learn-
ing. It is easy to see that generalization requires nonlo-
cal dependencies contained in the p(f0jf). Let us de-
note by DXnx data which do not depend on x and

combine all f0x0 for x0 6= x into f0Xnx. Then usingP
f0
Xnx

p(f0
Xnx

jDXnx) = 1 =
P

f0
Xnx

p(f0
Xnx

) we see that

in a factorial state where p(f0x jf0Xnx) = p(f0x)

p(yjx; f 0(DXnx; f)) =
X
f0

p(yjx; f0)p(f0jDXnx)

18In a usual density estimation problem there is only one
x (with the meaning `get the next y'), and, besides a lo-
cal positivity restriction, a natural (nonlocal) normalization
condition.

=
X
f0x

p(yjx; f0x)
X
f0
Xnx

p(f0XnxjDXnx)p(f
0
x jf0Xnx) = p(yjx; f):

This means that data not depending on x can never
change the answer probabilities to x. We can say that a
factorial state allows no inference and represents a `tab-
ula rasa' situation with respect to generalization. Thus,
starting from a factorial state we necessarily need nonlo-
cal information to enable any nonlocal learning. We can
always relate f = f(D; ffact) to a factorial state ffact
by

p(f0jf) = p(f0jD) = p(Djf0)pfact(f0)=p(D):
Now we formulate this observation in a bit more gen-

eral way and show under which conditions the conclusion
can be reversed. We begin with a simple example to out-
line the general idea. We consider an example, where F 0

does not only consist of extremal points of the convex set
F . Let a space F 0 with three possible pure states, be
de�ned by p(y = 1jx; f01) = 1, p(y = �1jx; f02 ) = 1,
p(y = �1jx; f03 ) = 0:5. This may be the probability that
a certain gender is marked on an application form for girl
schools, boy schools, and coeducated schools. For exam-
ple a state of knowledge f with p(y = �1jx; f) = 0:5 can
be expressed as

p(yjx; f) = 1� a

2
(p(yjx; f01 ) + p(yjx; f02 )) + ap(yjx; f03 )

= p(f01 )p(yjx; f01 ) + p(f02 )p(yjx; f02 ) + p(f03 )p(yjx; f03 )
for any 0 � a = p(f03 ) = 1 �P2

i=1 p(f
0
i ) � 1. Now

assume, that some data not related to x change the
probability of p(f03 ) = a. Obviously, this has no in-
uence on p(yjx; f). We will call such a space F 0 non{
minimal with respect to x, and the set of data (x; y)
not su�cient with respect to F 0. Now consider a space
Qx of local questions qx which includes also repeated
measurements of x. The probability for a repeated
measurement y(x); y0(x) is the product p(y; y0jx; f) =
p(yjx; f)p(y0jx; (y; x)) which changes with p(f03 ). The
probability for a measurement (y = 1; y0 = �1) would
be zero if p(f03 ) = �1, but 1=4 if p(f03 ) = 1. Then, the
coe�cients p(f0i ) which de�ne a state f are unique, and
if they change, they change the probability distribution
of some question qx. We will say the space F 0 is minimal
with respect to the set of data Dx = (qx; yqx), and data

Dx are su�cient for F 0.
We de�ne equivalence classes f0DQ

= [f0]DQ
of DQ{

equivalent states for the set of data DQ of the form (q; y)
with q 2 Q by

f0DQ
= f0DQ

0 , 8(q; y) 2 DQ : p(yjq; f0) = p(yjq; f 00);
forming the set F 0

DQ
. In the case in which the data

contain all y 2 Yq for every question q 2 Q we speak

of Q{equivalent states and write f0Q. We de�ned F 0 =

F 0
X . The same constructions can be applied to states of

knowledge yielding fQ and FQ.
We de�ne data DQ to be su�cient with respect to F 0

or equivalently the set F 0 to be minimal with respect to
DQ i� all states of knowledge f 2 F (F 0

DQ
) are uniquely
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decomposable into the f0DQ
, that is i� there is no solution

p(f0DQ
) of the following system of homogeneous linear

equations

0 =
X
f0
DQ

p(yjq; f0DQ
)p(f0DQ

):

This means that no pure state can be expressed by others

p(yjq; f0DQ
) =

X
f 00
DQ

6=f0
DQ

p(yjq; f 00DQ
)p(f 00DQ

):

Then the corresponding system of inhomogeneous linear
equations for p(yjq; f0DQ

) is overdetermined and there-

fore there exists at most one solution for the state
p(f 00DQ

). (At least one solution exists by construction.)

This means that su�cient data determine the state of
knowledge f uniquely. In other words, the convex hull
FDQ

of F 0
DQ

does not contain equivalent states, i.e.

[F (F 0
DQ

)]DQ
= F (F 0

DQ
).

To shorten the notation we can write for

p(yjq; f) =
X
f0
DQ

p(yjq; f0DQ
)p(f0DQ

);

introducing indices i = (q; y), j = f0DQ

pi =
X
j

Aijp
f
j ;

i.e.
p = Apf :

The matrix (or integral operator with kernel Aij) A =

A(D;F 0) describes the model F 0 with components f0

on a data vector D with components (q; y) and pf with
components p(f0jf) is the state of knowledge. Minimal-
ity requires the number of independent pure states f0DQ

to be not larger than the number of data, i.e. question{
answer pairs (q; y), which means that the rank of the
matrix A((y;q);f0

DQ
) = p(yjq; f0DQ

) is equal to the number

of f0DQ
. Summarizing, minimality of the model with re-

spect to data, or su�ciency of the data for a model, is
de�ned as a situation where the `model-data matrix' A
has rank equal to the dimension of pf , i.e the number of
f0DQ

.

Minimality/su�ciency can be achieved by deleting
some f0 or by including more y or new q in the minimal-
ity condition. This can be done by including new inde-
pendent questions, using a �ner scale or add new dimen-
sions to y. Examples include repeated measurements of

the same x, Q
(n)
x consisting of n{tuples (x1 = x; x2 =

x; � � � ; xn = x) = �ni=1x, Qx =
S1
n=1Q

(n)
x , multiple

measurements within X, Q
(n)

X consisting of n{tuples
�ni=1xi, with F

Q
(n)

X

� N
i L(Fxi) or of varying length

QX =
S1
n=1Q

(n)

X with FQX
�L1

n=1

Nn
i L(Fxi;n)19.

19Which is similar to the construction of the Fock space
for a many particle system, except that here the space is
restricted to the convex hull (constant L1 norm) and not to
a region with constant L2 norm.

For two{components data vectors fromQ
(2)

X the prob-

ability p(y1; y2jx1; x2; f) = p
(2)
ij has to ful�ll,

p
(2)
ij =

X
k

AikAjkp
f
k =

X
k

AikA
T
k0j�k;k0p

f
k0;

and therefore

p(2) = (A 
 A)P f;(2);

with diagonal P
f;(2)

k;k0 = �k;k0 p
f
k . For general data vectors

Q
(n)

X

p(n) = (
O
n

A)P f;(n);

with P
f;(n)

k;k1;k2;���;kn�1
=
Qn�1

i=1 �k;ki p
f
k. A model minimal

for single measurements is minimal for multiple measure-
ments. For a minimal model the f0 are linear indepen-
dent, and in case the number of data (equations, condi-
tions) is larger than the number of f0 there must exist
a reduced n � n system with nonzero determinant, so
the solution is unique. Thus, we choose a decomposition

A =
�
A0

A00

�
with A0 a square n� n matrix, so its determi-

nant is de�ned, and for a minimal model there exists an
A0 with detA0 = 0. The relation det(A0
A0) = (detA0)2n

for n�n matrices shows that the determinant for multi-
ple measurements for the reduced system A0 is nonzero if
it is nonzero for single measurements. If a given solution
is already unique for a reduced system, it is also unique
in an extended system, where just more conditions are
added, consistent with the solution. Thus, models min-

imal for single measurements Q
(1)
X are also minimal for

multiple measurements, i.e. vectors Q
(n)

X .

Non{minimal local spaces F 0
x are not commonly used.

Minimal for example is a local space consisting of Gaus-
sians at di�erent locations. Then a convex linear combi-
nation is not Gaussian but a Gaussian mixture state.

2.2.2 Factorial priors

Let us now consider two sets of data, Ql (e.g. relevant
questions) and QD (e.g. training questions) with corre-
sponding (test) data Dl and (possible sets of training)
data D = fDi; i 2 Ig. The Di = (yi; qi) are allowed to
be data vectors and may represent one possible collection
of data which can be obtained during training.

In a minimal model the following theorem states that
the prior probabilities reect already the possibility or
impossibility of generalization:

Theorem: For a set of (test) data Dl � DQl su�-

cient for F 0
l = F 0

Ql (or equivalently for F
0
l minimal with

respect to Ql) and another set of (potential training)
data D � DQD su�cient for F 0

D = F 0
QD (or equivalently

F 0
D minimal with respect to D) the following proposition

holds

8(q; y) 2 Dl ; 8Di 2 D : p(yjq; f) = p(yjq; f 0(Di; f))

, 8f0l;D : p(f0l;D) = p(f0l ; f
0
D) = p(f0l )p(f

0
D);

where f0l;D = f0l[D = [f0]D
Ql
[D . The backward direc-

tion does not require the two su�ciency conditions.
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The theorem gives conditions under which conditional
independence of all relevant data of all training data,
is equivalent to independence between all f0l and f0D.
The stated conditional independence also means that the
actual state of knowledge is an eigenstate for all matrices
TDi(f 00; f0) = �f 00 ;f0 p(y

Di jqDi ; f0), or that all mutual
informations

ln
p(yjql; f;Di)

p(yjql ; f) = ln
p(y; ql ; Dijf)

p(y; qljf)p(Dijf) ;

are zero, and therefore also all averages of them.
Proof: We show that factorial priors do not allow gen-

eralization, and that su�ciency ofDl andD excludes the
stated no{generalization property for other priors.

For q 2 Ql, abbreviating p(yjq; f 0(Di; f)) by
p(yjq;Di), we write for the no{generalization condition

p(yjq; f) = p(yjq;Di) =
X
f0

p(yjq; f0)p(f0jDi)

=
X
f0
l

X
f0
D

p(yjq; f0l )p(f0l jDi)p(f
0
Djf0l ; Di)

=
X
f0
l

p(yjq; f0l )p(f0l jDi);

because for q 2 Ql the probability p(yjq; f0) only de-
pends on f0l and

P
f0
D
p(f0Djf0l ; Di) = 1. Another

summation over �ner classes up to DX is not neces-
sary because

P
f0
l[D[DX

p(f0l[D[DX
jf0l[D) = 1. Set-

ting p(f0l jDi) = p(f0l ) yields p(yjq; f) = p(yjq;Di) giv-
ing one solution of the nonlearnability condition. For
a Dl{su�cient model the state p(f0l jDi) is uniquely
determined by the probabilities for the relevant data
p(yjq; f0), q 2 Ql and y 2 yq so p(f0l jDi) = p(f0l ) is

also the only solution. Thus, su�ciency of Dl excludes
the possibility that the inuence of data only consists in
switching between Dl{equivalent states.

Now we show that independence of f0l of the data
Di together with the minimality of F 0

D with respect to
D only allows a factorized prior probability. We insert
a summation over f0D into p(f0l jDi) and write for the
condition p(f0l jDi) = p(f0l )

p(f0l ) = p(f0l jDi) =
X
f0
D

p(f0DjDi)p(f
0
l jf0D):

One sees that the condition p(f0l jDi) = p(f0l ) is ful�lled
for p(f0l jf0D) = p(f0l ). This already solves the backward
direction without the need of any minimality or su�-
ciency condition. For a model not minimal on F 0

D there
still might be di�erent states on D leading to the same
posterior p(f0l jDi) on F

0
l . We now use minimality of the

data D, to exclude the possibility, that there are depen-
dencies which cannot be explored by D. The probability
p(f0DjDi) is related to the de�nition of the training ques-

tions, i.e. to the p(yDi jqDi ; f0D), by

p(f0D jDi) =
p(yDi jqDi ; f0D)p(f0D)P
f0
D

p(yDi jqDi ; f0D)p(f0D)
:

Inserting this equation into the above equation for
p(f0l jDi) shows that according to the assumption of suf-
�cient data D the coe�cient vector a(f0D) multiplying

the matrix Ai;f0
D
= p(yDi jqDi ; f0D) must be unique:

p(f0l )p(f
0
D)P

f0
D
p(yDi jqDi ; f0D)p(f0D)

;=
p0(f0l jf0D)p0(f0D)P

f0
D
p(yDi jqDi ; f0D)p0(f0D)

;

where p0(f0l jf0D)p0(f0D) = p0(f0l ; f
0
D) denotes another so-

lution of the joint probability. Summation over f0l and
f0D gives equality for the f0{independent denominators
on both sides so that p(f0l ; f

0
D) = p(f0l )p(f

0
D) is the only

solution. q.e.d.
Without restriction to su�cient data there might ex-

ist spurious dependencies between equivalent states of
knowledge, which are not observable within the given
set of relevant questions.

The formal structure of the Theorem and of its proof
becomes clearer if written in a more abstract matrix for-
mulation. With i = (q; y), j = (qD; yD), k = f0l , l = f0D,
Aik = p(yjq; f0l ), Bjl = p(yD jqD; f0D)=p(yD jqD) (where
for observed data the denominator is unequal to zero),
we can write for the posterior p(yjq;D), in components

pij =
X
k;l

Mij;klp
f
kl

=
X
k;l

AikBjlp
f
kl;

which reads for matrices

p = (A 
B)pf :

Theorem (matrix formulation):
For a (sub)system of equations with invertible n � n

matrix20 A and m �m matrix B, i.e. with detA 6= 0 6=
detB (Minimality/Su�ciency), the following holds

pl 
 1 = pl 
 pD = (A 
B)pf , pf = pfl 
 pfD:

Indeed, according to

det(A
 B) = (detA)n(detB)m

with A and B also A 
B is invertible and using

(A
 B)�1 = (A�1 
 B�1)

and
(A 
B)(pl 
 pD) = (Apl 
 BpD)

we �nd

pf = (A�1pl 
 B�1pD) = pfl 
 pfD;

thus pf factorizes. Formulated for probabilities condi-
tioned on D, we used pD = 1 for the theorem. For-
mulating the theorem for joint probabilities p(y; q;Djf),
or similarly p(y; yD jq; qD; f), symmetrizes the formula-
tion and gives Aik = p(y; qjf0l ), Bjl = p(yD ; qDjf0D),

20For simplicity we skip the prime for A and B which we
used previously for reduced matrices.
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(pl 
 pD)ij = p(y; qjf0l )p(yD ; qDjf0D), with still M =
A
 B according to the de�nition of the model.

Formulated in a basis X the theorem gives the
Lemma : For (qx; y) 2 Dx � Dx, D

Xnx � DXnx and
requiring for the forward direction su�ciency of the set
Dx for F 0

x for all x and su�ciency of the set DXnx for
F 0
Xnx for all x the following holds

8x2X;8(qx; y)2Dx;8DXnfxg
i 2 DXnfxg:

p(yjqx) = p(yjqx;DXnfxg
i )

, 8f0 2 F 0 : p(f0) =
Y
x2X

p(f0x):

Remarks:

1. The theorem states that a factorial state remains
factorial after local learning and that there is no
generalization possible across a `factorization bor-
der' for any learning algorithm. In factorial states
any information concerning answers to question x
can only come from questions depending explic-
itly on the point x of interest, but not necessarily
depending only on x. Answers to questions de-
pending only on X n XD cannot be learnt under
a factorial prior, and training data not depending
on Xl are uninformative with respect to relevant
questions if not combined with other information.
They can thus only have indirect inuence. For
analysis of prior information in terms of relevant
questions we may choose X = Ql. Then in order
to enable learning for every ql = x for every x we
must have data D depending (maybe not only) on
that x. For example, a smoothness constraint in
statistics depends on all x and can allow general-
ization. Especially easy to analyze is the situation
when QD � X. Then all relevant questions are
de�ned with respect to the data. In this case a
factorial prior on X refers to the training questions
itself and the relevant questions are directly de�ned
in their dependency on the training questions. We
discuss the relations in detail in the next subsec-
tion.

2. The forward direction, factorial state ) no gener-
alization, is related to so called `No Free Lunch'{
theorems (Wolpert, 1996a, 1996b), generalized
fromuniform priors (or uniformmeta priors) to fac-
torial states, without explicitly referring to a spe-
ci�c form of loss function or algorithm. Indeed,
uniform priors of the form p(f0x ) = p(f0x0); 8x0 |
possibly also with uniform probabilities p(f0x ) =
p(f 0;0x ); 8f 00x ; 8xwithin single x{components so that
p(f0) = p(f 0;0); 8f 00 | are special factorial priors.
With respect to nonlearnability of speci�c sets of
questions the theorem is sharper than results from
the theory of uniform convergence (Vapnik, 1982)
or regularization theory (Tikhonov, 1963), and in-
dependent of a speci�c loss function. However, it
does not give quantitative results. Also, a change
of p(yjq; f) does not necessarily need to change the

decision f̂ (see 4.). A quantitative measure of de-
pendency can be obtained by averaging the mutual
information over a distribution for data Di and D

l,
or by integrating out Dl and calculate an average
change of the risk under a data distribution p(Di).

3. The backward direction gives su�cient conditions
for a no{generalization state to be factorial. The
main point is that if the model has only one way
to express the same state then it cannot switch be-
tween equivalent descriptions and there is no possi-
bility to create formal dependencies without visible
e�ects.

4. A change of p(yjq; f) does not have to a change the
�nal decision f̂ . It may be that

a. the loss function is not sensitive to change in
p(yjx; f),

b. the risk, i.e a certain property of p(ljf; f̂) like
its expectation, is not sensitive to a change in
the loss,

c. the decision is not sensitive to a change in the
risk.

Of principal interest are the optimality equivalence
classes

[f0]r� = [f 00]r� ,
f̂� = argmin

f̂2F̂
r(f0; f̂) = argmin

f̂2F̂
r(f 00; f̂);

identify f0 leading to the same decision f̂�. While
this requires already calculation of the optimal de-
cision it may be easier to calculate

[f0]r = [f 00]r , 8f̂ : r(f0; f̂) = r(f 00; f̂ ):

However for both variants, available data may have
di�ering probabilities for di�erent f0 within such
classes, so that p(f0jD) can vary within a class.
Thus, analog to fl;D in the theorem, one has to
consider �ner equivalence classes

[f0]r�;D or [f0]r;D;

where only data Df which factorize, like
p([f0]r;D) = p([f0]r;Dnf )p([f0]Df ), can be skipped.
All those equivalence classes can be �ner than
[f ]r� , so this does not guarantee that data chang-
ing p(f0), i.e. the state of knowledge f , change the

decision f̂�.

5. Pure states are special factorial states. In this sense
factorial states are the possible starting and end-
ing points of a learning process. For x{variables
which are visible and known, f0 can be seen as
collection of the remaining (stationary distributed)
random variables. Making part of these random
variables f0 visible, that is moving them into x,
breaks the old pure states in new pure components.
The learning process would ideally go from the old
pure state, now assumed to be incompletely spec-
i�ed and therefore only a factorial state of knowl-
edge, to one of the possible new pure states being
factorial and maximally speci�ed. We do not re-
strict pure states to be deterministic. Also proba-
bilistic states can be not further decomposable in
the situation under investigation.
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2.2.3 Factor dimension

We now look for conditions under which learning can
occur, i.e. when p(yjq) 6= p(yjq;Di) so not all mutual in-
formations between available and relevant data are zero.
We are mainly interested in the e�ects of generalization
where q itself is not part ofD, Indeed, if for continuous ql

the ql which are directly in the training set have usually
measure zero, so learning has to go over generalization.

Data not changing p(f0) have equal probabilities un-
der all pure states f0 or, equivalently, equal diago-
nal elements (and therefore eigenvalues) of the matrix
T (f 00; f0), projected to the subspace F 0

x , for all f
0
x . A

unique maximal f0;�, i.e. one with maximum probabil-
ity for Di and not excluded from f , would be su�cient
to ensure learning for all fx which are not yet in the
state f0;�x . A change in p(f0) may however correspond to
non{relevant learning, changing not the relevant distri-
butions p(yjq; f) but only higher order interactions like
p(y; y0jq; q0; f).

If the potential data D are su�cient and the model is
minimal for the relevant questions, then according to the
negated version of the theorem for non{factorial priors
there are training data Di so that relevant data (q; y) 2
Dl change, Consider a locally minimal model with x =
ql 2 X local data Dx = (xD; yD), xD 2 X and a given
prior p(f0jf). Local data qD change the probability of
y under x if p(f0) 6= p(f0x jDx) and therefore p(f0) 6=
p(f0x jf0D). Then within p(f0) states restricted to relevant
and available data cannot factorize. Thus, the state of
knowledge must ful�ll the generalization condition for x
under xD

p(f0jf) 6=
p(f0x jf0Xn(x;xD); f)p(f0D jf0Xn(x;xD); f)p(f0Xn(x;xD); f):

We can characterize a given state of knowledge by its
factor dimension dimF (f) with respect to a set X, de-
�ned as the maximal number n of xi 2 fx1; � � � ; xng =
Xn � X so that still one f0x , with x 2 Xn the same for
all f0, can be factorized, conditioned on f0

XnXn . Then

learning has to occur under f if the number of local data
n is at least the factor dimension of f , i.e. n � dimF (f),
as then no additional x can factorize.

We give three examples:
Consider for a space F 0 parameterized by local means

�yx for all x, de�ning a regression function �y according to
�y(x) = �yx:

1. A nonlocal prior21 p(f0 = �y) / e
�c
P

x
(�yx�cx)

2

.
Even though this state explicitly depends on ev-
ery single x it is factorial in X.

2. A symmetry (e.g. smoothness) prior p(f0 = �y) /
e
�c
P

x
(�yx��ysx)

2

, s indicating some bijective sym-
metry transformation (e.g. translation) x0 = sx. It
has a degenerated maximum �yx= �ysx which can be
made unique by adding local data for every orbit
of s. The orbit of x under s consists of all elements
six which can be generated out of x by applying
s any number of times, 0 � i � 1. The factor

21We will discuss the measurement, i.e. the corresponding
nonlocal questions in Section 3.2.

dimension for each orbit is equal to one. In case
of several orbits the total factor dimension is only
n �m + 1, with n the total number x, and m the
size of the smallest orbit.

3. Data with p(f0 = �y) / e
c(
P

n

i
�yxi )

2

(parity for
zero/one variables), which require additional data
about n�1 di�erent xi to give a unique maximum.
The sum can be seen as a local question in a space
F 0 with a linearly transformed basis of f0. The
factor dimension is n� 1.

We make the side remark that the factor dimension
has similarities to the concept of VC dimension. In both
cases generalization is impossible if the number of data
is smaller than the corresponding dimension. The latter
is usually applied to a family of loss functions indexed

by f̂ 2 F̂ in the context of empirical risk minimization.
A small dimVC indicates that the loss function cannot
vary too much, so the di�erence between minimal empir-
ical and minimal expected risk can be bounded. These
bounds are independent of the family F 0, as long as
certain minimal conditions, e.g. bounded p(yjq; f0), are
ful�lled. In contrast, the factor dimension, as used here,

is independent of the loss function and therefore of F̂ .
The factor dimension has a similar interpretation for F 0

instead for F̂ : Nonconstant, independent data require a
family F 0 at least `large enough' to contain all the dif-
ferent combinations, while a smaller F 0 which excludes
certain combinations implies the possibility of general-
ization. We already mentioned that not only natural
choices of initial states but also the asymptotical �nal,
i.e. pure, states of a learning process are factorial states,
having maximal factor dimension, Hence, learning can
as well decrease as also increase the factor dimension.
Usually one would expect a U-shape like dependence of
the factor dimension on the learning process, analogous
to the mutual information, which provides a quantita-
tive measure of dependency between relevant and avail-
able questions. Commonly prior information reduces the
factor dimension and, at least deterministic, local data
increase it.

Let dim
�x;y
VC (F 0) denote the (�x;y{dependent) VC di-

mension of a family of functions p(yjx; f0); f0 2 F 0,
which is the maximal number of di�erent pairs (x; y) so
that for all of them exist f0; f 00 2 F 0 with p(yjx; f0) >
�x;y and p(yjx; f 00) � �x;y, 0 � �x;y < 1, i.e. the
maximum number of points (x; y) which can be shat-
tered by F 0. Assume now that there exists an �x;y with
p(yjx;Dx

>) > �x;y � p(yjx;Dx
<) for at least one pair of

local data Dx
> = (x; y>) and Dx

< = (x; y<), Thus, �x;y
separates the posterior probabilities p(yjx;Di) of at least
two possible data Di, and the actual state cannot be a
pure state. Then with f0 2 F 0 the components of f
with p(f0jf) 6= 0

dimF (f) � dim
�x;y
VC (F 0):

Indeed, if we assume dim
�x;y
VC (F 0) = n then according

to the de�nition of the VC dimension within a set of
n + 1 questions x there is at least one for which ei-
ther p(yjx; f0) > �x;y or p(yjx; f0) � �x;y is impossible
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for all f0 2 F 0. As convex combination the probabil-
ity p(yjx; f) for state f can only lie between extremal
points, i.e. pure states f0. Therefore, the assumption of
existence of both Dx

< and Dx
>, used to construct �x;y,

implies that there exist f0 with p(yjx; f0) > �x;y as

well as f 00 with p(yjx; f 00) � �x;y with nonzero prob-

ability p(f0jf) 6= 0 6= p(f 00jf). Thus, the probabil-
ity p(f0x ; f

0
x1
; � � � ; f0xn jf) cannot factorize, which gives

dimF (f) � dim
�x;y
VC (F 0).

If the number of data is smaller than the factor di-
mension of f learning can still be relevant if Ql contains
multiple measurements (with respect to what has been
considered an element in calculating the factor dimen-
sion). Multiple measurements of single components ql

means considering their interactions also to be relevant.
Using a measurement vector with one answer for every
x 2 X, i.e. q = X, makes for locally minimal models ev-
ery learning for local data relevant. For example, know-
ing y1 � y2 = 0 does not change p(y1) or p(y2) if they
have equal prior. However, it drastically changes the
probability for a joint measurement of y1 and y2. This is
an example where learning only occurs for non{relevant
higher order dependencies. If higher order dependencies
are missing, so that for a state with factor dimension n
already m relevant questions factorize, then only n�m
data are necessary to allow generalization to a single
component q.

An example of taking into account dependencies be-
tween components ql by multiple measurements, is the
special case of the risk of an algorithm which uses past
test data (yi; q

l
i), i < n to improve the selection of the

next action for qln. Here the next action and therefore
also the loss function does depend on all previous test
data (yi; q

l
i). Then the risk does not consist of a sum of

terms depending on disjunct sets of qli, and correlations

between components qli up to order n � i can be impor-

tant. Thus, the e�ective ql is the vector of components
qli, and the expected risk (on{line risk of an algorithm)

is an average over this vector ql. Correlations between
answers to di�erent ql (vectors, not components qli) are
not measured by this risk. However, the dependencies
between vectors ql should be smaller than between com-
ponents qli if p(f

0j(y; ql)) is nearer to a pure state then

p(f0jyi; qli).
Loosely speaking, we only need to know what we can

see, we only can know what we have seen, and it is struc-
tural information which allows us to infer indirectly.

2.2.4 Generalization{related sets of questions

We now give the de�nition of some sets of questions,
related to the previous analysis of generalization. We
choose Q = Ql [ QD, X = Xl [ XD and de�ne the
following sets of questions: Training questions q in QD

but not in Ql are called non{test questions q:l 2 QD n
Ql = Q:l, test questions corresponding to questions q
in Ql but not in QD are non{training questions q:D 2
Ql n QD = Q:D. Analogously, we write x:D 2 X l n
XD = X:D for the non{training basis with x 2 Xl

but x =2 XD , as well as x:l 2 XD n Xl = X:l for the
non test basis with x 2 XD but x =2 Xl. Ql;D = Ql \

QD denotes the set of common questions and Xl;D =
Xl \ XD the common basis. Clearly, we have Ql;D \
Q:D = ;, Ql;D \ Q:l = ;, Ql = Ql;D [ Q:D, QD =
Ql;D[Q:l and the corresponding relations forX. Notice
that the common (or non test, non{training) basis is not
necessarily the basis of the common (or non{test, non{
training) questions.

Let us further introduce for sets Q0 � Q, X0 � X the
notationQ0

X0 � Q0 � Q for the set of all questions within
Q0 depending only on X0, i.e. with a basis completely

within X0 � X so that XQ0

X0 � X0 � X. Similarly,
Q(X0) � Q denotes the set of all questions depending

(not necessarily only) on X0, i.e. with a basis having

nonzero intersection with X0 � X so that XQ(X0) \X0 6=
;. Obviously, Q0

X0 � Q0
(X0) � Q0, especially Q = QXQ =

Q(XQ), and Q0
X0 � Q0

X , Q
0
(X0) � Q0

(X) for X
0 � X. We

can partition a set Q0 � Q into two disjunct subsets with
respect to X0 � X according to Q0 = Q0

X0 [Q0

(XnX0)
. In

particular, Ql = QX:D [Ql
(XD)

and QD = QX:l [QD
(Xl)

with

Ql � Ql
(XD) � Ql

XD � Ql;D � QD
Xl � QD

(Xl) � QD;

and accordingly

Xl = XQl � X
Ql

(XD) � X l;D � XQl

XD � XQl;D

XQl;D � XQD

Xl � Xl;D � X
QD

(Xl) � XQD

= XD :

(See Fig.1 and for more details Fig.2.)
We have shown in the previous Subsection that in a

factorial state the non{training basis X:D is not learn-
able and the non{test basis X:l does not inuence rele-
vant ql directly. However, X:l might well have indirect
inuence and act like noise sources within other ques-
tions QD depending on X l;D . Thus, information about
states corresponding to X:l enables learning about the
noise structure within QD. Thus, with reference to fac-
torial states, we will call the set of questions Ql

X:D =

QX:D � Ql depending only on X:D
unlearnable ques-

tions, Ql
(XD)

= Ql n Ql
X:D (potentially) learnable ques-

tions, the set QD
X:l = QX:l � QD

indirect questions

depending not on Xl, and QD
(Xl)

= QD n QD
X:l direct

questions. Indirect questions alone cannot contribute to
knowledge about Ql, their inuence is indirect by con-
tributing information about the unknown noise sources
for questions in QD

(Xl)
. Note that Q:D � Ql

X:D and

Q:l � QD
X:l which means that non{training questions

can (and hopefully do) depend also on XD (so indirect
information about them may be available) and non{test
questions also on Xl (so they can contribute directly).
The non{training basis X:D could be eliminated by in-
tegrating over a corresponding (factorial) prior. Then
all relevant questions depend only on Xl;D , i.e. we have
Ql
(Xl;D)

= Ql
Xl;D . Therefore, we will call Q

l
Xl;D = Ql

XD

the set of e�ective questions.
In the following we give some simple examples (com-

pare Section 2.2) that for Ql
(XD)

learning is possible,

but not necessarily for individual ql 2 Ql
(XD)

if the de-

pendencies between di�erent ql are not considered rele-
11
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Figure 1: The �gure shows the set of questions Q and
their corresponding basis X. The shaded area within
X represents the common basis Xl;D , the shaded area
within Q the learnable questions Ql

(XD )
. Learning re-

lated to questions within the shaded area but not within
the data QD is called generalization. See Fig.2 for more
details and notation.
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(test) Q
D

available

(training)

Figure 2: This �gure shows the relations in more detail
than Fig.1. The basis of relevant questions Ql is Xl, and
for questions QD corresponding to available data the ba-
sis is XD. While QD is assumed to be always �nite Ql,
X l and XD can be in�nite. A model describing learning
can be restricted to the common basis Xl;D = Xl \XD

which is the double shaded area below. Only for ques-
tions depending on that intersection learning can occur.
This set Ql

XD is symbolized by the upper horizontally

shaded area. Learning the set Ql
XD nQl;D is called gen-

eralization. Questions in Ql
X:D , being in Ql but not in

its shaded area, are unlearnable. Questions QD
(Xl)

can

contribute information about Ql directly. Questions in
QD
X:l , being in QD but not in its vertically shaded area

QD
(Xl)

, are not directly related to relevant questions and

can only contribute indirectly, i.e. in combination with
QD
(Xl)

.

vant. Consider deterministic x1 and x2 with possible val-
ues yi = �1 with independent prior probabilities equal
1=2. Then knowing only y1y2 = �1 without knowing
something about y2 says nothing about y1. Thus, the
prior factorizes with respect to the equivalence classes
[f0]x1[(x1x2) or [f

0]x2[(x1x2), if we choose x1x2 and x1
(resp. x2) as basis questions. If we choose all three as ba-
sis then [f0]x1[x2[(x1x2) cannot be written in a factorial
form. Compare with the question y1 + y2 for which also
no information about y1 results from y1 + y2 = 0, how-
ever y1+y2 = 2 determines y1 and y2. As soon as either
y1 or y2 is known both nonlocal questions give the value
of the missing yi. If we do not choose Q

l = fx1; x2g but
instead e.g. Ql = fjy1 � y2jg the prior can be written
in a factorial form with respect to y(x) = jy1 � y2j and
y0(x0) = y1 + y2: p(f

0
x)p(f

0
x0 ) as those are in the given

situation independent events.

2.3 Why structural information?

Structural information is our knowledge about the de�ni-
tion of questions corresponding to predetermined depen-
dencies between answers, or in other words, our knowl-
edge of what we are measuring. One might wonder
whether such predetermined dependencies between an-
swers are necessary and corresponding data can be avail-
able and useful.

First, we remark, as discussed in the previous sec-
tion, that without nonlocal information generalization is
not possible. Any nonlocal information has two parts,
a structural one represented by the de�nition and the
answer to be determined by empirical measurement or
control. Thus, in other words, in any case there must be
prede�ned dependencies between answers to some ques-
tions in order to be able to infer to unseen questions.
So, as we will discuss in more detail below, requiring a
bound on a certain smoothness or symmetry property
one must for example know: 1) the de�nition of smooth-
ness or symmetry in mind corresponding to the struc-
tural part of information or the prede�ned dependency
of the smoothness question from the other questions, 2) a
bound on the allowed function values obtained by empir-
ical measurement, active enforcing or pure assumption.

Secondly, we refer to the observation that it is very
common to assume dependencies between answers. In
logic these dependencies are called rules. With zero{
one function values the logical operations can be writ-
ten using multiplication, addition and the step function.
Fuzzy set theory deals with unsharp rules and Bayesian
belief networks are the general probabilistic formulation.
Compared with logic based arti�cial intelligence expert
systems which construct many rules with often low non-
locality (humans can better deal with lower order corre-
lations) usual statistical models use only one, but highly
nonlocal rule, e.g. some bound on a smoothness func-
tional. However this di�erence is more of practical than
of principal theoretical nature in as far as any number
of rules, with maybe individually low nonlocality, can be
combined into one ('vector') rule which can have high
nonlocality. The de�nition a macroscopic observable in
its dependence on microscopic variables is an example for
structural information. One may say the usual macro-
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scopic variables in form of integrals over all x have max-
imal nonlocality, depending on all basis questions. The
de�nition of an `energy question' could have the follow-
ing form in a real, scalar, Euclidean �eld theory

p(yjqE ; f0) = �

�Z
dx

�
(
d

dx
f(x))2 +m(x)f2(x)

�

+

Z
dx (h(x)f(x) + E0(x)) � y

�
;

where the �rst term has the form of a `smoothness
prior'. In terms of this analogy to physics, a statis-
tical approximation problem with mean square errorP

i axi(f(xi) � yDi )
2, data yDi and a smoothness prior

might be seen as minimizing a `free' massless kinetic
term, a xi{dependent `mass' m(x) = ax

P
i �(x � xi)

and `external �eld' h(x) = �2ax
P

i �(x � xi)y
D
i cou-

pling to f(x) at the data points xi and a constant
E0 = ax

P
i �(x� xi)(y

D
i )

2. Higher order (local or non-
local) interactions correspond to other forms of nonlocal
questions. We will discuss in more detail below how
answers to questions with in�nite nonlocality can be en-
forced by measuring devices or by controlling the situa-
tions under investigation.

Finally, we point out that one always has to know
what one measures, at least in a probabilistic sense, and
therefore structural information is necessary in any case.
When repeating measurement of basis questions x in
a �xed state f0 we assume that we use the same de-
vice with a stationary answer distribution. This means,
for example, that if we measure in the same state hun-
dred times y = 5 followed by a hundred y = 42 we
might assume that our question x is incompletely speci-
�ed and another (hidden) variable should have been in-
cluded which probably has changed its value after hun-
dred measurements. Such not directly observable or hid-
den variables de�ne the state f0 and we can say that
changing the value of this additional variable represents
a change in the unknown state f0. However, we have
to de�ne the (not directly observable) state f0 to be
constant to allow us to infer something about future re-
peated measurements22. All controllable aspects of the
model are attributed to x, so controllable actions like re-
placing, moving, transforming an object to be measured
are part of x. On the other hand variables which are
themself stationary distributed just increase the noise
and do not necessarily have to be included in x. Thus,

22If there is a known dependency on time (external time or
internal time corresponding to the measurement history like
the number of repetitions of a certain measurement) then
the time variable is part of x. A measurement at a certain
time can be repeated if the time variable can be reset (e.g. to
zero). If time cannot be reset repeating the same measure-
ment is not possible. One can think of other restrictions, so
that a measurement of the same question cannot be repeated.
For example, if continuous questions x are generated by a
random process, the probability of repeating a measurement
usually has measure zero. Those cases show the importance
of information about relations between answers to di�erent
questions and not only between repeated identical questions,
i.e. of nonlocal dependencies.

stationarity of p(yjx; f0) is a form of structural informa-
tion.

In the next sections we will discuss possibilities of the
inclusion of a larger number and variety of generalized
data in statistical decision making processes (including
classi�cation and approximation) which are based on
structural information. Those data correspond to prior
information in the statistical language, rules in the logi-
cal language, interactions in the physical language. From
logical (fuzzy set, Bayesian belief network) expert sys-
tems one can learn how to deal with a lot of di�erent,
heterogeneous rules and from physics the treatment of
highly nonlocal (macroscopic) variables di�erent from
smoothness.

3 Generalized questions

3.1 How to write them

A generalized questions is de�ned by giving a set of
required basis questions and de�ning a function yq =
q(~y(~x)) to be applied to their results. To simplify nota-
tion we skip the vector arrow and use the same letter q
for the de�ning function as well as for the functional it-
self, that is q(y) = qq(~y). Generalized questions are fully
de�ned by their answer distributions in the pure states
f0 2 F 0. As we always assume the model (of nature) to
be in a possibly unknown but pure state the p(yq jq; f0)
represents the real processes and we write all formulas
within this section for the f0. This formulation with-
out reference to some state of knowledge f �ts also into
the Frequentist interpretation of statistics meaning that
the de�nitions of generalized questions do not require to
specify an explicit model of f0 and are therefore not only
meaningful for Bayesians. This holds as far as we make
the de�nition of a question not explicitly f{dependent.
Thus, in the following we form products for pure states
f0 and not for states of knowledge f ,

p(y; y0jq; q0; f) =
Z
df0p(f0jf)p(y; y0jq; q0; f0)

=

Z
df0p(f0jf)p(yjq; f0)p(y0jq0; f0)
6= p(yjq; f)p(y0 jq0; f);

including the case q = x and q0 = x0. The fact that
p(y; y0jq; q0; f) has not necessarily to factorize enables
learning. But notice, that we always assume the dif-
ferent parts of a question to be measured in the same
pure state f0. For f0 we postulated independence, i.e.
factorization

p(y; y0jq; q0; f0) = p(yjq; f0)p(y0jq0; f0);
meaning that di�erent questions q, q0 use di�erent re-
alizations of answers to x and that learning being in a
pure state, i.e. f = f0, is not possible. In this formula-
tion results depending on the same realization are seen
as components of one question. On the other hand the
following is easily adapted for a notation which allows
such dependency between non basis questions.

A simple example is a question asking for the sum of
two independent xi{measurements with answer proba-
bility

p(yjq; f0) = p( fy1 + y2 = yg jx1; x2; f0)
13



=

Z
dy1

Z
dy2 �(y1 + y2 � y)p(y1jx1; f0)p(y2jx2; f0);

where �(y1+y2�yq ) is the indicator function of the event
y1+y2 = yq and as always in this paper the �{functional
has to be understood as Kronecker{� function �y1;y2 in
the discrete case.

Deterministic questions

The last example can easily be generalized by replac-
ing y1+y2 by any other de�ning function q(y) depending
on a data vector y with components yi

23

p(yq jq; f0) = p(fq(y) = yqgjxq; f0)

=

Z  Y
i

dyip(yijxqi ; f0)
!
�(q(yi)� yq):

To simplify notation, we now use the symbol xq not for
a single basis question but for a whole vector of them.
Its components xqi , correspond to the yi necessary to
evaluate q and can include repeated measurements of
the same basis question. Speci�cally, averages of actual
measurements correspond to choosing q(y) = 1=N

P
i yi.

The answer yq to question q can be a vector with com-
ponents y

q
j meaning that

�(q(y) � yq) =
Y
j

�(qj(y) � yqj ):

For noisy x this gives not the product

p(yq jq; f) 6=
Y
j

p(y
q
j jq; f);

because this would refer to a situation where the yqj do

not use the same realization but sample their own yi
resulting in additional y{integrals.

While in the following no special attention is paid to
the technical di�culties of the case of continuous y we
shortly discuss the de�nition of the � for this case where
� stands not for the Kronecker function but for the �{

functional. This is de�ned for general q(y) for
dq(y)

dy

���
y0
6=

0 according to

Z
dyp(yjx; f)�(q(y) � yq) =

X
y0

p(y0jx; f)
�����dq(y)dy

���
y0

�����
�1

;

where y0 are the solutions of q(y) = yq , i.e. the zeros
of the argument q(y) � yq . The nonzero �rst derivative
guarantees that q(y) is locally invertible so we can write
y0 = q�1(yq) with q�1 de�ned at least in a neighborhood
of yq . In case q(y) = yq is ful�lled on a whole interval
the �{functional has to be replaced by the characteristic
function of that event which can be expressed by step
functions �.

23The components yi of the data vector as well as the an-
swers yq can be vectors itself.

Output noise

A question can also be constructed including addi-
tional internal random variables z by using a probabilistic
de�ning function q(y; z) de�ned by f0{independent out-
put distributions p(zjy; q) = p(zjy; q; f0). The answer
can be seen as created in a two step process

p(yq jq; f0) =
Z
dy p(yq jy; q)p(yjxq; f0);

with

p(yq jy; q) =
Z

dz p(zjy; q) �(q(y; z) � yq);

and
p(yjxq; f0) =

Y
i

p(yijxi; f0)

The vector of internal random variables z increase the
noise in answers while additional (repeated) measure-
ments of the same basis questions reduce the noise. Note
that the noise variables of di�erent questions are inde-
pendent, that is we assume p(zq ; zq0) = p(zq)p(zq0 ) for
q 6= q0, and questions always measure their own y{values
according to p(yjq; f0) and do not refer to measurements
of other questions. One speci�c realization of y can be
used multiple times only within the same question.

Input noise

The vector x of basis questions contained in q and its
dimension can be an f0{independent random variable.
We call this a situation with input noise. Then q(x; y)
depends on x generated according to p(xjq). The index
q indicates that this distribution is part of the de�nition
of the functional q. Thus, we have

p(yjq; f0) =
Z

dx p(xjq)
dim(x)Y

i

p(yijxi; f0);

with
R
dx =

P
j

R Qj
i dxi and p(x) = p(dim = j) p(xjj).

We understand all dependencies within the vector x to
be included in this notation. Products of p(yijxi; f0) cor-
respond to a logical AND applied to the results yi, sum-
mations over xi and z correspond to a logical OR. Input
noise can be combined with a probabilistic q{function
q(x; y; z)

p(yq jq; f0) =
Z
dy p(yjq; f0)p(yq jy; q)

=

Z
dx p(xjq)

Z 0@ dim(x)Y
i

dyip(yijxi; f0)
1
A p(yq jx; y);

(1)
where p(yq jx; y) = R dz p(zjx; y; q) �(q(x; y; z)� yq) andR
dy =

P
j

R Qj
i dyi. Finally, we remark that input noise

has both more active and more passive interpretations.
Changing the variable x can be interpreted as chang-
ing the device or changing the situation. For example,
measuring another location x of an object can be done
by moving the measuring device to location x (passive
interpretation) or by moving the object (active interpre-
tation) or by moving both (mixed interpretation). The
passive interpretation may be the usual one, but as we
assume f0 to be constant over the whole time of interest
all active controllable aspects must be part of x.
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Causal chains

We can also allow output dependent input noise by
choosing the xi depending also from results of previ-
ous measurements yj included in q. For example, active
learning algorithms which select the next question ac-
cording to the data in the past belong to this class of
questions. We order the factors according to the causal
dependencies of the generating process like

p(x; yjq; f0) = p(x1jq)p(y1jx1; f0)
� p(x2jx1; y1; q)p(y2jx2; f0)

� p(x3jx2; y2; x1; y1; q)p(y3jx3; f0) � � �
= p(xjyc; q)

Y
i

p(yijxi; f0):

where the subscript c indicates a `causal' ordering, mean-
ing p(xjyc; q) = p(x1jq)

Q
i=2 p(xijfxj; yjg1�j�i�1; q),

with (the `last') one of the components of vector y miss-
ing. Note that we understand the causal structure for
components of x to be implicit in the notation p(xjyc; q).
Chains with variables depending only on those of the pre-
vious step p(xjyc; q) = p(x1jq)

Q
i=2 p(xijxi�1; yi�1; q),

are sometimes called Markov chains.24 For �nite se-
quences such a representation can always be achieved by
combining x, y of di�erent steps into one vector variable,
or in general by including the relevant memory variables.
In the extreme case this would lead back to the starting
point p(xjq)p(yjx; q). Including internal noise variables z
their probability p(zjx; y) may also be written in a causal
realization modeling the real causal processes

p(x; y; zjq; f0) = p(x1jq)p(y1jx1; f0)p(z1jx1; y1; q)
�p(x2jx1; y1; z1; q)p(y2jx2; f0)p(z2jx1; y1; z1; x2; y2; q) � � �

= p(xjyc; zc; q)p(zjx; y; q)
Y
i

p(yijxi; f0):

It is always possible to write a joint probability in this
form and we always understand the indices of the vari-
ables x, y, z to refer to the same ordering. This gives

p(yq jq; f0) =
Z

dx

Z
dy

Z
dz

 Y
i

p(yijxi; f0)
!

� p(xjyc; zc; q)p(zjx; y; q) �(q(x; y; z)� yq)

=

Z
dx

Z
dy

Z
dz p(yjx; f0)

� p(x; jyc; zc; q)p(zjx; y; q)p(yqjx; y; z; q); (2)

showing the separation into q{dependent factors written
in index form from and f0{dependent factors. Special
realizations of causal dependencies, including variables z,
de�ning the answer producing process can be modeled
by directed acyclic graphs, i.e. graphical models or belief
networks (Pearl, 1988; Lauritzen, 1996, Jensen, 1996,
Ripley, 1996). A pair of variables Rq = (x; z) can be
called realization of q because it represents that part of
the de�nition of a question determining a speci�c answer
yq and Dq = (x; y) the corresponding data. We denote
the set of all questions of the form of Eq.(2) including

only �nite dimensional vectors x, y, z by �Qfin
X .

