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Abstract

We have developed a new Bayesian framework for visual object recog-

nition which is based on the insight that images of objects can be modeled

as a conjunction of local features. This framework can be used to both

derive an object recognition algorithm and an algorithm for learning the

features themselves. The overall approach, called complex feature recog-

nition or CFR, is unique for several reasons: it is broadly applicable to a

wide range of object types, it makes constructing object models easy, it is

capable of identifying either the class or the identity of an object, and it

is computationally e�cient { requiring time proportional to the size of the

image.

Instead of a single simple feature such as an edge, CFR uses a large

set of complex features that are learned from experience with model ob-

jects. The response of a single complex feature contains much more class

information than does a single edge. This signi�cantly reduces the number

of possible correspondences between the model and the image. In addition,

CFR takes advantage of a type of image processing called oriented energy.

Oriented energy is used to e�ciently pre-process the image to eliminate

some of the di�culties associated with changes in lighting and pose.
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1 Introduction

The essential problem of object recognition is this: given an image, what known

object is most likely to have generated it? There are a huge variety of approaches

to this problem. From these we can extract at least one critical insight. There is no

simple relationship between the image and the objects present. Among the confound-

ing inuences are pose, lighting, clutter and occlusion. As a result, many researchers

have eschewed the use of the image itself as the representation for recognition. In-

stead they choose to de�ne and identify simple image features that are supposed to

capture the important characteristics of the image (Ballard, 1981), (Bolles and Cain,

1982), (Grimson and Lozano-Perez, 1984). A typical example of such a feature is an

intensity edge. There are three main motivations for using simple features. First, it is

assumed that simple features are detectable under a wide variety of pose and lighting

changes. Second, the resulting image representation is compact and discrete, consist-

ing of a list of features and their positions. Third, it is hypothesized that the position

of these features in a novel image of an object can be predicted from knowledge of

their positions in other images. In many ways these motivations are justi�ed. But

there is one main di�culty associated with using simple features for recognition. It is

very di�cult to determine which feature of an image corresponds to each feature in

an object { the correspondence problem. The feature itself, since it is simple, does

not provide any constraint on the match.

We propose a novel approach to image representation that does not use a single

prede�ned feature. Instead, we use a large set of complex features that are learned

from experience with model objects. The response of a single complex feature contains

much more class information than does a single edge. This signi�cantly reduces the

number of possible correspondences between the model and the image.

In order to better understand and more clearly derive the results in this paper, a

probabilistic framework for the formation of images is de�ned. This framework can be

used to predict what an image of a particular object looks like. From this framework,

Bayes' theorem can be used to derive the CFR recognition algorithm. We believe that

this formal approach makes the assumption underlying CFR, and related techniques,

clear. Sections 2 and 3. describe the Bayesian framework and CFR respectively.

The performance of the CFR recognition procedure critically depends on having an

appropriate set of complex features. Without good features the generative process will

fail to accurately capture the appearance of an object and the recognition performance

of CFR will rapidly degrade. An additional side-bene�t of the formal framework used

to present CFR is that it can be used to derive a principled mechanism for learning

appropriate features. Though this is perhaps the most novel aspect of this research,

the learning rule for features can only be derived once the description of the CFR

framework is complete. Discussion of this learning rule is in Section 4.

In order to improve the generalization of CFR to novel poses and di�erent illumin-

ation, images are processed to extract information about rapid changes in intensity.
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Similar pre-processing can be found in the visual cortex of primates (see (Kandel and

Schwartz, 1985) for example) and underlies the computational de�nition of the intens-

ity edge by (Marr and Hildreth, 1980). Rather than the discrete detection of intensity

edges, CFR instead uses a continuous measure of the \edge-ness" of pixels. The

\edge-ness" of a pixel is proportional to the energy in a number of oriented band-pass

�lters centered on the pixel. This representation and its advantages are described in

Section 5.

In Section 6 a number of CFR experiments are described. In these experiments

CFR is shown to work both with human faces and real objects. Finally a number of

extensions to the CFR framework are proposed.

2 A Generative Process for Images

A generative process is much like a computer graphics rendering system. A ren-

dering system takes an object description, information about illumination and pose

and it generates a life-like image of the object. One naive procedure for recognizing a

novel image is to generate all possible images that might result from a model object.

If one of these synthetic images matches the novel image \well" then there is good

evidence that the novel image is an example of that model.

While computer graphics is a deterministic process (i.e. for every object and

pose there is a single unique image) the world is more unpredictable. Some noise or

unmodelled variable may have changed the rendered image before it is recorded by

a camera. To address this lack of predictability, a probabilistic generative process

de�nes a probability density over the space of possible images.

