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Abstract

Does knowledge of language consist of symbolic rules? How do children learn

and use their linguistic knowledge? To elucidate these questions, we present

a computational model that acquires phonological knowledge from a corpus of

common English nouns and verbs. In our model the phonological knowledge is

encapsulated as boolean constraints operating on classical linguistic representa-

tions of speech sounds in term of distinctive features. The learning algorithm

compiles a corpus of words into increasingly sophisticated constraints. The algo-

rithm is incremental, greedy, and fast. It yields one-shot learning of phonological

constraints from a few examples. Our system exhibits behavior similar to that

of young children learning phonological knowledge. As a bonus the constraints

can be interpreted as classical linguistic rules. The computational model can be

implemented by a surprisingly simple hardware mechanism. Our mechanism also

sheds light on a fundamental AI question: How are signals related to symbols?
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1 Introduction

Almost every child learns how to speak and to understand his native language. It must

be easy. However, we do not have e�ective theories that explain the phenomena. In

this paper we attempt to illuminate a small dark corner of the problem: the acquisition

of phonological knowledge.

Children learn the vocabulary of their native language with amazing speed, once

they get to the right stage of development. Children typically learn many new words,

and their correct usage, each day. They do not need to hear the same words repeated

over and over again. They do not need to be corrected very often.

The mystery deepens when we notice that children learn many new words without

ever hearing them. In a classic experiment by Berko [1], a number of English-speaking

children were shown representations of a fanciful being called a \wug." When asked

to say something about a situation with more than one of these beings, the children

correctly pluralized the novel word to make \wugz" (not \wugs"). In another exper-

iment [4], Ervin showed that young children who �rst use an irregular verb properly

(such as \came") would later err on the same verb (such as \comed") before they use

the verb correctly again. In this way children reliably exhibit behavior that indicates

that they have made generalizations that linguists describe with rules.

We will present a simple mechanism that makes and uses similar generalizations.

The generalizations are derived from a small corpus of common English words. The

behavior of our mechanism exhibits many aspects of the behavior of children. It needs

only a few, carelessly chosen examples. It requires no repetition. In intermediate

stages of development it makes the same kinds of errors that children make. And,

when we pop o� the cover and look inside, we �nd that the internal representations

constructed by this mechanism can be read out as the rules that are found in classical

books of linguistics.

For example, after seeing a dozen common nouns and their plurals, our system

learns three pluralization rules: (1) Nouns ending in one of the \hissing" sounds ([s],

[z], [sh], [ch], [zh] and [j]) are pluralized by adding an additional syllable [I.z] to the

root word, (2) Nouns ending in a voiced phoneme (other than the hissing sounds)

are pluralized by adding a [z] sound, and (3) Nouns ending in a voiceless consonant

(other than the hissing sounds) are pluralized by adding a [s] sound.

We do not attack the problem of how an acoustic waveform is processed. We

start with an abstraction from linguistics (as developed by Roman Jakobson, Nikolai

Trubetzkoy, Morris Halle, and Noam Chomsky) [2]: Speech sounds (phonemes) are

not atomic but are encoded as combinations of more primitive structures, called dis-

tinctive features, that control the con�guration of the major speech organs (such as
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tongue, lips, and vocal cords). The representation of linguistic sounds as sequences

of phonemes that are made up of distinctive features, and the arguments and experi-

ments establishing the psycholinguistic reality of such a representation, is one of the

great achievements of linguistics.

In our theory the fundamental representation of all of the information about a

linguistic event is in the form of bit vectors. Part of the information is the sequence

of phonemes, which are themselves represented as bit vectors of the values of the

distinctive features. Part of the information is grammatical, such as whether or not

we have a noun, and if it is a noun whether or not it is plural. There is also a set

of bits intended to identify the meaning. These parts do not have a sharp boundary:

The grammatical status of a word surely overlaps with its meaning. In any linguistic

event some of the bits in the bit vectors may be known, and others may be unknown.

Our mechanism consists of a performance model and an acquisition procedure.

The job of the performance model is to �ll in the details of a linguistic event, and

enforce phonological constraints. The constraints can run in any direction; there are

no distinguished input or output bits. The implementation substrate is simple: a few

registers and bit vectors encoding both data and control operations (like shift and

lock). The registers can be written by an external linguistic event or by constraints.

The registers are continuously monitored for changes. Special correlations among

registers are recorded and accumulated for later summarization. Conicts in the

assignment of bit values might trigger additional constraints that attempt to resolve

the conicts. When a conict cannot be resolved, the acquisition procedure kicks in

and tries to modify existing constraints or construct new ones.

The goal of the acquisition procedure is to compile a corpus of English words into a

series of increasingly sophisticated phonological constraints. Our theory of acquisition

di�ers signi�cantly from those based on statistics (such as [12, 6]). The acquisition

process is rather simple. It is incremental, greedy, and fast. It has almost no pa-

rameters to adjust. It makes falsi�able predictions about the learning of phonological

constraints: (1) That learning requires very few examples, (2) That the same target

constraints are learned independent of the presentation order of the corpus, (3) That

learning is insensitive to token frequency, and (4) That learning is more e�ective as

more constraints are acquired.

This paper is structured as follows. We �rst present a simple hardware mech-

anism that is su�cient to implement our performance model. After a brief section

on linguistic background, we illustrate the operations of the performance model. We

then explain the acquisition procedure, and present experimental results on learning

pluralization and past tense inection rules. Finally, we discuss the implications of

this work in the context of understanding the general problem of signal-to-symbol

transformation.
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2 Hardware Vision

Our theory is expressed in terms of a mechanism that implements the performance

model. By contrast to unrestricted computer programs, mechanisms are limited in the

kinds of parts that we may postulate and in the ways that they may be interconnected.

By restricting ourselves to a simple mechanism we construct a stronger and more

robust theory.

Our mechanism uses a few registers. We imagine that the sequence of phonemes

is arranged in the phoneme register. There are also registers that hold bits describing

grammatical features and other components of meaning.

The phoneme register is a shift register: the slots in the phoneme register re-

ect the temporal sequence of the phonemes.1 See Figure 1. The bus that brings

phonemes in when they are heard and takes phonemes out to the muscle controllers

when speaking terminates in the \current phoneme" slot of the phoneme register.

The register shifts when a new phoneme is heard or is spoken. There are slots in the

register for both future and past phonemes. Also, certain segments of the register

may shift while others remain �xed. This is useful when the linguistic data require

the expansion of time by duplication of a phoneme or the compression of time by

deletion of a phoneme. For example, a phonological constraint might specify that a

long vowel is to be shortened in speci�c phonological contexts.

The distinctive feature bits of the phonemes in the shift register are constrained by

boolean relations. Propagation of values through these constraints is the mechanism

by which unknown details are �lled in, when determined by other known information.

Note that there may be constraints among distinctive feature bits in phonemes in

di�erent time slots. These constraints may involve grammar and meaning bits, and

they also involve control bits, such as those that enable segments of the phoneme

register to shift.

For example, if \wugz" has just been heard, the phoneme representation of the

sounds is assumed to be in time slots �3 through 0. If there is an expectation

of hearing a noun at this time, the noun bit in the grammar register will be on.

This data|the terminal \z" and the noun bit turned on|will propagate through

some boolean constraints implementing the phonological generalizations (details are

in section 4) to force the plural bit to turn on, if it is unknown. The same constraints

1Our shift register model of phoneme is only a crude approximation to what physically takes

place in speech. We make two idealizations. First, the distinctive features are discretized to be either

0 or 1. As we shall see in section 3, the distinctive features are really analog signals controlling

the articulatory gestures of speech organs. Second, the distinctive features are assumed to change

synchronously. In hearing or speaking, the analog signals overlap in time and their durations need

not be aligned perfectly.
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Figure 1: The hardware mechanism consists of three data registers. In the Phoneme

Shift Register, each vertical stripe represents a time slot. There are slots for future

phonemes (positive time labels) as well as past phonemes (negative time labels). Each

horizontal stripe represents a distinctive feature bit. For example, if the phoneme in

time slot �3 is known to be a voiced non-nasal then in the column labeled �3 the

voice entry would be 1 and the nasal entry would be 0. If the phoneme is known to

be strident, the strident entry would be 1. If a feature is unknown, as in the coronal

bit, we leave a question mark. The Grammar Register contains bits describing the

grammatical status of the phoneme sequence. The Meaning Register contains meaning

bits.

may be used in a di�erent direction. If \wug" is heard, and we expected a plural

noun, then the same constraints will force the unknown terminal phoneme to be \z."