24See for example Golden, 1986. However the term Markov
chain is used in many variations. See for example van Kam-
pen, 1992, p.77 and its footnote on p.89 referring to a footnote
on p.340 in Feller, 1957.

Combinations, decompositions

Having de�ned a set Q0 of questions q0 we obviously
can generate new questions q according to Eq.(2) by
replacing p(yjx; f0) with p(yjq0; f0) and choosing any
input functions p(q0jyc; zc; q), internal noise functions
p(zjx; y; q), and de�ning functions q(x; y; z). To avoid
circular de�nitions the q must of course not contain it-
self. If the new q is expressed in terms of basis questions,
i.e. the p(yjx; f0), it still has the form of Eq.(2), meaning

it belongs to �Qfin
X . Consequently, for arbitrary q0 2 �Qfin

X

a q of the following general q-form

p(yjq; f0) =
Z
dq0
Z

dy

Z
dz p(q0jyc; zc; q)

� p(yjq0; f0)p(zjx; y; q)�(q0(x; y; z)� y) (3)

is also in �Qfin
X . In this sense �Qfin

X is closed. Also for

every q 2 �Qfin
X there are q0 2 �Qfin

X so that q can linearly
decomposed in that form. Speci�cally, the q0 can always
be chosen as x.

In general a decomposition of q in arbitrary compo-
nents q0 can be written as

p(yjq; f0) =
Z

dq0 p(q0jq; f0)p(yjq0; q; f0);

with f0{dependent p(q0jq; f0) if q0 is sampled depending
on y. We can get a y{ and therefore f0{independent
decomposition of q into lower noise components q0 in
analogy to x{independent decomposition of states f into
pure states f0. To get this, we separate Rq = (x; z) into
a y{independent part q0 and a y{dependent part. Note
that at least one xi is in q0 and arbitrary dependencies
are allowed within q0. Then we have an f0{independent
decomposition of q

p(yjq; f0) =
Z
dq0 p(q0jq) p(yjq0; q; f0); (4)

in analogy to a x{independent decomposition25 of f

p(yjx; f) =
Z
df0 p(f0jf) p(yjx; f0);

but with, in general, di�ering `local states' p(yq jq0; q; f0)
for di�erent q. Despite that analogy we do not assume
the availability of data which can change the p(q0jq).
This is without loss of generality as all data dependencies
of question de�nitions can be incorporated by enlarging
the space F 0 and adding questions with answers depend-
ing on p(q0jq). In fact, in practice an example generat-
ing distribution p(x) is often unknown and estimated
using the sampling distribution. Formally we can com-
bine x and y into a new y0 = (x; y) and de�ne functions
f 00 = (f0x ; f

0
y ) by p(y0jx0; f 00) = p(yjx; x0; f0y )p(xjx0; f0x).

The new x0{variable can be skipped from the notation
having only one value with the minimal meaning of re-
questing another y0 = (x; y) value. A state of knowl-
edge f 0 contains now also information about p(x) and if

25For simplicity we use from now on the integral notation
also for the f0{variable assuming a well de�ned (possibly
discrete) measure.
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p(f 00) = p(f0x)p(f
0
y ) we can estimate p(x) independent

of p(yjx) by observing pairs (x; y). But note that for
continuous X if not parameterized by a �nite set of pa-
rameters the f0x{integration is a functional integration
and not necessarily well de�ned.

If studying f{dependency we may also allow f{
dependent de�nitions of q as the state of knowledge is
assumed to be known and therefore this knowledge could
be incorporated into the answer producing process. The
preceding equations include this case if q is interpreted
as double index q ! (q; f) = qf . Notice that as answers
change the state of knowledge f and they also change
the de�nition of q.

General functionals

We allowed the answer probability p(yq jq; f0) at yq
of a generalized question to be any functional of the y{
distributions p(yjx; f0) (for all x but �xed f0). A param-
eterization of, or in the extreme case the p(yjx; f0) for
all x and y itself, describe a state f0 completely. Func-
tionals depending on the p(yjx; f0) include for example

p(yq jq; f0) = �(yq �
Z
dy yp(yjx; f0));

giving the local expectation, or in a noisy version

p(yq jq; f0) / e
� 1

2
((yq�

R
dy yp(yjx;f0))=�)2

;

as well as

p(yq jq; f0) = �(yq � p(yjx; f0));
giving a speci�c probability (density) or general

p(yq jq; f0) =
Z

dyp(yjf0)�(yq � q(z)):

We recognize that the questions we have constructed so
far in the previous sections contain products of p(yjx; f0)
(together with a sum implicit in the notation of the last
sections) and are therefore functionals with a �nite power
series

p(yjq; f) =
X
n=0

 
nY
i=1

Z
dxidyip(yijxi; f)

!
an(x; y):

Those generalized questions can be measured using a
�nite number of answers to basis questions, while ques-
tions with an in�nite but converging power expansion
might be measured approximately. Expectations and
probabilities of events can sometimes be approximated
using empirical sums but in general not a probability
density p(yjx; f0) for continuous y. We will use the word
measurement for the process of getting an answer to a
question, but we will show in the next section that for
questions with no �nite or converging power series this
has more the character of enforcing an answer or active
control of F 0.

3.2 How to measure them

An answer to a question could be obtained using only
measurements of basis questions x when it has a de�ning
function q(x; y; z) depending only on a �nite number of
outcomes yi(xi).

3.2.1 Finite case

We denote the set of questions with �nite dimensional

y, z by �Qfin
X . With Q denoting the measurable questions

we have therefore X � Q) �Q
fin
X � Q. These questions

could (but do not have to) be measured by a �nite num-
ber of possibly repeated measurements of basis questions
x 2 X according the following steps:

i. Choose x according to p(xjq),
ii. Get y for the basis questions in x,

iii. Get z according to p(zjx; y), (Repeat i., ii. and iii.
in case of p(xjyc; zc) dependencies)

iv. Insert result into q(x; y; z).

While the measurements can be performed using only de-
vices measuring basis questions, these questions do not
necessarily need the full information contained in the
answers to x. That means measuring devices designed
speci�cally for them could be more e�ective. For exam-
ple, using interference of waves di�erences can be mea-
sured in physics sometimes much more precisely than
absolute values.

We discuss how in the �nite case a direct measuring of
q might be preferable, a situation which often occurs in
practice. Consider output noise which is added in a �nal
step for all measurements during training, like observa-
tion and memory errors, or transformation to a lower
resolution �nal output scale. Then measuring devices
which are able to directly access the underlying lower
noise function and perform the necessary operations be-
fore adding the output noise have higher accuracy. As
simple example, take a basis set X with output distri-
butions

p(yjx; f0) = N (�x(f
0); �)

and

�x(f
0) =

Z
dy y p(yjx; f0);

where N (�; �) stands for a Gaussian centered at � with
variance �2. Then, if measurable, the generalized ques-
tion

p(yjq; f0) = N (�q(f
0); �); �q = �x1(f

0) + �x2(f
0);

obtains the sum with greater accuracy than using the
sum y1 + y2 of two basis questions x1 and x2 where the
independency of the noise gives 2�2 for the variance. In
this special case the question would be equivalent to four
basis questions including one repeated measurement for
every xi to get (y1+ y01+ y2 + y02)=2. Replacing the sum
�x1 + �x2 by an integral

R
�xdx (in�nite nonlocality) or

setting � in q equal to zero with retaining a �nite � for
the xi (in�nite accuracy) the question depends on more
than a �nite number of answers to basis questions.

3.2.2 In�nite cases

Asymptotic procedures

In some cases a de�ning function can be found so that
a well de�ned limit with the number of arguments go-
ing to in�nity gives the desired p(yq jq; f0). For example,
there are measurements depending on a formally in�nite
number of basis questions using some inherent, in�nite
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parallelism of natural processes or a process having a
well de�ned limit for the number of involved basis ques-
tions going to in�nity. Scattering of waves on structures
with speci�c translation and rotation invariances (crys-
tals) create �lters for speci�c Fourier components which
depend on a (conceptually) in�nite number of coordi-
nate values. Measurement of macroscopic variables in
physics, like energy or magnetization depends on many
(normally in the order of 1023) microscopic variables.
If the answers to those questions converge in the limit
system size n ! 1, they can be considered as mea-
surement of an in�nite system. In general, a meaning-
ful statement about an in�nite property, has ro rely on
conditions which can be checked in �nite times. In the
following we relate such conditions to the preparation of
an ensemble and possibilities of control.

Measurement and preparation

We begin with the observation, that questions avail-
able during the training situation might be di�erent from
those during the preparation of the ensemble f .

Consider objects f0 which, giving a parameter �y, pro-
duce as random output an output distribution with mean
�y. We can form a population F 0 of such objects, notate,
i.e. measure, the input parameter �y for each member,
and select, with a given (prior) probability p(f0) = p(ŷ),
one object f0 with unknown �y. Then, we cannot mea-
sure the mean exactly using only training example yi of
the output of f0. In cases the mean exists, the sampling
sum will, according to the theorem of Glivenko{Cantelli,
usually asymptotically converge to it, (i.e. the probabil-
ity � for the deviation to be larger than some � can be
n{dependently bounded). Thus, what have been mea-
surable during the preparation phase by a single mea-
surement (i.e. reading the number �y) is, if at all, only
asymptotically measurable during training.

In a general situation we consider a family of parame-
terized answer distributions F 0 with known parameters
like expectation and variance. If we can measure the
values of these parameters we can prepare a prior dis-
tribution (state f) depending on those parameters. For
example, if a certain symmetry property is measurable
we can choose an f depending on this property, for exam-
ple with possible states f0 possessing (or concentrated
around) a certain value of this symmetry. In a speci�c
training situation, however, the symmetry may not be
directly measurable, and an additional source of noise
be present.

We will denote the set of questions with available
answers during preparation by XP and will call it the
preparation set. The preparation set XP is in general
not equal to the set of training question X considered
actually available. Questions not �nite or asymptotically
measurable with respect to X can be �nite or asymptot-
ically measurable with respect to XP .

As far as generalization requires nonlocal questions
not measurable with respect to X, like a symmetry or
smoothness constraint for in�nite X, there has to be
another set XP to allow the necessary measurements to
prepare the prior. Then the prior can be expressed by a
question qP depending on a �nite number of questions

xP 2 XP and the corresponding answer yq

p(f0jyP ; qP ) / p(f0)p(yP jqP ; f0):
However it could not be written using a question de-
pending on a �nite dimensional vector x 2 X of training
questions. The training data change the prior according
to

p(f0jyD ; qD; yP ; qP ) / p(f0jyP qP )p(yD jqD; f0):
Preparation questions xP with deterministic answers,
like an exact symmetry, correspond to restrictions of F 0.
Probabilistic qP give probabilistic priors, like a prefer-
ence for smooth functions or otherwise symmetric func-
tions (approximate symmetries).

The distinction between a (momentarily considered)
training set X and a preparation set XP (on may say
implicit training set) is more a practical than a formal as-
pect, For analysis of the generalization ability questions
fromXP have to be treated formally equal to those from
X. Thus, e�ectively one deals with training questions
depending on X [XP .

Speci�cally, we will explain below how symmetry and
smoothness can be generated by input noise or averag-
ing. To recognize or prepare such a situation a measure-
ment device without (or less) input noise (XP ) must be
available.

We summarize, that what appears to be not measur-
able with a �nite amount of data for X may well be
measurable within the larger set X [ XP . This is the
case, when the set of actually considered training ques-
tionsX all share a common noise source, which is absent
for XP .

Measurement and control

To enable learning we have to assume stationarity of
p(yjq; f0). Thus, all factors changing the answer distri-
butions have to be included in q and f0. But the model
does not specify how stationarity is achieved. In prac-
tice, stationarity can result from an active control or just
by not disturbing a constant part of nature.

In general, a measurement y of q in state f0 is the
result of an interaction of the `active' part of posing a
question q and the `passive' reaction of nature in state
f0. Usually, measuring a quantity q emphasizes the pas-
sive picture where the value of y reects a permanent
property of nature f0, however, only seen when mea-
suring q. For preparation questions the complementary
active interpretation of measuring as control or selec-
tion may also be helpful. Then, the answer is seen as a
property of nature enforced by the question q. In this
interpretation a question is better called a control ac-
tion and a measurement device a control device. Thus,
y can be seen as reaction of nature to q. In the general
case of stochastic control di�erent states f0 react di�er-
ent to the control action q, described by p(yjq; f0). This
point of view is especially suitable if the variability of y
between di�erent f0 is small under q. Both interpreta-
tions describe the same formalism, the di�erence being
the larger emphasis of either the passive or the active
part.

17



Interpretations may also refer to a more complicated
model of interaction between q and f0. Such more com-
plex models correspond formally to the introduction of
hidden variables z,

p(yjq; f0) =
X
z

p(yjq; f0; z)p(zjq; f0):

That means we think of measurement devices as gener-
alized questions with respect to some underlying set of
measurable questions. Then, the x can be called e�ec-
tive questions xeff with respect to another, underlying
X. If we do not want just to assume such a structure,
we need other measurement devices, we may call them
in analogy to the last Subsection qP 2 �QXP , which allow
to measure or control a given structure. We will see that
this can be reasonable to assume and those additional
measurement devices will have to be active only a �nite
number of times. If we can guarantee the structure for
all q, this can be equivalent to dependencies between q
and therefore interpreted as nonlocal measurement.

For example one can imagine the value y to be the
result of an (ideal) measuring process with a following
control device, e.g. a �lter describing restrictions of the
(real) measurement device. For this we separate the in-
dex q into two components q = (qideal; qfilter) (or alter-
natively f0 = (f0;data; f0;filter)) and have

p(yjq; f0) =
X
yideal

p(yjqfilter ; yideal)p(yidealjqideal; f0):

We will call this a model of posterior control.
Analogously, we can think of a scenario where �rst

the functions are �ltered and then measured, i.e. we
split q into q = (qdata; qfilter) (or alternatively f0 =
(f0;data; f0;filter)) and have

p(yjq; f0)

=
X

f0
filtered

p(yjqdata; f0filtered)p(f0filtered jqfilter; f0):

If we f0 from the notation, write again f0 for f0filtered,

the �lter qfilter = (yP ; qP ) creates a prior ensemble.
Here the q independence allows us to have it prepared
before the training starts. That is what we will call a
model of prior control. The situation we discussed in
the last Subsection can therefore be realized as prior con-
trol. Notice, that also under prior control stationarity of
the probability distributions must be controlled, and in
this sense there is always a posterior control component
present. Adjusting the measurement device and repeat
the measurement if some `failure' is indicated is an ex-
ample of such an posterior control, which is also present,
if the prior ensemble is prepared in the past.

Now we turn again to the problem of questions de-
pending on an in�nite number of basis questions. In the
last Subsection we used a decomposition q0 = (q; qP )

with q 2 �Qfin
X , qP 2 �Qfin

XP and showed that this allows

qP =2 �Qfin
X . Now we examine how also in the example

of posterior control measurement of questions depending
on an in�nite number of basis questions is possible.

The key observation is that the stationarity condition
for p(yjq; f0) only a�ects an always �nite number of mea-
surements. Hence. also (e.g. prior or posterior) control
can be restricted to this �nite number of measurements.
This allows to understand or implement stationarity as
part of the measuring process, e.g. as a �lter. For exam-
ple, nothing prevents us to assume that asking q the �rst
time causes stationarity for the following times. There-
fore, posing a question q can have the interpretation of
an active control leading to some restrictions or depen-
dencies for subsequent measurements, stationary for all
f0. Di�erentiation between di�erent f0 is only possi-
ble if the controller, but not necessarily the learner, has

questions, q 2 �Qfin

XP , available to distinguish between
them.

As example, take a family of q measurement devices,
all capable only of producing answers smaller than �,
independent of f0. This can be ensured by one q{
independent cuto� device as posterior control. This cut-
o� device depends itself only on �nite dimensional in-
coming yideal and has to be active only during the �nite
number of measurements. Nevertheless, the posterior
control model is equivalent to a nonlocal measurement
for all q, which is possibly an in�nite number, with an-
swer q < �. Here, the control is implemented by f0{
independent properties of the measurement device. The
same e�ect appears if all objects under study underlay
the same f0{independent selection. So instead of using
restricted measurement devices as posterior control, we
could also study restricted objects or situations, i.e. an
implementation as prior control. Then the controlling
�lter acts using qP 2 �QXP not on measurement values
but on the objects or situations f0 itself. In analogy to
the output bound � above, the length of object classes
under study might be restricted by � because they all
arrive in the same box, must �t into a certain environ-
ment or are only produced in that way. Those are prior
control devices parameterized by �. Also, if the number
of objects is in�nite, the prior control device (e.g. the
box into which the object must �t) must only be active
during the �nite number of measurements.26

Thus, because control of stationarity, be it related to

26There can be practical di�erences between such devices,
for example between a `box' device, and a cuto� in the out-
put scale. Indeed, a �lter can be implemented as active or as
passive �lter. A passive �lter does not always return an out-
put. For values larger � for example it may answer `overow'.
For example, using the box device it may take considerable
time to �nd an object which �ts into it. There might even
be no objects available which �t in the box, and we could
need a formally in�nite time to produce such an impossible
state. An active �lter always returns an output. For example
we may assume for a cuto� device that it always returns �
in case the output is larger �. However, this has nothing to
do with the di�erence between prior and posterior control.
Both variants are also possible for prior control. Consider,
for example, an `active box' cutting everything to a �tting
size Those aspects of di�ering complexity of single measure-
ments or control actions are not included in the formalism.
Yet, nothing prevents us from modeling the micro-structure
of single measurements if necessary; we could use the same
type of theory, just on another level.
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training or preparation questions, only has to be active
at the always �nite number of times of actual measure-
ments, there is no practical impossibility in measure-
ments based upon control depending on an in�nite num-
ber of basis questions. Nothing is actually done an in�-
nite number of times.27 It just could be done arbitrarily
often because we de�ned the situation to be so. A �lter
bounding outcome values only has to be active a �nite
number of times for every actual measurement even if
we de�ned the situation that it could do so arbitrarily
often. This includes also the stationarity conditions for
local questions.

We have seen that what exactly choosing question q
means in practice and how stationarity is achieved, be it
by leaving nature alone or by active control does not en-
ter the formalism. Dependency on an in�nite number of
questions is no practical impossibility in as far as control
over stationarity conditions only has to be active at the
always �nite number of times of actual measurements.

Another aspect of control will be discussed in more
detail in the next Sections: Often the presence of con-
trol is easy to recognize, however di�cult to formalize.
For example, creating a training set for a object recog-
nition task by choosing images as training examples of
faces and non{faces or chairs and non{chairs, depends
on one's implicit de�nition of the concept of a face or
chair, respectively. Drawings may be accepted as valid
examples of the object class or not, while very unregular,
random{like objects are not selected to represent a face
or a chair. Consequently, the de�nition of such object
classes is related to linguistic or implicit concepts rep-
resenting the objects. Such de�ning concepts, involved
for example in a prior or posterior control process, can
correspond to a measurement of an in�nite number of
objects. Thus, it can be expected to be helpful having a
method to formalize those concepts and include them as
prior information into the statistical inference process.
Accordingly, useful restrictions might be found from an
analysis of the application situations or of the object or
situation generating process: a pedestrian detection task
might be restricted to pedestrians walking on or near the
street in a certain distance and a car (ship, airplane, � � �
) detection task may take into account that only certain
types of them have been produced up to now.

As man are always more or less involved in the def-
inition of situations or problems of interest this shows
the clear need of a human interface which enables hu-
man knowledge, like linguistic concepts, used to de�ne
and control the application situations to be incorporated
into the learning process.

Summarizing, we list two variants in which measure-
ment by control depending on a possibly in�nite number
of questions can appear:

1. prior control: controlling the process which gener-
ates the prior distribution, e.g. control of the situ-

27This is related to a constructive view of in�nity, not at-
tributing `existence' to an abstract in�nite object itself, but
to its constructing procedure. This is, for example, the po-
sition of Jaynes, 1996, who `sails under the banner of Gauss,
Kronecker, and Poincar�e rather than Cantor, Hilbert, and
Bourbaki.'

ations or objects of interest,

2. posterior control: controlling the measurement val-
ues, e.g. restrictions of the measurement devices.

Stationarity is essential for all questions and the inter-
pretation of measurement as control or active enforcing
of stationarity can be applied to all questions, not only to
those which cannot be measured using a �nite number of
basis questions or some asymptotic procedure. One can
say that the ability to generalize is based upon the ability
to control that the situation of interest and the measur-
ing devices are kept within their restrictions. We have
discussed, that the probability concept does in general
not allow to exactly verify (even local) nondeterministic
conditions using only the training data and no prepara-
tion questions. Approaches to test the conditions, i.e.
the models f , using training data have to refer to meta
models or use the classical testing of null hypotheses, i.e.
calculate the probability of the data given the condition
f . Applied to model testing this has also been called
evidence approach (MacKay, 1992c).

We conclude, that the ability to generalize is based on
the ability to measure or, emphasizing more the active
connotation and formally equivalent, to control depen-
dencies between basis questions. We have shown that
this is also practically possible in case of an in�nite X.
From this point of view only measurement can generate
new information. Actual learning, however, is not the
discovery of something new, but the reformulation of ac-
tually imposed and measured conditions to give answers
to relevant questions. Analogously, assumed learning is
the reformulation of assumed conditions.

4 Priors

We discuss two examples of generalized questions often
used as priors and give then in the next Section a general
method to construct priors.

4.1 Bounds

In practice measurement values have a bounded range
and even models using distributions with unbounded
range for the variables use normally a bounded range
for moments, like the mean. To discuss such bounds
we present some variations of questions with q{functions
calculating the maxima of di�erent sets:

1. empirical maximum from a �nite sample

m1 = max
i

yi(xi; f
0);

2. maximumof the local expectation (regression func-
tion)

m2 = max
x

Z
dy y p(yjx; f0) = max

x
�yx(f

0);

allowing observed values yi > m2 generated by
noise,

3. outcome (answer) being maximal with probability
one

m3 = max
x

y�(x);
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de�ning as local maximum y�(x) at x the minimal
y with

8y0 2 Yx : p(y0 > yjx; f0) = 0;

or

4. maximal potential outcome

m4 = max
x

max
y2Yx

y

being independent of f0 if the Yx are de�ned inde-
pendent of f0.

Questions related to m1 belong to �Qfin
X and can be em-

pirically measured if X can. In approximation problems
where one is interested in modeling the regression func-
tion �yx(f

0) and not f0 itself one normally refers to m2

and allows for example Gaussian noise still to generate
arbitrary large outcomes even for �nite m2. The answer
to m2 can be bounded only with access to the regression
function, which in this case is interpreted as the true un-
derlying function. This `bounding device' has therefore
to be applied before the measurement noise. The bound
m3 is the most interesting one in worst case considera-
tions and is itself bounded by m4. Fixing (the answer to
question) m4 is done by using cuto� devices. A question
qcutA corresponding to a cut-o� device applied to (real)
answers to question q can be written

p(ycutjqcutA ; f0) =

Z
dy [p(y > Ajq; f0)�(A � ycut)

+p(y � Ajq; f0)�(y � ycut)]

=

Z
dy p(yjq; f0)[�(�(y �A) � 1)�(A � ycut)

+�(�(A � y) � 1)�(y � ycut)]:

The step function �(x) is de�ned to give 1 for x � 0 and
0 for x < 0. If only those cuto� questions are available
we can restrict to e�ective states f0eff de�ned by

p(ycutjqcutA ; f0) = p(yjqA; f0eff );
. We need this device for the next example.

4.2 Approximate invariances: Smoothness and
symmetry

Smoothness and symmetries are probably the most im-
portant and most often used nonlocal priors. Here we
want to show how restrictions of the measurement device
(or equivalently restrictions in the situation (object) gen-
erating device) can lead to bounds on smoothness and
symmetries.

Let us assume a group S represented by operations sx
acting on x. For simplicity we skip the index x if not nec-
essary and write simply s. Then for scalar states f0 the
action of operation s is de�ned by requiring invariance
p(yjx; f0) = p(yjsx; s�1f0) that is

p(yjx; sf0) = p(yjs�1x; f0):
Generalization to states with components not invariant
under s, like for example vector states, is straight for-
ward

p(yjx; sf0) = p(syyjs�1x; f0);

where sy is the action of s in the y{representation of the
group, which may be di�erent from the x{representation
sx = s.

Measuring invariance of the regression function under
a set of operations S can for example be done by cal-
culating a mean square error (weighted with w(x; s) if
necessary) writing E(y(f0; x)) = �yx

d2S(f
0) =

Z
dx

Z
dsw(x; s)(�yx � �ysx)

2;

where s denotes also the index of operator s 2 S and
the integral notation valid for continuous (Lie) groups
has to be replaced by a sum for �nite groups. (See
for example Ferraro, 1992, for Lie groups in pattern
recognition). A distance dS can be used to construct

priors, for example like p(f0) / e�cd
2
S(f

0), if normalis-
able in F 0, or p(f0) = �(d2max � d2S(f

0)). A relative
di�erence is obtained using w(x; s) = (1=(x � sx))2.
One could also measure higher order di�erences like
((�yx� �ysx)�(�ysx� �ys2x))

2 corresponding in the in�nites-
imal case to second derivatives. Measuring smoothness
is the special case of measuring in�nitesimal transla-
tional invariance s0. For example, written for the one{

dimensional case with w(x; s) = �(s� s0)
w(x)

(x�s0x)2

d2S(f
0) =

Z
dxw(x)(

d�yx
dx

)2:

The x{integration p(x)dx can be written in the formP
i2orbits p(s

0xi0)ds
0, with the orbit i of xi0 de�ned as Sx

i
0

and the sum is restricted to one xi0 per orbit. If there
is only one orbit, all x can be generated as x = sxx0
out of one x0 by repeated applications of the in�nitesi-

mal s0 with sx = exs
0

denoting the corresponding �nite
transformations.

For discrete symmetries integrals become sums. Ex-
amples of discrete symmetries include permutation of
components in case x is a vector. Function spaces of
functions depending on vector arguments x can be con-
structed as tensor product of function spaces depend-
ing on the single components of x. If every compo-
nent of x corresponds to a measurement of another ob-
ject, exact permutation symmetry means indistinguish-
able objects.28

Now, let us assume that there is input noise or aver-
aging associated to operations s 2 S of some group S. In
spatial systems this is often also called coarse graining

(see for example Balian, 1991, Goldenfeld, 1992). This
is a very natural assumption for smoothness or in�nites-
imal translational invariance, as no real measurement
device has in�nite resolution. If only questions with in-
put noise with respect to S are available we can de�ne
an e�ective state f0eff . Including the identity into the

set S it is de�ned by

p(yjxeff ; f0) = p(yjx; f0eff ) =
Z
ds p(sjx)p(yjsx; f0);

with the input noise characterized by p(sjx), that is the
probability of posing question sx instead of question x.

28For example, in physics identical particles like bosons are
related to an exact permutation symmetry.
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The following is an example of averaging with respect to
S by the same weight factor p(sjx)

p(yjxeff ; f0) = p(yjx; f0eff )

=

Z
dys

Y
s

p(ysjsx; f0)�(
X
s

p(sjx)ys � y):

.
Now, we are interested in bounds on the approximate

symmetry of the e�ective regression functions

�yeffx = E(y(f0eff ; x)) =

Z
dy y p(yjx; f0eff )

=

Z
dy

Z
ds y p(sjx)p(yjsx; f0)

=

Z
ds p(sjx)E(y(f0 ; sx)) =

Z
ds p(sjx)�ysx;

for the input noise version. The average versions give
the same expectation but smaller variance. The result
is a convex combination of the local averages �ysx. Now
we consider a measurement device with �nite range (for
its real valued components) of output and de�ne accord-
ing to the last section a new e�ective state which in-
cludes the cuto� with respect to an upper bound Ax

and lower bound Bx. Then the e�ective regression func-
tion can only take values between the extremal points
Ax = minsE(y(f

0; sx)) and Bx = maxsE(y(f
0 ; sx))

and by changing p(sjx) we can obtain any value in be-
tween.

Analogously, di�erences are bounded. If we take for
simplicity p(sjx) = p(sjx0) = p(s), we have

j�yeffx � �yeffsx j = jE(y(f0eff ; x))�E(y(f0eff ; sx))j

= j
Z
ds0(p(s0)� p(s0s�1))�ys0xj;

for a parameterization s0 with ds
ds0

= 1. Therefore,
changing p(s) allows to obtain any bound deff for the
norm of the di�erence between dmaxeff = maxxmax((Ax�
Bx); (Bx � Ax)) and dmineff = 0 (for p(s) = const.) and

we can achieve

d2S(f
0
eff ) = d2S(f

0
eff )�(cd

2
eff � d2S(f

0
eff ));

with
R
dx
R
dsw(x; s) = c. This bounds the smoothness

or deviation from perfect symmetry by 0 � dS � cdeff
for any 0 = dmineff � deff � dmaxeff .

Thus, input noise or averaging in connection with a
cuto� device can lead to dependencies between answers
of an e�ective function by bounding their maximal dif-
ferences, which is a symmetry or smoothness property.29

29For example, the support vector machine (Vapnik, 1995)
applied to classi�cation problems can be seen as such an ap-
proach. Here the input space is embedded in a (often much)
higher dimensional feature space. The classi�cation in fea-
ture space only requires the calculation of scalar products
which are de�ned through a positive de�nite kernel, chosen
so that it is easy to calculate, In feature space a linear sep-
arating hyperplane is constructed maximizing its distance to
the nearest data points, which are also called support vectors.

For sampling of symmetry priors by virtual examples
and references see Section 8.4.

In real measurement devices these combination of cut-
o� with input noise or averaging (coarse graining) can
occur on many di�erent levels and it is an interesting
question whether the omnipresent smoothness phenom-
ena in nature could be partly explained in that way.

5 Subjective priors

5.1 General priors: How probabilistic models
are obtained

The preparation of an ensemble F 0 with a certain prior
distribution requires measurement or control of certain
properties of f0. States f0 are de�ned in terms of
a parameterization of p(yjx; f0). Any prior p(f0jfP )
describing a state of knowledge (i.e. state of prepa-
ration) is therefore a deterministic functional of those
p(yjx; f0), and also of their parameterization. Thus the
set of p(yjq; f0) itself are answers to the maximal set
XP
max. The x

p
max are the deterministic functions giving

p(yjx; f0). This means the number p(yjx; f0) for given
x, y, f0, not the probabilistic questions x giving answer
y. The preparation questions XP

max allow to construct a
set of well de�ned p(yjx; f0) producing devices. Usually
then one of these devices is selected according to some
p(f0), and one has to �nd out using new data D which
one is actually chosen. With respect toXP

max every prior,
even if de�ned directly by a deterministic functional of
the p(yjx; f0) can be reinterpreted (but not in a unique
way) as resulting from a uniform prior p(f0) with addi-
tional given data (yP ; qP ). We take the point of view
that every nonuniform prior is caused by such data D,
sometimes also denoted by D0 if we want to distinguish
them from other training data D.

Given data D the corresponding state p(f0jD) can be
calculated if p(Djf0) is known. The p(Djf0) are part of
the structural knowledge. They must be determined in-
dependent of the actual task under consideration. Thus,
their knowledge is always a transfer of knowledge from
another task and assumes constancy of this distributions

Choosing the separating hyperplane with maximal distance
to the nearest sample points is equivalent to maximizing the
input noise around the sample points without changing the
classi�cation. The cuto� consists in the restriction to data
within a certain radius. One may interpret the class bound-
aries resulting from equal class priors and a class membership
probability of the form of a mixture of Gaussians centered at
the data points, radially symmetric in feature space with re-
spect to the distance induced by the selected kernel, and with
equal variance �. From this point of view one can say that
the support vector machine obtains a solution with a max-
imal `smoothness' of the class membership probability with
respect to kernel induced distance in feature space, i.e. with
maximal �. Thus, the support vector machine implements
a smoothness prior relative to the feature space. One may
remark here, that the related VC dimension of the support
vector machine can (up to now) not be calculated exactly,

because the related function space F̂ of optimal hyperplanes
is not de�ned a priori but dependent on the x{values of the
training data. (See Shawe-Taylor, Bartlett, Williamson, An-
thony, 1996ab and their concept of a luckiness function.)
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under transfer. Up to now we assumed the p(Djf0) to be
given. Then the preparation of an ensemble p(f0) can be
related to measurement devices with already known (em-
pirically measured) answer probabilities under the vari-
ous states. Here we discuss the measurement of p(Djf0).
The main problem is, that we have to measure p(Djf0)
in another situation, and therefore have to ensure its con-
stancy (or make its approximate constancy plausible) to
allow transfer.

Measurement or control `devices' include humans e.g.
an ensemble is prepared under human control or de-
scribed by verbal statements. So, images of a training
set may be labeled `chair' or `non{chair' by some `expert
in chairs'. To allow any meaningful generalization we
must at least approximately (maybe implicitly) trans-
form its concept of a chair into a chair approximator,
applicable to all possible images, which then can be im-
proved by training examples. Of course, one may rely on
some smoothness condition or other implicit model re-
strictions (corresponding to a special chair approximator
for all possible images) and the training examples alone.
But obviously, besides the training examples, any verbal
description of a chair also adds to the available infor-
mation and one may have good reasons to believe that
there is a better `universal �rst guess chair approxima-
tor' than just using the implemented smoothness and
other implicit model restrictions. Even if many training
examples are available, it can help to use verbal descrip-
tions to create also `virtual' examples (which must not
be an in�nite set, assuming that the implicitly or explic-
itly implemented smoothness conditions interpolate in
the neighborhood), because the virtual examples can in-
clude data which are not available as training data. They
may teach the concept `chair' far more e�ectively, than
images of real chairs. Thus, we want to �nd a reliable
relation of answers distributions of experts to possible
states f0, i.e. approximate the expert answer probabil-
ity p(yE jqE; f0). This is obviously a very complicated
task and as well a subject of psychological research as of
statistics.

More general, one may even take the point of view
that human experts are always involved: They have to
describe 1. the single data probabilities p(Djf0) in an,
already more precise or still less precise, verbal form,
and 2. the dependency of the prior on the various data.
E.g. single data have to be combined by AND, OR, or
more complicated operations. These operations depend
on the dependency structure of the single data. One
must �nd a procedure to translate the related verbal in-
formation into numbers. This may be rather trivial, if
the verbal statement is a reference to a (maybe empiri-
cally obtained) numbers. However, often this is not quite
as easy. Assume we have data (q; Tyq) available from

some approximator T of p(yjq; f0). We might know that
it has been trained on some examples. But what would
be p(T jf0) and p(yqjT )? This clearly depends on the
learning algorithm, the approximator was using, as well
as on f0. We may not know the details of the algorithm,
and determining p(T jf0) consistently to our model of
basis questions may well be a much harder task than
solving our actual problem. Thus, we have to perform

an approximate `internal integration over (hyper-)priors'
by considering our experience with this and similar ap-
proximators in similar situations. The result will be a
verbal statement describing a subjective concept related
to p(T jf0), e.g.: `We may trust the results of this simple
approximator, not too much but a little in all situations
which are not too similar to the examples A or B'. This
has to be changed into a numerical representation, which
includes e.g. translation of `not too much', `A', `B', `sim-
ilar to A, B', IF : : : THEN, OR, AND. Still one can
expect this to be in general a better solution than just
ignoring unprecise information: Generalization requires
implementation of nonlocal dependencies, and trying to
match those nonlocal dependencies to unprecise verbal
descriptions seems better than using nonlocal dependen-
cies which are implicitly implemented without any fur-
ther reasoning. Of course, there may be individual situa-
tions where the unknown implicit assumptions are better
suited to the problem. But if this occurs regularly, the
speci�c method used to include unprecise information
has and can be adapted.

In principle, every prior could be seen as resulting
from one combined prior question, and therefore be con-
structed like any generalized question. However, espe-
cially for priors, but possibly for every question, the
necessary ingredients have to be constructed from more
or less unprecise information in verbal form. We there-
fore shortly comment the standard operations AND and
OR for probabilities from this point of view. Consider a
prior, prepared by applying preparation question qP and
enforcing or measuring an empirical answer yP . One ob-
tains

p(f0jfP ) / p(f0)p(yP jqP ; f0):
According to the construction of generalized questions
we can translate our verbal statement that the data (qPi ,
yPi ) should be combined by an AND for conditional in-
dependent events by forming the product

p(f0jfP ) / p(f0)
Y
i

p(yPi jqPi ; f0):

But we might not be to sure about their indepen-
dence, without knowing any explicit dependency struc-
ture. Again we may delegate the task to an expert and
translate its verbal output either in 1. conditional proba-
bilities determining the dependency between yp and ap-
ply the correct probability theoretical formula, or 2. di-
rectly into an adapted combination of the p(yPi jqPi ; f0)
which might well look di�erent from the above formula
for independent events.

Similarly, a partial sum (or integration for densi-
ties) correspond to a (weighted) OR would translate
statements, referring to measurement noise for disjunct
events:

p(f0jfP ) / p(f0)
X
i

p0i p(y
P
i jqP ; f0);

or
p(f0jfP ) / p(f0)

X
i;j

p0i p(q
P
j )p(y

P
i jqPj ; f0):

The following statement `The result was either 1 or 7, I
am not sure.' would �t quite well into that category, pro-
vided we can relate the p0i to subjective beliefs. Again,

22



instead of guessing p0i and the dependency structure and
applying the correct probability theoretical formula, one
may translate a verbal statement directly into p(f0jfP )
and the resulting formula could look di�erently.

In general, instead of constructing the ingredients
from verbal statements and then inserting them in prob-
ability theoretical formulas, one may also directly con-
struct the result from unprecise knowledge. The results
will di�er if the subjective concepts do not represent
probabilities. This is the case if the dependency struc-
ture is easier formulated in a verbal form than in terms
of conditional probabilities. On the other hand, one may
try to improve verbal statements, by enforcing experts
to use probabilistic models. In all cases we start with
unprecise verbal information and require a probabilistic
model at the end. The transition can be done on various
levels.

5.2 Fuzzy priors

5.2.1 Human control and subjective
probabilities

Let us therefore consider in more detail the case where
preparation and problem de�nition is under human con-
trol and expert knowledge about the problem domain
is available, for example in a verbal form instead in
terms of a probabilistic model. Those situations rely
more on a subjective instead of the empirical interpreta-
tion of probability. `Subjective probability'. may simply
mean the answer of an expert, which has been asked
to give a probability. But those guesses do not need to
be very accurate. In cases empirical probabilities are
available one can compare subjective probabilities ob-
tained by di�erent methods with empirical probabilities.
Typical tendencies of deviations of subjective estimates
from empirical probabilities have been studied (Tversky,
1972; Tversky & Kahneman, 1981; Kahneman & Tver-
sky, 1979, 1982abc; Kahneman, Slovic, Tversky, 1983.
See Lemm, 1984, for an example related to information
costs in decisions). They include, besides many others,
overestimation of small probabilities or of probabilities
for easily retrievable, salient events, neglecting the base
rate of events, the sample size or correlations, tendency
towards a chosen reference point like underestimation
for the sum of probabilities and overestimation for joint
probabilities. Subjective estimates of probabilities do
usually not obey the rules of probability theory, for ex-
ample, independent obtained estimates for probabilities
for events A and NOT A need not necessarily sum up to
one. In addition to the di�culties caused by the devia-
tions between subjective estimates and empirical proba-
bilities it is often not obvious how to describe an event
A to which a subjective estimate is related. A subjec-
tive estimates for probability p(A) refers to an internal
representation of A. To relate the estimate to a proba-
bility for some external A the internal representation of
A (e.g. concept of a mouth) must be related to the ex-
ternal event (e.g. images of mouths). That means A has
to be identi�ed with a set of f0, described by an explicit
parameterization.

The process in obtaining subjective probabilities may
be outlined as follows: We aim in producing a guess for

probability p(f0). Let us call any deterministic ques-
tion C(f0) (i.e. function or functional, respectively) of

the parameters of f0 a property of f0 and ~C, its subjec-
tive representation, a concept. We want to construct
a �nal property C(f0) which is related to p(f0) by
some function g, i.e. p(f0) = g(C(f0)). For example

p(f0) / C(f0), or p(f0) / eC(f
0). The function g could

also be used to compensate for known estimation biases.

The subjective representation ~C used to produce subjec-
tive probabilities might be di�cult to relate directly to
a speci�c function C(f0) of the parameters of f0. It can

be easier for other, simpler concepts ~Ci. For example,

the concept ~C of having something similar to a nose, a
mouth and two eyes with certain possible spatial rela-
tions, might be di�cult to relate to pixel values directly.

But for a simple enough concept ~Ci a property Ci might
be more accurately related.

A property Ci measuring distance can be built out of a
property C0

i and a related template Ti, using a monotonic
function of a `meaningful' distance of the expectation,
e.g.

Ci = jjC0
i(f

0)� Tijj2:
C0
i could be an arbitrary question. For Ci(f

0) = �yx(f
0)

this measures the square distance of �yx(f
0) at point x

from some reference template �yTx , i.e. jj�yx(f0) � T�yx jj2
and represents a usual mean square error term. Tem-
plates could also be de�ned relative to another question

jjCi(f0) � CT (i)(f
0)jj;

like in the case of symmetries, but also in cases where
not invariance but any arbitrary dependence between Ci
and CT (i) is measured.

We will write Ci = G( ~Ci) for the relation between
concepts and properties. Properties Ci related to (lin-

guistic) concepts ~Ci have been called linguistic variables
and have been used in the theory of fuzzy sets (see for
example the collections Zadeh, 1987, or the more recent
one, Zadeh, 1996). Subconcepts are modi�ed and com-

bined by concept functions ~F to form the �nal concept
C. For example, we may require: `great similarity to T1
and T2 if not already very similar to T3'. In analogy to

concepts, also concept functions ~Fi must be mapped to

functions Fi = H( ~Fi) acting on Ci. We will call func-

tions F related to concept functions ~F linguistic func-
tions. The mappings G for concepts and H for concept
functions represent the subsymbolic level. The commu-

nication of the (symbolic) structure of ~C in terms of con-

cept variables and concept functions, i.e. ~C = ~F (f ~Cig)
is used for the approximation

C = F (fCig) = H( ~F )(fG( ~Ci)g);
where H( ~F ) stands for the function F with all included

subfunctions replaced according to Fj = H( ~Fj). (See
Fig.3). We try to achieve

G( ~C) = G( ~F (f ~Cig)) � F (fCig) = H( ~F )(fG( ~Ci)g):
However, this is di�cult to check in general if G(f ~Cg)
cannot be obtained consistently in a direct way. Indeed,
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Figure 3: The relation between (internal) concepts and

(external) properties. For complex concepts ~C the re-
lation to property C is often easier to obtain and more
invariant under transfer to new situations, if the map-
ping from concept to properties (subsymbolic mapping
for linguistic variables) is done for simpler subconcepts
~Ci. This, however, requires also a (subsymbolic) map-

ping of concept functions ~F , acting on concepts ~Ci, to
property (external, linguistic) functions, acting on prop-
erties C. Then, the property C for a communicated

symbolic structure ~C = ~F (f ~Cig) can be approximated
by C = F (fCig).

this di�culty is the reason for the decomposition into
subconcepts. One can instead de�ne C by the right hand
side and check variability of dependencies from those
properties under transfer to new situations. Thus, this
can be seen as a heuristic method to achieve dependen-
cies with smaller variance under transfer.

We will call priors obtained by this method fuzzy pri-
ors. In the following we do not intend to give an intro-
duction into fuzzy logic. We mainly want to stress that
related techniques can be adapted to construct priors
and the more technical point that this can lead to non-
linearities in the equations determining the maximum
probability p(f0) even if single Ci correspond to Gaus-
sian probabilities.

The method can be applied in two variants. The �rst
way of de�ning p(f0jfP ) is directly to describe the func-
tional in its dependence from the parameters without
explicit reference to data. A second possibility is to
de�ne in a �rst step p(yP jqP ; f0) in its complete de-
pendence from all three variables and then choose in a
second step yP to �x the prior. We will mainly study
the �rst possibility and we will study linguistic functions
CC = F (CA; CB) depending on two one{dimensional
properties. Their combination gives functions depend-
ing on more than two variables.

5.2.2 Real valued extensions of logic

Linguistic functions can be constructed by �xing there
values at certain, typical points and using some (e.g.
smooth, symmetric) interpolation scheme. For exam-
ple, practically important linguistic functions are such
related to logical functions like AND, OR or NOT used
in fuzzy logic (see e.g. Kandel, 1982, Klir & Yuan, 1995).
From such functions we assume that they coincide with
the corresponding binary logical functions at the four
corners, i.e. where both arguments have a minimal or
maximal value. We will mainly concentrate on this func-
tions but also model combinations which do not cor-
respond to binary logical functions at the four corner
points.

For example, we may assume high probability for a
function f0 if it is smooth at x1 AND x2 AND � � �. In
the second variant of the method we begin with the con-
struction of answer distributions p(yjq; f0) and a prior
results by choosing data (yPi ; q

P
i ). There, for example in

face recognition, qP can be de�ned as question looking
for components like eyes in the images y produced by
p(yjx = face; f0) and the yP can be examples of how
eyes can look like. Requiring that f0 produces (all of)
several variants Vi of eyes, i.e. its output is V1 OR V2
OR � � �, means ANDing for constructing a prior, so f0

can produce V1 AND V2 AND � � �.
Consider properties with 0 � Ci � m, where we may

allow the limit m ! 1. We use here a `distance in-
terpretation' of the values 0 and m where we interpret
the value m as complete absence (`far' or `False') and
the value zero as complete presence (`near' or `True') of
that property (deviation property). Monotonic function
from (bounded) distances to some templates are exam-
ples. The interpretation of 0 andm can be reversed (sim-
ilarity property), like in the usual convention in logic or
for properties like probabilities where 0 means `False' or
`impossible' and m = 1 `True' or `sure'. Then, just the
de�nitions of AND and OR in the following have to be
exchanged.

The following are examples of a function equal to a
binary logical function when the arguments have values
0 or m:

C(A AND B) = CA + CB �CACB=m;

C(A OR B) = CACB=m; (5)

C(NOT A) = m� CA:

These operations represent a Boolean Algebra (see for
exampleWhitesitt, 1995) and therefore for variables tak-
ing only the values 0 and m for example DeMorgan's law
A OR B = NOT ( (NOT A) AND (NOT B)) is valid.

The functions are extended to real variables by allow-
ing values 0 � C � m in the above formula. Of course,
this extension to real values cannot be unique. So AND
can also be implemented as

C(A AND B) = cm(CA + CB):

where cm is a cuto� function with cm(x) = id for 0 �
x � m and cm(x) = m for x � m and therefore always
cm(CA) = CA. With this, DeMorgan's law gives for OR

C(A OR B) = m � cm(2m� CA �CB):
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OR: A B
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OR: 1-c[2-A-B]
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AND: A+B-AB
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AND: c(A + B)
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Figure 4: Di�erent realizations of AND and OR, in
a `distance interpretation' where 0 stands for `True'
(`near') and 1 for `False' (`far'). CA, CB are abbrevi-
ated A, B and the cuto� function c1 as c.

Not di�erentiable near our main point of interest at
(0; 0) where the `good' f0 should be located but m{
independent are the following realizations

C(A AND B) = max(CA; CB);

C(A OR B) = min(CA; CB):

This representation of AND and OR by the maximum
resp. minimum operation are the standard fuzzy opera-
tions used in fuzzy logic.

