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Abstract

This paper presents an image-based rendering system using algebraic relations be-

tween di�erent views of an object. The system uses pictures of an object taken from

known positions. Given three such images it can generate \virtual" ones as the object

would look from any position near the ones that the two input images were taken from.

The extrapolation from the example images can be more than 60 degrees of rotation.

The system is based on the trilinear constraints that bind any three views of an object.

As a side result, we propose two new methods for camera calibration. We developed

and used one of them.

We implemented the system and tested it on real images of objects and faces. We

also show experimentally that even when only two images taken from unknown positions

are given, the system can be used to render the object from other viewpoints as long

as we have a good estimate of the internal parameters of the camera used and we are

able to �nd good correspondence between the example images.

In addition, we present the relation between these algebraic constraints and a fac-

torization method for shape and motion estimation. As a result we propose a method

for motion estimation in the special case of orthographic projection.
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1 Introduction

1.1 Motivation and Goal

In recent years image-based rendering systems have been an emerging subject of research

within the computer graphics and computer vision communities. Applications range from

generation of virtual reality e�ects, to object recognition by matching real images to virtual

ones. The underlying idea of these systems is that the representation of the images is based

purely on photometric observations and not on any indirect models. Traditionally objects

and scenes have been approximated using either geometric models such as mathematical

descriptions of the boundaries of the objects, or physics-based models, or, more typically,

3-D models. However the limitations of these approaches are apparent when one tries to

render realistic images, since the complexity of the real-world does not permit accurate and

e�cient modeling.

Geometric modeling has the problem that it cannot be used for complicated surfaces

such as faces or other exible objects. Although it might work satisfactorily for some

simple objects and scenes, it might not for other complicated ones. Similar problems

arise with physics-based models. The complexity of such models makes them intractable.

Furthermore, building 3-D models of objects, although it can work e�ciently for simple

planar surfaces, is often ine�cient for more complicated ones. There is again a major trade

o� between the complexity of the model, ie. how well to approximate a non-planar surface

using small patches, and its realism. Achieving high visual realism requires in many cases

high complexity which leads to ine�cient rendering.

Given these, the need for image based rendering systems is clear. When the representa-

tion of an objects or a scenery is based on its actual images the realism that can be achieved

is higher than that when some approximation model is used. Moreover, the computation

required for rendering using these systems is independent of the complexity of the scene

and can be done e�ciently enough for real-time use [4].

There are two new approaches in image based rendering. One is using morphing tech-

niques, while the other is using algebraic techniques. Image morphing is the simultaneous

interpolation of shape and texture. In this group, noticeable work has been the one by

Beymer, Shashua, and Poggio [3] partly based on the ideas presented in [19]. They showed

that morphing based on using correspondences between input images is applicable for gen-

erating virtual images of faces with changes in pose and expressions such as smiles. Other

morphing techniques are described in [31], [21] and [5]. Despite their di�erences they are

all based on the idea of interpolation, therefore they do not give much freedom for virtual

camera motion, namely extrapolation.
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The other new approach in image based rendering is to use \natural" algebraic relations

that exist between di�erent views of the objects in order to generate virtual images. The

main di�erence from the aforementioned approach is that this one is only suitable for

rigid transformations but also enables signi�cant extrapolation from the example images.

There has been a signi�cant amount of work very recently done in this area ([11], [12],

[13], [17], [18], [24]). Some of these approaches are presented briey in the next section.

Noticeable has been the work of [18] on rendering sceneries. Using cylindrical projections

of a scenery taken from known positions, they manage to reconstruct the scenery from

arbitrary positions by reconstructing the plenoptic function describing it. The plenoptic

function is a parameterized function describing everything that is visible from a given point

in space.

The goal of this paper is to develop a method similar to the one in [18] but which can

be used for objects. Instead of having cylindrical images of a scenery, we are given pictures

of an object taken from known positions around it. Then, using these images we want to be

able to generate virtual views of the object as they would look from arbitrary positions. We

want the system to be robust and to allow for arbitrary camera motion, ie zoom and in place

rotation, as well as considerable extrapolation from the example images. The long term

goal is to combine the system with existing ones for non-rigid transformations of objects

(ie. face expressions) [8] in order to build a complete tool that can be used for rendering

images of objects under any rigid or exible transformation.

Moreover, part of the paper is to further study algebraic results used for computer

vision. The goal is to �nd the hidden connection between the algebraic relations among

images of an object and the estimation of the objects shape and motion. As a result of this

study, a simple method for motion estimation of an object undergoing rigid motion with

more than two images is developed.

1.2 Contribution of the paper

Summarizing, the contributions of the research described in this paper are briey the fol-

lowing:

1. We developed a new method for image-based rendering and we tested it on real

images.

2. We developed a new simple method for camera calibration.

3. We showed the relation between algebraic constraints connecting images and the

shape and motion factorization method described in [29].

3



4. We proposed a simple method for motion estimation in the special case of orthographic

projection and suggested possible extensions for the general perspective case.

1.3 Layout of the paper

The paper is organized as follows:

� In section 2 the necessary background as well as a brief description of related previous

work and ideas are presented.

� In section 3 our method and the problems that our systems had to solve are presented

in detail.

� Section 4 discusses the implementation of the system and shows results.

� In section 5 we refer to a di�erent but related problem. The problem of recovering

shape and motion using the ideas of the rest of the paper. A theoretical result is

presented and a method for shape and motion estimation is proposed.

� Finally, in section 6 we state conclusions and suggestions for further work.
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Figure 1: The Pinhole Camera Model

2 Background and Related Previous Work

2.1 Background

Before going to the main part of the paper we need to provide the necessary background.

We present the basic ideas of projective geometry and its use in computer graphics.

2.1.1 Camera Model and Projective Geometry

The camera model we use is that of a pinhole camera described in �gure 1. Objects are

viewed under perspective projection. The center of projection is the optical center of the

camera, which we also de�ne to be the origin of our camera coordinate system (CCS) - also

called the standard coordinate system of the camera. The image plane - or retinal plane -

is parallel to the XY -plane of our CCS, and at distance f from the optical center, called

the focal length of the camera. We de�ne an image coordinate system (ICS) such that the

origin is the projection of the optical center on the retinal plane. If we de�ne the X , Y

axis of the ICS to be parallel to the X and Y axis of the CCS, respectively (see �gure

1), then we can easily see that the image coordinates of the projection of an object point

O = (X; Y; Z) are given by:

xi = �f �X=Z

yi = �f � Y=Z
(1)

Clearly any point on the line through O and the center of projection has the same

image.
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It seems that when one wants to compute image coordinates using the aforementioned

approach one has to deal with ratios. Using ratios is not very computationally e�cient and

also makes the mathematics complicated. Fortunately there is a way to avoid these ratios.

