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Abstract

Recent developments in the area of reinforcement learning have yielded a number of new algorithms for

the prediction and control of Markovian environments. These algorithms, including the TD(�) algorithm

of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as ap-

proximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence

of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approx-

imation theory via a new convergence theorem. The theorem establishes a general class of convergent

algorithms to which both TD(�) and Q-learning belong.
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An important component of many real world learning problems is the temporal credit as-

signment problem|the problem of assigning credit or blame to individual components of a

temporally-extended plan of action, based on the success or failure of the plan as a whole. To

solve such a problem, the learner must be equipped with the ability to assess the long-term

consequences of particular choices of action and must be willing to forego an immediate payo�

for the prospect of a longer term gain. Moreover, because most real world problems involving

prediction of the future consequences of actions involve substantial uncertainty, the learner

must be prepared to make use of a probability calculus for assessing and comparing actions.

There has been increasing interest in the temporal credit assignment problem, due princi-

pally to the development of learning algorithms based on the theory of dynamic programming

(DP) (Barto, Sutton, & Watkins, 1990; Werbos, 1992). Sutton's (1988) TD(�) algorithm

addressed the problem of learning to predict in a Markov environment, utilizing a temporal

di�erence operator to update the predictions. Watkins' (1989) Q-learning algorithm extended

Sutton's work to control problems, and also clari�ed the ties to dynamic programming.

In the current paper, our concern is with the stochastic convergence of DP-based learning

algorithms. Although Watkins (1989) and Watkins and Dayan (1992) proved that Q-learning

converges with probability one, and Dayan (1992) observed that TD(0) is a special case of Q-

learning and therefore also converges with probability one, these proofs rely on a construction

that is particular to Q-learning and fail to reveal the ties of Q-learning to the broad theory of

stochastic approximation (e.g., Wasan, 1969). Our goal here is to provide a simpler proof of

convergence for Q-learning by making direct use of stochastic approximation theory. We also

show that our proof extends to TD(�) for arbitrary �. Several other authors have recently

presented results that are similar to those presented here: Dayan and Sejnowski (1993) for

TD(�), Peng and Williams (1993) for TD(�), and Tsitsiklis (1993) for Q-learning. Our results

appear to be closest to those of Tsitsiklis (1993).

We begin with a general overview of Markovian decision problems and DP. We introduce

the Q-learning algorithm as a stochastic form of DP. We then present a proof of convergence

for a general class of stochastic processes of which Q-learning is a special case. We then discuss

TD(�) and show that it is also a special case of our theorem.

Markovian decision problems

A useful mathematical model of temporal credit assignment problems, studied in stochastic

control theory (Aoki, 1967) and operations research (Ross, 1970), is the Markovian decision

problem. Markovian decision problems are built on the formalism of controlled Markov chains.

Let S = 1; 2; : : : ; N be a discrete state space and let U(i) be the discrete set of actions available

to the learner when the chain is in state i. The probability of making a transition from state i

to state j is given by pij(u), where u 2 U(i). The learner de�nes a policy �, which is a function

from states to actions. Associated with every policy � is a Markov chain de�ned by the state

transition probabilities pij(�(i)).

There is an instantaneous cost ci(u) associated with each state i and action u, where ci(u)

is a random variable with expected value �ci(u). We also de�ne a value function V�(i), which is

the expected sum of discounted future costs given that the system begins in state i and follows

policy �:

V�(i) = lim
N!1

Ef
N�1X
t=0

tcst(�(st))js0 = ig; (1)

where st 2 S is the state of the Markov chain at time t. Future costs are discounted by a factor
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t, where  2 (0; 1). We wish to �nd a policy that minimizes the value function:

V �(i) = min
�

V�(i): (2)

Such a policy is referred to as an optimal policy and the corresponding value function is referred

to as the optimal value function. Note that the optimal value function is unique, but an optimal

policy need not be unique.

Markovian decision problems can be solved by dynamic programming (Bertsekas, 1987).

The basis of the DP approach is an equation that characterizes the optimal value function.

