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We also present a parallel perceptual organization scheme based on such ridge de-

tector that works without edges; in addition to perceptual groups, the scheme computes
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Figure 1: Two di�erent views on the role of perceptual organization.

1 Introduction

Perceptual organization (aka grouping and segmentation) is a process that computes

regions of the image that come from di�erent objects, with little detailed knowledge of the

particular objects present in the image. Recent work in computer vision has emphasized

the role of edge detection and discontinuities in segmentation and recognition. This line

of research stresses that edge detection should be done at an early stage on a brightness

representation of the image, and segmentation and other early vision modules operate

later on (see Figure 1 left). We (like some others) argue against such an approach and

present a scheme that segments an image without �nding brightness, texture, or color

edges (see Figure 1 right). In our scheme, discontinuities and a potential focus of attention

for subsequent processing are found as a byproduct of the perceptual organization process

which is based on a novel ridge detector.

Segmentation without edges is not new. Previous approaches fall into two classes.

Algorithms in the �rst class are based on coloring or region growing [Hanson and Riseman

1978], [Horowitz and Pavlidis 1974], [Haralick and Shapiro 1985], [Clemens 1991]. These

schemes proceed by laying a few \seeds" in the image and then \grow" these until a complete

region is found. The growing is done using a local threshold function, i.e. decisions are

made based on local neighborhoods. This results in schemes limited in two ways: �rst, the

growing function does not incorporate global factors, resulting in fragmented regions (see

Figure 2). Second, there is no way to incorporate a priori knowledge of the shapes that

we are looking for. Indeed, important Gestalt principles such as symmetry, convexity and

proximity (extensively used by current grouping algorithms) have not been incorporated

in coloring algorithms. These principles are useful heuristics to aid grouping processes and

are often su�cient to disambiguate certain situations. In this paper we present a non-

local perceptual organization scheme that uses no edges and which embodies these gestalt

principles. It is for this reason that our scheme overcomes some of the problems with region

growing schemes, mainly the fragmenting of regions and the merging of overlapping regions

with similar region properties.
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The second class of segmentation schemes which work without edges are based on com-

putations that �nd discontinuities while preserving some region properties such as smooth-

ness or other physical approximations [Geman and Geman 1984], [Terzopoulos 86], [Blake

and Zisserman 1987], [Hurlbert and Poggio 1988], [Poggio, Gamble and Little 1988]. These

schemes are scale dependent and in some instances depend on reliable edge detection. Scale

has been addressed previously at the discontinuity level [Witkin 1983], [Koenderink 1984],

[Perona and Malik 1990] but these schemes do not explicitly represent regions and often

meaningful regions are not fully enclosed by the obtained discontinuities. Like with the

previous class, all these algorithms do not embody any of the Gestalt principles and in

addition perform poorly when there is a nonzero gradient inside a region. The scheme

presented in this paper performs perceptual organization (see above) and addresses scale

by computing the largest scale at which a structure (not necessarily a discontinuity) can be

found in the image.

The scheme that we will present is an extension of the brightness-based perceptual

organization scheme presented in [Subirana-Vilanova 1990]. Such a scheme is based on a

�lter-based ridge detector with a number of important problems we will discuss. These

include its dependence on scale and its sensitivity to curved shapes. Our analysis will lead

us to a non-linear �lter that overcomes most of these problems.

Our scheme is designed to work for brightness, texture, and color but our implemen-

tation deals only with color. Color is an interesting case to study because it is a three-

dimensional property, not one-dimensional like intensity making the extension of brightness

based schemes to color non-trivial.

We begin in the next section by listing reasons for exploring non-edge based schemes

which should give an idea of the di�culties associated with perceptual organization without

edges. We then present our approach, including an extended analysis of the ridge-detector,

and results of a version of our scheme implemented on the Connection Machine.

2 In Favor of Regions

What is an edge? Unfortunately there is no agreed de�nition of it. An edge can be

de�ned in several related ways: as a discontinuity in a certain property1, as "something"

that looks like a step edge (e.g. [Canny 1986] - see Figure 3) and by an algorithm (e.g.

zero-crossings [Marr and Hildreth 1980]). Characterizing edges has proven to be di�cult

especially near corners, junctions2, [Beymer 1991], [Giraudon and Deriche 1991], [Korn

1988], [Noble 1988], [Gennert 1986], [Singh and Shneier 1990], [Medioni and Yasumoto

1Note that, strictly speaking, there are no discontinuities in a properly sampled image (or they are
present at every pixel)

2Junctions are critical for most edge-labeling schemes which do not tolerate well missing junctions.
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Figure 2: (From top-left to bottom right) 1: Full shirt image. 2: Canny edges. 3: Color

edges. 4: An image of a shirt. 5: Original seeds for a region growing segmentation

algorithm. 6: Final segmentation obtained using a region growing algorithm.

Figure 3: Left: Model of an edge. Right: Model of a ridge or box. Are these appropriate?

Figure 4: Left: Zero-crossings. Right: Sign bit. Which one of these is harder to

recognize? (Taken from [Marr and Hildreth 1980]).
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1987], [Harris and Stephens 1988] and when the image contains edges at multiple scales,

noise, transparent surfaces, or edges di�erent than step edges (e.g. roof edges) [Horn 1977],

[Ponce and Brady 1985], [Forsyth and Zisserman 1989], [Perona and Malik 1990].

What is a region? Attempting to de�ne regions bears problems similar to those encoun-

tered in the de�nition of an edge. Roughly speaking, it is a collection of pixels in an image

sharing a common property. In this context, an edge is the border of a region. How can we

�nd regions in images? We could proceed in a similar way as with edges, so that a region

be de�ned (in one dimension) as a structure that looks like a box (see Figure 3). However,

this su�ers from problems similar to the ones mentioned for edges.

Thus, regions and edges are two closely related concepts. It is unclear how we should

represent the information contained in an image. As regions? As edges? Most people

would agree that a central problem in visual perception is �nding the objects or structures

of interest in an image. These can be de�ned sometimes by their boundaries, i.e. by

identifying the relevant edges in an edge-based representation. However, consider now a

situation in which you have a transparent surface as when hair occludes a face, when the

windshield in your car is dirty or when you are looking for an animal inside the forest. An

edge-based representation does not deal with this case well, because the region of interest

is not well de�ned by the discontinuities in the scene but by the perceived discontinuities.

This reects an object-based view of the world. Instead, a region-based representation is

adequate to represent the data in the image. Furthermore, independently of how we choose

to represent our data, which structures should we recover �rst? Edges or regions?

Here are some reasons why exploring the computation of regions (without edges) may

be a promising approach:

2.1 Human Perception

There is some psychological evidence that humans can recognize images with region

information better than line drawings [Cavanaugh 1991]. However, there is not a clear

consensus [Ryan and Schwartz 1956], [Biederman and Ju 1988]). See also Figure 4.

2.2 Perceptual Organization

Recent progress in rigid-object recognition has lead to schemes that perform remarkably

better than humans for limited libraries of models. The computational complexity of these

schemes depends critically on the number of \features" used for matching. Therefore, the

choice of features is an important issue. A simple feature that has been used is a point

of an edge. This has the problem that typically, there are many such features and they

4



are not very distinctive increasing the complexity of the search process. Complexity can

be reduced by grouping this features into lines [Grimson 1990]. Lines in this context are a

form of grouping. This idea has been pushed further and several schemes exist that try to

group edge segments that come from the same object [Lowe 1984, 1987], [Jacobs 1989]. The

general idea underling grouping is that \group features" are more distinctive and occur less

frequently than individual features (see [Marroquin 1976], [Witkin and Tenenbaum 1983],

[Mahoney 1985], [Lowe 1984, 1987], [Sha'ashua and Ullman 1988], [Jacobs 1989], [Grimson

1990], [Subirana-Vilanova 1990]). This has the e�ect of simplifying the complexity of the

search space. However, even in this domain where existing perceptual organization has

found use, complexity still limits the realistic number of models that can be handled.

\Additional" groups obtained with region-based computations should be helpful.

