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1 Introduction

A graphical model provides an explicit representation of
qualitative dependencies among the variables associated
with the nodes of the graph (Pearl, 1988). Assigning
values (potentials or probability tables) to the links con-
necting the variables in these models enables numerical
(or quantitative) computation of beliefs about the values
of the variables on the basis of acquired evidence. The
computations involved, i.e., propagation of beliefs, can
be handled by now standard exact methods (Lauritzen
& Spiegelhalter, 1988, Jensen et al. 1990). Junction
trees serve as representational platforms for these ex-
act probabilistic calculations and are constructed from
directed graphical representations via moralization and
triangulation. Although powerful in utilizing the struc-
ture of the underlying networks, junction trees may, in
some cases, contain cliques that are prohibitively large.
We focus in this paper on methods for dealing with such
large (sub)structures.

Large clique sizes lead not only to long execution
times but also involve exponentially many parameters
that must be assessed or learned. The latter issue is gen-
erally addressed via parsimonious representations such
as the logistic sigmoid (Neal, 1992) or the noisy-OR func-
tion (Pearl, 1988). We consider both of these represen-
tations in the current paper. We stay within a directed
framework and thereby retain the compactness of these
representations throughout our inference and estimation
algorithms.

As an alternative to sampling methods in intractable
networks we develop principled approximations by com-
puting upper and lower bounds on likelihoods of par-
tial instantiatiations of variables. Such bounds can be
combined to give rise to con�dence intervals for the de-
sired likelihoods (e.g. for node marginals). Although the
problem of �nding con�dence intervals to a predescribed
accuracy is NP-hard (Dagum and Luby, 1993), bounds
that can be computed e�ciently may nevertheless yield
con�dence intervals that are accurate enough to be use-
ful in practice.

Saul et al. (1996) derived a rigorous lower bound
for sigmoid belief networks and we complete the picture
here by developing the missing upper bounds for sigmoid
networks. We also develop both upper and lower bounds
for noisy-OR networks. While the lower bounds we ob-
tain are applicable to generic network structures, the
upper bounds are currently restricted to two-level net-
works. Although a serious restriction, there are nonethe-
less many potential applications for such upper bounds,
including the probabilistic reformulation of the QMR
knowledge base (Shwe et al., 1991). We emphasize �-
nally that our focus in this paper is on techniques of
bounding rather than on all{encompassing inference al-
gorithms; tailoring the bounds for speci�c problems or
merging them with exact methods may yield a consider-
able advantage.

The paper is structured as follows. Section 2 intro-
duces sigmoid belief networks, develops the techniques
for upper and lower bounds, and gives preliminary nu-
merical analysis of the accuracy of the bounds. Section
3 is devoted to the analogous results for noisy-OR net-

works. In section 4 we summarize the results and de-
scribe some future work.

2 Sigmoid belief networks

Sigmoid belief networks are (directed) probabilistic net-
works de�ned over binary variables S1; : : : ; Sn. The joint
distribution for the variables has the usual decomposi-
tional structure:

P (S1; : : : ; Snj�) =
Y
i

P (Sijpa[i]; �) (1)

The conditional probabilities, however, take a particular
form given by

P (Sijpa[i]; �) =

= g(
P

j2pa[i]
�ijSj)

Si [1� g(
P

j2pa[i]
�ijSj)]

1�Si (2)

= g((2Si�1)
P

j2pa[i]
�ijSj) (3)

where g(x) = 1=(1 + exp(�x)) is the logistic function
(also called a \sigmoid" function based on its graphical
shape; see Figure 3). The parameters specifying these
conditional probabilities are the real valued \weights"
�ij. We note that the choice of this dependency model
is not arbitrary but is rooted in logistic regression in
statistics (McCullagh & Nelder, 1983). Furthermore,
this form of dependency corresponds to the assumption
that the odds from each parent of a node combine mul-
tiplicatively; the weights �ij in this interpretation bear
a relation to log-odds.

In the remainder of this section we present techniques
for computing upper and lower bounds on the likelihood
of any instantiation of variables in sigmoid networks. We
note that the upper bounds are restricted to two-level
(bipartite) networks while the lower bounds are valid for
arbitrary network structures.

