
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1414A May, 1994

Exploiting the Parallelism Exposed by
Partial Evaluation

Rajeev Surati
raj@martigny.ai.mit.edu

Andrew Berlin

berlin@parc.xerox.com
This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.
The pathname for this publication is: ai-publications/1000-1499/AIM-1414A.ps.Z

Abstract

We describe the key role played by partial evaluation in the Supercomputer Toolkit, a parallel computing
system for scienti�c applications that e�ectively exploits the vast amount of parallelism exposed by partial
evaluation. The Supercomputer Toolkit parallel processor and its associated partial evaluation-based
compiler have been used extensively by scientists at M.I.T., and have made possible recent results in
astrophysics showing that the motion of the planets in our solar system is chaotically unstable.

Copyright c Massachusetts Institute of Technology, 1994

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Technology.
Support for the laboratory's arti�cial intelligence research is provided in part by the Advanced Research Projects Agency of
the Department of Defense under O�ce of Naval Research contract N00014-92-J-4097 andy by the National Science Foundation
under grant number MIP-9001651. Andrew Berlin was also supported in part by an IBM Graduate Fellowship in Computer
Science.

1 Introduction

Previous work has shown that partial evaluation is good
at breaking down data abstraction and exposing under-
lying �ne-grain parallelism in a program [4]. We have
written a novel compiler which couples partial evalu-
ation with static scheduling techniques to exploit this
�ne-grain parallelism by automatically mapping it onto
a coarse-grain parallel architecture.

Partial evaluation eliminates the barriers to parallel
execution imposed by the data representation and the
control structure of a program by taking advantage of
information about the particular problem a program will
be used to solve. For example, partial evaluation is able
to perform at compile-time most data structure refer-
ences, procedure calls, and conditional branches related
to data structure size, leaving mostly numerical com-
putations to be performed at run time. Partial eval-
uation is particularly e�ective on numerically-oriented
scienti�c programs, since they tend to be mostly data-
independent, meaning that they contain large regions
in which the operations to be performed do not depend
on the numerical values of the data being manipulated.
For instance, matrix multiplication performs the same
set of operations, regardless of the particular numeri-
cal values of the matrix elements. We use partial eval-
uation to produce huge basic blocks from these data-
independent numerical regions. These basic blocks often
contain thousands of instructions, two orders of magni-
tude larger than the basic blocks that typically arise in
high-level language programs. To bene�t from the �ne-
grain parallelism contained in these huge basic blocks,
we schedule the partially-evaluated program for parallel
execution primarily by performing the operations within
an individual basic block in parallel.

In order to automatically map the freshly derived �ne-
grain parallelism onto a multiprocessor, we developed a
technique which coarsens the dataow graph by selec-
tively aggregating operations together. This technique
uses heuristics which take the communication band-
width, inter-processor communication latency, and pro-
cessor architecture all into consideration. High inter-
processor communication latency requires that there be
enough parallelism available to allow each processor to
continue to initiate operations, even while waiting for
results produced elsewhere to arrive. Limited communi-
cation bandwidth severely restricts the parallelism grain
size that may be utilized by requiring that most val-
ues used by a processor be produced on that processor,
rather than being received from another processor. Our
approach addresses these problems by tailoring the grain
size adjustment and scheduling heuristics to match the
communication capabilities of the target architecture.

Our compiler operates in four major phases. The
�rst phase performs partial evaluation, followed by tra-
ditional compiler optimizations, such as constant folding
and dead-code elimination. The second phase analyzes
locality constraints within each basic block, locating op-
erations that depend so closely on one another that it
is clearly desirable that they be computed on the same
processor. These closely related operations are grouped

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|
22

|
24

|
26

|
28

|
30

|
32

|
34

|0

|60

|120

|180

|240

|300

|360

|420

|480

|540

 Operation Level Parallelism Profile Cycles

 P
ro

ce
ss

or
s

Figure 1: Parallelism pro�le of the 9-body problem. This

graph represents all of the parallelism available in the prob-

lem, taking into account the varying latency of numerical

operations.

together to form a higher grain size instruction, known
as a region. The third compilation phase uses heuris-
tic scheduling techniques to assign each region to a pro-
cessor. The �nal phase schedules the individual oper-
ations for execution within each processor, accounting
for pipelining, memory access restrictions, register allo-
cation, and �nal allocation of the inter-processor com-
munication pathways.

