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to illustrate the advantages of the general approach.
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1 Introduction

For multivariate statistical modeling applications, such as hidden Markov modeling for speech

recognition, the identi�cation and manipulation of relevant conditional independence assump-

tions can be a useful tool for model-building and analysis. There has recently been a consider-

able amount of work exploring the relationships between conditional independence in probability

models and structural properties of related graphs. In particular, the separation properties of

a graph can be directly related to conditional independence properties in a set of associated

probability models.

The key point of this paper is that the analysis and manipulation of HMMs can be facilitated

by exploiting the relationship between probability models and graphs. The major advantages

to be gained are in:

� Model Description: A graphical model provides a natural and intuitive medium for dis-

playing dependencies which exist between random variables. In particular, the structure of

the graphical model clari�es the conditional independencies in the associated probability

models, allowing model assessment and revision.

� Computational E�ciency: The graphical model is a powerful basis for specifying e�cient

algorithms for computing quantities of interest in the probability model, e.g., calculation

of the probability of observed data given the model. These inference algorithms can be

speci�ed automatically once the initial structure of the graph is determined.

We will refer to both probability models and graphical models. Each consists of structure

and parameters. The structure of the model consists of the speci�cation of a set of conditional

independence relations for the probability model, or a set of (missing) edges in the graph for the

graphical model. The parameters of both the probability and graphical models consist of the

speci�cation of the joint probability distribution: in factored form for the probability model and

de�ned locally on the nodes of the graph in the graphical model. The inference problem is that

of the calculation of posterior probabilities of variables of interest given observable data and

given a speci�cation of the probabilistic model. The related task of MAP identi�cation is the

determination of the most likely state of a set of unobserved variables, given observed variables

and the probabilistic model. The learning or estimation problem is that of determining the

parameters (and possibly structure) of the probabilistic model from data.

This paper reviews the applicability and utility of graphical modeling to HMMs. Section 2

introduces the basic notation for probability models and associated graph structures. Section 3

summarizes relevant results from the literature on probabilistic independence networks (or

PINs for short), in particular, the relationships which exist between separation in a graph and

conditional independence in a probability model. Section 4 interprets the standard �rst-order

HMM in terms of PINs. In Section 5 the standard algorithm for inference in a directed PIN is

discussed and applied to the standard HMM in Section 6. A result of interest is that the F-B and

Viterbi algorithms are shown to be special cases of this inference algorithm. Section 7 shows

that the inference algorithms for undirected PINs are essentially the same as those already

discussed for directed PINs. Section 8 introduces more complex HMM structures for speech

modeling and analyzes them using the graphical model framework. Section 9 reviews known

estimation results for graphical models and discusses their potential implications for practical

problems in the estimation of HMM structures, and Section 10 contains summary remarks.
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2 Notation and Background

LetU = fX1; X2; : : : ; XNg represent a set of discrete-valued random variables. For the purposes

of this paper we restrict our attention to discrete-valued random variables, however, many of the

results stated generalize directly to continuous and mixed sets of random variables (Lauritzen

and Wermuth 1989; Whittaker 1990). Let lower case x1 denote one of the values of variable X1:

the notation
P

x1
is taken to mean the sum over all possible values ofX1. Let p(xi) be shorthand

for the particular probability p(Xi = xi), whereas p(Xi) represents the probability function for

Xi (a table of values, since Xi is assumed discrete), 1 � i � N . The full joint distribution

function is p(U) = (X1; X2; : : : ; XN) and p(u) = (x1; x2; : : : ; xN) denotes a particular value

assignment for U.

If A;B and C are disjoint sets of random variables, the conditional independence rela-

tion A ? BjC is de�ned such that that A is independent of B given C, i.e., p(A;BjC) =

p(AjC)p(BjC). Conditional independence is symmetric. Note also that marginal independence

(no conditioning) does not in general imply conditional independence, nor does conditional

independence in general imply marginal independence (Whittaker 1990).

With any set of random variables U we can associate a graph G de�ned as G = (V;E). V

denotes the set of vertices or nodes of the graph such that there is a one-to-one mapping between

the nodes in the graph and the random variables, i.e., V = fX1; X2; : : : ; XNg. E denotes the

set of edges, fe(i; j)g, where i and j are shorthand for the nodes Xi and Xj , 1 � i; j � N .

Edges of the form e(i; i) are not of interest and thus are not allowed in the graphs discussed in

this paper.

If the edges are ordered such that e(i; j) means that the edge is directed from node i to

node j, i is a parent of its child j. An ancestor of node i is a node which has as a child either i

or another ancestor of i. A subset of nodes A is an ancestral set if it contains its own ancestors.

A descendant of i is a either a child of i or a child of a descendant of i.

Two nodes i and j are adjacent in G if E contains the edge e(i; j). A path is a sequence of

distinct nodes f1; : : : ; mg such that there exists an edge for each pair of nodes fl; l+ 1g on the

path. A graph is singly-connected if there exists only one path between any two nodes in the

graph. A cycle is a path such the beginning and ending nodes on the path are the same. A

directed cycle is a cycle of directed edges which all point in the same direction.

If E contains only undirected edges then the graph G is an undirected graph (UG). If E

contains only directed edges and no directed cycles, then G is an acyclic directed graph (ADG).

If E contains a mixture of directed and undirected edges, then it is referred to as a mixed or

chain graph. We note in passing that there exists a theory for graphical independence models

involving mixed graphs (Whittaker 1990) but mixed graphs will not be discussed further in this

paper.

For an UG G, a subset of nodes C separates two other subsets of nodes A and B if every

path joining every pair of nodes i 2 A and j 2 B contains at least one node from C. For ADGs

and mixed graphs analagous, but somewhat more complicated, separation properties exist.

A cycle is chordless if no other than successive pairs of nodes in the cycle are adjacent. A

graph G is triangulated if and only if the only chordless cycles in the graph contain no more

than three nodes. Thus, if one can �nd a chordless cycle of length four or more, G is not

triangulated.

A graph G is complete if there are edges between all pairs of nodes. The cliques of G are

the largest subgraphs of G which are complete. A clique tree for G is a tree of cliques such that
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Figure 1: An example of a UPIN structure G which captures a particular set of condi-

tional independence relationships among the set of variables fX1; : : : ; X6g. For example,

X5 ? fX1; X2; X4; X6gjfX3g.

there is a one-to-one node correspondence between the cliques of G and the nodes of the tree.

3 Probabilistic Independence Networks

We briey review the relation between a probability model p(U) = p(X1; : : : ; XN) and a prob-

abilistic independence network structure G = (V;E). The results in this section are largely

summarized versions of material in Pearl (1988) and Whittaker (1990) .

A probabilistic independence network structure (PIN structure) G, is a graphical statement

of a set of conditional independence relations for a set of random variables U. Absence of an

edge e(i; j) in G implies some independence relation between Xi and Xj . Thus, a PIN structure

G is a particular way of specifying the independence relationships present in the probability

model p(U). We say that G implies a set of probability models p(U), denoted as PG, i.e.,

p(U) 2 PG. In the reverse direction, a particular model p(U) embodies a particular set of

conditional independence assumptions which may or may not be representable in a consistent

graphical form. One can derive all of the conditional independence properties and inference

algorithms of interest for U without reference to graphical models. However, as has been

emphasized in the statistical and AI literature, and is reiterated in this paper in the context

of hidden Markov models, there are distinct advantages to be gained from using the graphical

formalism.

3.1 Undirected Probabilistic Independence Networks (UPINs)

A UPIN is composed of both a UPIN structure and UPIN parameters. A UPIN structure

speci�es a set of conditional independence relations for a probability model in the form of an

undirected graph. UPIN parameters consist of numerical speci�cations of a particular probabil-

ity model consistent with the UPIN structure. Terms used in the literature to described UPINs

of one form or another include Markov random �elds, Markov networks, Boltzmann machines,

and log-linear models.
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Figure 2: A triangulated version of the UPIN structure G from Figure 1.

3.1.1 Conditional Independence Semantics of UPIN Structures

Let A, B, and S be any disjoint subsets of nodes in an undirected graph (UG) G. G is an

undirected probabilistic independence network structure (UPIN structure) for p(U) if for any

A, B, and S such that S separatesA and B in G, the conditional independence relation A ? BjS

holds in p(U). The set of all conditional independence relations implied by separation in G

constitute the (global) Markov properties of G. Figure 1 shows a simple example of a UPIN

structure for 6 variables.