In our theory, the mechanism implementing phonological knowledge is boolean

constraints among the various bits in the phoneme shift register and the associated

grammar, meaning, and control bits. Acquisition of such knowledge is accomplished

by creating and incrementally modifying these constraints. These modi�cations are

made as part of a process that summarizes correlations discovered in the corpus.

3 Linguistic Background: Phonemes and distinctive fea-

tures

Linguists idealize speech by breaking speech sounds into discrete time segments called

phonemes. This decomposition allows the compact expression of certain regularities
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that are observed in language|regularities that would not be apparent if words were

considered atomic. Similarly, the phonemes themselves are thought to be combi-

nations of distinctive features.2 Each distinctive feature is a binary-valued variable.

Distinctive features represent the gestures that the speech organs { such as the tongue,

lips, glottis { execute during the speaking process. By altering the size and shape

of the air cavities inside the vocal tract, these gestures produce speci�c acoustic ef-

fects: they might amplify or attenuate certain frequencies of the speech sound. The

distinctive features not only provide a means for classifying speech sounds, but also

allow linguists to build elegant phonological theories that describe what speakers must

know about their language.

For example, pay attention to how you pronounce the phoneme [z] as in \dogs"

and the phoneme [s] as in \cats." (It is customary to use the square brackets to

enclose the phonetic symbols that linguists use to notate the phonemes.) If you put

a �nger in each ear, you will hear a buzz and feel the vibrations of the vocal cords

when you say [z]. Thus [z] is said to have the voicing feature. You can hear only a

hissing sound and feel no vibrations when you say [s]. So [s] lacks voicing. The voicing

feature distinguishes between sound pairs such as [d] and [t], [b] and [p], [v] and [f].

The �rst member of each pair is said to be [+voice], while its partner is [�voice].

Speech sounds that share common distinctive features are often grouped into nat-

ural classes. For example, when you produce [f] (\o�"), [v] (\give"), [ch] (\watch"),

[j] (\judge"), [sh] (\wish"), and [zh] (\garage"), you will hear a hissing or buzzing

sound much like that of [s] and [z]. When you produce these sounds, a stream of air

is forced through a small opening, causing air to vibrate violently and creating an

acoustic turbulence. These eight sounds are said to be [+strident].

The most widely used distinctive feature system is the one described in The Sound

Pattern of English [2]. This feature system uses 14 distinctive features. Table 1 below

shows the distinctive features for a subset of English vowels and consonants. Each

phoneme is a particular combination of the 14 features.

Languages arrive at di�erent inventories of phonemes by using some subset of

these 214 possibilities. Actually not all of the 214 combinations are possible. For

example, no phoneme can be both [+high] and [+low] because the tongue position

cannot be high and low at the same time. However, a phoneme can be both [-high]

and [-low], meaning that the tongue position is in the middle.

It might seem that languages are tremendously wasteful in using the distinctive

features. No human language uses many more than 100 phonemes. English uses 40.

2In recent phonological theories, the distinctive features of a speech sound are not simply an

unordered bundle; they are organized in a hierarchical tree structure. The hierarchical grouping of

features is used to explain observed restrictions on feature combinations in phonological processes.

See [5] for a discussion of some recent feature models.
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feature [i] [ae] [k] [t] [s] [z]

__________________________________________

syllabic 1 1 0 0 0 0

consonantal 0 0 1 1 1 1

sonorant 1 1 0 0 0 0

high 1 0 1 0 0 0

back 0 0 1 0 0 0

low 0 1 0 0 0 0

round 0 0 0 0 0 0

tense 1 0 1 1 1 0

anterior 0 0 0 1 1 1

coronal 0 0 0 1 1 1

voice 1 1 0 0 0 1

continuant 1 1 0 0 1 1

nasal 0 0 0 0 0 0

strident 0 0 0 0 1 1

Table 1: Distinctive features for some English vowels and consonants. Phonetic sym-

bols are enclosed in square brackets. For example, [i] is the symbol for the high

[+high], front [�back], tense [+tense] vowel in \beat," and [ae] is the low [+low],

front [�back], lax [�tense] vowel in \cat."

However, our learning theory will show that this sparseness of the representation is

essential for one-shot learning of phonological knowledge.

Given a sequence of phonemes, we can read o� its distinctive feature representation

from the table. For example, the word \cats" [k ae t s] can be arranged in a matrix

with time on the horizontal axis and distinctive feature on the vertical. See Figure 2.

4 Performance model

The target of learning is a performance model consisting of three data registers and

a continuously running constraint propagator.

The phoneme register contains bits detailing the phonemes that describe the lin-

guistic sound pattern of a word. The grammar register holds the grammatical status

of the word, and the meaning register contains meaning features. The bits in regis-

ters have four possible states f0, 1, ?, *g. If the value of a bit is currently unknown

it contains an unknown symbol (?). Such a bit can be set to a known value by a

constraint that infers the value from other known bits. If a bit is asserted to be both

1 and 0 because of a disagreement among the constraints it participates in, it is in

6



[k] [ae] [t] [s] \cats"

syllabic 0 1 0 0

consonantal 1 0 1 1

sonorant 0 1 0 0

high 1 0 0 0

back 1 0 0 0

low 0 1 0 0

round 0 0 0 0

tense 1 0 1 1

anterior 0 0 1 1

coronal 0 0 1 1

voice 0 1 0 0

continuant 0 1 0 1

nasal 0 0 0 0

strident 0 0 0 1

TIME � � � -3 -2 -1 0 1 � � �

Figure 2: Phonemes are represented by vectors of distinctive features. Each vector

is indexed by a time instant. The column labeled by time = 0 is the most recently

heard phoneme. Phoneme with negative time indices are already heard.

the conict state, which we denote by (*).

Boolean constraints continuously monitor the data registers. A constraint is ex-

cited when a su�cient number of its bits match those in the registers. The strength

of excitation of a constraint is measured by the number of conicting bits: the fewer

the conicting bits, the stronger the excitation. The most excited constraint takes

control over the data registers, and enforces its constraint on slots that it is connected

to by setting bits in slots containing \?" to de�nite values. The assignment of de�nite

values to these slots may trigger other constraints, and thus the propagation may �ll

in many unknown values.

Conicts arise when a constraint �nds that its constraint is inconsistent with the

data in the slots that it is connected to. The inconsistency may be a direct conict

with externally imposed data, or it may arise because two constraints try to require

a slot to have di�erent boolean values. Such conicts lead to learning opportunities.

Constraints are modi�ed by either generalizing (i.e., a constraint disconnects from

certain bits) or specializing (i.e., a constraint connects to additional bits), avoiding

the conict situation. We will see how this works in section 5.
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4.1 Classi�ers: How constraints are represented and activated

Boolean constraints are multi-directional: There are no distinguished input and out-

put bits. Our system represents constraints and data uniformly as bit vectors.

We refer to these bit vectors as classi�ers. A classi�er is a �nite string over the

three-symbol alphabet 0; 1;�, where \�" is the don't care symbol. A \1" (or \0")

typically represents the presence (or absence) of a characteristic. A \�" means don't

care, i.e., the bit's actual value does not matter.

It would be unintelligible to describe a classi�er by its actual bit vector. Instead we

will use symbolic notations to abbreviate the various components of a classi�er. For

example, the notation [ae.p.l] refers to the 42 bits (3�14) representing the distinctive

features of the phonemes enclosed in the square brackets. The symbol \dc" for a

phoneme abbreviates a string of 14 don't-care bits. The notation [+noun] indicates

that the noun bit in the classi�er is on.