2.1 Upper bound for sigmoid network

We restrict our attention to two-level directed architec-
tures. The joint probability for this class of models can
be written as

P (S1; : : : ; Snj�) =
Y
i2L1

g((2Si�1)
P

j2pa[i]
�ijSj)

�
Y
j2L2

P (Sjj�j) (4)

where L1 and L2 signify the two layers of a bipartite
graph with connections from L2 to L1.

To compute the likelihood of an instantiation of vari-
ables in these networks, we note that (i) any instantiated
variables in layer L2 only reduce the complexity of the
calculations, and (ii) the form of the architecture makes
any uninstantiated variables in L1, or the \receiving"
layer, inconsequential. We will thus adopt a simplifying
notation in which the evidence consists of all and only
the variables in L1. Thus, the goal is to compute

P (fSigi2L1
j�) =

X
fSjgj2L2

P (S1; : : : ; Snj�) (5)

Given our assumption that computing the likelihood
is intractable, we seek an upper bound instead. Let us
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briey outline our strategy. The goal is to simplify the
joint distribution such that the marginalization across
L2 can be accomplished e�ciently, while maintaining at
all times a rigorous upper bound on the likelihood. Our
approach is to introduce additional parameters into the
problem (known as \variational parameters") such that
the resulting joint probability distribution factorizes over
the uninstantiated variables. Thus we �rst �nd a \vari-
ational" form for the joint distribution. Although the
variational forms are exact they can be turned into upper
bounds by not carrying out the minimizations involved
and instead �xing the variational parameters. As we
will see below this type of variational bound can be ob-
tained by combining variational representations for each
sigmoid function in our probability model. We note �-
nally that the variational parameters that are kept �xed
during the likelihood calculation can be employed after-
wards to optimize the likelihood bound. In essence, this
amounts to exchanging the order of the summation over
the uninstantiated variables and the variational mini-
mization.

To derive the upper bound we �rst make use of the
following variational transformation of the sigmoid func-
tion (see appendix A):

g(x) =
1

1 + e�x
= min

�2[0;1]
e�x�H(�) (6)

where H(�) is the binary entropy function. Inserting this
transformation into the probability model we �nd

P (S1; : : : ; Snj�) =

=
Y
i2L1

min
�i

�
e
�H(�i)+�i(2Si�1)

P
j
�ijSj

� Y
j2L2

P (Sjj�j)

= min
�

�
e
�
P

i2L1

H(�i)
�

�
Y
j2L2

�
e

P
i2L1

�i(2Si�1)�ij
�Sj

P (Sj j�j)

9=
; (7)

def

= min
�

f ~P (S1; : : : ; Snj�; �) g (8)

where we have pulled the minimizations outside and
combined the terms that depend on each of the unin-
stantiated variables Sj in L2. This reorganization

shows that ~P (S1; : : : ; Snj�; �) (de�ned implicitly) factor-
izes over fSjgj2L2. A simple upper bound on the likeli-
hood is thus obtained in closed form by exchanging the
order of the summation and the minimization:

P (fSigi2L1
j�) =

X
fSjgj2L2

P (S1; : : : ; Snj�) (9)

=
X

fSjgj2L2

min
�

f ~P (S1; : : : ; Snj�; �) g (10)

� min
�

X
fSjgj2L2

~P (S1; : : : ; Snj�; �) (11)

= min
�

�
e
�
P

i2L1

H(�i)
�

Y
j2L2

�
P (Sj=1j�j )e

P
i2L1

�i(2Si�1)�ij
+P (Sj=0j�j )

�9=
;
(12)

We state here a few facts about the bound (mostly with-
out proof): (i) The bound can never be greater than one
since one is always achieved by setting all � to zero, (ii)
the bound becomes exact in the limit of small parame-
ter values, and (iii) for �xed prior probabilities P (Sjj�j)
the bound has a lower limit and therefore cannot follow
closely the true likelihood for very improbable events.