Thus, separation in the UPIN structure implies conditional independence in the probability

model, i.e., it constrains p(U) to belong to a set of probability models PG which obey the

Markov properties of the graph. Note that a complete UG is trivially a UPIN structure for

any p(U) in the sense that there are no constraints on p(U). G is a perfect undirected map

for p if G is a UPIN structure for p and all the conditional independence relations present

in p are represented by separation in G. For many probability models p there are no perfect

undirected maps. A weaker condition is that a UPIN structure G is minimal for a probability

model p(U) if the removal of any edge from G implies an independence relation which is not

present in the model p(U), i.e., the structure without the edge is no longer a UPIN structure for

p(U). Minimality is not equivalent to perfection (for UPIN structures) since, for example, there

exist probability models with independencies which can not be represented as UPINs except

for the complete UPIN structure. For example, if X and Y are marginally independent, but

conditionally dependent given Z (see Figure 4(a) for an example), then the complete graph is

the minimal UPIN structure for fX; Y; Zg but it is not perfect because of the presence of an

edge between X and Y .

3.1.2 Probability Functions on UPIN structures

Given a UPIN structure G, the joint probability distribution forU can be expressed as a simple

factorization:

p(u) = p(x1; : : : ; xN) =
Y
VC

aC(xC) (1)

where VC is the set of cliques of G, xC represents a value assignment for the variables in a

particular clique C, and the aC(xC) are non-negative clique functions. The clique functions
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represent the particular parameters associated with the UPIN structure. This corresponds

directly to the standard de�nition of a Markov random �eld (Isham 1981). The clique functions

reect the relative \compatibility" of the value assignments in the clique.

A model p is said to be decomposable if it has a minimal UPIN structure G which is trian-

gulated (Figure 2). A UPIN structure G is decomposable if G is triangulated. For the special

case of decomposable models, G can be converted to a junction tree, which is a tree of cliques

of G arranged such that the cliques satisfy the running intersection property, namely, that each

node in G which appears in any two di�erent cliques also appears in all cliques on the path

between these two cliques. Associated with each edge in the junction tree is a separator S,

such that S contains the variables in the intersection of the two cliques which it links. Given

a junction tree representation, one can factorize p(U) as the product of clique marginals over

separator marginals (Pearl 1988):

p(u) =

Q
C2VC

p(xC)Q
S2VS

p(xS)
(2)

where p(xC) and p(xS) are the marginal (joint) distributions for the variables in clique C and

separator S respectively and VC and VS are the set of cliques and separators in the junction

tree.

This product representation is central to the results in the rest of the paper. It is the basis

of the fact that globally consistent probability calculations on U can be carried out in a purely

local manner. The mechanics of these local calculations will be described later in the paper.

At this point it is su�cient to note that the complexity of the local inference algorithms scales

as the sum of the sizes of the state-spaces of the cliques. Thus, local clique updating can make

probability calculations on U much more tractable than using \brute force" inference, if the

model decomposes into relatively small cliques.

Many probability models of interest may not be decomposable. However, we can de�ne a

decomposable cover G0 for p such that G0 is a triangulated, but not necessarily minimal, UPIN

structure for p. Since any UPIN G can be triangulated simply by addition of the appropriate

edges, one can always identify at least one decomposable cover G0. However, a decomposable

cover may not be minimal in that it can contain edges which obscure certain independencies

in the model p: for example, the complete graph is a decomposable cover for all possible

probability models p. For e�cient inference, the goal is to �nd a decomposable cover G0 such

that G0 contains as few extra edges as possible over the original UPIN structure G. Later we

discuss a speci�c algorithm for �nding decomposable covers for arbitrary PIN structures. All

singly-connected UPIN structures imply probability models PG which are decomposable.

Note that, given a particular probability model p and a UPIN G for p, the process of adding

extra edges to G to create a decomposable cover does not change the underlying probability

model p, i.e., the added edges are a convenience for manipulating the graphical representation,

but the underlying numerical probability speci�cations remain unchanged.

An important point is that decomposable covers have the running intersection property and

thus can be factored as in Equation 2: thus local clique updating is also possible with non-

decomposable models via this conversion. Once again, the complexity of such local inference

scales with the sum of the size of state-spaces of the cliques in the decomposable cover.

In summary, any UPIN structure can be converted to a junction tree permitting inference

calculations to be carried out purely locally on cliques.
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Figure 3: (a) A DPIN structure GD which captures a set of independence relationships among

the set fX1; : : : ; X5g. For example, X4 ? X1jX2. (b) The moral graph G
M for GD, where the

parents of X4 have been linked.

3.2 Directed Probabilistic Independence Networks (DPINs)

A DPIN is composed of both a DPIN structure and DPIN parameters. A DPIN structure

speci�es a set of conditional independence relations for a probability model in the form of a

directed graph. DPIN parameters consist of numerical speci�cations of a particular probability

model consistent with the DPIN structure. DPINs are referred to in the literature using di�er-

ent names, including Bayes network, belief network, recursive graphical model, causal (belief)

network, and probabilistic (causal) network.

3.2.1 Conditional Independence Semantics of DPIN Structures

A DPIN structure is an ADG GD = (V;E) where there is a one-to-one correspondence between

V and the elements of the set of random variables U = fX1; : : : ; XNg.

The moral graph GM of GD is de�ned as the undirected graph obtained from GD by placing

undirected edges between all non-adjacent parents of each node and then dropping the directions

from the remaining directed edges (see Figure 3b for an example). The term \moral" was coined

to denote the \marrying" of \unmarried" (nonadjacent) parents.

Let A, B, and S be any disjoint subsets of nodes in GD. GD is a DPIN structure for p(U)

if for any A, B, and S such that S separates A and B in GD, the conditional independence

relation A ? BjS holds in p(U). This is the same de�nition as for a UPIN structure except

that separation has a di�erent interpretation in the directed context: S separates A from B

in a directed graph if S separates A from B in the moral (undirected) graph of the smallest

ancestral set containing A, B, and S (Lauritzen et al. 1990). It can be shown that this is

equivalent to the statement that a variable Xi is independent of all other nodes in the graph

except for its descendants, given the values of its parents. Thus, as with a UPIN structure, the

DPIN structure implies certain conditional independence relations, which in turn imply a set

of probability models p 2 PGD . Figure 3a contains a simple example of a DPIN structure.
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Figure 4: (a) The DPIN structure to encode the fact that X3 depends on X1 and X2 but X1 ?

X2. For example, consider that X1 and X2 are two independent coin ips and that X3 is a bell

which rings when the ips are the same. There is no perfect UPIN structure which can encode

these dependence relationships. (b) A UPIN structure which encodes X1 ? X4jfX2; X3g and

X2 ? X3jfX1; X4g. There is no perfect DPIN structure which can encode these dependencies.

3.2.2 Probability Functions on DPINs

A basic property of a DPIN structure is that it implies a direct factorization of the joint

probability distribution p(U):

p(u) =
NY
i=1

p(xijpa(xi)) (3)

where pa(xi) denotes a value assignment for the parents of Xi. A probability model p can

be written in this factored form in a trivial manner by the conditioning rule. Consequently

there are many possible DPIN structures consistent with a particular probability model p,

potentially containing extra edges which hide true conditional independence relations. Thus,

one can de�ne minimal DPIN structures for p in a manner exactly equivalent to that of UPIN

structures: deletion of an edge in a minimal DPIN structure GD implies an independence

relation which does not hold in p 2 PGD . Similarly, G
D is a perfect DPIN structure G for p if

GD is a DPIN structure for p and all the conditional independence relations present in p are

represented by separation in GD. As with UPIN structures, minimal does not imply perfect

for DPIN structures. For example, consider the independence relations X1 ? X4jfX2; X3g and

X2 ? X3jfX1; X4g: the minimal DPIN structure contains an edge from X3 to X2 (see Figure

4(b)).

3.3 Di�erences between Directed and Undirected Graphical Representa-

tions

It is an important point that directed and undirected graphs possess di�erent conditional inde-

pendence semantics. There are common conditional independence relations which have perfect

DPIN structures but no perfect UPIN structures and vice-versa (see Figure 4 for examples).

Does a DPIN structure have the same Markov properties as the UPIN structure obtained by

dropping all the directions on the edges in the DPIN structure? The answer is yes if and only if

the DPIN structure contains no subgraphs where a node has two or more non-adjacent parents

(Whittaker 1990; Pearl et al. 1990). In general, it can be shown that if a UPIN structure G
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for p is decomposable (triangulated) then it has the same Markov properties as some DPIN

structure for p.

