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Abstract

Part I of this paper investigates the di�erences | conceptually and algorithmically | between a�ne and
projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It
is shown that an a�ne invariant exists between any view and a �xed view chosen as a reference view.
This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for
visual recognition, projective invariants are not really necessary. The projective extension is then derived,
showing that it is necessary only for tasks for which a reference view is not available | such as happens
when updating scene structure from a moving stereo rig. The geometric di�erence between the two proposed
invariants are that the a�ne invariant measures the relative deviation from a single reference plane, whereas
the projective invariant measures the relative deviation from two reference planes. The a�ne invariant can
be computed from three corresponding points and a fourth point for setting a scale; the projective invariant
can be computed from four corresponding points and a �fth point for setting a scale. Both the a�ne and
projective invariants are shown to be recovered by remarkably simple and linear methods.

In part II we use the a�ne invariant to derive new algebraic connections between perspective views. It
is shown that three perspective views of an object are connected by certain algebraic functions of image
coordinates alone (no structure or camera geometry needs to be involved). In the general case, three views
satisfy a trilinear function of image coordinates. In case where two of the views are orthographic and the
third is perspective the function reduces to a bilinear form. In case all three views are orthographic the
function reduces further to a linear form (the \linear combination of views" of [31]). These functions are
shown to be useful for recognition, among other applications.
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1 Introduction

The geometric relation between objects (or scenes) in
the world and their images, taken from di�erent viewing
positions by a pin-hole camera, has many subtleties and
nuances and has been the subject of research in computer
vision since its early days. Two major areas in computer
vision have been shown to bene�t from an analytic treat-
ment of the 3D to 2D geometry: visual recognition and
reconstruction from multiple views (as a result of having
motion sequences or from stereopsis).
A recent approach with growing interest in the past

few years is based on the idea that non-metric informa-
tion, although weaker than the information provided by
depth maps and rigid camera geometries, is nonetheless
useful in the sense that the framework may provide sim-
pler algorithms, camera calibration is not required, more
freedom in picture-taking is allowed | such as taking
pictures of pictures of objects, and there is no need to
make a distinction between orthographic and perspective
projections. The list of contributions to this framework
include (though not intended to be complete) [14, 26,
33, 34, 9, 20, 3, 4, 28, 29, 19, 31, 23, 5, 6, 18, 27, 13, 12]
| and relevant to this paper are the work described in
[14, 4, 26, 28, 29].
This paper has two parts. In Part I we investi-

gate the intrinsic di�erences | conceptually and algo-
rithmically | between an a�ne framework for recog-
nition/reconstruction and a projective framework. Al-
though the distinction between a�ne and projective
spaces, and between a�ne and projective properties, is
perfectly clear from classic studies in projective and alge-
braic geometries, as can be found in [8, 24, 25], it is less
clear how these concepts relate to reconstruction from
multiple views. In other words, given a set of views, un-
der what conditions can we expect to recover a�ne in-
variants? what is the bene�t from recovering projective
invariants over a�ne? are there tasks, or methodologies,
for which an a�ne framework is completely su�cient?
what are the relations between the set of views generated
by a pin-hole camera and the set of all possible projec-
tions P3 7! P2 of a particular object? These are the
kinds of questions for which the current literature does
not provide satisfactory answers. For example, there is a
tendency in some of the work listed above, following the
inuential work of [14], to associate the a�ne framework
with reconstruction/recognition from orthographic views
only. As will be shown later, the a�ne restriction need
not be coupled with the orthographic restriction on the
model of projection | provided we set one view �xed. In
other words, an uncalibrated pin-hole camera undergo-
ing general motion can indeed be modeled as an \a�ne
engine" provided we introduce a \reference view", i.e.,
all other views are matched against the reference view
for recovering invariants or for achieving recognition.
In the course of addressing these issues we derive two

new, extremely simple, schemes for recovering geometric
invariants | one a�ne and the other projective | which
can be used for recognition and for reconstruction.
Some of the ideas presented in this part of the pa-

per follow the work of [14, 4, 26, 28, 29]. Section 3 on
a�ne reconstruction from two perspective views, follows

and expands upon the work of [26, 14, 4]. Section 4 on
projective reconstruction, follows and re�nes the results
presented in [28, 29].
In Part II of this paper we use the results established

in Part I (speci�cally those in Section 3) to address cer-
tain algebraic aspects of the connections between mul-
tiple views. Inspired by the work of [31], we address
the problem of establishing a direct connection between
views, expressed as functions of image coordinates alone
| which we call \algebraic functions of views". In addi-
tion to linear functions of views, discovered by [31], ap-
plicable to orthographic views only, we show that three
perspective views are related by trilinear functions of
their coordinates, and by bilinear functions if two of the
three views are assumed orthographic | a case that will
be argued is relevant for purposes of recognition without
constraining the generality of the recognition process.
Part II ends with a discussion of possible applications
for algebraic functions, other than visual recognition.

2 Mathematical Notations and

Preliminaries

We consider object space to be the three-dimensional
projective space P3, and image space to be the two-
dimensional projective space P2. Within P3 we will be
considering the projective group of transformations and
the a�ne group. Below we describe basic de�nitions and
formalism related to projective and a�ne geometries |
more details can be found in [8, 24, 25].

2.1 A�ne and Projective Spaces

A�ne space over the �eld K is simply the vector space
Kn, and is usually denoted as An. Projective space Pn

is the set of equivalence classes over the vector space
Kn+1. A point in Pn is usually written as a homoge-
neous vector (x0; :::; xn), which is an ordered set of n+1
real or complex numbers, not all zero, whose ratios only
are to be regarded as signi�cant. Two points x and y

are equivalent, denoted by x �= y, if x = �y for some
scalar �. Likewise, two points are distinct if there is no
such scalar.

2.2 Representations

The points in Pn admit a class of coordinate represen-
tations R such that if R0 is any one allowable repre-
sentation, the whole class R consists of all those rep-
resentations that can be obtained from R0 by the ac-
tion of the group GLn+1 of (n + 1) � (n + 1) non-
singular matrices. It follows, that any one coordinate
representation is completely speci�ed by its standard
simplex and its unit point. The standard simplex is
the set of n + 1 points which have the standard coor-
dinates (1; 0; :::; 0); (0;1; 0; :::; 0); :::; (0; 0; :::; 0;1) and the
unit point is the point whose coordinates are (1; 1; :::; 1).
It also follows that the coordinate transformation be-
tween any two representations is completely determined
from n + 1 corresponding points in the two representa-
tions, which give rise to a linear system of (n + 1)2 � 1
or (n + 1)2 equations (depending on whether we set an
arbitrary element of the matrix transform, or set one of
the scale factors of the corresponding points).
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2.3 Subspaces and Cross Ratios

A linear subspace � �= Pk � Pn is a hyperplane if k =
n � 1, is a line when k = 1, and otherwise is a k-plane.
There is a unique line in Pn through any two distinct
points. Any point z on a line can be described as a linear
combination of two �xed points x;y on the line, i.e.,
z �= x+ky. Let v �= x+k0y be another point on the line
spanned by x;y, then the cross ratio of the four points is
simply � = k=k0 which is invariant in all representations
R. By permuting the four points on the line the 24
possible cross ratios fall into six sets of four with values
�; 1=�; 1� �; (�� 1)=�; �=(�� 1) and 1=(1� �).

