
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1576 4/96

Supporting dynamic languages
on the Java virtual machine

Olin Shivers
shivers@ai.mit.edu

Abstract

In this note, I propose two extensions to the Java virtual machine
(or VM) to allow dynamic languages such as Dylan, Scheme and
Smalltalk to be efficiently implemented on the VM. These extensions
do not affect the performance of pure Java programs on the machine.
The first extension allows for efficient encoding of dynamic data; the
second allows for efficient encoding of language-specific computa-
tional elements.

This report also appeared in the proceedings of the Dynamics Objects Workshop, May, 1996.
Copyright cMassachusetts Institute of Technology, 1996.

This publication can be retrieved by anonymous ftp from publications.ai.mit.edu.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for this research was provided in part by the Defense Advanced
Research Projects Agency of the Department of Defense under Rome Laboratory contract F30602-
94-C-0252





1 Introduction

Java is easily the highest-profile language development effort going today. By
riding the tidal wave of Internet growth, Java is being propagated out to systems
world-wide. This presents a tempting opportunity to language implementors: if a
programming language can be compiled for the Java VM, then it can be executed
on millions of computers. A port to the Java VM is a port to practically every im-
portant hardware platform in existence. This has, for example, drawn the attention
of DARPA, where program managers have expressed interest in having the results
of programming language research targeted to the Java VM as a means of doing
instantaneous technology transfer to the commercial sector.

However, the Java VM is not a good target machine for dynamic languages,
for reasons involving efficient representations of both data and computation in dy-
namic languages. In this note, we'll consider some of the difficulties imposed by
the current VM specification, and examine two extensions to alleviate these prob-
lems.

2 The data representation problem

Dynamic languages typically require special representations for their data values.
Consider, for example, the requirements imposed by Scheme's polymorphism and
dynamic type system. Scheme's polymorphism requires a “uniform representa-
tion” of data. For example, the car and cdr slots of a cons cell can contain any
value of any type, so all values of all types must be able to fit into the storage
allocated for the slots of the cons cell. Similarly, the formal parameter of a proce-
dure can be bound to any value of any type. This means that subroutine linkage
conventions must be able to accept any value in the expected place, whether it is a
character, integer, array, or other value.

Scheme implementations solve the one-size-fits-all problem by representing all
values with exactly one machine word:

� If the value is smaller than a single word (e.g., a character or boolean), it is
padded to fit into a single word. Some of the word's bits are used to represent
the type of the value. Let us call these values “immediate descriptors.”

� If the value is larger than a single word (e.g., a cons cell or double-precision
floating-point number), it is “boxed”—that is, the actual data for the value is
stored in memory, and the value is represented by the address of that region
of memory. The bit-encoding of the address needs to be distinguishable from
bit-encoding of immediate descriptors; beyond this simple discrimination,
more complex type information can be stored in the header of the associated
block of memory.

1



Unfortunately, the Java virtual machine has been designed as a target for a
monomorphic, statically-typed object-oriented language. To the degree that poly-
morphism is supported by the virtual machine, it must be realised by the class
hierarchy, which allows us to build objects of different run-time “types.”

For example, suppose we wish to compile Scheme code for the Java virtual
machine. The different types of Scheme values can be represented as sub-classes
of the Java Object class: we can represent small integers as Java Int objects;
define a Procedure class for Scheme procedures, with Closure and Primop sub-
classes; and so forth. The VM allows one to perform run-time tests to query if
an object is of a given sub-class, so we can perform the run-time type tests that
Scheme needs as desired.

The difficulty with this representation is that small objects, such as characters,
small integers, and booleans, must be represented as general Java objects. The
Java virtual machine uses a boxed representation to be able to uniformly describe
objects of different classes: an object is represented by a pointer to a chunk of
memory containing a description of its class and its state variables. As with Scheme
data, boxing Java object data allows us to represent all Java objects uniformly, with
exactly one machine word.

The overhead of boxing is acceptable for multi-word objects, but is quite ex-
pensive for objects that fit within a single word. Implementations of dynamic
languages typically use clever encodings to represent these values as immediate
descriptors—allowing them to express the value in a single machine word, without
requiring any extra information to be stored in memory.

Immediate descriptors and pointers to boxed values are frequently discrimi-
nated by using a single low-order bit of the descriptor. Since backing store for
boxed objects is typically allocated on word-size boundaries, on a byte-addressable
machine the low-order bit is unused by pointers, and so can be used for this low-
level discrimination.