The traditional solution is to use Projective Geometry instead of the Euclidean one. After

all, images are generated using central projection.

In projective geometry the 3-dimensional Euclidean space R3 is considered to be a

subspace of the 4-dimensional Projective space P 4. A point in P 4 is described by its

coordinates up to a scale factor. This means that, ie. (X; Y; Z;W ) ' (2X; 2Y; 2Z; 2W ).

There is a natural injective mapping from R3 to P 4 de�ned by:

M : R3
7! P 4 such that (X; Y; Z) 7! (X; Y; Z; 1).

The remaining points of P 4, which are the ones of the form (X; Y; Z; 0), are called ideal

points. In the same way we have a similar relation between the 2-dimensional Euclidean

space and the 3-dimensional Projective Space. A point (X; Y ) in R2 corresponds to (X; Y; 1)

in P 3 and points (X; Y; 0) are the ideal points of P 3.

By modeling our spaces as Projective instead of Euclidean we gain the following:

1. First, we notice that points that are on the plane parallel to the image plane through

the center of projection - called the focal plane - have no images (see �gure 1). Mod-

eling the image plane as a Euclidean 2-Dimensional plane is therefore not suitable

since we cannot account for the \images" of these points. However, if we model it as

a 3-dimensional Projective space, then we can de�ne the images of these object points

to be the ideal points of the retinal plane. This way all object points are treated the

same.

2. There is a very important practical reason for using projective geometry. As stated

above, using Euclidean geometry, the coordinates of a point on the image plane are

given as ratios (equation 1). However, in the corresponding projective spaces, we have

that the coordinates of an object point (X; Y; Z; 1) (we can set the fourth coordinate

to 1 so that we preserve the \natural" correspondence with Euclidean coordinates

de�ned above. For the moment we also don't deal with the object points that have

no image, therefore we can assume that zi below is not zero) on the image plane are

given simply by:

2
664
xi=zi

yi=zi

1

3
775 '

2
664
xi

yi

zi

3
775 =

2
664
�f 0 0 0

0 �f 0 0

0 0 1 0

3
775 �

2
666664
X

Y

Z

1

3
777775

2
664
�f �X

�f � Y

Z

3
775 (2)
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Therefore we can use linear algebra and avoid the nonlinearities introduced by the

aforementioned ratios.

If the coordinates of the object point are given relative to another coordinate system,

which we call World Coordinate System (WCS), then, if

K =

"
R T

0T3 1

#
(3)

is the matrix of transformation between the WCS and the CCS, the coordinates of the

object point in the CCS are given by:

"
R T

0T3 1

#
�

2
664
X

Y

Z

3
775 (4)

therefore its projection on the image plane is given by:

2
664
xi

yi

zi

3
775 =

2
664
�f 0 0 0

0 �f 0 0

0 0 1 0

3
775 �

"
R T

0T3 1

#
�

2
666664
X

Y

Z

1

3
777775 =M �D �

2
666664
X

Y

Z

1

3
777775 (5)

The product P =M �D is called the camera matrix.

The matrix:

D =

"
R T

0T3 1

#
(6)

is called matrix of the external parameters of the camera. It describes the position of the

camera relative to the WCS.

The matrix:

M =

2
664
�f 0 0 0

0 �f 0 0

0 0 1 0

3
775 (7)

is called matrix of the internal - or intrinsic - parameters of the camera. However, the

matrix in equation 7 is a special case of the general form. Apart from the focal length,

there are �ve other parameters that depend on the camera. First notice that in reality

the line connecting the center of projection and the center of the image is not always

perpendicular to the image plane. Therefore, we have to move the image coordinate system

so that its origin is the projection of this perpendicular. This adjustment gives two more

parameters: the coordinates of the actual origin of the image coordinate system in terms of
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the system described above. Furthermore, there is typically some scale distortion so that

the unit lengths of the image axis are unknown - not the same as the corresponding ones in

the camera coordinate system. This scale distortion gives two more factors - one for each

axis. Finally, there is a last factor that gives the angle between the axis - in practice the X

and Y axis may not be orthogonal. When one takes into account all these, one can easily

�nd that the general form of the matrix of the intrinsic parameters of the camera is:

M =

2
664
�fku 0 u0 0

0 �fkv v0 0

0 0 1 0

3
775 (8)

where ku and kv are the scaling factors for the X and Y axis respectively, and u0, v0 are

the image coordinates of the actual origin of the ICS relative to the one we assumed at

the beginning. For more information on the derivation of this matrix the reader can refer

to [9].

Estimating the intrinsic parameters of the camera is called calibration of the camera.

Various methods for doing camera calibration have been developed ([10], [25]). In the next

section we describe a method that we developed and used.

Before changing topic, we should mention here a very usual approximation to the per-

spective projection model described above. Sometimes we assume that the Z coordinates

of the object points are almost constant. This is the case when, for example, the objects

are far relative to the focal length, therefore changes in the Z coordinates are negligible. In

this case we can write the image coordinates in equation 1 as:

xi = �f �X=Z0 = f 0 �X (9)

yi = �f � Y=Z0 = f 0 � Y (10)

When we use this approximation we say that the image is generated under orthographic

projection. In this case it is easy to see that the camera matrix is given by: (assuming f 0

is 1, all other internal parameters are 0, and the external parameters matrix is the identity

one) 2
664
1 0 0 0

0 1 0 0

0 0 0 1

3
775 � (11)

so the image coordinates using equation 5 (in projective spaces) are given by (xi; yi; zi) =

(X; Y; 1). This is a simpli�cation that we will use in section 5.

Having this background we can now examine an algebraic relation between images that

has been traditionally used in systems. The interested reader can refer to [9] and [16] for

more information on projective geometry and its use in computer graphics.
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2.1.2 Epipolar Geometry

Suppose we are given two images of the same object point O taken from two di�erent known

positions as shown in �gure 2. Clearly, if we know the projection of the point on image 1,

then the projection of the point on image 2 is constrained: it has to lie on line l2 as shown

in �gure 2. This line is the intersection of the second image plane with the plane through

O and the optical centers C1 and C2 of the two cameras. Symmetrically, its projection on

image 1 has to lie on line l1.