More formally, given an image I, an object model M , and a pose � a generative

process allows us to compute:

P (I jM�) (1)

the probability of an image given that we know which object is present and its pose.

Bayes' theorem then tells us:

P (M;� j I) =
P (I jM;�)P (M;�)

P (I)
(2)

We can now de�ne an object recognition algorithm that returns the object that is the

most probable1:

argmax
M

X
�

P (M;� j I): (3)

This type of approach is not new. Most well-known object recognition systems

can be formulated as a search for the model that makes the image most likely (see

1Since we do not know what the pose of the object is we choose to \integrate out" the unknown
variable. Alternatively we could �nd � that makes O most likely. We explore this option later in the
paper.
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Figure 1: A schematic depiction of an image, a set of complex features, and a partial

representation of that image given these features. The arrows between the �ve di�erent

features on the left and the �ve white boxes that lie over the image describe the

positions of the features that best represent the image.

for example (Wells III, 1991) which makes this analogy very explicit). Of course

the details of these algorithms can be quite di�erent. Some algorithms use the input

image directly, comparing the input image and the predicted image directly. Most

techniques that use correlation for image matching fall into this category. Other

algorithms assume that images are well described by the positions of simple image

features, like edges. The image features are then compared to the predicted features

from a generative process.

Our generative process is really somewhere between the direct and feature based

approaches. Like feature based approaches, it uses features to represent images. But,

rather than extracting and localizing a single type of simple feature, a more complex

yet still local set of features is de�ned. Like direct techniques, it makes detailed

predictions about the intensity of pixels in the image.

To emphasize that the features used in our system are more complex than is typical

we call it Complex Feature Recognition (CFR). In CFR every image is a collection

of distinct complex features (see �gure 1). Complex features are chosen so that they

are distinct and stable. A distinct feature is one that appears no more than a few

times in any image and is correlated with a particular object or class of objects.

Simple features, especially edges, are decidedly not distinct. Stability has two related

meanings: i) the position of a stable feature changes slowly as the pose of an object

changes slowly; ii) a stable feature is present in a range of views of an object about

some canonical view. Simple features are intended to be, though they often aren't,

stable. In our current implementation, and in our analysis, complex features resemble

templates, but our formulation is general enough to admit a number of di�erent feature

representation mechanisms.

2.1 Some Examples

A few simple examples will help to motivate the thinking behind CFR. Clearly

a picture of a person, if suitably normalized to remove some of the dependency on
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Figure 2: A typical set of images of a single person. In this case there are �fteen

views that are centered around the \direct forward" view. All of the other face images

used in this paper take this form. The face data used in this paper came from David

Beymer of the MIT AI Laboratory.

lighting, might be an excellent complex feature. It is distinct; there aren't many

objects that look like a person that aren't. But, a picture is not a stable complex

feature. Intuition tells us that a small change in object pose would rapidly make the

picture a poor predictor of the image. For instance in �gure 2 we see images in 15

canonical poses of a person ( these poses are numbered left to right and top to bottom

starting from 0). As we can see, and we will soon quantify, appearance of these images

changes quite rapidly as pose varies.

While a picture of the entire object may be a poor complex feature, are there

other more local pictures that would work better? Figure 3 addresses this question

empirically. On the left of the �gure, labeled (a), are representative images of three

di�erent people. On the top right, labeled (b) is a candidate local feature, and a graph

representing its response to the 15 canonical poses of these three people. The feature

is selected from pose number 2 of the �rst person. While chosen fairly arbitrarily, it is

roughly the largest possible square sub-region of the the image that does not contain

a lot of background or any non-face regions. The graph plots for each of these three

people, pose number versus a measure of \nearness" between the complex feature and

the image2. Note that since the feature is taken from pose 2, the feature is nearest to

pose 2 of the �rst person. Unfortunately, this feature does not act to distinguish the

three people. No simple threshold on feature response would su�ce to identify person

1.

This sort of feature is not entirely useless. It may be useful for identifying images

of person 1 in a limited number of poses { the ones near pose 2, 7 or 12 (notice that

these poses are actually very similar). We have shown a threshold for this type of

2We use the maximal value of the normalized correlation between the feature and the image as a
measure of image distance. Normalized correlation is a widely used matching metric that eliminates
some of the dependency on lighting (Brunelli and Poggio, 1992). More on this later.
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Figure 3: The responses of simple grey level features. See text for a more complete

description. (a) example images of three people. (b) a feature from the pose 2 of

person 1 and its response versus �fteen views of the three people (c) a slightly smaller

feature taken from the same person, and its responses.

discrimination as a line at about 0.75. Labeled (c) is a another feature and a similar

graph. This feature has been selected arbitrarily, but this time to represent a smaller

more localized part of the face. Once again we can see that the feature, by itself, is

not very good for recognition.

