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Abstract

I have previously escribed psychophysical experiments that involved
the perception of many transparent layers, corresponding to multiple
matching, in doubly ambiguous random dot stereograms. Additional
experiments are described 'in the first part of this paper. In one ex-
periment, subjects were required to report the density of dots on each
transparent layer. In another experiment, the inimal density of dots
on each layer, which is required for the subjects to perceive it as a dis-
tinct transparent layer, was measured. The difficulties encountered by
stereo matching algorithms, when applied to doubly ambiguous stere-
ograms, are described in the second part of this paper. Algorithms that
can be modified to perform consistently with human perception, and
the constraints imposed on their parameters by human perception, are
discussed.
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The depth of D objects is lost 'in the optical projection process. Stereo vision,
in which two simultaneous images of the same scene are recorded in the two
eyes, can be used to recover the lost depth. In computational stereo algorithms,
the extraction of depth from binocular stereo begins wth the formation of
a disparity map by matching the two images (the disparity of an object is
defined as the difference between its positions in the two images). Thus, a
disparity value is assigned to every location in the 'image. In order to solve the
matching ambiguity at each feature in the image, neighboring features can be
used. It is generally assumed that many neighboring features should have a
match at about the same disparity for a matching to be plausible. Different
stereo matching algorithms differ 'in how they 'implement this neighborhood
interaction (or smoothness constraint), among other things.

I have previously described 9 10] psychophysical experiments whose re-
sults could not be readily explained by existing stereo matching algorithms.
In these experiments, subjects were presented wth doubly ambiguous stere-
ograms (defined in section 21). In some cases a few transparent surfaces were
perceived corresponding to multiple matches, in other cases transparent sur-
faces corresponding to unique matches were perceived. Some stereograms were
constructed to have the same cross-correlation between the left and right 'im-
ages, yet different numbers of transparent layers were perceived. The results
of these experiments are briefly summarized in section 2.

In section 3 additional experiments are described. Frst, subjects were
required to report the density of dots on each transparent layer of a doubly
ambiguous stereogram by adjusting the density of dots on three smple trans-
parent layers. In another experiment, the minimal density of dots on each
layer, which is required for the subjects to perceive it as a distinct transparent
layer, was measured. These experiments were designed to clarify which algo-
r'thmic principle can be used to explain the results in the experiments wth
doubly ambiguous stereograms.

In section 4 the difficulties encountered by stereo matching algorithms,
when applied to doubly ambiguous stereograms, are dscussed. Two simple
matching algorithms, representing two different smple matching principles,
are discussed 'in detail: a patch-wise correlation algorithm (e.g. [5 2, and
Prazdny's matching algorithm [8]. For comparison with human data an ad-
ditional stage was added to each algorithm, where the matching results were
used to determine how many transparent layers exist 'in the image. The range
of parameters for which the performance of these algorithms was consistent
with humans, and the sensitivity of their tuning, is discussed.
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2 Aultiple natching in aimbiguous stereograrns:

2.1 Doubly ambiguous stereograms

In a doubly ambiguous Random Dot Stereogram a sparse random pattern (fig-
ure lb) is copied twice n each image (figure la). The horizontal gap between
the two copies is G, pixels in the right 'image and GI in the left image. Each
dot of the original sparse random pattern (figure lb) has two copies in each
image. All these pairs which are the micropattern of the doubly ambiguous
RDS (figure 1c), are the same instance of the double nail illusion stimulus 4.
There are four possible matchings of the elements of the micropattern that are
equally plausible, two mutually exclusive pairs if matching is unique namely,
a point can only be matched to a single point in the other image (full and
hollow circles in figure 1c).

2.2 Summary of previous results

In an unpublished work, Braddick presented subjects wth ambiguous stere-
ograms that were, in effect, a special case of the doubly ambiguous stereograms
described in section 21. In these stereograms, the generating pattern was
copied twice only 'in one image equivalent to choosing G = or GI = 0. The
micropattern of such a stereogram, one dot in one 'image and two dots in the
other image, is also known as Panum's limiting case. When presented with
Panum's limiting case, subjects' perception corresponds to matching the single
dot in one image to both dots in the other image (if the distance between the
dots is within Panum's limiting area)'. When viewing a stereogram composed
of such micropatterns, the perception was similar: subjects reported seeing two
transparent surfaces, corresponding to a multiple matching of the generating
pattern.