On a more practical level, DPIN structures are frequently used to encode causal information,

i.e., to formally represent the belief that Xi preceeds Xj in some causal sense, e.g., temporally.

DPINs have found application in causal modelling in applied statistics and arti�cial intelligence.

Their popularity in these �elds stems from the fact that the joint probability model can be

speci�ed directly via Equation 3, i.e., via the speci�cation of conditional probability tables or

functions (Spiegelhalter et al. 1991). In contrast, UPINs must be speci�ed in terms of clique

functions (as in Equation 1) which may not be as easy to work with (cf. Geman and Geman

(1984), Modestino and Zhang (1992) and Vandermeulen et al. (1994) for examples of ad hoc

design of clique functions in image analysis). UPINs are more frequently used in problems

such as image analysis and statistical physics where associations are thought to be correlational

rather than causal.

3.4 From DPINs to (Decomposable) UPINs

The moral UPIN structure GM (obtained from the DPIN structure GD) does not imply any

new independence relations which are not present in GD. As with triangulation, however,

the additional edges may obscure conditional independence relations which are implicit in the

numeric speci�cation of the original probability model p associated with the DPIN structure

GD. Furthermore, GM may not be triangulated (decomposable). By the addition of appropriate

edges, the moral graph can be converted to a (non-unique) triangulated graph G0, namely a

decomposable cover for GM . In this manner, for any probability model p for which GD is a

DPIN structure, one can construct a decomposable cover G0 for p.

This mapping from DPIN structures to UPIN structures was �rst discussed in the context

of e�cient inference algorithms by Lauritzen and Spiegelhalter (1988). The advantage of this

mapping derives from the fact that analysis and manipulation of the resulting UPIN is consid-

erably more direct than dealing with the original DPIN. Furthermore, it has been shown that

many of the inference algorithms for DPINs are in fact special cases of inference algorithms for

UPINs and can be considerably less e�cient (Shachter et al. 1994).

4 Modeling HMMs as PINs

4.1 PINs for HMMs

In hidden Markov modeling problems (Poritz 1988; Rabiner 1989) we are interested in the set

of random variables U = fH1; O1; H2; O2; : : : ; HN�1; ON�1; HN ; ONg, where Hi is a discrete-

valued hidden variable at index i, and Oi is the corresponding discrete-valued observed variable

at index i, 1 � i � N (the results here can be directly extended to continuous-valued observ-

ables). The index i denotes a sequence from 1 to N , for example, discrete time steps. Note

that Oi is considered univariate for convenience: the extension to the multivariate case with d

observables is straightforward but is omitted here for simplicity since it does not illuminate the

conditional independence relationships in the HMM.

The well-known simple �rst-order HMM obeys the following two conditional independence

relations:

Hi ? fH1; O1; : : : ; Hi�2; Oi�2; Oi�1gjHi�1; 2 � i � N (4)
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Figure 5: (a) The PIN structure for HMM(1,1) (b) A corresponding junction tree.
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Figure 6: DPIN structures for HMM(1,1): (a) the DPIN structure for the HMM(1,1) probability

model, (b) a DPIN structure which is not a DPIN structure for the HMM(1,1) probability model.

and

Oi ? fH1; O1; : : : ; Hi�1; Oi�1gjHi; 2 � i � N (5)

We will refer to this \�rst-order" hidden Markov probability model as HMM(1,1): the notation

HMM(K; J) is de�ned such that the model has state memory of depth K and contains J

separate underlying state processes. The notation will be clearer in later sections when we

discuss speci�c examples with K; J > 1.

Construction of a PIN for HMM(1,1) is particularly simple. In the undirected

case, assumption 1 requires that each state Hi is only connected to Hi�1 from the set

fH1; O1; : : : ; Hi�2; Oi�2; Oi�1g. Assumption 2 requires that Oi is only connected to Hi. The

resulting UPIN structure for HMM(1,1) is shown in Figure 5a. This graph is singly-connected

and thus implies a decomposable probability model p for HMM(1,1), where the cliques are of

the form fHi; Oig and fHi�1; Hig (Figure 5b). In Section 5 we will see how the joint probability

function can be expressed as a product function on the junction tree, thus leading to a junction

tree de�nition of the familiar F-B and Viterbi inference algorithms.

For the directed case the connectivity for the DPIN structure is the same. It is natural to

choose the directions on the edges between Hi�1 and Hi as going from i� 1 to i (although the

reverse direction could also be chosen without changing the Markov properties of the graph).

The directions on the edges between Hi and Oi must be chosen as going from Hi to Oi rather
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than in the reverse direction (Figure 6a). In reverse (Figure 6b) the arrows would imply that

Oi is marginally independent of Hi�1 which is not true in the HMM(1,1) probability model.

The proper direction for the edges implies the correct relation, namely that Oi is conditionally

independent of Hi�1 given Hi.

The DPIN structure for HMM(1,1) does not possess a subgraph with non-adjacent parents.

As stated earlier this implies that the implied independence properties of the DPIN structure are

the same as those of the corresponding UPIN structure obtained by dropping the directions from

the edges in the DPIN structure, and thus they both result in the same junction tree structure

(Figure 5b). Thus, for the HMM(1,1) probability model, the minimal directed and undirected

graphs possess the same Markov properties, i.e., imply the same conditional independence

relations. Furthermore, both PIN structures are perfect maps for the directed and undirected

cases respectively.

4.2 Inference and MAP Problems in HMMs

In the context of HMMs, the most common inference problem is the calculation of the likelihood

of the observed evidence given the model, i.e., p(o1; : : : ; oN jmodel), where the o1; : : : ; oN denote

observed values for O1; : : : ; ON . (In this section we will assume that we are dealing with

one particular model where the structure and parameters have already been determined and,

thus, we will not explicitly indicate conditioning on the model). The \brute force" method for

obtaining this probability would be to sum out the unobserved state variables from the full

joint probability distribution:

p(o1; : : : ; oN) =
X

h1;:::;hN

p(H1; o1; : : : ; HN ; oN) (6)

where hi denotes the possible values of hidden variable Hi.

Another inference calculation of interest is the calculation of p(hijo1; : : : ; oN), for any or all i,

namely, the probability of a particular hidden state value given the observed evidence. Inferring

the posterior state probabilities is useful when the states have direct physical interpretations

(as in fault monitoring applictions (Smyth 1994)) and is also implicitly required during the

standard Baum-Welch learning algorithm for HMM(1,1).

In general, both of these computations scale as mN where m is the number of states for

each hidden variable. In practice, the F-B algorithm (Poritz 1988; Rabiner 1989) can perform

these inference calculations with much lower complexity, namely Nm2. The likelihood of the

observed evidence can be obtained with the forward step of the F-B algorithm: calculation of

the state posterior probabilities requires both forward and backward steps. The F-B algorithm

relies on a factorization of the joint probability function to obtain locally recursive methods One

of the key points in this paper is that the graphical modeling approach provides an automatic

method for determining such local e�cient factorizations, for an arbitrary probabilistic model,

if e�cient factorizations exist given the CI relations speci�ed in the model.

The MAP identi�cation problem in the context of HMMs involves identifying the most likely

hidden state sequence given the observed evidence. Just as with the inference problem, the

Viterbi algorithm provides an e�cient, locally recursive method for solving this problem with

complexity Nm2, and again, as with the inference problem, the graphical modeling approach

provides an automatic technique for determining e�cient solutions to the MAP problem for

arbitrary models, if an e�cient solution is possible given the structure of the model.

10



5 Inference and MAP Algorithms for DPINs

Inference and MAP algorithms for DPINs and UPINS are quite similar: the UPIN case in-

volves some subtleties not encountered in DPINs and so discussion of UPIN inference and

MAP algorithms is deferred until Section 7. The inference algorithm for DPINs (developed

by Jensen, Lauritzen and Oleson (1990) and hereafter referred to as the JLO algorithm) is

a descendant of an inference algorithm �rst described by Lauritzen and Spiegelhalter (1988).

The JLO algorithm applies to discrete-valued variables: extensions to the JLO algorithm for

Gaussian and Gaussian-mixture distributions are discussed in Lauritzen and Wermuth (1989).

A closely related algorithm to the JLO algorithm, developed by Dawid (1992), solves the MAP

identi�cation problem with the same time-complexity as the JLO inference algorithm.