This equation, known as Bellman's equation, characterizes the optimal value of the state in

terms of the optimal values of possible successor states:

V �(i) = min
u2U(i)

f�ci(u) + 
X

j2S

pij(u)V
�(j)g: (3)

To motivate Bellman's equation, suppose that the system is in state i at time t and consider

how V �(i) should be characterized in terms of possible transitions out of state i. Suppose that

action u is selected and the system transitions to state j. The expression ci(u) + V �(j) is

the cost of making a transition out of state i plus the discounted cost of following an optimal

policy thereafter. The minimum of the expected value of this expression, over possible choices

of actions, seems a plausible measure of the optimal cost at i and by Bellman's equation is

indeed equal to V �(i).

There are a variety of computational techniques available for solving Bellman's equation.

The technique that we focus on in the current paper is a iterative algorithm known as value

iteration. Value iteration solves for V �(i) by setting up a recurrence relation for which Bellman's

equation is a �xed point. Denoting the estimate of V �(i) at the kth iteration as V (k)(i), we

have:

V (k+1)(i) = min
u2U(i)

f�ci(u) + 
X

j2S

pij(u)V
(k)(j)g (4)

This iteration can be shown to converge to V �(i) for arbitrary initial V (0)(i) (Bertsekas, 1987).

The proof is based on showing that the iteration from V (k)(i) to V (k+1)(i) is a contraction

mapping. That is, it can be shown that:

max
i
jV (k+1)(i)� V �(i)j � max

i
jV (k)(i)� V �(i)j; (5)

which implies that V (k)(i) converges to V �(i) and also places an upper bound on the convergence

rate.

Watkins (1989) utilized an alternative notation for expressing Bellman's equation that is

particularly convenient for deriving learning algorithms. De�ne the function Q�(i; u) to be the

expression appearing inside the \min" operator of Bellman's equation:

Q�(i; u) = �ci(u) + 
X

j2S

pij(u)V
�(j) (6)

Using this notation Bellman's equation can be written as follows:

V �(i) = min
u2U(i)

Q�(i; u): (7)

Moreover, value iteration can be expressed in terms of Q functions:

Q(k+1)(i; u) = �ci(u) + 
X

j2S

pij(u)V
(k)(j); (8)
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where V (k)(i) is de�ned in terms of Q(k)(i; u) as follows:

V (k)(i) = min
u2U(i)

Q(k)(i; u): (9)

The mathematical convenience obtained from using Q's rather than V 's derives from the fact

that the minimization operator appears inside the expectation in Equation 8, whereas it appears

outside the the expectation in Equation 4. This fact plays an important role in the convergence

proof presented in this paper.

The value iteration algorithm in Equation 4 or Equation 8 can also be executed asyn-

chronously (Bertsekas & Tsitsiklis, 1989). In an asynchronous implementation, the update of

the value of a particular state proceeds in parallel with the updates of the values of other states.

Bertsekas & Tsitsiklis (1989) show that as long as each state is updated in�nitely often and

each action is tried an in�nite number of times in each state, then the asynchronous algorithm

eventually converges to the optimal value function. Moreover, asynchronous execution has the

advantage that it is directly applicable to real-time Markovian decision problems (RTDP; Barto,

Bradtke, & Singh, 1993). In a real-time setting, the system uses its evolving value function

to choose control actions for an actual process and updates the values of the states along the

trajectory followed by the process.

Dynamic programming serves as a starting point for deriving a variety of learning algorithms

for systems that interact with Markovian environments (Barto, Bradtke, & Singh, 1993; Sutton,

1988; Watkins, 1989). Indeed, real-time dynamic programming is arguably a form of learning

algorithm as it stands. Although RTDP requires that the system possess a complete model of

the environment (i.e., the probabilities pij(u) and the expected costs �ci(u) are assumed known),

the performance of a system using RTDP improves over time, and its improvement is focused

on the states that are actually visited. The system \learns" by transforming knowledge in one

format (the model) into another format (the value function).