A variable CA can always be written CA = C2
A=m,

CA = 2CA�C2
A=m, CA = cm(CA). Any (usually mono-

tonic) interpolating function �(x) with �(0) = 0 and
�(m) = m, allows to replace A by �(A) without chang-
ing the limit of binary logic. For example, OR could
be de�ned as �OR(�A(CA)�B(CB)=m) choosing some
(monotonic) functions �OR, �A, �B. Rules like the law
of DeMorgan are valid for variables with values 0 and m
but not in general for real values. Fig.4 shows two real
valued extensions of AND and OR and Fig.5 some tau-
tologies which can be added to every function without
changing the binary limit. Of course, any real valued ex-
tension of logical functions is arbitrary except at the four
corners. Thus, one might add additional conditions for
such functions, like monotonicity or smoothness condi-
tions, or the requirement that certain laws of the Boolean
algebra, valid for the binary limit also hold for real val-
ues, requiring for example an associative, commutative,
and distributive AND and OR. Besides having the cor-
rect boundary conditions, usually monotonicity, commu-
tativity, and associativity are required for fuzzy opera-
tions. (Such operations are called t-norm or t-conorm
for boundary conditions corresponding to AND or OR.)

5.2.3 General combinations

Every logical formula can be expressed by NOT, OR,
AND. In particular, one could use the disjunctive or con-
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Figure 5: Examples for real valued extensions of tautolo-
gies. The last one has the formula 1� (1�A2(1�A)3+
1� B2(1� B) � (1� A2(1�A)3)(1� B2(1� B)))100.

junctive normal form. Also, AND or OR could be elimi-
nated using DeMorgan`s law. For example, the exclusive
OR is de�ned as XOR = (A AND NOT B) OR (NOT A
AND B). For disjunct events XOR is equivalent to OR.
Accordingly, real extensions of the exclusive OR are

CXOR =
1

m
cm(CA +m� CB)cm(m� CA +CB):

or

CXOR =
2CACB

m
� CA � CB +m:

The latter result can be connected to Eqs.(5) if using
C2
i =m = Ci. Fig.6 shows some possible variations of

XOR.
Another important relation is IF C1 THEN C2 =

NOT C1 AND C2. One way to extend this to real values
is

CIF = cm((m �C1) + C2):

The limit of binary logic requires function values 0
or m at the four corners where the input variables are
0 or m. Any function having more than two di�erent
values at those four points cannot correspond to a log-
ical function. The only possible linear functions are for
example 1, CA, CB and their negations. Therefore com-
binations like aCA + (1� a)CB (LIN = linear) are more
general and do not correspond to logical combinations at
the four corners. However, setting a = CC LIN appears
to be a combination of three logical properties with the
value of CC �xed (for all f0).

Thus, such functions can be seen as parts (of com-
binations) of logical functions with certain values of Ci
excluded (e.g. with the value �xed). Speci�cally, in the
limitm!1 and Ci �nite we obtain for the above rules
for CA 6=1 6= CB

C(A AND B) = CA + CB;

C(A OR B) = 0; (6)

C(NOT A) = 1:
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XOR: (1-B+AB)(1-A+BA) 
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XOR: 2AB-A-B+1
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XOR: c(A+1-B)c(1-A+B) 
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XOR: 1-c(A+B)c(2-A-B)
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Figure 6: Di�erent realizations of XOR

These are only linear functions. To allow the value 1
for the C one has to extend the de�nition of OR and
NOT according to

C(A AND B) = 1 forCA =1 orCB =1;

C(A OR B) =

(
CA for CB =1 6= CA;
CB for CA =1 6= CB;
1 for CA = CB =1:

C(NOT A) = 0 forCA =1:

and one �nds that the functions on the whole interval
[0;1] are nonlinear. This representation is interesting
in as far as the AND is linear and the nonlinearity of
the OR can be implemented by just skipping functions
with �nal C(f0) =1 from F 0. We will call this a hard
implementation of the OR and other implementations
soft. Then for all functions f0 under consideration, i.e. in
F 0, C(f0) is a linear function of its constituents Ci(f

0).
But note that unlike for �nite m here C(NOTNOTA) is
not equal CA for 0 6= CA 6=1.

LIN in contrast to AND is strictly monotonically in
all Ci even if one Ci� = m. This allows also if Ci� = m
cannot be changed (momentarily), the use of gradient
information to improve the other Ci. To include in-
formation related to OR one can combine LIN with a
multiplicative implementation of OR:

C(A LIN B) = aCA + (1� a)CB; 0 < a < 1;

C(A OR B) = CACB=m: (7)

5.3 Special Properties: probabilities,
logprobabilities, distances, and averages

We shortly discuss some special properties: probabilities
(or partition sums, if not normalized), logprobabilities
(related to free energies), distances (related to scalar
products) and averages (expectations, related to ener-
gies).

5.3.1 Probabilities

For probabilities (not densities) the logical combina-
tion of events are de�ned

p(A AND B) = p(A)p(BjA)
p(A OR B) = p(A) + p(B) � p(A)p(BjA)
p(NOT A) = 1� p(A):

(We
can understand corresponding expressions for densities
formally to be de�ned by p(F (A;B)) =

R
F (A;B)

p(x)dx

=
R
A

R
B
pF (A;B)(xA; xB)dxAdxB, and interpret the rules

as p(xAANDxB)dxAdxB = pA(xA)pB(xBjxA)dxAdxB
so the integral factorizes for independent components
xA, xB. With a function � ful�lling

R
A
�(A)dxA =

1
R
B
�(B)dxB = 1, we have p(xAORxB)dxAdxB =

(pA(xA)�(B) + pB(xB)�(A) + pAB(xA; xB))dxAdxB, i.e.
(pA(x) + pB(x))dx for disjunct events xA, xB, and
p(NOTxA)dx = (�(A) � pA(xA))dxA. So integration
of densities to obtain probabilities p(A) =

R
A
p(x)dx has

the form of an OR for disjunct events.) With respect to
the two (similarity) properties P (A) and P (B) the prob-
abilistic AND, i.e. p(A)p(B)(p(BjA)=p(B)), is not one
function but a whole family, parameterized by p(BjA),
but all coinciding at the four binary corners and the
quantitative form of a probabilistic AND changes with
the dependency of A on B.

To take advantage of independence in the case of OR
one can use DeMorgan's law and write for a set of in-
dependent Ai, p(ORiAi) = 1�Qi=0(1� p(Ai)), where
p(NOT (ANDiAi)) factorizes. This form is also known
as `noisy OR' (Pearl, 1988, Jensen, 1996), and one may
set one Ai constantly equal to one (or zero) to have a
nonzero baseline if all other Ai are zero (or one).

5.3.2 Log-probabilities

Assume 0 � p � 1 is a probability (or for AND
and OR a bounded density 0 � p � c) then the log-
probability L = ln p is in the intervals [0;�1] (or
[ln c;�1], respectively) and the rules for probabilities
become

L(A AND B) = L(A) + L(BjA)
L(A OR B) = ln

�
eL(A) + eL(B) � eL(AANDB)

�
L(NOT A) = ln(1 � eL(A)): (8)

Especially interesting is the OR for disjunct events,
where it is equivalent to an XOR. Fig.6 (where for prob-
abilities the role of one and zero have to be exchanged)
shows that XOR is prototypical for a situation with two
clearly separated degenerated maxima. The two degen-
erate global maxima remain under slight perturbations
both still local maxima. It needs a `considerable' de-
formation of the probability surface, or, equivalently, an
in comparison to other inuences relatively at XOR
probability surface, to let one of the two local maxima
disappear. At this point the solution to the problem of
�nding the maximal probable state shows a bifurcation.
We will see below that this is related to phase transitions
and may remark at this point that the term `tempera-
ture' is related to the relative atness of the XOR.
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In contrast, OR for independent events, shown for
example in Fig.4 has a continuous line of degenerate
maxima, and already a small perturbation can lead to
a unique maximum. Indeed, any OR can be expressed
as an OR for independent events. Choosing for example
!1 = A AND B, !2 = A AND NOT B, !3 = NOT A
AND B, !4 = NOT A AND NOT B, we have A OR
B = !1 XOR !2 XOR !3, leading to the degenerated
maxima.

Therefore, we look in a bit more detail to the OR
for disjunct events. Expanding the log-probability for
disjunct A, B around some L0 we obtain in second order
in �A = L(A) � L0, �A = L(B) � L0

L(A OR B) � L0+ln 2+
1

2
(�A +�B)+

1

8
(�A ��B)

2

= ln2 +
L(A) + L(B)

2
+
1

8
(L(A) � L(B))

2
(9)

=
1

2

�
ln
eL(A)

2
+ ln

eL(B)

2

�

+
1

8

�
L(A)2 � L(A)L(B) + L(A)2

�
;

independent of L0, and exact if L(A) = L(B). The last
line shows that the �rst order terms gives the annealed

approximation where a nonlinear function of the aver-
age is replaced by the average of the nonlinear functions
g(<x>) = g(

P
i pixi) �

P
i pig(xi) = <g(x)>, withP

i pi = 1 (See for example, Seung, 1995). For convex
functions the inequality g(

P
i pixi) �

P
i pig(xi) holds

for convex combinations, i.e.
P

i pi = 1, with equality if
all xi are equal (Jensen's inequality). For the concave
logarithm, concave f meaning �f is convex this reads,
for example, ln(

P
i pixi) �

P
i pi ln(xi).

We may also consider a weighted OR, for disjunct
events Ai

L(ORn
i Ai) = lnP (ORn

i Ai) = ln

 
nX
i

aie
Li

!
;

with Li = L(Ai). Disjunct Ai may or may not be el-
ementary events !i 2 
 of the model under study, but
they can always be seen as (e�ective) elementary events
for
S
iAi with respect to a speci�c OR. A weighted OR,

corresponds to an unweighted OR in an enlarged event
space, as can be seen by writing

aie
Li = eLi+L

a
i ; Lai = lnai:

This may be interpreted as a situation where the Ai have
an additional independent dimension a with values i, i.e
of the labels of the mixture components, so the complete
event Ai has log-probability L(Ai)+L

a(i) corresponding
to an AND for independent events with pi = ai=Za and
Za =

P
i ai. Thus, Li = L(Ai) can be seen as a special

random variable on the events i.
Especially, a (weighted ) OR has the structure of a

cumulant generating function with respect to the nor-
malized weighting factors ai=Za, representing probabili-
ties. (See also Section 5.3.4.) To see this, we look at the
Taylor expansion of P around L0

P (ORn
i Ai) =

nX
i

aie
Li =

nX
i

aie
�ieL0

=

1X
k

1

k!

nX
i

ai�
k
i e
L0 = Zae

L0

1X
k

1

k!
< �k

i >a;

which contains in the expansion coe�cients all kth mo-
ments of the di�erences �i (or of the Li itself for L0 = 0)
with respect to the Ai and pi,

Ma
k (�) =< �k >a=

1

Za

nX
i

ai�
k
i

=
dk

d�k
1

Za

nX
i

aie
��i
��
�=0

=
dk

d�k
< e��i >a

��
�=0

;

with Ma
0 = 1 due to �0

i = 1.
We can also introduce a common scaling factor �,

often called inverse temperature for all Li. Then because

df(�Li)

d�

��
�=0

= Li
df(�Li)

d(�Li)

��
�Li=0

= Li�
�1 df(�Li)

dLi

��
Li=0;�=1

= Li
df(Li)

dLi

��
Li=0

;

both derivatives generates the coe�cients of the Taylor
expansion. Indeed, one sees directly

Ma
k (�) ==

dk

d�k

nX
i

ai
Za

e��i
��
�=0

=
dk

d�k
< e��i >a

��
�=0

;

Thus, while the moments < �k >a are the Taylor co-
e�cients of the moment generating function < e�� >a

for � = 1 they can also be calculated as their deriva-
tives at � = 0. Thus, they are up to the factor Zae

L0=k!
the Taylor coe�cients of a high temperature expansion

around � = 0. Notice that we expanded every Li around
the same L0 so E

L0 could be factored out. In general we
could use di�erent origins Li0 for di�erent Li. Indeed if
the e�Li are becoming relatively more separated (large �
or low temperature case) a common origin for the Tay-
lor expansion becomes a less good choice. (For �nite
systems, i.e. a �nite

P
i, the sum of exponentials is an

analytic function so the convergence radius of the corre-
sponding power series is in�nite. In contrast for example
for the logarithm function (see below), the convergence
radius of a Taylor expansion is limited.) These prob-
lems are typical for phase transitions (See Section 10)
where the log-probability of L(OR) changes its number
of maxima, and the behavior of the L(OR) at Li = L0; 8i
is drastically di�erent (being e.g. a minima) than that of
the components at Li = L0 (where it may be a maxima).

Analogously, we can expand L = lnP in the param-
eter � around � = 0, and obtain the high temperature
expansion of L(OR)

L(ORn
i �Ai) = lnP (ORn

i �Ai)

= lnZa + �L0 +

1X
k=0

�k

k!
Ca
k(�): (10)

where the coe�cients

Ca
k (�) =

dk

d�k
ln

 
1

Za

nX
i

aie
��i

!�����
�=0

;
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are called cumulants. For example one �nds, Ca
0 = 0,

Ca
1 = Ma

1 , C
a
2 = Ma

2 � (Ma
1 )

2, Ca
3 = Ma

3 � 3Ma
2M

a
1 +

2(Ma
1 )

3.
As the origin of expansion L0 enters through the lin-

ear term only all cumulants of order k � 2 are L0 in-
dependent (i.e. independent of the mean), and the �rst
cumulant, i.e. the mean, compensates for the constant
because Ca

1 (�) = 1
Za

P
i ai�i = Ca

1 (L) � L0. Thus, for

all L0 the expansion looks like for L0 = 0

L(ORn
i �Ai) = lnZa +

1X
k=0

�k

k!
Ca
k(L):

For example up to second order this gives (ai = 1 )
Za = n)

L(ORn
i Ai) = lnP (ORn

i Ai) = ln

 
nX
i

aie
Li

!

= lnZa+ < L >a +
1

2

�
< L2 >a � < L >2

a

�
: (11)

It may be interesting to note, that for example the mean
(�rst moment and �rst cumulant) for our special random
variable L = lnp is just the negative average informa-

tion (entropy) < L >a=< ln p >a= �Ia(p) with respect
to the pi = ai=Za. The negative log-likelihood �L is
also sometimes called bit{number with the correspond-
ing bit{cumulants with respect to the ai=Za generated
by ln < e��L >a, related to the R�enyi information I� by

ln < e�(1��)L >a= (� � 1)I� (Beck & Schl�ogl, 1993).
We can also split Li for all mixture components i into

several parts, Li =
P

j Li;j , (which means ANDing), and

de�ne a corresponding set of �j so we that have

L(ORn
i (ANDjAi;j)) = ln

X
i

aie

P
j
�jLi;j

:

Then the mixed derivatives of L gives the multidimen-
sional cumulants of Li;j or �i;j = Li;j � L0;j according
to

Ca
k1;k2;���;km

(�k1
j1
;�k2

j2
; � � � ;�km

jm
)

=
dk1

d�k1j1

dk2

d�k2j2
� � � d

km

d�kmjm
ln

 
1

Za

mX
i

aie

P
j
�j�i;j

!�����
�=0

:

The terms e�Li become for large � (low temperature)
the smaller the smaller Li. In the limit � ! 0 only
events with maximal probability p(Ai�) = maxip(Ai)
(`ground states') survive. Therefore, skipping from the

sum
P

iP (Ai) =
P

i e
L(Ai) for disjunct Ai the smaller

terms P (Ai) � � (low probability events) and keep-
ing only the larger ones (p(Ai) > �) (high probabil-
ity events) is also called low temperature expansion. For
continuous variables i where the sum is replaced by an
integral this approximation appears as saddle point ap-
proximation (see Section 7.2) and their higher order vari-
ants.

We also take a short look to an OR for independent
events. To make use of the factorization of probabilities
for independent events we apply DeMorgans law to write

for discrete events, corresponding to the noisy OR for
probabilities

L(ORiAi) = ln(1�
nY
i

(1� eLi)); (12)

and

L(NOT (ORiAi)) = ln(

nY
i

(1� eLi))

=

nX
i

ln(1� eLi):

For dependent Ai the conditioned factors have to be
used. Jaakola & Jordan (1996) give an expansion of the
function

ln(1� eL) =

1X
k=0

ln g(�2kL);

in terms of the logistic function g(z) = 1=(1 + e�z) and
use it for e�cient, approximate calculations in graphical
models.

Partitioning the events Ai into non{overlapping sub-
sets, i.e. into disjunct (e�ective) elementary events !j
we have p(Ai) = p(ORA

j !j) =
P

j2A p(!j). Then we see

that expressing the OR for non{disjunct Ai by disjunct
!j gives

L(ORiAi) = L(ORN
j !j) = ln(

X
j

Nje
L(!j ));

which reproduces for the smallest of those partitions
the product terms p(!j) = eLi1 eLi2 eLi3 � � � in Eq.12,
reweighted with the number Nj of Ai which contain !j,
and without the intermediate terms with oscillating sign.
One can now, for example, apply the high temperature
expansion with Za = ZN =

P
j Nj .

5.3.3 Distances

Monotonic functions of negative distances jjyq(f0) �
Tyq jj2 are often used for log-probabilities. The de�ni-
tion of q can always be changed in such a way that
Tyq = 0. The most common example are data terms

d2 =
P

i
1

2�2qi
(y
qi
i � �yqi (f

0))2 where the yqii represent the

template vector and �yqi the deterministic answer yqi (f0).
In spaces where the distances ful�ll

jjg� hjj2 = 2jjgjj2+ 2jjgjj2� jjg + hjj2

there exists a scalar product, written as < � j �>, related
to the distance by

jjhjj2 =<h jh> :

Di�erent positive de�nite kernels O de�ne di�erent
scalar products

<g jh>O=<g jOjh>=
Z
dx

Z
dx0 g(x)O(x; x0)h(x0):

Minimizing squared distances

jjyq(f0)� Tq jj2 =<yq(f0)jyq(f0)>�2<yq(f0)jTq>+c;
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(written for real < yq(f0) jTq > = < yq(f0) jTq >�

=<Tq j yq(f0)> with c an f0{independent constant and
� indicating complex conjugation) is equivalent to max-
imizing scalar products (overlaps), like

P
i

1
2�2qi

Tq;i�yqi ,

for normalized y and �y. (But normalization is a max-
imal nonlocal condition.) For overlaps one has to use
rules with zero representing false and one representing
true so the de�nitions of AND and OR are exchanged.

For example, properties which have positive values
bounded by m can be obtained from log-probabilities

or distances by CA = g�1(d2(A)) = m(1 � e�d
2(A)) =

m(1 � eL(A)) = m(1 � p(A)) with inverse L = g(C) =
� ln(1 � C=m) = ln(m=(m � C)). This gives for inde-
pendent A and B the equations (5) for properties. Thus,
using g(C) = � ln(1 � C=m) directly relates properties
to probabilities according to Ci = m(1 � pi).

Writing OR in terms of Euclidean square distances
by choosing Li = �d2i =(2�2i )+ln ci, with some constants
�i and ci, one obtains for disjunct events a Gaussian

mixture model

p(f0) /
X
i

cie
�d2i (f

0)=(2�2i ):

For non{disjunct events product terms likeY
i

e�d
2
i =�i

must be subtracted (or approximately a cut-o� function
can be included).

5.3.4 Averages

Unnormalized probabilities

Averages or expectations can be related to unnormal-
ized probabilities Z(A; �), (with � a �xed parameter we
will discuss below) also called partition sums

p(A; �) =
Z(A; �)

Z(�)
:

Thus,

Z(A; �) =
X
!2A

Z(!; �) (13)

Z(�) = Z(
; �) =
X
!2


Z(!; �)

for a complete set of disjunct (elementary) events !,
and p(
) = 1. If we de�ne Z(AjB) by p(AjB) =
Z(AjB)=Z partition sums transform under logical op-
erations like probabilities with an additional normaliza-
tion factor Z analogously to m in the rules (5) (with
AND and OR exchanged). If we choose Z(AjB) =
Z(A;B)=Z(B) = p(AjB) (what one can do for averages,
see below) then Z appears only in the NOT. De�ning
shifted log-probabilities ��F by

Z(�) = e��F (�) ; Z(A; �) = e��F (A;�);

the F , also called free energies,

F (�) = � 1

�
lnZ(�); F (A; �) = � 1

�
lnZ(A; �);

transform30.

F (A AND B) = F (A) + F (BjA)� F

F (A OR B) = � 1

�
ln
�
e��F (A) + e��F (B)

�e��F (AANDB)
�

(14)

F (NOT A) = � 1

�
ln(e��F � e��F (A)):

For the sake of simplicity the �{dependence of F is here
not written explicitly.

We choose as familyA a set of disjunct events ! 2 
.
For the corresponding ! we de�ne the free energies

F (!; �) = E(!)

to be �{independent. We will call them energy of ! and
can then write

p(!; �) =
Z(!; �)

Z(�)
=

e��E(!)

Z(�)
= e��(E(!)�F (�)): (15)

30Clearly, the OR looks quite complicated, even for dis-
junct events, and indeed, it is the source of many di�culties.
The summation corresponds for example to the calculation
of partition sums in statistical physics. Another summation
outside the logarithm is added for disordered systems, like
for spin glasses, where the (shifted) log-likelihood (or energy)
function governing the system is also in reality not exactly
known. In principle this corresponds to adding additional
components (AND) to the elementary events ! with possible

realizations i. Combining di�erent possible realizations Li by
OR corresponding to ln

P
i
pie

Li with pi a probability distri-
bution over realizations of the energy function. Alternatively,
one can restrict to averages (weighted AND) of observables
(and therefore the partition sum) over realizations i. That
means one integrates over part of the components of ! and
considers

P
i
pi ln e

Li =
P

i
piLi. Including the thermical

OR over complete sets of disjunct events (states Liji), in
the average (over di�erent `replicas' i of a system with dif-

ferently `quenched' interactions), yields
P

n

i
ln(
P

m

j
eLij ) =

ln(
Q

n

i

P
m

j
eLij ) = ln(

P
m

j1
� � �
P

m

jn

Q
n

i
eLi;ji ), where i can

be called replica index. The product of sums creates all
kind of product terms for di�erent systems ji and can be
huge or in�nite. The replica approach uses the identity

lnZ = limn!0
Z
n�1
n

to substitute this large product by a
product with number of factors going to zero, i.e. n! 0 (not
1 !). In the corresponding asymptotic mean �eld approxima-
tion also correlations between di�erent replicas of the systems
enter the theory. However it requires more assumptions and
calculation tricks than a standard saddle point approxima-
tion. For example analytical results for an integer n have to
be analytically continued to real n to obtain the limit n! 0.
(Mezard, Parisi, & Virasoro, 1987). (Special observables are
those which do not uctuate with i, like for large systems
for example variables with uctuations vanishing fast enough
with the system size. The values of such observables xnf

is then the same for every individual system of the ensem-
ble. Restricted to only non{uctuating observables xnf , i.e.
!i(x) = !i(x

nf ) and therefore E(!) = E(xnf the probability
distribution pi becomes deterministic and the

P
i
disappears.

This is the reason one is especially interested in the (thermo-
dynamic) limit of in�nite system size where for some (self{
averaging) observables the uctuations around the average
can disappear, e.g. for uncorrelated variables the Gaussian
limit theorem applies.)
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We see that the log-probability L = ��(E(!)�F (�)) is
hereby written as the (negative, �{scaled) di�erence of
a �{independent energy which describes the system, i.e.
the variation of the probability between the !, and a �{
dependent `scaling shift' containing the � (temperature)
dependence.

Sometimes one may also wish to consider e�ective en-
ergies Eeff (!; �) which are �{dependent and might be
free energies with respect to a �ner set of elementary
events. They are however most times used in the range
where they are approximately independent of � (tem-
perature), and we will, if not stated explicitly otherwise
always assume that energies are �{independent. We
can also take the random variable E being dependent
on other random variables Ej(!) so that �F (!; �) =
g(fEj(!)g). Useful will be a linear combination, for

which we write31

�F (!) = �E(!) =
X
j

�jEj(!);

with Ej independent of �j and �. For the sake of sim-
plicity we will understand F (A; �) to mean F (A; �; f�jg)
in that case, and analogously for other variables like Z
and p.

Averages and generating functions

Partition sums can be seen as averages under a uni-
form probability distribution p(!). In general, averages
or expectations of a function h(!) over a family A of
disjunct events ! 2 A are de�ned as

h(A; �) =< h(!) >A;�=

P
!2A p(!; �)h(!)

p(A; �)
;

and we can include h(AjB) = h(A;B)=h(B). We can
extend the de�nition of E(!) to E(A; �) for all events
A 2 
 by de�ning the energy to transform like (i.e. to
be) an average.

Thus, E is a random variable bounded from below,
de�ned by the number (or vector) E(!) > �1 related
to every elementary event ! 2 A. We may call p(!) the
distribution generated by �E which can have the formP

j �jEj. On the other hand every (vector) �E, with

components bounded from below, is a `generating ran-
dom variable' of some p, with Z(A; �) the normalization

constant of e�E(!) on A.
We already encountered unnormalized probabilities

and shifted log-probabilities in the discussion of the
(weighted, but also unweighted) OR in Section 5.3.2.
There the L could be seen energies for (e�ective) ele-
mentary events Ai, i.e. for Ai they are also shifted log-
probabilities with respect to the unnormalized probabili-
ties ai corresponding to Z(!; � = 1). We also introduced
auxiliary variables �j and used a splitting of Li into com-
ponents

P
j �jLi;j + Lai equivalent to

P
j �jE(!). And

therefore we can here relate energies (averages) and free
energies (OR over 
) the same way by derivatives of gen-
erating functions as we did in 5.3.2. We briey formulate
this principle again in terms of E and F .

31Then in physics usually only one subgroup Ej is called
energy, another might be called particle number.

Now we want to calculate the expectations of the gen-
erating random variableEj. For that purpose we use the
required � {independency of E and Ej to write

Ej(!) =
d

d�j

X
j

�jEj(!) = � d

d�j
lnZ(!; �);

which includes the case of a one component E. For ef-

fective, i.e. � dependent energies E
eff
i (!; �) this would

give

Ej(!; �) +
X
i

d

d�i
Ei(!; �) = � d

d�j
lnZ(!; �):

Analogously, using Eqs. (13) and (15) we �nd the
same relation for general A

Ej(A; �) =< Ej(!) >A;�= � d

d�j
lnZ(A; �);

or for e�ective energies

Eeff
j (A; �) +

X
i

d

d�i
Eeff
i (A; �) = � d

d�j
lnZ(A; �):

Assuming these averages to be measurable, this relation
might be used to test the range of validity, i.e. the range
of �{independence of an e�ective energy.

Linearity of the expectation allows to use this also
to calculate averages of random variables which are lin-
ear functions of E(!). To calculate expectations and
higher order moments or cumulants of general random
variables h(!) which are either nonlinear functions of
E(!) or which are no functions h(E(!)) of E(!), like
e.g. if E(!) = E(h(!)2), one can extend the partition
function by adding ��h(!) (`auxiliary �eld') to the ex-
ponent

Z(!; �; �) = e��E(!)��h(!);

so that

h(A; �) = � d

d�
lnZ(A; �; �)

��
�=0

:

In general we �nd

Z(A; �; �)

Z(A; �)
=< e��h(!) >A;�=

1X
k

(��)k
k!

< hk(!) >A;�

which therefore is the moment generating function, i.e.
the kth{moments Mk(h;A; �) =< mk(!) > can be
found by di�erentiation

Mk(h;A; �) =
dk

d(��)k
Z(A; �; �)

Z(A; �)

��
�=0

:

Cumulants are de�ned as derivatives of the logarithm of
the generating function, also called cumulant generating

function,

Ck(h;A; �) =
dk

d(��)k lnZ(A; �; �)
��
�=0

;

where we skipped the �{independent term lnZ(A; �)
which is not relevant after di�erentiation. It is easy to see
that cumulants have the nice property of being additive if
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the probability p(!) =
Q

i pi(!) factorizes into indepen-
dent subsystems32 (Beck & Schl�ogl, 1993). The second
cumulant is the well known variance < h2 > � < h >2.

For the case of a Gaussian p(!; �), i.e. E(!) quadratic
in !, (multidimensional for vector !) Wicks theorem

gives higher order moments, often represented by dia-
grams (see for example Negele & Orland, 1988, Zinn{
Justin, 1989, Itzkyson & Drou�e, 1989 ).

Boltzmann{Gibbs{distributions

Now we want to relate the shifted log-probabilities
��F (!) to the expectations of the generating random
variable Ej. In general, for A 6= ! the di�erence between
energy and free energy (i.e. between averages and shifted
log-probabilities, coinciding on the elementary events !)
reads

H(A; �) = �E(A; �) � �F (A; �)

= �
X
!2A

p(!; �)

p(A; �)
ln
p(!; �)

p(A; �)

= � < ln
p(!; �)

p(A; �)
>A;� :

Here H(A; �) is the average information (in nats, not
bits) or entropy. The free energy can be thus be ex-
pressed by the average energy and entropy as

F (A; �) = E(A; �) � 1

�
H(A; �):

It is well known, that the distribution generated by
�E maximizes the entropy under the constraints that
p(!)=p(A) is normalized and the expectations of all ex-
pectations Ej(A; �) are �xed (For given vector � also for-
mulated as principle of minimum free energy F . See e.g.
Balian, 1991, or in connection with path integrals Roep-
stor�, 1991). Indeed, the stationarity equations read,
introducing the corresponding Lagrange multipliers �j ,
�

d

dp(!; �)

0
@H(A; �) �

X
j

�jEj(A; �)� � < 1 >

1
A = 0;

giving the Boltzmann{Gibbs distribution:

p(!; �) =
e
�
P

j
�jEj(!;�)

Z(�)
;

with Z(�) = e�(�)+1. We recognize the general
form (15). Thus we can say a probability distribu-
tion is the Boltzmann{Gibbs distribution of its gen-
erating variable(s) �E. The distribution for E is

32For example spatial systems with a weakly enough short
range interaction, so they can be seen in the large n{limit as
a collection of independent local subsystems, have cumulants
which are asymptotically additive in these subsystems. In
these cases, besides the p{generating energy, the free energy
F / ln Z and not Z is an additive variable. As the vari-
ance of a sum of n independent random variables scales with
1=n the cumulants have then for large systems low variance,
hence they are proportional to the volume (extensive vari-
ables) and possible candidates for macroscopic observables
of the system.

given by summing over ! with energy E (which could
be a vector), i.e. p(E) = p(!E) =Z(E; �)=Z(�) =R
d! �(E(!) �E)e

�
P

j
�jEj (!)�lnZ(�)

= n(E)e
�
P

j
�jEj�ln Z(�)

= e
�
P

j
�jEj�lnZ(�)+ln n(E)

,
with !E = f!jE(!) = Eg and n(E) the energy density
at E.

Families of distributions generated by varying (the
vector) � within some parameter space B are called
exponential families, with canonical parameter vector
�, canonical statistics (�E) and cumulant (generating)
function lnZ. (See for example Barndor�{Nielsen, 1978,
Amari, 1985, 1995, or Appendix D in Lauritzen, 1996
and references therein).

The model from Section 2 de�nes an elementary event
! = (q; y; f0) or, if we include the internal variables yq zq

of questions q, !0 = (q;Xq ; YXq ; Zq; f0), with q 2 Ql,Xq

the part of the basis used in Ql, YXq the corresponding
answers for x 2 Xq , and Zq the set of internal noise vari-
ables for q. We are for example (in the case of determin-

istic l̂ and of p(q) not dependent on other variables) inter-

ested in calculating the expected risk r =< l(!; f̂ ) >p;


under the total posterior probability

p(!) = p(q)p(yjq; f0)p(f0jD) = eL(q)+L(yjq;f
0)+L(f0jD);

in terms of log-probabilities L(!) = L(q) + L(yjq; f0) +
L(f0jD). Thus we can interpret the Bayesian poste-
rior distribution as Boltzmann{Gibbs distribution aris-
ing from a maximum entropy procedure for the total
log-posterior L(!) with an average so that � = �1 and
shifted so that Z(
) = 1. It seems simpler, to use
the traditional Bayesian formulation than the equiva-
lent maximum entropy formulation. However, there are
cases where averages are directly measurable, with mea-
surement error nearly zero.33 Besides deterministic vari-
ables, self{averaging variables in large systems belong
to this class. Examples, are macroscopic observables
in physics, like energy, which lead to the (generalized)
canonical ensembles used in statistical physics. An in-
deed, in these cases the various implementations (i.e.
models F 0, like microcanonical, canonical, grandcanoni-
cal ensemble) are asymptotically equivalent for large sys-
tems.

Approximation and Kullback{Leibler entropy

Consider another probability distribution p0(!) gen-
erated by E0(!) = � 1

�0
ln p0(!; �0) + F 0(A; �0) =

� 1
�0
(ln p0(!; �0) � Z(A; �0)), with the same normaliza-

tion, i.e. Z(A; �) = Z0(A; �0), so the expectation of E0

under p(!) reads

E0(p;A; �) =< E0 >(p;A;�)

= �
�
1

�0
< ln p0(!; �0) >(p;A;�) +F (A; �)

�
p(A)�1;

33Therefore, for example Jaynes, 1996, sees the two ap-
proaches as two di�erent methods, applied in di�erent situ-
ations: Maximum entropy to �x averages which are known
without much computation, and Bayesian methods dealing
with models to calculate the relevant average.
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where E0 is averaged over p(�) and not over p0(�0)
generated by itself. Concavity of the logarithm func-
tion allows to apply Jensen's inequality to the di�er-
ence �0E0(p;A; �) � �E(A; �) = < lnp > � < ln p0 >
=K(p; p0), i.e. the Kullback{Leibler entropy and we ob-
tain

�0E0(p;A; �) � �E(A; �):

Thus, the �E generating the averaging distribution has
the minimal average under this distribution. �0E0 repre-
sent di�erent loss functions. We de�ne an approximation
problem to be the problem of minimizing the expectation
(expected risk) over A under p for a family of loss func-
tions, de�ned on the same set ! and having all the same
normalization Z over A. Those loss functions can be pa-
rameterized in the form �0E0 = �c1 lnp0(!)� c0 with p

0

a normalized probability density. We will call this a fam-
ily of approximation losses. Then, for any parameterized
family of �0E0 the probability related to the solution with
minimal expected risk has minimalKullback{Leibler dis-
tance to the actual averaging probability distribution.

Eq. (5.3.4) de�nes the true expected risk �E as the
solution of a minimization problem. This corresponds
to a variational method for calculating the true expected
risk (see e.g. Balian, 1991, Neal & Hinton, 1993, Dayan,
Hinton, Neal, & Zemel, 1995):

1. Besides the e�ects of not included parameters, the
di�erence between the true expected risk �E and an ex-
pected risk ��E�, minimal in a parameterized subspace,
has only contributions of second order in the parame-
ters used for minimization. 2. The true expected risk is
bounded by the approximated risk.34

5.4 Including human knowledge and other
available preprocessors

A human interface for constructing fuzzy priors consists
of two steps:

1. Subsymbolic level:

i. De�ning properties Ci 2 C, i.e. functions of a
parameterization of f0, as correlates to inter-

nal concepts ~Ci. For example, a property can
be speci�ed as a typical variant of an eye or a
typical structure of an electrocardiogram, but
as well by the output of another available (e.g.
approximation) algorithm. The properties Ci
are in some contexts also called linguistic vari-
ables (Zadeh, 1996).

ii. De�nition of possible combinations of prop-
erties, i.e. mappings C � C ! C or linguistic
functions, approximating internal mappings,
i.e. the structure of concepts. Speci�cally,
a linguistic `not', `and', `or' can be related

34Variational principles for minima (or maxima, respec-
tively) have the advantage of giving such a bound, while vari-
ational principles related to saddle points (e.g. for complex
functions), do not. On the other hand, for minima (or max-
ima) all second order corrections have the same sign, while for
saddle points second order contributions with di�erent sign
can average away (see for example, Lemm, 1995ab). Espe-
cially in high-dimensional spaces this may considerably im-
prove the approximation.

to some real valued extension of the logical
NOT, AND, OR.

2. Symbolic level: Combining simple properties to
create complex ones, i.e. applying linguistic func-
tions (rules) to linguistic variables according to the
communicated symbolic structure of the prior. For
example the property being a face like object can
be build up from properties of having two eyes, a
nose and a mouth like object. Probabilistic rules
are a special set of linguistic functions which de-
pend on a (communicated) dependence structure
of the variables.

Consider we want to construct a property C (de-
terministic question) of f0, describing prior knowledge
about images of faces, out of subproperties Ci by fuzzy
operations. We can choose for example a log-prior

L / �jjC � TC jj2 + c:

Also, the subproperties Ci can be deviation properties

Ci / �jjC0
i � Tijj2+ ci:

For probabilistic questions one might wish to integrate
over yq with p(yq jq; f0)

Cq / �
Z

dyq p(yq jq; f0)jjyq � Tyq jj2 + c:

The templates TC , Ti, Tyq can be chosen as output
of an available approximation ŷq, e.g. Tyq = ŷq . The
approximation ŷq may be produced from a previously
trained arti�cial neural network, or any other statistical
approximator, as well as from an expert. A construc-
tion according to fuzzy methods can be as follows: Let
p(yjq; f0) be the probability that the given image q is a
face (i.e. y=face). (That means, this is the classi�cation
and not the generation probability for faces.) Let Tyq
be the answer of some already available face detector.
Also, several Tyq , i.e. several answers or di�erent ap-
proximationmethods, can be included at the same time,
according to their known or subjectively believed depen-
dency structure. The dependency between approxima-
tors may be arbitrary including as special cases approxi-
mations which are independent or disjunct (only impor-
tant for OR not AND).35 The template Tyq itself can

be constructed according to fuzzy methods: De�ne (f0{
independent) q{templates Tq for q (Not yq{templates
Tyq !). They may correspond to typical constituents like

eyes, mouth, nose, and look like
P

i jjqi � T eyei jj2 with i
denoting the pixel index. De�ne transformation of tem-
plates, including at least translation (represented by a

35The problem of combination of di�erent approximations
of yq (or more general of arbitrary available data) to get a
better approximation of yq is just a version of the usual sta-
tistical approximation problem. Thus, a great number of
possible algorithms is available to deal with the problem.
Some methods refer especially to the situation where the
data are approximations of the same value (combination of
experts/approximators/classi�ers). Tree{like methods con-
struct a local `domain of responsibility' for each expert. (See
for example the mixture of experts, (Jacobs, Jordan, Nowlan,
& Hinton, 1991; Jordan, Jacobs, 1994).)
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transformation of the index i of the template). Combine
the constituents, their possible variations and combina-
tions with fuzzy AND, OR, NOT (which includes more
complicated rules like XOR or IF � � � THEN) to obtain
a �nal property Tyq . This de�nes a fuzzy face classi�er,
incorporating human prior knowledge.

We now discuss two principal approaches to incorpo-
rate preprocessor information, like the fuzzy templates,
into a subsequent algorithm.

5.4.1 Two coupling principles

The loss minimizing algorithm makes the decision f̂ .
Such an optimizer must have an interface for relevant
data, i.e. for the ql and corresponding answers y. This
allows to distinguish two principal variants to include
the information of a preprocessor (See Fig.7):

1. Feeding the output of the preprocessor in the given
interface for relevant data, including the entrance
for the y which de�ne the goal of learning. We will
call this prior cascade and the preprocessor a data
model generator (Fig.7 top).

2. Feeding the preprocessor output to extra input
channels of the subsequent optimizer. We will call
this case input cascade. Here the preprocessor has
not necessarily to produce a data model. It can be
implemented in two variants:

a. asynchronously with the data Dl (Fig.7 mid-
dle),

b. synchronously with the data Dl (Fig.7 bot-
tom).

q{variables which enter the loss function only in-

directly through f̂(q), can then be skipped. This
allows to e�ectively replace q by preprocessor out-
put.

We now discuss the two approaches in more detail.

5.4.2 Prior cascade (data modeling
preprocessor)

In a prior cascade, a data modeling preprocessor in-
tends to produce a (fuzzy) model f for the input of the
optimizer, i.e. of the relevant dataDl. A Bayesian model
is a special model formulated in terms of probabilities.
Accepting its validity, the model can be used to create
new virtual examples DV;l for relevant questions q 2 Ql.
For the corresponding relevant data Dl a loss function is
de�ned �xing their `interpretation, for the optimizer. For
virtual examples DV;l it is assumed that the same inter-
pretation, i.e. loss function, applies, so they can use the q
and the y entrance of the optimizer. Thus, the exibility
of this approach consists in the fact that the DV;l �t a
given input format and a given interpretation, so they do
not require adaption of the optimizer. Such a preproces-
sor may be seen as minimizing (implicitly or explicitly)
an approximation loss for the data. This does not neces-
sarily coincide with the loss used by the optimizer, which
may, for example, include additional complexity penal-
ties. Indeed, if the optimizer would have to minimize the
same loss as the preprocessor, which would include hav-
ing the same architectural restrictions, it cannot produce

new results, and it is necessarily f = f̂ , as long as no
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Figure 7: Top: Prior cascade (data modeling prepro-
cessor). The preprocessor uses the data interface of the
optimizer. So the interpretation of its information as
(virtual) data is implicit. Thus, 1. the preprocessor must
represent a data model, 2. the optimizer has not to be
adapted. (approx. loss = approximation loss)
Middle: Input cascade (general preprocessor). The pre-
processor uses not the whole interface for loss relevant
data, i.e. at least not the entrance for y which are the
variables for the loss function de�ning the goal of learn-
ing. It can, however, for loss which is not explicitly q

dependent (but always indirect over f̂ ), replace part or
all of q. Thus, 1. the preprocessor does not need to repre-
sent a data model, therefore its loss can also be adapted
according to the actual needs of the optimizer, 2. how-
ever, the optimizer must in general be adapted if the
preprocessor adds information.
Bottom: Special case of an input cascade: The input q
is changed, either by replacing q by preprocessor output
(only if the loss is q independent, e.g. multilayer neural
network) or by adding new dimensions (an extreme case
is the support vector machine, with the preprocessing
implicit in the kernel). Those additional dimensions can
also be the output of a data modeling preprocessor and
represent an approximation for y or for the optimal reac-

tion f̂ (q). (Which is the same in a pure approximation
problem.) For a more detailed explanation see text.

33



new data are included. If new data are available the pre-
processor generates, only part of the optimizer's input,
weighted according to its prior probability. Approxima-
tion loss is related to any non{approximation loss which
depends on the relevant data.

Consider now a fuzzy preprocessor, like the fuzzy face
detector we described in principle. There, new training
examples can be generated sampling according to a term
Cq / �

R
dqp(q)jjyq(f0)� Tyq jj2+ c in the log-prior (for

probabilistic f0 we integrate also over p(yq jq; f0)). The
approximation Tyq for ŷq itself can be based on approx-
imations implemented by virtual examples. Note, that
virtual q can include questions which are not available
as training questions, as long as a loss function is de�ned
for them. For a face detector, those q can correspond to
images which appear neither as faces nor as non{faces,
i.e. which are no `natural' images (= Ql). Such `non{
natural' q can be images of faces with some subconcepts
missing or exchanged, for example, one eye transformed
to a none-ye, e.g. to a square. Such a squared eye face is
probably not in the set of `natural' images Ql but may
be useful to teach the face detector the concept of an eye
and its relevance for face detection. Including those ex-
amples near the border between faces and (the concept
of, not the natural) non{faces, speci�es the generaliza-
tion intended by the trainer.

The q{integral in the log-prior can be treated in sev-
eral ways:

1. the integration may be performed analytically, and
the integral (in�nite sum) replaced by an equivalent
term, which is easier to evaluate,

2. by virtual examples, i.e. pairs (q; Tyq), e.g. fuzzy
classi�ed (See e.g. Lin, Kung, & Lin, 1997). In
case of many virtual examples this estimation may
be called a numerical evaluation of the integral.

3. by application adapted sampling, i.e. virtual exam-
ples are (also) used during the application phase
of the algorithm. That means, in a speci�c ap-
plication situation ql one includes newly sampled
case{speci�c virtual examples, before answering to
ql. For example, one can evaluate the correspond-
ing Ty

ql
(if this can still inuence the output and if

available), and can also include Tyq0 for other, e.g.

`similar', q0. We remark that this variant

a. assumes the availability of the approximation
Tyq also during the application phase and not
only during training,

b. requires on{line `application{adapted relearn-

ing', because the newly, case speci�c gener-
ated examples have to be incorporated in the
learning process. An trivial example of appli-
cation speci�c on{line `learning' is interpolat-
ing between di�erent available answers, a less
trivial example are neural networks which are
retrained with application speci�c `hints' Ty

ql

before giving an answer to a speci�c ql. Also,
a higher level approximator can include local
prior terms according to the output of a par-
allel working fuzzy face detector for a given

image, preclassi�ng faces and non{faces.

c. is equivalent to the use of an in�nite num-
ber of virtual examples, because for every
ql (i.e. arbitrarily many) new examples are
drawn. That does not mean that a single pre-
diction depends on an in�nite number of vir-
tual examples, but the de�nition of the whole
learning machine, and therefore its expected
performance.36

5.4.3 Input cascade (general preprocessing)

In an input cascade, a general preprocessor produces
output T , for which no loss function, i.e. prewired in-
terpretation, has to exist. This kind of information T
cannot use the relevant data entrance of the optimizer.
In cases, however, where the loss function is not explic-
itly q{independent (not y(q){ or ŷ(q){independent!) the
q{part of the data can be completely skipped and re-
placed. This does not include the y variables which de-
�ne the value of the loss function and therefore the goal
for the optimizer. Thus, the output of a preprocessor
can replace part of the q or can be added as additional
input to the optimizer, which has to be adapted to the
new format of the input. This internal adaption de�nes
the interpretation of the additional data.

In principle the total (information of the) previous
approximator T could be added as new input dimension.
However, the increase in complexity by irrelevant data
tends to lower the performance in an input cascade (See
below). Also a data modelling preprocessor can be used
in an input cascade by adding available virtual data pairs
to q, leaving y unaltered.

Especially, the information of the preprocessor may
be feed in synchronously with every data pair y; ql.
The transformed and often enlarged input space is also
called feature space. Optimizing algorithms can often
be adapted relatively easy for higher input dimension of
q. Thus, a simple form of an input cascade or prepro-
cessing is including part of the information T in every

data pair (q; y). This can be the result f̂ 0 of another op-
timizer, but also linear independent components of the
vector q, or distances to prototypes obtained by unsu-
pervised algorithms. We mentioned that in cases where
the loss function is explicitly q{independent the q{part
of the data can be completely skipped and replaced by
Tq, so that the original data entrance formally �ts. This
is the standard case of an hierarchical optimizer, like for
example a neural network.

In practice one can for example add output Tyq cor-
responding to the same (and maybe a few related) q,
i.e. ql ! fql; Tyqg. (Also aspects of the learning history
might be added, but one usually assume this to be well
enough represented by the actual internal state of the

36Again, in�nity means nothing else than assuming to be
always able to do something if needed, like in this case creat-
ing a template for every new input. That is how we de�ned
the algorithm and if there are cases where we cannot create
corresponding templates, then we are just not able to apply
this algorithm, nevertheless we say the in�nite data state-
ment is true for the algorithm by de�nition. (de�nition =
specifying possibilities of control).
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optimizer). If Tyq for a given q
l is not available, one may

use a q where a similar Tyq is expected, i.e. complete the
template generator by adding another prior assumption.
For example assuming smoothness with respect to a dis-
tance jj�jj, one can use a q with argminqjjql�qjj (`nearest'
q) or interpolate between some of the neighbors. One
may encode that a speci�c value is not available, or its
expected correctness. For added as well as for replaced

input a function f̂ of the augmented and not of the orig-
inal input is learned. That means, the preprocessor also

has to be available during application of f̂ .