We show that the JLO and Dawid algorithms are strict generalizations of the well-known

F-B and Viterbi algorithms for HMM(1,1), in that they can be applied to arbitrarily complex

graph structures (and thus a large family of probabilistic models beyond HMM(1,1)) and handle

missing values, partial inference, and so forth in a straightforward manner.

There are many variations on the basic JLO and Dawid algorithms. For example, Pearl

(1988) describes related versions of these algorithms in his early work . However, it can be

shown (Shachter et al. 1994) that all known exact algorithms for inference on DPINs are

equivalent at some level to the JLO and Dawid algorithms. Thus, it is su�cient to consider

the JLO and Dawid algorithms in our discussion as they subsume other graphical inference

algorithms.

The JLO and Dawid algorithms operate as a two-step process:

1. The construction step: this involve a series of sub-steps where the original directed graph

is moralized and triangulated, a junction tree is formed, and the junction tree is initialized.

2. The propagation step: the junction tree is used in a local message-passing manner to

propagate the e�ects of observed evidence, i.e., to solve the inference and MAP problems.

The �rst step is carried out only once for a given graph. The second (propagation) step is

carried out each time a new inference for the given graph is requested.

5.1 The Construction Step of the JLO Algorithm: From DPIN structures

to Junction Trees

We illustrate the construction step of the JLO algorithm using the simple DPIN structure,

GD, over discrete variables U = fX1; : : : ; X6g shown in Figure 7a. The JLO algorithm �rst

constructs the moral graph GM (Figure 7b). It then triangulates the moral graph GM to obtain

a decomposable cover G0 (Figure 7c). The algorithm operates in a simple greedy manner based

on the fact that a graph is triangulated if and only if all of its nodes can be eliminated, where

a node can be eliminated whenever all of its neighbors are pairwise linked. Whenever a node is

eliminated, it and its neighbors de�ne a clique in the junction tree that is eventually constructed.

Thus, we can triangulate a graph and generate the cliques for the junction tree by eliminating

nodes in some order, adding links if necessary. If no node can be eliminated without adding

links, then we choose the node that can be eliminated by adding the links that yield the clique

with the smallest state-space (Jensen 1995).

After triangulation the JLO algorithm constructs a junction tree from G0, i.e., a clique tree

satisfying the running intersection property. The junction tree construction is based on the
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Figure 7: (a) A simple DPIN structure GD. (b) The corresponding (undirected) moral graph

GM . (c) The corresponding triangulated graph G0. (d) The corresponding junction tree.

following fact. De�ne the weight of a link between two cliques as the number of variables in

their intersection. Then, a tree of cliques will satisfy the running intersection property if and

only if it is a spanning tree of maximal weight. Thus, the JLO algorithm constructs a junction

tree by choosing successively a link of maximal weight unless it creates a cycle. The junction

tree constructed from the cliques de�ned by the DPIN structure triangulation in Figure 7c is

shown in Figure 7d.

The worst-case complexity is O(N3) for the triangulation heuristic and O(N2 logN) for the

maximal spanning tree portion of the algorithm. This construction step is carried out only once

as an initial step to convert the original graph to a junction tree representation.

5.2 Initializing the Potential Functions in the Junction Tree

The next step is to take the numeric probability speci�cations as de�ned on the directed graph

GD (Equation 3) and convert this information into the general form for a junction tree repre-

sentation of p (Equation 2). This is achieved by noting that each variable Xi is contained in at

least one clique in the junction tree. Assign each Xi to just one such clique and for each clique

de�ne the potential function aC(C) to be either the product of p(Xijpa(Xi)) or 1 if no variables

are assigned to that clique. De�ne the separator potentials (in Equation 2) to be 1 initially.

In the section which follows we describe the general JLO algorithm for propagating messages

through the junction tree to achieve globally consistent probability calculations. At this point it

is su�cient to know that a schedule of local message passing can be de�ned which converges to

a globally consistent marginal representation for p, i.e., the potential on any clique or separator

is the marginal for that clique or separator (the joint probability function). Thus, via local
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message-passing, one can go from the initial potential representation de�ned above to a marginal

representation:

p(u) =

Q
C2VC

p(xC)Q
S2VS

p(xS)
(7)

At this point the junction tree is initialized. This operation in itself is not that useful, of more

interest is the ability to propagate information through the graph given some observed data

and the initialized junction tree, e.g., to calculate the posterior distributions of some variables

of interest.

From this point onwards we will implicitly assume that the junction tree has been initialized

as described above so that the potential functions are the local marginals.

5.3 Local Message Propagation in Junction Trees Using The JLO Algorithm

In general p(U) can be expressed as

p(u) =

Q
C2VC

aC(xC)Q
S2VS

bS(xS)
(8)

where the aC and bS are non-negative potential functions (the potential functions could be

the initial marginals described above for example). K = (faC : C 2 VCg; fbS : S 2 SCg) is a

representation for p(U). A factorizable function p(U) can admit many di�erent representations,

i.e., many di�erent sets of clique and separator functions which satisfy Equation 8 given a

particular p(U).

As mentioned above, the JLO algorithm carries out globally consistent probability calcu-

lations via local message-passing on the junction tree, i.e., probability information is passed

between neighboring cliques and clique and separator potentials are updated based on this lo-

cal information. A key point is that the cliques and separators are updated in a fashion which

ensures that at all times K is a representation for p(U), i.e., Equation 8 holds at all times.

Eventually the propagation converges to the marginal representation given the initial model

and the observed evidence.

The message-passing proceeds as follows. We can de�ne a ow from clique Ci to Cj in the

following manner where Ci and Cj are two cliques which are adjacent in the junction tree. Let

Sk be the separator for these two cliques. De�ne

b�Sk(xSk) =
X
CinSk

aCi(xCi) (9)

and

a�Cj(xCj ) = aCj(xCj)�Sk(xSk) (10)

where

�Sk(xSk) =
b�Sk (xSk)

bSk (xSk)
: (11)

�Sk (xSk) is the update factor. Passage of a ow corresponds to updating the neighboring clique

with the probability information contained in the originating clique. This ow induces a new

representation K� = (fa�C : C 2 VCg; fb
�
S : S 2 SCg) for p(U).

A schedule of such ows can be de�ned such that all cliques are eventually updated with

all relevant information and the junction tree reaches an equilibrium state. The most direct
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scheduling scheme is a two-phase operation where one node is denoted the root of the junction

tree. The collection phase involves passing ows along all edges towards the root-clique (if a

node is scheduled to have more than one incoming ow, the ows are absorbed sequentially).

Once collection is complete, the distribution phase involves passing ows out from this root in

the reverse direction along the same edges. There are at most two ows along any edge in the

tree in a non-redundant schedule. Note that the directionality of the ows in the junction tree

need have nothing to do with any directed edges in the original DPIN structure.

5.4 The JLO Algorithm for Inference given Observed Evidence

The particular case of calculating the e�ect of observed evidence (inference) is handled in the

following manner. Consider that we observe evidence of the form e = fXi = x�i ; Xj = x�j ; : : :g

and Ue = fXi; Xj; : : :g denotes the set of variables which have been observed. Let Uh = UnUe

denote the set of hidden or unobserved variables and uh a value assignment for Uh.

Consider the calculation of p(Uh
je). De�ne an evidence function ge(xi) such that

ge(xi) =

(
1 if xi = x�i
0 otherwise.

(12)

Let

f�(u) = p(u)
Y
Ue

ge(xi) (13)

Thus, we have that f�(u) / p(uhje). To obtain f�(u) by operations on the junction tree one

proceeds as follows. First assign each observed variable Xi 2 Ue to one particular clique which

contains it (this is termed \entering the evidence into the clique"). Let CE denote the set of

all cliques into which evidence is entered in this manner. For each C 2 CE let

gC(xC) =
Y

fi:Xi is entered into Cg

ge(xi) (14)

Thus,

f�(u) = p(u)�
Y

C2CE

gC(xC): (15)

One can now propagate the e�ects of these modi�cations throughout the tree using the collect

and distribute schedule described in 5.3. Let xhC denote a value assignment of the hidden

(unobserved) variables in clique C. When the schedule of ows is complete one gets a new

representation K�
f such that the local potential on each clique is f�(xC) = p(xhC ; e), i.e., the

joint probability of the local unobserved clique variables and the observed evidence (Jensen et

al. 1990) (similarly for the separator potential functions). If one marginalizes at the clique over

the unobserved local clique variables,

X
Xh
C

p(xhC ; e) = p(e); (16)

one gets the probability of the observed evidence directly. Similarly, if one normalizes the

potential function at a clique to sum to 1, one obtains the conditional probability of the local

unobserved clique variables given the evidence, p(xhC je).
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5.5 Complexity of the Propagation Step of the JLO Algorithm

In general, the time complexity T of propagation within a junction tree is O(
PNC

i=1 s(Ci)) where

NC is the number of cliques in the junction tree and s(Ci) is the number of states in the joint

state-space of Ci (equal to the product over each variable in Ci of the number of states of

each variable). Thus, for inference to be e�cient, we need to construct junction trees with

small clique sizes. Problems of �nding optimally small junction trees (e.g., �nding the junction

tree with the smallest maximal clique) are NP-hard. Nonetheless, the heuristic algorithm for

triangulation described earlier has been found to work well in practice (Jensen et al. 1990;

Jensen 1995).