There are two types of classi�ers: rote-classi�er and rule-classi�er. The rote-

classi�er represents special constraints among the phoneme, grammar, and meaning

registers. For example, a rote-classi�er for \apple" enforces a certain constraint among

the phoneme slots containing [ae.p.l], the [+noun,-verb,-plural...] features in the

grammar register, and the bits in the meaning register. A rote-classi�er for \apple"

might have the following form3:

rote-classifier-apple

Phonemes: ae.p.l

Grammar: [+noun -verb -plural ...]

Meaning: [+red +round +edible +fruit ... ]

The rule-classi�er represents a more general constraint between the phoneme and

the grammar registers. For example, suppose we already have the rote-classi�ers for

the words \apple" and \apples." As \apples" is heard, a temporal pattern is observed

when the two rote-classi�ers attempt to control the data registers (more on this in

section 4.3). This pattern of change is observed and recorded. When several examples

of such temporal change have been accumulated, the common pattern of change is

abstracted in a rule-classi�er which says roughly that to resolve the conict in the

plural bit, the phoneme register is shifted left by one phoneme unit and the empty

slot is �lled with unknowns (?). These unknowns are then �lled by the [z] phoneme.

This pattern of behavior corresponds to the English pluralization rule that nouns

ending in a voiced phoneme are pluralized by appending the [z] phoneme. In classi�er

notation, this voiced-plural rule might be described as follows:

3We do not claim to have an adequate theory of meaning. The crude representation of meaning in

terms of discrete features is su�cient for our purpose. Our performance model and learning theory

do not depend on the details of meaning representation.
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rule-classifier-voiced-plural

Phonemes: dc.dc.dc.[+voice].z

Source-Grammar: [+noun -plural]

Target-Grammar: [+noun +plural]

Control: [shift

[direction : left

start loc : 0

unit : 1

fill symbol: ?]]

[unlock

phoneme slot 0: no

phoneme slot -1: no

phoneme slot -2: no]

The �rst component of a rule-classi�er is the phoneme slots. We restrict the

number of slots to a small number because we expect the constraints on the phoneme

slots to be local in space and time. The voiced-plural rule-classi�er has 5 phoneme

slots. The �rst three slots are all don't-cares, indicating that the classi�er is not

connected to the slots corresponding to time = �4;�3; and �2 in the phoneme

register. The time �1 slot has the voicing bit on. The time 0 (most recent) slot

contains the distinctive features for the [z] phoneme. The source-grammar describes

the grammatical features of the rote-classi�er (such as \apple") before the conict in

the plural bit is observed. The target-grammar describes the grammatical features of

the rote-classi�er (such as \apples") after the conict.

The control part of the rule-classi�er has two components. First, it speci�es a

shifting action on the phoneme register. The content of the phoneme register is

shifted left starting at location 0 by one unit with \?" as the �ll symbol. Second, the

unlock mask speci�es whether the three most recent phoneme slots can be unlocked

and written by the classi�er. In any phoneme slots the unknowns can always be �lled.

However, to overwrite the bits that have de�nite values, a classi�er must have the

unlock privilege on the slots to which the bits belong. For example, the voiced-plural

rule-classi�er cannot overwrite any of the three phoneme slots because it does not

have unlock privileges on these slots. Other rule-classi�ers (such as those describing

irregular past tense formation) can have unlock privileges to overwrite some of these

phoneme slots.

Rule-classi�ers are intended to capture phonological constraints. Most phonologi-

cal constraints deal with predictable regularities of the sound structure that are blind

to semantic information. That the plural of \cat" is pronounced as cat[s] but not

*cat[z] has nothing to do with the fact a cat is a domesticated carnivorous mammal.

It is convenient to assume that whatever semantic information that might be relevant
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to the applicability of a phonological constraint is already abstracted into the gram-

matical information. This assumption simpli�es the description of a rule-classi�er: a

rule-classi�er is not connected to the meaning register and therefore its description

does not contain any meaning component.

A rule-classi�er can run in both the forward direction (from source to target) and

the backward direction (from target to source). For example, given the phoneme

sequence [ae.p.l] of the word \apple," and the [+noun, +plural] grammatical fea-

tures, the voiced-plural rule-classi�er can cause the content of the phoneme register

to be shifted left. On the other hand, given the phoneme sequence [ae.p.l.z] and the

[+noun,�plural] features, the same rule-classi�er can cause the phoneme register to

be shifted right to get rid of the terminal [z] phoneme.

The core of the performance model is a collection of classi�ers. These classi�ers

continuously monitor the data registers. When a linguistic event appears, the classi-

�ers will be excited to various degrees. We de�ne the state vector of the performance

machine to be the bit vector formed by concatenating the contents of the phoneme,

grammar, and meaning registers. The excitation of a rote-classi�er is de�ned as the

di�erence between the number of bits of the rote-classi�er and the Hamming distance

between the rote-classi�er and the machine state vector.

A rule-classi�er is applicable if either its source-grammar bit or its target-grammar

bits matches those in the grammar register. The excitation strength of a rule-classi�er

depends on whether the shift action is executed or not. We de�ne the data vector

of a rule-classi�er to be the concatenation of its phoneme and grammar bits. The

data vector can be unshifted or shifted. The unshifted data vector of a rule-classi�er

is simply the concatenation of the phoneme bits of the rule-classi�er and the target-

grammar bits. The shifted data vector of a rule-classi�er is de�ned for two cases.

First, if the rule-classi�er runs in the forward direction4 (e.g., pluralizing a singular

noun), the shifted-data-vector is the concatenation of the right-shifted phoneme bits

of the classi�er and the target-grammar bits. Second, if the rule-classi�er runs in the

backward direction5 (e.g., giving the singular form of a plural), the shifted-data-vector

is the concatenation of the phoneme bits of the classi�er and the source-grammar bits.

The excitation of a rule-classi�er is de�ned as:

excitation (rule-classi�er) = minimum ( Hamming-distance (shifted-data-vector,machine-state-vector),

Hamming-distance (unshifted-data-vector,machine-state-vector))

The constraint propagation process consists of three steps:

4We recognize this situation if the target-grammar bits of the rule-classi�er match those in the

grammar register.
5We recognize this situation if the source-grammar bits of the rule-classi�er match those in the

grammar register.
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1. Rank the classi�ers according to their excitation strength.

2. Among those classi�ers whose excitation exceeds a certain threshold, activate

the ones that have the largest number of matching de�nite bits (i.e., bits that

are either 1 or 0). (If none of the classi�er has a strong excitation, then no

classi�er will be activated.)

3. The activated classi�ers �ll in the contents of the data registers according to

the constraints they enforce.

The propagation process continues until there are no further changes in the data

registers.

4.2 Constraint Propagation: Meaning to Sound

To illustrate how constraint propagation is used to �ll in details we examine a simple

situation. Assume that at some time the meaning identi�er describing a red, round,

edible fruit appears in the meaning register. These bits might have been set by a

vision module that has recognized an apple or a picture of an apple, or perhaps by an

olfactory module that has recognized the smell of an apple. We also assume that for

some reason the plural bit of the grammar register is set, perhaps because the picture

shows two apples.

Suppose also that at this point the performance model has two classi�ers: a rote-

classi�er for the apple constraint, which captures the correlation between the phoneme

sequence [ae.p.l], the [+red +round +edible +fruit] meaning, and the [+noun �verb

�plural ...] grammar, and a rule-classi�er for the voiced-plural rule, which captures

the phonological rule that the plural of a noun ending in a voiced phoneme is formed

by appending a [z] phoneme to the noun.

In general there may be many other rote-classi�ers that capture correlations

among the data registers for other words, and many other rule-classi�ers that capture

other phonological rules. These classi�ers constitute the representation of the main

body of the lexicon.

The situation at the initial time is depicted in Figure 3. The initial situation trig-

gers the following sequence of events. The content of the meaning register is su�cient

to activate the constraint described by the classi�er for apple. This constraint then

attempts to set as many unknown bits as it can. It asserts the bits describing the

phoneme sequence into the phoneme register. This encounters no resistance because

all of those bits were initially unknown. The apple constraint also sets some grammar

bits. The noun bit is turned on and the verb bit is turned o�. However, a conict

arises over the setting of the plural bit. The picture of two apples forced the plural
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bit on, but the apple constraint is trying to assert a singular. Figure 4 shows the

contents of the registers at this point.