For T to be of any help, the preprocessor, must deal
with aspects related to the loss function, i.e. it must
have (implicitly or explicitly) a loss function related to
the loss function of the optimizer. For example, the pre-
processor can explicitly use the same loss function, and
represent therefore a previously trained optimizer. As
the loss function of the preprocessor does not have to
produce a data model, it can be adapted to the state of
the optimizer. A typical example of an input cascade
with feedback of the loss functions is a multilayer neu-
ral network. For all `on{line' optimizers which do not
use the complete available data set Dl at the same time
(e.g. backpropagation), the actual parameter values (e.g.
weights in a neural network) representing the memory
for past data, can be seen as output of a preprocessor.
As any architectural restrictions can be related to prior
data, any restricted optimizer may be seen as result of
some preprocessing.

In a prior cascade the next level algorithm treats the
additional information as relevant data, i.e. the Bayesian
interpretation of the template data is hardwired. In an
input cascade the algorithm is free in its use of the data
coming from the preprocessor. More precisely, the pre-
processor data have a meaning implicitly implemented
in the optimizer's algorithm and its architecture. Con-
sider the extreme case, where the answer, the optimizer
is looking for, is already included as an additional in-
put dimension. This is only of any help if the algorithm
of the optimizer has with a reasonable probability in its

space F̂ of possible hypotheses a function which is the
projection of the whole input into this dimension. This
includes that, even if all other original q{dimensions are
deleted, the identity (which might be parameterized very
complicatedly) must be part of the hypothesis space to
allow the algorithm to �nd this `simple' solution. Most
practically used algorithms can probably �nd the iden-
tity or a projection easily, but one can also easily con-
struct a model, which cannot. Formulated more tauto-
logical, additional information is helpful if it increases
the probability of �nding a better solution. (The mean-
ing of `better' can be speci�ed in many variants.) The
solution found by an algorithm must be part of a (learn-

ing history dependent) space F̂ c of hypotheses, which
have been actually considered as possible solutions by
the algorithm. A preprocessor can transform the input

so that the transformed optimal solution f̂� is (aver-
aged over possible learning histories, if the templates are
added before seeing all ql, and random variables of the
algorithm) with high probability in the set of consid-

ered hypotheses f̂� � F̂ c. For example, for algorithms
for which the projection is easily learnable, adding tem-
plates for the output as additional input variable might
be a good choice.

If we assume the space of considered hypotheses F̂ c

to be bounded, with respect to some resources, then
an input transformation e�ectively interchanges (maybe
probabilistically) some considered with non{considered
hypotheses. Thus, changing the considered hypotheses
by additional information, means changing one factor

within a multiple OR (of all f̂c). Realizations of a
multiple OR are usually very at functions within the

set F̂ c (e.g. constant in the deterministic case) with
(more or less) sharp transition to zero at the bound-
ary. Thus, an input cascade is expected to have a very
at prior being only e�ective at the cutting edge. As a
(highly) multiple OR is di�cult to implement, informa-
tion (D) which seems meaningful, without being easily
related to p(f0jD) can easier be included in an input cas-
cade, (i.e. used for preprocessing) than in a prior cascade
(i.e. data modeling). This is usually the case in non{
approximation problems when information is related to
the optimal answer and not to the possible state (See
also Section 8).

Notice, that in a prior cascade we can change the im-
portance of priors by changing their weight factor. Be-
cause this is a parameter of a Bayesian model, there
is usually no direct analogous parameter for the input
cascade, so the importance of information is encoded
implicitly in (the parameters describing) the algorithm.
Assuming the Bayesian model to be correct, the prior
cascade should give better results. In cases the Bayesian
model is not correct, the input cascade has less bias,
as it is similar to a prior cascade with smaller weights
for the non{correct priors. However, adding input vari-
ables makes the problem more complex by increasing
the space of possible solutions. For example the VC
dimension may increase, or the (algorithm speci�c, im-
plicit) prior for the true state of nature might be smaller
in an enlarged space. Alternatively, the complexity of
the approximator may be reduced, for example by re-
quiring a stronger smoothness in higher dimensions. So
for example the support vector machine increases enor-
mously the input dimensions (feature space), while on
the other hand their VC dimension is expected to stay
approximately constant. Compensating the addition of

new variables by restriction of the search space F̂ , is
only successful if the restrictions reect correct priors.37

They should therefore be the result of a prior cascade,
which suggests the possibility to include this information
also without increasing the input dimension.

Thus, adding input variables, is only expected to help,

37In the support vector machine, the restrictions imposed
by constructing an optimal hyperplanes in the feature space,
can, choosing the appropriate kernels, lead to arbitrary re-
strictions in the original input space. Thus, the selection of
the kernel includes the necessary prior knowledge. In the
extreme case were the optimal solution (a one dimensional
binary variable in binary classi�cation) is presented as tem-
plate, a feature space with the dimension of that solution is
su�cient to �nd the optimal hyperplane.
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if they contain enough information to compensate either
for the higher dimensionality or for skipped variables in
the problem. In contrary, for a prior cascade also in-
cluding variables with only small e�ects should improve
the performance, as long as those e�ects are correctly
modelled. An input cascade implemented by adding (or
replacing) components to the relevant data is an appli-
cation adapted sampling method which requires on{line
availability of the preprocessor producing Tyq , and there-

fore corresponds for an in�nite set Ql, to a formally in-
�nite amount of data.

These methods of an integration of available approx-
imators, allow to use information contained in other
learning systems, and are therefore general methods of
knowledge transfer.

6 Decision problems

6.1 De�nition

In this section we study questions conditioned on data.

Assume we have to choose one question (alternative) f̂

out of a set of questions F̂38. We will now use the sym-

bol l (actual loss) for the answers of f̂ and assume that
it contains all decision relevant information. Then a de-
cision should only depend on the loss distributions of

the various f̂ . We choose a minimum on the set F̂ by

de�ning a (risk) functional r[p(�jf̂; f)] mapping probabil-

ity densities of answers p(ljf̂ ; f(D)) into a subset of the
real numbers, bounded from below. A decision problem

consists in �nding the answer to a question qr with

f̂� = qr(f(D)) = argminf̂2F̂ r[p(� jf̂; f)]:
If we want to emphasize the data dependency of the
decision we speak of a learning problem. Approximation
and classi�cation problems are special cases of decision
problems.

We will now have a closer look to the questions f̂ . Us-
ing p(yq jq; f) = R df0p(f0jf)p(yq jq; f0) we will from now
on write the formulas for states of knowledge f instead
for pure states f0. According to Eq.(3) there exist some
q so that the probability of su�ering loss l in a given
state of knowledge f can be written

p(ljf; f̂) =
Z
dq

Z
dy

Z
dz p(qjyc; zc; f̂)

�p(yjq; f)p(zjq; y; f̂ )�(l(q; y; z; f̂) � l):

This implies that noise variables z of di�erent ques-
tions are independent and one speci�c realization of y
according to p(yjq; f0) can only appear multiple times
within one question. The situation can be represented
by inuence diagrams with decision and value nodes
(Pearl, 1988) We can de�ne the decision relevant basis

38We use the letter f̂ instead of q for this set of questions
to symmetrize the further notation. This corresponds to an

interpretion of the selected question as action state f̂ in anal-

ogy to the model state f . The selected action state f̂ = f̂(f)
can be seen as reaction (e.g. approximation) to the state of
knowledge f .

set X = Xl by the set Ql of test data ql = q. Then this
formula is in the form usually given in Bayesian decision
theory. Starting from an factorial state with respect to
Xl structural information relates generalized questions
qD from the training data to the di�erent q = x and all
information enabling generalization has to come from
nonlocal qD .

The explicit f̂{dependence comes from three factors
which are

i. the action z (including noise) producing device

p(zjq; y; f̂),
ii. the de�ning (loss) function l(q; y; z; f̂ ),

iii. the test set generator p(qjyc; zc; f̂).
One usually uses a formulation where the components in

2. and 3. are chosen to be explicitly f̂{independent.

1. a) p(qjyc; zc; f̂ ) = p(qjyc; zc), or
b) p(qjyc; zc; f̂) = p(qjyc) (fair), or
c) p(qjyc; zc; f̂) = p(q) (static),

2. l(q; y; z; f̂ ) = l(q; y; z).

Remark:

1. We always can ful�ll conditions 1 a) and 2 by intro-

ducing additional f̂{dependent variables z (and a
zero dimensional x1) without e�ectively changing

the model, as f̂ has always to be parameterized.

Therefore we de�ned f̂ in Section 2 by p(zjq; y; f̂).
To ful�ll the stronger condition p(qjyc; zc; f̂) =
p(qjyc) also all random processes have to be at-
tributed to the state by including zc into yc, and

for the strongest condition p(qjyc; zc; f̂) = p(q) by
including yc and zc into q.

2. This covers all cases of function approximation and
pattern classi�cation.

We will call a decision problem fair if condition 1b

is ful�lled so di�erent action states f̂ are compared in
the same situations q independent of their own previous
outcomes, and static if condition 1c is ful�lled, and p(q)
does not depend on any other outcomes.

If interested in the expectation of l the remaining z
can for static problems be integrated out de�ning an

integrated loss function ~l

~l(q; y; f̂ ) =

Z
dzp(zjq; y; f̂)l(q; y; z; f̂)

being a deterministic function of f̂ .

6.2 Parallel decision problems

If we assume p(zjq; y; f̂) to be y{independent this can
be seen as a device producing answer (action) z in situa-
tion q when the model (of nature) in state f produces y.

Thus, f̂ could be interpreted as (action) state of a sec-
ond, independent model of actions capable in producing
answers to the same questions as the original model (of
nature). We will now write ŷ for those z which are pro-
duced independent of y. This independence can also be
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seen as de�nition of the q as that part of the visible
variables (q; y) which can inuence the answer ŷ. For
example, the answer of the model y can be assumed to

be available for the device f̂ only after the action ŷ is
produced. Now let us de�ne a decision problem which

compares two models in states f and f̂ answering to the
same questions q under equal conditions. This can be

seen as comparing the action state f̂ with the state of
nature f in situations q according to the criteria l(q; y; ŷ).

If we want to model a causal dependence of the action
ŷ from `previous' y, we choose the general formulation
as

PM: a parallel decision problem with memory, de�ned as

a model with p(zjq; y; f̂) = p(zjq; yc; f̂ ). with the
causal structure yc being the same as in p(qjyc; ẑc).
Then we write ŷ for z, i.e. p(ŷjq; yc; f̂). (The nota-
tion allows dependencies within the components of
ŷ.) Thus, the action producing device outputs ŷ in

action state f̂ with its components ŷi independent
of the corresponding answer component yi of the
model of nature f . However, it can use the val-
ues of previously determined components of y and
choose its actions according to its `success' in the
past.

We call a decision problem F̂

P : a parallel decision problem without memory (or sim-
ply a parallel decision problem) if, writing ŷ for z,

the action model produces ŷ in action state f̂ inde-
pendent of the answer y of the model of nature f :

p(ŷjq; y; f̂ ) = p(ŷjq; f̂) (Dependencies within com-
ponents of ŷ are allowed).

This leads to a loss probability, written for the more
general case:

p(ljf; f̂ ) =
Z
dq

Z
dy

Z
dŷ p(qjyc; ŷc)

�p(yjq; f)p(ŷjq; yc; f̂)�(l(q; y; ŷ) � l);

Note the di�erence between not yet seen (expected) test

data D̂l = (q; y; ŷ), which are not yet determined and
correspond to the integration variables, and the known
(training) data D, which determines our actual state of
knowledge f = f(D) and do not appear explicitly in the
above formula. Parallel decision problems with mem-

ory show an asymmetry between f and f̂ as we allow
a dependence of ŷ from past values of y while we de-
�ned y only to be depending on the question q and pure
state f0 and not from ŷ. All ŷ{dependency of real world
measurements p(yjq; f0) by de�nition has to come from
changing the question according to p(qjyc; ŷc) or active
changes of f0 by ŷ which we do not allow. We can par-

allel the treatment of f̂ and f , by introducing a set of

y{independent basis action states f̂0 and an `algorithm'

p(f̂0jq; yc; ŷc; D̂). Here we included possible additional

data D̂ in the formalism, which also determine the avail-

able action states f̂ , and we can write

p(ŷjq; yc; f̂ ; D̂) =
Z

df̂0p(ŷjq; f̂0)p(f̂0jq; yc; ŷc; D̂):

For p(D̂jD) = p(D̂) we can determine f̂ before the train-

ing begins, otherwise, the set F̂ of available choices has
also to be updated with the training data D.

Approximation problems are parallel decision prob-
lems with approximation loss (see Section 5.3.4), pa-

rameterized in the form ~l = �a ln p(yjq; f̂) + c withR
dy=; p(yjq; f̂) = 1, 8q; hatf . With a temporal conno-

tation they may also be called prediction problems. In
such problems, we may wish to include the structure of
the q into the action ŷ{producing devices. For the set of

f̂0, which in a parallel decision problem without memory

already are the f̂ , we can then de�ne an action model

p(yxjx; f̂0) for the basis questions x use for a question

p(yjq; f) =
Z
dx

Z
dyx
Z
dz p(xjyxc ; zc; q)

�p(yxjx; f)p(zjx; yx; q)�(q(x; yx; z)� y):

an action state

p(ŷjq; f̂0) =
Z
dx

Z
dyx
Z
dz p(xjyxc zc; q)

�p(yxjx; f̂0)p(zjx; yx; q)�(q̂(x; yx; z)� ŷ):

Note that also a f̂{independent loss function can pe-

nalize complexity or requirement of resources of the f̂
simply by including corresponding variables as compo-
nents into ŷ.

While the f̂ de�ne the possible alternatives of loss
distributions, the decision has to be made with respect
to some risk functional r applied to this distributions.
Choosing, for example, in the case of a real loss function
for parallel decision problems the expectation as func-
tional r we have to minimize the `expectation risk' or
expected risk

r(f; f̂) = r[p(� jf; f̂)] =
Z
dl l p(ljf; f̂ )

=

Z
dq

Z
dy

Z
dŷ p(qjyc; ŷc)p(yjq; f)p(ŷjq; yc; f̂)l(q; y; ŷ):

Density estimations are a special form of parallel
decision problems having only one q with the mean-
ing `get next data'. Choosing an integrated loss which

can for every f̂ be interpreted as a log-probability, i.e.
~l(y; f̂ ) = ln p(yjf̂ ) + c this gives

r(f; f̂ ) =

Z
df0
Z
dy p(f0jyD)p(yjf0) ln p(yjf̂ ):

One may well include other f̂{speci�c aspects in the loss

function, like f̂{speci�c complexity costs, e.g. a termR
dy p(yjf̂ ) lnp(yjf̂ ) related to the encoding costs of y

givenf̂ (Rissanen, 1989). Sometimes the term `unsuper-
vised' learning is used for such problems, including prob-
lems which are de�ned by algorithms and do not explic-
itly refer to a set of parameterized models p(yjf), like
e.g. self{organizing maps (see e.g. Kohonen, 1995). This
term might be misleading, because all variables y enter
the (explicit or implicit) loss function, and are therefore
`supervised' variables. The reason for using nevertheless
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the word `unsupervised' is, that density estimation is of-
ten applied to variables, which are used in a second step
as q in a problem, where the loss function does not de-
pend on q but on y. Indeed, the determination of p(q)
can in our formulation always be seen as a preprocessing
step, because we explicitly require p(q) to be indepen-
dent of f0.

To adapt to new data, parallel decision problems re-
quire an inversion to obtain

p(f0jyD ; qD) = p(yD jqD; f0)p(f0)
p(yD jqD) :

While this corresponds to an interchange of the roles of
the variables yD and f0, we will in the next Subsection
refer to another inversion: The interchange of y with q.

6.3 Inverse decision problems

Here we will discuss analysis by synthesis, where an ac-

tion device p(zjy; f̂ ) is `analyzed', i.e. its correspond-
ing loss minimized, under a synthesis model p(yjq; f)
for y, i.e. the question for f̂ instead for its answer z.
For example, instead of solving an approximation prob-
lem, which is a parallel problem yielding a predictive

model f̂ of f , we may be interested in approximating
the question (`cause') q yielding to y. Thus, we may
want to approximate the inverse probability p(qjy; f).
Notice, however that in our terminology a decision prob-
lem with `inverse approximation loss', parameterized by
~l = �a ln p(qjy; f̂ ) + c, with

R
dq p(qjy; f̂ ); 8y; f̂ is not

called an approximation problem (except for the triv-
ial case p(yjq; f) = p(qjy; f)). An approximation prob-

lem would require a normalization over 8q; f̂ , i.e. in this

case where q and y are interchanged of
R
dq=; p(qjy; f̂).

Indeed, only for (parallel) approximation problems the
inequality (5.3.4) can be applied for given q, and there-
fore, as we will see in Section 7 a maximum posterior
approximation can be su�cient.

Often, the variable describing the desired output of
the action device is easier to choose as condition q to
build possible models p(yjq; f0) of nature, than its input
variable. Consider the following example: Let ya have
the values `face' and `non{face' and qa be correspond-
ing images of faces and non{faces. The task is to build
a face detector, i.e. a device p(ŷajqa; f) which outputs
an approximation ŷa of ya for a given image qa. That
would mean we need a model p(yajqa; f), i.e describe for
a given image possible probability distributions being a
face. This might be done using fuzzy priors, but might
not be very reliable, as the probability for a given image
to be a face is related to the kind of non{face objects
included in ya. Every change in the set of non{faces,
would require an update of the fuzzy prior. Much more
natural is it | as probably more related to the subjec-
tive process of generating priors by contemplating about
typical features of faces | to approximate the inverse
probability of images qa given it is a face ya. This can
be done (as well as for the inverse direction) by a fuzzy
decomposition of the image qa into feature components
qa0 (e.g. eye template) according to the methods we dis-
cussed earlier. Thus, we built a generative model for

images given faces. Also priors within the class of faces
can now be formulated, independent of the non{face ob-
jects, in terms of face generative parameters, e.g. spe-
ci�c individuums, illumination conditions, rotation an-
gels, emotional expressions. Also, the distribution for
relevant questions p(qa) for the low dimensional variable
face/non{face is more easily adaptable and measurable
than for very high-dimensional images. For example,
one can measure or control the average number of peo-
ple passing a camera (i.e. p(qa)) much easier than to
change or even approximate the probability of the cor-
responding images p(ya).

However, according to our convention denoting by q
the generalized questions to nature and not the input
to the action producing device, we have to exchange the
letters in the notation and write q = ya for the face
variable and y = qa for the image. Then the face detec-
tor p(q̂jy; f) gives an approximate classi�cation q̂ for the
variable q.

We study the situation, where an action device inverts
an available generative model, now more formally and
de�ne an

IM: inverse decision problem with memory as a model

with p(zjq; y; f̂) = p(zjy; qcf̂ ), i.e. where the the
action model produces answers q̂ depending not on
the index of a generalized question q but on their
answer y. In this situation we will use for z the
notation q̂. Dependencies within components of q̂
are allowed.

In the same way we de�ne a

I: inverse decision problem without memory as a

model with p(q̂jq; y; f̂) = p(q̂jy; f̂ ), with z = q̂ i.e.
where the the action model produces answers q̂ de-
pendent on y, however independent of its history.
Dependencies within components of q̂ are allowed.

Because it also seems quite natural to work with vari-
ables representing input and output of the action pro-
ducing device we will call

AR : a problem to be formulated in action representa-

tion, if the action producing device is written in

a form p(zjq; y; f̂) = p(ŷajqa; f̂) = p(ŷajqa; ya; f̂).
This de�nes (action) output ŷa = z, requires the
i{component of the (action) input qai to include
at least that part of qi; yi on which zi depends.
The remaining variables are called ya = fq; ygn qa.
Analogously, we can de�ne an action representa-

tion with memory to be of the form p(zjq; y; f̂) =
p(ŷajqa; yac f̂ ) = p(ŷajqa; ya; f̂).

MR : We will call our original formulation with q rep-
resenting questions and y answers a measurement

representation.

Table 2 summarizes the de�nitions, our convention
used in the measurement notation (MR) and the action
representation (AR).

Now we show that every inverse model looks `pseudo
parallel' in action representation without being necessar-
ily equivalent to a parallel decision problem. The reason
is that the roles of q and y are not freely exchangeable in
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Decision problems

p(zjq; y; f̂) parallel inverse

without memory p(zjq; f̂) p(zjy; f̂ )
MR: p(ŷjq; f̂) p(q̂jy; f̂ )
AR: p(ŷajqa; f̂) p(ŷajqa; f̂)

with memory p(zjq; yc; f̂) p(zjy; qc; f̂ )
MR: p(ŷjq; yc; f̂ ) p(q̂jy; qc; f̂)
AR: p(ŷajqa; yac ; f̂) p(ŷajqa; yac ; f̂)

Table 2: Classi�cation of decision problems

a decision model. We de�ned a model to be completely
determined by q, y and f , the f{independent part of
variables q, i.e. p(qjf) = p(q), and all f{dependent vari-
ables y. That means, the distribution of q is always
known, and can only depend on a state of nature over
already observed data, i.e. p(qjyc; q̂c; f) = p(qjyc; q̂c) in-
dependent of f . Then the decomposition p(yjq; f) =R
df0p(yjq; f0)p(f0jf) does not need to include a factor

p(qjf0), and the joint probability p(q; yjq̂cf) factorizes
into a f{dependent and a f{independent factor

p(q; yjq̂cf) = (qjyc; q̂c)p(yjq; f): (16)

Accordingly, every problem in action representation can
be written in at least a `pseudo parallel' form. For the
example of an inverse decision problem we can factorize
the probability in the action representation

p(q; yjq̂c; f) = p(yjqc; q̂c; f)p(qjy; q̂c; f) (17)

= p(qajyac ; ŷac ; f)p(ya jqa; ŷac ; f)
We remind, that the �rst line has to be read as
p(y1jf)p(q1jy1; f)p(y2jy1; q1; q̂1; f)p(q2jy2; y1; q1; q̂1; f) � � �,
where p(q2jy2; y1; q1; q̂1; f) can not necessarily be simpli-
�ed to p(q2jy2; f) if p(qjyc; q̂c) 6= p(q), i.e. for a nonstatic
model. The factors of this inverse picture are related to
the original model by39

p(qjy; q̂c; f) = p(qjyc; q̂c)p(yjq; f)
p(yjqc; q̂c; f) ;

and

p(yjqc; q̂c; f) =
Z
c

dq p(qjyc; q̂c)p(yjq; f):

where the symbol
R
c
denotes a `causal' or `conditional'

integral de�ned as
R
c
dq p(q) =

Q
i

R
dqip(qijqc(i)) (notR Q

i dqi p(q) !) with qc(i) = fqj; j < ig, so that for ev-

ery factor the qc(i){dependency remains.40 Notice, that

39See Saul, Jaakola, & Jordan, 1996, Jaakola & Jordan,
1996, for a variational method for such inversions in sigmoid
belief networks.

40Jordan, 1995, shows the interesting fact that Gaussians
and the logistic function 1

1+e�z
, which is often used as acti-

vation function in neural networks, are for binary classi�ca-
tion related by such an inversion. For binary yi 2 fy1; y2g
and Gaussian p(xjyi) with equal variance (or covariance ma-

trices) p(yijx) =
p(xjyi)p(yi)P
j
p(xjyj )p(yj)

= 1

1+e
� ln

p(xjyi)

p(xjyj 6=i )
�ln

p(yi)

p(yj 6=i)

this is not the inversion necessary to obtain p(f0jD) from
p(yjq; f0). For a static model, i.e. for p(qjyc; q̂c) = p(q),
the joint probability factorizes also in the inverse nota-
tion, p(qi)p(yijqi; f) = p(yijf)p(qijyi; f), with the indi-
vidual factors p(yijf) still being state dependent. If we
try to exchange the role of q and y we �nd in Eq.(17)
compared to Eq.(16):

1. History dependent questions. To interpret y to a
question in a measurement representation (and f as a
state) f and y must completely determine p(qjy; q̂c; f) =
p(qjy; f), like it is the case in the inverse of a static
model. In other cases one can de�ne a set of history
(i.e. q̂c, qc, yc) dependent questions y

0
i (or states) labeled

by fyi; yc(i); qc(i); q̂c(i)g.
2. State dependent questions. According to our def-

inition of questions y can only be interpreted as ques-

tion (for nature not for f̂ !) if state independent, i.e.
p(yjqc; q̂c; f) = p(yjqc; q̂c). In other cases the distribution
of relevant `questions' y in the inverse picture is state de-
pendent, i.e. not exactly known, and they are therefore
e�ectively part of the unknown variables, which we call
answers. It is always possible to enlarge F 0 to include
q and write p(qjFq) = p(qjDq) =

R
df0q p(f

0
q jDq)p(qjf0q )

depending on data Dq which have been used to de-
termine the probability distribution. Thus, the space
F 0 = F 0

q 
 F 0
yjq also contains hypotheses about di�er-

ent possible parameterizations p(qjf0). However as long
as there is a `factorial border' between f0q and f0

yjq
, i.e.

p(f0) = p(f0q )p(f
0
y;q) factorizes, the problems for q and y

given q (not y alone) are independent. As soon as they
are dependent, we must perform the decomposition into
pure f0

yjq
states q{dependent, i.e. we must treat q as an-

swer. For example, when not only p(yjq; f) but also p(q)
is sampled when obtaining data, this is relevant for de-
termining p(q), in any case when it is not yet completely
known. In this case conceptually both q and y are part
of the answers, let us say (q; y) = y0, and the set of q0

is reduced to one element with the meaning: `Get next
data pair'. However, when the hypothesis spaces factor-
ize and the data do not induce new correlations, both
problems can be treated separately, and q can be used
as question for the y problem.

We �nally notate the probability to su�er loss l in the
measurement representation

p(ljf; f̂) =
Z
dq

Z
dq̂

Z
dy p(qjyc; q̂c)p(yjq; f)

�p(q̂jy; q̂c; f̂)�(l(q; q̂; y) � l)

with expected risk

r(f; f̂)=

Z
dq

Z
dq̂

Z
dy p(qjyc; q̂c)p(yjq; f)p(q̂jy; q̂cf̂)l(q; q̂; y):

and in action representation

p(ljf; f̂ ) =
Z
dqa
Z
dya
Z
dŷa p(qajyac ; ŷac ; f)p(yajqa; ŷac ; f)

gives a logistic function because for equal variance the term
quadratic in x cancels and only the di�erence of the �rst
moments remain. This holds also if the p(xjyi) belong to the
same exponential family with possibly di�erent �rst, however
equal higher moments.
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�p(ŷajqa; ŷac ; f̂)�(l(qa; ŷa; ya)� l):

with expected risk

r(f; f̂ )=

Z
dya
Z
dŷa
Z
dqa p(qajyac ; ŷac ; f)p(ya jqa; ŷa; f)

�p(ŷajqa; ŷac ; f̂)l(qa; ya; ŷa):
We conclude: An inverse decision problem cannot nec-

essarily be formulated as a parallel decision problem, be-
cause its action representation yields in general state de-
pendent qa.

We will see later that for certain static decision prob-
lems a one step maximum posterior approximation is
su�cient only for approximation problems, i.e. when
p(yjq; f) itself shall be approximated. Then this step
has numerically the form of an empirical risk minimiza-
tion. Obviously, approximating the inverse probability
p(qjy; f) is not an approximation problem for p(yjq; f),
(except when p(yjq; f) = p(qjy; f)) and we have just seen
that it cannot be transformed into one. Thus, for inverse
problems a maximumposterior approximation should in
general be completed by a second step. This two step
procedure has for inverse problems the following form:

In a �rst step p(yjq; f) is approximated by p(ŷjq; f̂app).
In the second step the optimal approximating action de-

vice f̂app is identi�ed with a (�xed) state of knowledge

f� = f̂app, and accordingly ŷ with y. Then p(q̂jy; f̂) is
chosen to minimize the loss for the approximating de-
vice, i.e. for given state f�. However, for a full Bayesian
treatment, and for the justi�cation of an empirical risk
minimization the di�erence between parallel and inverse
problems is in no way conceptually important.

6.4 Algorithms

Often the process of calculating the answer to qr, that
is the optimal learning or decision algorithm, is to dif-
�cult to be actually performed. Thus, one has to use
a simpli�ed decision or learning algorithm, i.e. another

question q̂r = â, to produce an answer f̂ = â(f(D)).
We discuss the following for parallel decision problems,
but it applies analogously to inverse and general fair de-
cision problems. If we have to decide between several
available algorithms this corresponds to another (higher
level) decision problem41, with the ŷ producing device

with p(ŷjq; f̂) replaced by a f̂{producing device â with

p(f̂ jq; yc; ŷc; â), and we have to de�ne the â dependency
of the loss which could be formulated by extending the
set of relevant questions Ql ! Ql;a to include loss rel-
evant aspects. If no algorithm speci�c aspects have to

41This problem of �nding an optimal algorithm can be a
much more complicated problem than �nding the optimal
decision. So comparison of algorithms can be done in only
a few number of (simple enough) cases (See for example,
Watkin, Rau, & Biehl, 1993 and references therein for a re-
view). When also using approximations for the high level
problem all the same problems appear on the higher level
again. But if we assume the decision problems of the di�er-
ent levels to be similar we could at least check for consistency:
Does approximation A on level i produce approximation A
on level i� 1.

be included, only an additional f̂{integration has to be
performed. The same is essentially true if the algorithm

speci�c loss can be represented by a q, y, f̂{independent
constant. On the other hand, loss related aspects which
depend on more than one of the original relevant ques-
tions ql also depend on the correlations between ql (for
which the original loss, and thus also the risk, is insen-
sitive) and can generate a much more complicated set
of relevant questions and associated loss l for the new
problem.42 This expression corresponds to the expres-

sion p(f̂0jq; yc; ŷc; D̂) we discussed for parallel decision

problems. Thus, from this point of view the f̂ corre-

sponds to possible pure action states f̂0, and the al-

gorithm â to the available data D̂. Interestingly, one
notation only refers to data, and assumes the algorithm
to be implicit, while the other refers to the algorithm
and assumes the data to be implicit. Thus, we have a

parallel decision problem with memory where the f̂ are

part of the internal noise variables ŷâ = (ŷ; f̂). The ql

are related to a loss function l which can depend on â
and qr(â) chooses the â which minimizes a functional r
of the loss distribution

p(ljâf) =
Z
df̂

Z
dq

Z
dy

Z
dŷ p(qjyc; ŷc; f̂c)p(yjq; f)

�p(ŷjq; f̂)p(f̂ jq; yc; ŷc; â; f)�(l(q; y; ŷ; f̂ ; â)� l):

A loss l(q; y; ŷ; f̂) can be chosen f̂{independent by in-

cluding additional variables ŷ = ŷ(f̂ ) if necessary. To
include algorithmic speci�c aspects without using an ex-
plicit algorithm dependent loss function we can, for ex-
ample, include â{dependent internal variables ŷâ in the
loss function produced with p(ŷâjq; â) measuring for al-
gorithm speci�c variables like their requirement of re-
sources like calculation time, memory and other aspects.

An algorithm is de�ned by its p(f̂ jq; yc; ŷc; f; â). It

produces an answer f̂ which should at least be depend-
ing on its state of knowledge f , that is its prior proba-
bilities and training data. We always assume its knowl-

edge of the f̂ , i.e. of the p(ŷjq; f̂). The dependence of

p(f̂ jq; yc; ŷc; f; â) from yc and ŷc allows the algorithm
to adapt, i.e. learn, during the test phase. In that
case the loss evaluates the learning curve of algorithms.

One can allow the choice of f̂ to be dependent from
the test question q being equivalent to enlarging the

space of available f̂ . The variable f̂ can be a vector,
for example, if a decision is required after presenting

part of q. In situations with p(qjyc; ŷc; f̂c) = p(qjyc; ŷc)
and l(q; y; ŷ; f̂ ) = l(q; y; ŷ) algorithms can be seen as im-
proved f{dependent ŷ{producing devices with

p(ŷjq; yc; f; â) =
Z
df̂p(ŷjq; f̂)p(f̂ jq; yc; ŷc; f; â):

Choosing for real loss r as the expectation functional
we are looking for the â which minimizes

r(f; â) = r[p(� jf; â)] =
Z
dl l p(ljf; â)

42Compare the distinction between l and L in (Haussler,
1995).
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=

Z
df̂

Z
dq

Z
dy

Z
dŷ p(qjyc; ŷc; f̂c)p(yjq; f)p(ŷjq; f̂)

� p(f̂ jq; yc; ŷc; f; â)l(q; y; ŷ; f̂ ; â).
6.5 Minimization

Solving decision problems requires minimization algo-
rithms. In general, also the minimization problem can be
seen as a learning problem: Given data of function values
and information about the function (e.g. di�erentiable,
symmetric) give the position of the minimum. In so far
our discussion of learning and prior information also ap-
plies to optimization. Usually, minimization algorithms
perform active queries for local data (for example, taking
a new data point in direction of the gradient) to improve
a given guess for the location of the minimum and pro-
ceed iteratively until a certain convergence criterion is
ful�lled. An iteration procedure can be written

f̂ i+1 = G(i;Di; f̂
i) = Gi(f̂

i);

where f̂ i denotes the current guess for the location of
the minimum at step i and Di (which for the sake of
simplicity will be skipped from now on from the no-
tation) the new and accumulated previous data (Di =

(r(f; f̂j); f̂j)gj�i). Besides data points G depends on

prior knowledge about the function (in our case r(f; f̂ )).
The past iterations provide data for the minimization
problem, and Di indicates that G changes with the
amount of available data, i.e. the number of iterations.
Thus, one can say G is trained on the available data.
This at least implicitly assumes prior knowledge which
allows available data to carry information about other
parts of the function.

In general, we can allow any reparameterizations T

(of the f̂ , in our case) as long as T is locally injective

at the locations of global minima f̂�, i.e. T�1(T (f̂�)) =

f̂�. Reparameterizations can be not injective for points
which are no minima, as those can be excluded from fur-
ther search. But also under globally bijective reparame-

terizations minimization problems can look quite di�er-
ent for the transformed variables. Reparameterizations
can be nonlinear, di�erentiable or non{di�erentiable, or

linear transformations for vectors or functions (like f̂)

i.e. a change of the representing basis if F̂ is a vector
or Hilbert space, or even a random permutation of the
function values. Transformations can create arbitrary
neighborhood relations, so the minimizationproblem can
become trivial, like for example when the function values
are ordered monotonically (to �nd such a permutation,
however, the minimum problem has to be solved), or
arbitrary hard (non{smooth, random).

Sometimes, it is technically helpful to `linearize' prob-
lems, by giving every degree of freedom its own linear
dimension. If we de�ne R to be the space of all pos-

sible functions r(f; f̂ ) (for �xed f) and give the values
of r a linear structure, we can expand any r, at least

formally, into basis functions r =
P

i aibi(f̂ ). Thus any

function r0(f̂ ) =
P

i a
0
ibi(f̂ ) on F̂ taking values in the

linear range of r(f; f̂ ), for example r0(f̂ ) = r(T (f̂ )), is

by construction of R a linear transformation A(f̂ 0; f̂) of

r(f̂). Then r0 = Ar, which is de�ned by the mapping of
the coe�cient vectors with a0 = Aa.43 The resulting di-
mensionalitymay however very soon be intractable huge,

e.g. for in�nite F̂ the resulting space has in�nite dimen-
sion. To be able to use such a space for calculation, it
must be restricted. In Hilbert spaces for example only
functions are allowed for which the expansion in a ba-
sis can at least be arbitrarily well approximated in some
norm by an (arbitrary large, but) �nite number of basis
functions.

Reparameterizations always change only the argu-
ments not the function (risk) values itself. There is
also the possibility to change the function values without
changing the location of the minimum. In general, for a
function f (in our case the risk, i.e. f does not denote

a state here) the positions x� (=f̂�) of global minima

f(x�) (=r(f; f̂�)), de�ned by y� = f(x�) � y = f(x),
8x, do not change under transformations h which obey
y� � y , h(y�) � h(y); 8y. We will call such transfor-
mations h strictly monotonically increasing relative to

y�. (Analogously, we de�ne strictly monotonically de-
creasing relative to y� y� � y , h(y�) � h(y); 8y.) As
we do not know y� = f(x�) in advance we have to require
this relative to all values which are possible candidates
for a global minima.

Minimization methods can only return a minimum
within some selected �nite (sub)set of considered func-
tion values. Local methods (see below) for example �nd
local minima. Locations of minima are invariant for all
subsets under strictly monotonically increasing transfor-
mations h de�ned by y < y0 ) h(y) < h(y0); 8y; y0,
equivalent to strictly monotonically increasing relative to
all y, i.e. y � y0 , h(y) � h(y0); 8y; y0. Analogously de-
�ned strictly monotonically decreasing transformations
change a minimum to a maximum.

There is a large variety of methods and concepts avail-
able for minimization, with many possibilities of combi-
nations. (For a discussion with respect to neural net-
works see for example Golden, 1996. In Section 9 opti-
mization methods are needed for maximizing the poste-
rior probability.) The fact that the following principles of
minimization algorithms can be applied to transformed
(strictly monotonically increasing relative to global min-
ima) and reparameterized (bijective at locations of global
minima) problems, makes clear, on one hand, that in
general a large number of possibilities can exist to attack
a speci�c problem. On the other hand it shows that also
the optimization process depends on prior information.

The simplest method, which does not refer to any
dependencies of function values, is

1. an unadapted search (stochastic, predetermined de-

43See for example generalized additive models, where in-
teraction terms are added (Hastie & Tibshirani, 1990), the
comments in Minski-Papert-1990 (the new edition of the 1969
book) about the general applicability of (linear) perceptrons,
the support vector machine, where linear relations in the
feature space correspond to nonlinear relations in the input
space (Vapnik, 1995), and for a general approach, Smola &
Sch�olkopf, 1997.
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terministic, or exhaustive), i.e. with data Di col-

lected independent of function (risk) values for f̂ .
One iteration step consists in sampling of a new
data point, and G compares this point with the

current guess f̂ i. The sampling distribution does
not depend on previous iteration steps.

Deterministic algorithms (deterministic G) are special
cases of stochastic algorithms (probabilistic G). Prior in-
formation enters G if the sampling distribution at step i
depends on Di. The most common case are local depen-
dencies yielding

2. local iterative methods. For smooth functions small
values are in the neighborhood of other small val-
ues and therefore the search (sampling probability)
is concentrated near the current guess of the min-
ima. As di�erentiable functions have a gradient
equal to zero at a minimum this allows to search
for those zeros which are possible locations of min-
ima. Sometimes stationary points can be found an-
alytically, but usually nonlinear equations require
iterative solutions. (The term `analytical' is com-
monly used for solutions where the iteration can
be done easily, like determining a certain square
root or the numerical evaluation of constants like
e or �.) Technically, the iteration is often imple-
mented in the form of a relaxation method (see
Section9), which includes common algorithms like
those based on the gradient, and its stochastic (like
on{line learning), restricted (e.g. line search) vari-
ants, and may include higher order derivatives (as
in Newton methods) (Pierre, 1986, Bazaraa, Sher-
ali, & Shetty, 1993, Bertsekas, 1995). For these
algorithms G depends on the value of the function
and some of its derivatives at the current location.
In a discretized implementation of derivatives, (and
similar in a simplex search method) G depends on

a set Di of function values r(f̂ ) which can be called
a local population. Those methods �nd local min-
ima. A nonlocal aspect can be added simply by
combining them with unadapted search methods,
usually implemented by comparing di�erent local
minima.

There can be nonlocal dependencies between function
values, which makes it desirable to have G being depen-
dent not only on a local but also on a nonlocal population
of function values, leading to

3. parallel or nonlocal iterative methods. Here G de-
pends on a nonlocal population Di. like in genetic
algorithms, (See Holland, 1975, Goldberg, 1989,
Davis 1991, Michalewicz, 1992, Schwefel, 1995,
Mitchell, 1996) This allows nonlocal interactions
between a possibly large number of function val-
ues. The dynamic of the population Di ! Di+1

corresponds to an iteration for a population vec-
tor.

In general, we only have to require that a �xed point
of the iteration corresponds to a solution of the mini-
mization problem. This allows transformations of the
problem during iteration:

4. Transformation methods use transformations of the
problem (i.e. of Gi), starting with an easy solvable,
e.g. one{minimum problem, and slowly transform-
ing to the problem of interest. They are called
homotopy or continuation methods if they approx-
imate a smooth family of transformations (Allgo-
wer, 1990, Richter & DeCarlo 1983, or, for an ap-
plication in scattering theory, Giraud & Nagarajan,
1991, Wierling et al. 1994). Parameter, like the
step width in gradient algorithms, mutation rate in
genetic algorithms, or the temperature in simulated
annealing (See Ripley, 1987, Davis, 1987, Aarts &
Korts, 1989) can also be seen as such deformation
parameters.

An example of transformations which correspond
to a strictly monotonic transformation at �xed
points are transformations with h(y) � h(y�) )
y � y�; 8y, which we will call minimality su�cent

relative to y�, if y� is updated (at least from time
to time) during iteration. (Accordingly h(y) �
h(y�)) y � y�; 8y will be called maximality su�-
cient relative to y�.) For example, adding a func-

tion ~r(f̂ ) to the risk r(f; f̂ ) (e.g. a (quasi) distance

D(f̂ i; f̂ i+1)) with a minimum at the current guess

(f̂ i) ensures, that decreasing both terms (r+~r) also
decreases the original function (r). This is, for ex-
ample, used in the EM{like algorithms (Dempster,
Laird, Rubin, 1979, Tanner, 1993, Gelman, Carlin,
Stern, Rubin, 1995, for an information geometrical
interpretation and the related (most times identi-
cal) em algorithm see Amari, 1985, 1995).

Non{exhaustive search is always restricted to a sub-
space. Restricting to a subspace a priori is also called

5. a variational method. Here the function is parame-
terized and only a part of the parameters are used
for minimization. In a linear variational method
the stationarity condition is, for example, expanded
into a linear basis of a Hilbert space of functions,
and solved in a linear subspace. Examples in-
clude the methods of �nite elements. Variational
methods, including nonlinear ones, are also often
used in physics, especially in quantum mechan-
ics. There, for example, �nding a bound for the
ground state energy of quantum mechanical sys-
tems smaller than some instability causing thresh-
old can have drastic consequences. In this context
a product ansatz for functions in several variables is
also called mean �eld approach. Variational meth-
ods have recently also be applied to general graph-
ical models. (See for example Saul, Jaakola, & Jor-
dan, 1996, Jaakola & Jordan, 1996).

We conclude with the interesting observation,
that (non{exhaustive) minimization requires knowledge
about nonlocal dependencies also for the risk functional

r(f; f̂). This suggests the principal possibility of reduc-
ing for practically solvable problems the risk functional
to independent values, whose number in practice must

be �nite, corresponding to a �nite F̂ and �nite e�ective
F 0.
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7 Bayesian approach

7.1 Inserting model states

The following constituents of a decision problem are
assumed to be known: 1.) the action producing de-

vice p(ŷjq; f̂), 2.) the de�nition of the test distribution
p(qjyc; ŷc),44 3.) the loss function l(q; y; ŷ). For evalu-
ating a risk functional r the main problem remains de-
termining the answer probabilities p(yjq; f0) for the test
questions of the realized pure state (of nature). There
exists a Bayesian and a Frequentist approach for this
problem.

In the Bayesian approach model states f0 are inserted
as hidden variables. This is the concept we used in this
paper de�ning a state of knowledge f with probabilities
p(f0jf) and is called in the context of decision problems
Bayesian decision theory (Berger, 1985). The answer
characteristics p(yjq; f0) of the possible pure states have
to be known.45 According to the Bayesian paradigm the
(training) data dependence p(f0jf(D)) = p(f0jD) of the
state of knowledge f = f(D) can be written

p(f0jD) = p(Djf0)p(f0)
p(D)

=
p(yD jqD; f0)p(f0)

p(yD jqD) ;

with qD, yD the vectors of questions and corresponding
answers in the data. A Bayesian expected risk reads

r(f; f̂) =

Z
df0 p(f0jD)r(f0; f̂ )

with

r(f0; f̂) =

Z
dq

Z
dy

Z
dŷ p(qjyc; ŷc)

�p(yjq; f0)p(ŷjq; f̂)l(q; y; ŷ);
or for an inverse setting

r(f0; f̂) =

Z
dq

Z
dq̂

Z
dy p(qjyc; q̂c)

�p(yjq; f0)p(q̂jy; f̂)l(q; q̂; y):
The posterior probability p(f0jD) is the only data de-
pendent term. Introduction of model states f0 makes
the treatment of the training data independent of the
test set. Both cases, test questions not included in the
training data and training data not included in the test
data are no conceptual problems.

When p(yjx; f0) is speci�ed by p(xjy; f0) and an f0{
speci�c prior p(yjf0) according to

p(yjq; f0) = p(qjy; f0)p(yjf0)
p(qjf0)

one has to calculate the probability of the data under f0

p(qDjf0) =
X
yD

p(qD jyD; f0)p(yD jf0);

(see for example Saul, Jaakola, & Jordan, 1996) to get
p(f0jD) and integrate over di�erent states f0.

44If not under direct control, p(q) can be determined sep-
arately, or the q can be included in the set of y.

45Under the assumption of the chosen model the Bayesian
approach is (de�ned as being) optimal, but in practice the
method depends of course on the correctness of the model
for the situation in mind.

7.2 Maximum posterior approximation

Practical calculations of a Bayesian risk are, if not ana-
lytically solvable, in general only possible for a restricted

set of f0 and f̂ . Numerical methods using Monte Carlo
integration techniques46 making the full integration in
some cases feasible, are used in the area of neural net-
works for example by the Boltzmann machine (Hinton,
& Sejnowski, 1983, 1986; Ackely, Hinton, & Sejnowski,
1985) and have been applied to Bayesian calculations
(See Gelfand & Smith,1990, Gelfand, Hills, Racine{
Poon, Smith, 1990, Geyer, 1992, Besag & Green, 1993,
Smith & Roberts, 1993, Tierney, 1994, or Gelman, Car-
lin, Stern, & Rubin, 1995) including Bayesian analysis
of neural networks (Neal 1993, 1996).

Those methods perform an plug{in estimate of the
expected risk. The di�erence to the Frequentist method
discussed later is that the test data are generated ac-
cording to the a posteriori distribution. One also has
to proof that the Monte Carlo estimate converges with-
out having calculated the exact solution. That means
using a �nite sample we have to assume or calculate
nonlocal knowledge about the risk function. In practice
we may check the accuracy by repeating the calculation

and estimating the variance of the optimal f̂ using for
example cross{validation or the bootstrap. Those are
methods of classical statistics and a plug{in estimate is
technically an empirical risk minimization (see Section
8) with f{generated virtual examples sampled according
to p(yjq; f).

The problems related to the plug{in principle will be
discussed below for the Frequentist approach.