2.4 Projections

Let Pn�1 � Pn be some hyperplane, and a point O 2
Pn not lying on Pn�1. If we like, we can choose the
representation such that Pn�1 is given by xn = 0 and
the point O = (0; 0; :::; 0; 1). We can de�ne a map

�o : P
n � fOg ! Pn�1

by
�o : P 7! OP \ Pn�1;

that is, sending a point P 2 Pn other thanO to the point
of intersection of the line OP with the hyperplane Pn�1.
�o is the projection from the point O to the hyperplane
Pn�1, and the point O is called the center of projection
(COP). In terms of coordinates x, this amounts to

�o : (x0; :::; xn) 7! (x0; :::; xn�1):

As an example, the projection of 3D objects onto an
image plane is modeled by x 7! Tx, where T is a 3 �
4 matrix, often called the camera transformation. The
set S of all views of an object (ignoring problems of
self occlusion, i.e., assuming that all points are visible
from all viewpoints) is obtained by the group GL4 of
4 � 4 non-singular matrices applied to some arbitrary
representation of P3, and then dropping the coordinate
x3.

2.5 The A�ne Subgroup

Let Ai � Pn be the subset of points (x0; :::; xn) with
xi 6= 0. Then the ratios �xj = xj=xi are well de�ned and
are called a�ne or Euclidean coordinates on the projec-
tive space, and Ai is bijective to the a�ne space An,
i.e. Ai

�= An. The a�ne subgroup of GLn+1 leaves
the hyperplane xi = 0 invariant under all a�ne repre-
sentations. Any subgroup of GLn+1 that leaves some
hyperplane invariant is an a�ne subgroup, and the in-
variant hyperplane is called the ideal hyperplane. As an
example, a subgroup of GL4 that leaves some plane in-
variant is a�ne. It could be any plane, but if it is the
plane at in�nity (x2 = 0) then the mapping P3 7! P2

is created by parallel projection, i.e., the COP is at in-
�nity. Since two lines are parallel if they meet on the
ideal hyperplane, then when the ideal hyperplane is at
in�nity, a�ne geometry takes its \intuitive" form of pre-
serving parallelism of lines and planes and preserving
ratios. The importance of the a�ne subgroups is that
there exist a�ne invariants that are not projective in-
variants. Parallelism, the concept of a midpoint, area of
triangles, classi�cation of conics are examples of a�ne
properties that are not projective.

2.6 Epipoles

Given two cameras with positions of their COP at
O;O0 2 P3, respectively, the epipoles are at the intersec-
tion of the line OO0 with both image planes. Recovering
the epipoles from point correspondences across two views
is remarkably simple but is notoriously sensitive to noise
in image measurements. For more details on recovering
epipoles see [4, 29, 28, 5], and for comparative and error
analysis see [17, 22]. In Part I of this paper we assume
the epipoles are given; in Part II, where we make further
use of derivations made in Section 3, we show that for
purposes discussed there one can eliminate the epipoles
altogether.

2.7 Image Coordinates

Image space is P2. Since the image plane is �nite, we can
assign, without loss of generality, the value 1 as the third
homogeneous coordinate to every image point. That is,
if (x; y) are the observed image coordinates of some point
(with respect to some arbitrary origin| say the geomet-
ric center of the image), then p = (x; y; 1) denotes the
homogeneous coordinates of the image plane. Note that
by this notation we are not assuming that an observed
point in one image is always mapped onto an observed
(i.e., not at in�nity) point in another view (that would
constitute an a�ne plane) | all what we are relying
upon is that points at in�nity are not observed anyway,
so we are allowed to assign the value 1 to all observed
points.

2.8 General Notations

Vectors are always column vectors, unless mentioned
otherwise. The transpose notation will be added only
when otherwise there is a chance for confusion. Vectors
will be in bold-face only in conjunction with a scalar, i.e.,
�x stands for the scalar � scaling the vector x. Scalar
product will be noted by a center dot, i.e., x � y, again
avoiding the transpose notation except when necessary.
Cross product will be denoted as usual, i.e., x� y. The
cross product, viewed as an operator, can be used be-
tween a vector x and a 3� 3 matrix A as follows:

x�A =

"
x2a3 � x3a2
x3a1 � x1a3
x1a2 � x2a1

#
;

where a1;a2;a3 are the row vectors of A, and x =
(x1; x2; x3).

Part I

3 A�ne Structure and Invariant From

Two Perspective Views

The key idea underlying the derivations in this section is
to place the two camera centers as part of the reference
frame (simplex and unit point) of P3. Let P1; P2; P3 be
three object points projecting onto corresponding points
pj; p

0

j
, j = 1; 2; 3, in the two views. We assign the coor-

dinates (1; 0; 0; 0); (0;1; 0; 0); (0;0; 1; 0) to P1; P2; P3, re-
spectively. For later reference, the plane passing through
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P1; P2; P3 will be denoted by �1. Let O be the COP of
the �rst camera, and O0 the COP of the second camera.
We assign the coordinates (0; 0; 0; 1); (1;1;1; 1) to O;O0,
respectively (see Figure 1). This choice of representation
is always possible because the two cameras are part of
P3. By construction, the point of intersection of the line
OO0 with �1 has the coordinates (1; 1; 1; 0) (note that �1
is the plane x3 = 0, therefore the linear combination of
O and O0 with x3 = 0 must be a multiple of (1; 1; 1; 0)).
Let P be some object point projecting onto p; p0. The

line OP intersects �1 at the point (�; �; ; 0). The coor-
dinates �; �;  can be recovered by projecting the image
plane onto �1, as follows. Let v; v

0 be the location of both
epipoles in the �rst and second view, respectively (see
Section 2.6). Given the epipoles v and v0, we have by our
choice of coordinates that p1; p2; p3 and v are projectively
(in P2) mapped onto e1 = (1; 0; 0); e2 = (0; 1; 0); e3 =
(0; 0; 1) and e4 = (1; 1; 1), respectively. Therefore, there
exists a unique element A1 2 PGL3 (3�3 matrix de�ned
up to a scale) that satis�es A1pj �= ej , j = 1; 2; 3, and
A1v = e4. Note that we have made a choice of scale by
setting A1v to e4, this is simply for convenience as will
be clear later on. It follows that A1p = (�; �; ).

Similarly, the line O0P intersects �1 at (�0; �0; 0; 0).
Let A2 2 PGL3 be de�ned by A2p

0

j
�= ej , j = 1; 2; 3, and

A2v
0 = e4. It follows that A2p

0 = (�0; �0; 0). Since P
can be described as a linear combination of two points
along each of the lines OP , and O0P , we have the fol-
lowing equation:

P �=

0
B@

�
�

0

1
CA+ k

0
B@

0
0
0
1

1
CA = �

0
B@

�0

�0

0

0

1
CA + s

0
B@

1
1
1
1

1
CA ;

from which it immediately follows that k = s. We have
therefore, by the choice of putting both cameras on the
frame of reference, that the transformation in P3 is a�ne
(the plane �1 is preserved). If we leave the �rst camera
�xed and move the second camera to a new position
(must be a general position, i.e., O0 62 �1), then the
transformation in P3 belongs to the same a�ne group.

Note that since only ratios of coordinates are signi�cant
in Pn, k is determined up to a uniform scale, and any
point Po 62 �1 can be used to set a mutual scale for
all views | by setting an appropriate scale for v0, for
example. The value of k can easily be determined as
follows: we have

�

 
�0

�0

0

!
=

 
�
�


!
� k

 
1
1
1

!
:

Multiply both sides by A�1

2 for which we get

�p0 = Ap� kv0; (1)

where A = A�1

2 A1. Note that A 2 PGL3 is a
collineation between the two image planes, due to �1,
determined by p0

j
�= Apj, j = 1; 2; 3, and Av = v0 (there-

fore, can be recovered directly without going through
A1; A2). Since k is determined up to a uniform scale,
we need a fourth correspondence po; p

0

o
, and let A, or v0,

be scaled such that p0
o
�= Apo � v0. Then k is an a�ne

invariant, which we will refer to as \a�ne depth". Fur-
thermore, (x; y; 1; k) are the homogeneous coordinates
representation of P , and the 3 � 4 matrix [A;�v0] is a
camera transformation matrix between the two views.
Note that k is invariant when computed against a refer-
ence view (the �rst view in this derivation), the camera
transformationmatrix does not only depend on the cam-
era displacement but on the choice of three points, and
the camera is an \a�ne engine" if a reference view is
available. More details on theoretical aspects of this re-
sult are provided in Section 3.2, but �rst we discuss its
algorithmic aspect.

