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Abstract

In Phys. Rev. Letters, 73:2, 5 Dec. 94, Mantegna et al. conclude on the basis of Zipf rank frequency

data that noncoding DNA sequence regions are more like natural languages than coding regions. We argue

on the contrary that an empirical �t to Zipf's \law" cannot be used as a criterion for similarity to natural

languages. Although DNA is a presumably an \organized system of signs" in Mandelbrot's (1961) sense,

an observation of statistical features of the sort presented in the Mantegna et al. paper does not shed light

on the similarity between DNA's \grammar" and natural language grammars, just as the observation of

exact Zipf-like behavior cannot distinguish between the underlying processes of tossing an M sided die or

a �nite-state branching process.
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In Phys. Review Letters, 73:2, 5 Dec. 94, Mantegna

et al. \extend the Zipf approach to analyzing linguistic

texts to the statistical study of DNA base pair sequences

and �nd that the noncoding regions are more similar to

natural languages than the coding sequences" (p. 3169).

Speci�cally, the authors analyze coding/noncoding DNA

sequences and conclude that noncoding regions show a

more Zipf-like behavior than coding regions. Asserting

that \A remarkable feature of languages is Zipf's law"

(p. 3169), they further conclude that noncoding regions

are more similar to natural languages than coding re-

gions (p. 3170):

The averages for each category support the

observation that � is consistently larger for

the noncoding sequences, suggesting that the

noncoding sequences bear more resemblance

to a natural language than the coding se-

quences.

Their result has received popular notice in both Science
(266, p. 1320, 25 Nov. 1994) and Scienti�c American

(272(3), March, 1995).

In this note we would like to argue that the Man-

tegna et al. conclusion is rather farfetched. Noncoding

DNA sequences do not show much similarity to natural

languages. Rather, as far as one can judge from the ev-

idence of the Mantegna et al. paper, all one can say|if

their statistical analysis is not in question, which it may

well be|is that noncoding DNA sequences and natural

languages combine discrete symbols to form strings that

obey Zipf's law. But this is of course what we knew from

the outset. In particular:

� Any number of random processes outputting dis-

crete symbols can display Zipf-like behavior with-

out bearing any resemblance to the special genera-

tive processes currently believed to govern sentence

formation (word sequences) in natural languages.

In this sense Zipf's law is not peculiar to natural

languages at all, and therefore cannot be used as a

strong test for whether DNA, or anything else for

that matter, has something \in common with nat-

ural languages." Indeed, exactly this same point

was made at length over 30 years ago by Mandel-

brot (1961) in his familiar discussion of Zipf's law:

Further, because statistical and gram-

matical structures seem uncorrelated, in

the �rst approximation, one might ex-

pect to encounter laws which are inde-

pendent of the grammar of the language

under consideration. Hence, from the

viewpoint of signi�cance (and also of the

mathematical method) there would be

an enormous di�erence between: on the

one hand , the collection of data that are

unlikely to exhibit any regularity other

than the approximate stability of the

relative frequencies, when di�erent sam-

ples are compared [i.e., data leading to

statistical laws like Zipf's law; our com-

ments pn/rcb]; and, on the other hand ,

the study of laws that are valid for natu-

ral discourse [the discovery of such laws

being the goal of linguistics pn/rcb] but

not for other organized systems of signs.

(p. 213)

As is also familiar and as we show by examples be-

low, it is quite easy to generate Zipf-like distributions

from very simple generative processes that are quite un-

like natural languages, e.g., tossing an M -sided die and

particular very simple �nite-state branching processes.
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In short, although DNA is a presumably an \organized

system of signs" in Mandelbrot's sense, an observation

of statistical features of the sort presented in the Man-

tegna et al. paper does not shed light on the similarity

between DNA's \grammar" and natural language gram-

mars, just as the observation of exact Zipf-like behavior

cannot distinguish between the underlying processes of

tossing an M sided die or a �nite-state branching pro-

cess. An empirical �t to Zipf's law cannot be used as a

criterion for similarity to natural languages.

� Zipf's law is given by fr = C where f is the fre-

quency of any word, and r is its rank, with words

arranged from most frequent to least frequent. In

other words ln(f) = K � � ln(r); (with � = 1).