The target architecture of our compiler is the Su-

percomputer Toolkit , a parallel processor consisting of
eight independent VLIW processors connected to each
other by two shared communication busses [6]. Per-
formance measurements of actual compiled programs
running on the Supercomputer Toolkit show that the
code produced by our compiler for an important astro-
physics application[19] runs 6.2 times faster on an eight-
processor system than does near-optimal code executing
on a single processor. The compilation process of this
real world application is used as an example throughout
this paper.

2 The Partial Evaluator

Partial evaluation converts a high-level, abstractly writ-
ten, general purpose program into a low-level program
that is specialized for the particular application at hand.
For instance, a program that computes force interactions
among a system of N particles might be specialized to
compute the gravitational interactions among 5 plan-
ets of our particular solar system. This specialization
is achieved by performing in advance, at compile time,
all operations that do not depend explicitly on the actual
numerical values of the data.

Many data structure references, procedure calls, con-
ditional branches, table lookups, loop iterations, and
even some numerical operations may be performed in
advance, at compile time, leaving only the underlying

1

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|
44

|
48

|
52

|
56

|
60

|
64

|
68

|0

|20

|40

|60

|80

|100

|120

|140

 Heuristic Limited(no size limit imposed)
Parallelism Profile

 Cycles

 P
ro

ce
ss

or
s

Figure 2: Parallelism pro�le of the 9-body problem after op-

erations have been grouped together to form regions. Com-

parison with Figure 1 clearly shows that increasing the grain-

size signi�cantly reduced the opportunities for parallel exe-

cution. The maximum speedup factor dropped from 69 to 49

times faster than a single processor execution.

numerical operations to be performed at run time
Our compiler exposes �ne-grain parallelism using a

simple partial evaluation strategy based on a symbolic
execution technique described in [5, 4].1 Despite this
technique's simplicity, it works well at exposing �ne-
grain parallelism. Figure 1 illustrates a parallelism pro-
�le analysis of the nine-body gravitational attraction
problem of the type discussed in [19].2 Partial evalu-
ation exposed so much low-level parallelism that in the-
ory, parallel execution could speed up the computation
by a factor of 69 over a uniprocessor.

3 Adjusting the Grain Size

Searching for an optimal schedule for a program which
exploits �ne-grain parallelism is both computationally
expensive and di�cult to achieve. Rather than do an ex-
haustive search for the optimal schedule, we developed
a heuristic technique to coarsen the exposed �ne-grain
parallelism to a grain size suitable for critical-path based
static scheduling. Prior to initiating critical-path based
scheduling, we perform locality analysis that groups to-
gether operations that depend so closely on one other
that it would not be practical to place them in di�erent
processors. Each group of closely interdependent opera-
tions forms a larger grain size macro-instruction, which
we refer to as a region.3 Some regions are large, while

1More complex partial evaluation strategies that address
data-dependent computations may be found in [10, 12, 11].

2Speci�cally, one time-step of a 12th-order Stormer in-
tegration of the gravity-induced motion of a 9-body solar
system.

3The name region was chosen because we think of the
grain size adjustment technique as identifying \regions" of

others may be as small as one �ne-grain instruction. In
essence, grouping operations together to form a region
is a way of simplifying the scheduling process by de-
ciding in advance that certain opportunities for parallel
execution will be ignored due to limited communication
capabilities.

Since operations within a region will occur on the
same processor, the maximum region size must be cho-
sen to match the communication capabilities of the tar-
get architecture. For instance, if regions are permitted
to grow too large, a single region might encompass the
entire data-ow graph, forcing the entire computation
to be performed on a single processor! Although strict
limits are therefore placed on the maximum size of a re-
gion, regions need not be of uniform size. Indeed, some
regions will be large, corresponding to localized compu-
tation of intermediate results, while others will be quite
small, corresponding to results that are used globally
throughout the computation.