Representations which maintain some region information such as the sign-bit of the

zero-crossings (instead of just the zero-crossings themselves) can be used for perceptual

organization. One property that is easy to recover locally in the sign-bit image shown in

Figure 4 is that of membership in the foreground (or background) of a certain portion of the

image since a very simple rule can be used: The foreground is black and the background

white. (This rule cannot be applied in general, however it illustrates how the coloring

provided by the sign bit image can be used to obtain region information.) In the edge

image, this information is available but cannot be computed locally. The region-based

scheme presented in this paper uses, to a certain extent, a similar principle to the one

we have just discussed. Namely, that often regions of interest have uniform brightness

properties.

2.3 Non-rigid objects

Previous research on recognition has focused on rigid objects. In such a domain, one

of the most useful constraints is that the change in appearance, in the image, can be

attributable mainly to a change in viewing position and luminance geometry3. It has been

shown that this implies that the correspondence of a few features constrains the viewpoint

(so that pose can be easily veri�ed). Therefore, for rigid-objects, edge-based segmentation

schemes which look for small groups of features that come from one object are su�cient.

Since cameras introduce noise and edge-detectors fail to �nd some edges, the emphasis has

been on making these schemes as robust as possible under spurious data and occlusion.

Instead, very little research has been devoted to exible objects such as an alligator. In

this case, the change in appearance cannot be attributable solely to a change in viewing

direction. Internal changes of the shape have to be taken into account. Therefore, grouping

a small subset of image features is not su�cient to recover the object's pose. A di�erent

form of grouping that can group all (or most of) the objects features is necessary. Even

3For polygonal shapes, in most cases luminance could be ignored if we could recover edges with no errors.
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after extensive research on perceptual organization, there are no edge-based schemes that

work in this domain (see also the next subsection). This may not be just a limitation on our

understanding of the problem but a constraint imposed by the input used by such schemes.

The use of more information, not just the edges, may simplify the problem. One of the

goals of our research is to develop a scheme that can group features of a exible object

under a variety of settings that is robust under changes in illumination. Occlusion and

spurious data should also be considered, but they are not the main driver of our research.

2.4 Stability and Scale

In most images, interesting structures in di�erent regions of the image occur at di�erent

scales. This is a problem for edge-based grouping because edge detectors are very sensitive

to the \scale" at which they are applied. This presents grouping schemes two problems: it

is not clear what is the scale at which to apply edge detectors and, in some images, not all

edges of an object appear accurately at one single scale. Scale stability is in fact one of the

most important sources of noise and spurious data mentioned above.

Consider for example Figure 5 where we have presented the edges of a person at di�erent

scales. Note that there is no single scale where the silhouette of the person is not broken.

For the purposes of recognition, the interesting edges are obviously the ones corresponding

to the object of interest. Determining the scale at which these appear is not a trivial task.

This problem has been addressed in the past [Zhong and Mallat 1990], [Lu and Jain

1989], [Clark 1988], [Geiger and Poggio 1987], [Schunck 1987], [Perona and Malik 1987],

[Zhuang, Huang and Chen 1986], [Canny 1985], [Witkin 1984] but edge detection has treated

scale as an isolated issue, independent of the other edges that may be involved in the object

of interest. We believe that the stability and scale of the edges should depend on the region

that they belong to and not solely on the discontinuity that gives rise to them. The scheme

that we will present looks for the objects directly, not just for the individual edges. This

means that in our research we address stability in terms of objects (not edges). In fact, our

scheme commits to one scale which varies through the image; usually it varies also within

the object. This scale corresponds to that of the object of interest chosen by our scheme.

3 Color, Brightness Or Texture?

The perceptual organization scheme presented in this paper includes color, brightness

and texture. We decided to implement it on color �rst, without texture or brightness.

Color based perceptual organization (without the use of other cues) is indeed possible for

humans since two adjacent untextured surfaces viewed under iso-luminant conditions can

be segmented. (Although the human visual system has certain limitations in iso-luminant
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Figure 5: Edges computed at six di�erent scales. Note that the results are notably

di�erent. Which scale is best? Top six: Image of a person. Note that some of the edges

corresponding to the legs are never found. Bottom six: Blob image.

displays, e.g. [Cavanaugh 1987].) And, as we will discuss later in the paper, color is also

useful when there are brightness changes.

Under normal conditions, color is a perceived property of a surface that depends mostly

upon surface spectral reectance and very little on the spectral characteristics of the light

entering our eyes. It is therefore useful for describing the material composition of a surface

(independently of its shape and imaging geometry) [Rubin and Richards 1981]. Lambertian

color is indeed uniform over most untextured physical surfaces, and is stable in shadows,

and under changes in the surface orientation or the imaging geometry. In general it is more

stable than texture or brightness. It has long been known that the perceived color (or
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intensity) at any given image point depends on the light reected from the various parts

of the image, and not only on the light at that point. This is known as the simultaneous-

contrast phenomena and has been known at least since E. Mach reported it at the beginning

of the century. [Marr 1982] suggests that such a strategy may be used because one way

of achieving some compensation for illuminance changes is by looking at di�erences rather

than absolute values. According to this view, a surface is yellow because it reects more

\yellow" light than a blue surface, and not because of the absolute amount of yellow light

reected (of which the blue surface may reect an arbitrary amount depending on the

incident light).

The exact algorithm by which humans compute perceived color is still unclear. Our

scheme only requires a rough estimate of color which is used to segment the image, see

Figure 6. We believe that perceived color should be computed at a later stage by a process

similar to the ones described in [Helson 1938], [Judd 1940], [Land and McCann 1971].

This model is in line with the ones presented in [Subirana-Vilanova and Richards 1991]

and [Jepson and Richards 1991] which suggest that perceptual organization is a very early

process which precedes most early visual processing. In our images, color is entered in the

computer as a \color vector" with three components: the red, green, and blue channels

of the video signal. Our scheme works on color di�erences S
 between pairs of pixels c

and cR. The di�erence that we used is de�ned in equation 1 and was taken from [Sung

1991] (
 denotes the vector cross product operation) and responds very sensitively to color

di�erences between similar colors.

S
(c) = 1� jc
 cRj
jcjjcRj (1)

This similarity measure is a decreasing function with respect to the angular color di�erence.

It assigns a maximum value of 1 to colors that are identical to the reference \ridge color",

cR, and a minimum value of 0 to colors that are orthogonal to cR in the RGB vector space.

The discriminability of this measure can be seen intuitively by looking at the normalized

image in Figure 6. The exact nature of this measure is not critical to our algorithm. What

is important is that when two adjacent objects have di�erent perceived color (in the same

background) this measure is positive4. Many other measures have been proposed in the

literature and they could be incorporated in our scheme.

What most color similarity measures have in common is that they are based on vector

values and cannot be mapped onto a one-dimensional �eld [Judd and Wyszecki 75]5. This

makes color perception di�erent from brightness from a computational point of view since

4Note that the perceived color similarity among arbitrary objects in the scene will obviously not corre-

spond to this measure. Specially if we do not take into account the simultaneous-contrast phenomena
5Note that using the three channels, red, green and blue independently works for some cases. However it

is possible to construct cases in which it does not as when an object has two discontinuities, one in the red

channel only and the other in one of the other two channels only. In addition, the perceived similarity is not

well captured by the information contained in the individual chapels alone but on the combined measure.
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Figure 6: The similarity measure described in Equation 1 is illustrated here for an

image of a person. Left: Image. Center: Similarity measure, using as reference color,

the color of the pixel located at the intersection of the two segments shown. Right: Plot

of the similarity measure along the long segment using the same reference color.

not all the one-dimensional techniques used in brightness images extend naturally to higher

dimensions.

4 Regions? What Regions?

In the last two sections we have set forth an ambitious goal: Develop a perceptual orga-

nization scheme that works on the image itself, without edges and using color, brightness,

and texture information.