If p1 and p2 are the image coordinates of the point in the two images, we must have

that:

p1 = P1 �

2
666664
X

Y

Z

1

3
777775 (12)

and

p2 = P2 �

2
666664
X

Y

Z

1

3
777775 (13)

where P1 and P2 are the camera matrices as described above. If P11, P21 are the top 3x3

submatrices of P1 and P2 respectively, then it is easy to see [9] that we must have:

p2 = P21 � P
�1
11 � p1 (14)

Moreover, if e2 is the projection of C1 on the second image and E2 is the 3x3 antisymmetric

matrix representing the dot-product with e2 (that is, E2a = e2 � a) then E2p2 is a vector

perpendicular to line l2. This means that pT2E2p2 = 0 which, using equation 14, gives that:

pT2 �E2 � P21 � P
�1
11 � p1 = 0)

) pT2 � F � p1 = 0
(15)

where F = E2 � P21 � P
�1
11 .

The matrix F in equation 15 is called the Fundamental Matrix between images 1 and

2 and when we know it we say that we have weakly-calibrated the camera. Lines l1 and l2

are called epipolar lines. Since all epipolar lines are on a plane that goes through the two

optical centers all these lines go through the same point on each image (e1 and e2 in �gure

2): the projection of the optical center of the camera for the other image. This point is

called the epipole - one for each of the two images.

This equation holds for any pair of corresponding points and it de�nes the epipolar

geometry between the two images. Recovering this geometry has been the subject of research
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Figure 2: The epipolar geometry.

the recent years. For more information the reader can see [7], [9], [17]. We will use this

geometry in the next section when we deal with the problem of occlusions.

2.2 Related Previous Work

The �rst results on algebraic relations between images of the same object appear in the

work of Ullman and Barsi described in [30]. They �rst showed that under the special case

of orthographic projection one can get linear relations between the image coordinates of an

object point seen in three images. Later it was shown in [28] that \1.5" example views are

enough to predict new images of an object (the \1.5 view theorem"). These results implied

that in the special case of orthographic projection new views of an object can be generated

as linear combinations of example views.

Later these results were generalized for the perspective case [23], [24]. However, in this

case the relations become trilinear, and the number of parameters needed increases. These

\new" relations were �rst tested on images in [22], [24]. The results of those experiments

were encouraging ([22], [24]). Based on that work, a method for image-based rendering

was developed in [1]. The method we develop is close to the one described in [1] developed

independently and at the same time as this work.

Another approach in image-based rendering has been to use the epipolar geometry

described in the previous section. Clearly one can use the epipolar geometry between views

in order to predict where a point should project in a new view. For example, if we knew

the epipolar geometry between view 1 and 3, and between view 2 and 3, then we could

predict view 3 from views 1 and 2 by projecting a point of images 1 and 2 on the point of

intersection of the two epipolar lines in image 3.

Using this idea [17] describes a method for reprojection in the weakly-calibrated case.

The method is based on �nding intersections of lines as described above. However, �nding

intersections of lines is noisy and in the case of epipolar lines in some degenerate cases
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impossible [17]. Therefore systems based on this approach were sensitive to noise and did

not provide a wide range of virtual views. This were the main reasons we avoided such an

approach.

Given this background we are now ready to describe our system.
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3 Reprojection Using Trilinearity Constraints

3.1 The Method

We want to generate new views of an object given a set of example images. Through

this discussion we assume that all views of the object are taken using the same camera,

therefore the internal parameters do not change from image to image. We set the world

coordinate system to be the standard coordinate system of camera 0. Let fI0; I1; :::Ing be

the n reference views of an object, and Pi be the camera matrix for Ii. That is, if M are

the coordinates of a point in the scene in the standard coordinate system of camera i, then

the projection of the point on image i has image coordinates Pi �M .

De�ne Ki to be a matrix that depends on the external parameters of camera i:

Ki =

"
Ri Ti

0T3 1

#
�1

(16)

where Ri is the rotation matrix of camera i relative to camera 0, and Ti is the translation

vector between the position of camera i and camera 0. Clearly R0 = I3x3, and T0 = 03x1.

Then, if Pi is the camera matrix for image i, we get that Pi = P0Ki, since, if M are

the coordinates of a point in the scene relative to the world coordinate system, then the

coordinates of the same point relative to the standard coordinate system of camera i are

given by KiM . The coordinate system and the whole camera just moved, so, it is as if

we just moved the point to a new position - which explains the inversion of the position

matrix. Therefore, if x and x0 are the images of M in the two views, then x = P0M and

x0 = P0(KiM) = (P0Ki)M = PiM . Matrix P0 depends only on the internal parameters of

our camera. So, if we estimate P0, we can get the camera matrix for any position we want.

Suppose now that we want to generate the image of the object as it would be seen from

a position which is related to the origin of our world coordinate system by the matrix:

K =

"
R T

0T3 1

#
�1

(17)

We get this view in two steps. First we have to �nd pairs of reference views whose matrices

K�1
i are \close" to K�1. Close matrices in this case are the matrices of the reference

cameras that are closer to the virtual one. However, for simplicity, in our case we used the

system with only two reference images, therefore we did not have to do this step. Having a

pair of reference images Ii, Ij , we can get the new image coordinates of a point appearing

in both reference views using the trilinearity constrains described in [24]. The idea is that if

a point appears in three images with image coordinates (x1; y1), (x2; y2), (x3; y3), then, as
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one would expect because of the low dimensionality of our space, the three pairs of image

coordinates have to satisfy speci�c algebraic relations. Therefore, if we know the relations

and two of the pairs, we are able to �nd the third pair of image coordinates. Di�erent ways

of getting these relations are described in [11] and in [13]. Moreover, in the special case of

orthographic projection these relations become linear as �rst found in [30]. We show this

in the Appendix.

For computational purposes we use the trilinear relations as derived in [11] that we

include in the Appendix. Here we present only one of those equations. Let the rows of Pi

be 1, 2, 3, the rows of Pj be 4, 5, 6, and the rows of the new matrix Pnew = P0K be 7, 8, 9.

Let a point X in the scene project on Ii, Ij and the new image on pi = [x; y], pj = [x0; y0]

and pnew = [x00; y00] respectively. Then the following equations hold:

x00 = (xx0;�x;yx0;�y;x0;�1)�([2367];[2347];[3167];[3147];[1267];[1247])

(xx0;�x;yx0;�y;x0;�1)�([2369];[2349];[3169];[3149];[1269];[1249])

y00 = (xy0;�x;yy0;�y;y0;�1)�([2368];[2358];[3168];[3158];[1268];[1258])

(xy0;�x;yy0;�y;y0;�1)�([2369];[2359];[3169];[3159];[1269];[1259])
;

(18)

where � stands for dot product and [1234] represents the determinant of matrix [1234].

So, once we compute the new camera matrix (given P0 and the new external parameters)

we can predict the position of any point of the reference images in the new image.