A more di�cult learning problem arises when the probabilistic structure of the environment

is unknown. There are two approaches to dealing with this situation (cf. Barto, Bradtke,

& Singh, 1993). An indirect approach acquires a model of the environment incrementally, by

estimating the costs and the transition probabilities, and then uses this model in an ongoing DP

computation. A direct method dispenses with constructing a model and attempts to estimate

the optimal value function (or the optimal Q-values) directly. In the remainder of this paper,

we focus on direct methods, in particular the Q-learning algorithm of Watkins (1989) and the

TD(�) algorithm of Sutton (1988).

The Q-learning algorithm is a stochastic form of value iteration. Consider Equation 8, which

expresses the update of the Q values in terms of the Q values of successor states. To perform

a step of value iteration requires knowing the expected costs and the transition probabilities.

Although such a step cannot be performed without a model, it is nonetheless possible to estimate

the appropriate update. For an arbitrary V function, the quantity
P

j2S pij(u)V (j) can be

estimated by the quantity V (j), if successor state j is chosen with probability pij(u). But

this is assured by simply following the transitions of the actual Markovian environment, which

makes a transition from state i to state j with probability pij(u). Thus the sample value of V at

the successor state is an unbiased estimate of the sum. Moreover ci(u) is an unbiased estimate

of �ci(u). This reasoning leads to the following relaxation algorithm, where we use Qt(i; u) and

Vt(i) to denote the learner's estimates of the Q function and V function at time t, respectively:

Qt+1(st; ut) = (1� �t(st; ut))Qt(st; ut) + �t(st; ut)[cst(ut) + Vt(st+1)] (10)
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where

Vt(st+1) = min
u2U(st+1)

Qt(st; ut): (11)

The variables �t(st; ut) are zero except for the state that is being updated at time t.

The fact that Q-learning is a stochastic form of value iteration immediately suggests the use

of stochastic approximation theory, in particular the classical framework of Robbins and Monro

(1951). Robbins-Monro theory treats the stochastic convergence of a sequence of unbiased

estimates of a regression function, providing conditions under which the sequence converges to

a root of the function. Although the stochastic convergence of Q-learning is not an immediate

consequence of Robbins-Monro theory, the theory does provide results that can be adapted

to studying the convergence of DP-based learning algorithms. In this paper we utilize a result

from Dvoretzky's (1956) formulation of Robbins-Monro theory to prove the convergence of both

Q-learning and TD(�).

Convergence proof for Q-learning

Our proof is based on the observation that the Q-learning algorithm can be viewed as a stochas-

tic process to which techniques of stochastic approximation are generally applicable. Due to the

lack of a formulation of stochastic approximation for the maximum norm, however, we need to

slightly extend the standard results. This is accomplished by the following theorem the proof

of which is given in Appendix A.

Theorem 1 A random iterative process �n+1(x) = (1� �n(x))�n(x) + �n(x)Fn(x) converges

to zero w.p.1 under the following assumptions:

1) The state space is �nite.

2)
P

n �n(x) = 1,
P

n �
2
n(x) < 1,

P
n �n(x) = 1,

P
n �

2
n(x) < 1, and Ef�n(x)jPng �

Ef�n(x)jPng uniformly w.p.1.

3) k EfFn(x)jPng kW<  k �n kW , where  2 (0; 1).

4) VarfFn(x)jPng � C(1+ k �n kW )2, where C is some constant.

Here Pn = f�n;�n�1; : : : ; Fn�1; : : : ; �n�1; : : : ; �n�1; : : :g stands for the past at step n. Fn(x),

�n(x) and �n(x) are allowed to depend on the past insofar as the above conditions remain valid.

The notation k � kW refers to some weighted maximum norm.

In applying the theorem, the �n process will generally represent the di�erence between a

stochastic process of interest and some optimal value (e.g., the optimal value function). The

formulation of the theorem therefore requires knowledge to be available about the optimal

solution to the learning problem before it can be applied to any algorithm whose convergence is

to be veri�ed. In the case of Q-learning the required knowledge is available through the theory

of DP and Bellman's equation in particular.