2.3 Multiple matching

In the first experiment, an ambiguous stereogram of the type described in
section 21, with G, =� GI and dot density of 9 (of the generating pattern),
was used. Subjects identified up to four transparent layers, corresponding to
all four possible matches of the micropattern dots (figure 1c). The differences
between the transparent layers were approximately 6 inutes of arc. The

'This is different from their perception when presented wth the micropattern of a doubly
ambiguous stereogram, as will be discussed 'in section 33
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Figure 1: a) A doubly ambiguous random dot stereogram. b) The sparse
random pattern that is used to generate the doubly ambiguous stereogram 'in
a. For illustration purposes, the density of the sparse pattern 'is reduced; 'in
the actual experiment it was equal to the density of the background. c) The
enlarged micropattern of the RDS in a, where the two pairs of matches that
are mutually exclusive if matching 'is unique are separately marked by filled
and hollow circles.



smaller the dfferences were, the easier 'it was to see the layers simultaneously,
but the harder it was to dstinguish them in depth.

The correlation function between the left and right 'images of a stereogram
of the type used in this experiment is given in figure 2a. There are four peaks
in this function, corresponding to the disparities of the four transparent layers
that were seen. This result seems to suggest that all peaks in the correlation
function gve rise to the perception of distinct transparent layers.
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Figure 2 The correlation (as a function of disparity) between the left and the
right images of doubly ambiguous RDS's. The correlation wndow was equal
in size to the generating pattern.

2.4 U n' matching

In the second experiment, an ambiguous stereogram of the type described in
section 21, with G = 1, was used. Two of the four possible disparities of the
micropattern (figure 1c) are identical and therefore the correlation between the
left and right images (figure 2b) has only three peaks. The conclusion given in
the previous section predicts that three transparent layers will be identified in
this case, corresponding to the three peaks. However, subjects identified only
one opaque surface, whose disparity corresponded to the maximum correlation
in figure 2b. Thus not all the local maxima in the correlation function give
rise to the perception of distinct transparent layers.
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Figure 3 The correlation (as a function of dsparity) between the left and the
right images of doubly ambiguous RDS's.

2.5 The nformation in the correlation function

There is one difference between the correlation functions plotted 'in -figures 2ab
that may explain the difference 'in human perception. The dsparity of the sin-
gle opaque plane perceived in the second experiment corresponds to the global
maximum of the correlation function in figure 2b, whereas the correlation func-
tion in figure 2a has four identical maxima. Additional experiments showed,
however, that this dfference cannot explain human perception.

In one experiment, two stereo rams, whose correlation functions are given
in figures 3ab respectively, were presented to subjects. The stereogram corre-
sponding to figure 3a was similar to the stereogram described in section 23,

'th additional dots that could all be matched at dsparity 2. In this case
subjects 'Identified up to four transparent layers. The stereogram correspond-
ing to figure 3b was similar to the stereogram described in section 24, with
additional dots that could all be matched at dsparity 4 In this case subjects
'identified only two transparent layers. These experiments show that the cor-
relation between the left and right images, when computed over a large region
around a point (of an order of magnitude of the whole 'image), cannot account
for the subtleties of human perception.
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3 Additional experinlents

The following experiments were designed to help clarifying which kinds of
stereo matching algorithmic principles can more readily explain the results in
the experiments described in section 2.

3.1 Experiment 1: the density of the transparent lay-
ers

In the experiment described in section 23, most subjects identified three to
four transparent layers. This perception corresponds to multiple matching of
the generating sparse pattern of the stereogram, which can be matched as a
whole to one of its copies 'in the second 'image with a single disparity, leading
to the smultaneous perception of only two transparent layers. This multiple
matching of the generating pattern can be implemented by the assignment of
a unique disparity to each dot in the generating pattern, where some of the
dots are assigned one disparity and the rest are assigned another disparity.
Alternatively, it may be that multiple matches are assigned to each dot 'in the
generating pattern, since there are at each dot two disparities that are equally
supported by neighboring dots. Both solutions of the matching problem lead
to the identification of four transparent layers.