3.2 Important Issues

3.2.1 Finding Correspondences Between the Reference Images

It is clear from the aforementioned that once we are given two reference images it is impor-

tant to �nd the pairs of image points pi, pj mentioned above that correspond to the same

object point. Finding these correspondences is a very critical step as one can easily see.

There are many ways to de�ne correspondence between two images. In this paper, a

dense, pixel-wise correspondence between two images is de�ned: for every pixel in image

A, we associate a ow vector that refers to the corresponding pixel in image B. The ow

vectors are relative to the current pixel position, so for a pixel in image A at position (i; j),

the corresponding pixel in image B lies at position (i + �x(i; j); j + �y(i; j)), where �x

and �y are arrays that contain the x and y components of the ows, respectively. �x and

�y are the same size as the images A and B.

There are also many ways to obtain such a dense, pixel-wise correspondence between

the example images. We use the optical ow algorithms developed by Bergen and Hingorani

[2]. For details the reader can refer to that source.
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3.2.2 Camera Calibration

Another crucial step is the calibration of the camera. As we see, the image coordinates

of a point in the new view depend directly on the camera matrices and therefore on the

internal parameters of the camera (equation 18). It is important, therefore, to have a good

estimate of these parameters. We propose two ways for camera calibration.

The �rst way is to use directly the tensor relating the three example images. In the �rst

step one can compute this tensor by �nding corresponding points in the three images and

solving the trilinear equations for the unknown coe�cients. Since every set of corresponding

points provides four independent trilinear equations, 7 points are enough to compute the

tensor. However, least square estimates can be computed using more points. A robust

method to compute the tensor relating three images is presented in [1].

Once the tensor is computed the internal parameters of the camera can be found it-

eratively so that given the matrices of external parameters the computed tensor for given

internal parameters matches the actual tensor computed in the �rst step. Notice, however,

that the relation between the tensor and the internal parameters is not linear (determi-

nants in 18). So one would expect many solutions. However, if a good initial guess is given

(typically focal length 500 and principal point at the center of the image) one would expect

the method to converge to the correct solution.

The second method for camera calibration that we propose and we also implemented is

as follows.

Given three images of the object, I0, I1 and I2, taken from known positions, we use two

of them, say I0 and I1, to generate the third one, I2new using our method for any given

set of internal parameters. As in the previous method, we start with a good initial guess

and we determine the actual internal parameters iteratively so that the \distance" between

predicted I2new and actual I2 is minimized. For better results we use only the middle third

of the image. There are various ways to measure the distance between two images. In this

paper we measure it as follows:

For each pixel in the middle third of I0 and it's corresponding pixels in I1 and I2 we compute

the predicted corresponding pixel in I2new and we get the euclidean distance between the

predicted pixel and the actual one in I2 - assuming we have correct correspondence between

I0 and I2. We do this for all pixels in the middle third of I0 and we sum the distances.

The minimization is done using Powells' multivariable minimization method [20]. In �gure

3 we show the three example images and the predicted third one. The initial guess of the
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matrix of the internal parameters was

2
664
500 0 115 0

0 500 210 0

0 0 1 0

3
775 � (19)

and the computed one was 2
664
1099 0 241 0

0 1458 285 0

0 0 1 0

3
775 � (20)

3.2.3 Noise in the External Parameters

Our method assumes that the positions of the camera for the example images are known

accurately. Clearly, in reality, it is di�cult to know exactly where the camera is located.

Therefore we should expect some noise.

In this paper we did not account for this noise. We simply assumed the locations are

accurately known. However, when we tested the program by adding noise to the locations

of the example images, we found that it is not sensitive to such error. Instead, we found

that the calibration of the camera was giving di�erent internal parameters in each case.

However we did not examine this further. It is still an open question how errors in one set

of parameters inuences the estimation of the other.

In the next section experimental results regarding noise in external parameters are

discussed further.

3.2.4 Solving for occlusion

Clearly not all points appearing in the reference views will appear in the new image. More-

over, not all points appear in both reference images. Generally detecting these occlusions is

an unsolved problem. In this paper we used a heuristic similar to the one used in [31]. This

heuristic however solves only some occlusion cases. Speci�cally, in the case that two pixels

are reprojected onto the same pixel in the new image, we choose the one that is closer to

the epipole in the �rst example corresponding to the new camera position. We estimate

the position of the epipole using again the camera matrices directly. By [11], the location

of the epipole in example one should be (in terms of the camera matrices as described in

the previous section):

epipole1new = ([1789]; [2789]; [3789]) (21)

15



Figure 3: Top: Example Images I0 and I1. Bottom: Example Image I2 and Predicted

Image I2new after 16 iterations.
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where, like in equation 18, the rows of the �rst camera matrix are 1, 2, 3, the rows of the

new camera matrix are 7, 8, 9, and [abcd] represents the determinant of the 4x4 matrix

whose rows are rows a, b, c, d.

However this method does not handle occlusions such as the ones between the example

images ([31]). The visibility problem is very important in many cases (depending on the

object), and further research needs to be done.
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4 Implementation and Experimental Results

We implemented the method as described in the previous section. However, experimentally

we found out several sources of noise. In this paper we did not study the exact reasons

of these problems. Below we present the problems, we suggest reasons for them, and we

describe the way we solved them in our program.

4.1 Experimental Issues

4.1.1 Noise Due to the Choice of the Trilinear Equations

Experimentally we noticed that the program was giving di�erent results when we were

using di�erent trilinear relations (as shown in the Appendix, there are 9 such relations).

Speci�cally, when our example images were only from the XZ-plane, the system would not

be able to generate views outside this plane when it used the relations described in the

previous section. If instead we would use the following one for the y-coordinates:

y00 =
(xy0; yy0; y0;�x;�y;�1) � ([2367]; [3167]; [1267]; [2357]; [3157]; [1257])

(xy0; yy0; y0;�x;�y;�1) � ([2369]; [3169]; [1269]; [2359]; [3159]; [1259])
(22)

it would work better. We postulate that the reason for this was that when using the

equations of the previous section we try to estimate the y-coordinates of an image point

using mainly the almost negligible changes in the y-coordinates between our examples.

Therefore very small errors in the y-coordinates of the points in the example images - due

to the fact that we use digital images - lead to big errors in the new y-coordinates. If

however one uses the equations above, one uses the larger changes in the x-coordinates of

the examples to estimate the new y-coordinates. A way to overcome this problem is to make

the program so that di�erent trilinearity equations are used depending on the position of

the new virtual camera. So, for example, a rule of thumb could be that if the virtual camera

is \close" to the line connecting the cameras for the two example images we use equations

18, while in case the virtual camera is \far" from that line, we use equation 22.