To simplify the minimization with respect to � we
can work on a log scale and make use of the following
Legendre transformation:

logx = min
�

f�x� log� � 1g (13)

As a result we get

logP (fSigi2L1
j�) � �

X
i2L1

H(�i)

+
X
j2L2

�j

�
P (Sj=1j�j)e

P
i2L1

�i(2Si�1)�ij
+P (Sj=0j�j)

�

+
X
j2L2

[� log�j � 1] (14)

where we have ceased to indicate explicitly that the
bound will be minimized over the adjustable parame-
ters. This new form of the bound has the advantage
that the minimization with respect to each parameter
(� or �) is reduced to convex optimization1 and can be
done by any standard method (e.g. Newton-Raphson).
Note that the accuracy of the bound is not compromised
by the additional Legendre transformation. Its e�ect is
merely to simplify the expressions for optimization.

2.2 Generic lower bound for sigmoid network

Methods for �nding approximate lower bounds on like-
lihoods were �rst presented by Dayan, et al. (1995) and
Hinton, et al. (1995) in the context of a layered network
known as the \Helmholtz machine." Saul, et al. (1996)
subsequently showed how such bounds could be made
rigorous (by appeal to mean �eld theory) in the case of
generic sigmoid networks. Unlike the method for obtain-
ing upper bounds presented in the previous section, the
lower bound methodology poses no constraints on the
network structure. We briey introduce the idea here
(for details see Saul, et al.).

Let us denote the set of instantiated variables by
fSigi2L. A lower bound on the (log) likelihood can be
found directly via Jensen's inequality:

logP (fSigi2Lj�) =

= log
X

fSgi62L

P (S1; : : : ; Snj�)

1The convexity with respect to each � follows from the
convexity of ex and the positivity of the multiplying coe�-
cients �.
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= log
X

fSigi62L

Q(fSg)
P (S1; : : : ; Snj�)

Q(fSg)

�
X

fSgi62L

Q(fSg) log
P (S1; : : : ; Snj�)

Q(fSg)
(15)

which holds for any distribution Q over the uninstan-
tiated variables fSg. The bound becomes exact if
Q(fSg) can represent the true posterior distribution
P (fSg j fSigi2L; �). For other choices of Q the accuracy
of the bound is characterized by the Kullback-Leibler
distance between Q and the posterior. As we are assum-
ing that computing the likelihood exactly is intractable
the idea is to �nd a distribution Q that can be com-
puted e�ciently. The simplest of such distributions is
the completely factorized (\mean �eld") distribution:

Q(fSg) =
Y
j

�
Sj

j
(1� �j)

1�Sj (16)

Inserting this distribution into the lower bound (eq.
(15)) we can, in principle, carry out the summation2 and
get an expression for the lower bound. Consequently, the
adjustable parameters �j can be modi�ed to make the
bound tighter.

For later utility we rewrite the lower bound in eq. (15)
as

logP (fSigi2Lj�)

� EQf logP (S1; : : : ; Snj�) g+HQ (17)

=
X
i

EQf logP (Sijpa[i]; �) g+HQ (18)

where HQ is the entropy of the Q distribution and EQf�g
is the expectation with respect to Q. We note �nally
that developing the bound further is highly dependent
on the type of the network { whether sigmoid, noisy-OR,
or other3.

2.3 Numerical experiments for sigmoid

network

In testing the accuracy of the developed bounds we used
8 ! 8 networks (complete bipartite graphs), where the
network size was chosen to be small enough to allow ex-
act computation of the true likelihood for purposes of
comparison. The method of testing was as follows. The
parameters for the 8 ! 8 networks were drawn from a
Gaussian prior distribution and a sample from the result-
ing joint distribution of the variables was generated. The
variables in the \receiving" layer of the bipartite graph
were instantiated according to the sample. The true like-
lihood as well as the upper and lower bounds were com-
puted for the instantiation. The resulting bounds were
assessed by employing the relative error in log-likelihood,
i.e. (logPBound= logP � 1), as a measure of accuracy.

2The summation even in case of simple factorized distri-
butions can be non-trivial to perform; see Saul, et al.

3For a derivation of lower bounds for networks with cu-
mulants replacing the sigmoid function see Jaakkola et al.
(1996).