3.1 Two Algorithms: Re-projection and A�ne

Reconstruction from Two Perspective

Views

On the practical side, we have arrived to a remarkably
simple algorithm for a�ne reconstruction from two per-
spective/orthographic views (with an uncalibrated cam-
era), and an algorithm for generating novel views of a
scene (re-projection). For reconstruction we follow these
steps:

1. Compute epipoles v; v0 (see Section 2.6).

2. Compute the matrix A that satis�es Apj �= p0
j
, j =

1; 2; 3, and Av �= v0. This requires a solution of a
linear system of eight equations (see Appendices in
[19, 27, 28] for details).

3. Set the scale of v0 by using a fourth corresponding
pair po; p

0

o
such that p0

o
�= Apo � v

0.

4. For every corresponding pair p; p0 recover the a�ne
depth k that satis�es p0 �= Ap� kv0. As a technical
note, k can be recovered in a least-squares fashion
by using cross-products:

k =
(p0 � v0)T (p0 � Ap)

k p0 � v0 k2
:

Note that k is invariant as long as we use the �rst view
as a reference view, i.e., compute k between a reference
view p and any other view. The invariance of k can be

3



used to \re-project" the object onto any third view p00,
as follows. We observe:

p00 �= Bp � kv00;

for some (unique up to a scale) matrixB and epipole v00.
One can solve for B and v00 by observing six correspond-
ing points between the �rst and third view. Each pair of
corresponding points pj; p

00

j
contributes two equations:

b31xjx
00

j
+ b32yjx

00

j
�kjv

00

3x
00

j
+ x00

j
=

b11xj + b12yj + b13 � kjv
00

1 ;

b31xjy
00

j
+ b32yjy

00

j
�kjv

00

3y
00

j
+ y00

j
=

b21xj + b22yj + b23 � kjv
00

2 ;

where b33 = 1 (this for setting an arbitrary scale because
the system of equations is homogeneous | of course
this prevents the case where b33 = 0, but in practice
this is not a problem; also one can use principal compo-
nent analysis instead of setting the value of some cho-
sen element of B or v00). The values of kj are found
from the correspondences pj ; p

0

j
, j = 1; :::; 6 (note that

k1 = k2 = k3 = 0). Once B; v00 are recovered, we can
�nd the location of p00

i
for any seventh point pi, by �rst

solving for ki from the equation p0
i
�= Api�kiv

0, and then
substituting the result in the equation p00

i
�= Bpi � kiv

00.

3.2 Results of Theoretical Nature

Let  o 2 S be some view from the set of all possible
views, and let p1; p2; p3 2  o be non-collinear points
projected from some plane �. Also, let S� � S be the
subset of views for which the corresponding pairs of pj,
j = 1; 2; 3, are non-collinear (A is full rank). Note that
S� contains all views for which the COP is not on �. We
have the following result:

There exists an a�ne invariant between a reference view
 o and the set of views S�.

The result implies that, within the framework of un-
calibrated cameras, there are certain tasks which are in-
herently a�ne and, therefore, projective invariants are
not necessary and instead a�ne invariants are su�cient
(it is yet to be shown when exactly do we need to recover
projective invariants | this is the subject of Section 4).
Consider for example the task of recognition within the
context of alignment [30, 11]. In the alignment approach,
two or more reference views (also called model views),
or a 3D model, are stored in memory | and referred to
as a \model" of the object. During the recognition pro-
cess, a small number of corresponding points between
the reference views and the novel view are used for \re-
projecting" the object onto the novel viewing position
(as for example using the method described in the previ-
ous section). Recognition is achieved if the re-projected
image is successfully matched against the input image.
This entails a sequential search over all possible models
until a match is found between the novel view and the
re-projected view using a particular model. The impli-
cation of the result above is that since alignment uses

1

O

P

Π

P

P
o

~ P
o

~

Figure 2:

a �xed set of reference views of an object to perform
recognition, then only a�ne machinery is really neces-
sary to perform re-projection. As will be shown in Sec-
tion 4, projective machinery requires more points and
slightly more computations (but see Section 9 for dis-
cussion about practical considerations).
The manner in which a�ne-depth was derived gives

rise to a re�nement on the general result that four corre-
sponding points and the epipoles are required for a�ne
reconstruction from two perspective views [4, 29]. Our
derivation shows that in addition to the epipoles, we
need only three points to recover a�ne structure up to
a uniform scale, and therefore the fourth point is needed
only for setting such a scale. To summarize,

In case where the location of epipoles are known, then
three corresponding points are su�cient for computing
the a�ne structure, up to a uniform but unknown scale,
for all other points in space projecting onto correspond-
ing points in both views.

We have also,

A�ne shape can be described as the ratio of a point P
from a plane and the COP, normalized by the ratio of a
�xed point from the reference plane and the COP.

Therefore, a�ne-depth k depends only three points
(setting up a reference plane), the COP (of the reference
view) and a fourth point for setting a scale. This way
of describing structure relative to a reference plane is
very similar to what [14] suggested for reconstruction
from two orthographic views. The di�erence is that there
the fourth point played the role of both the COP and
for setting a scale. We will show next that the a�ne-
depth structure description derived here reduces exactly
to what [14] described in the orthographic case.
There are two ways to look at the orthographic case.

First, when both views are orthographic, the collineation
A (in Equation 1) between the two images is an a�ne
transformation in P2, i.e., third row of A is (0; 0; 1).
Therefore, A can be computed from only three corre-
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sponding points, Apj �= p0
j
, j = 1; 2; 3. Because both O

and O0 are at in�nity, then the epipole v0 is on the plane
x2 = 0, i.e., v03 = 0, and as a result all epipolar lines
are parallel to each other. A fourth corresponding point
po; p

0

o
can be used to determine both the direction of

epipolar lines and to set the scale for the a�ne depth of
all other points | as described in [14]. We see, therefore,
that the orthographic case is simply a particular case of
Equation 1. Alternatively, consider again the structure
description entailed by our derivation of a�ne depth. If
we denote the point of intersection of the line OP with

�1 by ~P , we have (see Figure 2)

k =

P� ~P

P�O

Po�
~Po

Po�O

:

Let O (the COP of the �rst camera) go to in�nity, in
which case a�ne-depth approaches

k �!
P � ~P

Po � ~Po
;

which is precisely the way shape was described in [14]
(see also [26, 27]). In the second view, if it is or-

thographic, then the two trapezoids P; ~P; p0; Ap and

Po; ~Po; p
0

o
; Apo are similar, and from similarity of trape-

zoids we obtain

P � ~P

Po � ~Po
=

p0 �Ap

p0
o
�Apo

;

which, again, is the expression described in [14, 26]. Note
that a�ne-depth in the orthographic case does not de-
pend any more on O, and therefore remains �xed regard-
less of what pair of views we choose, namely, a reference
view is not necessary any more. This leads to the fol-
lowing result:

Let �S � S be the subset of views created by means of
parallel projection, i.e., the plane x2 = 0 is preserved.
Given four �xed reference points, a�ne-depth on S is
reference-view-dependent, whereas a�ne-depth on �S is
reference-view-independent.