Is it possible to build complex features that are distinct and stable? With some

extra machinery, the answer is a quali�ed yes. In �gure 4 we show a graph of the

output of a arguably much better feature. We see that for a large number of poses this

feature acts to discriminate person 1 from 2 and 3. Furthermore, it does this by a much

larger margin. Is the position where the feature appears stable across pose changes?

Figure 5 contains 5 representative images. We have labeled the location where the

feature responds most strongly with a white square. While the feature is clearly not

responding to some true 3D location on the face, it seems to respond to the local

region of the forehead. This is not the universal behavior of learned features. Other

features often do a much better job of localization at the expense of generalization

across views.

CFR's complex features di�er from the simple image templates shown in Figure 3

in two major ways. First, complex features are not matched directly to the pixels of

the image. Instead we match an easily computed intermediate representation called

oriented energy. An oriented energy representation of an image is in fact several

images, one for each of a number of orientations. The value of a particular pixel in the

vertical energy image, is related to the likelihood that there is a vertical edge near that
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Figure 4: A graph of the performance of a learned complex feature on the same data

as the graphs above.

Figure 5: The white square labels the location where a forehead feature detector

responds most strongly.

Figure 6: A raw untrained oriented energy feature that has been selected from the

person 2, in pose 2. The feature represents the area near the forehead. The oriented

energy feature is made up of 6 images one for each of six orientations. The �rst

measures vertical energy, the fourth horizontal energy. The remaining orientations are

evenly distributed. Notice that the hairline and eyebrows in the third or horizontal

image are accentuated.

Figure 7: A feature trained to respond strongly to person number 1. Starting from

the one shown in the previous �gure, which was taken from person number 2, CFR

has learned salient properties of person number 1.
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pixel in the original image. Figure 6 shows a typical oriented energy feature. In this

paper six orientations are used, though this is not critical. The feature representation

is discussed in more detail in Section 5.

The second di�erence between an image template and a complex feature is that it

result of a feature learning procedure. The complex feature has been adjusted so that

it responds strongly to all of the example images of person number 1. The learning

process allows CFR to discover features which are e�ective for classifying an object

across a wide variety of poses. Figure 7 shows a feature which is the result of tuning

the feature in Figure 6 to more closely model person 1. The details of the feature

learning algorithm are described in Section 4.

Clearly one cannot attempt to build a recognition system around a single feature,

even a very good one. CFR uses many features trained on a wide variety of objects

and poses. The types of features that CFR uses have a very di�erent avor from those

used by simple recognition systems. Each feature is correlated, though not exclusively,

with particular objects or classes of objects. Each feature is detectable from a set of

poses about some nominal pose. Finally, each feature is localizable across these poses.

This allows us to use the relative positions of the features as additional information

for recognition.

In the next section a theory for complex feature recognition is outlined. This theory

provides a means for analyzing and understanding the computations that are used to

represent and recognize images.

3 The Theory of Complex Features

Let I be a random variable from which images are drawn. An image is a vector of

pixel values which have a bounded range of R. The pixels in these images need not

be intensities measured with a camera. They may be any pixelated representation of

an image. If multiple pixelated representation are available, as is the case for oriented

energy, each pixel can be viewed as having a vector value, with one dimension for

each pixelated representation. Since the use of an explicit vector notation for the

pixel values leads to additional notational complexity, derivations will use a scalar

notation for pixels. It is not di�cult to rederive this theory for vector valued pixels.

We are also given a set of complex features ffig, such that ni is the number of

pixels in fi. Let each object be represented a collection of models fMg. Each object

may require several models in order to capture the variation in appearance due to

changes in pose. Each model is drawn from a pair of random variables D and L. D is

an indicator vector and L is a vector of locations. When a feature fi is present in an

image, Di = 1, otherwise it is 0. When Di = 1, Li is the location of fi in the image.

Let S() be a sub-window function on images such that S(I; Li) is a sub-window of I

that lies at position Li (see �gure 8). We can now de�ne the conditional probability

of a particular image sub-window:

P (S(I; li) j Di = 1; Li = li; fi) = N(S(I; li); fi;�) (4)
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f I

l

S(I, l)

Figure 8: A diagrammatic depiction of the operation of the sub-window function S.