Alternatively to Monte Carlo methods, the method
of Laplace can be used to approximate the risk integral.
This is the real version of the saddle point approximation
or method of steepest descent for complex functions (see
for example: De Bruijn, 1981; Bleistein, Handelsman,
1986) Taylor expansion of h(x) around its maximal value
x� and performing the resulting integrals gives for a real
one{dimensional function hZ 1

�1

df0 e��E(f
0)=

�
2�

�E(2)(f0;�)

� 1
2

e��E(f
0;�)

� e
+ 1
�

�
5(E(3)(f0;�))2

24(E(2)(f0;�))3
�

E(4)(f0;�)

8(E(2)(f0;�))2

�
+O( 1

�2
)

; (18)

written for a function with one minimum E(f0;�) (or

maximum for �E), E(2) > 0, E(i) denoting the ith
derivative at f0;�. Interpreting 1=� as `temperature',
this expansion in 1=� is a `low temperature' approxima-

tion. In the multidimensional case E(2) in the square

46Invented in statistical physics and going back to
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (1953)
(Metropolis algorithm) and Alder & Wainwright (1959)
(molecular dynamics). For applications and developments in
physics see for example Hammersley & Handscomb (1964),
Binder (1986, 1987, 1995), Binder & Heermann (1988), or
the last chapter in Montvay & M�unster (1994), for mathe-
matical background on Markov chains, for example, Seneta,
1981, and for their early use in statistics see Hastings, 1970,
Ripley, 1977, Geman & Geman, 1984, Ripley, 1987.
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root factor for example has to be replaced by the de-
terminant of the matrix of second derivatives. For posi-
tive quadratic h, i.e. Gaussian e��E , all terms E(i) with
i > 2 vanish. Higher order terms are obtained viaWick's
theorem47 and include, in a graphical notation, an ex-
ponential of all so called `linked diagrams'. 48 (see for
example Negele & Orland, 1988, Itzkyson & Drou�e,
1989).

Generalizations of the saddle point formula for multi-
ple extrema exist which care about overlapping parts be-
longing to su�ciently close extrema (Berry, 1966, Miller,
1970, and Connor & Marcus, 1971). However, one usu-
ally assumes the extrema to be well separated, and in our
case, being not so much interested in the actual value of

the Bayesian risk than in �nding the best f̂ , only e�ects

varying between di�erent f̂ would be important.
To �nd the expansion point f0;� one has to solve the

stationarity conditions

d

df0
E(f0) = 0; (19)

which are nonlinear for non{quadratic E, and have then
to be solved iteratively to �nd a self{consistent solu-
tion. In a multidimensional case a self{consistent so-
lution f0;� = ff0;�x jx 2 Xg is only inuenced by the

values of f
0;�
x0 but no other f0 2 F 0. Thus, f0;� has

to incorporate approximately the combined e�ects of all
other f0 2 F 0, so sometimes f0;� is also called a mean
�eld solution. Analogously one sometimes refers to the
stationarity condition (19) as mean-�eld equation and to
the saddle point approximation as mean �eld approach.

According to Eq.(18) one might apply the sad-
dle point approximation to the whole f0{dependent

integrand p(f0jD)r(f0; f̂) or y{ and q{dependent to
p(f0jD)p(yjq; f0). Both variants are clearly usually too

complicated, leading for example to a f̂{dependent fac-
tor depending on the second derivative.49 But having
a large amount of data or strong nonlocal dependen-
cies it is often reasonable to assume the posterior prob-
ability p(f0jD) to be peaked sharply around one maxi-
mum. More formally, we may identify � with the num-
ber n of training data, and assume that the sample mean

47Which is a systematic way to calculate (multidimen-
sional) Gaussian integrals over polynomials. Those arise
when expanding the remaining exponential factor.

48The di�erence between `linked' and `unlinked' diagrams
is similar to those between moments and cumulants generated
by < eL > or ln < eL >, respectively, in a high temperature
expansion (See Section 5.3.2). The general relation between
expanding a sum of exponentials and its logarithm is also
known under the name `linked cluster theorem'.

49On the other hand the f̂{dependency is an interesting

feature if r(f0; f̂) can be included , because then the saddle

point approximation can be adapted to f̂ . It would lead to
coupled maximization and minimization problems. (In con-
trast we will discuss below a maximization problem which is
independent of the subsequent minimization problem.) This
dependency of the maximization problem on the correspond-

ing minimization problem, i.e. its adaption to f̂, suggests
for example an iterative procedure where both steps are per-
formed alternately.

1
n

P
i ln p(yijqi; f0) of the variable z(y; q) = ln p(yjq; f0)

becomes for large n a nearly n{independent function. In
this case a large n (many data) correspond to a low tem-
perature 1=�.50 Then the second order Taylor expansion
of the log-posterior ln p(yjq; f0) (i.e. a Gaussian approx-
imation for the posterior) can be a good approximation.
For example, under some regularity conditions, (e.g. the
number of parameters included in f0 is not chosen to in-
crease with the sample size, the limit is not at the edge
of the parameter space F 0, or one uses a model speci�-
cation where di�erent parameter values f0 correspond
to identical probabilities p(yjq; f0) at the maximum)
this will be the case for i.i.d. random variables z(y; q)
with �nite variance, according to the general asymptotic
Gaussian limit theorem (Le Cam, 1953, 1986, Le Cam
& Yang, 1990, see also the discussion and references in
Chapter 4 and Appendix B of Gelman, Carlin, Stern,
Rubin, 1995). Then the posterior will have a variance
(nJ(f0))�1 where J is the expectation under the true
state of (the matrix of) the second derivatives of the log-
posterior (Fisher information). For dependent variables
this is not necessarily true, but can also be the case.

Then, if r(f0; f̂) varies only weakly with f0 compared
with p(f0jD) (Gaussian p(f0jD) alone is not enough in
this case) it does not strongly inuence the location of
the maximum. Then we can identify � with n, andE(f0)
with� 1

n

�P
i lnp(yijqi; f0)+lnp(f0)

�
. (The factor n dis-

appears in the stationarity conditions for h(x) if those
are multiplied by n.) We do however not restrict to cases
where we interpret � = n. Having nonlocal prior terms
(interactions) in the exponent the saddle point approx-
imation can be a good approximation even for a small
n of local data, if the dependencies induced by the prior
(interaction) terms restrict the number of function with
high probability strongly enough. Indeed, from physics
it is known that mean �eld theories (saddle point ap-
proximations) can become exact when the correlations
are strong, like for long{range forces or for local forces
in high dimensional spaces. (For many physical models
with local interactions, like the Ising model d > 4 is the
dimension above which the mean �eld theory is valid.)
In the case where only part of the exponent is multiplied
by �, i.e. the integrand has the form e�h(x)+ln g(x), we
can apply the slightly more general formulaZ 1

�1

df0 r(f0)e��E(f
0)� r(f0;�)

�
2�

�E(2)(f0;�)

�1
2

e��E(f
0;�):

with r(f0) corresponding to r(f0; f̂ ), ��E(f0) to

L(f0; f̂ ), and f0;� is the location of the minimum of

E(f0) (maximumof L(f0; f̂)), i.e. independent of r(f0).
This is called maximum posterior approximation

(MaP). Especially for high dimensional spaces F 0 the

50Similarly, in �eld theories (e.g. quantum theory) in a Eu-
clidean (imaginary time) formulation the system size is re-
lated to n, while in the corresponding interpretation as classi-
cal statistical system the parameter is an inverse temperatur
�, and the evolution operator for imaginary times appears
as \transfer matrix". In particular, the large � limit corre-
sponds to the limit of large system size. (See for example
Zinn-Justin, 1989.)
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o�{peak contributions can be large requiring a large
amount of data to allow a MaP approximation. Note
also, that in the context of decision theory we only need

to evaluate the Bayesian risk to select a optimal f̂ and
we do not have to require a good approximation of the

risk itself, and f̂{independent factors are therefore not
important, like the ones including the second derivative
h(2) or the factor p(yD jqD).

Hence, to apply a q{, y{independent MaP approxima-
tion with respect to f0 we write the f0{dependent but
q{, y{independent probabilities in exponential form

p(yDi jqDi ; f0) = eL
D(yDi jq

D
i ;f

0);

and
p(f0jf) = eL

0(f0);

de�ning the log-probabilities LD (log-likelihood), L0

(log-prior) and get

r(f; f̂) /
Z
df0 e(

P
i
LD(yDi jq

D
i ;f

0)+L0(f0))r(f0; f̂):

If we include the log-prior ln p(f0) into h(x), it is also
included in the determination of the maximum h(x�).
This allows to discuss situations where the n data are
not enough to yield sharp, especially non{degenerate,
maxima (and indeed, choosing the relevant questions as
basis questions, X = Ql, the prior is always essential for

local data if n < jXj). In contrast we assumed r(f0; f̂)
not to be important for the location of the maximum. An
extreme example for the opposite would be if the risk for

the most probable state f0;� is for all f̂ in�nite, meaning
that f0;� can be excluded from F 0. Less extreme, a
risk can be strongly peaked at an f0 with low posterior

for some f̂ . On the other hand, it only matters which

f̂ is �nally selected as the optimal one. This implies
robustness against all errors, made somewhere on the
way, which do not change this �nal decision.

We summarize that the MaP approximation includes
probability aspects, but not aspects of relevance related
to the loss function.

Maxima may be degenerated or weakly peaked within
a subspace of parameters of F 0. Then one may perform
a partial saddle point approximation for the subspace
where the necessary conditions are ful�lled. For exam-
ple, the risk may measure aspects of (i.e. depend on pa-
rameters describing) f0 which are not measured by the
data, so p(f0jD) does not dependent on them. Then

the locations of the maxima depend on the risk r(f0; f̂)
and the maxima are necessarily degenerated in direction
of those relevant but not measured parameters (e.g. in
a model with X = Ql, uniform prior, and only local
data). Then the MaP step returns not a single point but
a subspace of important possibilities. More general, the
maximum can, after incorporating data and prior, still
be rather at in some of the relevant dimensions. Then
a MaP approximation should only replace a part of the
f0{integration while another part, i.e an integration over
a subspace of parameters of f0, remains. Performing
this integration gives a new e�ective risk sensitive to the
available data.

The MaP approximation consists in �nding the most
probable state f0;� to approximately calculate the f0 in-
tegral. Then the factor

P
iL

D(yDi jqDi ; f0;�) + L0(f0;�),

being independent of f̂ , can be skipped and the optimal

action state f̂� can be found by minimizing r(f0;�; f̂).

Often min
f̂
r(f0; f̂ ) is a constant over all f0, like in the

usual regression case with mean square error, determinis-

tic unrestricted f̂ , and Gaussian f0 with f0{independent
variance. Thus, the full approximation procedure con-
sists of two steps (MaP{MiR)

1. Maximization of the posterior (MaP):

f0;� = argmaxf0

 
NX
i

LD(yDi j; qDi ; f0) + L0(f0)

!
;

2. Minimization of risk (MiR):
(for the state f0;� with maximal posterior)

f̂� = argmin
f̂
r(f0;�; f̂):

Note that in this approximation the MaP step is per-
formed independent of the aspects important for the
MiR step.51 The �rst step can be interpreted as �nd-
ing an approximation independent from its application.
The second step uses the best found approximation for
a speci�c application situation de�ned by the loss func-
tion. This is the usual implicit setting when looking
for approximations without specifying applications for
which they will be used. It has the advantage that the
independence allows the same approximation to be used
for several di�erent applications. Thus, in the every day
use of this procedure a statistician performs the �rst ap-
proximation step and potential users of the approxima-
tion the second, adapted to their problem. An exam-
ple for a MaP{MiR related algorithm can be found in
(Lemm, Beiu, Taylor, 1995). There the MaP step is
implemented as a density approximation. A subsequent
constructive algorithm tries to �nd a solution easy to im-
plement in hardware, not working directly with the data
but with the results of the density estimation of the �rst
step. This is an attempt to minimize also aspects of the
loss not related to approximation and corresponds to the
MiR step.

The loss function depends on the action state f̂ which

may include aspects like complexity of f̂ . But note that
the loss measures no aspects like complexity of the al-

gorithm used to �nd the optimal (or a good) f̂ . So to
say, action loss is included but no algorithmic loss. As
a two-step procedure can often be expected to be more
complex than a one{step procedure, the MaP{MiR pro-
cedure seems to be more appropriate for situations where

51In statistical practice or biological reality where on{line

learning is required (and the model spaces F 0 and F̂ may
be adapted) both steps can of course be performed inter-
laced. See for example the Helmholtz machine (Dayan, Hin-
ton, Neal, & Zemel, 1995; Hinton, Dayan, Frey, Neal, 1995),
where in the `learning phase' (MaP step) a `generative model'
(state f0) is adapted and in the `dreaming' phase (MiR step)

the `recognition model' (action f̂) is optimized for given gen-

erative model f (0;�).
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loss related with f̂ , for example its approximation ability
and complexity, are more important than aspects of the
loss related to the requirement of resources of the algo-
rithm. But as stated in Section 6 one can also consider
algorithms as part of f̂ in a higher level problem. Then
one can include speci�c algorithmic aspects of the loss
and look for an optimal algorithm for a certain distribu-
tion of application (learning) situations. Again, to solve
for the best algorithm one has to use a meta{algorithm
and the same kind of problem appears on this higher level
as here meta{algorithmic loss aspects are not included.

Going further, meta{algorithms could be included into f̂
using meta{meta{algorithms and so on, but usually the
complexity from one level to the next increases so much
that such applications are not expected to be feasible in
most practical cases.

There are cases where p(yjq; f0) depends on a huge
number of internal (`hidden') integration variables vari-
ables z. Then an approximated log-posterior must be
maximized. Exchanging a nonlinear function with the
integration is called annealed approximation (Seung,
1995). The replica approach is a special adaption of
a saddle point method when the logarithm of a sum
gi = ln

Pn

j e
Lj has to be averaged with weights pi

(Mezard, Parisi, & Virasoro, 1987). This situation can
occur, for example, if algorithms are compared with re-
spect to a large (n ! 1) number of application situa-
tions where the average is over the sampled data.

The second MiR step uses p(y; qjf0) to �nd the best

alternative f̂ , i.e. for `training' of the action model. A
numerical evaluation of the integral can be seen as an
empirical risk minimization (see Section 8) on a set of
(f0{generated) virtual examples sampled according to
p(y; qjf0), like a numerical evaluation of a full Bayesian
approach can be based on f{based virtual examples gen-
erated according to p(y; qjf).

Note that the distinction between a parallel and
inverse decision problem, corresponding to choosing

p(ŷjq; f̂) or p(q̂jy; f̂ ) to de�ne the action model, only
matters for the MiR and not the MaP step. Also, the
model needs not necessarily to be reduced to only one
remaining state. Thus, MaP{MiR can be generalized
with a �rst step reducing the space F 0 to a smaller
~F 0 and a second step minimizing the risk within that
~F 0. But using more than one state for the minimiza-
tion step, like taking for example the n most probable
states or skipping only very unlikely ones, requires cal-
culation of the relative weights of the states related to
second derivatives with respect to the parameters of f0.
Every decision problem de�nes an optimality mapping

by f̂ (f0) = argminf̂2F̂ r(f
0; f̂) for all f0 2 F 0 and anal-

ogously for f 2 F . In principle, one can restrict the

search space F̂ by eliminating f̂ being never optimal.
In the case available data have equal probability within
f0 2 [f0]r� i.e. they do not distinguish between states f0

leading to the same decision f̂ identifying those makes
optimality mapping one{to{one. With respect to such a
construction the space F 0, and therefore also the MaP
step as maximization over f0 2 F 0, is not independent
of the loss function.

7.2.1 Perturbation theory beyond MaP

The MaP approximation can be extended by expand-
ing the exponential to higher orders around the Gaussian
reference point. We already mentioned that higher or-
der contributions can be obtained by including all linked
diagrams according to Wick's theorem. In general, a per-
turbation theory can be built upon any reference point
based upon the general formula (See the Section about
Heim's perturbation theory in Jaynes, 1996)

eA+�B = eA

"
1 +

1X
n=1

�nSn

#
;

with

Sn =

Z 1

0

dx1

Z x1

0

dx2 � � �
Z xn�1

0

dxn

nY
1

B(xn);

and
B(xn) = e�xnABexnA:

Here A, B stand for matrices, x for a real number and
xA means multiplication of each entry of A by x. In
matrix notation we have

r(f; f̂) =< ~l(q; y; f̂ ) >

= Tr(�(q; y; f0; f)~l(q; y; f̂)) = Tr(eL(q; y; f0; f)~l(q; y; f̂ ));

with L(q; y; f0; f) = ln(p(f0jf)p(q)p(yjq; f0)), the trace
denoting the integrals Tr=

R
df0
R
dq
R
dy for diagonal

matrices L(f)i;j , ~l(f̂ )i;j with indices i = (q; y; f0), j =

(q0; y0; f 00), and �(q; y; f0; f) = eL(q; y; f0; f). Because
the trace is invariant under similarity transformations
S this formulation allows, if convenient, to work with

nondiagonal L0 = SLS�1, ~l0 = S~l0S�1.52

If we now write L = A + �B, the expected risk can
be expressed completely by unperturbed expectations
< � � � >A with respect to the reference eA

< ~l > � < ~l >A=

1X
n=1

�n(< Qn
~l >A � < Qn >A< ~l >A);

with

Q1 = 1;Qn + Sn �
n�1X
k=1

Sk < Qn�k >A; n > 1:

8 The Frequentist approach

8.1 Empirical risk minimization

The Frequentist paradigm is related to the general plug{
in or bootstrap principle.53 It is also called Monte Carlo
estimate if applied to calculate expectations (Efron, B.
& Tibshirani R.J. 1993). It is based on results of the

52See for example Derka, Bu�zek, Adam, & Knight (1996)
for Bayesian inference with density operators used in quan-
tum theory.

53Often the term bootstrap refers to the special case of
estimating the standard error of some sample estimate which
then requires resampling.
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theory of uniform convergence. A functional of a pop-
ulation distribution is estimated by applying the same
functional to an empirical sample drawn according to
that distribution.54 In our case the risk functional r
is replaced by an empirical risk r̂: Training questions
qD are generated according to p(qDjyDc ; ŷDc ) (or usually
p(qD)) and the risk functional r is applied to the empir-
ical distribution of

l(qDi ; y
D
i ; ŷi):

In the case the risk functional is chosen as the expec-
tation and p(qjyc; zc) = p(qjyc) we de�ne an integrated
loss functionZ

dz p(zjq; y; f̂)l(q; y; z) = ~l(q; y; f̂ );

Speci�cally, in parallel decision problems z is equal to ŷ

and in inverse problems equal to q̂. Note that in ~l(q; y; f̂)

f̂ just denotes parameters. Yet, for a given loss func-
tion we can always introduce some e�ective determin-

istic function ~f (q) (or ~f (y)) (not uniquely de�ned and

possibly vector valued) containing the dependence of ~l

from the parameterization of f̂ and (part of the depen-

dence from) q (or y) according to ~l(q; y; f̂ ) = ~l(q; y; ~f (q))

or ~l(q; y; f̂ ) = ~l(q; y; ~f (y)). That means every decision
problem with p(qjyc; zc) = p(qjyc) can be seen as equiva-

lent to a decision problem with deterministic function ~f .
For a parallel decision problem with a deterministic ŷ{
producing device we choose the functional dependency

of ~l from its �rst argument q to be equal to that of l from

its �rst argument q, which gives l = ~l and f̂ (q) = ~f (q).
Alternatively, we can simplify the notation by absorb-

ing the �rst q into the de�nition of ~f (q) and write in

such cases ~l(y; ~f (q)). Analogously, in an inverse setting

we de�ne ~f(y) and can choose in the deterministic case
~f (y) = f̂ (y).
The expected risk

r(f0; f̂) =

Z
dq

Z
dy p(q; yjf0)~l(q; y; f̂ );

with p(q; yjf0) = p(qjyc)p(yjq; f0) is approximated by

r̂ =
1

n

nX
i

~l(qDi ; y
D
i ; f̂) =

1

n

X
i

~li(f̂ );

with the data sampled according to p(q; yjf0).
The plug{in principle assumes the distribution of

training data D including the distribution of questions

to be identical to that of the test data D̂l including p(ql)
for the relevant ql for which we want to calculate the
functional r. This holds for example in a setting where
both training and test set are generated by the same
(stationary) device. Then an explicit knowledge of the
generating distribution is not necessary.

Because the empirical risk values are used to make the

decision, the chosen f̂ depends on the training data and

54As empirical distributions of �nite samples are a quite
restricted class of distributions, functionals equal for them
can di�er on general distributions.

the empirical risk of the chosen f̂ does not approximate
its expected risk. To estimate the expected risk one has

to reevaluate the risk for the chosen f̂ with new, inde-
pendent sample data, the empirical test set, not involved
in the decision. (Not to be confused with the (true) test
set Dl in the de�nition of the decision problem.) Bounds
for the di�erence between the expected risk of the true

optimal f̂ and the chosen f̂ are given by the theory of
uniform convergence (Vapnik, 1982; Dudley, 1984; Pol-
lard, 1984; Haussler 1995, for an introduction e.g. Kearns
& Vazirani 1994). These bounds are based on what
we called structural information. Their local part, like
bounds for absolute values or the local variance, allows
locally the application of probability theoretic inequal-
ities like Hoe�ding's or Chebyshev's inequality. Their
nonlocal part, formulated for example as �nite �-entropy,

or �nite pseudo or VC dimension of a set ~l(q; y; f̂ ) for

f̂ 2 F̂ , allows generalization. Then, when the training
data are i.i.d. sampled according to the test distribution,
the theory of uniform convergence gives bounds on the
probability of deviations of the empirical risk from the
expected risk in the true state f0. For example, (Vapnik,
1995) gives bounds �(f;N ) in terms of the VC dimension
for

pV C = sup
f0

p(sup
f̂

jr̂(D(N; f0); f̂)� r(f0; f̂ )j > �jf0);

for bounded risk. The supremum over true states f0

(with p(f0jf) 6= 0) is implicit in the results using the
de�nition of the VC dimension and can be replaced by
8f0. Using worst case considerations there is no need in
this theory to explicitly calculate posterior probabilities.

There are some recent studies how speci�c nonlocal
information a�ects the bounds of uniform convergence
(Abu{Mostafa, 1990, 1993a, 1993b; Ratsaby, Maiorov,
1996). But for general nonlocal information a reformu-
lation in terms of VC dimension or �{entropy is often
di�cult or even practically impossible, and one has to
use an upper bound for them, giving the results of the
theory of uniform convergence another worst case inter-
pretation. Then, especially when only few local data are
available, the uniform bounds can be trivial or weak.

8.2 Vocabulary and framework

We formulate the Frequentist setting in a decision the-
oretic language. Assume the availability of a station-
ary sampling process S to generate training questions
q 2 QD according to some pS(q) for which answers are
available and the ratio with the distribution of relevant
questions p(q)=pS(q) is known. We call the set QS of
questions with pS(q) 6= 0 the sampling population (for
questions) and specify for the present context QD to be
the set of sampled or training questions with answers
used for the plug{in estimate. Including previously de-
�ned sets of questions we have the following listing

1. QS the sampling population with q 2 QS the sam-
pling questions,

2. QD the set of sampled or training questions,

3. Q0 the set of prior questions being the questions
with data available but with q 2 Q0 not sampled
according to S or not used for the plug{in estimate,
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4. Ql the set of relevant questions,

5. Qc = Ql nQS the set of cost questions,

Data (qi; yi) are obtained by using measurement devices
for qi to �nd results yi. With respect to a sampling
process S we separate the available data into the two
groups:

1. Sampled data or training examples DS , we will
write more shortly just D skipping the superscript
S, which are obtained using the available station-
ary sampling process S and used to calculate the
empirical risk via the plug{in principle. Nonlocal
questions can be included in QS .

2. Prior data D0, being all other data with questions
generated from other processes S0 6= S. Such pro-
cesses can be unknown processes from the past pos-
sibly di�erent from S, they can be non{stationary
like for active queries, they can use devices mea-
suring other questions or represent active control.
All priors p(f0jf) can be related to a factorial
prior pfact(f

0) =
Q

x2X p(f0x ) by data D0 with

p(f0jf(D0)) / pfact(f
0)p(D0jf0). The data D0

are not uniquely de�ned and the corresponding
questions need not necessarily to be in the sampling
population QS . Data which are sampled according
to S but not used for the plug{in principle are not
sampled data but prior data.

For a Bayesian treatment the distinction is not impor-
tant, but in a Frequentist approach only sampled data
are used for the plug{in principle while prior data only

enter in form of restrictions of the space F̂ . Note that
this use of the term prior does not refer to the temporal
aspect meaning information collected previously to the
data D. We made things simpler by not trying to distin-
guish non{sampled non{prior data from priors. Thus,
identi�cation of the reference factorial prior as well as
assumed and not measured data are understood as be-
ing part of the prior data D0. In another context it
might well be convenient, but not necessary, to distin-
guish non{sampled data from prior data with the latter
having a more temporal connotation or referring to as-
sumed and not measured data.

According to this distinction of data we can also split
the log-posterior into a sampled and prior part

L(D;D0; f0) = LD(D; f0) + L0(D0; f0)

=
X
i

LD(yDi jqDi ; f0) + L0(f0):

Introducing a dummy index one can always achieve
Q0 \ QS = ; even if for a question sampled and prior
data are available at the same time. Non{relevant sam-
pled questions q =2 Ql can be excluded from QS because
for them p(q) = 0. If a sampling process nevertheless
produces them they can instead of simply being elimi-
nated technically be treated like prior data inuencing
p(f0). The property of being sampled is for them not im-
portant and we choose in the followingQS � Ql. Includ-
ing nonlocal questions like smoothness into QS instead
of nonlocal prior data could also enable generalization.
But this requires nonlocal questions also to be relevant,

i.e. in Ql, what is usually not the case. Also we prefer
to treat the q 2 Ql as being independent without priors.

On the other hand we do not assume all relevant ques-
tions necessarily to be available for sampling. That al-
lows Ql � QS which represents situations where only
part of the expected risk can be estimated by sampling.
We call the remaining part costs. Complexity costs are a
typical example. It must be determined by other infor-
mations which could come from another sampling pro-
cess, a Bayesian calculation, or if Qc is �nite and deter-
ministic from a complete set of answers. Fig.8 shows the
relations graphically.

We de�ne prior data for question q to be in the set of

a. Hints D0
h if questions from QS depend on them,

that is if Xq \XQS

= XS 6= ;, (Here Xq denotes
the basis of prior question q.)

b. Cost priors D0
c if cost questions from Qc depend

on them, that is if Xq \XQc

= Xc 6= ;. Here Xq

denotes the basis of prior question q.

A speci�c prior can be both and therefore the two sets
need not to be disjunct.

Splitting the q{integrations of the expected risk into
a sampled risk rD with q 2 QS , determined by answers
to q 2 QD � QS sampled by S, and an additional (non{
sampled) cost term r0 for q 2 Qc, determined by D0,
gives

r(f; f̂ ) = rD(f(D;D0); f̂ ) + r0(f(D;D0); f̂ );

with rD(f; f̂ ) beingZ
QS

dq

Z
dy

Z
df0p(f0jD;D0)p(q)p(yjq; f0)~l(q; y; f̂ );

and analogous for r0(f; f̂) with
R
Qc dq. We write ~lD

for the part of the loss function depending on q 2 QS,

that means ~lD(q; y; f̂) = ~l(q; y; f̂) for q 2 QS and zero

otherwise, i.e. if q 2 Qc. Analogously, we write ~l0 for the
part depending on q 2 Qc. The parts are only de�ned
up to q{independent terms, because such terms can be
shifted between questions without changing the risk. We
can use this freedom for a convenient choice.

Cases in which available data for questions in the loss
function are partly sampled as well as not sampled are
included in this de�nition by duplicating questions in QS

with a dummy index,

~l(q; y; f̂ )! ~lD(q; y; f̂) + ~l0(q0; y0; f̂);

if we de�ne q0 2 Qc for q 2 QS .
The cost term can depend in general on all data

including the training examples D. In such cases

one may call r0(f; f̂ ) posterior (non{sampled) costs

or data dependent (non{sampled) costs as they have
to be determined after having seen all the data. If
p(f0jD;D0)=p(f0

QS jD;D0
h)p(f

0
Qc jD0

c ) with D
0
h \D0

c = ;
then the f0

QS{integration vanishes. Understanding f0 =

f0
QS to be the restriction on QS we can write

r(f; f̂ ) = rD(f; f̂ ) + r0(f̂ );
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and call r0(f̂ ) = ~l0(f̂ ) prior costs. Being q{independent,
~l0 can also be seen as part of ~lD.

Examples for possible (prior) costs include, storage

requirements for parameters of f̂ like the number of
weights of a neural network or number of nodes in a
decision tree, penalties for on{line evaluation times, cri-
teria related to understandability for human experts, or
to an e�ective and cheap hardware implementation in
VLSI technology.

8.3 Sampling generalized questions

Reweighting

Here we consider the case of relevant questions q 2 Ql

not directly sampled, i.e. q =2 QS or equivalently q 2 Qc.
We show that for such questions which have a basis Xq

of q completely within QS theoretically, but often not
practically, the sampling process S can be extended to

an S0 so that q 2 QS0 . The basic fact used in reweight-
ing for evaluating an integral by the plug{in principle is
that the factorization of the integrand into function and
probability is not unique,Z

dz p(z)g(z) =

Z
dz p0(z)

p(z)

p0(z)
g(z) =

Z
dz p0(z)g0(z);

where g0(z) is equal to g(z) multiplied by the reweight-
ing factor p(z)=p0(z). That means, instead of sampling
z according to p(z) and summing up g(zi) for each
sample point zi we can, assuming p(z) and p0(z) are
known, alternatively sample according to p0(z) summing
up g0(zi) = (p(zi)=p

0(zi))g(zi). For example, the method
of importance sampling (Montvay & M�unster, 1994) uses
reweighting to reduce the plug{in error by choosing the
reweighting factor so that the reweighted function g0(z)
is as constant as possible. But note that the factor p0(z)
must be a probability and can especially never be neg-
ative. In the situation we are discussing here, p(z) cor-
responds to the relevant distribution of test questions
q 2 Ql with p(q; yjf0) = p(q)p(yjq; f0) while p0(z) is the
distribution available to generate training data.

The simplest case of reweighting is when the set of
test and the sampling population of potential training
questions are the same , i.e. QS = Ql, but have di�erent
probability distributions pS(q) 6= p(q). Then, if the ratio
p(q)=pS(q) is known (not necessarily the test and avail-
able training distributions p(q), pS(q) itself) one can use
p(q)=pS(q) as reweighting factor for the loss function.
Thus, the sampling data term of the risk can be related
to a sampling process S with pS(q) by

r(f0; f̂) =

Z
dq

Z
dy pS(q)p(yjq; f0)~lW (q; y; f̂ );

where the de�nition of the reweighted loss

~lW (q; y; f̂ ) =
p(q)

pS(q)
~l(q; y; f̂)

compensates for deviations between p(q) and pS(q) and
pS(q) 6= 0 according to the de�nition ofQS . If not stated

otherwise we understand in this paper implicitly ~l to

mean ~lW or p(q)=pS(q) = 1.
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Figure 8: Shown is the distinction for data into the two
subgroups of a. sampled or training data being sampled
from a stationary process S and b. prior data from any
other sources. For questions there are 1. the set of rele-
vant questions Ql, 2. the sampling population QS from
which training questions are drawn according to a sta-
tionary pS(q), 3. the training questions (�), and 4. prior
or non{sampled questions (�). The sets of training and
prior questions are �nite. The part of the loss integra-
tion depending on QS can be determined by sampling
training data. The remaining part of the expected risk
is called costs and must be determined for example by
a Bayesian risk calculation, another sampling process or
using exhaustive queries if Qc = Ql n QS consists of a
�nite number of deterministic questions.

49



Only a deterministic function must be included for a
q 2 Ql depending deterministically on one q 2 QS . But
for a q 2 Ql depending deterministically on two or more
qi 2 QS the probability being sampled decreases with
the product of the probabilities for (independent) qi.

More general is a probabilistic dependence on answers
to questions from QS . Consider relevant questions q 2
Ql given in their dependence on the sample questions qS

p(yjq; f0) =
Z
dqS

Z
dyS

Z
dzS p(qS jySc ; zSc ; q)

�p(yS jqS ; f0)p(zS jqS ; yS ; q)�(q(qS ; yS ; zS)� y);

with the two f0{independent and q{dependent proba-
bility factors and the de�ning function q(qS ; yS ; zS) as-
sumed to be known. The probability p(yS jqS; f0) de-
pends on the state of nature and is unknown. Then elim-
inating the �{function by performing the y{integration
shows that the empirical risk is a sum of

l(qi; yi = q(qSi ; y
S
i ; z

S
i ); zi) = l(qi; q

S
i ; y

S
i ; z

S
i ; zi);

when a sampling procedure for the variables is available
according to

p(q; z; qS; yS ; zS) = p(qjyc; zc)p(qS jySc ; zSc ; q)
�p(yS jqS ; f0)p(zS jqS; yS ; q)p(zjq; y(qS ; yS ; zS); f̂):

Using the corresponding devices the sampling steps
within the single components are the following:

q ! qS ! yS ! zS ! z

Assuming probability distributions pS(qS jySc ; zSc ; q) = to
be available to generate training data gives a q{, ySc {,
zSc { dependent reweighting factor for the loss function

p(qS jySc ; zSc ; q)
pS(qS jySc ; zSc )

:

As already discussed for the deterministic case it is a
principal problem for nonlocal questions that the qS can
form a vector. Take as example a question measuring
answer di�erences between points x1 and x2 = x1 +�

p(yjq; f0) =
Z
dx1

Z
dx2 p(x1jq)�(x2 ��� x1)

�p(y1jx1; f0)p(y2jx2; f0)�(y1 � y2 � y);

and assume that the xi are i.i.d. sampled. Here the prob-
ability to have a complete pair of two values y1(x1) and
y2(x2) to insert as y = (y1; y2) into the loss function
has measure zero in standard continuous cases (even for
� = 0) if � is �xed and not integrated over. If the dis-
tribution is not as badly behaved as the �{function in
the example there is still the high dimensionality of x.55

That means the amount of available data is usually too
small to sample such nonlocal questions.

55High dimensionality itself is not the problem if there are
enough restrictions for the function. The situation is like
in one{dimensional problems as a theorem from Kolmogorov
shows that every continuous function of several variables can
be expressed as superposition of functions of one variable for
closed and bounded input domain (Kolmogorov, 1957). But
the nonlocal priors used in the theory of uniform convergence,
corresponding for example to a speci�c VC dimension or �{

entropy, and related to a restricted F̂ , might not be consid-
ered as weak and harmless in those cases without empirical
foundation.

Missing values

One could think in remedy the situation by using
guesses for the missing values necessary to answer a gen-
eralized question. Indeed, the Monte Carlo method or
plug{in principle for expectations can be interpreted as
replacing missing values by the data mean. This implic-
itly assumes the loss function to be constant (or com-
pensating) for missing values. For example, the empiri-
cal risk estimate can be seen as minimization of a mean
square error of the empirical loss with a prior (for the

loss, not for f0) �(~l(q; y; f̂ ) � E(~l))2, with E(~l) the ex-

pectation of ~l, in the �! 0 limit.
While the plug{in principle replaces missing values

yx by the global sample mean
P

x yx, one might wish

better locally varying approximations of p(yjx; f0). This
can be done by methods of density estimation, including
parametric approximations and nonparametric methods
like splines, kernel and nearest neighbor methods, (see
for example: Silverman, 1986; H�ardle, 1990) or neural
networks.

Optimal in a Bayesian sense would be sampling ac-
cording to the posterior probability p(yjq; f(D)), but
without reference to a speci�c model of f0 all methods
are somewhat ad{hoc.56 But all those approximation
methods used to replace missing values can be inter-
preted as an approximationof the posterior p(f0jD) with
respect to some (implicit) model of p(yjq; f0). Speci�-
cally, Girosi, Jones, Poggio (1995) relate common inter-
polation methods (Radial Basis Functions, splines) to
regularization terms, i.e. from a Bayesian point of view
to priors within a maximum posterior approximation.
Also note, that all these approximation methods which
one can use to replace missing values are itself decision
algorithms and have therefore, within a Frequentist ap-
proach, the same problems with general structural in-
formation as the Frequentist approach for our original
decision problem. Thus, all the aspects we discuss for
evaluating the empirical risk for generalized questions
appear here again for a speci�c approximation problem.

8.4 Prior data

Extended loss, indirect priors, and virtual
examples

Common is a situation where prior information is
available in addition to training data sampled from the
test (relevant) questions. This information can always be
seen as corresponding to questions not included in the
relevant set Ql. An example are priors like an approx-
imate symmetry and smoothness, being normally not
sampled and not included in the set of test questions.57

56Such methods can also be used directly for the loss func-

tion. This corresponds to a f̂{dependent prior on the loss
function, usually di�cult to relate to priors on f0. The op-

timal solution p(ljf(D); f̂) of this problem in the Bayesian
framework is already nearly equivalent to the solution of the
whole decision problem or even more complicated as not the
whole loss distribution might be relevant for the risk func-
tional r.

57We could de�ne an induction problem as a situation
where the generating distribution for test and training data
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In those cases the loss function can be extended by
additional terms to be de�ned also for data not in the
test set. This means, the plug{in principle uses an ex-
tended expected risk �r with respect to an extended set

Q
�SZ
dq

�S

Z
dy

Z
dŷ p(q

�S jyc; ŷc)p(yjq �S ; f0)p(ŷjq �S; f̂ )�l(�q �S ; y; ŷ);

with an extended loss function �l to approximate the
(true) expected risk under the state of nature f0. For
example a smoothness property can be included as ad-
ditional term. The optimal weight of the additional

questions, i.e. p(q
�S), is usually determined by cross{

validation or similar methods (see next Subsection). The
extended loss should be chosen so that the relevant fea-
tures according to the risk functional r of p(�ljf; f̂ ) are
similar to p(ljf; f̂ ) but this requires in general a model
of f0 to be determined. In usual approximation prob-

lems one chooses an extended loss which enforces f̂ to
answer similar as f0 also to the not relevant questions
as f hoping that this results in similar answers to rele-
vant questions, too. We will relate this ad{hoc method
for approximation problems to the maximum posterior
approximation within the Bayesian approach. We now
show how extra terms can be interpreted as arising from
a Lagrange implementation of indirect priors.

An indirect way to include nonlocal information is try-
ing to transform our knowledge f into knowledge about

f̂ . More precisely, if we call the probability of choos-

ing f̂ , i.e. p(f̂ jf; â; qr) an indirect prior, one is interested

in excluding alternatives f̂ with zero (or small58) indi-

rect prior probability. As the probability of selecting f̂
depends in general not only on f(D) but also on the de-
cision problem, i.e. the qr, including the risk functional,
loss function, test data distribution, and the algorithm â,
its complete determination is a much more complicated
than the decision problem itself requiring the represen-
tation of f in a model with certain f0. Ideally, we are
interested in the zero part of the indirect prior resulting
from the optimal algorithm de�ned by qr.

coincide, a transduction problem as a situation where some
data do not belong to the test set (Vapnik, 1982). In this
formulation, most practical problems are not induction but
transduction problems as the nonlocal (e.g. smoothness) in-
formation is normally not part of the test set.

58Knowledge about the form of the nonzero part of

p(f̂ jf; â; qr) is, in principle, of no help in searching for the

absolute minimum, as the minimization is over all f̂ even the
unlikely ones, and only the impossible ones can be excluded.
Exceptions are cases are where (also subsequent) knowledge

of risk values for some f̂ can be used to exclude others, i.e.
if nonlocal information about the risk functional can be used
to exclude certain possibilities. For example in the case of
a decision problem with known minimal value, or if one is
not looking for the absolute minimum but only for an ac-

ceptable minimum, checking f̂ with high probability �rst is
of course a good idea. Also in other cases one may ignore

f̂ with small probability so that the chance of missing the
optimum is small. This is a problem on the level of com-
paring approximations to a decision problem and its analysis
requires a corresponding risk and loss to be de�ned.

For example, in approximation problems with a

quadratic loss function ~l(q; y; f̂ ) = (y � ŷ(f̂ ))2 we know
that the optimal solution is the true regression function

E(y(f0; x)) if contained in the search space F̂ . Then we
can simply implement deterministic information about
the true regression function of f0 by the correspond-

ing restrictions on f̂ , that is if we know p(yjq; f0) =

�(q(fE(y(f0; x)); x 2 Xg)) � y) we only use f̂ with

q(f̂) = ŷ = y.
Sometimes, assuming the existence of a state produc-

ing process with stationary distribution corresponding
to a possibly unknown but reproducible state of knowl-
edge one may also empirically estimate indirect priors
by counting the results of learning algorithms.59

While some restrictions for f̂ like the range of possible
output values or speci�c symmetries are easily imple-
mentable, others, e.g. smoothness, are best taken into
account by using the method of Lagrange multipliers.
(For the exact conditions under which this is possible
see for example Bertsekas, 1995.) Formulating the re-

striction in the form qa(f̂ ) = a this means constructing
an extended risk �r by adding the following extra term to
the risk

�(a)(qa(f̂ )� a):

Here � is the a{dependent Lagrange multiplier, the term

��a can be skipped because f̂{independent, and a, qa
and therefore � can be vectors. Note that for a given
problem, including data, a determines �. For unknown
a determination of a by cross{validation (see next Sub-
section) can be seen similar to imposing a prior on a.

Now we shortly discuss how sometimes additional
nonlocal terms in the risk can be approximated by us-

ing virtual examples. If qa =
R
dx p(xjqa)qa(x; f̂) is a

sum or integral it might sometimes be easier in practice
to use only part of the sum if the generalization ability
is ensured in another way, for example by restriction of

F̂ . Consider a deterministic f̂ (x) with a symmetry or
smoothness log-prior

�(a)qa = �(a)

Z
dxwqa(x)(f̂ (x) � f̂ (sx))2:

Then one can sample x{values according to wqa(x) if
those are positive and can be normalized. This sampling
can be done independently of the sampling of the train-
ing examples according to pS(x) (for x = qD 2 QD).
Thus, the term can be approximated by sampling x and

calculating f̂ (x) and f̂ (sx).

For a quadratic loss ~lD(x; y; f̂ ) = (y � f̂ (x))2 and
some b constant with respect to x with b(a)pS(x) =
�(a)wqa(x) the sampling for the data and symmetry
terms can be combined. As � depends on a so also does

b. With ~l0 = �(a)qa and splitting the data terms in the
empirical risk

r̂ = (1� b(a))r̂D(f0; f̂ ) + b(a)r̂D(f0; f̂) + ~l0:

59Referring to practical experience or literature about the
use of speci�c priors approximates this method.
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The integrations over x and y do not a�ect ~l0 being in-
dependent of those variables, and we get for the last two
parts

b(a)

Z
dx

Z
dy pS(x)p(yjx; f0)

�
~lD + ~l0

�

= b(a)

Z
dx

Z
dy pS(x)p(yjx; f0)

�
�
(y � f̂ (sx))2 � 2(y � f̂ (x))(f̂ (x)� f̂ (sx))

�
:

When the second term in the last line vanishes, the
whole integral can therefore be calculated approximately
by using virtual (input) examples

60 (sx; y(x)) Abu{
Mostafa, 1990, 1993a, 1993b (`hints'), Pomerleau, 1991
(ALVINN), Sietsma & Dow, 1991 (training with noise in
practice), Vetter, Poggio, & B�ultho�, 1992 (virtual views
of an object), Girosi & Chan, 1995 (for RBF), and more
theoretical Webb, 1994, Leen, 1995, and Bishop (1995ab)
who gives the explicit form of regularization terms, for
quadratic and for cross{entropy error functions, for in-

�nitesimal translations, by expanding f̂(sx) in a Taylor

series around f̂ (x). When f̂(x) 6= f̂ (sx) then all non{

optimal f̂ (x) are not equal to the regression function.

For those f̂ (x) the second term does not vanish and has
to be considered in the actual minimization procedure.

But when (f̂ (x) � f̂ (sx)) is zero or the optimal regres-

sion function is in F̂ the second term vanishes at the
minimum.

Strati�cation: (cross{)validation and structural
risk minimization

A trivial toy example may clarify the basic idea: As-
sume two deterministic questions x1 and x2 and a set
of possible answers Y = f0; 1g corresponding to the

four possible functions f̂i characterized by their answers

(f̂i(x1); f̂i(x2)): f̂1 : (0; 0), f̂2 : (1; 1), f̂3 : (1; 0),

f̂4 : (0; 1). Let us sample data D until we have an-
swers to both questions, for example x1 = 0 and x2 = 1.

Clearly, f̂4 would minimize the mean square error. Now
we perform the same minimization in a hierarchical way.
We form the two groups (strata) of smooth functions

S1 = ff̂1; f̂2g and non{smooth functions S2 = ff̂3; f̂4g
and use the �rst data point, for example x1 = 0 to mini-

mize within the two groups �nding f̂1 and f̂4. To decide
between the optima of the two groups we sample more

data until we get x2 = 1. Again, we choose f̂4. Note
that also forming non{disjunct, overlapping groups, e.g.
Si � Si+1, would lead to the same result as long as they
include all four functions. However, a strati�ed search
is not always equivalent, to a full search. The di�erence
is, that the new data are only used to decide between

60In this special case the input sx is newly generated, while
the same target y for x is used again for sx. We also used
the term virtual examples in the Bayesian approach for sam-
pling from the posterior probability p(yjq; f) where for risk
minimization both, q (e.g. x) and y, are generated according
to the posterior.

`winners' of the strata, and `loosers' are not reconsid-
ered again. They may however better �t the complete
data.

In the case of too large sets F̂ the di�erence be-
tween the minima of the expected (training) risk for

the empirically chosen and the optimal f̂ can become
too large (Vapnik, 1982) and solutions can depend too
strongly (non{continuously) from the data (Tikhonov,
1963). Than it is necessary to restrict the minimization
to a simpler subtask (regularization).

Subsets or strata are de�ned by some deterministic

question qa requiring qa(f̂ ) = s. Then we search for the
minimum �rst within the strata and compare the best
solutions of di�erent strata in a second step. We want
to select qa so that minimization within each stratum s
is possible61. Selecting a speci�c stratum is equivalent
to implementing an indirect prior, discussed in the last
paragraph. Practically, it can be done by direct restric-
tion of function values like using hardwired symmetries,
or, more indirectly, by restricting parameter sets. Exam-
ples include choosing the number of nodes or the initial
values of the weights of a neural network or the learning
algorithm used. This can create overlapping strata, but
this is no principal problem and only means that some
solutions are considered more than once in the search
process. (This is indeed the normal case for nonlocal qa

like smoothness, where the value of qa can be increased
without changing any function value at a data point.)
All these constraints are easily kept constant during the
minimization (learning) process.

Some constraints like smoothness might be di�cult
to implement directly. Then again, this minimization
with constraints can be done by the method of Lagrange
multipliers producing an extra term to be added to the
empirical risk

�(s)(qa(f̂ )� s):

The only di�erence to the preceding paragraph is that
the optimal value of � is not yet determined. The com-
parison between strata to �nd � (and therefore s) has to
be done with an independent data set. That means we
have to separate the available training data in a train-
ing set to be used within the strata and a training set
to decide between the strata also called validation set62.
Repeating the procedure several times with the same
total data set but with di�erent splittings into training
and validation set is called cross{validation (Stone, 1974,
1977, Allen, 1974). A strati�cation method for strata
where the VC dimension can be calculated is the method
of structural risk minimization where the validation step
is replaced by minimizing the worst case empirical risk.