Consider next the resulting camera transformation
matrix [A;�v0]. The matrix A depends on the choice of
three points and therefore does not only depend on the
camera displacement. This additional degree of freedom
is a direct result of our camera being uncalibrated, i.e.,
we are free to choose the internal camera parameters (fo-
cal length, principal point, and image coordinates scale
factors) as we like. The matrix A is unique, i.e., depends
only on camera displacement, if we know in advance that
the internal camera parameters remain �xed for all views
S� . For example, assume the camera is calibrated in the
usual manner, i.e., focal length is 1, principle point is at
(0; 0; 1) in Euclidean coordinates, and image scale factors
are 1 (image plane is parallel to xy plane of Euclidean
coordinate system). In that case A is an orthogonal ma-
trix and can be recovered from two corresponding points
and the epipoles | by imposing the constraint that vec-
tor magnitudes remain unchanged (each point provides

three equations). A third corresponding point can be
used to determine the reection component (i.e., mak-
ing sure the determinant of A is 1 rather than �1). More
details can be found in [27, 15]. Since in the uncalibrated
case A is not unique, let A� denote the fact that A is
the collineation induced by a plane �, and let k� denote
the fact that the a�ne-depth also depends on the choice
of �. We see, therefore, that there exists a family of
solutions for the camera transformation matrix and the
a�ne-depth as a function of �. This immediately implies
that a naive solution for A; k, given v0, from point corre-
spondences leads to a singular system of equations (even
if many points are used for a least-squares solution).

Given the epipole v0, the linear system of equations for
solving for A and kj of the equation

�p0
j
= Apj � kjv

0;

from point correspondences pj ; p
0

j
is singular, unless fur-

ther constraints are introduced.

We see that equation counting alone is not su�cient
for obtaining a unique solution, and therefore the knowl-
edge that A is a homography of a plane is critical for this
task. For example, one can solve for A and kj frommany
correspondences in a least-squares approach by �rst set-
ting kj = 0, j = 1; 2; 3 and k4 = 1, otherwise the solution
may not be unique.
Finally, consider the \price" we are paying for an un-

calibrated, a�ne framework. We can view this in two
ways, somewhat orthogonal. First, if the scene is un-
dergoing transformations, and the camera is �xed, then
those transformations are a�ne in 3D, rather than rigid.
For purposes of achieving visual recognition the price we
are paying is that we might confuse two di�erent ob-
jects that are a�nely related. Second, because of the
non-uniqueness of the camera transformation matrix it
appears that the set of views S� is a superset of the set
of views that could be created by a calibrated camera
taking pictures of the object. The natural question is
whether this superset can, nevertheless, be realized by
a calibrated camera. In other words, if we have a cal-
ibrated camera (or we know that the internal camera
parameters remain �xed for all views), then can we gen-
erate S� , and if so how? This question was addressed
�rst in [12] but assuming only orthographic views. A
more general result is expressed in the following propo-
sition:

Proposition 1 Given an arbitrary view  o 2 S� gener-
ated by a camera with COP at initial position O, then all
other views  2 S� can be generated by a rigid motion
of the camera frame from its initial position, if in addi-
tion to taking pictures of the object we allow any �nite
sequence of pictures of pictures to be taken as well.

The proof has a trivial and a less trivial component.
The trivial part is to show that an a�ne motion of the
camera frame can be decomposed into a rigid motion
followed by some arbitrary collineation in P2. The less
trivial component is to show that any collineation in P2
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Figure 3:

can be created by a �nite sequence of views of a view
where only rigid motion of the camera frame is allowed.
The details can be found in Appendix A.
The next section treats the projective case. It will

be shown that this involves looking for invariants that
remain �xed when any two views of S are chosen. The
section may be skipped if the reader wishes to get to
Part II of the paper | only results of a�ne-depth are
used there.

4 Projective Structure and Invariant

From Two Perspective Views

A�ne depth required the construction of a single ref-
erence plane, and for that reason it was necessary to
require that one view remained �xed to serve as a ref-
erence view. To permit an invariant from any pair of
views of S, we should, by inference, design the construc-
tion such that the invariant be de�ned relative to two
planes. By analogy, we will call the invariant \projec-
tive depth" [29]. This is done as follows.
We assign the coordinates (1; 0; 0; 0); (0; 1; 0;0) and

(0; 0; 1; 0) to P1; P2; P3, respectively. The coordinates
(0; 0; 0; 1) are assigned to a fourth point P4, and the co-
ordinates (1; 1; 1; 1) to the COP of the �rst camera O
(see Figure 3). The plane passing through P1; P2; P3 is
denoted by �1 (as before), and the plane passing through

P1; P3; P4 is denoted by �2. Note that the line OP4 in-
tersects �1 at (1; 1; 1; 0), and the line OP2 intersects �2
at (1; 0; 1; 1).
As before, let A1 be the collineation from the im-

age plane to �1 by satisfying A1pj �= ej , j = 1; :::; 4,
where e1 = (1; 0; 0); e2 = (0; 1; 0); e3 = (0; 0; 1) and
e4 = (1; 1; 1). Similarly, let E1 be the collineation from
the image plane to �2 by satisfying E1p1 �= e1; E1p2 �=
e4; E1p3 �= e2 and E1p4 �= e3. Note that if A1p =
(�; �; ), then E1p = (� � �; � � ; �). We have there-

fore, that the intersection of the line OP with �1 is the
point P�1 = (�; �; ; 0), and the intersection with �2 is
the point P�2 = (� � �; 0; � � ; �). We can express P
and O as a linear combination of those points:

P �=

0
B@

�
�

0

1
CA+ �

0
B@

� � �
0

� � 
�

1
CA ;

0
B@

1
1
1
1

1
CA �=

0
B@

�
�

0

1
CA + �0

0
B@

� � �
0

� � 
�

1
CA

Consider the cross ratio �=�0 of the four points
O;P�1; P�2 ; P . Note that �0 = 1 independently of P ,
therefore the cross ratio is simply �. As in the a�ne
case, � is invariant up to a uniform scale, and any �fth
object point Po (not lying on any face of the tetrahe-
dron P1; P2; P3; P4) can be assigned �o = 1 by choos-
ing the appropriate scale for A1 (or E1). This has
the e�ect of mapping the �fth point Po onto the COP
(Po �= (1; 1; 1; 1)). We have, therefore, that � (normal-
ized) is a projective invariant, which we call \projective
depth". Relative shape is described as the ratio of a
point from two planes, de�ned by four object points,
along the line to a �fth point, which is also the center
of projection, that is set up such that its ratio from the
two planes is of unit value. Any transformation T 2 GL4
will leave the ratio � invariant. What remains is to show
how � can be computed given a second view.
Let A be the collineation between the two image planes

due to �1, i.e., Apj �= p0
j
, j = 1; 2; 3, and Av �= v0, where

v; v0 are the epipoles. Similarly, let E be the collineation
due to �2, i.e., Epj �= p0

j
, j = 1; 3; 4, and Ev �= v0. Note

that three corresponding points and the corresponding
epipoles are su�cient for computing the collineation due
to the plane projecting onto the three points in both
views | this is clear from the derivation in Section 3,
but also can be found in [28, 29, 23]. We have that the
projections of P�1 and P�2 onto the second image are
captured by Ap and Ep, respectively. Therefore, the
cross ratio of O;P�1; P�2 ; P is equal to the cross ratio of
v0; Ap;Ep; p0, which is computed as follows:

p0 �= Ap � sEp;

v0 �= Ap � s0Ep;

then � = s=s0, up to a uniform scale factor (which is set
using a �fth point). Here we can also show that s0 is a
constant independent of p. There is more than one way
to show that, a simple way is as follows: Let q be an
arbitrary point in the �rst image. Then,

v0 �= Aq � s0
q
Eq:

Let H be a matrix de�ned by H = A� s0
q
E. Then, v0 �=

Hv and v0 = Hq. This could happen only if v0 �= Hp,
for all p, and s0 = s0

q
. We have arrived to a very simple

algorithm for recovering a projective invariant from two
perspective (orthographic) views:

p0 �= Ap� �Ep; (2)
6



where A and E are described above, and � is invariant
up to a uniform scale, which can be set by observing a
�fth correspondence po; p

0

o
, i.e., set the scale of E to sat-

isfy p0
o
�= Apo�Epo. Unlike the a�ne case, � is invariant

for any two views from the set S of all possible views.
Note that � need not be normalized using a �fth point,
if the �rst view remains �xed (we are back to the a�ne
case). We have arrived to the following result, which is
a re�nement on the general result made in [4] that �ve
corresponding points and the corresponding epipoles are
su�cient for reconstruction up to a collineation in P3:

In case where the location of epipoles are known,
then four corresponding points, coming from four non-
coplanar points in space, are su�cient for computing the
projective structure, up to a uniform but unknown scale,
for all other points in space projecting onto correspond-
ing points in both views. A �fth corresponding point,
coming from a point in general position with the other
four points, can be used to set the scale.