?noun ?verb +plural ...

+red +round +edible +fruit ...

?????

register
grammar

register
meaning

register
phoneme

C

D

classifier
voiced-plural

apple classifier

Figure 3: Meaning to Sound snapshot 1. Initial situation: An event �lls the meaning

register with features describing an apple, and the grammar register with the [+plural]

feature. The performance model has two classi�ers: a rote-classi�er representing the

apple constraint and a rule-classi�er representing the voiced-plural rule. The job of

the performance model is to �ll the slots of the phoneme register with the sound

sequence corresponding to the plural of \apple."

conflict in plural bit

firesfires

+noun -verb *plural ...lpae

+red +round +edible +fruit ...

??

register
grammar

register
meaning

register
phoneme

C

D

classifier
voiced-plural

apple classifier

Figure 4: Meaning to Sound snapshot 2. The apple classi�er is excited by the content

of the meaning register. It �res and sets the phoneme register with the sound sequence

[ae.p.l], and additional bits in the grammar register (e.g. [-verb]).

All the phoneme bits from the apple constraint are now in the phoneme register.

The fact that there is a noun under consideration (+noun in the grammar register),
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that there is a conict over the plural bit, and that the terminal [l] phoneme is

[+voice] is a su�cient trigger to activate the constraint represented by the voiced-

plural classi�er. It sends a shift left signal to the phoneme register, moving the

phonemes ae.p.l to less recent positions, and locking the determined phonemes so

that they cannot change. The most recent phoneme slot is �lled with unknowns,

which are certainly allowed to change. The apple constraint now becomes less excited

because the values it would like in the phoneme register are all in conict with the

ones that are there. The voiced-plural classi�er now �lls the unknowns in the current

phoneme slot with the phoneme [z]. See Figure 5.

deactivated

mismatch

z

left shift

firesfires

conflict in plural bit

+noun -verb *plural ...lpae

+red +round +edible +fruit ...

?

register
grammar

register
meaning

register
phoneme

C

D

classifier
voiced-plural

apple classifier

Figure 5: Meaning to Sound snapshot 3. The [+noun,*plural] features in the grammar

register are su�cient to activate the voiced-plural rule-classi�er. The rule-classi�er

sends a shift left signal to the phoneme register, and �lls the unknown terminal slot

with the [z] phoneme. The apple classi�er is no longer excited because of the mismatch

in the phoneme register. So it gives up control over the data registers.

As the apple classi�er is deactivated, it drops its attempt to set the plural bit to

0. The noun, the verb, and the plural bits retain their last values. The plural bit

is still in conict, but it will put up no resistance if another constraint tries to turn

it on. In particular, the excited voiced-plural rule-classi�er restores the plural bit to

1. At this point the system reaches a quiescent state (Figure 6) with a consistent

representation of the plural noun pronounced [ae.p.l.z] in the phoneme register.

4.3 Constraint Propagation: Sound to Meaning

Classi�ers may also be run in other directions. Suppose the performance model has

the same two classi�ers as before. If the word \apples" is heard, the sequence of

phonemes is shifted into the phoneme register. The situation looks like Figure 7.
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deactivated

conflict resolved

+noun -verb +pluralz

left shift

lpae

+red +round +edible +fruit ...

?

register
grammar

register
meaning

register
phoneme

C
classifier

voiced-plural

apple classifierD

Figure 6: Meaning to Sound snapshot 4. No longer excited, the apple classi�er drops

its attempt to set the data registers. The registers retain their past values. In par-

ticular, the plural bit in the grammar register is restored to 1 by the voiced-plural

classi�er. A quiescent state is reached.

?noun ?verb ?plural

?   ?    ?    ?   ...

lpae??

register
grammar

register
meaning

register
phoneme

C

D

classifier
voiced-plural

apple classifier

Figure 7: Sound to Meaning snapshot 1. Initial situation: The word \apples" is heard.

The sound sequence [ae.p.l.z] is being shifted into the phoneme register. The �gure

shows the situation when the �rst three phonemes have been heard.

The content of the phoneme register is now su�cient to activate the apple classi-

�er, which sets the meaning and grammar registers (Figure 8).

As the terminal [z] phoneme is shifted into the phoneme register, the apple clas-

si�er is deactivated (due to the mismatched phonemes), while the voiced-plural con-

straint is strongly excited by the present situation. The deactivated apple classi�er
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fires

+noun -verb -plural ...

fires

lpae

+red +round +edible +fruit ...

??

register
grammar

register
meaning

register
phoneme

C

D

classifier
voiced-plural

apple classifier

Figure 8: Sound to Meaning snapshot 2. The apple classi�er is excited by the current

content of the phoneme register. It sets the meaning and the grammar registers.

withdraws its hold on the meaning and grammar registers. The excited voiced-plural

rule-classi�er sets the grammar register and encounters no resistance because the

deactivated apple classi�er has withdrawn its control over the data registers. In par-

ticular, the plural bit is turned on. A consistent and quiescent state is reached. Our

mechanism has �lled in the meaning and grammar details for the sound sequence

[ae.p.l.z] (Figure 9).

fires

deactivated

+noun -verb +pluralzlpae

+red +round +edible +fruit ...

?

register
grammar

register
meaning

register
phoneme

C
classifier

voiced-plural

apple classifierD

Figure 9: Sound to Meaning snapshot 3. As the terminal [z] phoneme is shifted

into the phoneme register, the apple classi�er is no longer excited and withdraws its

control over the data registers. The voiced-plural classi�er is activated, turning the

plural bit on. A quiescent state is reached.
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5 Learning Classi�ers

5.1 Origin of Constraints

We could imagine that in a full system there are many classi�ers. Some of them

(rote-classi�ers) embody the special correlations for each word that the system knows.

Others (rule-classi�ers) are generalizations that allow phonological deductions to be

made to �ll in properties of words that have not been previously encountered. How

are the classi�ers constructed?

The data registers are continuously monitored for correlations. Correlations are

compiled into rote-classi�ers that enforce particular bit patterns among the contents

of the phoneme register, the grammar register, and the meaning register. For example,

when the phoneme sequence [ae.p.l] is observed to be correlated with the meaning

[+red +round +edible +fruit] and grammar [+noun �plural], the apple rote-classi�er

is constructed to enforce these particular bit patterns.

Once constructed, these rote-classi�ers become the primitive objects from which

higher order correlations are made. For example, the voiced-plural rule-classi�er is

constructed from a small number of correlations between rote-classi�ers represent-

ing nouns and their plurals. Thus the rote-classi�ers that summarize correlations

among the data registers encode �rst-order correlations. Similarly, the more gen-

eral constraints that summarize classes of �rst-order correlations encode second-order

correlations.

To see how such a generalization might be constructed, consider a speci�c scenario.

Suppose that we already have special constraints for \apple," \apples," \dog," and

\dogs," and a few others. Comparing the bit patterns enforced by \apple" and

\apples," the learner notices that most of the meaning and grammar bits remain

constant. The notable exception is the change of the plural bit from -plural to +plural.

This change is correlated with the shifting of the phoneme register one unit to the

left and the �lling of the newly created unknowns by the [z] phoneme bits.

The same transition occurs for \dog" and \dogs," and \gun" and \guns." In

each case, the learner observes that (1) the voicing bit of the penultimate phoneme

of the plural is on, as well as a number of probably irrelevant bits, and (2) the plural

is formed by appending a terminal [z] phoneme to the singular. This observation

is compiled and stored into a rule-classi�er. The initial rule-classi�er could be too

speci�c or too general, but it is then incrementally re�ned by consideration of further

examples.

