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Abstract

Many 3D objects in the world around us are strongly constrained. For instance, not only cultural artifacts

but also many natural objects are bilaterally symmetric. Human faces are an important case for which

bilateral symmetry holds, at least approximatively. Can a priori information about generic constraints of

this type help the task of 3D object recognition? It can be shown that theoretically such prior information

reduces the amount of information needed to recognize a 3D object, since additional virtual views can be

generated from given model views by the appropriate symmetry transformations. Under special conditions,

a single non-accidental \model" view is theoretically su�cient for recognition of novel views, if the object is

bilaterally symmetric, whereas the theoretical minimum (under the same conditions) for a non-symmetric

object is two views. In practice, we expect that the \virtual" views provided by the symmetry property will

facilitate human recognition of novel views. Psychophysical experiments con�rm that humans are better in

the recognition of symmetric objects. The hypothesis of symmetry-induced virtual views together with a

network model that successfully accounts for human recognition of generic 3D objects leads to predictions

that we have veri�ed with psychophysical experiments.
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1 Introduction

It is well known that a 3D object can be recognized ir-

respective of pose if a 3D model or a su�cient number

of 2D (model) views are available, together with the cor-

respondence of their feature points. Under the assump-

tion of orthographic projection and in the absence of

self-occlusions, the theoretical lower limit for the num-

ber of necessary views is two ( 1.5 views theorem, see
Poggio, 1990 and Ullman and Basri, 1991). A view is

represented as a 2N vector x1; y1; x2; y2; : : : ; xN ; yN of

the coordinates on the image plane of N labeled and

visible feature points on the object. All features are as-

sumed to be visible, as they are in wire-frame objects

(see �gures 1,2). The generalization to opaque objects

follows by partitioning the viewpoint space for each ob-

ject into a set of \aspects" [5], corresponding to stable

clusters of visible features.

Psychophysical experiments [1] using wire-frame and

other objects suggest that a relatively small number of

views { but higher than two and probably between 20

and 100 { are used by the human visual system, which

seems capable of generalizing to novel views by \interpo-

lating" between the few model views. These experiments

are consistent with a network model proposed by Poggio

and Edelman (1990), in which each hidden unit is similar

to a view-centered neuron tuned to one of the example

views (or to prototypical views) whereas the output can

be view-independent if enough training views are pro-

vided.

Often we are able to recognize 3D objects on the sole

basis of their shape after seeing only one view. This is

the case for faces, at least to some extent. It is therefore

interesting to ask in general whether invariance proper-

ties of the object may reduce the number of model views

necessary for recognition.

2 Exploiting Bilateral Symmetry for

Recognition

Classes of objects with parallel faces and objects with

orthogonal faces, such as most man-made objects, pro-

vide interesting examples of such invariance properties.

It can be shown that they are instances of so called lin-

ear classes of objects [12]. Information that an object

belongs to one of these classes reduces the number of

required model views. A particularly interesting exam-

ple is the class associated with the property of bilateral

symmetry. It is easily shown [12] that, given a model

view { such as the one in �gure 1a { and prior informa-

tion that the corresponding 3D object is bilaterally sym-

metric, other \virtual" views can be generated by the

appropriate symmetry transformations (see �gure 1b).

It seems plausible that these new virtual views contain

additional information that can be exploited for better

recognition. In the special case of orthographic projec-

tion with views de�ned as above the intuition can be

made precise: for any bilaterally symmetric 3D object,

one non-accidental 2D model view is su�cient for recog-

nition [12]. Notice that in this proof a perfectly frontal

view is an accidental view and is not su�cient by itself

for recognition of novel views. One does not need to

know the symmetry plane but simply the pairs of sym-

metric point features. Symmetries of higher order than

bilateral allow the recovery of structure from just one

2D view [12]. Also in the perspective case symmetry is

a useful constraint [4, 7] for recognition.