We have experimented with several di�erent heuristics
for grouping operations into regions. The optimal strat-
egy for grouping instructions into regions varies with the
application and with the communication limitations of
the target architecture. However, we have found that
even a relatively simple grain size adjustment strategy
dramatically improves the performance of the schedul-
ing process. As illustrated in Figure 3, when a value
is used by only one instruction, the producer and con-
sumer of that value may be grouped together to form a
region, thereby ensuring that the scheduler will not place
the producer and consumer on di�erent processors in an
attempt to use spare cycles wherever they happened to
be available. Provided that the maximum region size
is chosen appropriately,4 grouping operations together
based on locality prevents the scheduler from making
gratuitous use of the communication channels, forcing it
to focus on scheduling options that make more e�ective
use of the limited communication bandwidth.

An important aspect of grain size adjustment is that
the grain size is not increased uniformly. As shown in
Table 1, some regions are much larger than others. In-
deed, it is important not to forcibly group non-localized
operations into regions simply to increase the grain size.
For example, it is likely that the result produced by an
instruction that has many consumers will be transmitted
amongst the processors, since it is not practical to place
all of the consumers on the result-producing processor.
In this case, creating a large region by grouping together
the producer with only some of the consumers increases

locality within the data-ow graph. The process of grain size
adjustment is closely related to the problem of graph multi-
section, although our region-�nder is somewhat more partic-
ular about the properties (shape, size, and connectivity) of
each \region" sub-graph than are typical graph multisection
algorithms.

4The region size must be chosen such that the compu-
tational latency of the operations grouped together is well-
matched to the communication bandwidth limitations of the
architecture. If the regions are made too large, communi-
cation bandwidth will be under utilized since the operations
within a region do not transmit their results.

2

1*

D

1- 1
+

1*

/

5

A B C

R2

R1

Figure 3: A Simple Region Forming Heuristic. A re-

gion is formed by grouping together operations that have

a simple producer/consumer relationship. This process is

invoked repeatedly, with the region growing in size as ad-

ditional producers are added. The region-growing process

terminates when no suitable producers remain, or when the

maximum region size is reached. A producer is considered

suitable to be included in a region if it produces its result

solely for use by that region. (The numbers shown within

each node reect the computational latency of the operation.)

the grain size, but does not reduce inter-processor com-
munication, since the result would need to be transmit-
ted anyway. In other words, it only makes sense to limit
the scheduler's options by grouping operations together
when doing so will clearly reduce inter-processor com-
munication.

4 Parallel Scheduling

Exploiting locality by grouping operations into regions
forces closely-related operations to occur on the same
processor. Although this reduces inter-processor com-
munication requirements, it also eliminates many op-
portunities for parallel execution. Figure 2 shows the
parallelism remaining in the 9-body problem after oper-
ations have been grouped into regions. Comparison with
Figure 1 shows that increasing the grain size eliminates
about half of the opportunities for parallel execution.
The challenge facing the parallel scheduler is to make ef-
fective use of the limited parallelism that remains, while
taking into consideration such factors as communication
latency, memory tra�c, pipeline delays, and allocation
of resources such as processor buses and inter-processor
communication channels.

Our compiler schedules operations for parallel execu-
tion in two phases. The �rst phase, known as the region-
level scheduler, is primarily concerned with coarse-grain
assignment of regions to processors, generating a rough
outline of what the �nal program will look like. The
region-level scheduler assigns each region to a proces-
sor; determines the source, destinations, and approxi-
mate time of transmission of each inter-processor mes-