Generalizations of temporal correlations, such as the voiced-plural classi�er just

mentioned, is rather simple. But essentially the same mechanism can produce gener-
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alizations of spatial-temporal correlations. Shift registers are a means of transforming

temporal patterns into spatial ones, and the correlations are actually observed in the

spatial representation. Thus, correlations among the data bits may be independent

of the temporal behavior. For example, the past tense of \choose" [ch.u.z] is \chose"

[ch.o.z] and the past tense of \break" [b.r.e.k] is \broke" [b.r.o.k]. For irregular verbs

of this sort, a front vowel in the present tense becomes a back vowel in the past, or

a high vowel in the present becomes a low vowel in the past. This change of one or

two bits in the distinctive feature representation of the vowel can be captured in a

past-tense constraint for the common irregular cases.

Sometimes a constraint needs to be able to warp time, deleting or inserting a

phoneme by means of a shift. For example, given a few examples of irregular verb

stem and its past tense form (such as \bite" [b.aI.t] and \bit" [b.I.t], \hide" [h.aI.d]

and \hid" [h.I.d]), the learner observes that the past tense grammar bit is correlated

with the change of a diphthong [aI]6 to a short vowel [I]. This kind of generalization

can be captured by the same mechanism.

5.2 Acquisition Procedure

We decompose the learning problem into two subproblems: (1) the detection and

grouping of correlations, and (2) the summarization of accumulated correlations.

Summarization becomes much easier when it only needs to account for relevant classes

of correlations instead of all possible correlations which might include exceptions. The

owchart in Figure 10 depicts the top-level actions of the learning procedure.

Initially the learner has no classi�ers. A sequence of words is presented. If the

learner can �ll in details for a new word without error, then it proceeds to the next

word. On the other hand, the learner might fail either because there are not any

applicable classi�ers or because the applicable classi�ers cause conicts during the

constraint propagation. In the �rst failure situation, either new classi�ers are created

from accumulated examples, or existing classi�ers are generalized to cover the new

word. In the second failure situation, existing classi�ers are incrementally re�ned.

In more detail, the learning procedure cycles through the following steps:

Input a word

1. If no classi�er is excited, create a rote-classi�er for the word, add it to the

classi�er pool, and go to step 3. Otherwise, the excited classi�ers attempt to

�ll in details.

2. If the excited classi�ers successfully �ll in details without running into conicts,

6In our system, a diphthong is represented as a sequence of two phonemes. For example [aI] is

represented as [a.I].
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control flow

data flow

input word

correlations
summarize

correlations
detect/group

constraints
propagate

Pool
Classifier

How the system works

Figure 10: Top-level owchart for learning classi�ers

record in a new rote-classi�er any new �rst-order correlation observed after the

constraint propagation. Otherwise, create a new rote-classi�er to record the

conicting correlation, and mark this classi�er as a non-word (near miss).

3. (a) Find second-order correlations for the newly created rote-classi�er by com-

paring it with rote-classi�ers that have the same meaning bits.

(b) Classify the second-order correlations according to the grammar bits, the

shift and unlock actions, and similarity of the rote-classi�ers.

4. For each rule-classi�er applicable to a second-order correlation7, do the following:8

(a) If the correlation is consistent with the rule-classi�er, then record the cor-

relation as an example covered by the rule-classi�er.

(b) If the correlation is a false negative (i.e., the rule-classi�er is applicable

but the phoneme bits do not match), then incrementally generalize the

rule-classi�er to cover the correlation. Add the re�ned rule-classi�er to the

classi�er pool.

(c) If the correlation is a false positive (i.e., the rule-classi�er generates a near

miss), then incrementally specialize the rule-classi�er to avoid covering the

correlation. Add the re�ned rule-classi�er to the classi�er pool.

5. If the correlation is not covered by any rule-classi�er, accumulate it into a

dataset. If the number of correlations of the same type (i.e. same grammar

7A rule-classi�er is applicable to a second-order correlation if its grammar and control components

match those of the correlation.
8Unlike the version space algorithm [8], our algorithm does not maintain all the most general and

most speci�c generalizations consistent with the current set of examples. Our algorithm can also

handle disjunctive generalizations and noise.
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bits, and same shift and unlock actions) exceeds a threshold, invoke the sum-

marization procedure to extract the regularities of these correlations. Otherwise,

input the next word and go to step 1.

The details of steps 4 and 5 are expanded in the owchart in Figure 11.

input correlation

c-classifiers?

Is the correlation
consistent with
the classifiers?

Is the correlation
a false positive?

Is the correlation
a false negative?

GENERALIZE

Are all positive
examples covered?

Are there 
near misses?

yes

yes

yes

yes

yes

yes

no

no

no

no

Accumulate

Add to negative
examples

no

no

create c-classifier

uncovered
examples

Are there
applicable

no

SPECIALIZE

yes

correlations?
examples of such
Are there enough

Figure 11: A owchart explaining the details of steps 4 and 5 of the learning procedure.

When there are no more correlations, control is transferred back to the top-level loop

(previous �gure) to wait for the next input word.

Let us follow the learning procedure step by step for a speci�c scenario. (The ex-

ample will illustrate most but not all of the steps in the acquisition procedure.) Sup-
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pose that to begin with the learner has no classi�ers and is presented four noun pairs in

succession: cat/cats [k.ae.t.s], dog/dogs [d.).g.z], duck/ducks [d.^.k.s], and

gun/guns [g.^.n.z]. We assume the input data contains the phonetic, grammatical,

and meaning features associated with a given word.

The learner �rst encounters the word \cat." Since there are no classi�ers to

consider, the learner constructs a rote-classi�er to record the correlations among the

bits of the data registers:

rote-classifier-cat

Phonemes: k.ae.t

Grammar: [+noun -verb -plural ...]

Meaning: [+animal +tail +4-legged -harmful ... ]

The learner does not �nd any second-order correlations because there are no other

known classi�ers that share the same meaning features.

The learner proceeds to process the next word, \cats." The rote-classi�er-cat is

excited because it matches the initial sequence of phonemes of \cats." It attempts

to enforce its meaning and grammar bits. There is an initial conict in the plural

bit, but the conict is resolved when the cat classi�er withdraws its control after the

entire phoneme sequence is heard. A new rote-classi�er is constructed to record the

�rst-order correlations:

rote-classifier-cats

Phonemes: k.ae.t.s

Grammar: [+noun -verb +plural ...]

Meaning: [+animal +tail +4-legged -harmful ... ]

The learner notices that rote-classi�er-cats and rote-classi�er-cat have the same

meaning bits, and constructs a second-order correlation to relate the two rote-classi�ers.

The correlation process �nds by convolution the shifting action that produces the

maximal match between the phoneme bits of the two classi�ers. The process also

determines the unlock mask by comparing the shifted phoneme bits of \cat" with the

phoneme bits of \cats." In this case, the phoneme bits (except of course the bit posi-

tions that are �lled by unknowns) are not allowed to be modi�ed. The second-order

correlation is classi�ed by its target-grammar bits and control bits, and is accumulated

in a dataset indexed by the same classi�cation bits. The second-order correlation is

represented by a bit vector, which can be symbolically abbreviated as:
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correlation-cat/cats:

Source-classifier: rote-classifier-cat

Target-classifier: rote-classifier-cats

Source-Grammar: [+noun -verb -plural ...]

Target-Grammar: [+noun -verb +plural ...]

Control: [shift

[direction : left

start loc : 0

unit : 1

fill symbol: ?]]

[unlock

phoneme slot 0: no

phoneme slot -1: no

phoneme slot -2: no]

The learner does not have any rule-classi�ers yet, so nothing triggers on the

second-order correlation. There are also not enough examples of this type of cor-

relation to trigger the summarization process. So the learner proceeds to the next

input.

Similar constructions of rote-classi�ers and second-order correlations occur for

dog/dogs, duck/ducks, and gun/guns. After the second-order correlation is con-

structed for gun/guns, the learner has accumulated four examples of this type of

correlation. This number of examples is su�cient to trigger the summarization pro-

cess.

The summarization process attempts to extract a common pattern from the ex-

amples. In particular, the process looks for a general description of the phoneme bits

common to the target classi�ers (cats/dogs/ducks/guns). It might also be useful to

obtain a description for the source classi�ers, but we have not found this necessary

for learning English plural and past tense rules.