For example, some Scheme implementations represent immediate data (such as
characters, 30-bit integers, the empty list, and booleans) as 32-bit patterns whose
least-significant bit is zero. The next bit is used to discriminate 30-bit integers
from other immediate descriptors: if it is zero, the 32-bit pattern represents a 30-
bit integer; if it is one, the next six bits are used to provide the type information for
the descriptor, leaving three bytes from the descriptor for the actual data.

Note that making the small-integer type tag be the bits “00” means that we
can add and subtract these values without having to convert to the raw machine
representation and back; multiplication requires one normalising shift before the
multiply; division requires a shift after the divide.

Scheme, Lisp, Dylan, and Smalltalk implementors have exploited these sorts
of representational devices for decades to achieve good performance from their
systems.

2



Without immediate-descriptor representations, the boxing/unboxing costs can
swamp the actual cost of computing with small values. For example, adding two
small integers would involve two memory fetches to unbox the addends, an add
instruction, and then an allocation to box the new value. String and character pro-
cessing will have similar overheads. In short, while our large, composite data struc-
tures remain fairly efficient, it becomes much more expensive to compute with the
primitive scalar data values.

2.1 Adding immediate descriptors to the Java VM

A simple extension to the Java VM will allow us to reap the benefits of immediate
descriptors. We can do this by making two, simple, backwards-compatible changes
to the VM:

� All pointers to boxed Java objects must have a low bit of one. This is not
an onerous restriction: if boxed objects are allocated in word units, on a
byte-addressable machine the low two bits of the pointer are unused.

� A new class, ImmediateDescriptor, is introduced. ImmediateDescrip-
tor is a direct sub-class of the Object class, and has exactly 31 bits of state
(we might also wish to define a LongImmediateDescriptor class with 63
bits of state). The ImmediateDescriptor class is a final class (meaning
that it cannot be sub-classed), so if a Java object is known to be of class
ImmediateDescriptor, it requires no more than 31 bits to represent its
value.

An ImmediateDescriptor object is represented as a machine word with
low bit 0. It requires no backing storage, and can reliably be distinguished
from boxed objects by its low bit.

An ImmediateDescriptor can be cast to an even 32-bit integer; such a
cast is merely a compile-time change of viewpoint, requiring no run-time
computation. Similarly, an integer can be cast to an ImmediateDescrip-

tor; the Java VM implements this cast by shifting the integer left one bit.

Implementations of dynamic languages can now use immediate descriptors to
efficiently represent small data values without requiring the allocation of backing
store.

Introducing immediate descriptors into the VM should have almost no impact
on programs that do not use them. It is worth examining, however, the task of
method lookup on Java objects for performance impact. Method lookup of stan-
dard Java objects involves indirecting through the pointer that represents the boxed
object. Such an indirection is not well-defined for descriptors that are not ad-
dresses, such as immediate descriptors. So the Java machine must perform method

3



lookup on objects of class ImmediateDescriptor using an alternate technique,
for example, by checking in a special method table known to the VM.

If an object is known to be any sub-class of the Object class that isn't the
ImmediateDescriptor class, then it is guaranteed to be boxed, and the standard
method lookup can be employed. If an object is known to be an ImmediateDe-

scriptor, then the special method-lookup technique can be used instead. How-
ever, if the object is of class Object, then it could be either boxed or immediate,
and the VM must perform a run-time test on the low bit to determine how to look up
its method. Fortunately, we can use a classic Lisp trick to optimise this case: since
the two kinds of descriptor are distinguished by their low bit, the VM can simply
assume the descriptor is a boxed object and perform the necessary memory load
to start the method lookup. If the descriptor is actually an immediate descriptor,
this will generate a memory-alignment exception on the underlying hardware. The
VM can catch this exception and vector off to the custom code for doing method
lookups on immediate descriptors. With this trick, supporting immediate descrip-
tors in the VM imposes zero cost on operations that are performed on boxed Java
objects.

3 The computational representation problem

Now let us turn to the problem of using the Java VM to represent the computations
to be performed upon our data. The problem here is to be found in the design of
the instruction set.

3.1 Encoding tension: trust vs. efficiency

The basic issue addressed by the design of the Java VM is the tension between
trust and efficiency. We wish to describe our computation with a notation (that is,
a language) that

� can be verified locally, and

� is efficiently executable.