Region Number of
Size Regions
1 108
2 28
3 28
5 56
6 1
7 8
14 36
41 24
43 3

Table 1: The numerical operations in the 9-body program

were divided into regions based on locality. This table shows

how region size can vary depending on the locality structure

of the computation. Region size is measured by computa-

tional latency (cycles). The program was divided into 292

regions, with an average region size of 7.56 cycles. The max-

imal region size used was 43 cycles

sage; and determines the preferred order of execution
of the regions assigned to each processor. The region-
level scheduler takes into account the latency of numer-
ical operations, the inter-processor communication ca-
pabilities of the target architecture, the structure (crit-
ical path) of the computation, and which data values
each processor will store in its memory. The region-
level scheduler does not concern itself with �ner-grain
details such as the pipeline structure of the processors,
the detailed allocation of each communication channel,
or the ordering of individual operations within a proces-
sor. At the coarse grain size associated with the schedul-
ing of regions, a straightforward set of critical-path based
scheduling heuristics5 have proven quite e�ective. For
the 9-body problem example, the computational load
was spread so evenly that the variation in utilization
e�ciency among the 8 processors was only one percent.

The �nal phase of the compilation process is
instruction-level scheduling. The region-level scheduler
provides the instruction-level scheduler with an ordered
list of regions to execute on each processor along with a
list of results that need to be transmitted when they are
computed. The instruction-level scheduler chooses the
�nal ordering of low-level operations within each pro-
cessor, taking into account processor pipelining, register
allocation, memory access restrictions, and availability
of inter-processor-communication channels. Whenever
possible, the order of operations is chosen so as to match
the preferences of the region-level scheduler, represented
by the ordered list of regions. However, the instruction-
level scheduler is free to reorder operations as needed,
intertwining operations among the regions assigned to
a particular processor, without regard to which coarse-
grain region they were originally a member of. This
strategy allows the instruction scheduler to maintain a

5The heuristics used by the region-level scheduler are
closely related to list-scheduling [14]. A detailed discussion of
the heuristics used by the region-level scheduler is presented
in [1].

3

schedule similar to the one suggested by the region sched-
uler, thereby ensuring that the results will be produced
at approximately the time that other processors are ex-
pecting them, while still taking advantage of �ne grain
parallelism available in other regions to �ll pipeline slots
as needed.

The instruction-level scheduler derives low-level
pipelined instructions for each processor, choosing the
exact time and communication channel for each inter-
processor transmission, and determining where values
will be stored within each processor. The instruction-
level scheduling process begins with a data-use analy-
sis that determines which instructions share data val-
ues and should therefore be placed near each other for
register allocation purposes. This data-use informa-
tion is combined with the higher-level ordering prefer-
ences expressed by the region-level scheduler, produc-
ing a scheduling priority for each instruction. The in-
struction scheduling process then proceeds one cycle at
a time, performing scheduling of that cycle on all pro-
cessors before moving on to the next cycle. Instructions
compete for resources based on their scheduling prior-
ity; in each cycle, the highest-priority operation whose
data and processor resources are available will be sched-
uled. This competition for data and resources helps to
keep each processor busy, by scheduling low-priority op-
erations whose resources are available whenever the re-
sources for higher priority computations are not avail-
able. Indeed, when the performance of the instruction-
scheduler is measured independently of the region-level
scheduler, by generating code for a single Supercomputer

Toolkit VLIW processor, utilization e�ciencies in excess
of 99.7% are routinely achieved, representing nearly op-
timal code.

An aspect of the scheduler that has proven to be
particularly important is the retroactive scheduling of
memory references. Although computation instructions
(such as + or �) are scheduled on a cycle-by-cycle basis,
memory LOAD instructions are scheduled retroactively,
wherever they happen to �t in. For instance, when a
computation instruction requires that a value be loaded
into a register from memory, the actual memory access
operation6 is scheduled in the past for the earliest mo-
ment at which both a register and a memory-bus cycle
are available; the memory operation may occur �fty or
even one-hundred instructions earlier than the computa-
tion instruction. Supercomputer Toolkit memory opera-
tions must compete for bus access with inter-processor
messages, so retroactive scheduling of memory references
helps to avoid interference between memory and commu-
nication tra�c. Figure 4 illustrates the e�ectiveness of
the instruction level scheduler on the nine-body problem
example.