The present experiment was designed to choose one of these two explana-
tions for the multiple matching results.

Methods:

Five subjects participated 'in this experiment. They were presented with one of
the doubly ambiguous stereograms described 'in section 23. Adjacent to this

2stereogram, another stereogram of three transparent layers was presented 
where the height of the three transparent layers matched the height of the top
three ambiguous layers of the ambiguous RDS. The subjects were asked to
modify the density of dots on each layer of the second (adjacent) stereo ram,
in steps of % or 4, until the density of each transparent layer matched the
density of the corresponding ambiguous transparent layer.

Density matching of transparent layers was initially quite dfficult. The
subjects started wth two training sessions. In the first session they were
asked to match the density of a sngle opaque layer to another single opaque

2 In this stereogram each dot could be matched to any other dot in the image, the "usual"
ambiguity, but the additional ambiguity created by doubling a certain generating pattern
as described in section 21 was eliminated.
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layer. They received feedback, and ended this session when their matching was
perfect. This session proved to be quite easy to everyone. In the second session
of the training, the subjects had to match the densities of three transparent
layers to the densities of three other transparent layers. This task was initially
quite hard, but after a few trials and feedback, the sub'ects had learned to do
this task and felt quite confident at being able to do it well. They stopped
the second training session when the error 'in density matching per layer was
smaller or equal to 1. One subject could not obtain thi's level of performance.

After finishing the two training sessions, subjects were presented with two
doubly ambiguous RDS's of the type described in section 23, where the den-
sities of dots on the generating sparse pattern were 9 and 11% respectively.
They had to match the densities of the top three ambiguous layers. Two of the
four subjects were presented with a third stereogram, an ambiguous RDS's of
the type described in section 22, where the density of dots on the generating
sparse pattern was 9. In this case the subjects were asked to match the
densities of two ambiguous layers. All the subjects said, after the experiment
was over, that the density matching of the ambiguous layers was more diffi-
cult than the density matching of the three transparent layers in the training
session.

Results:

Table gives the data of the four subjects that were able to learn to do the
density matching accurately enough, to within 1% error.

Table 1: First two major columns give the density of dots on each of the
top three ambiguous layers: top, middle and bottom, for the two stereograms
described in the text reported by four subjects. The last major column gives
the density of dots on each of two ambiguous layers: top and bottom, for the
third case described 'in the text, reported by two subjects
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Conclusions:

The hypothesis that each dot in the generating pattern is assigned a unique
disparity predicts that the density matching results approach an average den-
sity of 45% per layer in the first stereogram, and an average density of 5.5%
per layer in the second stereogram. The hypothesis that each dot in the gener-
ating pattern is assigned multiple disparities redicts that the results approach
an average density of 9% per layer in the first experiment, and an average den-
sity of 11% per layer in the second experiment. In practice, the more accurate
subjects (the first three rows 'in table 1) assigned an average density of .1%
per layer in the first experiment and an average density of 62% per layer
in the second experiment. These average densities are somewhat larger than
the density predicted by the unique matching hypothesis, but much smaller
than the average density predicted by the multiple matching hypothesis'. Note
that the subjects did not have to report the density of the fourth layer, which
most subjects found difficult to see simultaneously wth the other three layers.
Consequently, the average reported density can be expected to be higher than
predicted.

The results wth the third stereogram are interesting since when presented
with the micropattern of this stereogram., people's perception corresponds to
multiple matching of the dots (section 22). The average density reported by
subjects 'in this case, 625%, 'is larger than before (5.1%), but still intermediate
between the prediction of the hypothesis of multiple matching at each dot 9%)
and the prediction of the hypothesis of unique matching 4.5%), closer to the
later. This suggests that either this experiment does not measure correctly the
number of dots that are matched at each disparity, or that there is a difference
between the matching of 'Isolated features and the matching of images with
texture.

The results of the density matching experiment, if 'indeed this experiment
correctly measures the number of dots matched at each dsparity, seem to
support the hypothesis that a unique disparity 'is assigned to each dot of the
generating sparse pattern of a doubly ambiguous stereogram, where some dots
are assigned one disparity and some another dsparity.