But what constitutes a good region? What \class" of regions ought to be found? Our

work is based on the observation that many objects in nature (or their parts) have a common

color or texture, and are long, wide, symmetric, and convex. This hypothesis is hard to

verify formally, but it is at least true for a collection of common objects [Snodgrass and

Vanderwart 1980] used in psychophysics. And as we will show, it can be used in our scheme

yielding seemingly useful results. In addition, humans seem to organize the visual array

using this type of principles as demonstrated by the Gestalt Psychologists [Wertheimer

1923], [Ko�ka 1935], [K�ohler 1940]. In fact, these were the starting point for much of the

work in computer vision on perceptual organization for rigid objects. We use these same

principles but in a di�erent way: Without edges and with non-rigid shapes in mind.

In the next section we describe some common problems in �nding regions. To do so,

we introduce a one dimensional version of "regions" and discuss the problems involved in

this simpli�ed version of the task. A scheme to solve the one dimensional version of the

problem is discussed in Sections 6 and 7. This exercise is useful because both the problems

and the solution encountered generalize to the two dimensional version, which is presented

in Sections 8 and 9.
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5 Problems in Finding Brightness Ridges

One way of simplifying the perceptual organization task is to start by looking at a one

dimensional version of the problem. This is especially true if such a solution lends itself

to a generalized scheme for the two dimensional problem. This would be a similar path

to the one followed by most edge detection research. In the case of edge detection, the

generally accepted one dimensional version of the problem is a step function (as shown in

Figure 3). Similarly, perceptual organization without edges can be cast in one dimension as

the problem of �nding ridges similar to a hat (as shown in Figure 3). A hat is a good model

because it has one of the basic properties of a region: it is uniform and has a discontinuity

in its border. As we will see shortly, the hat model needs to be modi�ed before it can reect

all the properties of regions that interest us.

In other words, the one-dimensional version of the problem that we are trying to solve

is to locate ridges in a one-dimensional signal. By ridge we mean something that "looks

like" a pair of step edges (see Figure 3). A simple-minded approach is to �nd the edges in

the image, and then look for the center of the two edges. This was the approach used in

[Subirana-Vilanova 1990]. Another possibility is to design a �lter to detect such a structure

as in [Canny 1985], [Noble 1988]. This also was the essence of the brightness based approach

used in [Subirana-Vilanova 1990].

However, there are a number of problems with using such �lters as estimators for ridge

detection. These problems are not particular to either scheme, but are linked to the nature

of ridges in real images. Some of these problems are in fact very similar for color and for

brightness images. The model of a ridge used in these schemes is similar to the one shown

in Figure 3. This is a limited model since ridges in images are not well suited to it. Perhaps

the most evident reason why such a model is not realistic is the fact that it is tuned to a

particular scale, while, in most images, ridges appear at multiple and unpredictable scales.

This is not so much of a problem in edge-detection as we have discussed in the previous

sections, because the edges of a wide range of images can be assumed to have \a very similar

scale". Thus, Canny's ridge detector works only on images where all ridges are of the same

scale as is true in the text images shown in [Canny 1983] (see also Figures 17 and 18) and

in the images used by [Subirana-Vilanova 1990].

Therefore, an important feature of a ridge detector is its scale invariance. We now

summarize a number of important features that a ridge operator should have (see Figure

7):

� Scale: See previous paragraph.

� Non-edgeness: The �lter should give no response for a step edge. This property is

violated by [Canny 1985].

10



Figure 7: Left: Plot with multiple steps. A ridge detector should detect three ridges.

Right: Plot with narrow valleys. A ridge detector should be able to detect the di�erent

lobes independently of the size of the neighboring lobes.

� Multiple steps: The �lter should also detect regions between small steps. These are

frequent in images, for example when an object is occluding the space between two

other objects. This complicates matters in color images because the surfaces are

de�ned by vectors not just scalar values.

� Narrow valleys: The operator should also work in the presence of multiple ridges even

when they are separated by small valleys.

� Noise: As with any operator that is to work in real images, tolerance to noise is a

critical factor.

� Localization: The ridge-detector output should be higher in the middle of the ridge

than on the sides.

� Strength: The strength of the response should be somehow correlated with the strength

of the perception of the ridge by humans.

� Large scales: Large scales should receive higher response. This is a property used by

[Subirana-Vilanova 1990]'s scheme and is important because it embodies the prefer-

ence for large objects (see also section 14).

6 A Color Ridge Detector

In the previous section we have outlined a number of properties we would like our ridge-

detector to have. As we have mentioned, the Canny ridge-detector fails because, among

other things, it cannot handle multiple scales. A naive way of solving the scale problem

would be to apply the Canny ridge detector at multiple scales and de�ne the output of the

�lter at each point as the response at the scale which yields a maximum value. This �lter

would work in a number of occasions but has the problem of giving a response for step

edges (since the ridge-detector at any single scale responds to edges, so will the combined

�lter - see Figures 17 and 18).

One can suppress the response to edges by splitting Canny's ridge operator into two

pieces, one for each edge, and then combining the two responses by looking at the minimum
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Figure 8: Left: Gaussian second derivative, an approximation to Canny's optimal ridge

detector. Right: Individual one-dimensional masks used by our operator.

Signal

Profile of left
half of filter

Profile of right
half of filter

Output from left
half (abs. value)

Output from right
half (abs. value)

Shifted response

Minimum of two
halfs divided by
the gradient is the
output of the single-
scale filter

Ridge Edge

Figure 9: Intuitive description of ridge detector output on at ridge and edge.

of the two responses. This is the basic idea behind our approach (see Figures 8 and 9).

Figures 17 and 18 illustrate how our �lter behaves according to the di�erent criteria outlined

before. The Figure also compares our �lter with that of the second derivative of a gaussian,

which is a close approximation to the ridge-�lter Canny used. There are a number of

potential candidates within this framework such as splitting a Canny �lter by half, using

two edge detectors and many others. We tried a number of possibilities on the Connection

Machine using a real and a synthetic image with varying degrees of noise. Table 6 describes

the �lter which gives a response most similar to the inertia values and the tolerated length

that one would obtain using similar formulas for the corresponding edges, as described in

[Subirana-Vilanova 1990].
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VAR. EXPRESSION DESCRIPTION

Pmax Free Parameter (3) Gradient penalization coe�.

Fs Free Parameter (8) Filter Side Lobe size coe�.

Fc Free Parameter (1/8) Local Neighborhood size coe�.

g(x) Color gradient at location x.

gmax Max. color gradient in image.

� Size of Main Filter Lobe.

�s �=Fs Size of Side Filter Lobe.

�c Fc� Reference Color Neighborhood

c(x) [R(x) G(x) B(x)]T Color vector at location x.

cn(x) c(x)=jc(x)j Normalized Color at x.

cr(x)
R �c
��c

1p
2��c

e

� r
2

2�2
c cn(x+ r) dr Reference Color at x

r+�

�2
p
2�

e
� (r+�)2

2�2 �� < r < �

FL(r)
r+�

�2s
p
2�

e
� (r+�)2

2�2s �(� + 2�s) < r < �� Left Half of Filter

0 otherwise

FR(r) FL(�r) Right Half of Filter

IL(x)
R �
�(�+�s)S
(cr(x); cn(x+ r))FL(r) dr Inertia from Left Half

IR(x)
R �+�s
�� S
(cr(x); cn(x+ r))FR(r) dr Inertia from Right Half

I�(x) min(IL(x); IR(x))
p
�

(1+Pmax

g(x)

gmax
)2

Inertia at location x (Scale �).

I(x) 8� max(I�(x)) Overall inertia at location x.

�(max) � such that I�(x) is maximized

TL(x) 0 if rc < �(max) Tolerated Length

rc(� � arccos( rc��(max)

rc
)) otherwise (Depends on radius of curvature rc)

Table 1: Steps for Computing Directional Inertias and Tolerated Length. Note that the

scale � is not a free parameter.
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Our approach uses two �lters (see pro�le in Figure 8), each of which looks at one side

of the ridge. The output of the combined �lter is the minimum of the two responses. Each

of the two parts of the �lter is asymmetrical, reecting the fact that we expect the object

to be uniform (which explains each �lter's large central lobe), and that we do not expect

that a region of equal size be adjacent to the object (which explains each �lter's small side

lobe to accomodate for narrower adjacent regions). In other words, our ridge detector is

designed to handle narrow valleys.