We have also,

Projective shape can be described as the ratio of a point P
from two faces of the tetrahedron, normalized by the ra-
tio of a �xed point (the unit point of the reference frame)
from those faces.

The practical implication of this derivation is that a
projective invariant, such as the one described here, is
worthwhile computing for tasks for which we do not have
a �xed reference view available. Worthwhile because
projective depth requires an additional corresponding
point, and requires slightly more computations (recover
the matrix E in addition to A). Such a task, for ex-
ample, is to update the reconstructed structure from a
moving stereo rig. At each time instance we are given a
pair of views from which projective depth can be com-
puted (projective coordinates follow trivially), and since
both cameras are changing their position from one time
instant to the next, we cannot rely on an a�ne invariant.

5 Summary of Part I

Given a view  o with image points p, there exists an
a�ne invariant k between  o and any other view  i, with
corresponding image points p0, satisfying the following
equation:

�p0 = Ap� kv0;

where A is the collineation between the two image planes
due to the projection of some plane �1 projecting to both
views, and v0 is the epipole scaled such that �op

0

o
=

Apo � v0 for some point po. The set of all views S�1 for
which the camera's center is not on �1 will satisfy the
equation above against  o. The view  o is a reference
view.
A projective invariant � is de�ned between any two

views  i and  j , again for the sake of not introducing
new notations, projecting onto corresponding points p
and p0, respectively. The invariant satis�es the following
equation:

�p0 = Ap� �Ep;

where A is the collineation due to some plane �1, and
E is the collineation due to some other plane �2 scaled
such that �op

0

o
= Apo �Epo, for some point po.

Part II

6 Algebraic Functions of Views

In this part of the paper we use the results established in
Section 3 to derive results of a di�erent nature: instead
of reconstruction of shape and invariants we would like to
establish a direct connection between views expressed as
a functions of image coordinates alone | which we will
call \algebraic functions of views". With these functions
one can manipulate views of an object, such as create
new views, without the need to recover shape or camera
geometry as an intermediate step | all what is needed
is to appropriately combine the image coordinates of two
reference views.
Algebraic functions of two views include the expression

p0
T
Fp = 0; (3)

where F is known as the \Fundamental" matrix (cf. [4])
(a projective version of the well known \Essential" ma-
trix of [16]), and the expression

�1x
0 + �2y

0 + �3x+ �4y + �5 = 0 (4)

due to [10], which is derived for orthographic views.
These functions express the epipolar geometry between
the two views in the perspective and orthographic cases,
respectively. Algebraic functions of three views were in-
troduced in the past only for orthographic views [31, 21].
For example,

�1x
00 + �2x

0 + �3x+ �4y + �5 = 0:

These functions express a relationship between the im-
age coordinates of one view as a function of image co-
ordinates of two other views | in the example above,
the x coordinate in the third view, x00, is expressed as a
linear function of image coordinates in two other views,
similar expressions exist for y00.
We will use the a�ne-depth invariant result to de-

rive algebraic functions of three perspective views. The
relationship between a perspective view and two other
perspective views is shown to be trilinear in image coor-
dinates across the three views. The relationship is shown
to be bilinear if two of the views are orthographic | a
special case useful for recognition tasks. We will start by
addressing the two-view case. We will use Equation 1 to
relate the entries of the camera transformation A and v0

(of Equation 1) to the fundamental matrix by showing
that F = v0�A. This also has an advantage of introduc-
ing an alternative way of deriving expressions 3 and 4, a
way that also puts them both under a single framework.

6.1 Algebraic Functions of Two Views

Consider Equation 1, reproduced below,

�

 
x0

y0

1

!
= A

 
x
y
1

!
� kv0:

7



By simple manipulation of this equation we obtain:

k =
v01 � x0v03

x0a3 � p � a1 � p
=

v02 � y0v03
y0a3 � p � a2 � p

=
y0v01 � x

0v2

x0a2 � p� y0a1 � p
; (5)

where a1;a2;a3 are the row vectors of A and v0 =
(v01; v

0

2; v
0

3). After equating the �rst two terms, we ob-
tain:

x0(v02a3 � p� v
0

3a2 � p) + y0(v03a1 � p� v01a3 � p) +

(v01a2 � p� v02a1 � p) = 0: (6)

Note that the terms within parentheses are linear poly-
nomials in x; y with �xed coe�cients (i.e., depend only
on A and v0). Also note that we get the same expres-
sion when equating the �rst and third, or the second and
third terms of Equation 5. This leads to the following
result:

The image coordinates (x; y) and (x0; y0) of two corre-
sponding points across two perspective views satisfy a
unique equation of the following form:

x0(�1x+ �2y + �3) + y0(�4x+ �5y + �6) +

�7x+ �8y + �9 = 0; (7)

where the coe�cients �j , j = 1; :::; 9, have a �xed re-
lation to the camera transformation A and v0 of Equa-
tion 1:

�1 = v02a31 � v03a21;

�2 = v02a32 � v03a22;

�3 = v02a33 � v03a23;

�4 = v03a11 � v01a31;

�5 = v03a12 � v01a32;

�6 = v03a13 � v01a33;

�7 = v01a21 � v02a11;

�8 = v01a22 � v02a12;

�9 = v01a23 � v02a13:

Equation 7 can also be written as p0
t
Fp = 0, where

the entries of the matrix F are the coe�cients �j, and
therefore, F = v0�A. We have, thus, obtained a new and
simple relationship between the elements of the \funda-
mental" matrix F and the elements of the camera trans-
formation A and v0. It is worth noting that this result
can be derived much easier, as follows. First, the rela-

tionship p0
t
Fp = 0 can be derived, as observed by [4],

from the fact that F is a correlation mapping points
p onto their corresponding epipolar lines l0 in the sec-
ond image, and therefore p0 � l0 = 0. Second1, since
l0 �= v0 � Ap, we have F = v0 � A. It is known that
the rank of the fundamental matrix is 2; we can use this
relationship to show that as well:

F = v0 �A =

"
v02a3 � v

0

3a2

v03a1 � v
0

1a3

v01a2 � v
0

2a1

#
;

1This was a comment made by Tuan Luong.

where a1;a2;a3 are the row vectors of A. Let f1;f2;f3
be the row vectors of F , then it is easy to verify that

f3
�= �f1 + �f2;

by setting
�v02 = �v01:

Next, we can use the result F = v0 � A to show how
the orthographic case, treated by [10], �ts this relation-
ship. In the framework of Equation 1, we saw that with
orthographic views we have A being a�ne in P2, i.e.,
a3 � p = 1, and v03 = 0. After substitution in Equation 6,
we obtain the equation:

�1x
0 + �2y

0 + �3x+ �4y + �5 = 0; (8)

where the coe�cients �j, j = 1; :::; 5 have the following
values:

�1 = v02;

�2 = �v01;

�3 = v01a21 � v
0

2a11;

�4 = v01a22 � v
0

2a12;

�5 = v01a23 � v
0

2a13:

These coe�cients are also the entries of the fundamental
matrix, which can also be derived from F = v0 � A by
setting v03 = 0 and a3 = (0; 0; 1).
The algebraic function 7 can be used for re-projection

onto a third view, by simply noting that the function be-
tween view 1 and 3, and the function between view 2 and
3, provide two equations for solving for (x00; y00). This
was proposed in the past, in various forms, by [20, 3, 19].
Since the algebraic function expresses the epipolar geom-
etry between the two views, however, a solution can be
found only if the COPs of the three cameras are non-
collinear (cf. [28, 27]) | which can lead to numerical
instability unless the COPs are far from collinear. The
alternative, as shown next, is to derive directly alge-
braic functions of three views. In that case, the coor-
dinates (x00; y00) are solved for separately, each from a
single equation, without problems of singularities.