'I should note, however, that the results 'in a somewhat different experiment, where
the subjects had to match the density on each transparent layer separately, were more
ambiguous; in this experiment, the densities assigned to each layer were close to the average
between the prediction of the multiple matching hypothesis and the prediction of the unique
matching hypothesis. These results are not 'included in this paper since the task was harder
for the subjects and the results were less reliable.

8



3.2 Experiment 2 the lowest density of the transpar-
ent layers

When looking at stereograms with transparent layers, ambiguous or not am-
biguous, subjects reported seeing points floating 'in a range of depth values.
Subjects were asked to report a layer when they subjectively perceived a layer.
This could be a difficult decision for them in some cases. The present experi-
ment was designed to identify the lowest density of dots at a given disparity,
above which these subjects subjectively decide that there eists a transparent
layer at this disparity.

Methods:

Four subjects participated in this experiment. They were presented wth eight
stereograms of three transparent layers. The density of two main layers was
always 9 (namely, 9% of the pixels were black). The density of the third layer,
either the top or the bottom layer, was lower and variable. The number of dots
in this layer, measured as a fraction of the number of dots in the stereogram
altogether, was 4 6, 8% or 10% (where 33% means that all layers are of
the same density). The subjects were asked to report how many transparent
layers they subjectively perceived as layers, and put a cursor, whose depth
they could change, on each of the layers they identified. The last procedure
was required to verify which layers they has actually seen and how accurate
their judgement was.

Results:

Four subjects participated in this experiment. The subjects always identified
the main dense layers. Table 2 shows for which conditions each subject also
identified the sparse layer. Two subjects (the first two rows in table 2 were
fairly accurate in their depth judgement of the two main layers, whereas the
other two subjects were less accurate (deviating by more than a pixel from the
actual depth of a dense layer).

AR four subjects judged the depth of the main layers more accurately than
the sparse layer. One subject identified a layer at an ntermediate depth value
between the two dense layers when the density of the sparse layer was 6%
(namely, too low for this subject to perceive the sparse layer as a distinct
layer, but large enough to indicate to her that something was going on).

9



sparse top layer sparse bottom layer
4 6 t 10% 4% _I 6 1 8 1 10%
no no yes no no no yes yes
no no yes yes no no yes yes
no no yes yes no no no no
no I no I no I yes no _!���no�j_ n

Table 2 Answers whether a subject 'Identified the sparse layer for a given
condition. Two subjects (whose data is shown 'in the first two rows) were more
accurate than the other two subjects.

Conclusions:

The results of the four subjects participating in this experiment especially the
two more accurate subjects, were fairly consistent. They subjectively perceived
a distinct layer at a gven dsparity when more than 7 of the dots in the image
could be matched at that disparity.

3.3 Experiment 3 the micropattern of a doubly am-
biguous RDS

In the double nail illusion experiment 4 in which a configuration silar to
the micropattern of a doubly ambiguous stereogram (section 23) was used,
Krol & van de Grind reported that subjects selected only Ihose disparities
corresponding to the full circles in figure 1c. However, in all their experiments
G, was almost identical to GI. In the present experiment, subjects were asked
to match two-dot patterns, as in figure 1c, but with G, =� GI. The conditions
of the experiment described in section 23 were repeated, where the 'Isolated
micropatterns were presented to the sub'ects instead of the ambiguous stere-
ograms. Two subjects participated in this experiment. In agreement with 4,
both subjects selected only those disparities corresponding to the full circles
in figure Ic in all cases.

4 Coinputational discussion

The first experment described in section 31 suggests that the multiple match-
ing effect discussed in section 23 can possibly be explained by an algorithm
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that selects at each feature a unique disparity. In this section, two such algo-
rithms are discussed. These algorithms were selected for their simplicity and
as representatives of two dfferent matching principles; it is not suggested here
that they are biologically plausible and 'it 'is not assumed that they can deal
with noisy real images.

The first 'is a patch-wise correlation algorithm (e.g. [5 2, in which the
disparity selected at each feature is the dsparity that maximizes the correlation
between a patch around the feature in oneimage and a corresponding displaced
patch in the second image.