Handling steps and the extension to color are tricky because there is no clear notion

of what is positive and what is negative in vector quantities. We solve this problem by

adaptively de�ning a reference color at each point as the weighted average color over a

small neighborhood of the point (about eight times smaller than the scale of the �lter in

the current implementation). Thus, this reference color will be di�erent for di�erent points

in the image and scalar deviations from the reference color are computed as de�ned in

section 3.

7 Filter Characteristics

This Section examines some interesting characteristics of our �lter under noiseless and

noisy operating conditions. We begin in Section 7.1 by deriving the �lter's optimum scale

response and its optimum scale map for noiseless ridge pro�les, from which we see that

both exhibit local output extrema at ridge centers. Next, we examine our �lter's scale

(Section 7.2) and spatial (Section 7.3) localization characteristics under varying degrees of

noise. Scale localization measures the closeness in value between the optimum mask size at

a ridge center and the actual width of the ridge. Spatial localization measures the closeness

in position between the �lter's peak response location and the actual ridge center. We shall

see that both the �lter's optimum scale and peak response location remain remarkably

stable even at noticeably high noise levels. Our analysis will conclude with a comparison

with Canny's ridge detector in Section 7.4 and experimental results in Section 11.

For simplicity, we shall perform our analysis on scalar ridge pro�les instead of color

ridge pro�les. The extension to color is straightforward if we think of the reference color

notion and the color similarity measure of equation 1 as a transformation that converts

color ridge pro�les into scalar ridge pro�les.

We shall be using �lter notations similar to those given in Table 6. In particular, �

denotes the main lobe's width (or scale), Fs denotes the �lter's main lobe to side lobe width

ratio, and FL(r; �m; �s) a left-half �lter with main lobe size �m, side lobe size �s = �m=Fs,

and whose form is a normalized combination of two Gaussian �rst derivatives. At each

point on a ridge pro�le, the �lter outputs, by de�nition, the maximum response for mask

pairs of all scales centered at that point.
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Figure 10: Half-mask con�gurations for computing the optimum scale ridge response

of our �lter. See text for explanation.

7.1 Filter Response and Optimum Scale

Let us �rst obtain the single scale �lter response for the two half-mask con�gurations in

Figure 10. Figure 10(a) shows an o�-center left-half mask whose side lobe overlaps the ridge

plateau by 0 � d � 2�=Fs and whose main lobe partly falls o� the right edge of the ridge

plateau by 0 � f � 2�. The output in terms of mask dimensions and o�set parameters is:

Oa(d; f) =

Z �(�+d)
�(�+ 2�

Fs
)
sFL(r; �;

�

Fs
)dr+

Z ��f

�(�+d)
FL(r; �;

�

Fs
)dr+

Z �

��f
sFL(r; �;

�

Fs
)dr

=
1p
2�

h
(Fss� 1)(e�2 � 1)

�(1� s)

 
Fs(1� e

�F
2
s d

2

2�2 ) + (e
� (2��f)2

2�2 � e�2)

!#
(2)

A value of f greater than d indicates that the �lter's main lobe (ie. its scale) is wider

than the ridge and vice-versa. Notice that when d = f = 0, we have a perfectly centered

mask whose main lobe width equals the ridge width, and whose output value is globally

maximum.

Figure 10(b) shows another possible left-half mask con�guration in which the main lobe

partly falls outside the left edge of the ridge plateau by 0 � f � 2�. Its output is:
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Figure 11: Mask-pair con�guration for computing the all scales optimum ridge response

of our �lter. See text for explanation.

Ob(f) =

Z �(��f)

�(�+ 2�
Fs

)
sFL(r; �;

�

Fs
)dr +

Z �

�(��d)
FL(r; �;

�

Fs
)dr

=
1p
2�

�
(Fss� 1)(e�2 � 1)� (1� s)(1� e

� f
2

2�2 )

�
(3)

The equivalent right-half mask con�gurations are just mirror images of the two left-half

mask con�gurations, and have similar single scale ridge response values.

Consider now the all scales optimum �lter response of a mask pair, o�set by h from

the center of a ridge pro�le (see Figure 11). The values of d and f in the �gure can be

expressed in terms of the ridge radius (R), the �lter size (�) and the o�set distance (h) as

follows:

d = R+ h� �

f = � + h �R

Notice that the right-half mask con�guration in Figure 11 is exactly the mirror image of

the left-half mask con�guration in Figure 10(a).

Because increasing � causes f to increase which in turn causes the left-half mask output

to decrease, while decreasing � causes d to increase which in turn causes the right-half mask

output to decrease, the all scales optimum �lter response, Opt(h;R), must therefore be from

the scale, �o, whose left and right half response values are equal. Using the identities for
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d and f above together with the half-mask response equations 2 and 3, we get, after some

algebriac simpli�cation:

Opt(h;R) =
1p
2�

"
(Fss� 1)(e�2 � 1)� (1� s)(1� e

� (�o+h�R)
2

2�2
o )

#
(4)

where the optimum scale, �o, must satisfy the following equality:

Fs(1� e
�F

2
s (R+h��o)

2

2�2
o ) + (e

� (�o�h+R)
2

2�2
o � e�2) = (1� e

� (�o+h�R)
2

2�2
o ): (5)

The following bounds for �o can be obtained:

R+ h

1 +
p
2

Fs
ln( Fs

Fs�1�e�2 )
< �o < (R+ h): (6)

For our particular implementation, we have Fs = 8 which gives us: 0:9737(R+ h) < �o <

(R + h). Since h � 0, Equation 6 indicates that the optimum �lter scale, �o, is a local

minimum at ridge centers where h = 0.

To show that the all scales optimum �lter response is indeed a local maximum at ridge

centers, let us assume, using the inequality bounds in Equation 6, that �o = k(R+ h) for

some �xed k in the range:

1

1 +
p
2

Fs
ln( Fs

Fs�1�e�2 )
< K < 1:

Equation 4 becomes:

Opt(h;R) =
1p
2�

"
(Fss � 1)(e�2 � 1)� (1� s)(1� e

� ((1+k)h�(1�k)R)2

2k2(R+h)2 )

#
: (7)

Di�erentiating the above equation with respect to h, we see that Opt(h;R) indeed decreases

with increasing h for values of h near 0.

7.2 Scale Localization
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Figure 12: Mask con�gurations for scale localization analysis. (a) A radius R ridge

pro�le with noise to signal ratio no=(1 � s). (b) A mask whose scale equals the ridge

dimension. (c) A mask whose scale is larger than the ridge dimension. (d) A mask

whose scale is smaller than the ridge dimension.

We shall approach the scale localization analysis as follows (see Figure 12(a)): Consider

a radius R ridge pro�le whose signal to noise ratio is (1� s)=no, where (1� s) is the height

of the ridge signal and n2o is the noise variance. Let d = jR � �oj be the size di�erence

between the ridge radius and the optimum �lter scale at the ridge center. We want to

obtain an estimate for the magnitude of d=R, which measures the relative error in scale due

to noise.

Figures 12(b) (c) and (d) show three possible left-half mask con�gurations aligned with

the ridge center. In the absence of noise (ie. if no = 0), their respective output values (Os)

are:

(� = R) : Os =

Z ��

�(�+ 2�
Fs

)
sFL(r; �;

�

Fs
)dr+

Z �

��
FL(r; �;

�

Fs
)dr

=
1p
2�

(1� e�2)(1� sFs)

(� = R+ d) : Os(d) =

Z �(��d)

�(�+ 2�
Fs

)
sFL(r; �;

�

Fs
)dr+

Z ��d

�(��d)
FL(r; �;

�

Fs
)dr

+

Z �

��d
sFL(r; �;

�

Fs
)dr

=
1p
2�

h
(1� e�2)(1� sFs)
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+(1� s)(e�2 + e
� d

2

2(R+d)2 � e�2e
2d
R+d e

� d
2

2(R+d)2 � 1)

#

(� = R� d) : Os(d) =

Z �(�+d)

�(�+ 2�
Fs

)
sFL(r; �;

�

Fs
)dr+

Z �

�(�+d)
FL(r; �;

�

Fs
)dr

=
1p
2�

"
(1� e�2)(1� sFs) + (1� s)Fs(e

� F
2
s d

2

2(R�d)2 � 1)

#
(8)

Let us now compute On, the noise component of the �lter output. Since the noise signal

is white and zero mean, we have E[On] = 0, where E[x] stands for the expected value of x.

