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Abstract

This paper describes a new method for lens distortion calibration using only point correspondences in

multiple views, without the need to know either the 3D location of the points or the camera locations.

The standard lens distortion model is a model of the deviations of a real camera from the ideal pinhole

or projective camera model. Given multiple views of a set of corresponding points taken by ideal pinhole

cameras there exist epipolar and trilinear constraints among pairs and triplets of these views. In practice,

due to noise in the feature detection and due to lens distortion these constraints do not hold exactly and

we get some error. The calibration is a search for the lens distortion parameters that minimize this error.

Using simulation and experimental results with real images we explore the properties of this method.

We describe the use of this method with the standard lens distortion model, radial and decentering, but

it could also be used with any other parametric distortion models. Finally we demonstrate that lens

distortion calibration improves the accuracy of 3D reconstruction.
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1 Introduction:

Radial lens distortion can be a signi�cant factor in

medium to wide angle lenses. These are typically the

lenses used when performing image based 3D reconstruc-

tion of large objects or in a con�ned space. The errors

can be 10-100 pixels at the edges of the image [12]. This

paper describes a new method for lens distortion cal-

ibration using point correspondences in multiple views

without the need to know either the 3D location of the

points or the camera locations. In fact one can use the

same point correspondence data which is to be used for

subsequent vision tasks such as 3D reconstruction. The

method is therefore suitable as an online preprocessing

stage.

There are two variants of this method. The �rst uses

two images and the second uses three images. I will

briey describe the two methods here. Due to lack of

space this paper will focus on the 3 image method.

1.1 The two image method:

Given a point in one view we know that the correspond-

ing point in the other view must line along an epipolar

line. Given at least 8 point correspondences we can �nd

the epipoles and epipolar lines in a linear manner (5 us-

ing non-linear methods). With more than 8 points we

can �nd the least squares solution.

This constraint holds true for ideal pinhole cameras.

Due to noise in the feature detection and due to lens

distortion we get some error. The points in the second

image do not lie exactly on the epipolar lines. With

more than the minimum 8 points we can de�ne a cost

function as the RMS of the distances from the points

to the corresponding epipolar lines. We then search for

the lens distortion parameters that correct the image

coordinates of the feature points to minimize this error.

The error function is in general well behaved and the

distortion parameters can easily be found by nonlinear

search techniques.

1.2 The three image method:

Given a set of corresponding points in three images,

there exist 4 independent trilinear equations that relate

location of the points in the three images [9]. These

equations have 27 parameters and given at least 7 point

correspondences they can be found in a linear manner.

These parameters allow us to reproject corresponding

points given in two of the images into the third image.

Again, because of noise and lens distortion, the repro-

jection is not perfect. We de�ne our cost function to be

the RMS reprojection error and search for lens distortion

parameters that minimize it.

1.3 What comes next

Section (2) reviews related work. Section (3) reviews

the projective constraints on point correspondences in

two and three views and describes the radial distortion

model. Section (4) spells out the step by step proce-

dure. In Section (5), using simulation, I explore proper-

ties of this method and for which camera con�gurations

it works best. Section (6) presents experiments with real

images. The method is shown to be robust and to give

a signi�cant improvement in precise measurements. Ini-

tially I con�ne the tests to the projective domain and test

properties such as planarity and collinearity of points

and cross ratios. Finally I perform Euclidean reconstruc-

tion of the points. I conclude in section (7) with a dis-

cussion of the advantages and drawbacks of this method.

2 Related work

Known world coordinates: The classic method for lens

distortion calibration is the bundle adjustment method

[8]. It uses one or more views of a calibration object with

known 3D coordinates (control points). Using iterative

methods it then �nds both external and internal camera

parameters. The external camera parameters are the

position and orientation of each camera. The internal

camera parameters include the parameters of the pin-

hole camera model (principal point, principal distance)

and the parameters of lens distortion. Weng et al. [13]

also use a known calibration object and iteratively solve

for the external and internal parameters including the

distortion parameters.