The second algorithm, Prazdny's stereo matching algorithm [8], identifies
and matches features 'in both 'images using a measure closely related to the
disparity gradient defined in [1] to enforce smooth matching. Disparity gradi-
ent is defined for two features in one image, each assigned a specific disparity:
it is the disparity difference between the two features divided by the distance
(averaged over both images) between the features. In Prazdny's algorithm,
at a given feature in the image, each disparity that corresponds to a feasible
match receives decreasing support from its neighbors (within a certain neigh-
borhood) with increasing disparity gradient. The most supported disparity is
selected at each feature. Thus, since the algorithm uses the dsparity gradient
to evaluate the quality of a particular match, larger dfferences 'in disparity are
tolerated for features that are further apart.

A third algorithm, PMF 7 is also discussed; not because it represent a
different matching principle, but because it has been argued by its authors 6]
that this algorithm can explain human perception 'in the experiments discussed
in section 23. Similarly to Prazdny's matching algorithm, the PMF algorithm
uses the disparity gradient between two features to enforce smoothness of the
disparity field. In this algorithm, each candidate match (disparity) at a given
feature accumulates support from neighboring features before the selection
of the best (or most supported) match. This support is given only if the
disparity gradient between the two neighbors 'is smaller than a certain limit,
the dsparity gradient limit. The use of this particular smoothing method was
based on psychophysical evidence [1] that smultaneous stereo fusion of two
features is possible only if the disparity gradient between them is smaller than
1.

Pollard Frisby have previously argued that a disparity gradient limit of
1 should be the limit 'in their algorithm when used to model human stereo
vision 7 In order to explain human perception 'in the experiments discussed
in section 23, they changed this limit, arbitrarily setting 'it to 0.5. As a
result, the modified PMF algorithm accounted for the experiments described
in section 23. Unfortunately, thi's change of the threshold value, which was
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only noted in a figure caption 'in 6], resulted in a failure of the PMF algorithm
to account for some other well-known psychophysical results (a more detailed
discussion is given in section 4).

Rather than solving the problem, Pollard Frisby's letter 6] demonstrated
the difficulty encountered by stereo matching algorithms when dealing with
doubly ambiguous random dot stereograms A particular selection of parame-
ters can make it possible for the algorithm to explain human perception in some
cases, but the same parameters are unsuitable to explain human perception in
other cases. In the rest of this section, using the three algorithms mentioned
above, the questions of whether these algorithms can be modified to explain
human perception, and how narrow the tuning range of their parameters is if
indeed they can, are studied.

4.1 First dfficulty: different perception for micropat-
terns and RDS's

R R2

2
right image

L L2

4
left image

Figure 4 A stereogram of two nails as 'in the double nail illusion experiment

[4]. Two nails are seen n both images. The rght image is shown above the left

image for purpose of illustration. The separation between the nails is 2 pixels

in the rght image and 4 in the left, where each pixel corresponds to roughly

1.2 minutes of arc as in 9.

The example shown 'in figure 4 is a simple ambiguous configuration, similar

to the one used 'in the double nail illusion experiment 4 This example 'is

the licropattern of the experiment described in section 23 (namely, the stere-

ogram in that experiment is made of a random distribution of such patterns).

There are four possible matchings of the two nails in the left image (L1, L2 to

the nails in the right image (RI, R2). Table 3 gives the disparity gradient be-

tween L and L2 for each of these matchings. The disparity gradient is defined

12



LI L2 disparity
.. match I disparity match disparity --gradient

R, 0 R, -4 2
R, 0 R2 -2 23

R2 2 R, -4 2
R2 1 2 i R2 -2 2

--I- --I,-,--- --- ft

to be [1] the difference between the dsparities assigned to the two features
divided by the average distance (in the two images) between the two features.

Table 3 Four possible pairings of nails L, and L2 in the left image to nails R,
in the right image are lsted. The disparity gradient is calculated for

each. The complete derivations of the disparity gradient, for the four possible
matchings respectively, are 0-(-4) = 2 0-(-2) 2 2-(-4) = 2 -2-(-2). = 2.