Given a feature f , an image I and a location l, S(I; l) returns a sub-window of I that

that lies of at location l and is of the same size as f .

and

P (S(I; li) j Di = 0; Li = li; fi) = +

�
1

R

�jf j
(5)

where N() is the normal distribution over the the pixels of S(I; li) with mean f and

covariance matrix �. These equations can be interpreted in the following way: if

Di = 1, then the probability of an image is a function of the distance between the

pixels of S(I; li) and f . Otherwise, we assume that each of the pixels in S(I; li) are

uniformly distributed (each pixel's density being 1
R
).

To reiterate, the variables I, D and L are considered to be random variables. Since

D and L are vectors, their components, Li and Di are also random variables. Events

drawn from these distributions will be denoted with small letters, especially d, l, di
and li. In some derivations to simplify notation P (D = d) and P (d) will be used to

denote the same thing, namely the probability that the random variable D will take

on the value d.

If we assume that the features never overlap and they are independent then the

probability density of an image given M = (d; l) is3:

P (I j d; l) =
Y
i

P (S(I; li) j di; li; fi)
1

Ru
(6)

where u is the number of pixels in the image that remain unexplained by any feature.

Following Bayes' theorem we can now compute the probability of a model given

3For clarity we will use a derivation that assumes that the features never overlap and that they
independent. An alternative formulation exists in which dependent, overlapping features can be used.
Many of the computation that are tractable in the independent formulation, become signi�cantly less
tractable in the dependent formulation.
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an image:

P (d; l j I) =
P (I j d; l)P (d; l)

P (I)
(7)

P (d j I) =
X
l

Y
i

P (I j di; li)P (di; li)

P (I)
(8)

=
Y
i

X
li

P (I j di; li)P (di; li)

P (I)
(9)

�
Y
i

max
li

P (I j di; li)P (di; li)

P (I)
(10)

Note, in Equation 9 the sum over vectors of locations has be split into separate sums

over each feature location and moved inside the product. This can be done because

the features are assumed independent.

Equation 10 can be used to de�ne an algorithm for recognizing which of a set of

objects appears in an image. Given a collection of models, fM = (dM ; lM)g, �nd the

model that is most likely. Of course a signi�cant di�culty remains, that of �nding

and computing the object models. A straightforward scheme for building a model is

to obtain a segmented image of an object, and pick di and li to be the most likely

given the image:

(d̂i; l̂i) = argmax
di;li

P (Di = di; Li = li j I): (11)

While this has a pleasing simplicity we must be wary of the case when P (Di = 1 j I)
is not signi�cantly greater than P (Di = 0 j I). This is true when the presence or

absence of fi is ambiguous. Picking a single value for d̂i in this case is misleading.

The real situation is that d̂i is about equally likely to be 1 or 0. Worse it confuses

the two very distinct types of models: P (Di = 1 j I) � P (Di = 0 j I) and P (Di =

1 j I) = P (Di = 0 j I) + �. In experiments this type of maximum a posteriori model

does not work well.

An alternative type of object model retains explicit information about P (Di j I):

d̂i = max
li

P (Di = di; Li = li j I) (12)

and

l̂i = argmax
li

P (Di = di; Li = li j I): (13)

Note that d̂, a vector of numbers between zero and one, is not an event of D, which is

a binary vector. d̂ is no longer the most likely value for di, instead it is an estimate for

the distribution of Di. The resulting object models, fM = (d̂M ; l̂M)g are probabilistic.
The probability of an image given such a model is now really a mixture distribution:

P (I jM) =
X
d;l

P (I j d; l)P (d; l jM): (14)
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There are two distinct ways to de�ne a recognition algorithm for a probabilistic model.

We could simply use Bayes' theorem once again:

argmin
M

P (M j I) =
P (I jM)P (M)

P (I)
: (15)

Alternatively we can �nd the model whose probability density over the feature indic-

ator variables is most closely matched by the image:

argmin
m

G(P (D jM); P (D j I)); (16)

where G(p; q) is a density function distance measure: it returns 0 if p and q are equal,

and larger values as p and q diverge. By de�ning

d̂Ij = P (Dj jM); (17)

G becomes a measure which compares the vectors d̂I and d̂M . There are a number

of reasonable candidates for G, perhaps the best motivated is the cross entropy or

asymmetric divergence (see (Cover and Thomas, 1991) for an excellent review entropy

and divergence). For simplicity, we have chosen to use the squared di�erence,

G(d̂I ; d̂M ) =
���d̂I � d̂M

���2 : (18)

The resulting recognition algorithm is called CFR-MEM, because it explicitly mem-

orizes the distribution of features in each of the model images.