6.2 Algebraic Functions of Three Views

Consider Equation 1 applied between view 1 and 2, and
between view 1 and 3:

�p0 = Ap� kv0

�p00 = Bp � kv00: (9)

Here we make use of the result that a�ne-depth k is
invariant for any view in reference to the �rst view. We
can isolate k again from Equation 9 and obtain:

k =
v001 � x

00v003
x00b3 � p� b1 � p

=
v002 � y00v003

y00b3 � p� b2 � p

=
y00v001 � x00v002

x00b2 � p� y00b1 � p
; (10)

where b1; b2; b3 are the row vectors of B and v00 =
(v001 ; v

00

2 ; v
00

3 ). Because of the invariance of k we can equate
terms of Equation 5 with terms of Equation 10 and ob-
tain trilinear functions of image coordinates across three
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views. For example, by equating the �rst two terms in
each of the equations, we obtain:

x00(v01b3 � p� v
00

3a1 � p) + x00x0(v003a3 � p� v03b3 � p) +

x0(v03b1 � p � v
00

1a3 � p) + v001a1 � p� v01b1 � p = 0: (11)

This leads to the following result:

The image coordinates (x; y), (x0; y0) and (x00; y00) of
three corresponding points across three perspective views
satisfy a trilinear equation of the following form:

x00(�1x+ �2y + �3) + x00x0(�4x+ �5y + �6) +

x0(�7x+ �8y + �9) + �10x+ �11y + �12 = 0; (12)

where the coe�cients �j, j = 1; :::; 12, have a �xed rela-
tion to the camera transformations between the �rst view
and the other two views.

Note that the x coordinate in the third view, x00, is ob-
tained as a solution of a single equation in coordinates of
the other two views. The coe�cients �j can be recovered
as a solution of a linear system, directly if we observe 11
corresponding points across the three views (more than
11 points can be used for a least-squares solution), or
with fewer points by �rst recovering the elements of the
camera transforms as described in Section 3. Then, for
any additional point (x; y) whose correspondence in the
second image is known (x0; y0), we can recover the corre-
sponding x coordinate, x00, in the third view by substi-
tution in equation 12.
In a similar fashion, after equating the �rst term of

Equation 5 with the second term of Equation 10, we
obtain an equation for y00 as a function of the two other
views:

y00(�1x+ �2y + �3) + y00x0(�4x+ �5y + �6) +

x0(�7x+ �8y + �9) + �10x+ �11y + �12 = 0: (13)

Taken together, Equations 5 and 10 lead to 9 algebraic
functions of three views, six of which are separate for x00

and y00. The other four functions are listed below:

x00(�) + x00y0(�) + y0(�) + (�) = 0; (14)

y00(�) + y00y0(�) + y0(�) + (�) = 0; (15)

x00x0(�) + x00y0(�) + x0(�) + y0(�) = 0; (16)

y00x0(�) + y00y0(�) + x0(�) + y0(�) = 0; (17)

where (�) represent linear polynomials in x; y. The so-
lution for x00; y00 is unique without constraints on the
allowed camera transformations. If we choose Equa-
tions 12 and 13, then v01 and v03 should not vanish si-
multaneously, i.e., v0 �= (0; 1; 0) is a singular case. Also
v00 �= (0; 1; 0) and v00 �= (1; 0; 0) give rise to singular cases.
One can easily show that for each singular case there
are two other functions out of the nine available ones
that provide a unique solution for x00; y00. Note that the
singular cases are pointwise, i.e., only three epipolar di-
rections are excluded, compared to the much stronger
singular case when the algebraic function of two views is
used separately, as described in the previous section.
Taken together, the process of generating a novel view

can be easily accomplished without the need to explicitly

recover structure (a�ne depth), camera transformation
(matrices A;B and epipoles v0; v00) or epipolar geometry
(just the epipoles or the Fundamental matrix) | for the
price of using more than the minimal number points that
are required otherwise (the minimal is six between the
two model views and the novel third view).
The connection between the general result of trilinear

functions of views to the \linear combination of views"
result [31] for orthographic views, can easily be seen by
setting A and B to be a�ne in P2, and v03 = v003 = 0.
For example, Equation 11 reduces to:

v01x
00 � v001x

0 + (v001a1 � p� v
0

1b1 � p) = 0; (18)

which is of the form:

�1x
00 + �2x

0 + �3x+ �4y + �5 = 0:

In the case where all three views are orthographic, then
x00 is expressed as a linear combination of image coordi-
nates of the two other views | as discovered by [31].
In the next section we address another case, interme-

diate between the general trilinear and the orthographic
linear functions, which we �nd interesting for applica-
tions of visual recognition.

6.2.1 Recognition of Perspective views From

an Orthographic Model

Consider the case for which the two reference (model)
views of an object are taken orthographically (using a
tele lens would provide a reasonable approximation), but
during recognition any perspective view of the object is
allowed. It can easily be shown that the three views are
then connected via a bilinear function (instead of trilin-
ear): A is a�ne in P2 and v03 = 0, therefore Equation 11
reduces to:

x00(v01b3 � p� v
00

3a1 � p) + v003x
00x0 �

v001x
0 + (v001a1 � p� v

0

1b1 � p) = 0;

which is of the following form:

x00(�1x+ �2y + �3) + �4x
00x0 +

�5x
0 + �6x+ �7y + �8 = 0: (19)

Similarly, Equation 13 reduces to

y00(�1x+ �2y + �3) + �4y
00x0 +

�5x
0 + �6x+ �7y + �8 = 0: (20)

A bilinear function of three views has two advantages
over the general trilinear function. First, only seven cor-
responding points (instead of 11) across three views are
required for solving for the coe�cients (compared to the
minimal six if we �rst recover A;B; v0; v00). Second, the
lower the degree of the algebraic function, the less sen-
sitive the solution should be in the presence of errors in
measuring correspondences. In other words, it is likely
(though not necessary) that the higher order terms, such
as the term x00x0x in Equation 12, will have a higher con-
tribution to the overall error sensitivity of the system.
Compared to the case when all views are assumed or-

thographic, this case is much less of an approximation.
Since the model views are taken only once, it is not un-
reasonable to require that they be taken in a special
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way, namely, with a tele lens (assuming we are dealing
with object recognition, rather than scene recognition).
If that requirement is satis�ed, then the recognition task
is general since we allow any perspective view to be taken
during the recognition process.