6On the toolkit architecture, two memory operations may
occur in parallel with computation and address-generation
operations. This ensures that retroactively scheduled mem-
ory accesses will not interfere with computations from previ-
ous cycles that have already been scheduled.

|

0
|

30
|

60
|

90
|

120
|

150
|

180
|

210
|

240
|

270
|

300
|

330

|0

|2

|4

|6

|8

 Processor Utilization per Cycle
 Cycle

 P
r
o

c
e
ss

o
r
s

Figure 4: The result of scheduling the 9-body problem onto

8 Supercomputer Toolkit processors. Comparison with with

the region-level parallelism pro�le (�gure 3) illustrates how

the scheduler spread the course-grain parallelism across the

processors. A total of 340 cycles are required to complete the

computation. On average, 6.5 of the 8 processors are utilized

during each cycle.

5 Performance Measurements

The Supercomputer Toolkit and our associated compiler
have been used for a wide variety of applications, rang-
ing from computation of human genetic pedigrees to the
simulation of electrical circuits. The applications that
have generated the most interest from the scienti�c com-
munity involve various integrations of the N-body grav-
itational attraction problem.7 Parallelization of these
integrations has been previously studied by Miller[18],
who parallelized the program by using futures to man-
ually specify how parallel execution should be attained.
Miller shows how one can re-write the N-body program
so as to eliminate sequential data structure accesses to
provide more e�ective parallel execution, manually per-
forming some of the optimizations that partial evalu-
ation provides automatically. Others have developed
special-purpose hardware that parallelizes the 9-body
problem by dedicating one processor per planet.[17] Pre-
vious work in partial evaluation [3, 5, 4] has shown that
the 9-body problem contains large amounts of �ne-grain
parallelism, suggesting that more subtle parallelizations
are possible without the need to dedicate one processor
to each planet.

We have measured the e�ectiveness of coupling partial
evaluation with grain size adjustment to generate code
for the Supercomputer Toolkit parallel computer, an ar-
chitecture that su�ers from serious inter-processor com-

7For instance, [19] describes results obtained using the
Supercomputer Toolkit that prove that the solar system's dy-
namics are chaotic.

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
1

2
3
4

5
6
7
8

9
10
11
12

13
14

 Ideal
ST9

PROCESSORS

SP
E

E
D

U
P

SPEEDUP VS PROCESSORS
N - b o d y S t o r m e r I n t e g r a t o r

Figure 5: Speedup graph of Stormer integrations. Ample

speedups are available to keep the 8-processor Supercomputer

Toolkit busy, However, the incremental improvement of using

more than 10 processors is relatively small.

munication latency and bandwidth limitations. Table 2
shows the parallel speedups achieved by our compiler for
several di�erent N-body interaction applications. Fig-
ure 5 focuses on the 9-body program (ST9) discussed ear-
lier in this paper, illustrating how the parallel speedup
varies with the number of processors used. Note that
as the number of processors increases beyond 10, the
speedup curves level o�. A more detailed analysis has
revealed that this is due to the saturation of the inter-
processor communication pathways, as illustrated in Fig-
ure 6. The accuracy of these results was veri�ed by exe-
cuting the 9-body program on the actual Supercomputer

Toolkit hardware in an eight processor con�guration.
An important drawback to the partial evaluation approach

is that it results in the unrolling of loops, which can poten-

Program Single Eight Speedup
Processor Processors
Cycles Cycles

ST6 5811 954 6.1
ST9 11042 1785 6.2
ST12 18588 3095 6.0
RK9 6329 1228 5.2

Table 2: Speedups of various applications running on 8

processors. Four di�erent computations have been com-

piled in order to measure the performance of the compiler:

a 6 particle stormer integration(ST6), a 9 particle stormer

integration(ST9), a 12 particle stormer integration(ST12),

and a 9 particle fourth-order Runge Kutta integration(RK9).

Speedup is the single processor execution time of the compu-

tation divided by the total execution time on the multipro-

cessor.