We have also explored another scheme for classifying images. Experiments have

shown us that a large number of object models are often necessary to correctly classify

novel object images. While there currently is no formal analysis of this problem,

one manifest issue is that not all features are correlated with object identity. These

distractor features vary widely over similar views of the same object. Since each

feature is treated uniformly by the distance function G, the distractor features corrupt

an otherwise good �t between model and image. One could attempt to generalize G so

that it weights \good" features more than distracting features. But one object's good

feature is often another object's distractor. This would force us to �nd a di�erentG for

each object. A more direct approach is to learn a classi�er. A classi�er is a function

C(~v) that computes object identity. We have chosen to use a multi-layer perceptron,

also known as a neural network, to learn a classi�er (Rumelhart, Hinton and Williams,

1986). Briey, a neural network is a clever way of parameterizing a function C(~v;W )

with a set of weights W . The weights are then learned by de�ning a training set

of pairs f~vj; ~Ojg, that label each input vector with its corresponding object. The
~Oj's are vectors where the i'th component is 1 if the i'th object is present and 0

otherwise. A set of weights are selected that minimize the error over the training set,

E =
P

j j~Oj�C(~vj;W )j2, by using a form of gradient descent. We call this recognition
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algorithm CFR-DISC (DISC for discriminator). Interestingly, we need not train the

network to compute the identity of the object. Object class, like \face" versus \car",

is an equally well de�ned target.

In this section we have derived two algorithms for recognizing objects with a set of

complex features. These derivations have assumed that some set of complex features is

available. In practice however, these algorithms depend on the selection of appropriate

features. In the next section we will derive an algorithm for learning a set of features

that �t images well.

4 Learning Features

The Bayesian approach to detection, or recognition, critically depends on the ef-

fectiveness of the generative process. In other words, for each of a set of training

images there should be at least one likely CFR model. If it is impossible to model the

training images of an object, then it will be di�cult to recognize novel images of that

object later. Furthermore, for any novel image there should be one object model that

unambiguously �ts it best. When the generative process is a poor one, P (I jM) will

be small for all models. If even the best models have low probability, there may not

be a reliable di�erence between the likelihood of the correct and incorrect models. As

a result recognition performance will almost certainly su�er.

In the CFR framework, the likelihood of an image is dependent on the particular

features that are available. If none of the features �t a particular training image well,

there will be no object model that will make this image likely. A di�erent, more

appropriate, set of features must be used to model this image. Good features are

those that can be used to form likely models for an entire set of training images. In

order to insure that CFR will be able to model a wide variety of object types, an

automatic technique for �nding good features is a necessity. We will present a such a

technique that is based on the principle of maximum likelihood.

We are given a sequence of images, fI(t)g (though t is simply an index into the

sequence, in the next section we will explicitly assume that t is in fact time). If

the probabilities of the these images are independent, then the maximum likelihood

estimate for fi is found by maximizing the likelihood:

` =
Y
t

P (I(t) j di(t); li(t); fi) : (19)

Since we do not know di(t) and li(t), we can either integrate them out or choose the

best:

` =
Y
t

P (I(t) j fi) =
Y
t

X
di(t);li(t)

P (I(t) j di(t); li(t); fi)P (di(t); li(t)) (20)

�
Y
t

X
di(t)

max
li(t)

P (I(t) j di(t); li(t); fi)P (di(t); li(t)) : (21)
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In many cases it is most convenient to maximize log(L) (which has the same maximum

as L):

log(`) �
X
t

X
di(t)

max
li(t)

[log(P (I(t) j di(t); li(t); fi)) + log(P (di(t); li(t)))] : (22)

Since computing the maximum of ` can be quite di�cult, we will resort to gradient

based maximization. Starting with an initial estimate for fi we compute the gradient

of ` with respect to fi, rfi`, and take a step in that direction. While this may seem

like a complex calculation it has a simple implementation:

� For each I(t) �nd the li(t) that maximizes P (I(t) j di(t); li(t); fi). This is imple-

mented much like a convolution where the point of largest response is chosen.

� Extract S(I(t); li(t)) for each time step.