The core of the summarization process is a generalization algorithm, which aims

to �nd a description that covers the phoneme bits of the target classi�ers (the positive

examples) and fails to cover those of the source classi�ers (the negative examples). A

description is said to cover an example if the example matches all the conditions in

the description; the example is called a positive example. Otherwise, it is a negative

example.

The description language consists of disjunctive normal forms. A boolean formula

is in disjunctive normal form if it consists of disjunctions of clauses each of which is

a conjunction of literals. We need this expressive power to handle disjunctive rules

and exceptions, which are common in phonological rules.
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Starting with the phoneme bits of a target classi�er as the initial description,

the generalization algorithm does a speci�c-to-general search in the space of possible

descriptions. For example, an initial seed might be the phoneme bits for \cats." The

seed is a bit vector of 56 bits (14 bits for each of the 4 phonemes [k.ae.t.s]), which

can be thought of as a logical conjunction of boolean features:

01011001000000101001000011000100000111000001000001110101

<------ k ---><----- ae --><----- t ----><----- s ---->

Seed : [k.ae.t.s]

Positive examples: [k.ae.t.s] [d.).g.z] [d.^.k.s] [g.^.n.z]

Negative examples: [k.ae.t] [d.).g] [d.^.k] [g.^.n]

The initial seed covers one positive example and no negative examples. At each

step of the search, the algorithm considers all generalizations that involve the drop-

ping of one or two features (i.e., changing a 0 or 1 to a don't care). To limit the

number of generalizations to be considered, the algorithm generalizes one phoneme at

a time from left to right (thus preferring generalizations that keep the most recently

heard phonemes). The generalizations are ranked according to a goodness function.

The search retains only the best k generalizations without any backtracking. The

goodness of a generalization increases with the number of positive examples it covers

and with the number of negative examples it does not cover. When each of the best

k generalization either covers all positive examples or covers a negative example, the

search terminates.

The search eventually produces a description G that covers all four positive ex-

amples and avoids all four negative examples. The description says that all positive

examples end with either the [s] or [z] phoneme.

G: [dc.dc.dc.{s,z}]

The next step in the summarization process is to verify covering and over-generalizations.

The generalization G is overly general because applying it to the source classi�ers

gives not only the correct plural forms (such as [k.ae.t.s]) but also incorrect ones (such

as *[k.ae.t.z]). The incorrect ones are treated as near misses (i.e., negative examples

that are slightly di�erent from the positive ones). Basically the learner assumes there

is only one plural form for each noun. Since it already knows [k.ae.t.s] is the correct

one, [k.ae.t.z] must be wrong. Near misses, as we shall see, greatly speed up the

discovery of correct generalizations.9

9Winston [14] emphasized the usefulness of near misses in his ARCH learning program. In our

program, the near misses are not supplied by a teacher or given in the input. They are generated

internally.
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The generalization algorithm is re-invoked with the addition of these new negative

examples:

Seed : [k.ae.t.s]

Positive examples: [k.ae.t.s] [d.).g.z] [d.^.k.s] [g.^.n.z]

Negative examples: *[k.ae.t.z] *[d.).g.s] *[d.^.k.z] *[g.^.n.s]

[k.ae.t] [d.).g] [d.^.k] [g.^.n]

This time the search results in a disjunction of two generalizations G1 and G2:

G1: [dc.dc.[-voice,-strident].s]

G2: [dc.dc.[+voice,-strident].z]

G1 covers two positive examples: \cats" and \ducks." G2 covers the remaining

two: \dogs" and \guns." The two generalizations are veri�ed as before. However,

this time the generalizations are consistent: there are not any new exceptions or near

misses. Note that we can already read o� symbolic descriptions from G1 and G2,

which resemble those found in linguistics books.

The summarization process then creates rule-classi�ers to represent the consistent

generalizations. These rule-classi�ers are now available for constraint propagation,

and are subject to further re�nement when new examples appear.

That the two rule-classi�ers can be learned in a few examples has interesting

psychological implications. Berko in her well-known study of children's learning of

English morphology made the following observation. While the �rst-graders can apply

the add [z] and add [s] pluralization rules productively to new words, they fail to apply

the add [I.z] rule to nonce words like \tass" or \gutch." When asked to produce the

plural of a nonce word ending in [s] or [ch], they either repeat the word in its singular

form or fail to respond. In no cases do they give wrong answers like *tass[z], *tass[s],

or *gutch[z], and only in few cases do they respond with *gutch[s]. The children fail

to use the [I.z] rule productively despite the fact that they can recognize and use real

words like \glass" and \glasses" correctly.

Our acquisition theory gives a plausible explanation of this behavior. Even with

a small number of examples, the children can acquire general rules like G1 and G2

that prevent the appending of the [s] phoneme and [z] phoneme to nouns ending in a

strident. When asked to pluralize a nonce word like \tass," our performance program

leaves the word unchanged because neither of the rules will be excited. Our theory

also predicts that prior exposure to examples of the adding [I.z] rule is not necessary

to produce the behavior as observed by Berko.

This example illustrates the basic learning mechanisms. One reason why the

generalization is so e�ective is that exceptions like \foot/feet" [f.U.t]/[f.i.t] (which

involves vowel change) and \leaf/leaves" [l.i.f ]/[l.i.v.z] (which involves voicing the
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last consonant [f] to [v] in the plural form) are separated into di�erent correlation

types by the correlation process. The division of labor between the correlation and

summarization processes allows the generalization algorithm to work on rather clean

examples.

We now back up and cover two topics in more detail: classifying correlations and

generalizing classi�ers.

Classifying correlations: Shift and Similarity

The second-order correlations are divided into two types according to whether the

target classi�ers have unlock privileges to change the slots of the phoneme register.

The correlations whose target classi�ers do not have any unlock privileges (e.g., the

correlation between a regular noun and its plural) are called non-mutable. The non-

mutable correlations are further subdivided by the type of shifting action and the

grammar bits. The mutable correlations (e.g., the correlation between an irregular

verb and its past tense) is further subdivided according to the similarity of the target

classi�ers, where the similarity of two classi�ers is measured by the Hamming distance

between their phoneme and grammar bits.

| membership

|- mutable --| determined

correlation -| | by similarity

|

| | membership determined

|- non-mutable --| by shift action

| and grammar bits

Classi�er generalization: Cube Growing Algorithm

The generalization algorithm is best explained geometrically. One can associate

boolean variables with spatial dimensions. A relation with n boolean variables de�nes

an instance space of 3n possible instances (because each bit can be 0, 1, or don't-care).

An n-bit vector corresponds to a point in the instance space. For example, a 3-bit

vector \111" can be interpreted as a vertex (0-cube) in the boolean 3-dimensional

cube. The bit vector \-11" is a line (1-cube). The bit vector \- - -" with all don't

cares is the universal 3-cube; it covers the entire space.

Classi�er generalization can be visualized as the growing of n-cubes to cover pos-

itive instances without overlapping negative ones. Cube growing is done by raising

bits of a vector, i.e., turning 0's or 1's to don't cares. Conversely, specialization is the

shrinking of n-cubes. Shrinking is accomplished by lowering don't cares to 0's or 1's.
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The generalization space of possible phoneme bits for a classi�er is O(3n), where

n is the number of phoneme bits. For example the generalization space for a clas-

si�er with �ve phonemes contains O(370) instances. To explore this huge space, the

generalization process relies on three search biases:

1. Whenever possible it revises the current best classi�ers instead of starting from

scratch,

2. It prefers classi�ers that contain the most recently heard phonemes, and

3. It is non-aggressive: it does not deliberately look for the minimal classi�ers (i.e.,

the largest n-cubes) to cover a given set of correlations.

The generalization procedure is a beam search with a simple goodness function.

A beam search is just like a best-�rst search except that it does not backtrack. It

keeps a �xed number of current-best classi�ers and discards the remaining ones.

The goodness of a cube is given by:

goodness (cube) = Pc (cube) + Nc (cube)

where Pc is the number of positive examples it covers, and Nc is the number of

negative examples it does not cover. To break ties in the goodness score, generalization

prefers larger cubes with higher Pc. The phonemes are ordered by recency. The bits

of the least recently heard phoneme are raised �rst, one or two bits at a time. The

best k such cubes are selected for further expansion. The search terminates when

either all positive examples are covered, or a negative example is covered.