6 Inference and MAP Calculations in HMM(1,1)

6.1 The F-B Algorithm for HMM(1,1) is a Special Case of the JLO Algo-

rithm

Figure 5b shows the junction tree for HMM(1,1). In this section we apply the JLO algorithm to

the HMM(1,1) junction tree structure to obtain a particular inference algorithm for HMM(1,1).

As mentioned earlier, the HMM(1,1) inference problem consists of being given a set of values

for the observable variables,

e = fO1 = o1; O2 = o2; : : : ; ON = oNg (17)

and inferring the likelihood of e given the model. As described in the previous section this

problem can be solved exactly by local propagation in any junction tree using the JLO inference

algorithm.

Let the �nal clique in the chain containing (HN�1; HN) be the root clique. Thus, a non-

redundant schedule consists of �rst recursively passing ows from each (Oi; Hi) and (Hi�2; Hi�1)

to each (Hi�1; Hi) in the appropriate sequence (the \collect" phase), and then distributing ows

out in the reverse direction from the root clique. If we are only interested in calculating the

likelihood of e given the model, then the distribute phase is not necessary since we can simply

marginalize over the local variables in the root clique to obtain p(e).

A comment on notation: subscripts on potential functions and update factors indicate which

variables have been used in deriving that potential or update factor, e.g., fO1 indicates that this

potential has been updated based on information about O1 but not using information about

any other variables.

Assume that the junction tree has been initialized so that the potential function for each

clique and separator is the local marginal. Given the observed evidence e, each individual piece

of evidence O = o�i is entered into its clique (Oi, Hi) such that each clique marginal becomes

f�Oi(hi; oi) = p(hi; o
�
i ) after entering the evidence (as in Equation 14).

Consider the portion of the junction tree in Figure 8, and in particular the ow between

(Oi; Hi) and (Hi�1; Hi). By de�nition the potential on the separator Hi is updated to

f�Oi(hi) =
X
oi

f�(hi; oi) = p(hi; o
�
i ) (18)

The update factor from this separator owing into clique (Hi�1; Hi) is then

�Oi(hi) =
p(hi; o

�
i )

p(hi)
= p(o�i jhi): (19)
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Figure 8: Local message passing in the HMM(1,1) junction tree during the collect phase of a

\left to right" schedule. Ovals indicate cliques, boxes indicate separators, and arrows indicate

ows.

This update factor is \absorbed" into (Hi�1; Hi) as follows:

f�Oi(hi�1; hi) = p(hi�1; hi)�Oi(hi) = p(hi�1; hi)p(o
�
i jhi) (20)

Now consider the ow from clique (Hi�2; Hi�1) to clique (Hi�1; Hi). Let �i;j = fOi; : : : ; Ojg

denote a set of consecutive observable variables and ��i;j = fo�i ; : : : ; o
�
jg denote a set of observed

values for these variables, 1 � i < j � N . Assume that the potential on the separator Hi�1 has

been updated to

f��1;i�1 (hi�1) = p�(hi�1; �
�
1;i�1) (21)

via earlier ows in the schedule. Thus, the update factor on separator Hi�1 becomes

��1;i�1(hi�1) =
p�(hi�1; �

�
1;i�1)

p(hi�1)
(22)

and this gets absorbed into clique (Hi�1; Hi) to produce

f��1;i (hi�1; hi) = f�Oi(hi�1; hi)��1;i�1(hi�1)

= p(hi�1; hi)p(o
�
i jhi)

p�(hi�1; �
�
1;i�1)

p(hi�1)

= p(o�i jhi)p(hijhi�1)p
�(hi�1; �

�
1;i�1): (23)

Finally, we can calculate the new potential on the separator for the ow from clique (Hi�1; Hi)

to (Hi; Hi+1),

f��1;i (hi) =
X
hi�1

f��1;i (hi�1; hi) (24)

= p(o�i jhi)
X
hi�1

p(hijhi�1)p
�(hi�1; �

�
1;i�1) (25)

= p(o�i jhi)
X
hi�1

p(hijhi�1)f
�
�1;i�1

(hi�1) (26)
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Figure 9: Local message passing in the HMM(1,1) junction tree during the collect phase of a

\right to left" schedule. Ovals indicate cliques, boxes indicate separators, and arrows indicate

ows.

Proceeding recursively in this manner one �nally obtains at the root clique

f��1;N (hN�1; hN) = p(hN�1; hN ; �
�
1;N) (27)

from which one can get the likelihood of the evidence,

p(e) = p(��1;N) =
X

hN�1;hN

f��1;N (hN�1; hN): (28)

We note that Equation 26 directly corresponds to the recursive equation (Equation 20 in

Rabiner (1989)) for the � variables used in the forward phase of the F-B algorithm, the standard

HMM(1,1) inference algorithm. In particular, using a \left-to-right" schedule the updated

potential functions on the separators between the hidden cliques, the f��1;i(hi) functions, are

exactly the � variables. Thus, when applied to HMM(1,1), the JLO algorithm produces exactly

the same local recursive calculations as the forward phase of the F-B algorithm.

One can also show an equivalence between the backward phase of the F-B algorithm and the

JLO inference algorithm. Let the \left-most" clique in the chain, (H1; H2), be the root clique

and de�ne a schedule such that the ows go from right to left. Figure 9 shows a local portion

of the clique tree and the associated ows. Consider that the potential on clique (Hi; Hi+1) has

been updated already by earlier ows from the right. Thus, by de�nition,

f��i+1;N (hi; hi+1) = p(hi; hi+1; �
�
i+1;N): (29)

The potential on the separator between (Hi; Hi+1) and (Hi�1; Hi) is calculated as:

f��i+1;N (hi) =
X
hi+1

p(hi; hi+1; �
�
i+1;N) (30)

= p(hi)
X
hi+1

p(hi+1jhi)p(o
�
i+1jhi+1)p(�

�
i+2;N jhi+1) (31)

(by virtue of the various conditional independence relations in HMM(1,1))
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= p(hi)
X
hi+1

p(hi+1jhi)p(o
�
i+1jhi+1)

p(��i+2;N ; hi+1)

p(hi+1)
(32)

= p(hi)
X
hi+1

p(hijhi+1)p(o
�
i+1jhi+1)

f��i+2;N (hi+1)

p(hi+1)
(33)

De�ning the update factor on this separator yields

���i+1;N (hi) =
f��i+2;N (hi)

p(hi)
(34)

=
X
hi+1

p(hijhi+1)p(o
�
i+1jhi+1)

f��i+2;N (hi+1)

p(hi+1)
(35)

=
X
hi+1

p(hijhi+1)p(o
�
i+1jhi+1)�

�
�i+2;N

(hi+1): (36)

This set of recursive equations in � corresponds exactly to the recursive equation (Equation 25

in Rabiner (1989)) for the � variables in the backward phase of the F-B algorithm. In fact,

the update factors � on the separators are exactly the � variables. Thus, we have shown that

the JLO inference algorithm recreates the F-B algorithm for the special case of the HMM(1,1)

probability model.

6.2 Equivalence of Dawid's Propagation Algorithm for Identifying MAP As-

signments and the Viterbi Algorithm

Consider that one wishes to calculate f̂(uh; e) = maxx1;:::;xK p(x1; : : : ; xK; e) and one also wishes

to identify a set of values of the unobserved variables which achieve this maximum, where K

is the number of unobserved (hidden) variables. This calculation can be acheived using a local

propagation algorithm on the junction tree if one makes two modi�cations to the standard JLO

inference algorithm described above. This algorithm is due to Dawid (1992) and as pointed out

earlier this is the most general algorithm from a set of related methods.