� Compute the gradient of ` with respect to fi. (For notational simplicity we

have dropped the functional notation for time dependence, li(t) and di(t). These

variables are still functions of t however.):

rfi` =
X
t

P
di(t)

maxli(t)
d

df
P (I(t) j di(t); li(t); fi)P

di(t)maxli(t) P (I(t) j di(t); li(t); fi)P (di(t); li(t))
(23)

=
N(S(I; li); fi;�i)

N(S(I; li); fi;�i) +
1

Rni

2 [S(I; li)� fi] : (24)

See Equations 4 and 5 for the de�nition of the probability of an image given a

feature. The above equation can be written more simply as,

rfi` =
X
t

�(t) [S(I(t); li(t))� fi] ; (25)

which is a weighted combination of di�erences.

� Take a small step in the direction of the gradient fnewi = foldi + �rfi`.

� Repeat until fi stabilizes.

4.1 Learning Useful Features

This algorithm can be used to \learn" a set of features that model a class of images

well. There is nothing however that insures these feature will be well suited to the

problem of visual object recognition. Nothing encourages the features to be stable or

distinct. Two very similar views of an object may be exquisitely well modeled by two

very di�erent feature representations. In order to support general object recognition

CFR must use features that where similar views of an object are represented with

similar, if not identical, models.
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Optimally, though perhaps unachievable, the CFR feature representation of an ob-

ject should be constant across changes in pose { a constant representation is certainly

stable. This condition can be encouraged with the following approach. Take a variety

of di�erent views of an object, fI(t)g, and attempt to maximize the likelihood, `,

where some set of di(t)'s are always 1. This is somewhat di�erent from the previous

approach where di(t) was unknown. It has several disadvantages. It assumes that it

is possible to build an object representation that is invariant to pose { a very di�cult

if not impossible task. Furthermore, it can be di�cult to determine apriori which

features should belong to which objects.

While attempting to learn a constant CFR feature representation may be imprac-

tical, learning a stable representation is not. One useful de�nition of \stable" is that

as an object slowly changes pose, large changes in representation are rare while small

changes in representation are more common. One can formulate this in a way that is

very similar to a smoothness prior that is common in regularization theory (Poggio,

Torre and Koch, 1985).

Assuming that fI(t)g is a sequence of images of an object smoothly varying in

pose, we can express our bias toward stability in the following way4:

P (Di(t) = 1jDi(t� 1) = 1) = P (Di(t) = 1jDi(t� 1) = 1) = pc (26)

P (Di(t) = 0jDi(t� 1) = 1) = P (Di(t) = 1jDi(t� 1) = 0) = pt (27)

P (Li(t) = vjLi(t� 1) = w;Di(t� 1) = 1;Di(t) = 1) = N(v;w;�) (28)

P (Li(t) = vjLi(t� 1) = w;Di(t� 1) = 0ORDi(t) = 0) = 1=W ; (29)

The �rst two equations determine the prior probability that Di(t) will remain constant

through time (pc is the probability thatDi will remain constant and pt is the probability

that Di will transition). The third equation determines how probable changes in

location are (changes in location are distributed as a gaussian around the previous

location). Both (F�oldi�ak, 1991) and (Becker, 1993) have suggested that temporal

continuity may serve as a mechanism for learning object identity.

These di�erence sources of information about the likelihood of a feature repres-

entation can then be combined. The new \stable" form of the likelihood of image

formation is: X
t

X
di(t);di(t�1)

max
li(t);li(t�1)

�
P̂
�

(30)

where

P̂ =

0
BBB@

logP (I(t) j di(t); li(t); fi)
+ logP (di(t); li(t))

+ logP (Di(t) = di(t)jDi(t� 1) = di(t� 1))

+ logP (Li(t) = li(t)jLi(t� 1) = li(t� 1);Di(t� 1) = di(t� 1);Di(t) = di(t))

1
CCCA

(31)

4These probabilities are implicitly conditioned on the fact that I(t) and I(t + 1) contain images
of the same object in a similar pose.
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Following a very similar algorithm to the one detailed above, we can compute the

derivative of the likelihood of an image sequence. The gradient

rfi log(`) =
X
t

�(t)�d(t) �l(t) [S(I(t); li(t))� fi] (32)

is again a weighted sum of di�erences. We are currently exploring the possibility of

optimizing the trajectory of Di and Li across longer periods of time. In that case the

appropriate formulation is as a hidden markov model.

The priors we have added embody the assumption that the image sequence contains

slowly varying images of one object followed by slowly varying images of some other

object. The sequence cannot contain a hodge-podge of images collected from di�erent

objects.

5 Oriented Energy and Feature Matching

While CFR may be an e�ective technique for representing images and learning

features, its generalization performance is very dependent on the pixelated input rep-

resentations used. An e�ective representation should be insensitive to the foreseeable

variations observed in images, while retaining all of the necessary information required

for recognition. For example, the image pixels of a an object will vary rapidly as both

the illumination and pose of the object changes. In order to insure good generalization

the pixelated representations used should be insensitive to these changes.