The authors �nd that � is 0.286 for coding regions,
and 0.386 for noncoding regions, and 0.57 for nat-

ural languages. Without further statistical tests, it

is not unreasonable to conclude that both coding

and noncoding DNA sequences are more alike to

each other than either is to natural languages, and

that Zipf's law is violated . What is plainly required

are the usual signi�cance tests addressing precisely

this question, e.g., the null hypothesis that coding

� is the same as natural language �. Since the vari-
ances are clearly available, the authors or others

should be possible to carry the required tests on

the original data.

� As a minor point, in fact the two measures used in

the paper|Zipf behavior, and Shannon entropy|

are exactly correlated. Therefore it is not surpris-

ing that given Zipf-like behavior for noncoding se-

quences, one would also observe that noncoding re-

gions have lower entropy than coding regions. In

e�ect, there is just one, not \two similar statistical

properties" (p. 3172) that natural languages and

noncoding sequences share (if they share it at all),

namely, Zipf-like behavior (or lower entropy).

For a �nite number of \words," entropy is largest

for a uniform distribution over word frequencies.

The more skewed the word frequencies, the lower

1Indeed, as N. Chomsky points out (p.c.), if we take a col-
lection of English sentences and de�ne \words" by taking the
strings starting with, say, \e" and ending with \e" then the
resulting, more random collection of \words" shows a better

�t to Zipf's \law"|precisely because there are no interfering
e�ects from the more organized features of natural language
words. On this view, the closer �t of noncoding sequences to
a Zipf distribution actually means that noncoding DNA se-
quences are more random and more unlike natural languages
than coding sequences|exactly the opposite conclusion that
Mantegna maintain.
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the entropy. For coding regions (with � = 0:286),
the word frequencies fall o� more slowly with rank

than for noncoding regions (� = 0:386). Conse-

quently, coding regions will have have higher en-

tropy and lower redundancy than noncoding re-

gions. Having carried out a Zipf analysis and ob-

tained �; one does not need to compute a separate

entropy test. Yet the authors do so (as they rec-

ognize implicitly in the caption of �gure 3 of their

paper).

Putting aside these and other possibly grave statis-

tical fallacies, in the remainder of this note we exhibit

two random processes, one an M -sided die, the other a

�nite-state grammar, that are very di�erent from each

other yet yield exact Zipf distributions. We then review

some of the many properties of natural languages not

shared by these two processes. Consequently, even if we

accept the results of the Mantegna et al. paper, the

inference from Zipf-behavior to a similarity with natu-

ral languages cannot be justi�ed. As mentioned, these

points have been discussed more than thirty years ago by

Mandelbrot (1961), and we conclude with some historical

remarks that underscore his results along with related,

more recent work that has also examined Zipf-behavior

in DNA sequences.

1 Zipf's Law and Random Process:

Some Examples

Zipf 's Law and Random Processes

To begin, let us consider two very di�erent, simple ran-

dom processes that both generate Zipf distributions: an

M -sided die and a �nite-state grammar.

Let us �rst recall Zipf's \law" itself. Suppose there are

M \words" in a system. These words might be generated

in various combinations according to some underlying

process, giving rise to a corpus of sentences, or more

generally, word sequences. Since there are only a M
words, each word would occur multiple times in a large

(potentially in�nite) corpus. One can then rank these

words, from most frequent to least frequent. Let the

frequency of the ith word be fi: If fi is proportional to
1
i
, the generative process is said to obey Zipf's law.

Example 1: An M -sided die.

Let the sequence of words be generated by throwing a

biased M sided die. In particular, let the die be such

that the probability of the ith side appearing on top is

given by:

Prob[i] =
1
i

PM

j=1
1
j

Now consider the following process:

1. Toss the biased die.

2. If the die shows j; output word wj:

3. Repeat 1.

Clearly, this process generates a sequence of words

where the �rst word is twice as likely as the second, three

times as likely as the third, and so on. The process thus

follows Zipf's \law" exactly.

Example 2: Finite-State Grammars

Next we consider a random process generating \sen-

tences" in a completely di�erent fashion from example 1,

but still obeying Zipf's law. Rather than deal with the

case of M words directly, we provide some intuition in

the form of an example where M = 4. Suppose there

are four words: w1; w2; w3; and w4: Sentences (word se-

quences) are produced by combining words in some fash-

ion according to a grammar. Let us assume that the

generative process is as follows:

1. Start at the root node of the annotated tree of �g. 1.

2. At each node, choose to go down any of the con-

nected branches (leading to a daughter node) with

equal probability. Output the word wi if the branch

is associated with the number i: If the branch is as-

sociated with e; output nothing (empty string).