Firstly, during a ow, the marginalization of the separator is replaced by:

b̂S(xS) = max
CnS

aC(xC) (37)

where C is the originating clique for the ow. The de�nition for �S(xS) is also changed in the

obvious manner.

Secondly, marginalization within a clique is replaced by maximization:

f̂C = max
unxC

p(u): (38)

Given these two changes it can be shown that if the same propagation operations are carried

out as described earlier, the resulting representation K̂f at equilibrium is such that the potential

function on each clique C is

f̂(xC) = max
uhnxC

p(xhC ; e; fu
h
n xCg) (39)
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where xhC denotes a value assignment of the hidden (unobserved) variables in clique C. Thus,

once the K̂f representation is obtained, one can locally identify the values ofX
h
C which maximize

the full joint probability as

x̂hC = argxh
C
f̂(xC): (40)

In the probabilistic expert systems literature this procedure is known as generating the \most

probable explanation" (MPE) given the observed evidence.

The HMM(1,1) MAP problem consists of being given a set of values for the observable

variables, e = fO1 = o1; O2 = o2; : : : ; ON = oNg and inferring

max
h1;:::;hN

p(h1; : : : ; hN ; e): (41)

or the set of arguments which acheive this maximum. Since Dawid's algorithm is applicable to

any junction tree it can directly be applied to the HMM(1,1) junction tree in Figure 5b. In the

Appendix it is shown that Dawid's algorithm, when applied to HMM(1,1), is exactly equivalent

to the standard Viterbi algorithm.

6.3 Discussion of the Equivalences between the HMM and JLO Algorithms

As shown above, when HMM(1,1) is modeled as a PIN, the JLO local propagation algorithms

(henceforth referred to as \the graphical algorithms") for this PIN are equivalent to the well-

known F-B and Viterbi algorithms. In itself, this equivalence is not surprising since both pairs

of algorithms are solving exactly the same problem via local recursive updating. For example,

Dawid's method and the Viterbi algorithm are both direct applications of dynamic programming

to the MAP problem.

What is interesting about this equivalence result is that the graphical algorithms are more

general than the F-B and Viterbi algorithms:

1. While special purpose extensions to the standard Viterbi and F-B algorithms can be

derived to handle various extensions to HMM(1,1) (Tao 1992), the JLO algorithms provide

by de�nition a completely general exact inference method for any PIN.

2. The graphical algorithms can easily handle other inference tasks besides just calculating

the likelihood of the evidence or the MAP solution. For example, missing or probabilistic

evidence, simulating values from the model, calculating partial solutions, are all easy

to specify in terms of the graphical algorithms. These problems in principle could also

be handled by appropriate modi�cations to the standard F-B and Viterbi algorithms:

the point is that the graphical algorithms provide the natural and direct framework for

identifying such solutions.

Note that the obvious structural equivalence between PIN structures and HMMs has been

noted before by Buntine (1994), Frasconi and Bengio (1994), and Lucke (1995) among others:

however, the demonstration of equivalence of speci�c inference algorithms is new as far as we

are aware.

Using the graphical algorithms on HMM(1,1), when evidence is entered into the observable

states and assuming m discrete states per hidden variable, the computational complexity of

solving the inference and MAP problems is O(Nm2). Naturally, given that they are equivalent

for HMM(1,1), this is the same complexity as the standard F-B and Viterbi algorithms.
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7 Inference and MAP Algorithms for UPINs

In Section 5 we described the JLO algorithm for local inference given a DPIN: for UPINs the

procedure is very similar except for two changes to the overall algorithm. The �rst is the trivial

observation that the moralization step is not necessary. The second di�erence, initialization of

the junction tree is less trivial. In Section 5.2 we described how to go from a speci�cation of

conditional probabilities in a directed graph to an initial potential function representation on

the cliques in the junction tree. To utilize undirected links in the model speci�cation process

requires new machinery to perform the initialization step. In particular we wish to compile the

model into the standard form of a product of potentials on the cliques of a triangulated graph

(cf. Equation 1):

P (u) =
Y

C2VC

aC(xC):

Once this initialization step has been achieved, the JLO propagation procedure proceeds as

before.

Consider the chordless cycle shown in Figure 4b. Suppose that we parameterize the proba-

bility distribution on this graph by specifying pairwise marginals (or pairwise potentials) on the

four pairs of neighboring nodes. We wish to convert such a local speci�cation into a globally

consistent joint probability distribution, i.e., a marginal representation. An algorithm known

as Iterative Proportional Fitting (IPF) is available to perform this conversion. Classically, IPF

proceeds as follows (Bishop, Fienberg, & Holland, 1973). Suppose for simplicity that all of the

random variables are discrete (a Gaussian version of IPF is also available (Whittaker 1990))

such that the joint distribution can be represented as a table. The table is initialized with equal

values in all of the cells. For each marginal in turn, the table is then rescaled by multiplying

every cell by the ratio of the desired marginal to the corresponding marginal in the current

table. The algorithm visits each marginal in turn, iterating over the set of marginals. If the

set of marginals are consistent with a single joint distribution, the algorithm is guaranteed to

converge to the joint distribution. Once the joint is available, the potentials in Equation 1 can

be obtained (in principle) by marginalization.

Although IPF solves the initialization problem in principle, it is ine�cient. Ji�rousek and

P�reu�cil (1995) developed an e�cient version of IPF that both avoids the need for storing the

joint distribution as a table and avoids the need for explicit marginalization of the joint to

obtain the clique potentials. Ji�rousek's version of IPF represents the evolving joint distribution

directly in terms of junction tree potentials. The algorithm proceeds as follows. Let I be a set

of subsets of V . For each I 2 I, let q(xI) denote the desired marginal on the subset I . Let

the joint distribution be represented as a product over junction tree potentials (Equation 1),

where each aC is initialized to an arbitrary constant. Visit each I 2 I in turn, updating the

corresponding clique potential aC (i.e, that potential aC for which I � C) as follows:

a�C(xC) = aC(xC)
q(xI)

p(xI)
:

The marginal p(xI) is obtained via the JLO algorithm, using the current set of clique potentials.

Intelligent choices can be made for the order in which to visit the marginals to minimize the

amount of propagation needed to compute p(xI). This algorithm is simply an e�cient way of

organizing the IPF calculations and inherits the latter's guarantees of convergence.

For mixed (or chain) graphs, the clique potentials are initialized to constant values and are

multiplied by the appropriate conditional probability distributions associated with the directed
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Figure 10: (a) the UPIN structure for the HMM(1,2) model with � = 2, (b) a triangulation of

this UPIN structure.

links (if any). The marginals associated with the undirected links are then incorporated into

the clique potentials by running IPF.

8 More Complex HMMs for Speech Modeling

Although hidden Markov models have provided an exceedingly useful framework for the mod-

eling of speech signals, it is also true that the simple HMM(1,1) model underlying the standard

framework has strong limitations as a model of speech. Real speech is generated by a set of

coupled dynamical systems (lips, tongue, glottis, lungs, air columns, etc.), each of which obeys

particular dynamical laws. This coupled physical process is not well modeled by the unstruc-

tured state transition matrix of HMM(1,1). Moreover, the �rst-order Markov properties of

HMM(1,1) are not well suited to modeling the ubiquitous coarticulation e�ects that occur in

speech, particularly coarticulatory e�ects that extend across several phonemes (cf. Kent &

Mini�e, 1977). A variety of techniques have been developed to surmount these basic weak-

nesses of the HMM(1,1) model, including mixture modeling of emission probabilities, triphone

modeling, and discriminative training. All of these methods, however, leave intact the basic

probabilistic structure of HMM(1,1) as expressed by its PIN structure.

In this section we describe several extensions of HMM(1,1) that assume additional proba-

bilistic structure beyond that assumed by HMM(1,1). PINs provide a key tool in the study of

these more complex models. The role of PINs is twofold: �rst, they provide a concise description

of the probabilistic dependencies assumed by a particular model, and second, they provide a

general algorithm for computing likelihoods. This second property is particularly important|

the existence of the JLO algorithm frees us from having to derive particular recursive algorithms

on a case-by-case basis.