The convergence of the Q-learning algorithm now follows easily by relating the algorithm to

the converging stochastic process de�ned by Theorem 1.1 In the form of the theorem we have:

1We note that the theorem is more powerful than is needed to prove the convergence of Q-learning. Its

generality, however, allows it to be applied to other algorithms as well (see the following section on TD(�).
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Theorem 2 The Q-learning algorithm given by

Qt+1(st; ut) = (1� �t(st; ut))Qt(st; ut) + �t(st; ut)[cst(ut) + Vt(st+1)]

converges to the optimal Q�(s; u) values if

1) The state and action spaces are �nite.

2)
P

t �t(s; u) =1 and
P

t �
2
t (s; u) <1 uniformly w.p.1.

3) Varfcs(u)g is bounded.

3) If  = 1 all policies lead to a cost free terminal state w.p.1.

Proof. By subtracting Q�(s; u) from both sides of the learning rule and by de�ning

�t(s; u) = Qt(s; u)� Q�(s; u) together with

Ft(s; u) = cs(u) + Vt(snext)�Q�(s; u) (12)

the Q-learning algorithm can be seen to have the form of the process in theorem 1 with �t(s; u) =

�t(s; u).

To verify that Ft(s; u) has the required properties we begin by showing that it is a contraction

mapping with respect to some maximum norm. This is done by relating Ft to the DP value

iteration operator for the same Markov chain. More speci�cally,

max
u

jEfFt(i; u)gj = max
u

j
X

j

pij(u)[Vt(j)� V �(j)]j

� max
u

X

j

Pij(u)max
v

jQt(j; v)�Q�(j; v)j

= max
u

X

j

Pij(u)V
�(j) = T (V �)(i)

where T is the DP value iteration operator for the case where the costs associated with each

state are zero. If  < 1 the contraction property of T and thus of Ft can be seen directly

from the above formulas. When the future costs are not discounted ( = 1) but the chain is

absorbing and all policies lead to the terminal state w.p.1 there still exists a weighted maximum

norm with respect to which T is a contraction mapping (see e.g. Bertsekas & Tsitsiklis, 1989).

The variance of Ft(s; u) given the past is within the bounds of theorem 1 as it depends on

Qt(s; u) at most linearly and the variance of cs(u) is bounded.

Note that the proof covers both the on-line and batch versions. 2

The TD(�) algorithm

The TD(�) (Sutton, 1988) is also a DP-based learning algorithm that is naturally de�ned in

a Markovian environment. Unlike Q-learning, however, TD does not involve decision-making

tasks but rather predictions about the future costs of an evolving system. TD(�) converges to

the same predictions as a version of Q-learning in which there is only one action available at

each state, but the algorithms are derived from slightly di�erent grounds and their behavioral
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di�erences are not well understood. In this section we introduce the algorithm and its derivation.

The proof of convergence is given in the following section.

Let us de�ne Vt(i) to be the current estimate of the expected cost incurred during the

evolution of the system starting from state i and let ci denote the instantaneous random cost

at state i. As in the case of Q-learning we assume that the future costs are discounted at each

state by a factor . If no discounting takes place ( = 1) we need to assume that the Markov

chain is absorbing, that is, there exists a cost free terminal state to which the system converges

with probability one.

We are concerned with estimating the future costs that the learner has to incur. One way

to achieve these predictions is to simply observe n consecutive random costs weighted by the

discount factor and to add the best estimate of the costs thereafter. This gives us the estimate

V
(n)
t (it) = cit + cit+1 + 2cit+2 + : : :+ n�1cit+n�1 + nVt(it+n) (13)

The expected value of this can be shown to be a strictly better estimate than the current

estimate is (Watkins, 1989). In the undiscounted case this holds only when n is larger than

some chain-dependent constant. To demonstrate this let us replace Vt with V � in the above

formula giving EfV
�(n)
t (it)g = V �(it) which implies

max
i
jEfV

(n)
t (i)g � V �(i)j � nmax

i
Prfmi � ngmax

i
jVt(i)� V �(i)j (14)

where mi is the number of steps in a sequence that begins in state i (in�nite in the non-

absorbing case). This implies that if either  < 1 or n is large enough so that the chain

can terminate before n steps starting from an arbitrary initial state then the estimate V
(n)
t is

strictly better than Vt. In general, the larger n the more unbiased the estimate is as the e�ect

of incorrect Vt vanishes. However, larger n increases the variance of the estimate as there are

more (independent) terms in the sum.