Projective constraints: Under perspective projection,
straight lines in space project to straight lines in the

image. With real lenses the lines appear instead to be

slightly to moderately curved. By searching for lens dis-

tortion parameters which straighten the lines the Plumb
Line method and its derivatives [1] [5] [12] [2] �nd the

lens distortion without needing to �nd the external pa-

rameters or the other internal camera parameters. One

or more images can be used.

Unknown world coordinates: Stein [12], and Du and

Brady [3] use corresponding points or edges in images

where the camera has undergone pure rotation to �nd

the internal camera parameters including lens distortion.

The 3D location of the points is not required.

3 Mathematical background

This paper uses results from projective geometry. A very

readable introduction to the subject of Projective Geom-

etry is given in the book by Young [14]. A modern book

dealing more speci�cally with the application of Projec-

tive Geometry to computer vision is [4].

I will use the following notation. The point in 3D

projective space (P 3
) will be represented by Mi where

the subscript i denotes the i'th point. The subscript

i might often be dropped for clarity. I will typically

use homogeneous coordinates: M = (X;Y; Z; T ), which
can be converted to the non-homogeneous coordinates

(
X
T
; Y
T
; Z
T
). The point Mi projects onto the image plane

of the j'th camera at point mij where m = (x; y; 1) or in
non-homogeneous image coordinates m = (x; y).

The 4�3 camera projection matrix for the j'th camera

will be denoted Pj. Using homogeneous coordinates the

perspective projection can be written as:

�ijmij = PjMi (1)

for points i = 1:::n in images j = 1:::m. �ij is an un-

known scale factor which is di�erent for each point and

each image. One can rewrite equation (1) in the follow-

ing way hiding the scale factor:
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3.1 The Epipolar Constraint:

We will denote the Fundamental Matrix (Essential Ma-

trix) by F . For every pair of cameras (j,k) there exists
a 3� 3 Fundamental Matrix Fjk such that:

mT
i;jFjkmi;k = 0 (4)

The above equation is the epipolar constraint. Given

a particular camera geometry, embodied in the matrix

F , each point in one image de�nes a line on which the

corresponding point in the second image must lie. (The

equation of that line is given by V TFjkmi;k = 0.) Given

8 or more point correspondences the Fundamental Ma-

trix F can be determined up to a scale factor using the

eight point algorithm which is described in [6] with many

important implementation details.

3.2 The Trilinear Tensor Constraint:

Shashua [9] shows that given a set of 3D points there

exists a set of trilinear equations between the projections

of those points into any three perspective views. In total

there exist 9 such equations for each point with at most

4 being independent.

Four of the nine equations are as follows:

x\�T
13
m � x\x

0

�T
33
m + x

0

�T
31
m � �T

11
m = 0 (5)
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22
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where x
0

; y
0

and x\; y\ are the image coordinates in the

�rst and second images respectively. m is the image

point in the third view. �ij are column vectors of coe�-

cients. There are a total of nine column vectors �ij for a
total of 27 coe�cients. Seven point correspondences give

28 equations which are enough to recover the coe�cients

up to a scale factor. The 27 coe�cients can be arranged

into a 3� 3� 3 tensor [10].

Given 7 points in 3 images one can recover the ten-

sor. Given the tensor and the location of a further cor-

responding point in two of the images one can calculate

the location of that point in the third image.