4.1.2 Noise Due to Holes

It is unavoidable to have some noise which leads to overlapping pixels in some places of the

new image, and therefore to holes in other. Moreover, in case that we zoom in, clearly we

will have to deal with holes due to lack of information.

Initially we solved the problem of hole �lling like in [8]. Once we generate the new

image we �ll the holes by interpolating the pixel values of the edges of the holes along the

x-axis or the y-axis. However this approach was not satisfactory.
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In the �nal version we solved the problem of holes as follows. For every four neighbor

pixels forming a rectangle in one of the example images, we �nd their projection in the

new image and then we �ll the interior of the projected rectangle by using a bilinear

interpolation of the pixel values of the four corners. This approach was signi�cantly better

than the previous one.

4.2 Summary of the Implementation

Summarizing, the program is organized as follows:

1. Calibrate the camera using at least 3 example images.

2. Given a new position of the camera, �nd the corresponding matrix of external pa-

rameters and then the new camera matrix.

3. Choose two example images that are close to the one we want to generate.

4. Find the dense pixel-wise correspondence between the example images.

5. Using the new camera matrix and the camera matrices for the two example images,

compute the coe�cients for the trilinear equations.

6. For every four neighbor pixels forming a rectangle in the �rst example and their

corresponding pixels in the second example, �nd their new coordinates in the virtual

image using equations 18. Fill the interior of the rectangle in the new example as

described above.

7. In the case that a pixel in the new image is written more than once, choose the pixel

value according to the occlusion method described in the previous section.

4.3 Experimental Results

In this section we show the experimental results of the method. We tested the method

using several set of images for several objects. Because of space constraints here we include

only the results for one object. The reader can also refer to the World Wide Web page

http://www.ai.mit.edu/people/theos/theos.html

for more results of the system.

We tested the program on real images of a statue that we collected in the lab. We

calibrated the camera using the examples as shown in the previous section. Having the
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internal parameters we generated the virtual images shown in �gure 4. The two example

images we used are the �rst two images on the left top.

4.4 Robustness of the system

Experimentally we noticed that the method was not very sensitive to noise in the computed

internal parameters of the camera or in the assumed viewpoints of the example images.

Changes in these two sets of parameters had the following e�ects:

1. Small change of the internal parameters did not have almost any visual e�ects. How-

ever, big changes introduced some perspective e�ects in the virtual images, as ex-

pected.

2. Assuming di�erent external parameters for the example images had only the following

e�ect for the virtual images. Suppose that the �rst image is from the origin and the

second one is from 5 degrees rotation around the x-axis, 2 degree rotation around the

y-axis. Let G5:2 be the image generated from 10 degrees around the x-axis and 10

degrees around the y-axis. Suppose that we assume now (due to error) that the second

example image is from 10 degrees rotation around the x-axis, 4 degree rotation around

the y-axis instead (100 percent error). Let G10:4 be the image generated from 20

degrees around the x-axis and 20 degrees around the y-axis given the new assumption

about the position of the second image. Then we observe that G10:4 and G5:2 are

almost identical. There is only a small prespective di�erence when we use the same

internal parameters in both cases. Moreover, if we generate an image G10:4:2 from

10 degrees around the x-axis and 10 degrees around the y-axis given the erroneous

estimate of the position of the second image, then G10:4:2 will be displaced \half-way"

relative to G5:2 which should be the correct one. All these are shown in image 5.

In other words, we noticed that all that matters is not the exact positions of the camera

for the example images, but instead the \relative" positions.

4.5 How well can 2 example images do?

Having these observations in mind, one would naturally ask the following question:

\If the external parameters of the camera for the example images are not very important for

reprojection, and the system is not very sensitive to small errors in the internal parameters,

how well can the system do if only two example images from unknown positions are given?"

Experimentally we found that when we are given only two examples we can still generate

good virtual images as long as we have a good guess for the internal parameters of the
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Figure 5: Starting from the left, we show images G10:4, G5:2 and G10:4:2 as described in the

text. The example images are the same as in �gure 4
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camera. In other words, two images, a good guess of the internal parameters of the camera

and any estimate of the position of the camera for the two example images are good enough

for the system to generate virtual images from other viewpoints. This is in agreement with

the observations stated above.

Big errors in the estimate of either the internal or the external parameters can potentially

create some perspective e�ects to the results, which are not important when the errors are

small. Moreover, as mentioned before, errors in the estimation of one set of parameters, say

external, can partly be \balanced" by adjusting the other set of parameters, in this case

internal. However we have not studied how these two sets of parameters interact with each

other for reprojection using the method we developed.
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5 Shape and Motion Estimation

5.1 Motivation and Background

Computing the motion and shape of a moving object is an important task for many ap-

plications such as navigation and robot manipulation. Traditionally algorithms compute

shape by using depth values estimated by methods such as triangulation. However these

approaches are typically noise-sensitive. Signi�cant has been the work done by Tomasi and

Kanade [29]. In [29] they developed a robust method for the special case that the images

are taken under orthographic projection. Their method is based on the factorization of the

matrix that contains image coordinates of selected features of the moving object. This fac-

torization leads to a product of two matrices: one contains information about the shape of

the camera, and the other about the motion of the camera. In [27] the method is extended

to the paraperspective case, which is a �rst order approximation to the general perspective

case. Moreover, in [6] a variation of the method for the multi-body case is presented.

The purpose of this section is to examine the relation between the factorization method

of [29] and the algebraic relations described in the previous sections. We present this

relation in the special case of orthographic projection using two di�erent approaches and

we propose a new method for shape and motion estimation when we have two or more

images. Finally we suggest possible generalizations for the perspective case.

5.2 Theory

5.2.1 Problem Statement

We are given a sequence of F images of an object taken with a camera that is allowed

to undergo any rotation and translation. More speci�cally, we have a set of P object

points pi = (Xi; Yi; Zi), i 2 f1; 2; :::; Pg projected on F images (frames), f 2 f1; 2; :::; Fg,

taken under orthographic projection. Frame f is obtained by the camera whose orientation

is described by the orthonormal unit vectors if , jf and kf , where kf points along the

camera's line of sight, if corresponds to the camera image plane x-axis, and jf corresponds

to the camera image plane y-axis. The camera position is described by the vector tf from

the origin of the world coordinate system to the camera's focal point. The situation is

shown in �gure 6. We assume that the focal length of the camera is 1 and all other internal

parameters are 0. Finally, let xfi and yfi be the image coordinates of point pi in frame f .