The specialization algorithm is an incremental general-to-speci�c search. It aims

to avoid negative instances while retaining most of the positive instances. The al-

gorithm uses the same beam search and goodness function. To break ties in the

goodness score, specialization prefers smaller cubes with higher Nc. It repeatedly

shrinks cubes by lowering don't cares, at most two bits at a time, starting from the

most recently heard phoneme. It only explores candidate cubes that contain some

possible phonemes. This is done by matching a candidate cube with all the phonemes

known to the learner. For instance, a cube with the nasal bit on and the voicing

bit o� is discarded because in English there is no [�voice,+nasal] phoneme. The

specialization process terminates when none of the negative examples is covered.

6 Experimental Results

The corpus consists of 250 words. The words are common nouns (about 50) and

verbs (about 200) that �rst-graders might know. The nouns are the singular and
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plural forms of common animals and everyday objects (e.g., cat, cats, dog, dogs, cup,

cups, man, men). The corpus includes most of the regular and irregular verbs used

in the psycholinguistic experiments of Marcus et. al. [7] on English tenses (e.g., go,

went, play, played, kick, kicked).

Consistent with the observation that a human learner receives little explicit cor-

rection, the corpus contains only positive examples. However, the lack of external neg-

ative evidence does not rule out the possibility that the learner can generate internal

negative examples when testing out hypotheses. These internal negative examples,

as we have seen, play a signi�cant role in the rapid learning of classi�ers.

The data record for each word in the corpus has �ve pieces of information: (1)

word identi�er, (2) word spelling, (3) a unique meaning identi�er (e.g., \cat" and

\cats" have the same meaning id, but \cat" and \dog" do not), (4) its pronunciation

as a sequence of phonemes, (5) its grammatical status (e.g., whether it is a noun or

verb, singular or plural, present or past). The data records for \cat(s)" and \dog(s)"

are shown below:

word-id spelling meaning-id pronunciation grammar

--------------------------------------------------------------

12789 cat 6601 k.ae.t. Noun Sing

12956 cats 6601 k.ae.t.s. Noun Plu

25815 dog 13185 d.).g. Noun Sing

25869 dogs 13185 d.).g.z. Noun Plu

The data records are pre-processed to produce bit vector inputs for the perfor-

mance model and learner. The output of the performance model and learner is bit

vectors that typically have a straightforward symbolic interpretation.

In all the experiments below, we use the same parameter settings for the beam

search width10 (in the generalization algorithm), excitation threshold (in constraint

excitation), and similarity threshold (in classifying correlations). The results are not

sensitive to the particular parameter settings.

Experiment 1: How regular pluralization rules are learned

The objective of this experiment is to determine what pluralization rules are acquired

by our learner given a sample of common nouns and their plurals. The formation of

English plurals is unusually regular. There are very few irregular plural nouns. This

property of English might lead one to propose learning mechanisms that exploit the

statistics of regular plurals by training on a large number of examples so that any

new test noun is su�ciently similar to a known one to produce the closest matched

10The beam search width is set to 2.
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plural ending.

But there is evidence that the statistical property may not be essential to the

acquisition of regular rules. For example, Marcus et. al. [7] and Clahsen [3] showed

that the German -s plural behaves like a regular rule despite the fact that the rule

applies to fewer than 30 common nouns. This observation raises the question of how

a child can acquire regular rules from very few examples. The experiment will show

that our learner can acquire generalizations that closely resemble those described in

linguistics books after seeing on the order of 10 examples.

The input of this experiment consists of 22 noun-plural pairs. The particular

choices of words are not very important as long as there are some examples of singular

nouns ending in di�erent phonemes. We pick a few examples for each of �ve types of

plural formation:

[s] [z] [I.z] semi-regular irregular

------------------------------------------------------------

cake(s) bottle(s) box(es) house(s) man/men

cat(s) boy(s) bush(es) leaf/leaves foot/feet

chief(s) dog(s) church(es)

cup(s) girl(s) dish(es)

fruit(s) gun(s) glass(es)

month(s) horse(s)

nose(s)

The �rst three columns are the regular plural forms. The semi-regular column

contains words whose singular forms end in voiceless fricatives ([s] and [f]), which

become voiced in their plural forms ([z] and [v] respectively). The irregular nouns

involve internal vowel changes instead of adding a�xes.

The 22 pairs are fed to the learner sequentially in a random order once. The

results presented here are typical because the �nal rules acquired are found not to be

sensitive to the order of presentation.

The entire learning session takes about 15 minutes on a Sun Sparc 10. After

the presentation of all 22 pairs, the learner has acquired �ve rule-classi�ers and four

exceptions. The phoneme bits of the classi�ers are as follows:

1. [dc.dc.[+voice,-strident].z]

2. [dc.dc.{y,e,I,v}.z]

3. [dc.dc.[-voice,-strident].s]

4. [dc.dc.[-voice,-coronal].s]

5. [dc.[+coronal,+strident].I.z]
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Rule 3 is acquired after the presentation of 7 pairs. Rule 1 is acquired after 9

pairs. Although the list of 22 pairs is su�cient for the acquisition of the English

plural rules, the list is far from minimal. For example, rule 5 is acquired after the

learner encounters only 4 examples of nouns ending in [I.z]. The remaining three

[I.z] examples are redundant. The irregulars also do not a�ect the acquisition of the

regular rules. They are represented as speci�c rote-classi�ers. The correlations among

the irregulars are grouped into three exceptional classes: (1) foot/feet and man/men,

(2) leaf/leaves, and (3) house/houses.

Notice that we can almost read o� the standard English pluralization rules from

these classi�ers. There are, however, two di�erences. First, the standard English

pluralization rules are typically ordered:

a. If the noun ends a phoneme containing the features [+strident, +coronal] (i.e., one

of the sounds [s], [z], [sh], [zh], [ch], [j]), the plural a�x is [I z].

Otherwise,

b. If the noun ends in a [+voice] phoneme, the a�x is [z].

c. If the noun ends in a [�voice] phoneme, the a�x is [s].

In our system, the classi�ers are activated in parallel, with the most excited ones

gaining control over the data registers.

The second di�erence is that the unvoiced-plural rule c is represented by a disjunc-

tion of two rules 3 and 4 in our system. Rule 3 covers nouns ending in consonants [t],

[k], [p], [h], or [th]. Rule 4 covers nouns ending in the strident [f] or the non-coronal

stops [k] and [p]. Similarly, the voiced-plural rule b is split into rules 1 and 2.

The learner also exhibits intermediate behaviors similar to those of young children.

After rule 1 and rule 3 are acquired, the performance program produces plurals like

*foot[s] and *man[z]. Upon presentation of the nonce word \wug," it gives wug[z].

For nonce words ending in a strident like \tass" or \gutch," it gives the unaltered

singular forms as plurals.

Experiment 2: Learning plurals in the presence of noise

In this experiment, we examine the behavior of the learner when the input contains

error. The learner is given the same 22 noun-pairs from experiment 1 and an incorrect

plural form *cat[z].

The result is interesting: The incorrect form does not a�ect the acquisition of the

correct constraints. The learner acquires the same 5 constraints as in experiment 1.

An additional constraint is created to account for the incorrect *cat[z]:

6. [dc.[-tense,-strident],t,z]
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The [tense] feature indicates whether the articulatory gestures associated with a

phoneme are produced with considerable muscular e�ort and a long duration. Non-

tense phonemes (such as [ae]) are produced rapidly and with less e�ort than the tense

ones (such as [i]).

Experiment 3: How regular past tense rules are learned

This experiment shows what regular past tense rules are acquired from common verbs

and their past-tense forms. Like the plurals, English past tense has regular a�xes [t],

[d], or [I.d] depending on the properties of the last phoneme of the verb stem. Verb

stems that end in a voiced phoneme other than [d] receive [d], while those that end

in an unvoiced phoneme other than [t] receive [t]. For verb stems ending in [d] or [t],

the syllable [I.d] is added to the stem.

Unlike those in the plural rules, the exceptions in the regular past tense rules (for

stems ending in [d] or [t]), do not form a natural class in terms of distinctive features.