3 Psychophysics

While the theoretical results [12] establish a minimum

number of model views needed for recognition of bilat-

erally symmetric objects, a practical prediction for the

psychophysics of object recognition is that fewer views

should be needed in the case of symmetric relative to

asymmetric objects (see �gure 2) for the same level of

generalization from a single model view. This is a gen-

eral prediction, independent of the speci�c recognition

scheme, and it only assumes that the visual system can

exploit the information contained in bilateral symme-

try which allow to generate virtual views from the given

ones. It is reasonable to expect that recognition of sym-

metric objects is also done in a suboptimal way, since

in the case of non-symmetric objects the human visual

system needs [1, 6] signi�cantly more model views (20-

100) than the theoretical minimumof two (which is valid

for orthographic projection only and, more importantly,

for very speci�c view features { the x; y coordinates of

corresponding points).

If we consider the interpolation-type or classi�cation

models for visual recognition { such as HBF networks

{ that are supported by the psychophysical experiments

of B�ultho� and Edelman (1992), we can make a more

speci�c prediction. For each example view used in train-

ing, the RBF version of the HBF network (see Poggio

and Edelman, 1990) allocates a center, that is a unit

with a Gaussian-like recognition �eld around that view.

The unit performs an operation that could be described

as \blurred" template matching by measuring the sim-

ilarity of the view x to be recognized with the training

view t to which the unit is tuned. The activity of the

unit depends then on this similarity through a Gaussian

function G(jjx� tjj). At the output of the network the

activities of the various units are combined with appro-

priate weights, found during the learning stage. In the

more general HBF scheme the number of units, that is

templates, used during recognition may be less than the

number of training views and in addition the appropriate

similarity metric is found automatically during learning

(see Poggio and Girosi, 1990). An example of a recogni-

tion �eld measured psychophysically for an asymmetric

object after training with a single view is shown in �g-

ure 3a. As predicted from the model (see Poggio and

Edelman, 1990), the shape of the surface of the recogni-
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tion errors is Gaussian-like (more precisely a monotonic

transformation of a Gaussian) and is centered around the

training view. In the case of symmetric objects, the pre-

diction is that the system exploits symmetry by creating

from a single training view additional virtual views and

allocating the corresponding new centers, as shown in

�gure 1a,b. The expected overall e�ect, as measured by

the psychophysical technique of B�ultho�, Edelman and

Sklar (1991), would then be a broader, possibly multi-

peaked recognition �eld.

Our experimental data are in agreement with both

these predictions. Recognition of novel views given a

single training view is signi�cantly better for symmet-

ric than for asymmetric objects (77% correct versus 64%

correct, averaged over all testing views). In addition, the

recognition �eld is, as expected, multipeaked and elon-

gated (�gure 3b) in the correct direction, orthogonal to

the symmetry plane. Figure 4 shows that the broadening

of the generalization �eld occurs for symmetric objects

exactly in the direction of the closest virtual view and

that by increasing the distance of the virtual view it is

possible to resolve the expected two peaks.

A remark about the physiological implications of our

results is in order here. Suppose that training to a view

of a 3D object creates a group of neurons tuned to that

view. In the case of bilaterally symmetric objects the

virtual views induced by symmetry may correspond to

di�erent neurons speci�cally tuned to them. A perhaps

more likely alternative is that features with the appropri-

ate symmetry invariance (see Moses and Ullman, 1991)

are used (instead of x; y position of feature points), in

which case the same neurons tuned to the training view

would also respond to the virtual views induced by sym-

metry.

The key problem in all schemes for learning from ex-

amples, such as RBF networks and various types of neu-

ral networks, is the number of required examples for a

given task. Often an insu�cient number of examples are

available or obtainable. A case in point is the recognition

of a 3D object, such as a face, from a single training ex-

ample (i.e., a model view). An attractive solution to this

general problem is to exploit prior information to gen-

erate additional examples from the few available. We

have already shown that prior information about bilat-

eral symmetry and other geometrical properties of ob-

jects such as collinearity and edges at right angles, could

be used in theory to do just that [12]. Here we have pro-

vided evidence that the brain seems able to exploit this

type of prior information and seems to do so consistently

with a model of recognition that is based on the memory

of the training views { possibly through neurons tuned

to them { and of the virtual views induced by symmetry.