The �rst model that we consider can be viewed as a coupling of two HMM(1,1) chains (Saul

& Jordan, 1995). Such a model can be useful in general sensor fusion problems, for example

in the fusion of an audio signal with a video signal in lipreading. Because di�erent sensory

signals generally have di�erent bandwidths, it may be useful to couple separate Markov models
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that are developed speci�cally for each of the individual signals. The alternative is to force the

problem into an HMM(1,1) framework by either oversampling the slower signal, which requires

additional parameters and leads to a high-variance estimator, or downsampling the faster signal,

which generally oversmoothes the data and yields a biased estimator. Consider the HMM(1,2)

structure shown in Figure 10a. This model involves two HMM(1,1) backbones that are coupled

together via undirected links between the state variables. Let H
(1)
i and O

(1)
i denote the ith

state and ith output of the \fast" chain, respectively, and let H
(2)
i and O

(2)
i denote the ith state

and ith output of the \slow" chain. Suppose that the fast chain is sampled � times as often as

the slow chain. Then H
(1)

i0
is connected to H

(2)
i for i0 equal to �(i� 1)+ 1. Given this value for

i0, the Markov model for the coupled chain implies the following conditional independencies for

the state variables:

fH
(1)

i0
; H

(2)
i g ? fH

(1)
1 ; O

(1)
1 ; H

(2)
1 ; O

(2)
1 ; : : : ; H

(1)

i0�2; O
(1)

i0�2; H
(2)
i�2; O

(2)
i�2; O

(1)

i0�1; O
(2)
i�1gjfH

(1)

i0�1; H
(2)
i�1g;

(42)

as well as the following conditional independencies for the output variables:

fO
(1)

i0 ; O
(2)
i g ? fH

(1)
1 ; O

(1)
1 ; H

(2)
1 ; O

(2)
1 ; : : : ; H

(1)

i0�1; O
(1)

i0�1; H
(2)
i�1; O

(2)
i�1gjfH

(1)

i0 ; H
(2)
i g: (43)

Additional conditional independencies can be read o� the UPIN structure (see Figure 10a).

As is readily seen in Figure 10a, the HMM(1,2) graph is not triangulated, thus the HMM(1,2)

probability model is not decomposable. However, the graph can be readily triangulated to form

a decomposable cover for the HMM(1,2) probability model (see Section 3.1.2). The JLO al-

gorithm provides an e�cient algorithm for calculating likelihoods in this graph. This can be

seen in Figure 10b, where we show a triangulation of the HMM(1,2) graph. The triangulation

adds O(Nh) links to the graph (where Nh is the number of hidden nodes in the graph) and

creates a junction tree in which each clique is a cluster of three state variables from the under-

lying UPIN structure. Assuming m values for each state variable in each chain, we obtain an

algorithm whose time complexity is O(Nhm
3). This can be compared to the naive approach of

transforming the HMM(1,2) model to a Cartesian product HMM(1,1) model, which not only

has the disadvantage of requiring subsampling or oversampling, but also has a time complexity

of O(Nhm
4).

Directed graph semantics can also play an important role in constructing interesting vari-

ations on the hidden Markov model theme. Consider Figure 11a, which shows an HMM(1,2)

model in which a single output stream is coupled to a pair of underlying state sequences. In

a speech modeling application such a structure might be used to capture the fact that a given

acoustic pattern can have multiple underlying articulatory causes. For example, equivalent

shifts in formant frequencies can be caused by lip-rounding or tongue-raising; such phenomena

are generically refered to as \trading relations" in the speech psychophysics literature (Lind-

blom 1990; Perkell et al. 1993). Once a particular acoustic pattern is observed, the causes

become dependent; thus for example, evidence that the lips are rounded would act to discount

inferences that the tongue has been raised. These inferences propagate forward and backward

in time and couple the chains. Formally, these induced dependencies are accounted for by the

links added between the state sequences during the moralization of the graph (see Figure 11b).

This �gure shows that the underlying calculations for this model are closely related to those of

the earlier HMM(1,2), but the model speci�cation is very di�erent in the two cases.

Saul and Jordan (1996) have proposed a second extension of the HMM(1,1) model which

is motivated by the desire to provide a more e�ective model of coarticulation (see also Stolorz,
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Figure 11: (a) the DPIN structure for HMM(1,2) with a single observable sequence coupled to

a pair of underlying state sequences, (b) the moralization of this DPIN structure.
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Figure 12: The UPIN structure for HMM(3,1).
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1994). In this model, shown in Figure 12, coarticulatory inuences are modeled via additional

links between output variables and states along an HMM(1,1) backbone. One approach to

performing calculations in this model is to treat it as a Kth-order Markov chain, and transform

it into an HMM(1,1) model by de�ning higher-order state variables. A graphical modeling

approach is more exible|it is possible for example to introduce links between states and

outputs K time steps apart without introducing links for the intervening time intervals. More

generally, the graphical modeling approach to the HMM(K,1) model allows the speci�cation of

di�erent interaction matrices at di�erent time scales; this is awkward in the Kth-order Markov

chain formalism.

The HMM(3,1) graph is triangulated as is, and thus, the time complexity of the JLO

algorithm is therefore O(Nhm
3). In general a HMM(K,1) graph creates cliques of size O(mK)

and the JLO algorithm runs in time O(Nhm
K).

As these examples suggest, the graphical modeling framework provides a useful framework

for exploring extensions of hidden Markov models. The examples also make clear, however,

that the graphical algorithms are no panacea. The mK complexity of HMM(K,1) will be

prohibitive for large K. Also, the generalization of HMM(1,2) to HMM(1,K) (couplings of K

chains) is intractable. Recent research has therefore focused on approximate algorithms for

inference in such structures|see Saul and Jordan (1996) for HMM(K,1) and Ghahramani and

Jordan (1996) and Williams and Hinton (1990) for HMM(1,K). These authors have developed

an approximation methodology based on mean-�eld theory from statistical physics. While

discussion of mean-�eld algorithms is beyond the scope of this paper, it is worth noting that the

graphical modeling framework plays a useful role in the development of these approximations.

Essentially the mean-�eld approach involves creating a simpli�ed graph for which tractable

algorithms are available, and minimizing a probabilistic distance between the tractable graph

and the intractable graph. The JLO algorithm is called as a subroutine on the tractable graph

during the minimization process.

9 Learning and PINs

9.1 Parameter Estimation for PINs

The parameters of a graphical model can be estimated with maximum-likelihood (ML),

maximum-a-posteriori (MAP), or full Bayesian methods, using traditional techniques such as

gradient descent, expectation-maximization (EM) (e.g., Dempster et al., 1977), and Monte-

Carlo sampling (e.g., Neal, 1993). For the standard HMM(1,1) model discussed in this paper,

where either discrete, Gaussian, or Gaussian-mixture codebooks are used, a ML or MAP esti-

mate using EM is a well-known e�cient approach (Poritz 1988; Rabiner 1989). An important

aspect of the application of the EM algorithm to PINs is that the JLO algorithm can be used

to perform the E step.

For purposes of illustration, and in keeping with the rest of the paper, let us consider

the case where all variables in U are discrete. Let xk and pa(X)j denote the kth state of

variable X and jth state of variables pa(X), respectively. Suppose we have a directed HMM-

like model M (a DPIN) with mutually independent parameters � = [jkf�Hjk; �Ojkg, where

�Hjk = p(hki jpa(Hi)
j;M) and �Ojk = p(oki jpa(Oi)

j ;M) for all i. In addition, suppose we have

observed data D = fe1; : : : ; eSg, an (iid) random sample from the true distribution.

The EM algorithm �nds a local maximum of the likelihood p(Dj�;M) by initializing the

parameters � (e.g., at random or via some clustering algorithm) and repeating E and M steps.
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In the E step, we compute the expected su�cient statistic for each of the parameters, given

D and the current values for �. Let SHjk be the su�cient statistic for �Hjk. The expected

su�cient statistic E(SHjkjD; �;M) is given by

E(SHjkjD; �;M) =
SX
l=1

X
i

p(hki ; pa(Hi)
j
jel; �;M)

As mentioned, an important feature of the EM algorithm applied to PINs is that each term in

the sum can be computed using the JLO algorithm. The expected su�cient statistic for �Ojk
is computed similarly. In the M step, we use the expected su�cient statistics as if they were

actual su�cient statistics, and set the new values of � to be those that maximize the likelihood

of these statistics:

�Hjk =
E(SHjkjD; �;M)P
k E(SHjkjD; �;M)

�Ojk =
E(SOjkjD; �;M)P
k E(SOjkjD; �;M)

The EM algorithm also can be used to �nd a local maximum of the posterior probability

p(�jD;M) / p(Dj�;M) � p(�jM), where p(�jM) is the parameter prior. Priors most often used

are conjugate distributions, such as the Dirichlet distribution for the parameters of discrete

variables and the mixing coe�cients of Gaussian-mixture codebooks, and the normal-Wishart

distribution for the parameters of Gaussian codebooks (DeGroot 1970; Buntine 1994; Hecker-

man and Geiger 1995). These priors have also been used in MAP estimates of standard HMMs

(e.g., Gauvain and Lee, 1994). Heckerman and Geiger (1995) describe a simple method for

assessing these priors.