For noise of variance n2o, the variance of On is:

Var[On] =

Z �

�(�+ 2�
Fs

)
n2oF2

L(r; �;
�

Fs
)dr �

Z 1
�1

n2oF2
L(r; �;

�

Fs
)dr

=
1 + Fs

8�
p
�
� 1 + Fs

8R
p
�
; (9)

or equivalently, the standard deviation of On is:

SD[On] =

s
1 + Fs

8R
p
�
: (10)

A very loose upper bound for d=R can be obtained by �nding d, such that the noiseless

response for a size � = R+ d (or size � = R� d) mask is within one noise output standard

deviation of the optimum scale response (ie. the response for a mask of size �o = R). We

examine �rst, the case when � = R+d. Subtracting Os for � = R from Os(d) for � = R+d

(both from the series of equations 8) and equating the di�erence with SD[On], we get:

(1� s)(1� e�2 + e
� d

2

2(R+d)2 � e�2e
2d
R+d e

� d
2

2(R+d)2 ) =

s
1 + Fs

8R
p
�
;

which, after some algebra and simplifying approximations, becomes:

d=R �
p
2K

1�
p
2K

(0 � no

1� s
< (1� e�2)(1� e�

1
2 )

s
8R
p
�

1 + Fs
)

where : K = � ln

 
1� no

1� s

1

1� e�2

s
1 + Fs

8R
p
�

!
: (11)
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Figure 13: Relative scale error (d=R) as a function of noise to signal ratio (no=(1� s))

for (a) Equation 11 where �o > R, and (b) Equation 12 where �o < R. For both graphs,

Fs = 8, top curve is for R = 10, middle curve is for R = 30 and bottom curve is for

R = 100.

Figure 13(a) graphs d=R as a function of the noise to signal ratio no=(1�s). We remind

the reader that our derivation is in fact a probabilistic upper bound for d=R. For d=R to

exceed the bound, the � = R+ d �lter must actually produce a combined signal and noise

response, greater than that of all the other �lters with sizes from � = R to � = R+ d.

A similar analysis for the � = R� d case yields (see Figure 13(b) for plot):

d=R �
p
2K

Fs +
p
2K

where : K = � ln

 
1� no

1� s

s
1 + Fs

8F 2
sR

p
�

!
: (12)

7.3 Spatial Localization

Consider the radius R ridge in Figure 14 whose signal to noise ratio is (1� s)=no. As

before, (1 � s) is the height of the ridge signal and n2o is the noise variance. Let h be the

distance between the actual ridge center and the peak location of the �lter's all scales ridge

response. Our goal is to establish some magnitude bound for h=R that can be brought

about by the given noise level.

To make our analysis feasible, let us assume, using Equation 6, that the optimum �lter

scale at distance h from the ridge center is �o = R+ h. Notice that for our typical values

of Fs, the uncertainty bounds for �o is relatively small. The optimum scale �lter output

without noise is therefore:
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Figure 14: Left: Mask con�gurations for scale localization analysis. An all scales

�lter response for a radius R ridge pro�le with noise to signal ratio no=(1� s). h is the

distance between the actual ridge center and the �lter response peak location. Right:

Relative spatial error (h=R) as a function of noise to signal ratio (no=(1 � s)), where

Fs = 8, top curve is for R = 10, middle curve is for R = 30 and bottom curve is for

R = 100. See Equation 15.

Opt(h;R) � 1p
2�

"
(Fss� 1)(e�2 � 1)� (1� s)(1� e

� 4h2

2(R+h)2 )

#
; (13)

and the di�erence in value between the above and the noiseless optimum scale output at

ridge center is:

Opt(0; R)� Opt(h;R) � (1� s)(1� e
� 4h2

2(R+h)2 ): (14)

As in the scale localization case, we obtain an estimate for h=R by �nding h such that

the di�erence in Equation 14 equals one noise output standard deviation of the optimum

scale �lter at ridge center (see Equation 10). We get:

(1� s)(1� e
� 4h2

2(R+h)2 ) = no

s
1 + Fs

8R
p
�
;

which eventually yields (see Figure 14 for plot):
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h=R =

p
Kp

2�
p
K

(0 � no

1� s
< (1� e�2)

s
8R
p
�

1 + Fs
)

where : K = � ln

 
1� no

1� s

s
1 + Fs

8R
p
�

!
: (15)

7.4 Scale and Spatial Localization Characteristics of the Canny Ridge Opera-

tor

We compared our �lter's scale and spatial localization characteristics with those of a

Canny ridge operator. This is a relevant comparison because the Canny ridge operator

was designed to be optimal for simple ridge pro�les (see [Canny 1985] for details on the

optimality criterion). The normalized form of Canny's ridge detector can be approximated

by the shape of a scaled Gaussian second derivative:

C(r; �) = 1p
2��3

(�2 � r2)e
� r

2

2�2 : (16)

We begin with scale localization. For a noiseless ridge pro�le with radius R and height

(1� s), the optimum scale (� = R) Canny �lter response at the ridge center is:

Os(� = R) =

r
2

�
(1� s)e�

1
2 : (17)

Similarly, the ridge center �lter response for a mis-matched Canny mask (� = R+ d) is:

Os(� = R+ d) =

r
2

�

R

R+ d
(1� s)e

� R
2

2(R+d)2 ;

where the scale di�erence, d, can be either positive or negative in value.

We want an estimate of d=R in terms of the noise to signal ratio. Consider now the

e�ect of white Gaussian noise (zero mean and variance n2o) on the optimum scale Canny

�lter response. The noise output standard deviation is:

SD[On] =

sZ 1
�1

n2oC2(r; � = R)dr
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= no

s
3

8R
p
�
: (18)

Performing the same scale localization steps as we did for our �lter, we get:

no

s
3

8R
p
�
=

r
2

�
e�

1
2 (1� s)�

r
2

�

R

R+ d
e
� R

2

(R+d)2 (1� s);

which reduces to the following equation that implicitly relates d=R to no
1�s :

no

1� s
=

s
16R

3
p
�

"
e�

1
2 � R

R+ d
e
� R

2

2(R+d)2

#
: (19)

For spatial localization, we want an estimate of h=R in terms of no
1�s , where h is the

distance between the actual ridge center and the all scales Canny operator peak output

location. At distance h from the ridge center, the optimum Canny mask scale (�o) is

bounded by:

vuuutR2 + h2 � 2Rh
1� e

� 4Rh

2(R�h)2

1 + e
� 4Rh

2(R�h)2

� �o �

vuuutR2 + h2 � 2Rh
1� e

� 4Rh

2(R+h)2

1 + e
� 4Rh

2(R+h)2

;

and the noiseless optimum scale �lter response is:

Os(h) =
2p
2��o

(1� s)e
�R

2+h2

2�2
o

�
R cosh(

Rh

�2o
)� h sinh(

Rh

�2o
)

�
:

Setting Os(0) � Os(h) = SD[On], we arrive at the following implicit equation relating

h=R and no=(1� s):

no

1� s
�
s

4R

3
p
�

"
e�

1
2 � 1

�o
e
�R

2+h2

2�2
o

�
R cosh(

Rh

�2o
)� h sinh(

Rh

�2o
)

�#
; (20)

where �o �
q
R2 + h2 � 2Rh(1� e

� 4Rh

2R2 )=(1 + e
� 4Rh

2R2 ) (valid for small h=R values).

We see from Figures 15 and 16 that at typical Fs ratios, our �lter's scale and spatial

localization characteristics are comparable to those of the Canny ridge operator.
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Figure 15: Comparison of relative scale error (d=R) as a function of noise to signal

ratio (no=(1 � s)) between our �lter (� > R case) and the Canny ridge �lter. See

Equations 11 and 19. Top Left: R = 10. Top Right: R = 30. Bottom: R = 100. For

each graph, curves from top to bottom are those of: Fs = 16, Fs = 8, Fs = 4, Fs = 2,

and Canny.