More precisely, the prior distribution over the param-
eters was taken to be

P (�) =
Y
i

Y
j2pa[i]

1
p
2��2

e�
1

2�2
�
2

ij (19)

where the overall variance �2 allows us to vary the degree
to which the resulting parameters make the two layers of
the network dependent. For small values of �2 the lay-
ers are almost independent whereas larger values make
them strongly interdependent. To make the situation
worse for the bounds4 we enhanced the coupling of the
layers by setting P (Sj j�j) = 1=2 for all the uninstanti-
ated variables, i.e., making them maximally variable.

In order to make the accuracy of the bounds commen-
surate with those for the noisy-OR networks reported
below, we summarize the results via a measure of inter-
layer dependence. This dependence was measured by

�std =
p
VarfP (Sijpa[i])g (20)

that is, the variability of the likelihood of the instantia-
tion due to di�erent con�gurations of the uninstantiated
variables. Figure 1 illustrates the accuracy of the bounds
as measured by the relative log-likelihood as a function
of �std

5. In terms of probabilities, a relative error of �
translates into a P 1+� approximation of the true likeli-
hood P . Note that the relative error is always positive for
the upper bound and negative for the lower bound. The
�gure indicates that the bounds are accurate enough to
be useful. In addition, we see that the the upper bound
deteriorates faster with increasingly coupled layers.
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Figure 1: Accuracy of the bounds for sigmoid networks.
The solid lines are the median relative errors in log-
likelihood as a function of �std. The upper and lower
curves correspond to the upper and lower bounds re-
spectively.

4Both the upper and lower bounds are exact in the limit
of lightly coupled layers.

5Note that the maximum value for �std is 1=2.
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3 Noisy-OR networks

Noisy-OR networks { like sigmoid networks { can be
represented by DAGs and are written as a product form
for the joint distribution:

P (S1; : : : ; Snj�) =
Y
i

P (Sijpa[i]; �) (21)

Unlike sigmoid networks, however, the conditional prob-
abilities for a noisy-OR network are de�ned as

P (Sijpa[i]; �) =

0
@1� Y

j2pa[i]

(1 � qij)
Sj

1
A
Si

�

0
@ Y
j2pa[i]

(1� qij)
Sj

1
A

1�Si

(22)

where, for example, the parameter qij corresponds to

the probability that the jth parent of i alone can turn
Si on. A constant \leak" or \bias" can be included by
introducing a dummy (parent) variable whose value is
always �xed to one.

In the following two sections we develop methods for
computing upper and lower bounds on the likelihood
of any instantiation of variables in the noisy-OR net-
work. Similarly to the case of sigmoid networks the up-
per bound is applicable to a restricted class of networks
while the lower bound remains generic. For clarity of the
forthcoming derivations we introduce the notation:

P (Si = 0jpa[i]; �) =
Y

j2pa[i]

(1� qij)
Sj

= e
�
P

j2pa[i]
�ijSj

(23)

with �ij = � log(1 � qij) � 0.

3.1 Upper bound for noisy-OR network

The motivation and, in broad outline, the upper bound
derivation itself can be carried over from the sigmoid
setting to the noisy-OR case.

Consider a two-level or bipartite network with
fSigi2L1

and fSigi2L2
(where L2 ! L1) denoting the

two sets of variables. As before we adopt a simplify-
ing notation in which an instantiation consists of values
for all the variables in the layer L1. To compute the
likelihood of such an instantiation we need to sum the
noisy-OR joint distribution,

P (S1; : : : ; Snj�) =

=
Y
i2L1

(1 � e
�
P

j
�ijSj

)Sie
�(1�Si)

P
j
�ijSj

�
Y
j2L2

P (Sj j�j) (24)

over the uninstantiated variables in L2. We note that
the complexity of performing this calculation exactly in-
creases exponentially with the number of variables that
are instantiated to one; importantly, and unlike in the
sigmoid case, the complexity does not vary exponentially

with the number of uninstantiated variables. Neverthe-
less, we focus on the case where the exact method of
obtaining the likelihood is infeasible.