61Low VC dimension or �{entropy in the theory of uniform
convergence or compact for a positive real s and continuous
one-to{one extremal equation in regularization theory. See
(Verri & Poggio, 1986) for examples for qa. The existence of
a stable, unique solution is the result of practical interest in
regularization theory. For �nite, noisy cases the convergence
theorems are not of so much practical value.

62The estimation of the true expected risk after the cross{
validation procedure would require a third set of available
data, the empirical test set.
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Fig.9 illustrates that the selection of proper strata de-
pends on indirect priors for the example of structural risk
minimization. (See also Wolpert, 1994b, Ripley, 1996)

In general the minimization within some speci�c
strata (e.g. for those strata including functions where
a given smoothness functional is not even de�ned) or
also between strata can be very di�cult or even impos-
sible. To make those problems solvable an indirect prior

for f̂ must be available to restrict the number of strata
and also to enable minimization between strata. Prac-
tically, also the maximal number of di�erent �(s) which
can be considered is normally at least restricted by the
available computational resources. Therefore, there is
more what choosing a good strati�cation variable qs can
do. It can make the minimization problem between the
strata easy (for one or more algorithms under considera-
tion). This is an algorithmic speci�c aspect not directly
related to prior information about f0. It means that

qa(f̂ ) approximates already relevant f{independent as-

pects of r(f; f̂ ). And indeed the most �gures found in
the literature plotting the empirical error against, for in-
stance, some smoothness related s or �(s) show a very
simple one{minimum structure. In principle, even for
restricted range of values for s such a function could
look arbitrarily wild having for example a multiminima
or even random{like structure.

If information is available which restricts the range
of s this is a conceptual clear case of an indirect prior.
However what one usually does is more like the following:
begin with a starting value s0 and explore every of its
components in a given direction until the �rst common
minimum is found and stop there. That is, one assumes

a certain form of s{dependence of the risk r(f; f̂�(s)) for

the f̂� optimal for s.

8.5 Bayesian interpretation of the Frequentist
approach

8.5.1 Approximation and non{approximation
loss

We de�ned an integrated loss function ~l(q; y; f̂ ) =R
dŷp(ŷjq; f̂)l(q; y; ŷ) for test questions with p(qjyc; zc)

= p(qjyc) or simply p(q) as we will choose for the Fre-
quentist setting. This integrated loss function has the

same arguments as a log-posterior, except that f̂ and f0

are exchanged.
To interpret the Frequentist approach from a Bayesian

point of view we choose the same parameter space for F̂
and F 0. This corresponds to a one{to{one mapping,

which we call parameter mapping, between F̂ and F 0

which we can use to identify

F̂ = F 0:

Speci�cally, f0 = f̂ , 8q : f0(q) = f̂ (q) when
f0 can be parameterized by a deterministic function
f0(q). The optimality mapping for the risk functional

f̂ (f0) =argminf̂r(f
0; f̂ ) de�nes another mapping be-

tween F 0 and F̂ . We already discussed that a one{to{
one optimality mapping is obtained if f0 which lead to

the same optimal f̂ can be identi�ed, and by excluding

∞

X
S1

S2
S3

S4 optimal point

Figure 9: The VC horizon: Consider a set F̂ with a sub-
set S of in�nite VC dimension. If the sequence of sets
S1 � S2 � S3 � S4 � � � �Sn � S does not contain the

optimal f̂� (marked by � in the �gure) then the VC di-
mension of Sn becomes in�nite for n ! 1 before the

optimal f̂� is found. On the other hand, choosing for

example S1 = ff̂�g to be (or to include) f̂�, the optimal
solution is already found in the �rst step. The �nal uni-

form bound is lower, if f̂� is found earlier in a smaller
Si. The VC bound of Structural Risk Minimization de-
pends therefore on the choice of the sequence Si. The
probabilistic aspects of this choice, however, do not en-
ter the VC bound. Strictly deterministic, i.e. uniform,
prior information only de�nes the set S and not a chain

of sets Si. Here prior information p(f̂ ) has the form of
an indirect prior, i.e. it is about optimal actions and not
states of nature. (Only in saddle point approximation
for approximation problems, i.e. l / � lnP + c where we

can identify f0 with f̂ , this is equivalent to a direct prior

p(f0) for state f0.) If F̂ is large, a prior free construction
of the chain Si by uniform sampling will with high prob-
ability not contain good candidates. To yield reasonable
results the sequence of Si has to be chosen depending on
the probability that Si contains the optimal solution, i.e.
depending on probabilistic prior information. Indeed, if

we can attribute to most f̂ very low probabilities to be
the optimal solution, this increases the chance of testing
good candidates.
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f̂ which are for no f0 optimal. For such a construction

the f0 related to the f̂ by the optimalitymapping can be
seen as e�ective states of nature for the decision problem

involving f̂ .
We called a loss function approximation loss if for all

f̂ = f0 (See Section 5.3.4)

~l(q; y; f̂ ) = �c1LD(yjq; f0) � c0;

with f̂{independent constants c0, c1 adjusting the value

of the minimum of ~l or the normalization constant of
LD. We remark that an f0{independent c0 corresponds

to a �xed normalisation of ~lA over y for all f̂ and all q.
Equivalently we may say in this case

~l(q; y; f̂ ) = ~lA(q; y; f̂ );

if we de�ne the approximation part of the loss as

~lA(q; y; f̂ ) = �c1LD(yjq; f0)� c0:

In general this gives a (c1; c0{dependent) decomposition
of the loss function into an approximation and non{

approximation part of the loss

~l(q; y; f̂ ) = ~lA(q; y; f̂) + ~lNA(q; y; f̂ ):

Analogously, we de�ne the (loss function dependent)
set QA of approximation questions to consist of all ques-

tions q for which we can choose for all f̂ = f0 and all
y

~l(q; y; f̂ ) = �c1LD(yjq; f0) � c0: (20)

To achieve a parallel notation for loss and log{
probabilities we will use in this case the convention

lA(q; y; f̂ ) = lD(q; y; f̂ ) for q 2 QS , i.e. if possible we
choose the sampled loss equal to the approximation part.

For those questions a large log-posterior for f0 is

equivalent to a small loss for f̂ (f0) which characterizes
the situation for q in a parallel decision problem as an
approximation problem. In an inverse setting this is not

necessarily true as for example a loss lD = (q � ~f (y))2

measuring the reconstruction quality of q̂ = ~f(y) would
correspond to a log-posterior LD = (q � f0(y))2 instead
of LD = (y � f0(q))2.

The decomposition of the loss function into an approx-
imation and non{approximation part of the loss induces
the same decomposition for the risk

r(f; f̂ ) = rA(f; f̂ ) + rNA(f; f̂ ):

Especially common is the case with prior costs and QS �
QA for which we have (using our convention for ~lD in
such cases)

~l(q; y; f̂) = ~lA(q; y; f̂ ) + ~lNA(f̂ )

= ~lA(q; y; f̂ ) + ~l0(f̂ )

= ~lD(q; y; f̂ ) + ~l0(f̂ ):

Prior costs have the form of a �xed additional term
implementing restrictions within F̂ according to the
method of Lagrange. Table 3 summarizes decomposi-
tions of loss, risk, and log-posterior:

Decompositions

Sampled vs. Non{sampled

Log-posterior L(D;D0; f0) = LD(D; f0) + L0(D0; f0)
=
P

i L
D(yijqi; f0) + L0(D0; f0)

risk r(f; f̂ ) = rD(f; f̂ ) + r0(f; f̂ )
Approximation vs. Non{approximation

risk r(f; f̂ ) = rA(f; f̂ ) + rNA(f; f̂ )

loss ~l(q; y; f̂ ) = ~lA(q; y; f̂ ) + ~lNA(q; y; f̂ )
Special case: QS � QA with prior costs

loss ~l(q; y; f̂ ) = ~lA(q; y; f̂ ) + ~l0(f̂ )

= ~lD(q; y; f̂) + ~l0(f̂ )

Table 3: Decompositions of log-posterior, loss function,
and risk

We now analyze the MaP{MiR procedure. To �nd

the optimal f̂� in a MaP{MiR approximation the �rst

MaP step is followed by a second MiR step to �nd f̂� =

argmin
f̂
r(f0; f̂ ) for the most probable state f0 = f0;�.

Despite the one{to-one mapping between F 0 and F̂ and

the same functional dependence of LD and �~lD for
q 2 QA there is no perfect symmetry between the two
problems as the maximization is done with respect only
to a �nite sum over the set of data D and the min-
imization with respect to the full y{, and q{integrals
conditioned on the pure state f0;� with maximal poste-
rior probability. Only if the mapping between f0;� and

f̂(f0;�) already corresponds to the optimality mapping

f̂ (f0;�) = f̂� = argminf̂ r(f
0;�; f̂)

= argmin
f̂

Z
dq

Z
dy p(q)p(yjq; f0;�)~l(q; y; f̂ );

with
p(yjq; f0;�) = eL

D(yjq;f0;�)

then �nding the state with maximalposterior probability
already corresponds to minimizing the loss for it.

We already saw in Section 5.3.4 that for approxima-
tion problems the relative risk

c�11 (r(f0; f0)� r(f0; f̂)) = K(p(yjq; f0); p(yjq; f̂));
is a Kullback{Leibler entropy and using Jensen's inequal-
ity that the optimal solution for the minimization step
is

~lA(q; y; f̂�) = �c1LD(yjq; f0;�) � c0:

We derive this well known result here again using an
explicit calculation. For continuous parameter spaces

f̂ , a necessary optimality condition for minima not on
the boundary is a vanishing gradient with respect to the

parameter vector f̂

d r(f0;�; f̂ )

df̂

���
f̂�

= 0:

We study the stationarity condition63 for that part of the

63In case the parametrization of f0 (or f̂, respectively) does
not ensure normalization, one has to add the normalization
condition �(x)(1�

R
dyp(yjx; f0)) for all x, where �(x) is a

x{dependent Lagrange multiplier.
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loss integration which depends on approximation ques-
tions, i.e. with ql 2 QA,

d

df̂

Z
QA�Ql

dq

Z
dy p(q)eL

D(yjq;f0;�)~lD(q; y; f̂ )
���
f̂�

= 0:

(21)
Interchanging integration and di�erentiation and using

�c1LD(yjq; f0)� c0 = ~lD(q; y; f̂) at f0;� = f̂� givesZ
dq p(q)

Z
dy eL

D(yjq;f0;�) d
~lD(q; y; f̂ )

df̂

���
f̂�

= �c1
Z

dq p(q)

Z
dy eL

D(yjq;f0;�) dL
D(yjq; f0)
df0

���
f0;�

= �c1 d

df0

Z
dq p(q)

Z
dy eL

D(yjq;f0)
���
f0;�

= �c1 d

df0

Z
dq p(q)

Z
dy p(yjq; f0)

���
f0;�

= �c1 d

df0
1 = 0:

That means that for Ql = QA the stationarity con-
ditions of the MiR step are automatically ful�lled if

F̂ = F 0.64 (Here we discussed the saddle point approxi-
mation, however the same result holds in a full Bayesian
approach with respect to f (not f0). if lnp(yjq; f) =

�c1~l(q; y; f̂ ) + c0 and F = F̂ .) For Ql = QA the
MaP{MiR solution is not altered if p(q) is changed

(for �xed data). In particular, terms like rA(f0; f̂))

=
R
dq p(q)

R
dy p(yjq; f0)lD(q; y; f̂), with lA(q; y; f̂ ) =

lD(q; y; f̂ ) =�c1LD(yjq; f0)�c0 for every f̂ = f0, can be
added or dropped from the risk (with p(q) readjusted).65

As long that term is f0{dependent it cannot be seen as
part of the (f0{independent) loss, i.e. it cannot be writ-

ten as ~l(f̂ ). In this situation approximating one point
is equivalent to approximating a whole function. This
could also be done for the prior part L0 writing it in

its data dependence, giving rise to cost terms l0(f0; f̂).
The non{approximation part of the loss depending on
questions q 2 Ql n QA can cause a deviation between
optimality mapping and parameter mapping. Examples
of typical non{approximation loss include

1. time and storage requirements for calculating f̂ ,

2. costs producing a hardware (VLSI) implementatio

a general ~l(q; y; f̂ ) (energy function)n of f̂ ,

64For example minimizing a L1 error (sum of unsquared
distances) for Gaussian probabilities the MiR condition is
not automatically ful�lled. An example is the support vector
machine (Vapnik, 1995) for classi�cation which uses a L1

type of error in the non{separable case (which might e.g.
result from noise). There the function to minimize consists
of two terms, the norm of the weights of the optimal canonical
hyperplane jjwjj2 and the L1 error, whose relative importance
C has to be determined for example by cross{validation or
prior knowledge. (Individual Ci for each data point i could
account for locally di�ering variances.)

65One could paraphrase this observation by: \One always
can require what is already there."

3. understandability of the structure of f̂ .

We remark that the normalization
condition

R
dyp(yjq; f0) does not allow to choose for a

general ~l(q; y; f̂ ) L = c1~l + c0 with f0 independent c0.
As discussed earlier non{approximation loss related to

the algorithm instead of f̂ de�ne a higher level decision
problem.

The typical example for approximation questions
combines Gaussian noise with mean square error. Also,
a question is an approximation question if a uniform L
is combined with a uniform l �nite on the same do-
main. Here log-probabilities L (and analogously costs
~l0) are called uniform on F 0 (or F̂ ) if they are equal

to a constant, i.e. independent of f̂ (or f0), on the do-
main where they are �nite. An example are priors im-
plemented by regularization terms to be determined by
cross{validation with restricted interval for the regular-
ization constant. Uniform priors can be skipped from
the formalism by restricting the parameter spaces F 0 to
the domain on which the log-priors are �nite. The corre-

sponding f̂ (f0) related to f0 with zero prior probability
by the optimality mapping can also be skipped. This is
equivalent to the introduction of a uniform cost term. If
their is no non{approximation part of the loss the opti-
mality mapping is equal to the parameter mapping and
trivially implemented by using the same restrictions for

F 0 and F̂ .
While we saw that risk (not necessarily loss function)

terms corresponding to log-likelihoods can be added to
the risk integral without changing the problem, (non{
approximation) loss terms on the other hand cannot sim-
ply be implemented in the log-posterior.66 For example,

uniform prior costs, equivalent to a restriction of F̂ , do
not lead directly to a restriction of F 0. In principle one
could regroup the F 0 by forming equivalence classes with

respect to the restricted F̂ , but this may destroy the re-
lation (20).

In general, for the MaP step being su�cient

d~rNA(f0;�; f̂)

df̂

���
f̂=f0;�

= 0

must hold. For prior costs l0(f̂ ) being f0{independent
this reads

d~l0(f̂ )

df̂

���
f̂=f0;�

= 0

for every f0 if ~lD is approximation loss. This allows

special cases where ~l0(f̂ ) has a minimum f̂ = f̂� at the
maximum f0 = f0;� of the posterior LD+L0, i.e. f0;� =

f̂�, and ~lD(f̂ ) coincides with an approximation risk term

rA(f0;�; f̂). Then, even nonuniform costs do not change

the optimal f̂ . However, this can only happen for speci�c

f0, as ~l0(f̂ ) is f0{independent and we assume the MaP
estimate to be data dependent. Otherwise calculating
the MaP approximation would not be interesting. Thus,
requiring that, depending on the possible data, every f0

66In contrast to the previous footnote this could be para-
phrased by: \Reality is not always like one wants it to be."
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can be the most probable one, i.e. be a MaP estimate
f0;�, the derivative of the cost termmust be zero at every

f̂ = f0;�

d~l0(f̂ )

df̂
= 0:

Then, ~l0 is uniform. Because nonuniform, data or f0{
independent costs belong to the non{approximation part
of the loss their presence require the full two step MaP{
MiR procedure.67 An example would be using complex-

ity costs to enforce simplicity of a model f̂ (e.g. smooth-
ness, sparseness, integer values) independent of the data,
maybe even when knowing that this is not true for nature
f0 (which might for example allow real values).

8.5.2 MaP{MiR and ERM: Priors and prior
costs

Often, complexity related prior costs, are included in
empirical risk minimization, either by explicit penalty
terms, or by choosing a speci�c structure for hypotheses

f̂ . If those complexity aspects are requirements not re-
lated to priors ERM cannot be interpreted as MaP-MiR
procedure. For example, a tree classi�er might be cho-
sen because it can be obtained rather e�ectively and/or
because the resulting rules are relatively easy to inter-
pret. If, there is no prior knowledge about F 0 having
tree structure, and at the same time there is a more
appropriate parameterization of F 0 available, then this
one should be used in the MaP step while a tree classi�er
could be �tted in the MiR step.

We use the results from the previous paragraph to dis-
cuss in more detail the relations between the Bayesian
and Frequentist point of view of empirical risk minimiza-
tion in the presence of priors and prior costs (in the
following shortly called costs). Consider the three prob-
lems:

1. Maximization of the posterior probability (MaP)
given data D

argmaxf0

 
nX
i

LD(yDi jqDi f0) + L0(f0)

!
;

2. empirical risk minimization (ERM) given data D

argminf̂

 
1

n

nX
i

~lD(qi; yi; f̂) + ~l0(f̂ )

!
;

being a sample estimate of

3. a full Bayesian risk minimization (MiR) for �xed
f0

argminf̂

 Z
QS

dq

Z
dy p(q)p(yjq; f0)~lD(q; y; f̂ ) + ~l0(f̂ )

!
:

Within the MaP{MiR procedure the �xed f0 for the MiR
step is the result f0;� of the MaP step while for ERM

67This means as soon as one knows model f̂ and nature f0

are not the same one should use two di�erent descriptions for
both. Otherwise the knowledge about their di�erence cannot
be used.

f0 is thought to be the true state of nature. We as-
sume the sampling set to consist of approximation ques-
tions i.e. QS � QA or equivalently�c1LD(yjq; f0)�c0 =
~lD(q; y; f̂ ) for q 2 QS , choosing in the following c1 = 1
for simplicity. Consider the following cases in which ar-
bitrary constants c00, c

00
0 exist, so that

A: (`uniform costs and uniform priors')

~l0(f̂ ) + c00 = �L0(f0) + c000 = 0;

B: (`uniform costs but nonuniform priors')

~l0(f̂ ) = c00; L0(f0) 6= c000 ;

C: (`nonuniform costs')

~l0(f̂ ) 6= c00;

D: (`costs / � priors')

n ~l0(f̂ ) + L0(f0) = c00;

In case A we could choose ~l0 = 0 by including the

constant into ~lA = ~lD. It is the case with all priors and
related prior costs already implemented as restrictions of

F 0 and F̂ . Here numerical realization of ERM and the
MaP step are identical and their interpretation from the
Frequentist and Bayesian point of view are fully compat-

ible because a MiR step is not needed. F 0 and F̂ can
be fully identi�ed and there is no need to use a distinct

notation for f0 and f̂ .

In case B we also can choose ~l0 = 0 so no MiR step
is necessary, but the MaP step uses log-prior terms if
available. As those terms are not part of the loss func-
tion ERM should in principle ignore them. Namely, the
nonuniform parts of priors do not enter the procedure
of ERM or the (worst case) bounds for uniform conver-
gence. Using the priors nevertheless as cost terms in
ERM leads to complete numerical equivalence with the
MaP step and therefore the whole MaP{MiR procedure.
In this sense priors for Bayesians are related to costs for
Frequentists. Note, however, that while here the numer-
ical calculations coincide, they are interpreted as di�er-
ent models of nature, as costs cannot be identi�ed with
priors.

Case C requires the MiR step. Therefore, in this case
the two step MaP{MiR and the one step ERM di�er. Ex-
ceptions are MaP results f0;� for which the nonuniform

costs have a minimum. (For uniform costs all f̂ 2 F̂
are minima.) MaP{MiR incorporates priors and takes

into account the di�erences between F 0 and F̂ . This
might be especially important if they di�er strongly be-
cause priors and costs are related to di�erent aspects.
MaP{MiR is expected to improve ERM in situations
where the prior had a strong inuence compared to the
sampled data in the MaP step and/or the cost term is
substantial compared to the data term and related to
aspects di�erent from those of the prior. The same re-

marks apply when the sampled loss ~lD(yjq; f0) itself is
non{approximation loss (this means according our con-
vention it cannot be chosen as approximation loss), i.e.
QS =2 QA.
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Case D seems to show a perfect symmetry between
MaP and ERM. Indeed, under these conditions ERM
and MaP are numerically identical for the speci�c n

argmaxf0

 
nX
i

LD(yijqi; f0) + L0(f0)

!
:

= argmin
f̂

 
1

n

nX
i

~lD(qi; yi; f̂) + ~l0(f̂ )

!
:

But in as far as nonuniform costs are present the MaP
step is not su�cient from a Bayesian viewpoint and the
MiR step is missing. Indeed, for case D the MiR step
takes into account the same function L0(f0) again but in

form of costs ~l0(f̂ ) so the related aspects have a stronger
inuence in MaP{MiR than in ERM. This means, that,

if not already in the minimum, a function f̂� 6= f0;�

can be chosen which a lower ~l0(f̂�) than ~l0(f̂ = f0;�)
of the result f0;� of the ERM or MaP step. One may
expect this e�ect usually to be small in practice, as the
saddle point approximation assumes a strongly peaked
maximumfor LD+L0, usually arising in the limitn!1
where case C becomes case B or, for uniform priors, case
A.

The theory of uniform convergence does not require
all the conditions necessary for a Bayesian interpretation
of ERM as long as the training data are sampled accord-
ing to the (arbitrary) relevant distribution. It applies for

general ~l 6= �c1LD � c0 and also if F̂ and F 0 are cho-
sen di�erent, like in many examples of computational

learning theory. Costs restricting the search space F̂ ,
and changing for example its VC dimension, inuence
the bounds of the theory of uniform convergence. Its
bounds do not depend on the form of the �nite parts of
log-priors L0 as they are worst case considerations. Prior

costs ~l0 do not contribute to the di�erence between em-
pirical and expected risk (if they are not sampled itself),
as they are data independent and included in both. The

bounds only depend on the in�nite part of prior costs ~l0

restricting the space F̂ which can for example reduce the
VC dimension. But in most of these cases ERM di�ers
in method and results from a MaP{MiR approach.

We can summarize the results by saying that for

F 0 = F̂ uniform costs allow an interpretation of the
numerical ERM procedure as two step MaP{MiR proce-
dure for approximation loss so that the MiR step is au-
tomatically satis�ed. On the other hand, training data
being sampled according to the test data distribution al-
low application of the bounds of the theory of uniform
convergence to the results of empirical risk minimization.

For example, take a prior p(f0) depending on a sym-
metry property like S(x; f0) = (f0(x)� f0(�x))2. If we
choose a uniform prior which is zero for f0 if S(x; f0) is
above a bound B and constant for those f0 below that
bound, we can implement the prior as restriction on F 0

by excluding f0 with S(x; f0) > B. Through the opti-
mality mapping this corresponds to the same restriction

for the f̂ 2 F̂ . This is the usual case.
Let us briey write down the common example of a

(one{dimensional) Gaussian probability

p(yjq; f0) = 1

�q
p
2�

e
�

(y�f0 (q))2

2�2q ;

namely a log-posterior L(y; f0(q)) = ln�q
p
2� �

(1=2)��2q (y � f0(q))2 corresponds to a quadratic loss

function l(y; f̂ ) = (1=2)��2q (y � f̂(q))2 with f̂ (q){

independent �(f̂ (q)) = �q skipping the constant. Note,

that f0(q) is no random variable but parameterizes the
states f0 and corresponds to the regression function. As
the regression function minimizes the mean square error

we have f̂ (f0) = argmin
f̂
r(f0; f̂) or written explicitly

the optimality condition (21) givesZ
dy p(yjq; f0)y = f̂(q):

because d�q=df̂(q) = 0 if all f̂ have the same �(f̂ (q)) =
�q. Inserting the form of p(yjq; f0) and performing the
Gaussian integration we �nd again that the optimality

condition is ful�lled. As f̂ (q) represents the regression
function all deterministic information about the regres-
sion function can be incorporated as indirect prior, that

is by restricting the search space F̂ . This holds in partic-
ular for a deterministic bound on the smoothness of the
regression function. On the other hand for nonuniform
costs, like for example higher costs for states with re-

gression far from zero ~l0(f0) /Pq f
0(q)2, the two step

MaP{MiR approximation is not equivalent to an empiri-

cal risk minimization even if we choose an prior L0 = ~l0.
Fig.10 visualizes some of the relations.

We summarize how the classical Frequentist approach
of empirical risk minimization with additional (e.g. regu-
larization or penalty) terms can be interpreted as a spe-
ci�c Bayesian model. This `classical' Bayesian model has
the following speci�cations:

1. De�nition of an e�ective loss function ~l for z{
independent generation of test questions.

2. Identi�cation of the (parameter) space of actions f̂
with that of states f0.

3. The same function, up to a factor and a constant,
is chosen for the y{dependent parts of the e�ec-

tive loss ~lD(q; y; ~f ) and log-likelihood LD(yjq; f0)
depending on the same variables after identifying

f̂ with f0. (We use a formulation where sampled
data correspond to approximation questions, i.e.
QS � QA.)

4. There are no nonuniform costs ~l0( ~f ).

5. The decision relevant risk functional is the expec-
tation functional (Bayesian expected risk).

Under these conditions empirical risk minimization cor-
responds to an exact risk minimization (i.e. no plug{in
estimate) for the state with maximal posterior probabil-
ity, regardless of how the training questions have been
sampled.

Remarks on point 3:
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i. It characterizes the situation as an approximation
problem in a parallel decision setting.

ii. Note that AND and OR are exchanged in the fol-
lowing sense: When y1 AND y2 has been observed
as training data then we assume y1 OR y2 can ap-
pear in a test situation and both log-posterior and
loss consist of a sum. If we only know y1 OR y2
could have been the training data this would re-
quire adding probabilities and not log-probabilities
resulting in a non{additive structure for L. A non{
additive loss function depending on more than one
outcome at a time would have the di�erent inter-
pretation of an interaction of losses for repeated
tests, i.e. for cases where y1 AND y2 happens.

In physics mean �eld approximations and classical ap-
proximations of �eld theories are related to saddle point
approximations. The relation between the Frequentist
approach as a maximum posterior approximation and
the full Bayesian approach is for example similar to the
relation between classical physics and the path integral
formulation of quantum mechanics with a �eld being the
analogon to a pure state f0.

8.5.3 MiR perturbation theory

The MiR step requires minimization of the expecta-

tion < ~l > = < ~lA + ~lNA > under the distribution given

by the MaP f0;�. For a small enough `perturbation' ~lNA

we may expand ~l(q; y; f̂) around ~l(q; y; f̂ = f0;�). To
change the location of a minimumwe have to go at least
to second order

~l(q; y; f̂ ) � ~l(q; y; f0;�)

+(f̂ � f0;�)
d

df̂
~l(q; y; f̂)

��
f̂=f0;�

+
1

2
(f̂ � f0;�)2

d2

df̂2
~l(q; y; f̂ )

��
f̂=f0;�

:

Normalization is assumed to be ensured by the param-
eterization of f0, otherwise for example a Lagrange
multiplier can be added. The stationarity condition
d

df̂
< ~l(q; y; f̂ ) >= 0 is linear in second order. It gives

for the parameter vector f̂ the solution, assuming c1 = 1

f̂� � f0;� = �
< d

df̂
~lNA

��
f̂=f0;�

>

< d2

df̂2
~lA
��
f̂=f0;�

+ d2

df̂2
~lNA

��
f̂=f0;�

>

= �
< d

df̂
~lNA

��
f̂=f0;�

>

< ( d

df̂
~lA
��
f̂=f0;�

)2 + d2

df̂2
~lNA

��
f̂=f0;�

>
;

where < � � � > stands for the y and q integrals and we
used

R
dy eL = 1 to get the second line, and therefore for

c1 = 1 we have
R
dy eL d

df̂
~lA = 0 and

R
dy eL

�
d2

df̂2
~lA �

( d

df̂
~lA)2

�
= 0 at the location f̂ = f0;�.
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Figure 10: Numerical evaluation of the full Bayesian
risk, for example by Monte Carlo methods, is techni-
cally the same as an empirical risk minimization (i.e. a
use of the plug{in principle) for virtual data generated
by f . (One might call this also a virtual (empirical)
risk, however it is a real empirical risk if state f is pre-
pared as a mixture of f0 according to p(f0jf).) A saddle
point approximation of the full integral gives the MaP
problem, which requires to �nd the state f0;� with max-
imal posterior probability. If the prior log-probability
L0 contains integrals (from nonlocal data) this may re-
quire a numerical evaluation of L, i.e. use of the plug{in
principle. In the `classical' model with uniform priors al-

ready implemented in F 0 = F̂ and approximation loss,
empirical risk minimization using the sampled data is
equivalent to �nding f0 with maximal posterior proba-
bility. The bounds of the theory of uniform convergence
require sampling according to the relevant distribution
p(ql), which, however, can be arbitrary. For approxi-

mation loss, i.e. ~l = �c1LD � c0, the MiR step is not
necessary.
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8.6 Occam's Razor

Here is a good opportunity to discuss the celebrated prin-
ciple of Occam's razor. Occam's razor states: If two the-
ories explain the same phenomena equally well choose
the simpler one. From a Bayesian point of view this
simply corresponds to including complexity (prior) costs
in the decision, but is sometimes also interpreted in the
version: Simpler theories have higher prior probabilities.

This can be explained by the fact that empirical risk

minimization has no possibility to include f̂ dependent

complexity in form of (prior) costs ~l0(f̂ ) independent of
the priors L(f0). For uniform priors corresponding to
uniform costs (case C) Occam's razor is automatically
implemented in both versions. For nonuniform costs a
second risk minimization step has to be included or if us-
ing a one step procedure Occam's razor has to be imple-
mented via the priors. In contrary to the �rst case where
the prior and cost versions of Occam's razor are equiv-
alent, in the second case the Frequentist and Bayesian
interpretations of the extra terms do not coincide. Then
the prior version of the razor is the Bayesian interpre-
tation of what appears for the Frequentists as the cost
version. Relying on the cost version as the intended one,
a Bayesian approach approximated by a two step MaP{
MiR approximation di�ers from a one{step Frequentist
approach.

In principle, within a Bayesian framework the concept
of costs and priors are independent.68 A MaP{MiR ap-
proximation is possible with arbitrary costs independent
of priors, when such costs are included in the second risk
minimization step and the MaP step is still justi�ed. For
example, a sparsity constraint can come from the imple-
mentation of complexity costs related to computational
costs for nonzero numbers or from the prior information
that the actual data are produced by a small number
of prototypes. Both aspects cannot be modeled inde-
pendently using ERM but could be taken into account
using the two step MaP{MiR procedure.

9 Stationarity equations

9.1 Data for generalized questions

In this section we study the stationarity equations
(or mean �eld equations) to �nd extrema of the log-
posterior. There are a variety of methods to �nd an ex-
tremum of the posterior probability. If those are nonlin-
ear they have usually be calculated by iteration. Gradi-
ent based methods, or EM (Expectation{maximization)

68There are justi�cations of a relation between complexity
and priors also for the Bayesian framework (MacKay, 1992a).
The idea is that complex states appear usually in much more
variations than simple ones and if their total probability is
�xed their individual probabilities become small. Such a cou-
pling between prior and complexity results from using uni-
form priors for speci�cally selected groups of states, and a
grouping may be seen as more or less natural for speci�c sit-
uations. The problem of de�ning uniform priors in a such
hierarchical situation is similar to the situation for contin-
uous variables where uniform priors do not remain uniform
under general transformations.

related algorithms (Dempster, Laird, Rubin, 1979, Tan-
ner, 1993, Gelman, Carlin, Stern, Rubin, 1995) are spe-
cial iteration schemes. In what we called a classical
Bayesian model, with no additional nonuniform costs

and F 0 = F̂ , log-posterior maximization (MaP) already
includes risk minimization (MiR). But a Bayesian MaP{
MiR approximation is not restricted to a classical model.
Assuming that the MaP step yields a good approxima-
tion of the Bayesian integral, performing a second in-
dependent risk minimization step after maximizing the
posterior allows

1. states f0 independently modeled from actions f̂ ,

that is F 0 6= F̂ ,

2. arbitrary costs ~l0 independent of priors L0,

3. an inverse setting with states de�ned by p(yjq; f0)
and inverse actions p(q̂jy; f̂ ).

Now we discuss in more detail the case of Gaussian
basis questions and states f0 parameterized by their re-
gression functions.

Let us now have a sharper look at the MaP approx-
imation in the case of nonlocal questions. We calculate
the functional derivatives separately for di�erent classes
of questions. We choose one{dimensional Gaussian dis-
tributed basis questions X

p(yjx; f0) / e�
1
2 (

y��yx
�x

)
2

:

Thus in this section we assume the f0 to be parame-
terized by their regression functions �yx = �yx(f

0).69 We
get

d

df0x
L(yjx0; f0) = d

d�yx
L(yjx0; f0) / �(x�x0)��2x (y� �yx):

For general local Gaussian questions including di�ering
variances

p(yjqx; f0) / e
� 1

2

�
y��yqx (�yx)

�qx

�2
;

with �yqx (�yx) being a deterministic function of �yx, we
have

d

d�yx
L(yjqx0 ; f0) / �(x� x0)��2qx (y � �yqx )

d

d�yx
�yqx (�yx);

69We do here not discuss the mathematical di�culties re-
lated to the de�nition of functional integrals (see for ex-
ample Glimm & Ja�e, 1987). Finally, in numerical calcu-
lations we discretize all functions so integrals are replaced
by sums. In the language of �eld theory we use a sharp
ultraviolet cuto�. See for example, Bialek, Callan, Strong,
1996, for a discussion of the continuum limit in density esti-
mation. Wahba, 1983, shows the paradox that the expec-

tation of L0 = �(�=2)
R
dx (d2�y=dx2)2 under p(�y) = eL

0

is in�nite (See also Green & Silverman, 1994). The func-

tional integral
R
d�ye�(1=2)<�yjOj�y> alone is according to the for-

mula for Gaussian integrals formally (det(O)=(2�))1=2. For
O = (�(d2�y=dx2) +m2) which possesses a continuous spec-
trum this determinate cannot be de�ned (see e.g. Roepsdor�,
1991). In �eld theory renormalization group methods are
used to �nd meaningful continuum limits (There is a huge lit-
eratur about renormalization. See for example Zinn{Justin,
1989, Itzykson & Drou�e, 1989 Le Bellac, 1991, Fern�andez,
Fr�ohlich, & Sokal, 1992, Binney, Dowrick, Fisher, & New-
man, 1992, and references therein.)
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and for nonlocal Gaussian questions like the usual
smoothness questions

p(yjq; f0) / e
� 1

2

�
y��yq [�yx ]

�q

�2
;

with �yq[�yx] denoting a deterministic functional depend-
ing on the set f�yxg,

d

d�yx
L(yjq; f0) / ��2q (y � �yq)

d

d�yx
�yq [�yx]:

For general questions we write for the log-posterior L =
ln p and �nd

d

d�yx
L(yjq; f0) = d

d�yx
ln p(yjq; f0) =

d
d�yx

p(yjq; f0)
p(yjq; f0) :

Remembering p(yjx; f0) =
Q
i p(yijxi; f0),

R
dx0 =P

d

R Qd
i dx

0
i
(d)
, and

R
dy =

P
d

R Qd
i dy

(d)
i the deriva-

tive of the probability is found as

d

d�yx
p(yq jq; f0) = d

d�yx

Z
dx0
Z
dy p(yjx0; f0)p(yq ; x0jy; q)

=

Z
dx0
Z
dy

 
dX
i

��2
x0
i
(d)�(x

0
i
(d) � x)(yi � �yx)

!

�p(yjx0; f0)p(yq ; x0jy; q)
for Gaussian p(yjx; f0). Not only for questions without
input noise but also for d = 1, including possible input
noise, the x0{integration vanishes. In the latter case this
gives Z

dy (y � �yx)p(yjx; f0)p(yq jx; y; q):
The general stationarity conditions are obtained by

setting the functional derivatives of the total log-
posterior with respect to �yx which parameterize the f0

to zero

8x : 0 =
d

d�yx

nX
i

L(yijqi; f0);

where n is the number of training data D = f(qi; yi)g.
The qi can be general nonlocal questions, and may for
example be written in terms of distances to templates
Tx. For the sake of simplicity we will in this case use the
term `data' for discrete templates, i.e. those de�ned only
for a discrete set of x, and will call templates de�ned for
a continuous set X shortly templates. Now, we look to
some examples.

9.2 Local quadratic templates

We study a situation where the log-posterior is a sum
of quadratic terms each of them with templates Tx only
depending on one x. The standard case of training ex-
amples consisting only of local Gaussian basis questions
has

LD =

nX
i

L(yijxi; f0)

The corresponding stationarity conditions are for �x = 1

0 =

nX
i

�(x� xi)(yi;x � �yx) =

nxX
i

(yi;x � �yx)

with nx the number of times x is in Dq , yi;x an answer

to question x, and
P0

i = 0 x not in the data. For x 2 Dq

we �nd for unrestricted F 0 the well{known mean square
solution

�yx =
1

nx

nxX
i

yi;x:

The �yx for x =2 Dq are arbitrary.
Including other local Gaussian questions

p(yqx jqx; f0) / e
� 1

2

(yqx��yqx )
2

�2qx ;

with �yqx = �yqx (�yx) a function of one �yx only, we �nd

0 =

nxX
i

��2x (yi;x � �yx)

+
X
qx

nqxX
i

��2qx (yi;qx � �yqx )
d

d�yx
�yqx ;

equivalent to

�yx =

Pnx
i ��2x yi;x +

P
qx

Pnqx
i ��2qx yi;qx

d
d�yx

�yqx

nx�
�2
x +

P
qx
nqx�

�2
qx

�yqx
�yx

d
d�yx

�yqx
:

For linear �yqx = aqx �yx+bqx this is a linear equation with
solution

�yx =

P
qx
aqx�

�2
qx

Pnqx
i (yi;qx � bqx )P

qx
a2qxnqx�

�2
qx

where we simpli�ed the formula by including the x into
the qx with ax = 1 and bx = 0. This gives the reweight-
ing to be done for varying variances and scaling and the
correction for varying bias.

In general, sums of local quadratic terms

1

2

X
i

Z
dx�ixjj�yx � T ixjj2 (22)

=
1

2

X
i

< �y � T i j�ij �y � T i>

=
X
i

�
1

2
< �y j�ij �y> � < �y j�ijT i>

�
+ c;

give linear stationarity equations. Here c is an f0{
independent constant, �i are nonnegative diagonal ma-
trices with matrix elements �ix;x0 = �(x � x0)�ix � 0,

and we assumed real scalar products. We de�ne the

projector Pi = �Pi�2 into the T i{space spanned by the

x with nonzero �ix. Then �i commutes with this pro-
jector � = Pi� = �Pi and without loss of generality
the template is understood to be restricted to T i{space
meaning T i = PiT i.

Sum of terms for several T i can be combined. To
formulate this in general we de�ne

N =
X
i

Pi;
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with diagonal elements N (x; x) giving the number of
templates active for x, and

� =
X
i

�i:

The total projector for
P

i T
i has two contributions

P = N +M;

with M depending on the pairwise overlaps of spaces
de�ned by the Pi (compare the AND for probabilities).
For the example of two templates this reads

P = P1 + P2 �P1P2:

The operators N and � can be inverted in the space
where its diagonal matrix elements nx are nonzero and
we write for the inverse in that subspace

N�1
P

= P (PNP)�1P;
��1
P

= P (P�P)�1 P:
Introducing the (�{weighted) sum

T� =
X
i

�iT i;

(with special case T =
P

i T
i) the mean (over i not x)

of a set of templates T i can be written as

T
�
= PT� = ��1

P
T;

(special case T = N�1
P

P
i T

i) and we have for the sumX
i

< �y � T ij�ij�y � T i >

=< �y�T�j�j�y�T�> +
X
i

<T ij�ijT i> � <T
�j�jT�> :

The di�erence
niX
i

< T ij�ijT i > � < T
�j�jT� >= niVAR�(fT ig);

proportional to a of a variance is �y{independent and
therefore irrelevant for the derivative if it only appears
as additive term in L.

9.3 Linear regularization

Many smoothness and symmetry functionals are exam-
ples for Gaussian nonlocal questions. Take as example a
functional with L0 of the form

L0(f0)�c = �1

2

Z
dx

Z
dx0 �yxOx;x0 �yx0 = �1

2
< �yjOj�y >;

(23)
with a real symmetric positive (semi{)de�nite O repre-
senting a Gaussian probability70 and a constant c en-
suring correct normalization. As we use angle brackets

70Thus, O is an inverse covariance operator C = O�1. As
matrix elements of an inverse operator are also called Green's
functions, G(x; x0) = C(x; x0) = O�1(x; x0) are the Green's
functions ful�lling OC = I. If O has the form �I � O G
are the matrix elements (kernel) of the resolvent operator.
Usually the resolvent is seen as function a complex � with
poles at the eigenvalues and a cut at the continuous spectrum
of O. See for example chapter 7 in Glimm & Ja�e, 1987 and
any book on functional analysis.

< � j �> for a scalar product in a Hilbert space of func-
tions �y, we denote Ox;x0 = O(x; x0) =<x j O jx0> also by
angle brackets. This notation can be used for any hermi-
tian linear operator O. Here the term �1

2
< �yjOj�y > is a

quadratic regularization term in the sense of Tikhonov,
and if the spaces F 0

c = ff0j� < �y(f0)jOj�y(f0) >� c
are compact for real c then in the limit � ! 0 asymp-
totic stability conditions hold (Tikhonov, 1963, Vapnik,
1982). Here we are not especially interested in asymp-
totic results (except if necessary to ensure the validity
of the saddle point approximation), but for continuous
x we will refer to the case with quadratic regularization
functional and therefore linear stationarity equation as
linear regularization.

A matrix element

< D�yjD�y >= jjD�yjj2 =< �yjDyDj�y >;
with Dy denoting the adjoint of D, gives an operator
O = DyD on the domain where the operators are de-
�ned. To construct a smoothness functional for square
integrable functions, D can be chosen as a hermitian lin-
ear di�erential operator. A �rst order example is71

Dx;x0 = D(x; x0) = i�0(x � x0) = �i�(x � x0)
d

dx
;

giving

Ox;x0 = O(x; x0) = ��00(x� x0) = ��(x� x0)
d2

dx2
:

Instead of giving a template for �yx we could give also
templates for other functions of �yx. For example, a tem-
plate T 0 for D�y can be written

L0(f0) = �1

2
< D�y � T 0j�T 0 jD�y � T 0 >

= �
�
1

2
< �y jDy�T 0 D j �y> � < �y j Dy�T 0T 0>

�
+ c;

for real scalar products and c an f0{independent con-

stant. With O = Dy�TD and ~T = Dy�T 0T 0 this reads

L0(f0) = �
�
1

2
< �y jOj �y> � < �y j ~T >

�
+ c:

We may express T 0 also by D and write T 0 = DT so that

L0(f0) = �1

2
< D�y �DT j�T 0 jD�y �DT >

= �1

2
< �y � T jOj�y � T >

= �1

2
jj�y � T jj2O:

71Notice that this formal notation does not mean the op-
erators are diagonal in the x{representation. The �{function
only restricts the derivatives to the location x = x0, but the
derivatives itself depend also on the neighborhood of x. This
is most easily seen by replacing the derivatives with a �nite
di�erence approximation. The operator D to be hermitian on
a function space requires boundary terms to vanish, as can
be checked using partial integration. This is ful�lled e.g. for
periodic functions on its periodicity interval or for functions
which vanish asymptotically.
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Examples include distances in Sobolev spaces, where O
consists of a sum over derivatives. A log-posterior of the
form (23), having no term linear in �yx, corresponds to
a `null' template, and no inhomogeneities appear in the
corresponding derivative.

The normalization constant for a d{dimensional y in
the presence of linear terms is calculated according to

Z 0@ dY
j=1

dy(j)

1
A e�<�yjOj�y>+<�yjT>

= (2�)
d
2 2d(detO)� 1

2 e<T jO
�1
jT>:

We de�ne analogously to the previous Subsection

O =
X
i

Oi;

and, with invertability in the space de�ned by a projector
P,

O�1
P

= P (POP)�1P;
TO =

X
i

OiT i;

and

T
O
= O�1

P
TO:

The projected equation may be solved for example with
the pseudo inverse. Also, O may be extended so it its
inverse exists in the whole space. One may, for example,
adding the identity on the zero space, a mass term m2I,
or impose boundary conditions.

Then, like in the local case, we have also for nondiag-
onal Oi, assumed to be real symmetric positive (semi{)
de�nite, for a sum of quadratic terms

�O;T =
X
i

< �y � T ijOij�y � T i>

=< �y � T
OjOj�y � T

O
> +EO

+
X
i

<T ijOijT i> � <T
OjOjTO>;

with minimum (\ground state")

EO =
X
i

<T ijOijT i> � <T
OjOjTO>

at

�y� = argmin�y�O;T = T
O
;

in the space on which P projects. Thus, we can call T
O

the template average of the set of Ti with respect to the
norm induced by the Oi. The standard average is a spe-
cial case. Like for a standard mean also a template av-
erage of two templates is always in the `middle' between

the two. That means, T
O
has has equal O{distance from

both templates

< T
O � T1jOjTO � T1 >=< T

O � T2jOjTO � T2 > :

This is easily seen because for O = O1 +O2 one has

T
O � T1 = O�1

P
O2(T1 � T2) = �

�
T
O � T2

�
;

with the minus sign disappearing in a quadratic form.
The functional derivative for the sum of a nonlocal

quadratic L0 as in (23) and a local quadratic term is

dL(�y)

d�yx
= �

Z
dx0Ox;x0 �yx0 � �Tx (�yx � Tx)

= � <x j O j �y> � <x j�T j �y > + <x j�T jT > :

Mean square error terms are special examples of such
terms and therefore encompassed by this formulation.
The variable x can be multi{dimensional, assuming the
vector is written in a basis where �T is diagonal. (The
situation where for one x several di�erent Tx are avail-
able will be discussed below.) For invertible �T +O the
stationarity condition reads

�y = (�T +O)�1�TT; (24)

which is for a linear operator O a linear inhomogeneous
equation. If not invertible in the full space components
of the null space, i.e. solutions of (�T +O)�y = 0 can be
added to a special solution. In cases O�1 can be calcu-
lated, it can be useful to rewrite Eq.(24) by separating
the parts invariant under projection with PT from those
which are not

O�y = �T (T � �y):

Then the vector

a = �T (T � �y) = PTa
being invariant under projection PT can be calculated
purely within the T{space. If O is invertible, the un-
known �y in the de�nition of a can be eliminated using
�y = O�1a, giving for a the equation�I + �TO�1

�
a = �TT; (25)

with I denoting the identity. Using PT�T = �TPT ,
a = PTa and T = PTT to insert the projector PT gives��PT�TPT ��1 + (PTO�1PT )

�
a = PTT = T:

Hence, only matrix elements of (PTO�1PT ) within the
T{space are required to solve for a. We now consider in
more detail the cases zero and nonzero quadratic tem-
plates.