The use of the EM algorithm for UPINs is similar. Suppose that the undirected model M

consists of cliques Cij such that the parameters of Ci1j and Ci2j are the same for any i1 and

i2. That is, suppose p(Ci;j = cki;jjM) = �jk for all i. In addition, suppose that the parameters

� = [jk�jk are mutually independent. In this case, we can estimate the parameters for the

clique marginals, and then use Ji�rousek's IPF algorithm on a triangulation of M to compute

a consistent estimate of the joint distribution. As in the directed case, we can use the JLO

algorithm to perform the E step:

E(SjkjD; �;M) =
SX
l=1

X
i

p(cki;jjel; �;M)

9.2 Model Selection and Averaging for PINs

In some situations it is useful to use data to guide the selection of an appropriate model. For

example, the presence of some arcs or the number of states of a hidden variable may be in doubt.

One solution to this problem is the Bayesian approach, in which we assign prior probabilities

p(M) to di�erent models, and compute their relative posterior probabilities given data:

p(M jD) / p(M) p(DjM) = p(M)

Z
p(Dj�;M) p(�jM) d� (44)

We then select the model with the highest posterior probability, or average the predictions of

two or more models weighted by their relative posterior probabilities.

When data is missing|for example, when some variables are hidden|the exact computation

of the integral in Equation 44 is usually intractable. Nonetheless, simple approximations to this
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integral exist, such as the Bayesian Information Criterion (BIC) described by Schwarz (1978):

log p(DjM) � log p(Dj�̂;M)�
d

2
logS

where �̂ is the ML estimate, S is the number of cases in D, and d is the dimension of M|

typically, the number of parameters of M . The �rst term of this \score" for M rewards how

well the data �tsM , whereas the second term punishes model complexity. Note that this score

does not depend on the parameter prior, and thus can be applied easily.1 For examples of

applications of BIC in the context of PINs and other statistical models, see Raftery (1995).

The BIC score is the additive inverse of Rissanen's (1987) minimum description length

(MDL). Other scores, which can be viewed as approximations to the marginal likelihood, are

hypothesis testing (Raftery 1995) and cross validation (Fung and Crawford 1990). Buntine (in

press) provides a comprehensive review of the literature on learning PINs.

In the context of HMM(K; J) type structures, an obvious question is how one could learn

such structure from data, where K and J are unknown a priori. From a model identi�cation

viewpoint, this is an easier problem than that of learning an arbitrary PIN, because the possible

models under consideration are highly constrained. Thus, using both the estimation techniques

for a particular model described in the previous section (and the JLO algorithm for solving the

E-step as described in detail earlier in the paper), and the Bayesian (and alternative) model

selection procedures outlined above, the algorithmic prescriptions for learning such models in

a principled fashion are already in place.

10 Summary

Probabilistic independence networks provide a useful framework for both the analysis and ap-

plication of multivariate probability models when there is considerable structure in the model in

the form of conditional independence. The graphical modelling approach both clari�es the inde-

pendence semantics of the model and yields e�cient computational algorithms for probabilistic

inference. This paper has shown that it is useful to cast HMM structures in a graphical model

framework. In particular, the well known F-B and Viterbi algorithms were shown to be special

cases of more general algorithms from the graphical modelling literature. Furthermore, more

complex HMM structures, beyond the traditional �rst-order model, can be analyzed pro�tably

and directly using generally-applicable graphical modeling techniques.
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Appendix 1: The Viterbi Algorithm for HMM(1,1) is a Special Case of

Dawid's Algorithm

As with the inference problem, let the �nal clique in the chain containing (HN�1; HN) be the

root clique and use the same schedule, i.e., �rst a \left-to-right" collection phase into the root

clique, followed by a \right-to-left" distribution phase out from the root clique. Again it is

assumed that the junction tree has been initialized so that the potential functions are the local

marginals, and the observable evidence e has been entered into the cliques in the same manner

as described for the inference algorithm.

We refer again to Figure 8: the sequence of ow and absorption operations is identical to

that of the inference algorithm with the exception that marginalization operations are replaced

by maximization. Thus, the potential on the separator between (Oi; Hi) and (Hi�1; Hi) is

initially updated to

f̂Oi(hi) = max
oi

p(hi; oi) = p(hi; o
�
i ): (45)

The update factor for this separator is

�Oi(hi) =
p(hi; o

�
i )

p(hi)
= p(o�i jhi); (46)

and after absorption into the clique (Hi�1; Hi) one gets

f̂Oi(hi�1; hi) = p(hi�1; hi)p(o
�
i jhi): (47)
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Now consider the ow from clique (Hi�2; Hi�1) to (Hi�1; Hi). Let Hi;j = fHi; : : : ; Hjg

denote a set of consecutive observable variables and h�i;j = fh�i ; : : : ; h
�
jg, denote the observed

values for these variables, 1 � i < j � N . Assume that the potential on separator Hi�1 has

been updated to

f̂�1;i�1 (hi�1) = max
h1;i�2

p(hi�1; h1;i�2; �
�
1;i�1) (48)

via earlier ows in the schedule. Thus, the update factor for separator Hi�1 becomes

��1;i�1(hi�1) =
maxh1;i�2 p(hi�1; h1;i�2; �

�
1;i�1)

p(hi�1)
(49)

and this gets absorbed into clique (Hi�1; Hi) to produce

f̂�1;i(hi�1; hi) = f̂Oi(hi�1; hi)��1;i�1(hi�1) (50)

= p(hi�1; hi)p(o
�
i jhi)

maxh1;i�2 p(hi�1; h1;i�2; �
�
1;i�1)

p(hi�1)
: (51)

We can now obtain the new potential on the separator for the ow from clique (Hi�1; Hi)

to (Hi; Hi+1),

f̂�1;i (hi) = max
hi�1

f̂�1;i (hi�1; hi) (52)

= p(o�i jhi)max
hi�1

fp(hijhi�1) max
h1;i�2

p(hi�1; h1;i�2; �
�
1;i�1)g (53)

= p(o�i jhi) max
h1;i�1

fp(hijhi�1)p(hi�1; h1;i�2; �
�
1;i�1)g (54)

= max
h1;i�1

p(hi; h1;i�1; �
�
1;i) (55)

which is the result one expects for the updated potential at this clique. Thus, we can express

the separator potential f̂�1;i(hi) recursively (via Equation 54) as

f̂�1;i (hi) = p(o�i jhi)max
hi�1

fp(hijhi�1)f̂�1;i�1(hi�1)g: (56)

This is the same recursive equation as used in the � variables in the Viterbi algorithm (Equation

33a in Rabiner (1990)): the separator potentials in Dawid's algorithm using a left-to-right

schedule are exactly the same as the �0s used in the Viterbi method for solving the MAP

problem in HMM(1,1).

Proceeding recursively in this manner one �nally obtains at the root clique

f̂�1;N (hN�1; hN) = max
h1;N�2

p(hN�1; hN ; hN�2; �
�
1;N) (57)

from which one can get the likelihood of the evidence given the most likely state of the hidden

variables:

f̂(e) = max
hN�1;hN

f̂�1;N (hN�1; hN) (58)

= max
h1;N

p(h1;N ; �
�
1;N) (59)

Identi�cation of the values of the hidden variables which maximize the evidence likelihood

can be carried out in the standard manner as in the Viterbi method, namely by keeping a
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pointer at each clique along the ow in the forward direction back to the previous clique and

then backtracking along this list of pointers from the root clique after the collection phase is

complete. An alternative approach is to use the distribute phase of the Dawid algorithm: this

has the same e�ect, namely, once the distribution ows are completed, each local clique can

calculate both the maximum value of the evidence likelihood given the hidden variables and

the values of the hidden variables in this maximum which are local to that particular clique.
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