The problem then is the following. Given xfi and yfi, compute the shape of the object,

which in this case means pi for each of the P points, and the motion of the camera, which

in this case means if , jf , if � tf and jf � tf for each of the F frames. We assume that all P

points are visible in all frames.
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Image Plane

tf

World origin
focal length = 1

pi

kf

jf
if

Figure 6: Coordinate system

5.2.2 Shape and Motion estimation

We organize all of the feature point coordinates into a 2F � P matrix W :

W =

2
66666666664

x11 � � � x1P

� � � � � � � � �

xF1 � � � xFP

y11 � � � y1P

� � � � � � � � �

yF1 � � � yFP

3
77777777775

(23)

Each column of the measurement matrix contains all the observations for a single point,

while each row contains all the observed x-coordinates or y-coordinates for a single frame.

As we can see from �gure 7, under orthographic projection a point pi = (Xi; Yi; Zi)

relative to the world coordinate system is projected on the image plane of frame f at image

coordinates (xfi; yfi) given by:

xfi = if � (pi � tf ) = if � pi � if � tf

yfi = jf � (pi � tf ) = jf � pi � jf � tf
(24)

where the notation is as de�ned in the problem statement section.

Moreover, if we de�ne the world coordinate system to be such that the origin is at the

center of mass of the object we get that:

p1 + p2 + :::+ pP = 0 (25)
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Figure 7: Orthographic Projection. Dotted lines indicate perspective projection. The solid

perpendicular lines to the image plane indicate orthographic projection.

which in combination with equation 24 gives:

xf1 + xf2 + :::+ xfp = if � (p1 + p2 + :::+ pP ) + P (if � tf ) = 0 + P (if � tf ))

) if � tf =
1
P
(xf1 + xf2 + :::+ xfp)

and

yf1 + yf2 + :::+ yfp = jf � (p1 + p2 + :::+ pP ) + P (jf � tf ) = 0 + P (jf � tf ))

) jf � tf =
1
P
(yf1 + yf2 + :::+ yfp)

(26)

Therefore we can compute the camera position (translation) directly from the image coor-

dinates by taking the average of each row of matrix W .

Once we �nd the camera translation, we can factor it out by subtracting from each

entry of W the average of the entries of the row it is in. Once we do this we are left with

a new matrix W 0 with entries:
x0fi = if � pi

y0fi = jf � pi
(27)

The question now is how to estimate pi, if and jf . The problem, however, becomes simple

after we make the following observations.

First, we can consider matrix W 0 as the matrix of image coordinates of the P points

taken by a camera that is located at the origin of the world coordinate system and that is
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allowed to make only rotations - no translation. So we can start solving the problem of

shape and motion estimation from the beginning for this new scenario. Notice that this

situation is not realistic, since it would have been impossible to see all points in every frame

if a camera were located at the center of the mass of the object. However, we can still use

our knowledge for orthographic projection assuming, like at the beginning, that all points

are visible in all frames.

Second, from equation 27, we get that the new camera matrix for frame f is:

Kf =

2
664
if 0

jf 0

0T3 1

3
775 (28)

Finally, we know that in the case of orthographic projection, \1.5 views" of an object

are enough to predict other images of the object [28]. In other words, as we also see in the

appendix, we know that there are �f1, �f2, �f3, �f and �f1, �f2, �f3, �f such that :

(x0f1 � � � x
0

fP ) = �f1(x
0

11 � � � x
0

1P ) + �f2(y
0

11 � � � y
0

1P ) + �f3(x
0

21 � � � x
0

2P ) + �f

(y0f1 � � � y
0

fP ) = �f1(x
0

11 � � � x
0

1P ) + �f2(y
0

11 � � � y
0

1P ) + �f3(x
0

21 � � � x
0

2P ) + �f
(29)

Furthermore, in this case �f = �f = 0, since there is no translation from frame to frame.

So the relations above immediately give us that matrix W 0 has rank 3. This is the rank 3

theorem proved in [29]. Using equation 29 we get another simple proof of that theorem -

which is anyway clear from equation 27.

Using these equations we can approach the factorization problem of [29] in a di�erent

way. We can write W 0 as a product of a 2F � 3 and a 3� P matrix as follows;

W 0 =

2
6666666666666666664

x110 � � � x01P

x021 � � � x02P

x031 � � � x03P

� � � � � � � � �

x0F1 � � � x0FP

y011 � � � y01P

y021 � � � y02P

� � � � � � � � �

y0F1 � � � y0FP

3
7777777777777777775

=

2
6666666666666666664

1 0 0

0 0 1

�31 �32 �33

� � � � � � � � �

�F1 �F2 �F3

0 1 0

�21 �22 �23

� � � � � � � � �

�F1 �F2 �F3

3
7777777777777777775

�

2
664
x011 � � � x01P

y011 � � � y01P

x021 � � � x02P

3
775 (30)

This is one of the possible factorizations as mentioned in [29]. Indeed, the crucial question is

how to factorizeW 0. Notice that for any invertible matrix A, from a factorizationW 0 =MS

of W 0 we can get another factorization by simply replacing M with MA and S with A�1S.

Indeed: W 0 =MS = (MA)(A�1S) for any invertible 3x3 matrix A. So the question is how
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to factorize W' in order to get the correct motion and shape matrices. The factorization

that we want to get is:

W =

2
6666666666666666664

x011 � � � x01P

x021 � � � x02P

x031 � � � x03P

� � � � � � � � �

x0F1 � � � x0FP

y011 � � � y01P

y021 � � � y02P

� � � � � � � � �

y0F1 � � � y0FP

3
7777777777777777775

=

2
6666666666666666664

1 0 0

i21 i22 i23

i31 i32 i33

� � � � � � � � �

iF1 iF2 iF3

0 1 0

j21 j22 j23

� � � � � � � � �

jF1 jF2 jF3

3
7777777777777777775

�

2
664
X1 � � � XP

Y1 � � � YP

Z1 � � � ZP

3
775 (31)

since we have that xfi = if � [Xi; Yi; Zi]
T and yfi = jf � [Fi; Yi; Zi]

T .

To get the correct factorization we need one more step. From section 3 we know exactly

the relations between the entries of the motion matrix we have and the ones we want to have!

We can get them from the relation of the �f , �f and the camera matrices. For simplicity,

let's de�ne the world coordinate system so that each axis is parallel to the corresponding

axis of the camera coordinate system of the �rst camera. In the general case - since we

don't know the orientation of the �rst camera - the approach is exactly the same although

the algebra is more complicated.