8 Finding 2D Skeletons Using Directional 1D Ridge Detectors

The scheme that we present in this paper is an extension of Curved Inertia Frames (CIF),

a brightness-based segmentation scheme presented in [Subirana-Vilanova 1990], which in

turn is an extension of an edge-based perceptual organization scheme presented in the same

paper. We choose this scheme for two reasons, �rst it is the only existing scheme that

can compute global regions directly on the image without imposing a three-dimensional

representation of the data. Second, we have been able to overcome a number of problems

in the scheme making it is useful for a large class of images.

[Subirana-Vilanova 1990]'s scheme (and ours) proceeds in three stages. In the �rst

one, it computes two local measures at each point p for a number of orientations �: the

inertia value I(p; �) and the tolerated length T (p; �). These two local values are based on

the output of elongated gabor �lters and are used to associate a saliency measure to each

curve C(t) in the image plane as de�ned in equation 21. Were the curve is assumed to be

parameterized between 0 and L. I(l) (T (t)) is the inertia value (tolerated length) at the

point with parameter l and with the orientation of the curve at that point, and � and �

are suitable constants.
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Figure 16: Comparison of relative spatial error (h=R) as a function of noise to signal

ratio (no=(1� s)) between our �lter and the Canny ridge �lter. See Equations 15 and

20. Top Left: R = 10. Top Right: R = 30. Bottom: R = 100. For each graph, the

Canny curve is the top curve between no=(1� s) = 0 and no=(1� s) = 0:5. The other

curves from top to bottom are for: Fs = 16, Fs = 8, Fs = 4 and Fs = 2.

SL =
R
L

0 I(l)�
R
l

0
1

�T (t)
dt
dl (21)

In the second stage, the scheme computes the skeleton which yields the maximum

saliency using an extension of the network introduced by [Shashua and Ullman 1988]. In

fact, the form of equation 21 closely matches what the network can compute. The inertia

value and the tolerated length can be used in the second stage using other schemes such as

[Kass, Witkin and Terzopoulos 88], [Zucker, Dobbins and Iverson 89], and [Pizer, Burbeck,

and Coggins 1993].

The scheme favors curves which are long, smooth (according to the associated tolerated

length values) and central to the shape (i.e. which have high inertia values). This second

stage yields the skeleton sketch a representation of the potential skeletons in the image. See

[Subirana-Vilanova 1990], [Subirana-Vilanova 1991] for more details.

In the third stage, the scheme computes a succession of individual curves (or skeletons)

and the corresponding perceptual groups by growing outward from the skeletons.
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In this section we will derive a class of dynamic programming algorithms that �nd

curves in an arbitrary graph that maximize a certain quantity. In the next sections we will

apply these algorithms to �nding long and smooth ridges in the inertia surfaces, which are

the output of our one dimensional �lter when applied at di�erent orientations. [Mahoney

1987] showed that long and smooth curves in binary images are salient in human perception

even if they have multiple gaps and in the presence of other curves. [Sha'ashua and Ullman

1988] devised a saliency measure and a dynamic programming algorithm that can �nd such

salient curves in a binary image (see also [Ullman 1976]). We build on their work and

show how their ideas can be extended to deal with arbitrary surfaces. In this section we

will examine their computation in a way geared at demonstrating that the kind of saliency

measures that can be computed with the network is very limited. The actual proof of this

will be given in Section 10.

We de�ne a directed graph with properties G = (V;E;PE; PJ) as a graph with a set of

vertices V = fvig ; a set of edges E = fei;j = (vi; vj) j vi; vj 2 V g; a function PE : E ! <
that assigns a vector pe of properties to each edge; and a function PJ : J ! < that assigns

a vector pj of properties to each junction where a junction is a pair of adjacent edges (i.e.

any pair of edges that share a vertex) and J is the set of all junctions. We will refer to a

curve in the graph as a sequence of connected edges. We assume that we have a saliency

function S that associates a positive integer S(C) with each curve C in the graph. This

integer is the saliency or saliency value of the curve. The saliency of a curve will be de�ned

in terms of the properties of the elements (vertices, edges and junctions) of the curve.

Our problem is to �nd a computation that �nds for every point and each of its connecting

edges, the most salient curve starting at that point with that edge. This includes de�ning

a saliency function and a computation that will �nd the salient curves for that function.

The applications that will be shown here work with a 2 dimensional grid. The vertices are

the points in the grid and the edges the elements that connect the di�erent points in the

grid. The junctions will be used to include in the saliency function properties of the shape

of the curve such as curvature.

The computation will be performed in a locally connected parallel network with a

processor pei;j for every edge ei;j . The processors corresponding to the incoming edges of

a given vertex will be connected to those corresponding to the connecting edges at that

vertex. We will design the computation so that we know at iteration n what is the saliency

of the most salient curve of size n for every edge. This provides a constraint in the invariant

of the algorithm that we are seeking that will guide us to the �nal algorithm. In order for

the computation to have some computing power each processor pei;j must have at least one

state variable that we will denote as si;j . Since we want to know the saliency of the most

salient curve of length n starting with any given edge, we will assume that, at iteration

n, si;j contains that value for that edge. Observe that having only one variable looks

like a big restriction, however, we show in Section 10 that allowing more state variables

does not add any power to the possible saliency functions that can be computed with this
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network. Since the saliency of a curve is de�ned only by the properties of the elements in

the curve, it cannot be inuenced by properties of elements outside the curve. Therefore

the computation to be performed can be expressed as:

si;j(n+ 1) = MAXfF(n+ 1;pe;pj ; si;j(n); sj;k(n)) j (j; k) 2 Eg

si;j(0) = F(0;pe;pj ; 0; 0) (22)

where F is the function that will be computed in every iteration and that will lead to the

computed saliency. Observe that given F , the saliency value of any curve can be found by

applying F recursively on the elements of the curve.

We are now interested in what types of saliency functions S we can use and what type of

functions F are needed to compute them such that the value obtained in the computation

is the maximum for the resulting saliency measure S. Using contradiction and induction

we conclude that a function F will compute the most salient curve for all possible graphs

if and only if it is monotonically increasing in its last argument. That is, if and only if:

8p; x; y x < y �! F(p; x) < F(p; y); (23)

where p is used to abbreviate the �rst four arguments of F .

What type of functions F satisfy this condition? We expect them to behave freely as p

varies. And when sj;k varies, we expect F to change in the same direction with an amount

that depends on p. A simple way to ful�ll this condition is with the following function:

F(p; x) = f(p) + g(x) � h(p) (24)

where f , g and h are positive functions and g is monotonically increasing.

We now know what type of function F we should use but we do not know what type of

saliency measures we can compute. Let us start by looking at the saliency Si that we would

compute for a curve of length i. For simplicity we assume that g is the identity function:

� Iter. 1: S1 = f(p1;2)
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� Iter. 2: S2 = S1 + f(p2;3) � h(p1;2)
� Iter. 3: S3 = S2 + f(p3;4) � h(p1;2) � h(p2;3)
� Iter. 4: S4 = S3 + f(p4;5) � h(p1;2) � h(p2;3) � h(p3;4)
...

� Iter. i: Si = Si�1 + f(pi;i�1) �
Qk=i�1

k=1 h(pk;k+1) =Pl=i
l=1 f(pl;l�1) �

Qk=l�1
k=1 h(pk;k+1).

At step n, the network will know about the most salient curve of length n starting from

any edge. Recovering the most salient curve from a given point can be done by tracing the

links chosen by the processors (from Equation 22).

9 Finding Long And Smooth Ridges

In this section, we will show how the network de�ned in the previous section can be

used to �nd frames of reference using the inertia surfaces and the tolerated length as de�ned

in the previous sections. The directed graph with properties that de�nes the network has

one vertex for every pixel in the image and one edge connecting it to each of its neighbors

thus yielding a locally connected parallel network. This results in a network that has eight

orientations per pixel. The number of orientations per pixel can be increased to improve

the accuracy of the output.