Sensitivity to pose is directly related to the spatial smoothness of the pixelated

representation. If the pixelated images are very smooth, pixel values will change

slowly as pose is varied. A e�ective representation for recognition should enforce

pixel smoothness without removing the information that is critical for discriminat-

ing features. This seems like a conicted goal. On one hand we want to smooth,

attenuating high-frequencies and reducing information. On the other we want to pre-

serve information about higher frequencies to preserve selectivity. Oriented energy

separates the smoothness of the representation from the frequency sensitivity of the

representation. High frequency information can be preserved in a way that allows for

positional exibility.

The calculation of of oriented energy proceeds in two stages: linear and non-linear.

First the input image is convolved with two Gabor functions that are orthogonal

and oriented (this is the linear part). These �lters share the same spatial window,

orientation and frequency characteristics. They vary only in phase (see Figure 9).

Second, the sum of the squares of the outputs of these �lters are collected into an

image (the non-linear part). Since the �lters form a quadrature pair, the result can be

viewed as an energy. Gabor �lters are localized both in frequency and in space. The

convolution output gives us information both about the frequencies in the input image

and their locations. We could use the outputs of these �lters directly as an alternative

representation of the image. Since the �lters are band-pass, correlation in the outputs
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Figure 9: This �gure contains a diagrammatic depiction of the computation of oriented

energy. On the bottom is the input image, in this case a 3. Oriented energy is

computed by two banks of �lters, an odd bank shown on the right, and and on even

bank shown on the left. The image is convolved separately with each of the 12 �lters.

The resulting 12 images are then squared. The 6 resulting maps are constructed by

summing the squared outputs of the even and odd �lters that have the same orientation.

may be larger than in the original image. But, by squaring and summing the outputs

we get a measure of the energy in the band-pass frequencies that is invariant to phase.

Amaximumin this energy corresponds the the classical de�nition of an intensity edge5.

The energy image has the frequency signature of the window function, a Gaussian.

Since a Gaussian is essentially a low-pass �lter, the resulting energy image has more

spatial smoothness than the input image.

We can now return our attention to the features shown in Figures 6 and 7. Oriented

energy allows for a selective description of the face, without being overly constraining

about the location of important properties. Noses are strongly vertical pixels surroun-

ded by the strongly horizontal pixels of the eyebrows. Figure 10 shows another feature

which responds strongly to the right eye of a head. In this feature both the eye, the

eyebrow and the right hairline seem to be represented. It is important to note that

the physical structure to which this complex feature responds was not enforced by

any teacher. CFR's feature learning procedure settled on the right eye because it is

stable.

Another major aspect of image variation is illumination. The value of a pixel

can change signi�cantly with changes in lighting. We will assume that for the most

part lighting varies slowly across a scene. As a result a large portion of the variation

5In fact Freeman and Adelson used oriented energy as an input to a Canny edge detector and
found that performance was signi�cantly improved (Freeman and Adelson, 1991) (Canny, 1986).
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Figure 10: A feature which learned to respond to the right eye of a head. (Note: due

to production di�culties the white boarder between the oriented energy maps is not

printed.)

Figure 11: Ten example digits.

can be modeled locally, for the purposes of feature matching, as either an additive

or multiplicative e�ect. Fortunately, oriented energy is already invariant to additive

o�set. Multiplicative e�ects can be eliminated by normalizing the length of both

S(I; li) and fi before the comparison is made.

6 Experiments

In many ways this paper contains a collection of related insights about object

recognition: i) oriented energy is an e�ectivemeans of representing images, ii) features

can be learned that are stable and iii) images are well represented with complex

features. Let us address these issues in order.

For handwritten digits, oriented energy is a more e�ective representation than

the pixels of an image (see Figure 11 for example digits). We constructed a nearest

neighbor classi�er, which is the simplest possible feature based recognizer. It works

by classifying each novel digit to the class of the closest training digit. The training set

had 75 examples of each digit as did the completely separate test set. Using the pixels

of the images directly performance was 81%. Using an oriented energy representation,

and no other changes, performance jumped to 94%.

Complex features can be learned from the data in an unsupervised fashion. The

features shown in Figures 7 and 10 are examples of such features. The locations

estimated in Figure 5 are typical of what can be expected for features learned from

motion sequences.