To �nd an upper bound in the noisy-OR setting we use
the following variational transformation (for a derivation
and discussion see appendix B)

1� e�x = min
��0

e�x�F (�) (25)

where F (�) = �� log � + (� + 1) log(� + 1). By inserting
this transformation into the joint distribution we obtain:

P (S1; : : : ; Snj�) =

=
Y
i2L1

min
�i

�
e
Si[
P

j
�ijSj�F (�i)]

�
e
�(1�Si)

P
j
�ijSj

�
Y
j2L2

P (Sj j�j) (26)

= min
�

�
e
�
P

i2L1

SiF (�i)
�

Y
j2L2

�
e

P
i2L1

(Si�i+Si�1)�ij
�Sj

P (Sj j�j)

9=
; (27)

def

= min
�

f ~P (S1; : : : ; Snj�; �) g (28)

where we have regrouped terms by rewriting the prod-
uct over i 2 L1 as a sum in the exponent and collecting
the terms depending on the uninstantiated variables Sj.
We can see that the implicitly de�ned (and unnormal-

ized) ~P (S1; : : : ; Snj�; �) factorizes over Sj . This factorial
property allows us to �nd a closed form upper bound on
the likelihood:

P (fSigi2L1
j�) =

=
X

fSjgj2L2

P (S1; : : : ; Snj�)

=
X

fSjgj2L2

min
�

~P (S1; : : : ; Snj�; �) (29)

� min
�

X
fSjgj2L2

~P (S1; : : : ; Snj�; �) (30)

where the last summation can now be performed exactly
to yield:

P (fSigi2L1
j�) �

min
�

�
e
�
P

i2L1

SiF (�i)
�

Y
j2L2

�
P (Sj=1j�j)e

P
i2L1

(Si�i+Si�1)�ij
+P (Sj=0j�j)

�9=
;

(31)

This bound (i) always stays below (or equal to) one as
it is less than or equal to one whenever all � are set to
zero, and (ii) is exact when all Si in L1 are zero or in
the limit of vanishing parameters �ij .
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As in the sigmoid case we may simplify the minimiza-
tion process by considering logP (fSigi2L1

j�) and intro-
ducing a Legendre transformation for log(�). This yields:

logP (fSigi2L1
j�) �

X
i2L1

SiF (�i)

+
X
j2L2

�j

�
P (Sj=1j�j)e

P
i2L1

(Si�i+Si�1)�ij
+P (Sj=0j�j)

�

+
X
j2L2

[� log�j � 1] (32)

where we have dropped the explicit reference to mini-
mization. The gain again is the convexity of the bound
with respect to any of the � or � variables.

3.2 Generic lower bound for noisy-OR network

The earlier work on lower bounds by Saul, et al. was re-
stricted to sigmoid networks; we extend that work here
by deriving a lower bound for generic noisy-OR net-
works. We refer to section 2.2 for the framework and
commence from the noisy-OR counterpart of eq. (18).
Thus,

logP (fSigi2Lj�)

�
X
i

EQf logP (Sijpa[i]; �) g+HQ (33)

=
X
i

EQf Si log(1� e
�
P

j
�ijSj

) g

+
X
i

EQf �(1 � Si)
X
j

�ijSj g+HQ (34)

which is obtained by writing explicitly the form of the
conditional probabilities for noisy-OR networks. While
the second expectation in eq. (34) simply corresponds
to replacing the binary variables Si with their means �i
(since Q is factorized), the �rst expectation lacks a closed
form expression. To compute this expectation e�ciently
we make use of the following expansion:

1� e�x =

1Y
k=0

g(2kx) (35)

where g(�) is the sigmoid function (see appendix C). This
expansion converges exponentially fast and thus only a
few terms need to be included in the product for good
accuracy. By carrying out this expansion in the bound
above and explicitly using the form of the sigmoid func-
tion we get

logP (fSigi2Lj�)

�
X
i

X
k

EQf �Si log(1 + e
�2k
P

j
�ijSj

) g

�
X
i

(1� �i)
X
j

�ij�j +HQ (36)

Now, as the parameters �ij are non-negative,

e
�2k

P
j
�ijSj

2 [0; 1]

and we may use the smooth convexity properties of
� log(1 + x) (for x 2 [0; 1]) to bring the expectations
in eq. (36) inside the log. This results in

logP (fSigi2Lj�)

�
X
ik

��i log

2
41 +Y

j

(�je
�2k�ij + 1� �j)

3
5

�
X
i

(1 � �i)
X
j

�ij�j +HQ (37)

A more sophisticated and accurate way of computing the
expectations in eq. (36) is discussed in appendix D.