Several open questions remain. It is natural to spec-

ulate that visual recognition of 3D objects may be the

main reason for the well known sensitivity of our visual

system to bilateral symmetry. How does then our visual

Figure 1: Given a single 2D model view (upper left), a
virtual view (upper right) can be generated by an appro-
priate transformation induced by the assumption of bi-
lateral symmetry (under orthographic projection). This
transformation exchanges the x coordinates of bilater-
ally symmetric pairs of features, and changes their sign
(see Poggio and Vetter, 1992). The operation leads to
a virtual view which is not a simple mirror image (note
the labels indicating corresponding points!) and which
is a \legal" view of the 3D object: the views in the up-
per left and upper right are images of the same 3D ob-
ject appropriately rotated. Other legal views (below left
and right, for instance) can be generated by appropri-
ate transformations associated with bilateral symmetry:
each of these other views can be obtained, however, as
a linear combination of the two above views. The im-
ages at the top left and bottom left, can be interpreted as
the image of a (transparent) object seen from two di�er-
ent viewpoints, simply by exchanging symmetric feature
points. These two interpretations (a nd c) are similar
to the bistable perception of the Necker cube type, which
therefore provides an actual and a \virtual" view of a
bilaterally symmetric object.
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Figure 2: (a) The model view of a 3D non-symmetric
object (center). The surrounding images show examples
of other views (30� rotation around horizontal or vertical
axis) of the same object used for testing generalization to
di�erent view points. In the experiment, novel views are
presented intermixed with distractors, that is views of
other similar objects (see B�ultho� and Edelman, 1992).
(b) An example of the bilaterally symmetric objects used
in our psychophysical experiments.
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Figure 3: The generalization �eld associated with one
training view of non-symmetric objects (a) (see also
Edelman and B�ultho�, 1992) and symmetric objects (b).

The recognition performance for wire-like objects (see
�gure 2) increases with distance from the training view
roughly (since the exact nature of the feature space is un-
known) as expected for a Gaussian-like unit tuned to the
training view (a). In (b) the generalization �eld is multi-
peaked (see �gure 4a) and elongated in the horizontal di-
rection as expected from the presence of additional units
tuned to the virtual views induced by symmetry of the
objects. The generalization �eld is de�ned as the recog-
nition rate for views similar to the training view: means
of error rates of 14 subjects and 32 di�erent objects are
plotted vs. rotation in depth around the two axes in the
image plane. The extent of rotation was �90� in each di-
rection; the center of the plot corresponds to the training
attitude. The numbers represent the mean percentage of
correct recognized target objects and correct rejected dis-
tractor objects (Hit + CR). Target and distractor objects
were randomly displayed in equal proportions.
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Figure 4: The graphs show the recognition performance
over a (�90�) rotation range around a �xed axis. The
object was presented at 0�. The data in (a)is taken from
�gure 3b. In this situation the virtual views were located
at �90� (thin arrows); In (b) the virtual views were at
54� (thin arrow) and at �126�(not shown), as a conse-
quence of a di�erent orientation of the training view. In
both cases, the graph shows peaks at the location of the
virtual views, as predicted.

system detect symmetric pairs of features? Some of the

natural strategies (see for instance Reisfeld, Wolfson and

Yeshurun, 1990) would require extensive and specialized

circuitry in the visual system and neurons specialized in

detecting bilaterally symmetric features such as the vir-

tual lines connecting pairs of bilaterally symmetric fea-

ture points (that are always parallel to each other). Is

it possible to extend our results to geometric constraints

other than bilateral symmetry? Can neurons be found,

possibly in IT, with recognition �elds consistent with the

psychophysics (�gures 3a,b) and the model? Another

important set of questions concerns how to learn class

speci�c transformations { for instance the transforma-

tion that \ages" a face { and whether the brain indeed

can learn and use them to e�ectively generate additional

virtual model views for tasks of recognition.
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