We have tested CFR on a number of di�erent recognition tasks. We obtained two

databases of real objects: a set of images of �ve small objects taken under controlled

conditions from Shree Nayar of Columbia (see Figure 12) and a database of ten people

from David Beymer of the MIT AI Lab (see Figure 13). The object database contains

72 di�erent views of each object, 9 of which we used for training. The face dataset

contains 20 views of each face, 15 were used for training and 5 for testing.

We tested CFR-MEM and CFR-DISC on both these datasets. In all cases we used
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Figure 12: These are example images from the object dataset.

Figure 13: These are example faces from the face dataset.

20 features. The datasets contained many views that are fairly close together in pose

space. This allowed us to treat them as if they were a motion sequence. The features

were trained to maximize the likelihood of these sequences. The initial estimates for

the features were snap-shots randomly chosen from the training set. For the face data

we ran the classi�cation experiments both with the initial random features and with

the trained features.

Chance CFR-MEM CFR-DISC CFR-MEM CFR-DISC

Random Learned Random Learned

Features Features Features Features

Objects 20 99 99

Faces 10 70 90 90 95

These results are about as good as the results that Nayar reports on his own data,

but not as good as the results that Beymer reports on his data (Murase and Nayar,

1993) (Beymer, 1993). In general CFR is very easy to use. For the most part CFR

runs without requiring any intervention. The features are learned, the models are

created and images are recognized without supervision. The exact same code runs on

both the objects and the faces. Once trained, CFR is quite e�cient taking no more

than a couple of seconds to recognize each image.

CFR has been tested on a few totally natural images. In these cases there has

been no control of lighting, and little control of pose and camera parameters. In
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Figure 14: This preliminary result demonstrates that CFR can be used both in com-

plex cluttered scenes and for class recognition tasks. The system was trained on 15

views of 10 di�erent people. It was then asked to identify which regions of the images

were likely to have a face. These regions were labeled with a white square. Each

square corresponds to a region that is about 2 times the size of the largest head in the

image.

one experiment we tested class recognition. The goal of this experiment was to take a

novel image and label those regions of the image that may contain a face. The training

data included as positive examples the face data mentioned above, and as negative

examples a variety of random backgrounds taken from real images. The test image

was broken up into overlapping regions, each of which was labeled as either containing

a face or not. Each region was about twice as large as the largest face in the training

set. In the test image shown (see Figure 14) a white square is placed at the center of

every region in which the CFR estimate for the probability of \face" was larger than

the probability of \background". This test image was taken with a di�erent camera

and under di�erent conditions from the training set. None of the people in the test

image are in the training set.

7 Related Work

A complete review of related work in object recognition would be far beyond the

scope of this paper. Certainly the concept of a feature representation for images is

not new. The majority of the related work falls into two disjoint groups: techniques

that use simple local features such as edges, and techniques that use complex global

features. While edge based techniques have proven widely successful, we believe

that they have drawbacks. We feel that CFR, though in its infancy, may open paths

toward the recognition of more general classes of objects. In addition, with appropriate
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features, CFR should be more e�cient than a brute force matching of simple features.

Techniques that use complex global features come in a wide variety of types.

Recent examples include color histograms (Swain and Ballard, 1991), shape measures

such as those proposed in (Sclaro� and Pentland, 1995) or monolithic neural networks

such as those proposed by (Le Cun et al., 1989). These techniques are distinguished

because they are capable of using many di�erent types of information, like color and

texture. They do, however, share a sensitivity to clutter and frequently assume that

the object is segmented from the background. In fact the very concept of \global"

pre-supposes that the extent of the object is known. We hope that CFR combines the

best properties of both the global and local techniques.

Recently, (Rao and Ballard, 1995) have proposed that a type of pre-processing sim-

ilar to oriented energy be used on images before they are matched to models. Though

there are signi�cant di�erences, Rao and Ballard's representation for an object model

is much like CFR's representation of a single pixel of a single feature. Recognition

then proceeds in a manner similar to the CFR-memorize algorithm. It is our hope

that the formal model for CFR can be applicable to this work. In addition our insights

on feature learning may prove useful in their construction of object models.

8 Conclusion

This paper has presented a formal framework within which two di�erent object

recognition algorithms have been derived. This framework is constructed on the in-

sight that images are well represented as collections of complex local features. Since

this framework is dependent on the quality of the features used, we have additionally

derived an algorithm that is capable of automatically learning a set of features which

are appropriate for object recognition. This novel algorithm for learning features re-

quires no outside supervision. From random initial hypotheses ine�ective features

are discarded, and e�ective features are re�ned. Finally recognition performance is

improved by pre-processing the input images so that intensity changes at di�erent

frequencies and orientation are enhanced.
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