The Java VM's instruction set fits these criteria. It fits the second criterion be-
cause it was carefully designed to efficiently encode programs expressed in Java.
Now that we are trying to extend the coverage to other programming languages,
we are having trouble meeting the efficiency criterion—the Java VM does not effi-
ciently express Scheme or Dylan programs. What to do? If we changed the VM to
be a generic RISC instruction set, we'd get our efficiency back, but we'd lose the
safety criterion. How do you trust a program expressed in assembler? That is the
tension.

4



The essence of the problem with the Java VM as a general-purpose instruction
set is that it is a CISC: a high-level, highly encoded instruction set that is carefully
tuned to the demands of the Java language. The individual building blocks—the
instructions—for expressing a computation are complex, high-level, safe units. For
example, the Java VM “hard-wires” method lookup into a single instruction.

The problem with CISC instruction sets is that they are brittle encodings. If
a computation fits the instruction set exactly, things are good: it can be encoded
compactly, and executed efficiently. But if a computation is just slightly different,
there is no simple, efficient encoding. For example, if our object-oriented language
does method lookup just a little bit differently from the Java semantics that are
implemented by the VM's instruction set, we can't use the VM's class system or
the VM's method-lookup instruction.

This is not the fault of the Java VM. It was tuned for implementing Java and
cleverly exploits this constraint to achieve dense, efficient encodings of programs
written in Java. The problem is that now the VM is being used for new purposes—
as the target of different languages.

This limitation of CISC instruction sets has always been at the heart of the
RISC philosophy: encoding programs at a lower-level means there is more room to
maneuver when the compiler is mapping high-level programs down to the machine
in ways that efficiently utilise the machine's resources. The lesson here is that this
holds as much for the Java VM in the nineties as it did for the VAX 11/780 in the
eighties.

3.2 Writeable control store and trust boundaries

Fahlman has made an interesting proposal [Fahlman96] to help “open up” the Java
VM's instruction set in order to address this problem. The idea is to allow some
of the opcode space in the VM's instruction set to be implemented by C routines
that are dynamically linked into the VM. The implementors for a given language
could therefore design and use the extra handful of instructions that efficiently
express computations written in their language. This is essentially the VM analog
of writeable control store—extensible microcode.

What we are doing here is playing with the trust boundaries to improve the effi-
ciency of the whole system. The microcode extension allows us to define new safe
building blocks using a dangerous implementation substrate. However, allowing
for “microcode” written in C and delivered as raw machine code to be dynamically
loaded into the VM requires us to decide why we are going to trust the microcode,
and how we are going to verify programs that use these instructions.

This technique exploits the fact that there aren't very many language imple-
mentations—there are many more programs than there are languages. A handful of
microcode libraries would need to be developed by the language community. Per-

5



haps we would end up with one from Harlequin for doing Dylan (with Dylan-style
method lookup in an instruction), one from Hewlett-Packard for doing Scheme
(with closures, tail-recursion, and tagged arithmetic), and so forth. The Dylan im-
plementors at CMU might either collaborate with the Harlequin team on a common
instruction-set extension, or independently develop one tuned for their compiler
technology. The source code for these few microcode libraries would be submitted
to a Java consortium, who would check them and publish digitally-signed copies
on the network. When an application is loaded by the Java VM, if the VM doesn't
have the necessary microcode loaded, it fetches it from a server and verifies the
consortium's digital signature. If the application is implemented using some ex-
perimental system which hasn't yet received the consortium's imprimatur, the user
would have the option of loading in the microcode from other routes—perhaps he
got a floppy disk from CMU with their Dylan release that he trusts.

To repeat, notice that the issue is: why should I trust your microcode, which
comes written in some dangerous, unverifiable language, such as a SPARC a.out
file or a chunk of C code? The example answers I have been giving rely on the
fact that the scale of the problem is very containable, since it per language imple-
mentation, not per program. If the user will deal with the mechanics of authoris-
ing his computer to trust Hewlett-Packard's Scheme microcode, he can now run
any Scheme application in the world that was produced with Hewlett-Packard's
Scheme-to-Java-VM compiler.

This little extra degree of freedom means that language implementors such as
a Dylan development team could design those few extra instructions that would
make Dylan run well on the VM—exploiting the greater freedoms of a dangerous
implementation substrate such as C.

Note that this technique is mostly concerned with describing programs, not
data. It doesn't help us tune data representations. For example, to address the
Scheme arithmetic boxing problem, we need the immediate-descriptor technique
described earlier.