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Processors

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
g
e

U
ti

li
za

ti
o
n

 o
f

B
o
th

 B
u

ss
es

Total Bus Utilization vs Processors

Figure 6: Utilization of the inter-processor communication

pathways. The communication system becomes saturated at

around 10 processors. This accounts for the lack of incremen-

tal improvement available from using more than 10 processors

that was seen in Figure 5.

tially lead to an explosion in the size of the compiled program.
We have found that depending on the size of the data set be-
ing manipulated, partial evaluation may reduce the overall
size of the program, by eliminating data accesses, branches,
and abstraction-manipulation code; or partial evaluation may
increase the size of the program by iterating over a large data
set. The key to making successful use of the partial evalua-
tion technique is to not carry it too far. For relatively small
applications, such as the 9-body integration program, it was
practical to partially-evaluate the entire computation; on the
other hand, if one was simulating a galaxy containing millions
of stars, it would probably be best not to partially-evaluate
some of the outermost loops! Our work focuses on achieving
e�cient parallel execution of the partially-evaluated segments
of a program, leaving the decision of which portions of a pro-
gram should be subjected to this compilation technique up
to the programmer.

6 Related Work

The use of partial evaluation to expose parallelism makes
our approach to parallel compilation fundamentally di�erent
from the approaches taken by other compilers. Traditionally,
compilers have maintained the data structures and control
structure of the original program. For example, if the orig-
inal program represents an object as a doubly-linked list of
numbers, the compiled program would as well. Only through
partial evaluation can the data structures used by the pro-
grammer to think about the problem be removed, leaving the
compiler free to optimize the underlying numerical compu-
tation, unhindered by sequentially-accessed data structures
and procedure calls. However, the drawback to the partial-
evaluation approach is that it is only highly e�fective for
applications that are mostly data-independent.

Many compilers for high-performance architectures use
program transformations to exploit low-level parallelism. For
instance, compilers for vector machines unroll loops to help
�ll vector registers. Other parallelization techniques include
trace-scheduling, software pipelining, vectorizing, as well as

5

static and dynamic scheduling of data-ow graphs.

6.1 Trace Scheduling

Compilers that exploit �ne-grain parallelism often employ
trace-scheduling techniques [15] to guess which way a branch
will go, allowing computations beyond the branch to occur in
parallel with those that precede the branch. Our approach
di�ers in that we use partial evaluation to take advantage
of information about the speci�c application at hand, allow-
ing us to totally eliminate many data-independent branches,
producing basic blocks on the order of several thousands of
instructions, rather than the ten to thirty instructions typ-
ically encountered by trace-scheduling based compilers. An
interesting direction for future work would be to add trace-
scheduling to our approach, to optimize across the data-
dependent branches that occur at basic block boundaries.

Most trace-scheduling based compilers use a variant of
list-scheduling[14] to parallelize operations within an individ-
ual basic block. Although list-scheduling using critical-path
based heuristics is very e�ective when the grain size of the in-
structions is well-matched to inter-processor communication
bandwidth, we have found that in the case of limited band-
width, a grain size adjustment phase is required to make the
list-scheduling approach e�ective.8

6.2 Software Pipelining

Software Pipelining [13] optimizes a particular �xed size loop
structure such that several iterations of the loop are started
on di�erent processors at constant intervals of time. This in-
creases the throughput of the computation. The e�ectiveness
of software pipelining will be determined by whether the grain
size of the parallelism expressed in the looping structure em-
ployed by the programmer matches the architecture: software
pipelining can not parallelize a computation that has its par-
allelism hidden behind inherently sequential data references
and spread across multiple loops. The partial-evaluation ap-
proach on such a loop structure would result in the loop being
completely unrolled with all of the sequential data structure
references removed and all of the �ne grain parallelism in
the loop's computation exposed and available for paralleliza-
tion. In some applications, especially those involving partial
di�erential equations, fully unrolling loops may generate pro-
hibitively large programs. In these situations, partial evalua-
tion could be used to optimize the innermost loops of a com-
putation, with techniques such as software pipelining used to
handle the outer loops.