3. On reaching a leaf node, stop.

The reader will recognize that this is a �nite-state

grammar. Every path starting from the root node gives

rise to a sentence. There are 4! di�erent paths, corre-

sponding to 4! di�erent leaves, giving rise to 4! possible

sentence types. Since the paths are all equally likely,

each of these sentences occurs with equal likelihood.

However, due to the way in which the tree is con-

structed, many paths yield the same sentence. For ex-

ample, the two paths highlighted in the �gure yield the

same sentence, w2w1: The reader can check that such

a grammar generates eight di�erent sentences with the

associated probabilities in table 1.

If a corpus of sentences is generated with the proba-

bilities shown in the table, then it can easily be shown

that the word w1 occurs twice as often as w2, three times

as often as w3 and four times as often as w4: In other

words, if we plot word frequencies, then they would fol-

low Zipf's law.
2

In general, if there are M words, then one could con-

struct a similar tree. Such a tree would have M ! leaves,

each leaf giving rise to a sentence. The branches could

be numbered (as done in the case where M = 4) so that

all the M ! di�erent permutations of M words can be

generated. Now, as in the speci�c M = 4 case, we re-

place some of the numbers by e; equivalent to outputting
an empty string for that branch. Let us now argue that

this replacement can be carried out and yields a gram-

mar that generates a Zipf distribution.

We �rst make the following observations to describe

what M -tree looks like before any such replacements

have been made. There are M branches at level 1. Each

of these branches bears a label from 1 to M; and no two

branches bears the same label. There are M (M � 1)

branches at level 2. There are an equal number of

2Note that the probability of occurrence of each word is
inversely proportional to its rank. In a �nite corpus, the
frequency of occurrence need not be exactly equal to the
probability. However, the convergence of frequencies to their
underlying expectations make it more and more likely that
frequency-rank behavior will follow Zipf's law as the number
of sentences in the corpus increases, with convergence in the
limit as the corpus size goes to in�nity.
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Figure 1: A tree diagram representation of a �nite state grammar.

Sentence w1 w1w2 w2w1 w3w1 w3w2w1 w4w1 w4w2w1 w4w3w1

Prob. 1/6 1/12 1/4 1/6 1/12 1/12 1/12 1/12

Table 1: Sentences generated by the �nite state grammar of �g. 1, along with the probability with which they are

generated.

branches bearing each label from 1 to M: Consequently,
M�1 of the branches at level 2, are labelled i for every i
from 1 toM: Similarly, there M (M�1)(M�2) branches

at level 3, with (M � 1)(M � 2) being labelled i for ev-
ery i from 1 to M: As mentioned before, there are M !

di�erent leaves, each giving rise to a di�erent sentence

(assuming no label were replaced by e). Each sentence

is M words long, a permutation of the M words with no

repeated word.

Next, consider how we replace the labels by empty

strings e. Consider all the branches labelled j: Each
time such a branch is traversed, the grammar outputs

the word wj: Suppose we chose to replace some of the

j labels by e; leaving only a1 branches at level 1 still

labelled, a2 branches at level 2, and so on. We can then

prove the following two theorems (given here without

proof):

Theorem 1 Suppose a1 branches at level 1 are still la-
belled and the remaining branches are labelled e: Sim-

ilarly, suppose a2 are labelled at level 2, a3 labelled at

level 3, and so on. Then a fraction f of the total num-
ber of paths through the tree yields a sentence containing

the word wj, where f is given by:

a1

M
+

a2

M (M � 1)
+

a3

M (M � 1)(M � 2)
+ : : :+

aM

M !

Clearly, 0 � a1 � 1; 0 � a2 � (M �1); and in general,

0 � ai �
(M�1)!

(M�i)!
: Given these constraints on the ai's, we

can also prove the following:

Theorem 2 Any fraction that can be represented as i
M !

where i is an integer between 0 and M ! can be obtained by

an appropriate setting for the ai's under the constraints

of Theorem 1.