Despite the error reduction property of the truncated estimate it is di�cult to calculate in

practice as one would have to wait n steps before the predictions could be updated. In addition

it clearly has a huge variance. A remedy to these problems is obtained by constructing a new

estimate by averaging over the truncated predictions. TD(�) is based on taking the geometric

average:

V �
t (i) = (1� �)

1X

n=1

�n�1V
(n)
t (i) (15)

As a weighted average it is still a strictly better estimate than Vt(i) with the additional bene�t

of being better in the undiscounted case as well (as the summation extends to in�nity). Fur-

thermore, we have introduced a new parameter � which a�ects the trade-o� between the bias

and variance of the estimate (Watkins, 1989). An increase in � puts more weight on less biased

estimates with higher variances and thus the bias in V �
t decreases at the expense of a higher

variance.

The mathematical convenience of using the geometric average can be seen as follows. Given

the estimates V �
t (i) the obvious way to use them in a learning rule is

Vt+1(it) = Vt(it) + �[V �
t (it)� Vt(it)] (16)

In terms of prediction di�erences, that is

�t(it) = cit + Vt(it+1)� Vt(it) (17)
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the geometric weighting allows us to write the correction term in the learning rule as

V �
t (it)� Vt(it) = �t(it) + (�)�t(it+1) + (�)2�t(it+2) + : : : (18)

Note that up to now the prediction di�erences that need to be calculated in the future depend on

the current Vt(i). If the chain is nonabsorbing this computational implausibility can, however,

be overcome by updating the predictions at each step with the prediction di�erences calculated

by using the current predictions. This procedure gives the on-line version of TD(�):

Vt+1(i) = Vt(i) + �t�t(it)
tX

k=0

(�)t�k�i(k) (19)

where �i(k) is the indicator variable of whether state i was visited at kth step (of a sequence).

Note that the sum contains the e�ect of the modi�cations or activity traces initiated at past time

steps. Moreover, it is important to note that in this case the theoretically desirable properties

of the estimates derived earlier may hold only asymptotically (see the convergence proof in the

next section).

In the absorbing case the estimates Vt(i) can also be updated o�-line, that is, after a

complete sequence has been observed. The learning rule for this case is derived simply from

collecting the correction traces initiated at each step of the sequence. More concisely, the total

correction is the sum of individual correction traces illustrated in eq. (18). This results in the

batch learning rule

Vn+1(i) = Vn(i) + �n

mX

t=1

�n(it)
tX

k=0

(�)t�k�i(k) (20)

where the (m+ 1)th step is the termination state.

We note that the above derivation of the TD(�) algorithm corresponds to the speci�c choice

of a linear representation for the predictors Vt(i) (see, e.g., Dayan, 1992). Learning rules for

other representations can be obtained using gradient descent but these are not considered here.

In practice TD(�) is usually applied to an absorbing chain thus allowing the use of either the

batch or the on-line version but the latter is usually preferred.

Convergence of TD(�)

As we are interested in strong forms of convergence we need to modify the algorithm slightly.

The learning rate parameters �n are replaced by �n(i) which satisfy
P

n �n(i) = 1 andP
n �

2
n(i) < 1 uniformly w.p.1. These parameters allow asynchronous updating and they

can, in general, be random variables. The convergence of the algorithm is guaranteed by the

following theorem which is an application of Theorem 1.

Theorem 3 For any �nite absorbing Markov chain, for any distribution of starting states with

no inaccessible states, and for any distributions of the costs with �nite variances the TD(�)

algorithm given by

1)

Vn+1(i) = Vn(i) + �n(i)
mX

t=1

[cit + Vn(it+1)� Vn(it)]
tX

k=1

(�)t�k�i(k)

7



2)

Vt+1(i) = Vt(i) + �t(i)[cit + Vt(it+1)� Vt(it)]
tX

k=1

(�)t�k�i(k)

converges to the optimal predictions w.p.1 provided
P

n �n(i) =1 and
P

n �
2
n(i) <1 uniformly

w.p.1 and ; � 2 [0; 1] with � < 1.