7 Applications

Algebraic functions of views allow the manipulation of
images of 3D objects without necessarily recovering 3D
structure or any form of camera geometry (either full, or
weak | the epipoles).
The application that was emphasized throughout the

paper is visual recognition via alignment. In this con-
text, the general result of a trilinear relationship between
views is not encouraging. If we want to avoid implicating
structure and camera geometry, we must have 11 corre-
sponding points across the three views | compared to
six points, otherwise. In practice, however, we would
need more than the minimal number of points in or-
der to obtain a least squares solution. The question is
whether the simplicity of the method using trilinear func-
tions translates also to increased robustness in practice
when many points are used | this is an open question.
Still in the context of recognition, the existence of bi-

linear functions in the special case where the model is
orthographic, but the novel view is perspective, is more
encouraging. Here we have the result that only seven cor-
responding points are required to obtain recognition of
perspective views (provided we can satisfy the require-
ment that the model is orthographic) compared to six
points when structure and camera geometry are recov-
ered. The additional corresponding pair of points may
be indeed worth the greater simplicity that comes with
working with algebraic functions.
There may exist other applications where simplicity

is of major importance, whereas the number of points
is less of a concern. Consider for example, the appli-
cation of model-based compression. With the trilinear
functions we need 22 parameters to represent a view as
a function of two reference views in full correspondence.
Assume both the sender and the receiver have the two
reference views and apply the same algorithm for obtain-
ing correspondences between the two views. To send
a third view (ignoring problems of self occlusions that
could be dealt separately) the sender can solve for the
22 parameters using many points, but eventually send
only the 22 parameters. The receiver then simply com-
bines the two reference views in a \trilinear way" given
the received parameters. This is clearly a domain where
the number of points are not a major concern, whereas
simplicity, and probably robustness due to the short-cut
in the computations, is of great importance.
Related to image coding is a recent approach of image

decomposition into \layers" as proposed in [1, 2]. In this
approach, a sequence of views is divided up into regions,
whose motion of each is described approximately by a
2D a�ne transformation. The sender sends the �rst im-
age followed only by the six a�ne parameters for each
region for each subsequent frame. The use of algebraic
functions of views can potentially make this approach
more powerful because instead of dividing up the scene

into planes (it would have planes if the projection was
parallel, in general its not even planes) one can attempt
to divide the scene into objects, each carries the 22 pa-
rameters describing its displacement onto the subsequent
frame.
Another area of application may be in computer

graphics. Re-projection techniques provide a short-cut
for image rendering. Given two fully rendered views
of some 3D object, other views (again ignoring self-
occlusions) can be rendered by simply \combining" the
reference views. Again, the number of corresponding
points is less of a concern here.

8 Summary of Part II

The derivation of an a�ne invariant across perspective
views in Section 3 was used to derive algebraic func-
tions of image coordinates across two and three views.
These enable the generation of novel views, for purposes
of visual recognition and for other applications, without
going through the process of recovering object structure
(metric or non-metric) and camera geometry.
Between two views there exists a unique function

whose coe�cients are the elements of the Fundamental
matrix and were shown to be related explicitly to the
camera transformation A; v0:

x0(�1x+ �2y + �3) + y0(�4x+ �5y + �6) +

�7x+ �8y + �9 = 0:

The derivation was also useful in making the connection
to a similar expression, due to [10], made in the context
of orthographic views.
We have seen that trilinear functions of image coordi-

nates exist across three views, one of them shown below:

x00(�1x+ �2y + �3) + x00x0(�4x+ �5y + �6) +

x0(�7x+ �8y + �9) + �10x+ �11y + �12 = 0:

In case two of the views are orthographic, a bilinear re-
lationship across three views holds. For example, the
trilinear function above reduces to:

x00(�1x+ �2y + �3) + �4x
00x0 +

�5x
0 + �6x+ �7y + �8 = 0:

In case all three views are orthographic, a linear rela-
tionship holds | as observed in [31]:

�1x
00 + �2x

0 + �3x+ �4y + �5 = 0:

9 General Discussion

For purposes of visual recognition, by alignment, the
transformations induced by changing viewing positions
is at most a�ne. In other words, a pin-hole uncalibrated
camera is no more than an \a�ne engine" for tasks for
which a reference view ( a model) is available. One of
the goals of this paper was to make this claim and make
use of it in providing methods for a�ne reconstruction
and for recognition.
An a�ne reconstruction follows immediately from

Equation 1 and the realization that A is a collineation
of some plane which is �xed for all views. The recon-
structed homogeneous coordinates are (x; y; 1; k) where
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(x; y; 1) are the homogeneous coordinates of the image
plane of the reference view, and k is an a�ne invariant.
The invariance of k can be used to generate novel views
of the object (which are all a�nely related to the refer-
ence view), and thus achieve recognition via alignment.
We can therefore distinguish between a�ne and non-
a�ne transformations in the context of recognition: if
the object is �xed and the transformations are induced
by camera displacements, then k must be invariant |
space of transformations is no more than a�ne. If, how-
ever, the object is allowed to transform as well, then k
would not remain �xed if the transformation is not a�ne,
i.e. involves more than translation, rotation, scaling and
shearing. For example, we may apply a projective trans-
formation in P3 to the object representation, i.e., map
�ve points (in general position) to arbitrary locations in
space (which still remain in general position) and map
all other points accordingly. This mapping allows more
\distortions" than a�ne transformations allow, and can
be detected by the fact that k will not remain �xed.
Another use of the a�ne derivations was expressed in

Part II of this paper, by showing the existence of alge-
braic functions of views. We have seen that any view
can be expressed as a trilinear function with two refer-
ence views in the general case, or as a bilinear function
when the reference views are created by means of paral-
lel projection. These functions provide alternative, much
simpler, means for manipulating views of a scene. The
camera geometries between one of the reference views
and the other two views are folded into 22 coe�cients.
The number 22 is perfectly expected because these cam-
era geometries can be represented by two camera trans-
formation matrices, and we know that a camera trans-
formation matrix has 11 free parameters (3 � 4 matrix,
determined up to a scale factor). However, the folding
of the camera transformations are done in such a way
that we have two independent sets of 11 coe�cients each,
and each set contains foldings of elements of both cam-
era transformation matrices (recall Equation 11). This
enables us to recover the coe�cients from point corre-
spondences alone, ignoring the 3D structure of the scene.
Because of their simplicity, we believe that these alge-
braic functions will �nd uses in tasks other than visual
recognition | some of those are discussed in Section 7.
This paper is also about projective invariants, mak-

ing the point of when do we need to recover a projective
invariant, what additional advantages should we expect,
and what price is involved (more computations, more
points, etc.). Before we discuss those issues, it is worth
discussing a point or two related to the way a�ne-depth
was derived. Results put aside, Equation 1 looks sus-
piciously similar, or trivially derivable from, the classic
motion equation between two frames. Also, there is the
question of whether it was really necessary to use the
tools of projective geometry for a result that is essen-
tially a�ne. Finally, one may ask whether there are sim-
pler derivations of the same result. Consider the classic
motion equation for a calibrated camera:

z0p0 = zRp+ t:

Here R is an orthogonal matrix accounting for the rota-
tional component of camera displacement, t is the trans-

lation component (note that t �= v
0), z is the depth from

the �rst camera frame, and z0 is the depth value seen
from the second camera frame. Divide both sides of the
equation by z, assume thatR is an arbitrary non-singular
matrix A, and it seems that we have arrived to Equa-
tion 1, where k = �1=z. In order to do it right, one
must start with an a�ne frame, map it a�nely onto the
�rst camera, then map it a�nely onto the second cam-
era, and then relate the two mappings together | it will
then become clear that k is an invariant measurement.
This derivation, which we will call an \a�ne derivation",
appears to have the advantage of not using projective ge-
ometry. However, there are some critical pieces missing.
First, and foremost, we have an equation but not an al-
gorithm. We have seen that simple equation counting
for solving for A and k, given t, from point correspon-
dences is not su�cient, because the system of equations
is singular for any number of corresponding points. Also,
equation counting does not reveal the fact that only four
points are necessary: three for A and the fourth for set-
ting a mutual scale. Therefore, the realization that A is
a homography of some plane that is �xed along all views
| a fact that is not revealed by the a�ne derivation |
is crucial for obtaining an algorithm. Second, the na-
ture of the invariant measurement k is not completely
revealed; it is not (inverse) depth because A is not nec-
essarily orthogonal, and all the other results described
in Section 3.2 do not clearly follow either.