9.3.1 Homogeneous linear regularization

Here we consider the special, but most common
case of discrete Gaussian data with equal variance and
quadratic nonlocal terms, e.g. smoothness, which can be
seen as corresponding to a a zero{template Tx = 0, 8x.
Gaussian data terms with �2x = � give

d(LD + L0)

d�yx
/

nxX
i

(yi;x � �yx)� �

Z
dx0Ox;x0 �yx0 :

The stationarity condition reads

(ND + �O)�y = D; (26)

Vector D has components

Dx =

nX
i

�(x� xi)yi;x =

nxX
j

yj;x;
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and the operator ND has matrix elements

ND
x;x0 = ND(x; x0)

= �(x� x0)

nX
i

�(x� xi) = �(x� x0)nx;

giving the number of how often a speci�c x appears in
the data. We de�ne the projector PD, projecting into
the space spanned by the x included in the data, by its
matrix elements

PDx;x0 = PD(x; x0) = �(x� x0)�

 
nX
i

�(x� xi)

!
;

with the step function �(x) restricting the matrix ele-
ments to zero or one. Its number of nonzero diagonal
elements, i.e. ~n = TrPD = n�Px

Pnx
i=2 1 is the number

of di�erent x = xi in the data. Then D = PDD and
ND = PDNDPD , with the operator ND being equal to
PD, and therefore an identity in that subspace, if nx = 1
for all x. This is the usual case when i.i.d. sampling for
continuous x. In a space where (ND + �O) is invert-
ible the linear, inhomogeneous (e.g. integro{di�erential)
equation (26) has the solution

�y = (ND + �O)�1D:
being a special case of Eq.(24) with D=� = �TT and
ND=� = �T . Components of a null space may be added.

The matrix elements O�1
x;x0 = G(x; x0) (or Green's func-

tion) satisfy by de�nition

OG(x; x0) = �(x � x0):

For some O the Green's function can be calculated ana-
lytically. Then the solution of the resulting equation

�y =
1

�
O�1

�
D � ND�y

�
=

1

�
O�1ND

�
�D � �y

�
; (27)

(with �D =
�ND

PD

��1
D) or in components

�yx =

nX
i

G(x; xi)
yi;xi � �yxi

�
=

~nX
i

aiG(x; xi);

is for �xed x in a ~n{dimensional space spanned by known
G(x; xi) with di�erent xi. In the vector

a =
(D � ND�y)

�

with components

ax =

nxX
j

yj;x � �yx
�

only the components axi = ai for xi belonging to the
data are not equal to zero. Inserting �y = O�1a into the
de�nition of a gives a ~n{dimensional matrix equation

nxiX
i

yi;xi = nxi

dX
j

G(xi; xj)aj + �ai;

or in operator notation

D = (ND(PDO�1PD) + �I)a: (28)

The identity I commutes with PD and PDO�1PD has
the matrix elements G(xi; xj). This is the equivalent of
Eq.(25).

If O has zero modes, then Eq.(27) becomes

�y = O�1
1 (D � ND�y) +

mX
k

bkuk

where uk represents an orthonormal basis of the zero
space and O1 denotes the restriction of O to the sub{
space where its inverse exists. In addition one has in the
space of zero modes

0 = P0(D � ND�y);

where P0 denotes the projector into the space of zero
modes, i.e.

P0(x; x0) =

mX
j

uj(x)uj(x
0):

This yields the two data space equations

nxiX
i

yi;xi = nxi

dX
j

G(xi; xj)aj + �ai;+

mX
k

bkuk(xi)

X
i

uk(xi)ai = 0; 8k:

The (pseudo-di�erential) operator

O =

1X
m=0

Om =

1X
m=0

(�1)m �2m

m!2m
52m; (29)

with52m denoting the m{iterated Laplacian, results in a
Gaussian G(x; x0). DiagonalG(x; x0) correspond to local
questions, radially symmetric (Gaussian) Green's func-
tions are called Radial Basis Functions. This and more
examples, including various forms of splines, as well as
the relation to conditionally positive de�nite and com-
pletely monotonic functions can be found in Poggio &
Girosi, 1990 Wahba, 1990, and Girosi, Jones, & Poggio,
1995.

Restricting the terms in the summation to a number
smaller than ~n, corresponding to an additional prior or
cost term, can be combined with an algorithm to deter-
mine the optimal selection of xj (e.g. the centers of Gaus-
sians). Including for example the variance �x for the
regularizer as parameter leads to nonlinear equations.

9.3.2 Inhomogeneous linear regularization

Choosing Gaussians data terms with equal variance
in addition to a template Tx we have to minimizeX

(yi;x � �yxi)
2 + �T

Z
dx (�yx � Tx)

2;

or for hx = �yx � TxX
(yi � hxi � Txi)

2 + �T

Z
dx (hx)

2;
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with a shifted local error term and a penalty for devia-
tion from zero. For the unshifted parameterization the
stationarity condition reads

�yx =

Pnx
i yi;x + �TTx

nx + �T

which means �yx = Tx for non{data points x 6= xi; i =
1; � � � ; n.

The last example becomes more interesting if com-
bined with a nonlocal term, for example a di�erential
operator implementing a smoothness prior. Then one
has to minimizeX

(yi � �yxi)
2 + �T

Z
dx (�yx � Tx)

2

+�S

Z
dx

Z
dx0 (�yxOx;x0 �yx0)

2;

with stationarity equationZ
dx0 ((nx + �T ) +Ox;x0) �yx0 =

nxX
i

yi + �TTx:

For the exampleOx;x0 = �(x�x0) d2

dx2
this gives the linear

inhomogeneous di�erential equation�
d2

dx2
+ nx + �T

�
�yx =

nxX
i

yi + �TTx:

We see, that in cases of nonzero templates the station-
arity equations become besides the always present �{like
data terms also continuous inhomogeneities. For con-
tinuous x we will call the case where the regularization
functional is a sum of a term quadratic in �y and a term
linear in �y inhomogeneous linear regularization.72

Expressing for two templates that functions f0 should
be similar to T1 OR T2 leads to nonlinear equations,
which we discuss in the next paragraph.

9.4 Nonlinear regularization

Priors which are constructed by combining quadratic
subproperties Ci using a real valued extension of logic
do not need to be quadratic in the �yx, for example, if an
OR is implemented in a soft and not in a hard version.
Also one could use a parameterization of F 0 so �yx is a
nonlinear function of the parameters,73 or use a tem-
plate for nonlinear questions, like a correlation template
for �yx�yx0 in terms like

jj�yx�yx0 � Tx;x0 jj2:
Let us consider a case with two templates combined by
a soft OR. The two templates could have been obtained

72Also for homogeneous linear regularization the stationar-
ity equations are inhomogeneous, but the regularization func-
tional adds nothing to the data inhomogeneities of �{form.

73Many methods, like for example sigmoidal neural net-
works use a nonlinear parameterization, but not independent
for each �yx(f

0). One may contrast a genuine nonlinearity
corresponding to a model of nature (i.e. F 0, L) and a non-

linearity induced by choosing a nonlinear action model (F̂ ,
l).

by using the human interface discussed above and rep-
resent two typical functions T 1 and T 2 to which the ac-
tual �yx(f

0) is expected to be similar to at least one of
them. For example, two such templates can be proto-
typical structures for electrocardiograms, or patterns in
�nancial time series. This situation might, for example,
be naively approximated according to Eqs.(7) by includ-
ing terms like

�T

�Z
dx (�yx � T 1x )

2

��Z
dx0 (�yx0 � T 2x0)

2

�
;

assuming a possible boundm incorporated into �T . This
non{quadratic regularization term has the functional
derivative with respect to �yx(f

0)

�T

�
(�yx � T 1x )

Z
dx (�yx � T 2x )

2

+(�yx � T 2x )

Z
dx (�yx � T 1x )

2

�
;

yielding a nonlinear stationarity equation. We may
therefore call this case nonlinear regularization, which
in case of nonzero templates is also inhomogeneous.

9.4.1 Finite temperature or mixture
regularization

We can choose the realization (8) for OR, if we assume
that the properties we combine are log-probabilities,

L = LM = ln pM = ln

NiX
i

Zi

Z

ln

 
NiX
i

e
�
�

2

�PNji
ji

<�y�T iji jOiji j�y�T iji>

�
+ci�lnZ

!
;

(30)
where the constants ci can include the logarithm of in-
verse normalization factors and weights for component i
and

Zi = e
�
�

2

�PNji
ji

<�y�T iji jOiji j�y�T iji>

�
+ci

(31)

and Z =
P

i Zi. This form is general enough to in-
clude the product terms of OR for non{disjunct events
if ci is allowed to be imaginary, giving a negative fac-
tor for the exponential. For disjunct events the ci are
real, thus all contributions to the sum are positive and
we speak of a mixture model or for continuous x of mix-
ture regularization. For mixture models see Everitt &
Hand, 1981, Titterington, Smith, & Makov, 1985, Kon-
tkanen, Myllym�aki, & Tirri, 1997. For every �xed �y the
log{probability (30) has the structure of a free energy
of a system at temperature 1=�. Thus, emphasizing the
temperature{dependence we will also speak of a thermic
realization of the OR and, accordingly, a �nite temper-

ature regularization. In Section 5.3.4 we de�ned ener-
gies as (�{scaled) shifted log-probabilities of elementary
events. Thus, with respect to the set of (disjunct) ele-
mentary events i = !i 2 
, the exponents de�ne ener-
gies,

�Ei = ��
2

0
@NjiX

ji

< �y � T iji jOijij�y � T iji>

1
A + ci
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which are unique up to a factor � (inverse tempera-
ture) and a constant. Here i represent possible, disjunct
`states', and the function �y plays the role of system pa-
rameters which we can adapt to minimize the free en-
ergy. Thus, the system is in state i1 OR i2 OR � � �.
The variables (ji, x) label the subsystems (e.g. internal
or microscopic degrees of freedom, like single particle
coordinates and momenta in a many particle system).
Every state or elementary event i is a complete collec-
tion of states for all subsystems, labeled by (ji, x), i.e.
subsystem x1 is in state a1 (e.g. �yx1 = a) AND subsys-
tem x2 is in state a2 AND � � �. The special form 30 has
quadratic energies (`generalized oscillators' or `general-
ized free �elds')74 and is therefore for �nite jXj a Gaus-
sian mixture model, or, for continuous X, a mixture of
Gaussian processes. Oiji de�nes the inverse covariance
matrices of the processes.

We may remark that in (30) p(f0jf) is written as mix-
ture while in applications in density estimation a mix-
ture model is often used for p(yjf0). In regularization
every training data point (yi; xi) gives only one x com-
ponent of a whole vector �y(x). In a density estimation
problem a complete data vector with all its x compo-
nents are given and d = jXj is discrete and usually rel-
atively small, and x is denoted by a discrete index like
for example i or k. In regularization a (`data') vector
corresponds to a function �y(x) given 8x. For continu-
ous x this is a realization or complete sample path of a
stochastic process. In addition to the �nite number of
training data, the mixture components are determined
by \continuous data" , i.e. templates T iji(x), and cor-
responding distances. To enable generalization at least
one template has to be present, for example constant and
equal to zero (zero template), together with a smooth-
ness related O. The problem of constructing the prior
is, for example, discussed in Section 5.2. At this step
we assume the mixture model for the prior �xed, ex-
cept possibly for a few remaining parameters, like �,
which can be adapted by cross-validation or after de�n-
ing a corresponding prior by explicit Bayesian integra-
tion. Also, our interest is not restricted in identifying
the maximal activated mixture component, like for ex-
ample in deterministic clustering, which can be seen as
low temperature approximation. Our problem is �nding
the maximal probable f0;�, which does not necessarily
have to coincide with the center of one of the single mix-
ture components, given only (a small, �nite) part of its
vector components (not mixture components) yi(xi).

Especially interesting is the limiting case of very large
(or in�nite) dimension jXj of the space X with only part
of the components x given. To allow a useful degree of
generalization in this situation we must enforce strong
correlations between di�erent dimensions x. This can
be done, like in the example of smoothness, by choos-
ing special (e.g. metric, di�erentiable) structures on the
set X of dimensions x. An example of a �nite version

74Which shall mean they are quadratic forms, which how-
ever may include �{like forces (data), potentially higher order
derivatives or nonlocal (e.g. in time if x corresponds to the
time variable) terms, as well as linear terms in coordinates
and derivatives (e.g. friction).

of smoothness for the regression function is
�
�yi��yi+1
i�i+1

�2
,

writing i for the dimension index x. This restricts the
centers (means) to the neighborhood of the diagonals of
adjacent dimensions.

Similar to a mixture model for function approxima-
tion is the clustering algorithm of (Rose, Gurewitz, &
Fox, 1990). In clustering one tries to �nd for a given set
of points xi (y in our notation) a corresponding cluster
centroid j (f0 in our notation) with respect to an error
function E(x; j) (L(y; f0) in our notation, or more pre-

cisely, an approximation problem with ~l(y; f̂ ) and identi-

�cation of F̂ with F 0). Like in our case the temperatur
parametrizes the convexity/concavity of the error sur-
face, which in the case of clustering regulates the number
of distinct centroids. The � parameter is the Lagrange
parameter in a maximal entropy approach determining
the average error. However, we do not assume the av-
erage error to be �xed in advance and like often in sta-
tistical physics, the temperature or � itself is the more
natural parameter, even if uniquely related to the aver-
age error. For an application in pairwise clustering see
Hofmann and Buhmann, 1997, and references therein.
In contrast to the mixture model we are considering
here, the error or log{probability of this problem is not a
\free" Gaussian model and the method is combined with
an additional mean{�eld approximation. For the use of
a temperature parameter in optimization and matching
problems see Yuille, 1990, Yuille, Kosowsky,1994, Yuille,
Stolorz, Utans, 1994, and for simulated annealing, for
example, Aarts-Korts-1989.

The sum over i in the mixture model is analogous to
the integration over f0 in the full risk. Indeed, replacing
to obtain a more symmetric notation

R
df0 by

R
df01 andP

i by
R
df02 , we can write for r(f; f̂) for an approxima-

tion problem with F̂ = F 0
1

r(f; f̂) = �
Z
df01

Z
df02

Z
dy p(f01 ; f

0
2 )p

D(yjf01 ; f02 ) lnpD(yjf̂ )

= �
Z
df01

Z
dy p(f01 )

Z
df02 p(f

0
2 jf01 )pD(yjf01 ; f02 ) lnpD(yjf̂ )

= �
Z
df01

Z
dy p(f01 )p

D(yjf01 ) ln pD(yjf̂ ):

If the f02 {integral (or summation over i) is performed
exactly (or a saddle point approximation with multiple
sadddle points is used) then

p(f01 ) =

Z
df02 p(f

0
1 ; f

0
2 );

is a mixture of components of the form of p(f01 ; f
0
2 ) i.e.

for log{probabilities

L(f01 ) = ln

Z
df02 e

L(f01 ;f
0
2 );

An example of such an integration is given by the
mixture{like elastic net energy (Durbin, Willshaw, 1987)

Emix(y) = � 1

�

X
k

ln

MX
j

e��jxk�yj j
2

+ 

NX
i

jyi � yi+1j2;
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with given vectors xj and N � M vectors yi to be
optimized with yN+1 = y1. This energy Emix can
be obtained by summing over binary variables Vkj as

�(1=�) lnPV e��E with

E(V; y) =
X
kj

Vkj + 
X
i

jyi � yi+1j2;

under the restriction
P

kj Vkj = 1, 8k (Yuille, 1990,

Yuille, Stolorz, Utans, 1994).
The form (30) uses one level of Gaussian mixtures.

The one level structure is in principle no restriction, as
every logical formula can be written in either conjunc-
tive or disjunctive normal form. Those may however
be very lengthy and contain negations, which one wants
to avoid in continuous cases. Thus, a hierarchical model
may be much more economical. Form (30) also uses with
Gaussian processes the simplest possibility for a single
mixture components. These can be seen as �rst term of
a Taylor expansion of general more general mixture com-
ponents. Correlation templates are higher order terms

< �y 
 �y � T (2)jO(2)j�y 
 �y � T (2) >;

Here, �y 
 �y are matrices with operator

�(2) = O(2) =
X
k;l

Ok 
Ol:

acting on the enlarged vector space of those matrices.
Analogously one may consider higher order terms

�(n) =<

nO
i

�y � T (n)jO(n)j
nO
i

�y � T (n) > :

The natural choice for templates is

T (n) =

nO
i

T:

For T (n) =
Nn

i Ti and O(n) =
Nn

i Oi the �
(n) factorize

nY
i

< �y � TijOij�y � Ti > :

For linear Oi this non|quadratic interaction term (i.e.
non{Gaussian probability) has minima at every �y�;i =
Ti. Thus, for di�erent Ti already one mixing compo-
nent, or the corresponding energy, creates multi-modal,
i.e. nonconvex or OR{like, functions. Those multi-model
(interaction) terms can arise by integrating out (hid-
den or latent) variables, e.g. microscopic degrees of free-
dom. This integration or summation (over probabilities
p = e��Ei=Z and not over energies Ei) is a realization of
OR and results in a mixture model (with maybe an in�-
nite number of components). Such an `e�ective' energy
E, represents from the point of view of the �ner system
a free energy F .75 Most often, but not always as we shall
see, e�ective energies are used in the range where they
are approximately �{independent.

75Instead of describing e�ective energies as the result of
marginalizing, one can see the introduction of additional de-
gree of freedoms as an improvement of an existing theory.
which `explain' a certain features of an older, i.e. then ef-
fective, energy function. Such additional degrees of freedom
are introduced, for example, when �nding new particles in
physics, or better explanations for diseases in medicine.

9.5 Interactions and Landau{Ginzburg
regularization

Interaction terms introduced at the end of the previous
section are another possibility to write nonconvex OR{
like log-probabilities and they provide �nally the connec-
tion with our discussion a fuzzy implementation of prior
knowledge in Section 5. There we pointed out, that one
may use fuzzy properties not only for probabilities, but
also possibly directly for log-probabilities. For such an
interaction regularization we have, to specify an interac-

tion model, like we have to specify the energy function
(Hamiltonian) for a speci�c system in physics. Indeed,
this speci�cation of interactions for a physical model also
provides an example that it is sometimes more natural
to specify directly log-likelihoods (energies).

Usually, those are taken as polynomial functions

L = LI = �g
0
@1

2

X
i

Y
ji

< �y � T ijijOiji j�y � T iji>

1
A :

(32)
In a mixture regularization with model (30) for the free
energy the sum over i is an implementation of OR for
log-probabilities. For the example (32), the product
over ji can be interpreted as some fuzzy OR accord-
ing to Eqs.(7) applied to properties de�ning the log-
probability. If the model consists of one term one could
speak of a `zero temperature regularization with inter-
actions'. On the other hand the interactions might be
e�ective, i.e. chosen to approximate a more fundamen-
tal mixture model. The interactions have with respect
to the underlying model �, i.e. also temperature, de-
pendent parameters. In this case it is better to speak
of an `e�ective interaction regularization'. E�ective, i.e.
�{dependent, interactions may be resulting from a Tay-
lor expansion of the a `true' underlying free energy or
log-probability. In contrast to a high energy expansion,
where L is expanded around 1=� =1 one may also ex-
pand around a not in�nite 1=� = 1=��. We will call
the case where we introduce a temperature{like param-
eter 1=� (or reduced temperature t = (1=�)� (1=��)) in
the energy in analogy to the celebrated phenomenologi-
cal treatment of phase transitions in physics a Landau{

Ginzburg regularization. (See Landau & Lifshitz, 1980,
(x145) and for example Goldenfeld 1992; Safran 1994;
Ivanchenko & Lisyansky, 1995.) The Landau{Ginzburg
theory is used to model systems near a phase transition
and many results at the critical temperature are inde-
pendent from many details of the system (Universality
classes with respect to critical exponents). These results,
however, are not necessarily valid at the phase transition
when uctuations are important. This is , for example,
the case in low dimensional systems with local, i.e. short
range, forces. We are not only interested in an e�ective L
in the immediate neighborhood of phase transitions, but
it is this neighborhood where most problems can arise
and where a nonlinear regularization is most di�erent
from a linear approach.

Clearly, a mixture model (32) and interaction model
(30) can be quantitatively quite di�erent, they may how-
ever share common qualitative features. Probabilities
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according to a mixture model can easily be generated
in a two step process (�rst choose i according to the
mixture coe�cients, then draw from i) if the probabil-
ity processes for the components i are available. In an
interaction model a decomposition in simple Gaussian
processes is not necessarily possible. The form (32) has
however always a polynomial structure, which can be
helpful for calculational purposes. For fourth order poly-
nomials the solutions can always be given explicitly, so
the two template case is analytically solvable.76 Notice,
that the usual mean square data terms are encompassed
in both formulations, as operators Oiji diagonal in x-
representation and with only a �nite number of nonzero
elements.

9.6 Mean �eld equations

Now we get to the problem of solving these nonlinear sta-
tionarity or mean �eld equations. We already discussed
that a maximum does not change under strictly mono-
tonically increasing functions h(L), i.e. functions with

L(f0) > L(f 00) ) h(L(f0)) > h(L(f 00)) and dh
dL

> 0.
Strictly monotonically decreasing functions h(L) only
change a maximum into a minimum. Including such
functions h the stationarity conditions, obtained by set-
ting the functional derivative to zero, read

0 =
dh(L)

dL

dL(f0)

df0
=

dh(L)

dL

dL(�y)

d�y
;

where in our case �y represents the parameter vector f0,
and we will see that iteration procedures can be related
to di�erent h.

We will now give the mean �eld equations, for �nite
temperature and (e�ective) polynomial interaction reg-
ularization, in the form

O�y = t; (33)

with in general �y{dependent O = O(�y) and t = t(�y), so
the equation is nonlinear.

9.6.1 Mean �eld equations for �nite
temperature regularization

For a log-probability of mixture form (30) we �nd

OM = OZ
=

P
i ZiOi

Z
=
OZ

Z
; (34)

tM = T
Z;O

=

P
i ZiT

i

Z
=
TZ;O

Z
;

with according to (31) �y{dependent

Zi = Zi(�y) = e
�
�

2

�P
ki
<�y�T iki jOiki j�y�T iki>

�
+ci

;

Z = Z(�y) =
X
i

Zi(�y);

and �y{independent

Oi =
X
ji

Oiji ;

76Already `solvable' nonlinear polynomial equations re-
quire iteration methods: most roots have to be calculated
iteratively. There is no doubt, however, that this can be
done quite e�ciently.

T i = TO
i

=
X
ji

OijiT iji = Oi T
O
i

:

Thus, denoting by < � >(Zi=Z)(�y) the expectation under

the probability Zi=Z the stationarity equation can be
written

0 =

P
i Zi

�Oi�y � T i
�

Z
=< Oi�y � T i >(Zi=Z)(�y) : (35)

Using the monotonic transformation h(L) = eL = p, or,
equivalently, multiplying the mean �eld equation, by Z,
gives

OZ �y = TZ;O:

For only one template T iji = T , i.e. tM = OT a trivial
solution is always �y = T . The stationarity equation can
be solved in the space where the inverse of OZ exists,
using for example the pseudo inverse. Alternatively, OZ

may be extended to be invertible, for example by adding
the identity on the zero space, a mass term proportional
to the identity operator, or by imposing boundary con-
ditions.

In the high temperature limit � ! 0 and ci = c, 8i
all Zi become equal so that

�y = (OZ
P )

�1TZ;O ) �y = O�1
P
TO = T

O
:

Hence, we �nd the template average T
O

as high tem-
perature limit of the mean �eld solution for the mixture
model.

In the low temperature limit � !1 only the largest

Zi survive(s), so that all T
O
i

with (\positive error gap") X
ki

<TO
i � T iki jOikijTOi � T iki>

!
� 2ci

�

<

0
@X

ki0

<TO
i � T i

0ki0 jOi0ki0 jTOi � T i
0ki0 >

1
A � 2ci0

�
;

for all i0 6= i in the limit � !1, become a low temper-
ature solution.

Using the same (invertible) operator for all mixture
components so that Oi = O=Ni results in the equation

�y = T
O
i;Z

=
X
i

ZiT
O
i

Z
: (36)

The equation is still nonlinear, because of Zi = Zi(�y),
and the �y are still nonlocally coupled. In this situa-
tion the space of possible solutions is the convex hull

spanned by the low temperature limits T
O
i

, which are

�y{independent. The high temperature limit becomes T
O

= 1
Ni

PNi

i T
O
i

. We will call the O{distance
dO(�y; �y

0) =
p
< �y � �y0jOj�y � �y0 >

=

q
jj�y � �y0jj2

O
; (37)

the canonical distance of a �nite temperature regulariza-
tion problem with O = Oi, and

dO;T (�y; �y
0) =

dO(�y; �y
0)

maxi;j dO(T i; T j)
; (38)
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the normalized canonical distance. Solutions �y� of
Eq.(36) must have 0 � dO;T (�y

� � T i) � 1, for all i.
Notice, that the canonical distance of a regularization
problem depends over ND and the normalized canonical
distance over ND and �D from the actual given data.

For equal Oi the exponents can be diagonalized si-
multaneously, so that

< �y � T
O

i jOj�y � T
O

i >=< �y � T
O

i jUDUyj�y � T
O

i >

with diagonal D. Hence, in the corresponding eigen-
vector representation the operators in all exponents are
local simultaneously. We saw already that O is data
dependent, and so are therefore also its eigenvectors.

9.6.2 Mean �eld equations for regularization
with polynomial interaction

For the example (32) one �nds with h(L) = g�1(L)

OI =
X
i

X
ji

M ijiOiji

(39)

tI =
X
i

X
ji

M ijiOijiT iji ;

with

M iji = M iji(�y) =
Y
ki 6=ji

< �y � T iki jOikij�y � T iki> :

In the case of only one template T iji = T , i.e. tI = OT
this has also as trivial solution �y = T . For Oi = O=ni
the equation reduces to

�y =

P
i

P
ji
M ijiT iji

M
;

with
M = M (�y) =

X
i

X
ji

M iji:

Hence, the solutions are restricted to the space spanned
by convex combinations of the T iji .

In most cases nonlinear equations can only be solved
numerically with the help of iteration procedures.

9.7 Iteration procedures = learning algorithms

Here we will discuss iteration procedures to solve for the
inhomogeneous integro{di�erential equations.77 Itera-
tion procedures correspond to the actual learning algo-
rithms. We consider here their application to MaP equa-
tions, but the methods also apply to MiR equations or
a full Bayesian approach.

An iteration procedure is de�ned by a function G

f0;i+1 = Gi(f0;i);

producing new guesses f0;i+1 from a current guess f0;i,
and with �xed points being solutions of the stationar-
ity conditions. We restrict in the following to solving
the stationarity conditions, and assume the maximum

77For an introduction to numerical methods see for exam-
ple Hackbusch, 1989, Press, Teukolsky, Vetterling, Flannery,
1992, and references therein.

(or minimum, saddle point) conditions, i.e. the second
derivatives, to be checked separately. We can construct
an iteration procedure by choosing a function Hi, which
we also allow in general to be (also stochastically) i{
dependent, and write for �yi+1 = Gi(�yi)

f0;i+1 = Gi(f0;i) = f0;i + ~Hi(
dL(f0;i)

df0;i
):

to ensure �xed points are solutions of the stationarity

equations we require ~Hi(0) = 0, and not to create ad-

ditional spurious solutions one must have ~Hi(x) 6= 0
for x 6= 0. We can ful�ll those conditions by de�n-
ing a (possibly x{dependent) nonsingular linear map-
ping (a matrix for vector x) Hi(x) acting on x with

det(Hi(x)) 6= 0; 8x 6= 0, by ~Hi(x) = Hi(x)x. The
matrix Hi(x) is usually chosen positive de�nite (and
symmetric) for a maximization problem. Hi(x) may re-
sult from a (bijective) transformation of the independent
variables f0 = T i(f 00) and/or from a strictly monotonic
transformation hi(L) of the log-posterior. For every-
where di�erentiable transformations the chain rule gives

dhi(L(T i(f 00)))

df 00
=

dhi(L)

dL

dL(f0)

df0
dT (f 00)

df 00
:

Strictly monotonic and therefore invertible transforma-
tions hi, T i do not lead to additional stationary points,
i.e. spurious solutions. We write

f0;i+1 = f0;i +Hi(f0;i)
dL(f0;i)

df0;i
: (40)

For example, gradient, Newton, or Quasi{Newton algo-
rithms correspond to special Hi. The i{dependence al-
lows also to include methods like conjugate gradient. In
general an iteration procedure can be given by an im-

plicit equation ~Gi(f0;i; f0;i+1) = 0. A solution f0;i+1,
however, has to be given in an explicit form. We can
formally extend the parameter vector f0 to a popula-
tion vector (of parameter vectors) by introducing dummy
variablesm (population indices), split f0 into several f0m.
Then Hi can induce interactions between di�erent f0m.
Iteration procedures of order m can for example be ob-
tained by

f0;i+1 = f0;i+

iX
j=i�m+1

Hi;j(ff0;kgi�m+1�k�i)
dL(f0;j)

df0;j
:

The matrixHi can be a stochastic function (e.g. stochas-
tic annealing) deterministic only in some (zero temper-
ature) limit or individual Hi can be chosen nonsingular
only in subspaces like in line search algorithms, as long
as a higher iterated equation can be written with a non-
singular H and the convergence check is made for this
iterated equation. Similarly, for transformation methods
(homotopy, EM{like algorithms) only at a �xed point of
the iteration procedure the log-posterior L = Li corre-
sponds to a strictly monotone transformation of the orig-
inal problem. For example, Li can represent a smoothed
version of L (e.g. deterministic annealing).

If Gi contains integrals over �yx, like in the nonlinear
terms, already much `nonlocal information' may be con-
tained in one iteration with Gi. Such integrals are for
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example introduced by the EM algorithm which de�nes
hidden variables u, i.e.

p(f0) = eL(f
0) =

Z
du p(f0; u) =

Z
du eL(f

0;u);

with also nonnegative p(f0; u) � 0. Then we de�ne the
corresponding conditioned variables which have by con-
struction equal norm if summed over u, independent of
f0

p(ujf0) = eL(ujf
0) =

p(f0; u)R
du p(f0; u)

:

This allows to add to L a cross{entropy term in the con-
ditioned variables

L(f0) +

Z
du eL(ujf

0;ref)L(ujf0) (41)

=

Z
du eL(ujf

0;ref)L(f0; u) = Q(f0; f0;ref ):

This transformation is strictly maximum su�cent rela-
tive to L(f0;ref ) (see Section 6.5) by construction, i.e. be-
cause conditioned variables have f0{independent norm
over u, the additional term is positive and maximal if
L(ujf0) = L(ujf0;ref ); 8u, (See Section 5.3.4), which is
the case for f0 = f0;ref . The reference point f0;ref has
to be adapted during iteration. This has to be done
at latest if a local maximum for �xed f0;ref is reached.
However, maximizing Q does not require necessarily to
�nd a maximum for every �xed f0;ref , it is enough to
increase Q with every iteration (Generalized EM). Sum-
marizing, EM{like algorithms use a transformationhi(L)
which is strictly monotonic only at a �xed point and dur-
ing iteration only strictly maximality (or, respectively,
minimality) su�cient relative to some previous guess
(see Section 6.5).

While nonsingular Hi ensure that the �xed points of
the iteration procedure are zeros of the gradient, this
does not guarantee convergence. In general iteration
procedures can produce all varieties of features known
from discrete dynamical systems, including limit cycles
or chaotic behavior (See for example Devaney, 1986,
Beck & Schl�ogl, 1993 and references therein).

We now discuss the example Eq.(33) in more detail.
Firstly, we write Eq.(33) in a form

�y = G(�y);

by choosing some additive decompositionO(�y) = A(�y)+
B(�y), or a decomposition of some ~Hi(O), with A posi-
tive de�nite and therefore invertible. This can also be
done by directly selecting a convenient A, for exam-
ple �y{independent, which then de�nes a corresponding
B = O�A.

Here A is usually chosen to be a linear operator, but
invertability and not linearity is the crucial property.
(However, inverting an nonlinear operator has usually
to be done again by iteration, requiring another linear
operator to be inverted.) Then we obtain an iteration
procedure by de�ning the left hand side to be �yi+1 and
�y on the right hand side to be �yi. For our examples this
gives a G(�y) of the form

G(�y) = A�1 (t� B�y) ;

= �y � A�1 (O�y � t) ;

or in components

Gx(�y) =

Z
dx0A�1x;x0

�
tx0 �

Z
dx00Bx0;x00 �yx00

�
:

The equations, or their variants described below, are
solved by choosing a representation (i.e. a linear ba-
sis) to write it in component form, for example, in x{
representation:

�yi+1x = Gx(�y
i):

In other cases one may prefer to work in another ba-
sis, for example plane waves (or general coherent states,
Blaizot & Ripka, 1986) to transform a di�erential equa-
tion into an algebraic equation.

To achieve convergence one usually has to include a
step-size �, a method which is also called relaxation.
Then a new guess �yi+1 is generated from a previous guess
�yi by mixing only part of the new solution to the old one,
giving78

�yi+1 = G�(�y
i) = (1� �)�yi + �G(�yi)

= (1� �)�yi + �A�1(�yi)(t(�yi) � B(�yi)�yi)
= �yi + �(G(�yi)� �yi) (42)

= �yi + �A�1(�yi)(t(�yi)�O(�yi)�yi)

= �yi +A�1� (�yi)
dL(�yi)

d�yi
;

where � can be included in the de�nition of the operator
A�1� = �A�1. The expression t �O�y is the gradient of

the log{probability L (or negative gradient of the energy
E) or the (negative or positive, respectively) residual at
point �y. For linearA we recognize an iteration procedure
of the form (40) with

H(L) = �A�1:
When a linear approximation of dL

d�y
is possible in the

neighborhood of some �y0 the convergence depends on
the spectral radius of I + A�1H(�y0), where H denotes
the Hessian and I the identity. In the linear approx-
imation the Newton algorithm is optimal. For a linear
equation and �xed A, choosing � < 1 is also called under-
relaxation, and � > 1, which can improve convergence, is
called overrelaxation. (See for example Press, Teukolsky,
Vetterling, Flannery, 1992). For example, in the �nite
temperature model (30) the Hessian for the functional
p =

P
iZi=Z reads

HM (p) = ��
X
i

Zi

�
Oi + �Oij�y � T

O
i

>< �y � T
O
i

jOi

�
:

78Multiplying with (1=�)A and projecting onto an in-

�nitesimal < d�y j the iteration procedure �yi+1 = �yi �

�A�1(�yi)(O(�yi)�yi � t(�yi)) can be written 1=� <d�yjAj��yi>

= < d�yj(�L=��y)j�y=�yi >= dL. For in�nitesimal j��yi > =

j�yi+1��yi> approximately equal to d�y this shows that for pos-
itive (semi) de�nite A the di�erential dL is larger (or equal)
to zero. Thus, the functional L increases during iteration for
� small enough.
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while one �nds for L = ln
P

i Zi=Z

HM =
X
i

Zi

Z

���Oi + �2 jOi�y � T i><Oi�y � T ij�

��2
0
@X

ij

Zi

Z
jOi�y � T i><Oj �y � T j jZj

Z

1
A :

Notice, that in the high temperatur limit the terms pro-
portional to �2 vanish faster than ��Pi

Zi
Z
Oi. For only

one mixture component the last two terms compensate
for L = lnZ and the second term vanishes at the sta-
tionary point �y = O�1T for p = Z. For large deviations
Oi�y�T i the Hessian does not need to be negative de�nite
even for positive de�nite O. Similarly, the second deriva-
tive d

�
dg�1(L)=d�y(x)

�
=d�y(x0) = d

�
tI �OI �y

�
=d�y(x0)

gives for the Landau{Ginzburg model (39)

HI =
X
i

X
ji

M ijiOiji

+
X
i

X
ji

X
ki

M ijikiOiji j�y � T iji>< �y � T iji jOiji;

with

M ijiki =
Y

li 6=ki 6=ji

< �y � T ili jOiji j�y � T ili> :

G�(�y
i) = G�(i;�yi)(i; �y

i) can be chosen i{dependent by

varying � = �i or A = A(i), which can include depen-

dence on past values y0;k; k � i. The operator A should
be chosen adapted to the problem, i.e. approximating
O or, at least near a stationary point even better, the
Hessian H. A not exactly positive de�nit A might be
helpful in the beginning of an iteration step, if easy to
invert and leading `mainly' in the right direction. Then
a proper A (e.g. equal to the identity, see below) can be
chosen in subsequent iterations, when the solution �y is
already approximately correct. Convergence is not nec-
essarily guaranteed, but depends, besides on choosing a
good initial guess, on adjusting the relaxation factor �.
Choosing j�j small enough the change j�yi+1��yij becomes
arbitrary small, increasing the `resolution' of the search
and also reducing oscillations. This usually allows meth-
ods which search in directions with always positive (or
negative) projections on the gradient to reach at least
a local maximum (minimum) if the step-size is small
enough. (For convergence results see for example Bert-
sekas, 1995, Golden, 1996, and references therein.) The
step-size can also be determined by a line search in the
direction given by Gi(�yi) � �yi.

The usual gradient algorithm or method of steepest
descent is a special iteration procedure of this type: If
dL=d�y = (O�y � t) and if A is the identity operator,
then the term �y � G(�y) is the gradient of L. Iteration
schemes can also be related to the gradient of other sur-
faces but with the same stationary points. For example,
for Eq.(33) the iteration (42) is for A = 1 a gradient
algorithm on the surface p = eL and for a general lin-
ear operator A a gradient on a surface parameterized by

variables T (f0) = �z =
pA�y. For positive de�nite A the

square root exists and we have:

dL(�z)

d�z
=
�p
A
��1 dL(�y)

d�y
:

Here the square root is equal to its transpose as we un-
derstand positive de�nite to include symmetric. Thus,

by multiplying with
pA one �nds

�yi+1 = �yi + �A�1dL(�y
i)

d�y

, �zi+1 = �zi + �
dL(�zi)

d�z
:

To apply EM{like algorithms we can choose for a log-
posterior of the form (30) with only positive terms (ci
real) the summation index i (which has nothing to do
with the iteration i) as hidden variable

p(f0) =

Z
du p(f0; u) =

X
i

p(f0; ui);

with

p(f0; ui) = eL(f
0 ;ui) = e

�
�

2

�PNji
ji

<�y�T iji jOiji j�y�T iji>

�
+ci

so that
p(uijf0) = eL(uijf

0) =

e
�
�

2

�PNji
ji

<�y�T iji jOiji j�y�T iji>

�
+ci

P
i e
�
�

2

�PNji
ji

<�y�T iji jOiji j�y�T iji>

�
+ci

=
Zi

Z
;

and choosing a reference f0;ref

Q(f0; f0;ref ) =

P
i Z

ref
i lnZi

Zref
= lnZi

ref
;

where

Z
ref
i = e

�
�

2

�PNji
ji

<�yref�T iji jOiji j�yref�T iji>

�
+ci

;

Zref =
X
i

Zref
i ;

and

lnZi = ��
2

0
@NjiX

ji

< �y � T iji jOijij�y � T iji>

1
A + ci:

So the stationarity condition for �xed f0;ref reads

Oref
�y = T

ref
;

with

Oref
=

P
i Z

ref
i Oi

Zref
= ZrefOref ;

T
ref

=

P
i Z

ref
i T i

Zref
= ZrefT ref ;

or, after multiplying by Zref ,

Oref �y = T ref :
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WithOi;ji being linear operators and therefore quadratic
lnZi, this is a linear equation, which can be solved in
one step by inverting Oref . In case, a direct inversion
is not feasible, this inversion can also be approximated
by iterative procedures. In general, however, the lnZi
can be a non{quadratic function. The model F can for
example allow varying mixture coe�cients (included in
the ci) or di�erent variances (included in the factors of
Oiji) which then have to be included in the optimiza-
tion process. Such additional parameters are part of
the description of f0. If we implement them by a `hard
OR' with uniform prior on the allowed space this gives
not rise to additional terms and means practically min-
imizing the resulting equations also with respect to the
additional parameters. In general we can also add prior
terms for the additional parameters. One must be care-
ful however about the range of parameters consistent
with prior knowledge. Allowing for example to optimize
the relative weight of data and smoothness terms on the
training set can end up in the so called `�{catastrophe',
i.e. a solution having peaks at every data point and in
case of a zero template being zero elsewhere, a situation
most times not intended to be a very likely member of
F 0. Thus, the EM algorithm for Gaussian mixtures can
be seen as a method solving a reference equation linear
in �y. The stationarity equations for �xed reference f0

can become at least partly nonlinear if Oiji , ci or the �y
itself are parameterized nonlinearly. One may also use
cross{validation to determine those parameters.

The EM transformation (41) does not yet de�ne the
maximization procedure used to maximizeQ(f0; f0;ref ),

i.e. a ~Hi(Oref ) can be chosen and splitted in A and B in
various ways. Every iteration procedure has to separate
the occurrences of �y in the stationarity conditions into
old �yi and new �yi+1. An EM{algorithm treats occur-
rences of �y at two time scales: some are renewed during
maximizingQ, others when changing �yref . Thus, Qmay
be maximized by any method, including such based on
a random search, gradient{like, or EM{like algorithms.
See for example the Helmholtz machine (Dayan, Hinton,
Neal, & Zemel, 1995; Hinton, Dayan, Frey, Neal, 1995)
for an application of the EM algorithm to hierarchically
de�ned p(f0).

Table 4 gives the, in general ieration dependent, ma-
trices A�1

(i)
for some common iteration (or learning) pro-

cedures. They are special cases of relaxation techniques
and most of them are local, i.e. they only depend on
one previous guess �yi and derivatives at that location,
The gradient corresponds to choosing A�1 equalt to
the identity I. Jacobi iteration uses a diagonal A, e.g.
the diagonal part of O, the Gauss{Seidel method in-
cludes also the lower triangular part, e.g. of O. New-
ton's method takes the negative Hessian H for mini-
mization and maximization. More precisly, the Newton
method uses the given formula at locations where the
Hessian is negative de�nite (or positive de�nite for mini-
mization), at other locations the method has to resort
to any other minimization algorithm. Quasi{Newton
methods try to approximate the Hessian H. In the
table the abbreviations �i

(0) = �yi � �yi�1 and �i
(1) =

Local learning algorithms

Gradient A�1(i) = I

Jacobi A�1(i) diagonal
Gauss{Seidel A�1(i) triangular

Newton A�1
(i)

= � d2L
(d�y(x)d�y(x0)

jyi = �H�1

Quasi{Newton A�1
(i)

= A�1
(i�1)

+
�i
(0)

�i
(0)

T

�i
(0)

T
�i
(1)

( DFP ) �A
�1

(i�1)
�i
(1)�

i
(1)

T
A
�1

(i�1)

�i
(1)

T
A
�1

(i�1)
�i
(1)

CG A�1
(i)

=

�
1�A

�1

(i�1)

�i�1
dL
dy
j�yi�1

�i
(1)

T�
( dLd�y )

T dL
dy

�
j
�yi�1

�
EM A�1

(i)
= A0�1(i) dh

ref (L)

dL

with href (L) =

L+
R
du eL(ujf

0;ref)L(ujf0)

Table 4: Some local learning algorithms

dL
d�y
j�yi� dL

d�y
j�yi�1 are used. The given formula refers to the

DFP (Davidon{Fletcher{Powell) method, in the BFGS
(Broyden{Fletcher{Goldfarb{Shanno) method, for ex-

ample, a term aibibi
T
is added with ai = �i

(1)

T
Hi�1�i

(1)

and bi =
�i
(0)

�i
(0)

T
�i
(1)

� Hi�1�i
(1)

ai
(T denotes the transpose).

Conjugate gradient methods (CG) determine the step-
size by a line search in conjugate directions, obtained by
a Gram{Schmidt{procedure. Directions are called con-
jugate if they are orthogonal in O{distance, assuming
we are solving O�y = t. For non{quadratic problems
they are usually combined with a heuristic to restart the
Gram{Schmidt procedure. (See for example Bertsekas,

1995.) For the EM algorithm H0i de�nes the chosen it-
eration algorithms used for Q with �xed reference state.
EM algorithms are not restricted to local methods. (So
for them the word local in the table caption does not
necessarily apply.) Note that dL=df0 in the nonlinear
case usually contains integrals over x and therefore even
optimization methods which are local with respect to f0

are nonlocal with respect to x.

Nonlinear equations do normally have multiple solu-
tions corresponding to several extremal points. If several
solutions have to be considered in the last risk minimiza-
tion step of a MaP{MiR approximation this requires cal-
culation of the relative weight factors of the solutions or
widths of the maxima depending on the second deriva-
tives, or a corresponding estimate or assumption (See for
example Gelman, Carlin, Stern & Rubin 1995 and espe-
cially for neural networks: Buntine & Weigend, 1991;
MacKay 1991, 1992b, 1992c; Neal, 1996).

Nonlinear inhomogeneous equations appear for exam-
ple in scattering theory as approximation to higher di-
mensional linear inhomogeneous equations (See for ex-
ample, Austern, 1970, Taylor, 1972, Newton, 1982).
There the inhomogeneities (data) are related to the in
and out channels representing the boundary conditions
or asymptotic states of the wave functions. Numeri-
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cal aspects, applications to scattering theory and related
higher order approximations are, for example, discussed
in (Giraud & Nagarajan, 1991, Lemm, Giraud, & Wei-
guny, 1994 and Lemm, 1995ab).79

Nonlocal templates, or technically the inhomo-
geneities, can be used in the following way: Instead of
using a small space F 0

1 to represent possible states f0 of
nature and corresponding to hard implemented priors,
one allows a larger space F 0

2 and implements f01 2 F 0
1

within F 0
2 as priors with an soft OR by taking f01 2 F 0

1

as templates for F 0
2 . This allows to go beyond F 0

1 if the
data require. A soft implemented template for p(f0jf) is
not equivalent to using noisy answers for f0: The state of
knowledge about f0, that is p(f0jf), is updated through
data, while the noise levels of pure states are assumed to
be stationary, i.e. clamped during learning. Templates
can be seen as a method of transfer of knowledge between
tasks.

10 An introductory example

10.1 The models

To exemplify the techniques we study a case with one-
dimensional x and two full templates, T 1, T 2, i.e. which
are de�ned for all x, in addition to standard data �D. We
will study as well the mixture as interaction regulariza-
tions.

10.2 Finite temperature regularization

To express ( �D AND T 1) OR ( �D AND T 2) we choose a
probability of the form

P (�y) = eL =
Z

ZF0

=
Z1 + Z2

ZF0

with normalization constant

ZF0 =

Z
F0

df0 (Z1(f
0) + Z2(f

0)):

and Gaussian components

P / Z = e��
1
2
(�D+�1)+c1 + e��

1
2
(�D+�2)+c2

79For example in the Time Independent Mean Field The-
ory (TIMF) for quantum mechanical scattering one ob-
taines approximate variational solutions for matrix elements
< �0jO�1j� > (e.g. O = E � H, with energy E and
Hamiltonian H so O�1 is the resolvent of H) by choos-
ing �, �0 from a space of possible trial functions for which
< O�1�0 � �0jOjO�1�� � > is stationary. Notice the sim-
ilarity in the role of O�1� or O�1�0 and that of a template
average O�1TO = O�1

P
OiT i. For a mean �eld approach

one chooses �, �0 as product of single particle functions. Ex-
panding the quadratic functional gives as variational solution
< �0jO�1j� > = < �0j� > + < �0j� > � < �0jOj� >.
In contrast to the error minimization problems in scattering
theory E is in general a complex number and the wave func-
tions �, �0, �, �0 are allowed to be complex functions. Thus,
the stationary points are not maxima or minima but saddle
points, and the variational solutions do not yield bounds for
the exact solutions. At a saddle point, on the other hand,
the e�ect on the numerical value of the matrix element of
di�erent directions of deviations of �, �0 from the true so-
lution can have di�erent signs. Deviations from the optimal
solution can therefore partly compensate, improving the vari-
ational solution.