The value computed is the sum of the f(pi;j)'s along the curve weighted by the product

of the h(pi;j)'s. Using 0 � h � 1 we can ensure that the total saliency will be smaller than

the sum of the f 's. One way of achieving this is by using h = 1=k or h = exp (�k) and
restricting k to be larger than 1. The f 's will then be a quantity to be maximized and the

k's a quantity to be minimized along the curve. In our skeleton network (presented in the

next section), f will be the inertia measure and k will depend on the tolerated length and

will account for the shape of the curve so that the saliency of a curve is the sum of the

inertia values along a curve weighted by a number that depends on the overall smoothness

of the curve. In particular, the functions f , g and h (see Equation 24) are de�ned as:

� f(p) = f(pe) = I(x),
� g(x) = x

� and h(p) = h(pj) = �

lemt

�T (pj(x)) .
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�, which we call the circle constant, scales the tolerated length, and it was set to 4 in the

current implementation (because 4 radius�=2 is the length of the perimeter of a circle). �,

which we call the penetration factor, was set to 0:5 (so that inertia values \half a circle"

away get factored down by 0:5). And lemt is the length of the corresponding element. Also,

si;j(0) = 0 (because the saliency of a skeleton of length 0 should be 0).

With this de�nition the saliency value assigned to a curve of length L is:

SL =
P
l=L
l=1 I( pl;l�1)

Qk=l�1
k=1 �

l
emt

�T (pk) =
P

l=i
l=1 I(pl;l�1)�

P
k=l�1
k=1

l
emt

�T (pk) ,

which is an approximation of the continuous value given in Equation 25 below. SL is the

saliency of a parameterized curve C(u), and I(u) and T (u) are the inertia value and the

tolerated length respectively at point u of the curve.

SL =
R
L

0 I(l)�
R
l

0
1

�T (t)
dt
dl (25)

The obtained measure favors curves that lie in large and central areas of the shape and

that have a low overall internal curvature. The measure is bounded by the area of the

shape; e.g. a straight symmetry axis of a convex shape will have a saliency equal to the

area of the shape. In the next section we will present some results showing the robustness

of the scheme in the presence of noisy shapes.

Observe that if the tolerated length T (t) at one point C(t) is small then
R l
0

1
�T (t)dt is

large so that �

R
l

0

1
�T (t)

dt
dl becomes very small (since � < 1) and so does the saliency for the

curve SL. Thus, a small � or � penalize curvature favoring smoother curves.

10 Limitations of the Dynamic Programming Approach

In this section we show that the set of possible saliency measures that can be computed

with the network de�ned in the previous sections is limited.

Proposition 1 The use of more than one state variable in the saliency network de�ned

in the previous sections does not increase the set of possible saliency functions that can be

computed with the network.
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Proof: The notation used in the proof will be the one used in the previous sections. We

will do the proof for the case of two state variables, the generalization of the proof to more

state variables follows naturally. Assume then, that each edge has a saliency state variable

si;j and an auxiliary state variable ai;j and two functions to update the state variables:

si;j(n + 1) = MAXkF(p; sj;k(n); aj;k(n)) and ai;j(n + 1) = G(p; sj;k(n); aj;k(n)). We will

show that for any pair of functions F and G either they can be reduced to one function or

there is a network for which they do not compute the optimal curves.

If F does not depend on its last argument aj;k then the decision of what is the most

salient curve is not a�ected by the introduction of more state variables so we can do without

them. Observe that we might still use the state variables to compute additional properties

of the most salient curve without a�ecting the actual shape of the computed curve.

If F does depend on its last argument then there exists some p, x, y and w 2 <
such that: F(p; y; x) < F(p; y; w). Assuming continuity this implies that there exists

some � > 0 such that: F(p; y � � ; x) < F(p; y; w). Assume now two curves of length

n starting from the same edge ei;j such that s1i;j(n) = y, a1i;j(n) = x, s2i;j(n) = y � �

and a2i;j(n) = y. If the algorithm where correct at iteration n it would have computed

the values s1i;j(n) = y, a1i;j(n) = x for the variables si;j and ai;j . But then at iteration

n+1 the saliency value computed for an edge eh;i would be sh;i = F(p; y � � ; x) instead of

F(p; y; w) that corresponds to a curve with a higher saliency value. 2.

11 Results

We have tested our scheme (�lter + network) extensively, Figures 17 and 18 show that

our �lter produces sharper and more stable ridge responses than the second derivative of

a gaussian �lter, even when working with the notion of reference colors for color ridge

pro�les. First, our �lter localizes all the ridges for a single ridge, for multiple or step ridges

and for noisy ridges. The second derivative of the gaussian instead fails under the presence

of multiple or step ridges. Second, the scale chosen by our operator matches the underlying

data closely while the scale chosen by the second derivative of the gaussian does not match

the underlying data (see Figures in Section 7). This is important because the scale is

necessary to compute the Tolerated Length which is used in the second stage of our scheme

to �nd the Curved Inertia Frames of the image. And third, our �lter does not respond to

edges while the second derivative of the gaussian does.

In the previous paragraph, we have discussed the one-dimensional version of our �lter.

The same �lter can be used as a directional ridge operator for two-dimensional images.

Figure 21 shows the directional output (aka inertia surfaces) of our �lter on four images.

The two-dimensional version of the �lter can be used with di�erent degrees of elongation. In

our experiments we used one pixel width to study the worst possible scenario. An elongated
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Figure 17: First column: Di�erent input signals. Second column: Output given by

second derivative of the gaussian. Third column: Output given by second derivative of

the gaussian using reference color. Fourth column: Output given by our ridge detector.

The First, Second, Fourth and Sixth rows are results of a single scale �lter application

where � is tuned to the size of the largest ridge. The Third, Fifth and Seventh rows are

results of a multiple scale �lter application. Note that no scale parameter is involved in

any multiple-scale case.
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Figure 18: Comparing multiple scale �lter responses two color pro�les. Top: Hue U channel

of roof and sinusoid color pro�les. Bottom: Multi-scale output given by color convolution of

our non-linear mask with the color pro�les. Even though our �lter was designed to detect

at regions, it can also detect other type of regions.

Figure 19: First column: Multiple step input signal. Second column: Output given by

second derivative of the gaussian. Third column: Output given by second derivative of

the gaussian using reference color. Fourth column: Output given by our ridge detector.

The �rst row shows results of a single scale �lter application where � is tuned to the size

of the largest ridge. The second row shows results of a multiple scale �lter application.

Note that no scale parameter is involved in multiple-scale case.
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Figure 20: Four images: Sweater image, Ribbons image, Person image and Blob image.

See inertia surfaces for these images in Figure 18 and the Canny edges at di�erent scales

for the Person and Blob image in Figure 5. Note that our scheme recovers the Person

and blob at the right scale, without the need of specifying the scale.

�lter would smooth existing noise; however, large scales are not good because they smooth

the response near discontinuities and in curved areas of the shape (this can be overcome

by using curved �lters [Malik and Gigus 1991]).

The inertia surfaces and the tolerated length are the output of the �rst stage of our

scheme. In the second stage we use these to compute the Curved Inertia Frames (see

[Subirana-Vilanova 1990]) as shown in Figures 23, 24, 25, 26, and 27. These skeleton

representations are used to grow the corresponding regions by a simple region growing

process which starts at the skeleton and proceeds outward (this can be though of as a
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Figure 21: Inertia surfaces for three images at four orientations (clockwise 12, 1:30, 3

and 4:30). Note that exactly the same lisp code (without changing the parameters) was

used for all the images. From Left to Right: Shirt image, Ribbon image, Blob image.

Figure 22: Inertia surfaces for the person image at four orientations. Note that exactly

the same lisp code (without changing the parameters) was used for these images and

the others shown in this paper.
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Figure 23: Most salient Curved Inertia Frame obtained in the shirt image. Note that

our scheme recovers the structures at the right scale, without the need of changing any

parameters. Left: Edge map of shirt image without most salient curved inertia frame.