3.3 Compiler-oriented microcode

Fahlman's proposal provides an extensible method for breaking free of the limits
imposed by the current VM's CISC, Java-focused design. However, there is a
serious problem with the proposal as it stands: it is oriented towards interpreter
implementations of the VM, not compiler (or other) implementations. This limits
efficiency. The Java byte-codes are designed to allow them to be translated “on-
the-fly” into efficient native code when they are loaded off the network. But our
new instructions are described to the Java engine with C code or some routines that
are delivered to the VM simply as a chunk of raw native machine code. How will
the VM's byte-code translator be able to translate the use of such an instruction to

6



native code?
A simple answer is just to translate each use of the instruction into a subroutine

call to the machine-code subroutine that defines it. This technique is adequate for
very large-granularity instructions, such as FFT (to choose an extreme example), or
perhaps method lookup in some complex object-oriented language. The overhead
of the subroutine call will be amortised by the time spent executing the instruc-
tion. This overhead is unacceptable, however, for “little” instructions, such as an
overflow-checking add-with-trap instruction. Unfortunately, these instructions are
also quite important for efficient implementations of dynamic languages.

This leads us to a compiler-oriented variant of Fahlman's microcode proposal.
Let us define some lower-level machine underlying the VM—such as a generic
RISC processor with operations described in a simple RTL language. For exam-
ple, we could use an RTL representation similar to the one that is employed for
the intermediate representation of the gcc compiler. Note that the RTL language
is a dangerous language, not a restricted, safe one—it is the dangerous, trusted
machinery we use to define our safe building blocks.

New instructions are defined with macros that expand from a use of the instruc-
tion to its implementation in RTL. If the instruction is simple, such as add-with-
trap, then the macro expands into a small quantity of RTL which directly performs
the operation in toto. If the instruction is complex, such as method lookup for an
object-oriented language, then the macro expands into a subroutine call to a shared
microcode routine that does the operation. The shared microcode routine is also
described with the dangerous RTL sublanguage.

Now an application that uses instruction-set extensions has multiple implemen-
tation possibilities:

� A compiling implementation that runs on a stock microprocessor can expand
instruction uses appearing in the byte-codes into RTL and then translate to
native code using standard compiler technology. (The basic Java VM in-
structions can be specially handled by the translator for fast translation.) We
trust the macro-expanders to generate safe uses of the dangerous RTL—that
is the trust requirement, and it is also the little extra degree of freedom that
gives us efficiency.

� A hardware Java engine would simply implement the RTL engine as well.

� A byte-code interpreter that does not translate to native code can either ex-
pand all the extended instructions to RTL, or macro-expand a canonical code
sequence for a particular instruction (such as add-with-trap), producing a lit-
tle subroutine for the interpreter to call on each use of that instruction.

7



We can limit our macro language as we please—it doesn't have to be Turing
equivalent.

The main point of this proposal is that if we choose to make the Java VM
extensible, we must be careful in choosing how we express these extensions. The
extensions should be described in some form that is amenable to a spectrum of
implementation strategies; a form which our computer systems can manipulate
efficaciously. C source and processor-specific machine code do not satisfy these
requirements.

This extension mechanism is clearly less well-developed than the immediate-
descriptor technique presented in the first half of this note. Much detail needs to be
developed, such as the exact design of the RTL language used for defining extended
instructions, or the associated instruction meta-information used to describe to the
byte-code verifier the static type constraints of the defined instructions.

4 Conclusion
Using the Java VM as a propagation vector for distributing dynamic languages out
to a large audience is a tempting goal. We've examined two difficulties with target-
ing dynamic languages to the current Java VM: the overhead of boxing small data
structures, and the mismatch between the VM's Java-tuned instruction set and the
requirements of dynamic languages. The former problem can be addressed with a
simple, backwards-compatible extension to the VM. It appears that this extension
should have no performance impact on current Java programs. The latter prob-
lem can be addressed with the more speculative proposal of adding an extension
mechanism to the VM that is amenable to compiler processing.

Bibliography
[ALIT] Peter Lee (editor). Topics in Advanced Language Implementation.

MIT Press, 1991.

[Dylan] Dylan: An Object-Oriented Dynamic Language. Apple Computer,
1992.

[Fahlman96] Scott E. Fahlman. Email to the java-vm@life-ai.mit.edu mail-
ing list, January 10, 1996. The java-vm mailing list is archived at
the MIT AI Lab; this message can be located at http://wilson.
ai.mit.edu/java-vm?37

[Java] Java: Programming for the Internet. Sun Microsystems, 1995. http:
//java.sun.com/

8



[Scheme] J. Rees and W. Clinger (editors). The revised3 report on the algorith-
mic language Scheme. SIGPLAN Notices 21(12):37–79, December
1986.

9