Proof for (1): Using the ideas described in the previous section the learning rule can be

written as

Vn+1(i) = Vn(i) + �n(i)[Gn(i)�
m(i)

Efm(i)g
Vn(i)]

Gn(i) =
1

Efm(i)g

m(i)X

k=1

V �
n (i; k)

where V �
n (i; k) is an estimate calculated at the kth occurence of state i in a sequence and for

mathematical convenience we have made the transformation �n(i)! Efm(i)g�n(i), wherem(i)

is the number of times state i was visited during the sequence.

To apply Theorem 1 we subtract V �(i), the optimal predictions, from both sides of the

learning equation. By identifying �n(i) := �n(i)m(i)=Efm(i)g, �n(i) := �n(i), and Fn(i) :=

Gn(i)� V �(i)m(i)=Efm(i)g we need to show that these satisfy the conditions of Theorem 1.

For �n(i) and �n(i) this is obvious. We begin here by showing that Fn(i) indeed is a contraction

mapping. To this end,

max
i
jEfFn(i) j Vngj =

max
i
j

1

Efm(i)g
Ef(V �

n (i; 1)� V �(i)) + (V �
n (i; 2)� V �(i)) + : : : j Vngj

which can be bounded above by using the relation

jEfV �
n (i; k)� V �(i) j Vngj

� E
n
jEfV �

n (i; k)� V �(i) j m(i) � k; Vngj�(m(i)� k) j Vn

o

� Pfm(i) � kgjEfV �
n (i)� V �(i) j Vngj

� Pfm(i) � kgmax
i
jVn(i)� V �(i)j

where �(x) = 0 if x < 0 and 1 otherwise. Here we have also used the fact that V �
n (i) is a

contraction mapping independent of possible discounting. As
P

k Pfm(i) � kg = Efm(i)g we

�nally get

max
i
jEfFn(i) j Vngj � max

i
jVn(i)� V �(i)j

The variance of Fn(i) can be seen to be bounded by

Efm4
gmax

i
jVn(i)j

2

For any absorbing Markov chain the convergence to the terminal state is geometric and thus

for every �nite k, Efmkg � C(k), implying that the variance of Fn(i) is within the bounds of

8



theorem 1. As Theorem 1 is now applicable we can conclude that the batch version of TD(�)

converges to the optimal predictions w.p.1. 2

Proof for (2) The proof for the on-line version is achieved by showing that the e�ect

of the on-line updating vanishes in the limit thereby forcing the two versions to be equal

asymptotically. We view the on-line version as a batch algorithm in which the updates are

made after each complete sequence but are made in such a manner so as to be equal to those

made on-line.

De�ne G
0

n(i) = Gn(i) + Rn(i) to be the new batch estimate where Rn(i) is the di�erence

between the on-line and batch estimates. We de�ne the new batch learning parameters to

be the maxima over a sequence, that is ~�n(i) = maxt2S �t(i). Now Rn(i) consists of terms

proportional to

[ct + Vn(it+1)� Vn(it)]

the expected value of which can be bounded by � = 2 k Vn � V � k. Assuming that � < 1

(which implies that the multipliers of the above terms are bounded) we can get an upper bound

for the expected value of the correction Rn(i). Let us de�ne Rn;t to be the expected di�erence

between the on-line estimate after t steps and the �rst t terms of the batch estimate. We can

bound Rn;t(i) readily by the update rule resulting in the iteration

k Rn;t+1 k�k ~�n k C(�+ k Rn;t k)

where Rn;n(i) = EfRn(i) j Vng, Rn;0(i) = 0, and C is some constant. Since k ~�n k goes to zero