Consider next the question of whether, within the con-
text of projective geometry, a�ne-depth could have been
derived on geometric grounds without setting up coor-
dinates, as we did. For example, although this was not
mentioned in Section 3, it is clear that the three points
p0; Ap; v0 are collinear | this is well known and can be
derived from purely geometric considerations by observ-
ing that the optical line OP and the epipolar line p0v0

are projectively related in P1 (cf. [28, 29, 22]). It is less
obvious, however, to show on geometric grounds only
that the ratio k is invariant independently of where the
second view is located, because ratios are not generally
preserved under projectivity (only cross-ratios are). In
fact, as we saw, k is invariant but up to a uniform scale,
therefore, for any particular optical line the ratio is not
preserved. It is for this reason that algebra was intro-
duced in Section 3 for the derivation of a�ne-depth.

Consider next the di�erence between the a�ne and
the projective frameworks. We have seen that from a
theoretical standpoint, a projective invariant, such as
projective-depth � in Equation 2, is really necessary
when a reference view is not available. For example, as-
sume we have a sequence of n views  o;  1; :::;  n�1 of a
scene and we wish to recover its 3D structure. An a�ne
framework would result if we choose one of the views,
say  o, as a reference view, and compute the structure
as seen from that camera location given the correspon-
dences  o =)  i with all the remaining views | this is a
common approach for recovering metric structure from
a sequence. Because a�ne-depth is invariant, we have
n� 1 occurrences of the same measurement k for every
point, which can be used as a source of information for
a least-squares solution for k (or naively, simply average
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the n � 1 measurements). Now consider the projective
framework. Projective-depth � is invariant for any two
views  i;  j of the sequence. We have therefore n(n�1)
occurrences of � which is clearly a stronger source of
information for obtaining an over-determined solution.
The conclusion from this example is that a projective
framework has practical advantages over the a�ne, even
in cases where an a�ne framework is theoretically su�-
cient. There are other practical considerations in favor
of the projective framework. In the a�ne framework, the
epipole v0 plays a double role | �rst for computing the
collineation A, and then for computing the a�ne-depth
of all points of interest. In the projective framework, the
epipoles are used only for computing the collineations A
and E but not used for computing �. This di�erence
has a practical value as one would probably like to have
the epipoles play as little a role as possible because of
the di�culty in recovering their location accurately in
the presence of noise. In industrial applications, for ex-
ample, one may be able to set up a frame of reference
of two planes with four coplanar points on each of the
planes. Then the collineations A and E can be com-
puted without the need for the epipoles, and thus the
entire algorithm, expressed in Equation 2, can proceed
without recovering the epipoles at all.
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Appendix

A Proof of Proposition

Proposition 1 Given an arbitrary view  o 2 S� gener-
ated by a camera with COP at initial position O, then all
other views  2 S� can be generated by a rigid motion
of the camera frame from its initial position, if in addi-
tion to taking pictures of the object we allow any �nite
sequence of pictures of pictures to be taken as well.

Lemma 1 The set of views S� can be generated by a
rigid camera motion, starting from some �xed initial po-
sition, followed by some collineation in P2.

Proof: We have shown that any view  2 S� can be
generated by satisfying Equation 1, reproduced below:

p0 �= Ap� kv0:

Note that k = 0 for all P 2 �. First, we transform the
coordinate system to a camera centered by sending � to
in�nity: Let M 2 GL4 be de�ned as

M =

2
64

1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

3
75 :

We have:

p0 �= Ap� kv0

= [A;�v0]

0
B@

x
y
1
k

1
CA

�= [A;�v0]M�1

0
B@

xb
yb
zb
1

1
CA

= S

 
xb
yb
zb

!
+ u;

where xb = x=(x + y + 1 + k); yb = y=(x + y + 1 + k)
and zb = 1=(x+ y + 1 + k). Let R be a rotation matrix
in 3D, i.e., R 2 GL3, det(R) = 1, and let B denote a
collineation in P2, i.e., B 2 GL3, and let w be some
vector in 3D. Then, we must show that

p0 �= BR

 
xb
yb
zb

!
+Bw:

For every R;B and w, there exists S and u that produce
the same image, simply be setting S = BR and u = Bw.
We must also show that for every S and u there exists
R;B and w that produce the same image: Since S is of
full rank (becasue A is), then the claim is true by simply
setting B = SRT and w = B�1u, for any arbitrary
orthogonal matrix R. In conclusion, any view  2 S�
can be generated by some rigid motion R;w starting
from a �xed intial position, followed by some collineation
B of the image plane.

We need to show next that any collineation in P2

can be expressed by a �nite sequence of views taken
by a rigidly moving camera, i.e., calibrated camera. It
is worthwhile noting that the equivalence of projective
transformations (an algebraic concept) with a �nite se-
quence of projections of the plane onto itself (a geometric
concept) is fundamental in projective geometry. For ex-
ample, it is known that any projective transformation of
the plane can be obtained as the resultant of a �nite se-
quence of projections [32, Thm. 10, pp. 74]. The ques-
tion, however, is whether the equivalence holds when
projections are restricted to what is generally allowed
in a rigidly moving camera model. In other words, in
a sequence of projections of the plane, we are allowed
to move the COP anywhere in P3; the image plane is
allowed to rotate around the new location of the COP
and scale its distance from it along a distinguishable axis
(scaling focal length along the optical axis). What is not
allowed, for example, is tilting the image plane with re-
spect to the optical axis (that has the e�ect of changing
the location of the principal point and the image scale
factors | all of which should remain constant in a cali-
brated camera). Without loss of generality, the camera
is set such that the optical axis is perpendicular to the
image plane, and therefore when the COP is an ideal
point the projecting rays are all perpendicular to the
plane, i.e., the case of orthographic projection.
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The equivalence between a sequence of perspec-
tive/orthographic views of a plane and projective trans-
formations of the plane is shown by �rst reducing the
problem to scaled orthographic projection by taking a
sequence of two perspective projections, and then using
a result of [30, 11] to show the equivalence for the scaled
orthographic case. The following two auxilary proposi-
tions are used:

Lemma 2 There is a unique projective transformation
of the plane in which a given line u is mapped onto
an ideal line (has no image in the real plane) and
which maps non-collinear points A;B;C onto given non-
collinear points A0; B0; C0.

Proof: This is standard material (cf. [7, pp. 178]).

Lemma 3 There is a scaled orthographic projection for
any given a�ne transformation of the plane.

Proof: follows directly from [30, 11] showing that any
given a�ne transformation of the plane can be obtained
by a unique (up to a reection) 3D similarity transform
of the plane followed by an orthographic projection.

Lemma 4 There is a �nite sequence of perspective and
scaled orthographic views of the plane, taken by a cali-
brated camera, for any given projective transformation
of the plane.

Proof: The proof follows and modi�es [7, pp. 179]. We
are given a plane � and a projective transformation T .
If T is a�ne, then by Lemma 3 the proposition is true.
If T is not a�ne, then there exists a line u in � that
is mapped onto an ideal line under T . Let A;B;C be
three non-collinear points which are not on u, and let
their image under T be A0; B0; C0. Take a perspective
view onto a plane �0 such that u has no image in �0 (the
plane �0 is rotated around the new COP such that the
plane passing through the COP and u is parallel to �0).
Let A1; B1; C1 be the images of A;B;C in �0. Project �0

back to � by orthographic projection, and let A2; B2; C2

be the image of A1; B1; C1 in �. Let F be the resultant
of these two projections in the stated order. Then F
is a projective transformation of � onto itself such that
u has no image (in the real plane) and A;B;C go into
A2; B2; C2. From Lemma 3 there is a viewpoint and a
scaled orthographic projection of � onto �00 such that
A2; B2; C2 go into A0; B0; C0, respectively. Let L be the

resultant of this projection (L is a�ne). T̂ = FL is a
projective transformation of � such that u has no image

and A;B;C go into A0; B0; C0. By Lemma 2, T = T̂
(projectively speaking, i.e., up to a scale factor).
Proof of Proposition: follows directly from

Lemma 1 and Lemma 4.
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