3.3 The perspective projection model with

lens distortion

These projective constraints assume a perfect pinhole

model. This is a good model for long focal lengths but

medium to wide angle lenses have noticeable lens dis-

tortion. The standard model for lens distortion [8] is a

mapping from the distorted image coordinates, (xd; yd),
that are observable, to the undistorted image plane co-

ordinates, (xu; yu), which are not physically measurable

using the equation:

xu = xd + x0d(K1r
0
2

d +K2r
0
4

d + � � �) (6)

yu = yd + y0d(K1r
0
2

d +K2r
0
4

d + � � �)

where K1 and K2 are the �rst and second parameters of

radial distortion and:

r
0
2

d = x
0
2

d + y
0
2

d = (x2d � cxr)
2
+ (y2d � cyr)

2
(7)

It has been shown in [12] that allowing the center

of radial distortion, (cxr ; cyr) to be di�erent from the

principal point is a good approximation to adding the

terms for decentering distortion as given in [8].

4 The algorithm

The step by step algorithm is as follows:

1. Find point correspondences between 3 views.

2. Make an initial guess of the distortion parameters:

an appropriate guess for (Cx,Cy) is the center of

the image. Choose K1 such that K1 � r3 � 0:1
where r is the distance to the corner of the image.

3. Using the distortion parameters compute the

undistorted feature locations (eq.6).

4. Compute the trilinear tensor and then use the ten-

sor to compute the reprojection error for each point

(eq.5).

5. Adjust the distortion parameters to reduce the re-

projection error. This is done by the LMDIF1 rou-

tine (see section 6.1.3).

6. Loop back to step 3 till convergence.

Comments: It is best to assume initially that there

is only one parameter of radial distortion that matters

(K1). After �nding the best K1, one can use that value

as a starting guess and try searching for other parame-

ters as well. In cases of very strong distortion or if one

has a large number of feature points there might be an

advantage to using more parameters.

If there might be di�erent cameras involved one can

search for di�erent values of K1 for each camera. If one

gets a much smaller RMS reprojection error than when

enforcing the same value of K1 for all the cameras then

it is a good bet that the cameras are in fact di�erent.

5 Simulation

Simulations were performed to test the e�ect of cam-

era con�gurations and noise on the shape of the cost

function. Simulations were performed using Matlab and

Matlab's random number generator.

Eighty 3D points were generated, uniformly dis-

tributed between �1 units and 1 units in the X,Y and

Z directions. These points were projected using a pro-

jective camera model with optical axis aligned with the

Z direction. The camera was located typically Z0 = �4

units from the center of the points with a focal length of

f = 1000 pixels. This simulates a camera with a viewing

angle of about 55o.

The 3D points were rotated prior to projecting which

is equivalent to the camera rotating around the center

of the points at a given radius Z0. Normally distributed
2
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Figure 1: Simulation results. Reprojection error while
varying the radial distortion correction from 0 to 2 times
the correct value and varying the viewing angle of the
3rd camera. Gaussian noise of sigma=0.3 was added to
feature coordinates.

random noise was added to the image coordinates which

were then distorted using (eq.6) with only one radial

distortion parameter, K1 = 2:5� 10�7, the value found

in section (6).

Consider the following 3 camera setup. Camera 1 is

rotated �o to the left (around the Y axis). Camera 2 is

rotated �o to the right. Camera 3 is rotated up (around

the X axis) with varying angles � = 0; 10o; 20o : : :80o.
The radial distortion parameter is varied from 0 to 2�K1

in 0:1� K1 increments and the reprojection error from

camera images 1 and 2 to camera image 3 is calculated.

Due to lack of space I show only the simulation results

for � = 20
o
and additive noise � = 0:3 pixel (�gure 1).

Note that for small � the error as a function of K1 is

very shallow and it would be hard to �nd the correct K1

value. With larger noise values the minimum is some-

times outside the plotted range for � = 0. Other sim-

ulation experiments show that increasing � towards 40o

the curves become steeper and reducing � makes them

shallower. At � = 2o the results are unreliable even for

large � values.

6 Experiments with real images

6.1 Experimental Details

6.1.1 The Images, Features and Feature

Detector.