With this \alignment" the new camera matrix for the �rst frame is clearly:

K1 =

2
664
1 0 0 0

0 1 0 0

0 0 0 1

3
775 (32)

Let the rows of K1 be 1, 2, 3, the rows of K2 be 4, 5, 6, and the rows of matrix Kf be 7,

8, 9. Using the results of Faugeras [11] or simple geometric arguments we can �nd that:

�f1 =
T111
T313

=
if1i23�if3i21

i23
; f > 2 �f2 =

T211
T313

=
if2i23�if3i22

i23
; f > 2

�f3 = �
T331
T313

=
if3
i23
; f > 2 �f1 =

T112
T313

=
jf1i23�jf3i21

i23
; f > 1

�f2 =
T212
T313

=
jf2i23�jf3i22

i23
; f > 1 �f3 = �

T332
T313

=
jf3
i23
; f > 1

(33)

where Tijk is the determinant of the matrix that is made by choosing the ith element of

the �rst column the jth of the second and the kth of the third of the following \matrix":

2
664
(23) 4 7

(31) 5 8

(12) 6 9

3
775 (34)
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using this last step we get that:

W =

2
6666666666666666664

x011 � � � x01P

x021 � � � x02P

x031 � � � x03P

� � � � � � � � �

x0F1 � � � x0FP

y011 � � � y01P

y021 � � � y02P

� � � � � � � � �

y0F1 � � � y0FP

3
7777777777777777775

=

2
6666666666666666664

1 0 0

0 0 1

�31 �32 �33

� � � � � � � � �

�F1 �F2 �F3

0 1 0

�21 �22 �23

� � � � � � � � �

�F1 �F2 �F3

3
7777777777777777775

�

2
664
x011 � � � x01P

y011 � � � y01P

x021 � � � x02P

3
775 = (x11 = X1; y11 = Y1)

(35)

=

2
6666666666666666664

1 0 0

0 0 1

�31 �32 �33

� � � � � � � � �

�F1 �F2 �F3

0 0 1

�21 �22 �23

� � � � � � � � �

�F1 �F2 �F3

3
7777777777777777775

�

2
664

1 0 0

0 1 0

i21 i22 i23

3
775�

2
664
X1 � � � XP

Y1 � � � YP

Z1 � � � ZP

3
775 = (36)

=

2
6666666666666666664

1 0 0

i21 i22 i23

i31 i32 i33

� � � � � � � � �

iF1 iF12 iF3

0 1 0

j21 j22 j23

� � � � � � � � �

jF1 jF2 jF3

3
7777777777777777775

�

2
664
X1 � � � XP

Y1 � � � YP

Z1 � � � ZP

3
775 (37)

This is a natural result from the relation (equation 33) between the �f and �f with if and
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jf . Indeed, with simple manipulation of those equations, we get that:

if1 = �f1 + �f3 � i21

if2 = �f1 + �f3 � i21

if3 = �f1 + �f3 � i21

jf1 = �f1 + �f3 � i21

jf2 = �f1 + �f3 � i21

jf3 = �f1 + �f3 � i21

(38)

There is one last problem. As we see in the equation above, in the general case we need to

know the orientation of the �rst and second camera! As a �rst step we can either assume

that we are given this motion, or estimate it using any of the existing methods for motion

estimation. The key, though, is that once we estimate shape and motion from the �rst

two images, we can get the motion for any subsequent image without paying much! The

motion comes directly as a result of the linearity constraints described in the appendix.

To summarize, in the general case we manage to change the question of shape and motion

estimation from many images to the question of shape and motion estimation from two

images. In the general case that we don't know the �rst and second camera orientations

the equations above become:

W =

2
6666666666666666664

x011 � � � x01P

x021 � � � x02P

x031 � � � x03P

� � � � � � � � �

x0F1 � � � x0FP

y011 � � � y01P

y021 � � � y02P

� � � � � � � � �

y0F1 � � � y0FP

3
7777777777777777775

=

2
6666666666666666664

1 0 0

0 0 1

�31 �32 �33

� � � � � � � � �

�F1 �F2 �F3

0 1 0

�21 �22 �23

� � � � � � � � �

�F1 �F2 �F3

3
7777777777777777775

�

2
664
x011 � � � x01P

y011 � � � y01P

x021 � � � x02P

3
775 = (x11 = X1; y11 = Y1)

(39)

=

2
6666666666666666664

1 0 0

0 0 1

�31 �32 �33

� � � � � � � � �

�F1 �F2 �F3

0 0 1

�21 �22 �23

� � � � � � � � �

�F1 �F2 �F3

3
7777777777777777775

�

2
664
i11 i12 i13

j11 j12 j13

i21 i22 i23

3
775�

2
664
X1 � � � XP

Y1 � � � YP

Z1 � � � ZP

3
775 = (40)
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=

2
6666666666666666664

i11 i12 i13

i21 i22 i23

i31 i32 i33

� � � � � � � � �

iF1 iF12 iF3

j11 j12 j13

j21 j22 j23

� � � � � � � � �

jF1 jF2 jF3

3
7777777777777777775

�

2
664
X1 � � � XP

Y1 � � � YP

Z1 � � � ZP

3
775 (41)

which is exactly the factorization in [29] derived in a di�erent way using the linearity

constraints between di�erent images of an object.

5.2.3 Proposed Method for Motion Estimation with n > 2 Images

Using this theory we can suggest now a method for estimating motion when we are given a

sequence of images of an object taken under orthographic projection by a camera undergoing

any rigid motion. Organizing the image coordinates in matrix W as described above, do:

1. Compute the camera position (translation) by averaging the rows of matrix W .

2. Subtract the translation from the entries of W to get matrix W 0.

3. Using any existing method estimate shape and motion for the �rst two images.

4. For every f > 2 �nd corresponding points between image f and images 1 and 2. Use

these correspondences to estimate the coe�cients �f and �f of the linear relations

described in equation 29, using a least squares method to minimize the error.

5. Having found the linearity coe�cients we can factor W 0 as a product W = MS like

in equation 30. However, because of noise this will not be an exact factorization, but

it is a good approximation since we estimated �f and �f so that we minimize any

error.

6. Using the known orientation of the �rst and second camera, we can write down the

motion and shape matrices in the general case using equation 41.

So, in principle, one can get all subsequent motions by just knowing the �rst two motions

of the camera.
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5.3 Shape and Motion under Perspective Case

There are several ways to approximate the perspective case. One way is to use an approxi-

mation of the projection equations 1 in section 2. For example if we replace the ratios with

their Taylor expansions we can use a similar method as above in the case that we use a

�rst order approximation.

Instead of approximating perspective projection from the beginning by replacing the

projection equations as mentioned above, we can use Taylor expansion to replace the trilin-

ear equations. If we expand the trilinearities up to �rst order factors, we can use exactly the

same approach described above, but this time the coe�cients �f and �f will be di�erent.

In this case the relation between �f , �f and motion is not straightforward. We still know

the relation between motion and the initial coe�cients of the trilinearity equations, but

after doing the Taylor expansion things get more complicated. We have not studied what

happens in case we use higher order approximations, since the algebra gets complicated.