3.3 Numerical experiments for noisy-OR
network

The method of testing used here was, for the most part,
identical to the one presented earlier for sigmoid net-
works (section 2.3). The only di�erence was that the
prior distribution over the parameters de�ning the con-
ditional probabilities was chosen to be a Dirichlet instead
of a Gaussian:

qij � n(1� qij)
n�1 (38)

(recall that P (Si = 0jpa[i]; �) =
Q

j2pa[i](1�qij)
Sj ). For

large n, q stays small (or 1 � q � 1) and the layers of
the bipartite network are only weakly connected; smaller
values of n, on the other hand, make the layers strongly
dependent. We thus used n to vary (on average) the in-
terdependence beween the two layers. To facilitate com-
parisons with the bounds derived for sigmoid networks
we used �std (see eq. (20)) as a measure of dependence
between the layers.

Figure 2 illustrates the accuracy of the computed
bounds as a function of �std

6. The samples with zero
relative error are from the upper bound in cases where
all the instantiated variables are zero since the bound
becomes exact whenever this happens. The lower bound
is slightly worse than the one for sigmoid networks most
likely due to the symmetry and smoother nature of the
sigmoid function. As with the sigmoid networks the up-
per bound becomes less accurate more quickly.

4 Discussion and future work

Applying probabilistic methods to real world inference
problems can lead to the emergence of cliques that are
prohibitively large for exact algorithms (for example, in
medical diagnosis). We focused on dealing with such
large (sub)structures in the context of sigmoid belief
networks and noisy-OR networks. For these networks
we developed techniques for computing upper and lower
bounds on the likelihoods of partial instantiations of vari-
ables. The bounds serve as an alternative to sampling
methods in the presence of intractable structures. They
can de�ne con�dence intervals for the likelihoods and
can be used to improve the accuracy of decision making
in intractable networks.

6The slight unevenness of the samples are due to the non-
linear relationship between the Dirichlet parameter n and
�std.

5



0.05 0.1 0.15 0.2 0.25
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Stdv

R
el

at
iv

e 
er

ro
rs

 in
 lo

g−
lik

el
ih

oo
d

Figure 2: Accuracy of the bounds for noisy-OR net-
works. The solid lines are the median relative errors
in log-likelihood as a function of �std. The upper and
lower curves correspond to the upper and lower bounds
respectively.

Toward extending the work presented in this paper
we note that both the upper and lower bounds can be
improved by considering a mixture paritioning (Jaakkola
& Jordan, 1996) of the space of uninstantiated variables
instead of using a completely factorized approximation.
Furthermore, the restriction of the upper bounds for two-
level networks can be overcome, for example, by inter-
lacing them with sampling techniques, although other
extensions may be possible as well. Following Saul &
Jordan (1996) we may also merge the obtained bounds
with exact methods whenever they are feasible.
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A Sigmoid transformation

Here we derive and discuss the following transformation:

g(x) =
1

1 + e�x
= min

�2[0;1]
e�x�H(�)

Although a proof by hindsight would be shorter than a
direct derivation we present the derivation for it is more
informative. To this end, let us switch to log scale and
consider

� log(1 + e�x) = � log
X

m2f0;1g

e�mx

= � log
X

m2f0;1g

�m(1� �)1�m
e�mx

�m(1� �)1�m

= � logEf
e�mx

�m(1� �)1�m
g

� Ef� log
e�mx

�m(1� �)1�m
g

= �x+ � log � + (1� �) log(1 � �)

= �x�H(�)

which follows from interpreting �m(1��)1�m as a proba-
bility mass for m and from an application of Jensen's in-
equality. By actually performing the minimization over
� gives �� = g(�x) and leads to an equality instead of
a bound. The geometry of the bound when � is kept
�xed for all x is illustrated in �gure 3. The value of x
for which the chosen � is optimal is the point where the
bound is exact.