Figures 2a,2b,2c show a typical image triplet used in

the experiment. In this case the same camera was used

for all three images. The cameramotion included a large,

unknown, degree of rotation and translation. Figure (3)

was taken from approximately the same angle as �gure

(2c) but the camera was twice as far away and the focal

length longer (zoom).

Three lines of feature points were marked on a at

sheet of metal. The features were two small triangles

touching at a point. These points are saddle points in

the gray level image and result in local minima in the

determinant of the Hessian of the image. The point is

located to subpixel accuracy by locally �tting the deter-

minant of the Hessian image to a paraboloid and �nding

the minimumanalytically. The location of the points are

relatively una�ected by the size of the smoothing �lters

used in the image processing stage.

The top line, running through the center of the image

and the bottom line had 22 points each at 2cm spacing.

The middle line had 11 points at 4cm spacing plus an

additional point (4th from the left) which was marked

not on the metal but on a piece of paper placed on the

metal. This special point is therefore not exactly on the

same plane as the rest of the points. In order to create

a 3D shape we added a few metal objects with clearly

de�ned feature points.

Correspondence was performed manually. In total 75

feature points were detected: 7 points on the top surface

of the metal cube, a total of 10 points on the other metal

objects and 55 coplanar points in 3 lines plus one nearly

coplanar point.

6.1.2 Hardware

� The camera was a SONY DCR-VX1000, a high

quality digital handycam.

� The lens was the built-in zoom lens open to the

widest angle giving a corner to corner viewing angle

of approximately 55 degrees. This is more or less

equivalent to a 35mm lens on a standard 35mm

camera or an 8mm lens on 1/3" CCD video camera.

� Image capture and processing was performed on an

SGI Indy workstation.

6.1.3 Nonlinear optimization code

The camera parameters were found using a nonlinear

optimization program based on the subroutine LMDIF

from the software package MINPACK-1 [7]. This sub-

routine uses a modi�ed Levenberg-Marquart algorithm.

6.2 Experiment 1: Finding the lens distortion

parameters.

Using all 75 points in the 3 images (�gures 2a,2b,2c) I

computed the trilinear tensor (see section 3) and then

the reprojection error from images 2b and 2c to im-

age 2a. No robust estimation techniques were used. I

will denote the radial distortion parameters found as

K1best,K2best,Cxbest and Cybest.
3



(a)

(b)

(c)

Figure 2: The images used for calibration.

Figure 3: Alternative third image was taken from further
away with a longer focal length. Note that in this case
the lines are not curved.

6.2.1 Convergence range:

One must supply the non-linear search routine with

an initial guess. Many initial guesses were tried for the

radial distortion parameter (K1). The second parameter

(K2) was assumed to be zero and the center of distortion

at the image center (320,240).

The non-linear search would converge to a value

K1best = 2:58 � 10�7 with a starting guess anywhere

in the range (2:5� 10�2 : 2:5� 10�12). In other words,

through 4 orders of magnitude in either direction. Con-

vergence took between 3 and 10 iterations.

Assuming two radial distortion parameters (K1, K2),

the non-linear search would converge to a valueK1best =

4:755�10
�7
�0:1% and K2best = �1:153�10

�12
�0:5%

with a starting guess anywhere in the range K1 = (2:5�
10

�5
: 2:5� 10

�9
) and K2 = (�1� 10

�7
: 1� 10

�7
). In

other words, through at least 2 orders of magnitude in

either direction of K1. Convergence took between 3 and

10 iterations.

6.2.2 The shape of the cost function:

One of the dangers of using non-linear methods is the

presence of local minima. We evaluated the cost function

over a range of values of K1 from 0 to 2�K1best (twice

the �nal estimated value) in 0:1�K1best increments.

Figure (4) shows the resulting error function. The

function is smooth, qualitatively parabolic in shape and

with no local minima. These characteristics have re-

peatedly been seen with no exception in many similar

experiments with varying ranges and resolutions.