6.3 Vectorizing

Vectorizing is a commonly used optimization for vector su-
percomputers, executing operations on each vector element

8The partial-evaluation phase of our compiler is currently
not very well automated, requiring that the programmer pro-
vide the compiler with a set of input data structures for each
data-independent code sequence, as if the data-independent
sequences are separate programs being glued together by the
data-dependent conditional branches. This manual interface
to the partial evaluator is somewhat of an implementation
quirk; there is no reason that it could not be more automated.
Indeed, several Supercomputer Toolkit users have built code
generation systems on top of our compiler that automati-
cally generate complete programs, including data-dependent
conditionals, invoking the partial evaluator to optimize the
data-independent portions of the program. Recent work by
Weise, Ruf, and Katz[10, 11] describes additional techniques
for automating the partial-evaluation process across data-
dependent branches.

in parallel. This technique is highly e�ective provided that
the computation is composed primarily of readily identi�able
vector operations (such as dot-product). Most vectorizing
compilers generate vector code from a scalar speci�cation by
recognizing certain standard looping constructs. However,
if the source program lacks the necessary vector-accessing
loop structure, vectorizing performs very poorly. For com-
putations that are mostly data-independent, the combina-
tion of partial evaluation with static scheduling techniques
has the potential to be vastly more e�ective than vectoriza-
tion. Whereas a vectorizing compiler will often fail simply
because the computation's structure does not lend itself to a
vector-oriented representation, the partial-evaluation/static
scheduling approach can often succeed by making use of very
�ne-grained parallelism. On the other hand, for computa-
tions that are highly data-dependent, or which have a highly
irregular structure that makes unrolling loops infeasible, vec-
torizing remains an important option.

6.4 Iterative Restructuring

Iterative restructuring represents the manual approach to
parallelization. Programmer's write and rewrite their code
until the parallelizer is able to automatically recognize and
utilize the available parallelism. There are many utilities for
doing this, some of which are discussed in [16]. This approach
is not exible in that whenever one aspect of the computation
is changed, one must ensure that parallelism in the changed
computation is fully expressed by the loop and data-reference
structure of the program.

6.5 Static Scheduling

Static scheduling of the �ne-grained parallelism embedded
in large basic blocks has also also been investigated for use
on the Oscar architecture at Waseda University in Japan.[7].
The Oscar compiler uses a technique called task fusion that is
similar in spirit to the grain size adjustment technique used
on the Supercomputer Toolkit. However, the Oscar compiler
lacks a partial-evaluation phase, leaving it to the program-
mer to manually generate large basic blocks. Although the
manual creation of huge basic blocks (or of automated pro-
gram generators) may be practical for computations such as
an FFT that have a very regular structure, it is not a rea-
sonable alternative for more complex programs that require
abstraction and complex data structure representations. For
example, imagine writing out the 11,000 oating-point oper-
ations for the Stormer integration of the Solar system and
then suddenly realizing that you need to change to a di�er-
ent integration method. The manual coder would grimace,
whereas a programmer writing code for a compiler that uses
partial evaluation would simply alter a high-level procedure
call.

7 Conclusions

Partial evaluation has an important role to play in
the parallel compilation process, especially for largely
data-independent programs such as those associated with
numerically-oriented scienti�c computations. Our approach
of adjusting the grain size of the computation to match the
architecture was possible only because of partial evaluation:
If we had taken the more conventional approach of using
the structure of the program to detect parallelism, we would
then be stuck with the grain size provided us by the program-
mer. By breaking down the program structure to its �nest
level, and then imposing our own program structure (regions)
based on locality of reference, we have the freedom to choose
the grain size to match the architecture. The coupling of

6

partial evaluation with static scheduling techniques in the
Supercomputer Toolkit compiler also eliminates the need to
write programs in an obscure style that makes parallelism
more apparent.

Acknowledgements

Guillermo Rozas was a major contributor to the design of
the instruction-scheduling techniques we describe in this pa-
per. We would also like to thank Gerald Sussman and Jack
Wisdom for the celestial integrators.

This work is a part of the Supercomputer Toolkit project, a
joint e�ort between M.I.T. and Hewlett-Packard corporation.

This report describes research done at the Arti�cial In-
telligence Laboratory of the Massachusetts Institute of Tech-
nology and at Hewlett-Packard corporation. Support for the
M.I.T. laboratory's arti�cial intelligence research is provided
in part by the Advanced Research Projects Agency of the De-
partment of Defense under O�ce of Naval Research contract
N00014-92-J-4097 and by the National Science Foundation
under grant number MIP-9001651. Andrew Berlin's work
was supported in part by an IBM Graduate Fellowship in
Computer Science.