However, it is possible that a combination of the aforementioned approach and this one will

give good results in the general perspective case.
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6 Conclusion and Suggestions for Further Research

6.1 Summary of the Paper

In the main part of this paper we designed and tested a new method for generating virtual

views of an object undertaking any rigid motion. Given three images taken from known

positions A, B and C we can �rst compute the internal parameters of the camera. Then

we showed that one can get any virtual image of the object from any position near A, B

and C using the trilinearity constraints that bind any new image with any two real ones.

As a side result of the paper we proposed two new methods for camera calibration and we

developed one of them which we also used to estimate our camera model. We tested both

methods on real images of an objects and faces.

Moreover we showed that even when only two example images taken from unknown

positions are given, the system still works satisfactorily given a good estimate of the internal

parameters of the camera. Although further tests are needed to test the robustness of the

system, the results we had were encouraging. Using few example images we were able to

get a continuous range of virtual images in a satisfactory wide range of views relative to

the examples. The new images were realistic and gave nice 3-D e�ects to the user, and the

degree of extrapolation was satisfactory.

In the second part of the paper we studied the relation between the factorization method

for shape and motion estimation presented in [29] and the algebraic relations between

images. We presented the basic ideas for motion estimation using the linearity constraints

that bind three views of the moving object in the special case of orthographic projection.

We showed that shape and motion estimation from F > 2 images is equivalent to shape

and motion estimation from 2 images and motion estimation for the remaining ones. As a

result of this relation we developed a new simple method for motion estimation from more

than two images in the special case of orthographic projection. We also suggested possible

extensions for the general case of perspective projection. However we did not implement

the proposed method and suggestions. Further research on this approach might lead to a

new system for motion estimation.

6.2 Suggestions for Future Research

One of the most important questions to be solved is the visibility problem. Although in

many cases, for practical purpose, the heuristic we used is satisfying, the problem still

remains for most cases. For example we still cannot detect situations where a point is

visible in only one of the example images. We believe that such cases are often the reason

that holes appear in the virtual image, since wrong correspondences cause the trilinear
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relations to break. Very little research has been done on this issue. Although the problem

might be unsolvable in general, further research for better heuristics is necessary.

At a di�erent but important direction, the system developed in this paper can be com-

bined with one such as [8] with the long term goal of developing a complete tool that can

be used for generation of images of objects undergoing any transformation - rigid as well as

exible. For example we can formally describe the process of generating a new image Inew

for a given point r in the space of transformations as a mapping

Inew = g(r; I1; � � � ; In)

where the other arguments of the function are the example images. The mapping g can be

formally decomposed into g =  �.  is the transformation due to a change in viewpoint

while � is the transformation due to a non rigid motion of the object in the scene. When the

desired image results from a camera transformation, that is a rigid object transformation,

g =  has the analytic form studied in this paper. On the other hand, for the non-rigid

transformation � we can use a system such as [8].

Research on image-based rendering is still at its �rst stages. Future research in this

area can potentially lead to signi�cant results. We believe that the most important issues

that need to be solved are the visibility problem as well as speed and memory e�ciency

issues. Notice that having many example images of an object means having every point

of the object in multiple images. Avoiding such a memory ine�cient representation is

an important issue. We believe that the question of representation of the objects - ie

image-based or 3-D model or something in between - is a central issue in machine vision

and computer graphics. Moreover many questions will unavoidably arise from the need to

combine image-based rendering techniques for objects with ones for panoramas (such as

[18]) as well as with 3-D models used either for some of the objects or for parts of some

objects - depending on their representation. Such hybrid systems can potentially lead on

the one hand to realistic virtual reality tools and on the other hand to better understanding

of important issues in machine vision as well as our vision system, such as how we represent

an object, how we deal with occlusions, or how we �nd correspondences between di�erent

images of an object.
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A Trilinear Constraints Between Three Images

Like in section 3, suppose we are given three images I1, I2, I3 of an object point O =

(X; Y; Z) taken with three cameras from di�erent positions. Let 1, 2, 3 be the rows of the

�rst camera matrix, 4, 5, 6 be the rows of the second and 7, 8, 9 the rows of the third.

Let (x; y), (x0; y0), (x00; y00) be the image coordinates of the projection of O in the three

images respectively. We assume O is visible in all three images, so its three projections are

Euclidean points (their third projective coordinate can be set to 1). Then the 9 trilinear

equation that hold between the image coordinates are of the form:

THSi;j = x(u0iu
00

jT133 � u
00

jT1i3 � u0iT13j + T1ij+

+y(u0iu
00

jT133 � u
00

jT1i3 � u0iT13j + T1ij+

+(u0iu
00

jT133 � u
00

jT1i3 � u0iT13j + T1ij+

(42)

for i, j in 1; 2; 3, where u01 = x0; u02 = y0; u03 = 1; u001 = x00; u002 = y00; u03 = 1, and Tijk is the

determinant of the matrix obtained by choosing the ith element of the �rst column, the jth

element of the second, and the kth of the third of the following matrix:

2
664
2; 3 4 7

3; 1 5 8

1; 2 6 9

3
775 (43)

So, for example, the equations that we use in section 3 are derived for i = 1, j = 1 and for

i = 2, j = 2. Indeed, substituting i and j we get:

[2369]x00xx0 � [2349]x00x+ [3169]x00yx0 � [3149]x00y + [1269]x00x0 � [1249]x00�

�[2367]xx0+ [2347]x� [3167]yx0+ [3147]y� [1267]x0+ [1247] = 0
(44)

[2369]y00xy0 � [2359]y00x+ [3169]y00yy0 � [3159]y00y + [1269]y00y0 � [1259]y00�

�[2368]xy0+ [2358]x� [3168]yy0+ [3158]y� [1268]y0+ [1258] = 0
(45)

These are the equations as shown in [11].

A.1 The Case of Orthographic Projection

Using the formulation above, we can now see why in the special case of orthographic pro-

jection the trilinearity constraints become linearities. In the case of orthographic projection

the camera matrices, as we show in section 2, have a special form: the third row is always

[0001]. Taking this into account we have that, for example for equation 44, the coe�cients

become:

[2369] = [2349] = [3169] = [3149] = [1269] = [2367] = [3167] = 0 (46)
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since all these coe�cients are determinants of matrices that have two equal rows (since rows

3, 6, 9 are all [0001]). The remaining coe�cients can be non-zero. Notice that the only non-

zero coe�cients are the ones of the �rst or zero order terms, which makes the trilinearity

into a linear equation. Similarly all the other trilinearity equations become linear.
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