6.2.3 Assuming di�erent parameters for each
camera:

The previous experiments assumed all the images

were taken by the same camera but the calibration

method can work for di�erent cameras. We can search

for 3 separate sets of calibration parameters, one set for

each camera.

Allowing for one radial distortion parameter for each

camera we get:

K1best = (2:55� 10
�7; 2:69� 10

�7; 2:19� 10
�7; ) (8)
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Figure 4: The tensor reprojection error as a function of
the value of the radial distortion K1.

The 3 images were taken by the same camera so the 3

values for K1best should come out the same. In fact they

are within 20% of each other. Better results might be

achieved with a larger number of points. Section 7 dis-

cusses this issue. Figure (5a) shows the radial distortion

correction as function of the radial distance using these

three di�erent K1 values.

The third image (Fig: 2c) was then replaced with

an image taken from further away using a longer focal

length (Fig: 2d). In other words it is a 'di�erent camera'.

Allowing for one parameter for radial distortion for each

camera the results were

K1best = (2:15� 10
�7; 2:20� 10

�7;�5:93� 10
�8
) (9)

The third camera has much less distortion as we would

expect from the longer focal length. Figure (5b) com-

pares the radial distortion correction using the K1 values

obtained from the �rst two images with the correction

using the K1 value obtained from the 3rd image. The

third camera di�ers signi�cantly.

6.2.4 Which image is used for reprojection:

The method has an asymmetry in that images 1 and

2 are used to reproject into image 0. Thus, image 0

is treated di�erently. All the possible permutations of

the 3 images were tried. The results are summarized in

table (1). The standard deviation in the value of K1best

was 14% which is not large. Nevertheless, to avoid the

ambiguity one can use as a cost function the sum of

reprojection errors in the 3 distinct possibilities.

6.3 Experiment 2: testing the radial distortion

parameters in the projective domain.

We have no ground truth about the radial distortion pa-

rameters. In order to test the radial distortion parame-

ters I used a special set of feature points. 44 of the points

are coplanar. They are arranged in 2 straight lines of 22

equally spaced points each.

6.3.1 Collinearity of points

Using one of the images (2a), for each of the two sets

of 22 points the image coordinates were �t with a best
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Figure 5: The correction for radial distortion as func-
tion of distance from the center of the image. (a) uses 3
K1 values which were obtained from 3 images taken by
the same camera. The di�erence in the correction value
is not large. In (b) the 3rd K1 value was obtained us-
ing a camera with a longer focal length. The distortion
correction is much smaller in that case.

Table 1: Radial distortion parameter K1 obtained using

various ordering of the images.

Order K1 RMS error

a,b,c 2.58162e-07 e=6.773012e-02

a,c,b 2.5811e-07 e=6.773012e-02

c,a,b 2.4687e-07 e=7.554849e-02

c,b,a 2.46804e-07 e=7.554849e-02

b,a,c 3.19903e-07 e=6.590745e-02

b,c,a 3.19834e-07 e=6.590745e-02

mean 2.7498e-07

std 3.9313e-08

std/mean 0.14

5



straight line. I then computed the RMS distance of the

points from the corresponding lines. This is the measure

used in the plumb line method described in section (2).

Figure (6a) shows the average distance as a function of

the radial distortion parameter K1, where K1 varies from

0.0 to 2:0�K1best in 0:1�K1best steps. The function's

minimum is at K1 = K1best. The average distance of

points from the line drops from 1.15 pixels to 0.05 pixels

after correction.

6.3.2 Cross ratio of points

The cross ratio of four points along a line is a pro-

jective invariant. Taking the 1st, 2nd and 22nd points

along each of the lines, one can compute the cross ratio

using any of the other points:

ri =

�1��2

�1��i

�22��2

�22��i

(10)

One can invert equation (10) to obtain:

�i =
ri�1(�22 � �2)� ri�22(�1 � �2)

ri(�22 � �2)� ri(�1 � �2)
(11)

Given that we know that the points along each line

are equally spaced we can use equation (11) to estimate

the location of points 3 through 21 given the location of

points 1, 2 and 22. The di�erence between the estimated

location and the actual measured location of the points is

due to feature detection error and also radial distortion.