Right: With most salient curved inertia frame superimposed.

Figure 24: Blob with skeleton obtained using our scheme in the blob image. Note that

our scheme recovers the structures at the right scale, without the need of changing any

parameters.
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Figure 25: Pants region obtained in person image. The white curve is the Curved

Inertia Frames from which the region was recovered.

visual routine [Ullman 1984] operating on the output of the dynamic programming stage

or skeleton sketch [Subirana-Vilanova 1990]). This process is very stable because it can use

global information provided by the frame such as the average color or the expected size of

the enclosing region. See Figures 23, 24, 25, 26, and 27 for some examples of the regions

that are obtained. Observe that the shape of the regions is accurate, even at corners and

junctions. Note that each region can be seen as an individual test since the computations

performed within it are independent of those performed outside it.

12 Discussion: Image brightness is necessary

We have implemented our scheme for color on the Connection Machine. The scheme

can be extended naturally to brightness and texture (using the now popular �lter-based

approaches applied to the image, see [Knuttson and Granlund 1983], [Turner 1986], [Fogel

and Sagi 1989], [Malik and Perona 1989], [Bovik, Clark and Geisler 1990], [Thau 1990]).

The more cues a system uses, the more robust it will be. In fact, image brightness is crucial

in some situations because luminance boundaries do not always come together with color

boundaries (e.g. cast shadows).

But, should these di�erent schemes be applied independently? Consider a situation in

which a surface is de�ned by an iso-luminant color edge on one side and by a brightness
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Figure 26: Four regions obtained for the person image. The white curves are the

Curved Inertia Frames from which the regions were recovered.

edge (which is not a color edge) on the other. Our scheme would not recover this sur-

face because the two sides of our �lter would fail (on one side for the brightness module

and on the other for the iso-luminant one). We believe that a combined �lter should

be used to obtain the inertia values and the tolerated length in this case. The sec-

ond stage would then be applied only to one set of values. Instead of having a �lter

with two sides, our new combined �lter should have four sides. Two responses on each

side, one for color Rc;i and one for brightness Rb;i, the combined response would then be

min(max(Rb;left; Rc;left); max(Rb;right; Rc;right)).
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Figure 27: Four other regions obtained for the person image. The white curves are the

Curved Inertia Frames from which the regions where recovered.
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Figure 28: This Figure illustrates how the scheme can be used to guide attention.

Top left: Close up image of face. Top center: Skeletal curve through face. Top right:

Maximum inertia point on face derived as center of mass of skeletal curve. Bottom left:

Inertia map along entire skeletal curve, extending beyond the bottom of this image.

Bottom right: Expanded inertia map focusing on area around face.

Figure 29: Large shapes occlude small ones. From [Kanizsa 1979].

13 What Occludes What?

Our scheme solves the problem of �nding di�erent regions by looking at the large struc-

tures one by one. The larger structures are the �rst ones in being recovered, this cuts small

structures that are covered by larger structures into di�erent parts. This embodies the

constraint that larger structures tend to be perceived as occluding surfaces [Petter 1956].

(See Figure 29).
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Figure 30: Small structures, whether edges or regions are sometimes more salient. Left:

From [Rock 1984]. Right: Drawing of Mir�o.

14 Small Is Beautiful Too

As mentioned in [Subirana-Vilanova 1991], the emphasis of our scheme is towards �nd-

ing large structures. However, this may be misleading as evidenced by Figure 30 where

the interesting structure is not composed by individual elements that pop-out in the back-

ground. Instead, in this case, what seems to capture our attention can be described as

"what is not large". That is, looking for the large structures and �nding what is left would

recover the interesting structure as if we where getting rid of the background. It is unclear

though, if this observation would hold in general. Future research is necessary.

15 Are Edges Necessary?

A central point in this paper has been that the computation of discontinuities should

not precede perceptual organization. Further evidence for the importance of perceptual

organization is provided by an astonishing result obtained recently by [Cumming, Hurlbert,

Johnson and Parker 1991]: when a textured cycle of a sine wave in depth (the upper half

convex, the lower half concave) is seen rotating both halfs may appear convex6, despite

the fact that this challenges rigidity7 (in fact, a narrow band between the two ribbons

is seen as moving non-rigidly!). This, at �rst, seems to violate the rigidity assumption.

6The surface can be described by the equation Z = sin(y) where Z is the depth from the �xation plane.

The rotation is along the Y -axis by += � 10 degrees at 1 Hz.
7This observation is relevant because it supports the notion that perceptual organization is computed in

the image before structure from motion is recovered.
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However, these results provide evidence that before �nding the structure from motion, the

human visual system may segment the image into di�erent components. Within each of

this, rigidity can prevail.

Evidence against any form of grouping prior to stereo is provided by the fact that we

can understand random dot stereo diagrams even though there is no evidence at all for per-

ceptual groups in one single image. However, it is unclear from current psychological data if

this displays take longer time. If they do, one possible explanation (which is consistent with

our suggestions) may be that they impair perceptual organization on the individual images

and therefore stereo computations. We believe that the e�ect of such demonstrations has

been to focus the attention on stereo without grouping. But perhaps grouping is central to

stereo and R.D.S. are just an example of the stability of our stereo system.

A second central point of this paper is that edge detection may not precede perceptual

organization. However, there are a number of situations in which edges are clearly necessary

as when you have a line drawing image8 or for the Kanizsa �gures. Nevertheless some sort

of region processing must be involved also since surfaces are also perceived. We (like others)

believe that region-based representations should be sought even in this case. In fact, as we

noted in section 2, line drawings are harder to recognize (just like R.D.S. seem to be - but

see [Biederman 1988]). The role of discontinuities versus such of regions is still unclear.

16 What's New

In this paper we have argued that early visual processing should seek representations

that make regions explicit, not just edges. Furthermore, we have argued that region repre-

sentations should be computed directly on the image (i.e. not directly from discontinuities).

These suggestions can be taken further to imply that an attentional \coordinate" frame

(which corresponds to one of the perceptual groups obtained) is imposed in the image prior

to constructing a description for recognition (see also [Subirana-Vilanova and Richards

1991]). We have provided some motivation by listing both, a number of problems with

alternatives approaches and arguments in favor of region-based schemes.

Our scheme suggests that vision may start by computing a set of features all over

the image (corresponding to the inertia values and the tolerated length). This can be

thought of as \smart" convolutions of the image with suitable �lters plus some simple non-

linear processing. In fact, recently �lter-based approaches to texture have been presented

[Knuttson and Granlund 1983], [Turner 1986], [Fogel and Sagi 1989], [Malik and Perona

1989], [Bovik, Clark and Geisler 1990], stereo [Kass 1983], [Jones and Malik 1990] brightness

8Although note that each line has 2 edges (not just one), generally it is assumed that when we look at
such drawings we ignore one of the edges. An alternative possibility is that our visual system assembles a

region-based description from the edges without merging them.
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edge detection [Canny 1986], [Morrone, Owens and Burr 1987, 1990], [Freeman and Adelson

1990] and motion [Heeger 1988]. (See also [Abramatic and Faugeras 1982], [Marrone and

Owens 1987]). Our proposal di�ers from theirs in the non-linear �lter proposed and in the

use of the �lter output to look for ridges and regions, not discontinuities.

This has been the motivation for designing a new non-linear �lter for ridge-detection.

Our ridge detector has a number of advantages over previous ones since it selects the

appropriate scale at each point in the image, does not respond to edges, can be used with

brightness as well as color data, is tolerant to noise and can handle narrow valleys and

multiple steps.

The resulting scheme can segment an image without making explicit use of discontinu-

ities and is computationally e�cient on the Connection Machine (takes time proportional

to the size of the image). The performance of the scheme can in principle be attributed to a

number of intervening factors; but we believe that one of the critical aspects of the scheme

(and one of the contributions of this paper) is our ridge-detector. Running the scheme on

the edges or using simple gabor �lters would not yield comparable results. The e�ective

use of color makes the scheme very robust but we believe that comparable results would be

obtained on brightness or texture data.
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