References

[1] R. Surati, \A Parallelizing Compiler Based on Partial
Evaluation," MIT Arti�cial Intelligence Laboratory Tech-
nical Report TR-1377, July 1993

[2] A. Berlin and R. Surati, \Partial Evaluation for Scienti�c
Computing: The Supercomputer Toolkit Experience,"
Proc of ACM SIGPLAN Workshop on Partial Evalua-

tion and Semantics-Based Program Manipulation 1994,
Orlando, FL 1994. Also available as MIT Arti�cial Intel-
ligence Laboratory Memo No. 1487, May 1994

[3] A. Berlin, \A compilation strategy for numerical pro-
grams based on partial evaluation," MIT Arti�cial Intelli-
gence Laboratory Technical Report TR-1144, Cambridge,
MA., July 1989.

[4] A. Berlin and D. Weise, \Compiling Scienti�c Code using
Partial Evaluation," IEEE Computer December 1990.

[5] A. Berlin, \Partial Evaluation Applied to Numerical
Computation," Proc. 1990 ACM Conference on Lisp and

Functional Programming, Nice, France, June 1990.

[6] H. Abelson, A. Berlin, J. Katzenelson, W. McAllister, G.
Rozas, G.J. Sussman, and J. Wisdom \The Supercom-
puter Toolkit: A general framework for special-purpose
computing", International Journal of High-Speed Elec-

tronics, vol. 3, no. 3, 1992, pp. 337{361.

[7] H. Kasahara, H. Honda, and S. Narita \Parallel Process-
ing of Near Fine Grain Tasks Using Static Scheduling on
OSCAR", Supercomputing 90, pp 856-864, 1990

[8] B. Kruatrachue and T. Lewis, \Grain Size Determination
for Parallel Processing", IEEE Software, Volume 5, No 1,
January 1988

[9] B. Shirazi, M. Wang, and G. Pathak, \Analysis and Eval-
uation of Heuristic Methods for Static Task Scheduling.",
Journal of Parallel and Distributed Computing, Volume
10, Number 3, Nov 1990.

[10] E. Ruf and D. Weise, \Avoiding Redundant Special-
ization During Partial Evaluation" In Proceedings of the

1991 ACM SIGPLAN Symposium on Partial Evalua-

tionand Semantics-Based Program Manipulation, New
Haven, CN. June 1991.

[11] E. Ruf and D. Weise, \Opportunities for Online Par-
tial Evaluation", Technical Report CSL-TR-92-516, Com-
puter Systems Laboratory, Stanford University, Stanford,
CA. 1992.

[12] N. D. Jones, C. K. Gomard and P. Sestoft, Partial Evalu-
ation and Automatic Program Generations Prentice Hall,
1993

[13] M. Lam, \A Systolic Array Optimizing Compiler."
Carnegie Mellon Computer Science Department Techni-
cal Report CMU-CS-87-187., May, 1987.

[14] J. Ellis, Bulldog: A Compiler for VLIW Architectures,

MIT Press, Cambridge, MA, 1986.

[15] J.A. Fisher, \Trace scheduling: A Technique for Global
Microcode Compaction." IEEE Transactions on Comput-

ers, Number 7, pp.478-490. 1981.

[16] G. Cybenko, J. Bruner, S. Ho, \Parallel Computing and
the Perfect Benchmarks." Center for Supercomputing Re-
search and Development Report 1191., November 1991

[17] J. Applegate, M. Douglas, Y. G�ursel, P. Hunter, C.
Seitz, G.J. Sussman, \A Digital Orrery," IEEE Trans.

on Computers, Sept. 1985.

[18] J. Miller, \Multischeme: A Parallel Processing System
Based on MIT Scheme". MIT Laboratory For Computer
Science technical report no. TR-402. September, 1987.

[19] G. Sussman and J. Wisdom, \Chaotic Evolution of the
Solar System",Science, Volume 257, July 1992.

7