Figure (6b) shows the RMS error in the estimation of all

the 38 points as a function of K1. The minimum error

is obtained at a value of K1 close (0:8�K1best) to that

obtained using the new calibration method.

6.3.3 Planar mapping of points between two

images

Given two sets of image points obtained from two

views of a planar object one can compute a transfor-

mation from one set of points to the other which takes

the form:

m0
= Am (12)

Where m and m0 are the corresponding image points in

the �rst and second images and A is a 3� 3 transforma-

tion matrix. Given more than 4 points one can compute

A in a least squares manner. One can then use the ma-

trix A to map all the planar points from one image to

the second. Because of noise and radial distortion, the

planar mapping reprojection is not perfect. Figure (6c)

shows the RMS reprojection error using the images Fig.

2a and Fig. 2b. The minimumerror is obtained near the

value of K1 found using the distortion calibration.

6.4 Experiment 3: Euclidean reconstruction.

Projective reconstruction from the three images was per-

formed according to [11]. Transformation to Euclidean

3D coordinates was required 5 control points. Three

points were chosen from the planar surface and two other

points were chosen such that the �ve were in general po-
sition, no 4 points coplanar. The world coordinate sys-

tem was chosen such that the planar surface was the XY

plane and the height above the plane was the Z coordi-

nate.
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Figure 6: The error in other projective measures as a
function of the value of the radial distortion K1.
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The reconstruction was performed twice, once with

the original feature coordinates and once with the cor-

rected coordinates using K1 = 2:58 � 10�7. The best

plane was found using the points which came from the

planar surface. Figures (7a, 7b, 7c) show the height of

the points from the best plane for the three lines. In

�gure (7c) one can see that for the line close to the edge

of the image the line is distinctly curved in depth and

that correcting for radial distortion removes the curva-

ture. The curve along the whole length of the line is

about 0:3cm which is about 1% of the total length of

the line (42cm). The curvature of the lines closer to the

center of the image is smaller.

Point number 45 in Figure (7b) is the point that was

drawn on the piece of paper and was in fact not coplanar

with the other points. In the case of the corrected points

reconstruction (dotted line) it is clearly stands apart.

7 Discussion

A new method for determining the lens distortion has

been described. Although the method is iterative it has

been shown that the method converges fast and that the

range of convergence is very wide. The resulting distor-

tion parameters are reasonable and have been shown to

agree with those determined by other methods.

Since this method uses only point correspondences in

multiple views it �ts very naturally inside feature based

3D reconstruction systems. It has been shown here that

in the case of a 55
o
lens, when the distortion is hardly no-

ticeable in the image, radial distortion can cause a small

but noticeable error in reconstruction results. Since the

computational overhead of this method is small it makes

sense to incorporate this method in all 3D reconstruc-

tion systems which use medium and wide angle lenses

and where accuracy is desired. Especially, since most of

the computational machinery required for tasks such as

�nding the trilinear tensor or fundamental matrix prob-

ably already exists in the overall system.

The Manual of Photogrammetry [8] warns us that

\the strong coupling that exists between interior ele-

ments of orientation [principal point, focal length] and

exterior elements can be expected to result in unaccept-

ably large variances for these particular projective pa-

rameters when recovered on a frame-by-frame basis".

This is also applicable to lens distortion parameters and

it was seen in sections (6.2.3) and (6.2.4). Note that the

interior and exterior parameters are determined implic-

itly in the fundamental matrix or the trilinear tensor.

To determine the actual lens distortion parameters one

can use many images from a variety of locations and ap-

ply this method to many triplets of those images. The

computational complexity of the method is linear in the

number of triplets and number of feature points.
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