We �nally note that the above transformation can be
understood as a type of Legendre transformation.
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Figure 3: Geometry of the sigmoid transformation. The
dashed curve plots expf�x�H(�)g as a function of x for
a �xed � (=0:5).

B Noisy-OR transformation

Here we provide a derivation for the transformation

1� e�x = min
��1

e�x�F (�) (39)

presented in the text. Switching to log scale we �nd

log(1� e�x) = � log
1

1� e�x
= � log

1X
k=0

e�kx

= � log

1X
k=0

(1 � q)qk
e�kx

(1� q)qk

= � logEf
e�kx

(1� q)qk
g

� Ef� log
e�kx

(1� q)qk
g

=

1X
k=0

(1� q)qkkx+

1X
k=0

(1� q)qk[log(1� q) + k log q]

=
q

1� q
x+ log(1� q) +

q

1� q
log q

where we have interpreted (1� q)qk as a probability dis-
tribution for k and used Jensen's inequality. Minimizing
the above bound with respect to q gives q� = e�x and
the bound becomes exact. The original transformation
follows by setting � = q=(1� q). If the value of � is kept
constant, the transformation yields a bound, the geom-
etry of which is shown in �gure 4. The point where the
bound touches the 1� e�x curve de�nes x for which the
constant � is optimal.

As in the sigmoid case the resulting transformation
can be seen as a type of Legendre transformation.

C Noisy-OR expansion

The noisy-OR expansion

1� e�x =

1Y
k=0

g(2kx) (40)

follows simply from

1� e�x =
(1 + e�x)(1 � e�x)

1 + e�x
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Figure 4: Geometry of the noisy-OR transformation.
The dashed curve gives expf�x � F (�)g as a function
of x when � is �xed at 0:5.

= g(x)(1 � e�2x)

= g(x)
(1 + e�2x)(1� e�2x)

1 + e�2x

= g(x)g(2x)(1 � e�4x) (41)

and induction. For x > 0 the accuracy of the expansion

is governed by 1�e�2
k
x which goes to one exponentially

fast. Also since g(2k0) = 1=2, the expansion becomes
(1
2
)N at x = 0, where N is the number of terms included.

As this approaches 1 � e�0 = 0 exponentially fast, we
conclude that the rapid convergence is uniform. Figure
5 illustrates the accuracy of the expansion for small N .
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Figure 5: Accuracy of the noisy-OR expansion. Dotted
line: N = 1, dashed line: N = 2, dotdashed: N = 3. N
is the number of terms included in the expansion.

D Quadratic bound

For X 2 [0; 1] we can bound � log(1+X) by a quadratic
expression:

� log(1 +X) � a(X � x)2 + b(X � x) + c (42)

where c = � log(1 + x), b = �1=(1 + x), and a =
�[(1 � x)b + c + log 2]=(1 � x)2. The coe�cents can
be derived by requiring that the quadratic expression
and it's derivative are exact at X = x, and by choosing
the largest possible a such that the expression remains
a bound. The resulting approximation is good for all
x 2 [0; 1] and can be optimized by setting x = EfXg.

Let us now use this quadratic bound in eq. (36) to
better approximate the expectations. To simplify the
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ensuing formulas we use the notation

EQf e
�2k

P
j
�ijSj

g =

=
Y
j

�
�je

�2k�ij + 1� �j

�
= X

(k)
i

(43)

With these we straightforwardly �nd

logP (fSigi2Lj�)

�
X
ik

�iaik

h
X

(k+1)
i

� 2X
(k)
i

x
(k)
i

+ (x
(k)
i

)2
i

+
X
ik

�i

h
bik(X

(k)
i

� x
(k)
i

) + cik

i

�
X
i

(1� �i)
X
j

�ij�j +HQ (44)

which is optimized with respect to x
(k)
i

simply by setting

x
(k)

i
= X

(k)

i
. The simpler bound in eq. (37) corresponds

to ignoring the quadratic correction, i.e., using aik = 0
above.
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