It is therefore interesting to see how the learner constructs disjunctive rules to capture

the regularities in the input data.

The input consists of 21 verbs and their past-tense forms:

[t] [d] [I.d] irregular

------------------------------------------------------------

danced answered added draw/drew

dropped called needed sing/sang

fixed cried painted feed/fed

kissed hugged waited

laughed turned

liked

looked

touched

walked

The stem-past pairs are presented sequentially in a random order once. After the

presentation of all the verb pairs, the learner has acquired six rule-classi�ers and three

exceptions (the irregulars). The phoneme bits of the classi�ers are as follows:

1. [dc.dc.[+voice,+sonorant].d]

2. [dc.dc.[+voice,-coronal].d]

3. [dc.dc.[-low,-round,-tense,+continuant].d]

4. [dc.dc.[-voice,+strident].t]
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5. [dc.dc.[-voice,-coronal,-continuant].t]

6. [dc.{d,t}.I.d]

Rules 1, 2, and 3 together cover all the verb stems that end in a voiced phoneme

other than [d]. These rules overlap in the examples they cover. Rule 1 covers the

majority of these cases (all the vowels, nasals, liquids, and glides). Rule 2 covers the

voiced non-coronal stops ([b] and [g]) as well as some of the cases covered by rule

1, while rule 3 covers the voiced stridents. An over-general rule [dc.dc.[+voice].d] is

acquired after the presentation of 11 stem-past pairs. The learner re�nes the rule to

rule 1 on examining another 6 stem-past pairs (not all of which are relevant to rule

1).

Similarly, rules 4 and 5 cover verb stems that end in an unvoiced phoneme other

than [t]. Rule 4 covers stems ending in [k] or [p], while rule 5 covers the unvoiced

stridents. Rule 4 is acquired after 8 stem-past pairs. Rule 5 is acquired after 11 pairs.

Rule 6 directly corresponds to the add [I.d] rule. The rule is acquired after 18

stem-past pairs.

The experiment shows that the learner can indeed acquire past tense rules that

lead to the correct behavior.

Experiment 4: Learning plural and past tense rules together

The objective of experiment 4 is to test whether higher-order correlations can be

extracted from the past tense rules and the plural rules, which have very similar

structures.

The generalization algorithm when presented with the past tense rules (from ex-

periment 3) and the plural rules (from experiment 1) produces a third-order correla-

tion that says the voicing bits of the ending phoneme of the stem and the a�x have

to match:

[dc.dc.[-voice].[-voice]]

[dc.dc.[+voice].[+voice]]

Our learning theory gives a plausible mechanism to produce the kind of compact,

elegant phonological rules that linguists develop to explain complicated phonological

processes in terms of the interactions of nearly independent and widely applicable

rules. The theory also exhibits the \Waltz" e�ect [13] that learning becomes more

e�ective when the learner is exposed to more varieties of constraints.
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Experiment 5: How irregular past tense patterns are learned

This experiment aims to show what our learner can learn from irregular verbs. The

input consists of 55 common irregular verbs (such as eat, blow, buy, go) and their

past forms.

The learner acquires six rule-classi�ers that cover 19 of the 55 input verbs:

[dc.dc.ae.ng] rang, sang

[dc.dc.a.t] forgot, got, shot

[dc.E.n.t] bent, lent, meant, spent

[dc.dc.{r,l}.u] blew, drew, grew

[dc.dc.).t] bought, brought, caught, taught

[dc.dc.o.z] chose, froze, rose

Since irregular verb forms are in general not productive and idiosyncratic (such as

go/went), we expect they fall into many sub-classes. The results con�rm our expecta-

tion. The learner is able to �nd the more common patterns (such as blew/drew/grew

and bought/caught/taught). The results also suggest that most irregulars are just

rote-learned and the learner makes few generalizations about these forms.

7 Discussion/Conclusion

We have demonstrated that a rather simple mechanism, which can be implemented

in surprisingly small amounts of physical hardware (or meatware?), exhibits behavior

comparable to the behavior of small children in the task of learning and using phono-

logical knowledge. In our theory phonological knowledge is encapsulated as a set of

boolean constraints. These constraints operate on the classical linguistic representa-

tion of a pattern of sound in terms of phonemes and binary distinctive features. The

knowledge is applied in phonological performance by classical constraint propagation.

The constraints are learned by an incremental process with two phases: detecting

correlations and summarizing the accumulated regularities. These summaries are

speci�cations of the particular boolean constraints to be imposed. The summaries

may be incrementally generalized or specialized as new data appears. As a bonus, the

summaries that are compiled may be read out to obtain recognizable rules of classical

linguistics.

Our mechanism has been quite successful for learning a portion of English phonol-

ogy. Our mechanism yields almost one-shot learning, similar to that observed in chil-

dren: It takes only a few carelessly chosen examples to learn the important rules; there

is no unreasonable repetition of the data; and there is no requirement to zealously
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correct erroneous behavior. The mechanism tolerates noise and exceptions. It learns

higher-order constraints as it knows more. Furthermore, the intermediate states of

learning produce errors that are just like the errors produced by children as they are

learning phonology.

While this mechanism has been tested for a chunk of English phonology, it has not

yet been extensively tested in all corners of English and it has not yet been tried for

other languages (though we have started testing our theory on learning Hebrew verb

patterns). This is important, because we intend this to be a strong theory: It had

better work in all cases|it is either right or wrong|there are very few parameters

that we can wiggle to extend the coverage of the theory if it is wrong.

Over the past few years there has been a rather heated debate between advocates of

\Connectionism" and advocates of more traditional \Symbolic Arti�cial Intelligence."

We believe that contemplation of our mechanism for acquiring and using phonological

knowledge can shed considerable light on this question.11 The essence here is in

understanding the relationship between the signals in the neural circuits of the brain

and the symbols that they are said to represent.

Consider �rst an ordinary computer. Are there symbols in the computer? No,

there are transistors in the computer, and capacitors, and wires interconnecting them,

etc. It is a connectionist system. There are voltages on the nodes and currents in the

wires. We as programmers interpret the patterns of voltages as representations of our

symbols and symbolic expressions. We impose patterns we call programs that cause

the patterns of data voltages to evolve in a way that we interpret as the manipulation

of symbolic expressions that we intend. Thus the symbols and symbolic expressions

are a compact and useful way of describing the behavior of the connectionist system.

We as engineers arrange for our connectionist system to exhibit behavior that we can

usefully describe as the manipulation of our symbols.

In much the same way, auditory signals are analog trajectories through a rather

low-dimensional space|pressure on the eardrum. By signal processing these are

transformed into trajectories in a rather high-dimensional space that linguists ab-

stract, approximate, and describe in terms of phonemes and their distinctive features.

This high-dimensional space is very sparsely populated by linguistic utterances. Be-

cause of the sparsity of this space, we can easily interpret con�gurations in this space

as discrete symbolic expressions and interpret behaviors in this space as symbolic

manipulations.

It may be the case that the linguistic representation is necessarily sparse because

that is the key to making a simple, e�cient, one-shot learning algorithm. Thus

11Debate in the context of a speci�c problem|learning phonological knowledge|is documented

in [12, 10, 9, 11].
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sparseness of the representation, and the attendant possibility of symbolic description

is just a consequence of the fact that human language is learnable and understandable

by mechanisms that are evolvable and implementable in realistic biological systems.

So in the case of phonology at least, the Connectionist/Symbolic distinction is a

matter of level of detail. Everything is implemented in terms of neurons or transistors,

depending on whether we are building meatware or hardware. However, because the

representation of linguistic information is sparse, we can think of the data as bits and

the mechanisms as shift registers and boolean constraints. If we were dealing with the

details of muscle control we would probably have a much denser representation and

then we would want to think in terms of approximations of multivariate functions.

But when it is possible to abstract symbols we obtain a tremendous advantage. We get

the power to express descriptions of mechanisms in a compact form that is convenient

for communication to other scientists, or as part of an engineering design.

So what of signals and symbols? There are signals in the brain, and when possible,

there are symbols in the mind.
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