w.p.1 the above iteration implies that k Rn;n k! 0 w.p.1 giving

max
i
jEfRn(i) j Vngj � Cnmax

i
jVn(i)� V �(i)j

where Cn ! 0 w.p.1. Therefore using the results for the batch algorithm, F
0

n(i) = G
0

n(i) �

V �(i)m(i)=Efm(i)g satis�es

max
i
jEfF

0

n(i)gj � ( + Cn)max
i
jVn(i)� V �(i)j

where for large n (+Cn) <  0 < 1 w.p.1. The variance of Rn(i) and thereby that of F
0

n(i) are

within the bounds of theorem 1 by linearity. This completes the proof. 2

Conclusions

In this paper we have extended results from stochastic approximation theory to cover asyn-

chronous relaxation processes which have a contraction property with respect to some maximum

norm (Theorem 1). This new class of converging iterative processes is shown to include both

the Q-learning and TD(�) algorithms in either their on-line or batch versions. We note that

the convergence of the on-line version of TD(�) has not been shown previously. We also wish

to emphasize the simplicity of our results. The convergence proofs for Q-learning and TD(�)

utilize only high-level statistical properties of the estimates used in these algorithms and do not

rely on constructions speci�c to the algorithms. Our approach also sheds additional light on

the similarities between Q-learning and TD(�).

Although Theorem 1 is readily applicable to DP-based learning schemes, the theory of

Dynamic Programming is important only for its characterization of the optimal solution and

for a contraction property needed in applying the theorem. The theorem can be applied to

iterative algorithms of di�erent types as well.
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Finally we note that Theorem 1 can be extended to cover processes that do not show the

usual contraction property thereby increasing its applicability to algorithms of possibly more

practical importance.

Proof of Theorem 1

In this section we provide a detailed proof of the theorem on which the convergence proofs for

Q-learning and TD(�) were based. We introduce and prove three essential lemmas, which will

also help to clarify ties to the literature and the ideas behind the theorem, followed by the proof

of Theorem 1. The notation k � kW= maxx j � =W (x)j will be used in what follows.

Lemma 1 A random process

wn+1(x) = (1� �n(x))wn(x) + �n(x)rn(x):

converges to zero with probability one if the following conditions are satis�ed:

1)
P

n �n(x) =1,
P

n �
2
n(x) <1,

P
n �n(x) =1, and

P
n �

2
n(x) <1 uniformly w.p.1.

2) Efrn(x)jPng = 0 and Efr2n(x)jPng � C w.p.1, where

Pn = fwn; wn�1; : : : ; rn�1; rn�2; : : : ; �n�1; �n�2; : : : ; �n�1; �n�2; : : :g

All the random variables are allowed to depend on the past Pn.

Proof. Except for the appearance of �n(x) this is a standard result. With the above

de�nitions convergence follows directly from Dvoretzky's extended theorem (Dvoretzky, 1956).

Lemma 2 Consider a random process Xn+1(x) = Gn(Xn; x), where

Gn(�Xn; x) = �Gn(Xn; x)

Let us suppose that if we kept k Xn k bounded by scaling, then Xn would converge to zero w.p.1.

This assumption is su�cient to guarantee that the original process converges to zero w.p.1.

Proof. Note that the scaling of Xn at any point of the iteration corresponds to having

started the process with scaled X0. Fix some constant C. If during the iteration, k Xn k

increases above C, then Xn is scaled so that k Xn k= C. By the assumption then this process

must converge w.p.1. To show that the net e�ect of the corrections must stay �nite w.p.1 we

note that if k Xn k converges then for any � > 0 there exists M� such that k Xn k< � < C for

all n > M� with probability at least 1 � �. But this implies that the iteration stays below C

after M� and converges to zero without any further corrections. 2

Lemma 3 A stochastic process Xn+1(x) = (1��(x))Xn(x)+ �n(x) k Xn k converges to zero

w.p.1 provided

1) x 2 S, where S is a �nite set.