= e��
1
2
( ~�1) + e��

1
2
( ~�2)

= e�
�

2

~�1+
~�2

2 2cosh

�
�

4
( ~�2 � ~�1)

�

/ e�
�
2

��1+
��2

2 2cosh

�
�

4
( ~�2 � ~�1)

�
;

with parameter � > 0, ci real,

�D =< �y � �DjODj�y � �D >;

�i =< �y � T ijOs;ij�y � T i >;

and for combining data and template term in the same
exponent

~�i = ��i+
X
j

<T i;jjOi;jjT i;j>�<T
O
i

jOijTO
i

> �2ci=�;

��i =< �y � T
O
i

jOij�y � T
O
i

>;

T
O
i

=
�Oi

Pi

��1X
j

Oi;jT i;j;

Oi = OD +Os;i;

T i;1 = �D; T 1;2 = T1; T 2;2 = T2;

and we will write

T i = T i;1 + T i;2:

The data operator is diagonal in x{representation

OD = �DND;

and for the template operator Os we choose the same for
T1 and T2, i.e. Os;1 = Os;2. This gives for the operator

OM = OZ

OM = OZ
=

1

Z

X
i

e�
�

2
~�iOi =

�
�DND +Os

�
: (43)

Thus, the two terms of Eq.34 corresponding to i = 1 and
i = 2 coincide and the factor Z =

P
i Zi cancels out.

We select an operator related to a smoothness mea-
sure,

Os = �0O1 + �2O2 + �4O4;

with
O1(x; x

0) = I(x; x0) = �(x� x0);

O2(x; x
0) = ��(x � x0)

d2

dx2
;

and

O4(x; x
0) = �(x� x0)

d4

dx4
:

The �i and �D allow changing the weight of the four
parts. The inhomogeneous side has the form

T
Z
=

e��
1
2
(�D+�1)+c1

Z

�
�DND �D + OsT1

�

+
e��

1
2
(�D+�2)+c2

Z

�
�DND �D +OsT2

�
; (44)

with Z / P . As the operators are the same for both
T i they have equal normalization constants and the ci
are directly the logarithms of the mixture coe�cients.
The proportionality factor ZF0 cancels out as well as
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the variance{like term arising from combining the data
templates terms for equal x. For the model equation

OZ
�y = T

Z
we could, for example, write in the general

case O1 6= O2

�O1 +O2

2
+ tanh

�
�

4
( ~�2 � ~�1)

�
(O1 �O2)

2

�
�y

=
O1T 1 + O2T 2

2
+ tanh

�
�

4
( ~�2 � ~�1)

� O1T 1 � O2T 2

2
:

However, we have already seen in Section 9.6.1 that in
the case of equal operators Oi the equation�

�DND + Os
�
�y = ND �D

+
e��

1
2
(�D+�1)+c1

Z
OsT1 +

e��
1
2
(�D+�2)+c2

Z
OsT2;

can be simpli�ed to

�y = T
O
i;Z

=
X
i

ZiT
O
i

Z
: (45)

For two templates this may also be written as

�y = T
O
+ tanh

�
�

4
( ~�2 � ~�1)

�
T
O
1

� T
O
2

2
:

Eq. (45) shows that in this simplest case of only two
templates with equal operators Oi the space of solutions
is e�ectively one{dimensional. It is the line spanned by

convex combinations of the two T
O
i

. (The superscript
O
i

is kept as reminder that an operator inversion (Oi)�1

is needed to obtain this template average and the i{
dependence of the T i remains.) We also see, that for
� = 0 where the tanh is also zero, this gives the correct

high temperature solution �y(� = 0) = T
O
. For � ! 1

the tanh becomes �1 depending on the sign of ~�2� ~�1.
Hence, we �nd correctly as self{consistent low tempera-

ture solutions the component templates T
O
1

and T
O
2

.

For the symmetric case with ~�2� ~�1 = ��2� ��1 one
stationary solution in P{space is easily found. Then the

equation �y = T
O
for ��2 � ��1 = 0 is consistent with the

de�nition of the template average for which we found
��1 = ��2. We will see however, that this solution of
the stationarity equation is only a minimum for small
enough �, (the \high temperature phase").

Choosing only one x, i.e. jXj = 1, with Os = 1 and
T1 = T 1 = 1, T2 = T 2 = �1 the model equation reduces
to the celebrated mean �eld equation of a ferromagnet
with uniform couplings

�y = tanh (��y) : (46)

Here the templates T i (representing prior knowledge)
are the analogon of possible states80 of a physical sys-

80Not equal to the states f0 of possible �y.

tem (which has also to be speci�ed a-priori)81 and the
mean �y represents in both cases the observable we are
interested in. The data, which update our knowledge
can be called local �elds, changing (correcting) a-priori
given templates Ti to combined templates T i, i.e. the
�nal (posterior) mixture components.

At � = 1 Eq.(46) shows a bifurcation phenomena, as
for � � 1 there is only one solution �y = 0, while for
� > 1 two new solutions appear and �y = 0 becomes
unstable. If the equation is seen as a phenomenologi-
cal description of a large (or in�nite) system this is also
called a phase transition. Indeed, such bifurcations or
phase transitions are typical for mixture distributions.
For example, magnetic systems have many connections
to neural networks, especially to Hop�eld nets, see e.g.
Hertz, Krogh, & Palmer 1991. A interesting clustering
algorithm showing these phase transitions can be found
in Rose, Gurewitz, & Fox, 1990. For a real magnetic im-
plementation see also Blatt, Wiseman, & Domany, 1997.

10.2.1 Some remarks on local templates

Generalization requires correlations between di�erent
x, i.e. nonlocal dependencies. We implemented those de-
pendendencies by giving explicitly global templates. Al-
ternatively, those dependencies can arise from coupled
local templates T ix. Local templates means that we con-
struct a model by adding mixture components for every
possible local state ix for every single x 2 X. Nonlocal
dependencies are present if mixture terms for x depend
also on x0 6= x. For the whole system the number of
states grows exponentially with jXj. This leads for large
jXj (especially in the limit of continuous x ) to two ob-
vious problems:

81One may consider templates for physical systems (states)
to be more `real' than templates originating from fuzzy im-
plementation of prior knowledge. This means, however, only
that for physical systems a lower temperature can be actually
realized. With regard to `fuzzy' templates `nature' is usually
in a state of higher temperature and corresponding low tem-
perature states may not be preparable. However, in physical
systems the energy function (i.e. states) is (depending on the
level of description) not exactly known. Then di�erent possi-
bilities have to be combined by OR, giving mixture probabil-
ities. Examples are spin glasses where the variables on which
the log-likelihood depends are separated into states, and in-
teractions. (They are for spin glasses, however, treated asym-
metrically: marginalization over interactions not states). As
long as the probability distribution over di�erent interac-
tions cannot be made deterministic and one does not restrict
to non{uctuating (self-averaging) observables (i.e. those for
which averaging over interactions can be skipped) a spin glass
cannot be prepared at (`knowledge') temperature zero, i.e.

� = 1, even if it is at `thermic temperature' �� (near to)
zero. (We have seen in Section 5.3.4 that one may de�ne

many temperatures �j, related to di�erent parameters of the
generating process for f0, and if we distinguish a physical
from a knowledge temperature this depends on what part of
the process we label thermic. In principle we may substi-
tute every process under the label `physical' process.) Also
for the `thermic' temperature it is practically impossible to
reach the absolute zero point. Hence, the di�erence between
temperature ranges for `fuzzy systems' and physical states is
not of qualitative, but of quantitative nature.
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1. At low temperature the optimization can become
extremely di�cult or impossible when the number
of local minima of p(f0) is too large to be consid-
ered completely.

2. At high temperature the generalization ability can
be to small to be useful when the probability dis-
tribution p(f0) is too broad.

For a mixture model with only a few global tem-
plates p(f0) remains non{factorial in the high temper-
ature limit. This means that some combinations of lo-
cal states remains always excluded and generalization
possibilities remain at least for �nite jXj in this limit.
(While for in�nite jXj one must require a remaining �-
nite factor dimension of p(f0) to allow generalization
with respect to data and relevant questions depending
on a �nite number of x. See Section 2.)

The Hop�eld model, for example, is a special mixture
model with quadratic components (and usually com-
bined with a special iteration dynamic). It is constructed
with coupled local templates T ix = �1. so its number

2jXj of global templates T jX grows exponentially with
jXj. Typically the Hop�eld net is used as associative
memory. There one is interested in retrieving (a large
number of) stored patterns by varying the starting point
for the iteration procedure.82 Even although optimally
not done at zero temperature, where many unwanted
mixture states are stable, its use as associative memory
has the nature of a low temperature application, because
the memories shall be retrieved as near as possible to the
original stored pattern. Its use is limited by the on{set
of the spin glass phase. (See for example Amit, Gutfre-
und, & Sompolinski, 1987; Amit, 1989.) In general for a
system with local templates the generalization possibil-
ity can break down completely in the high temperature
limit when all templates become equally likely and p(f0)
gets factorial (See Section 2).

For nonlinear regularization we have mainly fuzzy log-
ical applications in mind where the number of fuzzy log-
ical alternatives (templates) is not extremely large but
comparable to the number of alternatives in typical prob-
lems solved by logical methods. We are, however, espe-
cially interested in the interpolation between templates,
i.e. in the deformed solutions under given data �elds at
�nite temperature.

One can see the two{(or few{)template case as an
e�ective model of an intermediate temperature range
where two templates T 1 and T 2 are near their phase
transition at ��. Those two templates are then consid-
ered as high temperature averages of �ner `constituent'
templates which at temperature �� cannot be distin-
guished while not considered templates are treated in
their low temperature approximation and already ex-
cluded. Our Gaussian two template example then cor-
responds to a Gaussian approximation, (`oscillators' for
discrete x, `free �eld' or random phase approximation

82Hence, the iteration procedure corresponds in this case
to retrieval and not to learning. Learning in the Hop�eld
net, i.e. �nding the weights W so that the correct patterns
(templates) are stable corresponds on this level of comparison
to the determination of priors p(f0).

for continuous x, however in a quite general form corre-
sponding to the chosen O) for the two e�ective templates
T 1 and T 2. Thus, a mixture model with two global tem-
plates, de�ned for all x, represents a system capable of
two Gaussian (process) states. This system is at zero
temperature in one of those two possible global states,
and at nonzero temperature in a mixture (weighted OR
for disjunct events) of those two states.

For a model with global templates the local states T ix
for all x are already combined into global states T i by
AND i.e. by the sum inside the scalar product in the
log-probability. The logarithm of the partition sum for
N global templates

lnZ = ln

NX
i

e��Ei (X) = ln

NX
i

jXjY
x

Zx;i(X)

is of the formORi ANDx Zx;i. with Zx;i being the (e�ec-
tive) partition sum for a single x in the global template
(state) i of the complete system. Notice, that if the
system includes nonlocal interactions (e.g. smoothness)
then Zx;i = Zx;i(X) depends also on x0 6= x and Z does
not factorize into local components depending only on
single x.

Constructing a system instead out of global states
(templates T j) out of combinations of local states (tem-
plates T ix) for each x leads to

lnZ =

jXjX
x

ln

nX
i

Zx;i(X) = ln

jXjY
x

nX
i

Zx;i(X)

= ln

nX
i1

� � �
nX
ijXj

jXjY
x

Zx;ix(X) = ln

njXjX
i0

jXjY
x

Zx;i0(X);

with multi{index i0 = (i1; � � � ; ijXj) and Zx;i0(X) =

Zx;ix(X). This corresponds to N = njXj global tem-
plates. The sum reduces if probabilities for certain com-
binations of local templates are zero. Otherwise one has
n di�erent disjunct local states i for every subsystem x
and correspondingly njXj templates for the whole sys-
tem with, depending on the considered interaction and
dynamic as many potential candidates for (meta)stable
states. Notice the similarity of this form of lnZ with
the form obtained by averaging for spin glasses (See �rst
footnote in Section 5.3.4). The sums over all con�g-
urations x 2 X of composite systems, can sometimes
be reduced to a product over single component sums
(that means `exchanging'

P
with

Q
under the loga-

rithm) at the cost of introducing new variables. Such
an embedding of the system in a larger space can make
it easier solvable (similar to the idea of introducing La-
grange parameters), or a certain approximation scheme
(e.g. saddle point approximation) can become applica-
ble. Quadratic interactions for example are linearized
by the Hubbard{Stratonovich transformation where the

Gaussian integral formula is used `backwards': e�y
2
x=4a

=
p
a=�

R
d� e�a�

2
��yx�. Then the total partition sum

factorizes in x and the sum can be performed over lo-
cal components. The remaining integral over � (called
order parameter) can be performed in saddle point ap-
proximation. Similarly, restrictions like �{functions or
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step functions �(x) can be written in an integral rep-
resentation, which creates new order parameters for a
subsequent saddle point approximation.

For example, a ferromagnetic mean �eld equa-
tion with nonuniform coupling looks like �y =
tanh (�W�y + �hext), to be read component-wise, with
an external �eld vector hext. The coupling matrix
or operator W, causes couplings between di�erent x
values of a vector �y. To obtain such an equation
one has to use local templates, independent for dif-
ferent x. A model log{probability would look likeP

x ln
P2

i=1 e
Lx+Lx;i(X)=

P
x(Lx+ln cosh(Lx;i(X))) for

Lx;1 = �Lx;2 with, for Lx = 0, a derivative of the form
dL
dŷx

=
P

x0 tanh
�
dLx0;i
�yx

�
. Neglecting the non{diagonal

terms give equations of the structure of mean �eld equa-
tions with nonuniform coupling operator (e.g. nearest
neighbors) W and external �eld hext contained in Lx;i.
For quadratic interactions such equations are usually ob-
tained using the Hubbard{Stratonovich transformation
(see below).

10.3 Landau{Ginzburg regularization

For an interaction version we can approximate a struc-
ture ( �D AND (T 1 OR T 2)) in a naive (fuzzy) implemen-
tation as

LI1 = �g(
D
�D + �1�2);

or, similarly, use the structure ( �D AND T 1) OR ( �D AND
T 2)

LI2 = �g((
D
�D + �1)(D�D + �2))

= �g(2D�2
D + 

D
�D (�1 +�2) + 2�1�2):

These L have a polynomial structure. (The strictly
monotonically increasing g does not change the location
of extrema, even if non{polynomial.) The parameter ,

D
parameterize the relative weights of data and tem-

plate terms in the energy (log-probability, error) func-
tion. Because extrema of LIi are independent of a scal-
ing factor, we can always choose 

D
= 1 � . To have

a parameter with values between zero and in�nity, like
� in a mixture or �nite temperature regularization, we
can use

�I =


1� 
;  =

�I

1 + �I
;

so that for example after multiplying with 1=(1 + �I ),
skipping from now on the superscript I for �I

LI1 = �~g(�D + ��1�2);

where � as in LM can be seen (after multiplying again
with �) as a common scaling factor for �D, �1, �2. Anal-
ogously, we get

LI2 = �~g(�2
D + ��D (�1 +�2) + �2�1�2):

Conversely, using for the temperature �

M =
�

1 + �
; � =

M

1� M
;

has the advantage that the in�nite interval [0;1] is
mapped into the �nite interval [0; 1].

Eqs. (39) give for model LI1 ,

OI1 = OD + �(�1 +�2)Os; (47)

tI1 = OD �D + �Os(�2T
1 +�1T

2); (48)

and for model LI2 ,

OI2 =
�OD + �Os

�
(2�D +�1 +�2) (49)

tI2 = (2�D +�1 +�2)OD �D (50)

+�Os ((�D ��2)T1 + (�D ��1)T2) :

Both models have in the no{data case, �D = 0, the
solutions �y = T1 and �y = T2, while in the case of miss-
ing templates LI1 reduces to a Gaussian data model and
the second model LI2 keeps a quadratic term in �y, which
however is equivalent to a Gaussian using ~g(x) = g(

p
x).

For T1 = T2, i.e. �1 = �2 = �T , L
I1 is not equiv-

alent to a Gaussian L = �D + �T and treating data
and templates not symmetrically. Using

p
�1�2 in LI1

would restore the Gaussian in the limit, but destroy the
polynomial structure.

A high temperature expansion of the mixture model
LM according to (9) gives

LHT = c1 � �
~�1 + ~�2

2
+
�2

8
( ~�1 � ~�2)

2

= c3 � �
��1 + ��2

2
+
�2

8
( ~�1 � ~�2)

2

= c3 � �

�
�D � �1 +�2

2

�
+
�2

8
( ~�1 � ~�2)

2:

Here the no-template case gives the Gaussian LHT = c�
�D. For T1 = T2 and O1 = O2 the di�erence ( ~�1� ~�2)
is zero, so that LHT = c ��D ��T , with �T = �1 =
�2, which is symmetric between data and templates and
Gaussian. For O1 = O2 = Os the terms quartic in �y
cancel in (�1 � �2) and the LHT quadratic in �y can
only have one extremum.

For the high temperature approximationwe �nd, after
dividing by �

OHT =
O
2
+ �

( ~�2 � ~�1)

2

(O1 �O2)

2
; (51)

tHT =
TO

2
+ �

( ~�2 � ~�1)

2

(T 1 � T 2)

2
:

For O1 = O2 and T 1 = T 2 the high temperature equa-
tion becomes �{independent and, as we already saw,
linear in �y, so only one solution can exist. More gen-

eral, one sees that the temperature independent T
O
=

O�1
P

P2
i=1OiT i, for which ~�1 = ~�2, is a self-consistent

solution of the high temperature equation. We have al-

ready seen that the template average T
O

is also one
mean �eld solution for �nite temperature or mixture reg-
ularization.

We may think of a form similar to the high tempera-
ture expansion to obtain an e�ective Landau{Ginzburg
log-likelihood which possesses both the high and low
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temperature limits of the mixture model.83 Instead of
implementing the OR and using a parameter  weight-
ing the data against the template inuence a more
temperature{like parameter should interpolate between
an AND in the high temperature phase (corresponding
to the �rst term in the high temperature expansion which
is according to Section 5.3.4 the �rst moment or average
with respect to the mixture coe�cients ai=Za) and an
OR for the low temperature limit. Thus, we can choose

LPF = �g1
�
�D +

�1 +�2

2
+ � ��1

��2

�

= �g2(
��1 + ��2

2
+ � ��1

��2)

= �g3( �� + � ��1
��2)

with �� resulting from the combination of ��1+ ��2. The
superscript in LPF refers to an interpretation of �y �
T
O
as (an self{interacting) prior �eld with �� describing

the propagation of an average �eld and the term ~�1
~�2

the additional `repulsive' self{interaction. Varying the
interaction strength � allows to go from the pure average
�eld (� = 0 or high temperature case) to the purely
interacting �eld (� =1 or low temperature).

Here we have

OPF = O(1 + 2�( ��1 + ��2)); (52)

tPF = TO + 2�( ��1T
O
2

+ ��2T
O
1

); (53)

with O =
P

iOi, OiT
O
i

= TO
i

, and TO =
P

i T
O
i

.
The resulting mean �eld equations

�y =
T
O
+ 2�O�1( ��1T

O
2

+ ��2T
O
1

)

1 + 2�( ��1 + ��2)
;

show the correct high and low temperature behavior. For

� = 0) �y = T
O
, and for � !1 only the second terms

with self{consistent solutions �y = TO
2

and �y = TO
2

. For
O1 = O2, this reads, similar to the case of the mixture
model

�y =

P
i ziT

O
i

z
;

with

zi =
1

2
+ � ��i; z =

X
i

zi;

replacing Zi = e�
�

2
~� and Z. However, this equation

has a special usually not wanted feature. According to

83In the context of regularization we want to �x the low
temperature solutions and �nd possible parameterizations for
all �, without being only interested in the neighborhood of
the phase transition. Hence, we use a form for L where the
low temperature solutions, i.e. the templates (combined for
every mixture component), can directly be read of, not how-
ever necessarily the corresponding critical ��. Alternatively,
we could also express L in terms of the reduced temperature
t = 1=� � 1=��, and choose polynomial terms in �y to pro-
duce a phase transition at t = 0. This is more natural when
studying phase transitions. For fourth order polynomials it
is easy to solve for the extrema and therefore to relate the
two formulations.

its symmetry against exchanging ��1 $ ��2, the solution

has either ��1 = ��2, i.e. �y = T
O
, or for a solution �y1

there exists another solution �y2 with exchanged ��i.

Thus, as soon as the solution T
O
gets deformed, there

exist always two of them with the same value of L, so
there is no way to choose between them. In this sense
the equation implements a model where for all given data

(i.e. a posteriori) both components T
O
i

are equally likely.
One can, for example, replace the term � ��1

��2 in LPF

by LI1 or LI2 to `enforce a decision'.
Because it has the simplest structure and at the same

time shows the typical phase transition phenomenon we
choose for the following numerical study the model LI1

for comparison with the mixture model, also with OD =
�DND and Os = �0O1 + �2O2 + �4O4.
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10.4 Bifurcations, phase transitions: one
dimensional case

We have discussed the special two template case with
O1 = O2. In that case the solutions of the mixturemodel
LM are restricted to a one dimensional line in the func-
tion space F 0 of �yx. Similarly, using a Landau{Ginzburg
form for the log-likelihood, quartic e�ective interaction
terms yields stationarity equations with at most two sta-
ble solutions. Hence, it may help in understanding the
features of higher dimensional situations if we recall the
well{known one{dimensional case. Therefore, we present
some �gures which gives a visually oriented summary
over the bifurcation/phase transition behaviour for the
models LM and LI1 in one dimension. This can also be
seen as an illustration of the discussion of the maximum
posterior approximation in Sections 7 and 8.5.

Figs.11 and 12 show that LM and LI1 indeed possess
similar behavior, including a phase transition. There
howevr are quantitative di�erences, especially the high
and low temperature limits are not the same. At high
temperature only one solution exists, decreasing the tem-
perature a second solution can become stable. However,
except for the case a = 0 the high temperature solution
follow under decreasing temperature the more probable
and thus better solution. This exempli�es the principle
of annealing techniques.

In contrary, varying the value of a, corresponding to
data, instead of temperature leads to typical hysteresis
e�ects. Then a quite unlikely solution can remain sta-
ble for a long time. This may be seen as prototype for
sequential updating or on{line learning methods.

Because  = �
1+�

and not � is the convex mixing co-

e�cient between of data and template terms in LI�1 the
Figs.13 and 14 show the one dimensional case parame-
terized with . One sees that it can make a big di�erence
to test di�erent equal spaced values of either � or  for
example in cross{validation. The parameter  has the
advantage of being completely in the interval [0; 1].

Figs.15 and 16 compare the saddle point approxima-
tion with the full Bayesian approach depending on the
distance of the data a to the two templates Ti = �1. The
distances ja� 1j=2 and ja+ 1j=2 correspond to the rela-

tive canonical distance dO;T (�y; T
O
i

) and the value zero

to the high temperature template average T
O
. Clearly,

for a = 0 the full Bayesian solution remains zero at all
temperatures. For higher a the mean �eld solution be-
comes quickly better. The, in contrast to the full risk,
more pronounced structure shows the low temperature
character of the MaP approximation, i.e. its tendency
to single templates instead of their template average.
Notice however, that the mean �eld solution despite re-
sulting from an expansion in 1=� is not worst at high
temperatures but in the neighborhood of the phase tran-
sition. The high temperature limit of the saddle{point
approximation coincides, in the shown case of an approx-
imation problem, with the exact solution again. This is
the case because for a Gaussian distribution mean and
mode coincide.
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Figure 11: One{dimensional Gaussian mixture model:
N (a; 1=

p
�)N (b; 1=

p
�) + N (a; 1=

p
�)N (c; 1=

p
�), at

b = �1, c = 1, with N (�; �) denoting a Gaussian with
mean � and variance �2. We denote the independent
variable by �y to relate the example to the Bayesian
framework. The variable a is meant to represent data
values, b and c templates. Rows 1{ 3 (from top) left:
a = 0; 0:05; 0:5; right: cut at � = 2 (10 times f) and
� = 4; row 4, left: � vs. �ymin for �2:25 � a � 2:25
by 19 steps by 0:25 (thick line: a = 0:5); right: func-
tion at a = 0:10 for 0:5 � � � 10; row 5, left: � = 6,
�1 � a � 1; right: � = 6, a = �0:6(thick), 0, 0.6(thin);
row 6, left: a vs. �ymin for � = 0, 1, 2(thick), 4, 6(dashed),
8, 10; right: function at � = 6 for �1 � a � 1.
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Figure 12: One{dimensional Landau{Ginzburg regular-
ization with a product term as e�ective interaction, rep-
resenting a version of `Fuzzy OR': (�y�a)2+�(�y�b)2(�y�
c)2 at b = �1, c = 1. Rows 1{ 3 (from top) left:
a = 0; 0:5; 1; right: cut at 0:5 and 2:0; row 4 left: �
vs. �ymin , �1:5 � a � 1:5 by 13 steps 0:25 (thick line
a = 0:5); right: function at a = 0:5 for 0 � � � 3; row
5: left: �1 � a � 1, � = 1:2; right: cuts at � = 1:2 for
a = �0:6(thick) , 0.0, 0.6(thin); row 6: left: a vs. �ymin
for � = 0; 0:5(thick), 1.0, 1.2(dashed), 1.5, 2.0, 2.5, 3.0;
right: function at � = 1:2, �8 � a � 8.
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Figure 13: One{dimensional Gaussian mixture model:

parameterized by  = �
1+�

taking values in [0; 1], cor-

responding to � = 
1�

. Rows 1{ 3 (from top) left:

a = 0; 0:5; 1; right: cut at  = 2=3 and 0:85; row 4: left:
 vs. �ymin , �1:5 � a � 1:5 by 13 steps 0:25 (thick line
a = 0:5); right: function at a = 0:1 for 0:12 �  � 0:4;
row 5: left: �1 � a � 1,  = 0:15; right: cuts at
 = 0:15 for a = �0:5(thick), 0.0, 0.5(thin); row 6: left:
a vs. �ymin for 0 �  � 1 by steps of 0:2 (thick:  = 2=3,
 = 0:85); right: function at  = 0:85, �1 � a � 1.
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Figure 14: One{dimensional Landau{Ginzburg regular-
ization with a `Fuzzy OR' in its `natural' convex pa-

rameterization  = �
1+�

taking values in [0; 1], so that

� = 
1�

. Rows 1{3: (from top) left: a = 0; 0:5; 1;

right: cut at  = 1=3 and 2=3; row 4: left:  vs. �ymin ,
�1:5 � a � 1:5 by 13 steps 0:25 (thick line a = 0:5);
right: function at a = 0:5 for 0 �  � 11; row 5:
left: �1 � a � 1,  = 0:5; right: cuts at  = 0:5 for
a = �0:5(thick), -0.0, 0.5(thin); row 6: left: a vs. �ymin
for  = 0, 0.25, 1/6(thick), 0.5(dashed), 0.75, 1; right:
function at  = 0:5, �1 � a � 1.
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- p( y | f )  ln p( y | f =0)ˆ all three

Figure 15: Mean �eld (Maximum posterior approxima-
tion or empirical risk minimization) vs. full Bayesian
approach for a Gaussian mixture model at a = 0:1. Row
1: The posterior probability p(f0jf) used for the MaP
step (left), and the corresponding optimalMaP{solution
�y� = f0;� = argmaxf02F0p(f0jf) (right). Row 2: The

true e�ective probability p(yjf) =
R
df0 p(f0jf)p(yjf0)

(left) and its maximal value argmaxyp(yjf) (right). Row
3: The full Bayesian risk for the corresponding approxi-

mation problem (so we can identify f0 and f̂ ) r(f̂ ; f) =

� R df0 R dy p(f0jf)p(yjf0) ln p(yjf̂ ) (left) and its mini-

mal value f̂� = argminf̂2F̂ r(f̂ ; f) (right). Row 4: Show

all three curves combined for comparison (right) and on

the left the actual loss distribution �p(yjf) ln p(yjf̂ ) for
the example f̂ = �y = 0. We may remark that even
in this case where the mean �eld approximation is no
good approximation for the true �{dependency of the
risk because of the small a (for a=0 the true optimal so-
lution would always be zero), it is nevertheless possible
to obtain the whole range by adapting the `mean �eld
temperature', for example by cross{validation. Notice
that neither the linear high temperature regularization
nor the two linear low temperature limits can access the
whole range as they can never cross the value a by chang-
ing their �.
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Figure 16: Mean �eld (Maximum posterior) vs. full
Bayesian approach at a=0:5. The same situation as in
Fig.15 with a nearer to the 1{template, so the mean
�eld approximation becomes better. (For still larger
a (not shown) the mean �eld approximation improves
quickly.) In both �gures the low temperature character
of the maximum posterior method is nicely seen. The
posterior probability is much sharper peaked than the
true risk, amplifying therefore di�erences between alter-
native f0. The true risk, containing two integrations, is
much smoother. The fact that the maximum of the true
y distribution p(yjf) in state f does not coincide with

the optimal f̂ shows the asymmetry of this distribution.
Obviously, the mean �eld approximation is much better
for larger a. For a non{approximation problem the risk
minimization under f0;� would have to be included in
the MaP{MiR procedure. The results depend from the
chosen non{approximation loss. One may remark here,
that in situations where the template represents a pro-
totypical situation for which actions are available and
cheap, it is reasonable to add a loss term increasing with
the distance from the nearest template. Including such
a `template-distance' loss favors a low temperature ap-
proximation and improves the validity of the mean �eld
solution.80
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Figure 17: The two template example. The upper left
diagram shows the two templates T 1 and T 2 and data
(drawn from the interval [1; 30]). The upper right dia-
gram shows the state of nature f0 (thickly dashed) and
T 1. The second row from above shows the two (�D{,

�0{dependent) T
O
i

�2=�4=0
which are the solutions for ei-

ther T1 or T2 combined with the data �D under vanishing
smoothness coe�cients �2 = �4 = 0. They are in the
following �gures given as reference to estimate the e�ect
of smoothing. (Left: for T1, right: for T2.)
.

10.5 Numerical results

As examples of templates we choose (see the two dashed
curves in the upper left picture in Fig.17)

T1 = � sin

�
3�(x� 1)

m� 1

�
� a1;

T2 = sin2
�
3�(x� 1)

m � 1

�
� a2;

with m = 40 and ai adjusted so that both functions
have mean zero on the interval [1; 40]. We consider the
case that the learner expects the actual function to be
similar, but not identical, to either T1 OR T2. Thus,
the templates represent function prototypes. They may
stand for two typical structures for a time series or, in
case of an incomplete (here one{dimensional) image to
be reconstructed for two expected spatial patterns.

A mixture model can be easily realized by a hierarchi-
cal sampling process. Then �rstly a mixture component
is chosen corresponding to one of the templates and rep-
resenting disjunct events. In a second step the actual
f0 is generated from that mixture component. An in-
teraction model may be sampled by Monte{Carlo meth-
ods. We do not intend to generate f0 exactly according
to the one of the learning models. Instead we generate
the state of nature f0 by a di�erent hierachical process.
Speci�cally, we use the following method to generate
f0: Firstly, we choose one T i (T 1 in the below exam-
ples which, however, is assumed not to be known by the
learner) and add Gaussian noise (with � = 0:2) for every
x. In a second step this wiggly function is smoothed by
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Figure 18: Mixture model at � = 1 < ��. (LM , re-
laxation, � = 1:0, at �D = 100, �0 = 1, �2 = 1,
�4 = 1). The �rst three rows, here and in the fol-
lowing �gures, shows the results of relaxation learning
for the mixture model LM according to (43, 44) with
A = O for di�erent starting con�gurations �y0, which
are (top to bottom) (�y01 = T1, �y

0
2 = T2, and a random

�y0r = Trandom). The last two rows show for comparison
two one-template models with the same choice of pa-
rameters and starting point �y0 = T : Row 4: a mixture
template T = T = (T1 + T2)=2, row 5: the usual zero
template T = T0 = 0 of homogeneous linear regular-
ization. Here and in the corresponding following �gures,
the diagrams on the right show the evolution of the solu-
tion ŷ during iteration, and the diagrams on the left the
�nal solutions (thick line). For comparison also shown

are, data (points) and the two templates T
O
i

�2=�4=0
(see

Fig.17) for the given �D, �0. The bars show the (mean
square) generalization error (gray) calculated for 1000
newly generated random points in the intervals [1; 40]
(left) or [1; 30] (right), respectively, and, here and in the
following, always normalized with respect to the largest
of the errors for all �ve cases (LM with �y0 = T1, T2,

Trandom, and linear regularization with T , T0) under the
same parameter combinations. The black part represents
the minimal possible generalization error, with absolute
value always equal 0.04.
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Figure 19: Smoother model, a low temperature case � =
1 > ��. (Mixture model LM , relaxation, � = 1:0, 50
iterations, �D = 10, �0 = 1, �2 = �2, �4 = �4, with � =
(m�1)=(3�), m=40 bringing in this case all derivatives in
the same order of magnitude.) Rows 1-3: mixturemodel,
starting con�guration T1, T2, Trandom (top to bottom).

Rows 4 and 5: one template models with T = (T1 +
T2)=2 (row 4) and T0 = 0 (row 5). Because one-template
models result for the relaxation method with � = 1 in a
linear equations, only one iteration is needed to obtain
the �nal solution. For � = 1 the number of iteration
steps needed to converge to the �nal solution can be
seen as a measure of the `nonlinearity' of the equations.
For example, the left hand side �gures (rows 1{3) show
that after only one iteration the solutions hardly change
anymore and thus the equations of the mixture model
in this parameter range (in contrast to other situations)
are nearly linear.
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Figure 20: Landau{Ginzburg Regularization. (LI1 , re-
laxation, � = 1:0, at � = 1, �D = 100, and �0 = 1,
�2 = 1 �4 = 1.) Like for the mixture model rows 1{3
show the solutions evolving from the di�erent starting
con�gurations T1, T2, Trandom . Shown is a high temper-
ature case where only one solution is stable. The �gure
shows clearly how the nonlinearities of the mean �eld
equation forces the solution �y2 evolving from T2 (and
Trandom) towards the solution �y1 evolving from T1 (rows
2, 3). For this solution (row 1), being already near the
extremum, the nonlinearities are not e�ective. One sees
that also the one template models T0, T are nonlinear.
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Figure 21: Bifurcation: un{ and metastable states.
(Mixture model LM , relaxation, � = 1, �D = 1, �0 = 1,
�2 = 1, �4 = 1, � = 1, 0.482, 0.1, 0.01, top to bottom.)
The weaker solution evolving from T 2 changes suddenly
with �, with a vanishing gradient at � = ��. This so-
lution appears as `shadow' in the iteration picture, and
looks stable under a smaller number of iterations. The
solution is near the phase transition strongly adapted to
the data and quite di�erent from its starting point T 2.
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Figure 22: Bifurcation: The stable state. (Mixture
model LM , relaxation, � = 1, �D = 1, �0 = 1, �2 = 1,
�4 = 1, � = 1, 0.482, 0.1, 0.01, top to bottom.) The
better solution near T 1 remains nearly unchanged. It
is also near the phase transition still quite similar to its
starting point T 1 as the data do not require a strong
adaption like for the weaker solution. The deformation
becomes larger in the high temperature limit.
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Figure 23: Phase transition for a smooth model (Mix-
ture model LM , relaxation, � = 1:0, 50 iterations, at
� = 0:0105 � ��, �D = 10, �0 = 1, �2 = �2, �4 = �4.)
Row 1, left: Shown are the two low temperature so-

lutions T
O
1

, T
O
1

(dashed), and the high temperature

limit T
O

(dot{dashed) in the middle. (Which in this

case is similar, but not identical to T = T1+T2.) Row 1,

right: T
O
2

(thickly, dashed) is shown resulting from the
data points and T2 (thinly, dashed). Rows 2-4: (Start-
ing con�gurations T1, T2, Trandom.) The �gure shows
that the solution evolving from T2 (and in this case also
from Trandom) is nearly stable. The `shadow' in the right
hand �gure still shows the corresponding low tempera-
ture solution (compare Fig.19.) The amount of itera-
tions needed reects the high nonlinearity of the mean{
�eld equations at this point. The (linear) one{template
models are temperature independent and here not shown
(but in Fig.19). The two plots in row 5 are explained in
the caption of Fig.24
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Figure 24: Phase transition for a more data oriented
model (Mixture model LM , relaxation, � = 1:0, 50 iter-
ations, at � = 4:85 � ��, �D = 100, �0 = 1, �2 = 1,
�4 = 1.) Plots in rows 1-4 correspond the Fig.23. One
sees clearly, that the transition is much sharper, as the
higher data orientation of the coe�cients favors the so-
lution evolving from T1. Indeed, the solution evolving
from T2 seems perfectly stable before their sudden tran-
sition. Row 5 left: Shown are the normalized canonical

distances (See Eqs.(38, 37)) d1 = dO;T (�y�T
O
1

) (thick),

d2 = dO;T (�y�TO
2

) (dashed), dHT = dO;T (�y�TO) (dot{
dashed), for �y = �y2 with starting con�guration �y02 = T2
during iteration. Points with d1 + d2 = 1 are according
to the triangle equality exactly on the line spanned by
convex combinations of the two low temperature states,
which are solutions of the corresponding limiting linear
regularization problems. One sees that the �nal solutions
are on this line, however not the starting con�gurations
which may be anywhere in the high-dimensional space
F 0. Notice also, that �y iterates along this line and passes
the possible solutions in between. This can be used as a
sanity check for numerical calculations. Additionally re-
stricted �y, e.g. with periodic boundary conditions, have
in general not d1 + d2 = 1. Right: The second plot in
row 5 shows the increasing LM (�y) (unnormalized).
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Figure 25: The diagram summarizes schematically the
two template example in this Section and the temper-
ature dependence of its solutions �y. Variations of high
and low temperature solutions under changing parame-
ters are shown in Figs.26, 27.
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Figure 26: High temperature solutions T
O
. (Mixture

model LM , relaxation, � = 1:0.) The high tempera-
ture solutions calculated at � = 0:001 and (top left:
small data and large smoothness inuence) �D = 1,
�0 = 1,�2 = �2,�4 = �4 (top right: small data and
no smoothness inuence) �D = 1, �0 = 10, �2 = 0,
�4 = 0 (bottom left: large data and smoothness in-
uence) �D = 1000, �0 = 1,�2 = �2,�4 = �4 (bot-
tom right: large data and no smoothness inuence)
�D = 1000, �0 = 1, �2 = 0, �4 = 0
.
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Figure 27: Low temperature solutions T
O
i

. (Mixture
model LM , relaxation, � = 1:0.) The low tempera-
ture solutions calculated �{independent for the three one
template models with T1, T2, and T0 (from top to bot-
tom, with error bars relative within the same parameter
values) at the four cases corresponding to Fig.26, (top
left) �D = 1, �0 = 1,�2 = �2,�4 = �4, (top right)
�D = 1, �0 = 10, �2 = 0, �4 = 0, (bottom left)
�D = 1000, �0 = 1,�2 = �2,�4 = �4, (bottom right)
�D = 1000, �0 = 1, �2 = 0, �4 = 0. One can observe,
that solutions evolving from better �tting templates are
able to produce smoother functions �y.
.
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changing f0 randomly (Zero mean Gaussian mutations
with � = 0:02) at all locations and accepting the change
if the smoothness increases. Smoothness is hereby mea-
sured by < �y0jOsj�y0 > with �gen0 = 0:0 (i.e. only
derivatives of T 1 contribute), �gen2 = 0:5�2 � 8:56 and
�gen4 = 0:5�4 � 146:6, with � = (m � 1)=(3�)2 � 4:138
so the derivatives have the same order of magnitude. (In
the following the learning models do not have the same
coe�cients as the generation model, i.e. �i 6= �

gen
i .) This

smoothing process has been iterated 2000 times. Then
data are drawn from f0 with a Gaussian distribution
with � = 0:2 and mean �yx(f

0) from the interval [1; 30].
Thus, the task can be seen as a simple two{template
prediction or reconstructing problem. with the inter-
vall [31; 40] representing either future values (for time
series) or a hidden area (in image reconstruction). See
the thickly dashed curve in the upper right picture in
Fig.17 for the f0 used for the results discussed in the
following.

Figs. 18 { 20 present numerical results for the two{
template example and the two prototypical nonlinear
regularization methods:

1. the �nite temperature regularization with mixture
model

LM / e�
1
2
(�D+�1) + e�

1
2
(�D+�2);

and stationarity equations (43, 44)

2. the Landau{Ginzburg regularization with an inter-
action model

LI1 = g(D�D + �1�2):

in a naive fuzzy version and stationarity equations
(47, 48)

The two iteration schemes from the spectrum of learn-
ing algorithms we used are

A. relaxation with A = O
�yi+1 = (1� �)�yi + �O�1t;

B. and the gradient,

�yi+1 = (1� �)�yi + �(O�yi � t):

Intermediate algorithms can for example invert lower di-
mensional sub-blocks ofO. Such a submatrix ofO can be
constructed by including from clusters of correlated vari-
ables one or a few (prototypical) representatives. Multi-
grid methods, for example, can be seen as such an ap-
proach for functions with approximately homogeneous
local correlations. Note that in our case the EM algo-
rithm coincides with the relaxation algorithm. Fig. 29
shows typical problems of the gradient method for (dis-
cretized) di�erential operators.

Fig. 25 summarizes the typical bifurcation or phase
transition behaviour for the mixture model.

11 Conclusions

The paper is motivated by the fact that predetermined
dependencies between answers to di�erent questions are
necessary for generalization and, thus, responsible for
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Figure 28: RBF (Radial Basis Function) regularizer.
(Mixture model LM , relaxation, � = 1:0, at � = 1,
�D = 10, and �0 = 1, �2 = �2RBF =2, �4 = �4RBF =(2!2

2).)
The �i are chosen as the �rst three coe�cients of the
RBF regularizer (29) with �RBF = 3. For the zero tem-
plate T0, corresponding to the usual linear RBF method,
one sees clearly the superposition of Gaussian-like func-
tions centered at the data points.
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Figure 29: The \Gradient{�{catastrophe": Row 1, left:
Relaxation with full inversion A�1 = O�1, � = 0:2 (the
relaxation method converges with � = 1 in nearly one
step), Row 1, right: Gradient, i.e. A�1 = I (=Iden-
tity) and � = 0:005. Row 2: A `Gaussian Gradient'

with A�1x;x0 = (1=�
p
2�)e�(x�x

0)2=(2�2) for � = 2 (left)

and � = 1 (right) and � = 0:005. Shown are the �rst
10 iterations for a situation with high data inuence:
� = 1, �D = 100, �0 = 1, �2 = 1, �4 = 1. To ob-
tain an iteration procedure, O is splitted into two parts
O = A+B and a new guess �yi+1 is generated according
�yi+1 = �yi��A�1(O�yi�t). The gradient algorithm takes
A = I equal to the identity matrix. For an operator O
with only diagonal (e.g. data terms) and near diagonal
(e.g. di�erences for a discretized di�erential operator)
matrix elements the update information propagates, be-
sides through the x{independent factors Zi contained in
O and t, only locally between neighbouring x. In the
limit of continuous x this becomes for di�erential oper-
ators, i.e. a vanishing e�ective neighborhood, arbitrarily
slow. Analogous problems arise if A�1 has an (approx-
imate) block structure. Hence, in practice when O is
no integral operator the update algorithm has to use an
A�1 which connects dependent parts of �y. This can in
our case be achieved by enlarging the neighborhood for
example by choosing (at least for the beginning) a Gaus-
sian A�1 or other forms of local means. The nonlocality
may be further increased by using nonlocal or hierarchi-
cally organized blocks (`neighborhoods'), like for exam-
ple multigrid methods. One may also write �y = ��y � ~y
with ~yx = ~y(x;w) an approximation of �y with nonlocal
dependencies, and update �rst ~y(x;w) and then ��y. In
case ~y approximates the nonlocal dependencies quite well
a gradient algorithm (e.g. backpropagation for a neural
net) with respect to the parameters w may already nicely
converge so adaption of the remaining ��y is fast enough.

Also, the T
O
i

�2=�4=0
or if available as result of a �rst linear

regularization step T
O
i

might be good starting con�gu-
rations. In general, the relevant nonlocal dependencies
can be di�erent in the various low and high temperature
regimes.

learning. Standard training examples alone can never
lead to any prediction for new data. It seems therefore
necessary to concentrate more on informations about the
dependencies than it is usually done.

The aim of the paper is to treat those dependen-
cies as explicit as possible, and to discuss possibilities
to base information about dependencies upon measure-
ment and control. This is especially important if the
objects/situations of interest are complex and/or the
amount of available standard training data is small.

For local questions, the predetermined dependencies
have the form of stationarity conditions for the answer
generating probability distributions. To enable general-
ization answers to nonlocal questions must be available,
with the de�nitions of nonlocal questions representing
predetermined dependencies. Commonly implemented
nonlocal dependencies correspond to bounds on smooth-
ness or other symmetries. Many forms of prior informa-
tion can be available in practice. Often they appear as
implicit or linguistic concepts de�ning for example ob-
ject classes like faces, chairs, pedestrians or cars, and are,
because di�cult to formalize, not included in the learn-
ing algorithm. Such dependencies can be implemented
by an interface using fuzzy priors. Nonlocal questions
are usually not sampled and not directly included in the
loss function.

Often non{approximation aspects are of interest, like
the amount of resources (time, memory, money, under-
standability, complexity) needed by available alterna-

tives f̂ . Then empirical risk minimization cannot be
interpreted as being equivalent to a Bayesian maximum
posterior approximation but can be extended to a two{
step procedure (MaP{MiR). Priors often depend for-
mally from an in�nite number of function values. Such
priors can be implemented by using for the preparation
process or for de�nition and control of the situation un-
der study measuring devices di�erent from those for the
training process.

Priors stating that a function is probably similar to a
template T 1 OR to a template T 2 can be implemented
by some `soft OR' or mixture model. This leads for the
maximumposterior approximation to stationarity equa-
tions with nonlinear dependence from the local function
values, reecting the nontrivial interactions between dif-
ferent locations. As nonlinear equations have in general
multiple solutions. such priors can, for example, be used
to model phenomena like ambiguous illusions in percep-
tion.

The results of learning are statements about decision
relevant data assuming their dependency on available
data. Hence, learning is a reformulation of knowledge,
and consists of

1. the algorithmic problem of extracting decision rel-
evant information from given knowledge, usually a
list of data and required dependencies, and

2. the (empirical) validity problem of controlling or
identifying the relating dependencies.

Consequently, control (e.g. identi�cation of situations
appropriate for generalization) is needed to relate the re-
sults of past measurements to situations for which learn-
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ing is intended, and the ability to generalize is intimately
related to the ability to control and compute the re-
quired dependencies in (a �nite number of) application
situations. For example, stationarity of data generating
processes and attributes of measurement devices, or in
more biological terms of the sensory input, like limiting
bounds and averaging processes, have to be established
and controlled to guarantee smoothness and other ap-
proximate symmetries. Summarizing the active interpre-
tation of learning we can say: Generalization is control

or identi�cation of decision relevant dependencies.
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