A consequence of these theorems taken together is

that one can generate sentences in such a way that in a

corpus the word wj can be made to occur in only a frac-

tion f =
k
M !

of the sentences. In particular, by choosing

k appropriately, we can make the jth word, wj occur

with frequency 1=j in the text, thus following Zipf's law

exactly.

2 General Remarks and History

2.1 Some Observations on the Structure of
Natural Languages

It is well known that natural languages possess many

other special properties that are not tested by the Zipf-

law behavior. In particular, while �nite-state grammars

obey Zipf's law, it has long been known that they do

not capture most of the striking properties of natural

languages:

1. Finite-state grammars by algebraic de�nition can-

not express hierarchical relationships, the acknowl-

edged hallmark of natural languages. Recall that

�nite-state grammars are algebraically associative

concatenative systems (see, e.g., Harrison, 1978);

that is, if L is a �nite-state grammar, then 8a; b; c 2
�
�; a � bc 2 L iff ab � c 2 L, where � is the concate-

nation operator. Such a system cannot even ex-

press the fact that one and the same linear string

of words, such as \the deep blue sky" can have

at least two structural (hierarchical) bracketings:

(the (deep blue) sky) and (the deep (blue sky)). In

other words, �nite-state grammars can express only

linear precedence relations, not hierarchical rela-

tions. (This demonstrates a failure of what Chom-

sky, 1956, called \strong generative capacity.")

2. Finite-state grammars, unlike natural language

grammars, cannot generate arbitrarily deep center-

embedded languages (see Chomsky 1956, 1986, and

many other conventional sources).
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3. Under the currently best working assumptions,

natural language grammars contain very speci�c

constraint statements with proprietary theoreti-

cal vocabularies unlikely to be duplicated in DNA

\grammar," (e.g., one component, so-called \trace

theory" is stated in terms of hierarchical struc-

tural sentence properties and noun phrases, both

not shared by DNA, as far as it is known).
3

2.2 Previous work on Zipf 's Law and on DNA
word frequencies

Both Zipf's law and its application to DNA sequences

have a long history. We mention only a few of the

relevant points here. In the 1950s, as summarized in

Mandelbrot (1961), both Mandelbrot, Simon (1955),

and Miller and Newman (1958), among others, explored

the nature of the word-frequency relationship embodied

in Zipf's law. In particular, Mandelbrot showed how

Markovian models of discourse (subsets of �nite-state

models) can give rise to Zipf-like behavior. Mandelbrot is

careful to note the well-known inadequacy of such �nite-

state models to describe linguistic rules. For example, he

writes (p. 191) \the `�nite-state' model appears as rather

shocking because of the well known existence of some

long-range inuences in discourse, such as those studied

by grammar". He advocates ways out of this di�culty

while \acknowledging that the `degree of validity' of the

�nite state model decreases as the `wealth' of grammars

increases." Mandelbrot also uses various information-

theoretical arguments to suggest that Zipf's law is not

peculiar to language, but extends to any coding scheme

with a �nite number of symbols|and therefore, can tell

us relatively little about any coding scheme like DNA.

As it turns out, there have also been many word-

frequency analyses of DNA sequences. As Pevzner et

al. (1989) point out, \Mathematical models of the gen-

eration of genetic texts appeared simultaneously with

the �rst sequencing [of sic pn/rcb] DNA". Pevzner et

al. (1989) actually address the key question of variance

and signi�cant di�erences explicitly, proposing formulae

for the variance of number of word occurrences in texts,

making it possible to assess the signi�cance of deviations

from expected statistical characteristics. One can there-

fore carry out the signi�cance tests suggested earlier in

this note.

3 Conclusions

We have argued that an observation of Zipf-like behav-

ior provides very little information about the nature of

the underlying process generating such frequency data.

This is simply because the underlying generative pro-

cesses could be as diverse as M -sided dies, simple �nite-

state grammars, DNA sequences, and natural languages.

Inferring that noncoding DNA sequence grammars are

like natural language grammars solely on the basis of

3We should point out that some researchers, e.g., Searls,
1993, maintain the contrary position and argue that natural
language and DNA grammars share at least some generative
processes. A discussion of this point is beyond the scope of
this note.

Zipf-behavior is at best premature, and indeed at worst

is likely to be completely misleading and false.
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