2)
P

n �n(x) = 1,
P

n �
2
n(x) < 1,

P
n �n(x) = 1,

P
n �

2
n(x) < 1, and Ef�n(x)g �

Ef�n(x)g uniformly w.p.1.
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Proof. Essentially the proof is an application of Lemma 2. To this end, assume that we

keep k Xn k� C1 by scaling which allows the iterative process to be bounded by

jXn+1(x)j � (1� �n(x))jXn(x)j+ �n(x)C1

This is linear in jXn(x)j and can be easily shown to converge w.p.1 to some X�(x), where

k X� k� C1. Hence, for small enough �, there exists M1(�) such that k Xn k� C1=(1 + �)

for all n > M1(�) with probability at least p1(�). With probability p1(�) the procedure can be

repeated for C2 = C1=(1 + �). Continuing in this manner and choosing pk(�) so that
Q

k pk(�)

goes to one as � ! 0 we obtain the w.p.1 convergence of the bounded iteration and Lemma 2

can be applied. 2

Theorem 1 A random iterative process �n+1(x) = (1� �n(x))�n(x) + �n(x)Fn(x) converges

to zero w.p.1 under the following assumptions:

1) The state space is �nite.

2)
P

n �n(x) = 1,
P

n �
2
n(x) < 1,

P
n �n(x) = 1,

P
n �

2
n(x) < 1, and Ef�n(x)jPng �

Ef�n(x)jPnguniformly w.p.1.

3) k EfFn(x)jPng kW<  k �n kW , where  2 (0; 1).

4) VarfFn(x)jPng � C(1+ k �n kW )2, where C is some constant.

Here Pn = fXn; Xn�1; : : : ; Fn�1; : : : ; �n�1; : : : ; �n�1; : : :g stands for the past at step n. Fn(x),

�n(x) and �n(x) are allowed to depend on the past insofar as the above conditions remain valid.

The notation k � kW refers to some weighted maximum norm.

Proof. By de�ning rn(x) = Fn(x)� EfFn(x)jPng we can decompose the iterative process

into two parallel processes given by

�n+1(x) = (1� �n(x))�n(x) + �n(x)EfFn(x)jPng

wn+1(x) = (1� �n(x))wn(x) + �n(x)rn(x) (21)

where �n(x) = �n(x) + wn(x). Dividing the equations by W (x) for each x and denoting

�
0

n(x) = �n(x)=W (x), w
0

n(x) = wn(x)=W (x), and r
0

n(x) = rn(x)=W (x) we can bound the �
0

n

process by assumption 3) and rewrite the equation pair as

j�
0

n+1(x)j � (1� �n(x))j�
0

n(x)j+ �n(x) k j�
0

j+ w
0

n k

w
0

n+1(x) = (1� �n(x))w
0

n(x) + �n(x)r
0

n(x)

Assume for a moment that the �n process stays bounded. Then the variance of r
0

n(x) is

bounded by some constant C and thereby w
0

n converges to zero w.p.1 according to Lemma 1.

Hence, there exists M such that for all n > M k w
0

n k< � with probability at least 1� �. This

implies that the �
0

n process can be further bounded by

j�
0

n+1(x)j � (1� �n(x))j�
0

n(x)j+ �n(x) k �
0

n + � k

with probability > 1� �. If we choose C such that (C + 1)=C < 1 then for k �
0

n k> C�

 k �
0

n + � k� (C + 1)=C k �
0

n k
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and the process de�ned by this upper bound converges to zero w.p.1 by Lemma 3. Thus k �
0

n k

converges w.p.1 to some value bounded by C� which guarantees the w.p.1 convergence of the

original process under the boundedness assumption.

By assumption (4) r
0

n(x) can be written as (1+ k �n+wn k)sn(x), where Efs
2
n(x)jPng � C.

Let us now decompose wn as un + vn with

un+1(x) = (1� �n(x))un(x) + �n(x) k �
0

n + un + vn k sn(x)

and vn converges to zero w.p.1 by Lemma 1. Again by choosing C such that (C + 1)=C < 1

we can bound the �
0

n and un processes for k �
0

n + un k> C�. The pair (�
0

n, un) is then a

scale invariant process whose bounded version was proven earlier to converge to zero w.p.1 and

therefore by Lemma 2 it too converges to zero w.p.1. This proves the w.p.1 convergence of the

triple �
0

n, un, and vn bounding the original process. 2
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