(4+0)/2 (4+2)/2 '51 (-4+2)/2 1 (4+0)/2

It is clear from Table 3 that a dsparity gradient lmit of 0.5 is smaller than
the disparity gradient between any possible pairing of Li and L2. Therefore no
pairing can support the other. Thus the PMF algorithm with dsparity gradi-
ent limit of 0.5, when matching this stereogram, 'is equally likely to detect any
pairing without any preference. However, the results of experiment 3 reported
in section 33 show that humans, when presented with this stereogram, always
see a single matching, L wth R, and L2with R2-

This example is not an accident. In fact, no disparity gradient limit ex-
ists with which PMF can explain a these related experiments. The range of
disparity gradient limits for which the PMF algorithm can explain the exper-
iments described 'in section 23 'is identical to the range of disparity gradient
limits for which it fails to explain the experiments described in section 33.
The difficulty follows from one of the points discussed in 9 namely, humans'
response to isolated micropatterns (such as figure 4 appears to be different
from their response to the stereograms dscussed in section 23. The PMF
algorithm, on the other hand, responds to both type of stimuli in a similar
manner.

The PMF algorithm fails because 'it uses a fixed threshold (the dsparity
gradient limit). Favoring low disparity gradient 'in a gradual way leads to
better results. Prazdny's stereo matching algorithm, which uses the disparity
gradient to give support in a gradual way rather than thresholding it, can
explain simultaneously the response to the isolated micropattern and to the
stereogram for the same range of parameters. On the other hand, the correla-
tion based algorithm performs similarly to PMF with disparity gradient lmit

13



of 05, namely, it fails. However since a correlation-based algorithm is not
designed for the matching of 'Isolated features, this failure is not surprising.

4.2 Second difficulty: derent stereograms with the
same correlation

Another problem arising from the experiments discussed in section 2 concerns
RDS's with identical correlation functions. In such stereograms (described in
section 25), when large regions (the regions including the doubled generating
pattern) in the two images are correlated with each other, the resulting graphs
look very similar (figures 3ab), yet subjects perceive a derent number of
transparent layers in each. Another example with different parameters) is
given in figures 5ab, where subjects perceive up to four layers and only two
layers respectively, when presented with these stereograms that have exactly
the same correlation function.

This problem does not concern only the patch-wise correlation algorithm.
The correlation between the left and right 'images is a good measure of the
kind of interaction and disparity support neighboring features provide to the
matching at a certain feature. AR successful stereo matching algorithms require
such interactions and use support from neighboring features in one form or
another to select a disparity at a given point. Thus the fact that humans
perceive a different number of layers in stereograms where the neighborhood
interactions seem smilar poses a difficulty to any stereo matching algorithm.

In order to compare the output of stereo matching algorithms to humans,
a postprocessing stage was added to all of them, in which the number of
transparent layers was decided. In the following, the number of dots assigned
(uniquely) to each disparity, summed over the whole image, was compared to
a threshold to determine whether a transparent layer should be reported at
that disparity 4. The value of the threshold parameter, along with the values
of other parameters of each algorithm, were varied to determine whether there
exists a tuning of the algorithm, a particular set of parameters, for which the
algorithm can explain human perception. The sensitivity of the algorithms to
any particular tuning was also studied.

'This postprocessing stage mmics humans' subjective decision of whether they see a
transparent layer or only isolated points at a particular disparity. I should note here that
people seem to have difficulty with dentifying more than threelayers in stereograms that
have four "simple" transparent layers. No attempt is made here to mimic this constraint.

14
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The correlation wth variable window szes

The correlation function at a point in the right image (x-�, y�), computed for1 3

a disparity D, using a correlation window of sze W, is defined as follows:

W W
E E JX_�j R Lcorrelation Y� I(X-� + D Y�

(where I(x, y) is the image 'intensity at point (x, y).)
To study the 'Interactions between neighboring points in the stereograms

corresponding to figures 5ab, the correlation function was recomputed using

different correlation window sizes W. When small windows were used, in

particular when the window was smaller than x5 pixels and G, and G ranged

between 2 and 4 pixels, the correlation function for stereograms corresponding

to figure 5a showed a dfferent distribution when compared to the correlation

function for stereograms, corresponding to figure 5b. Two examples of the

correlation function for the stereogram corresponding to figure 5a are shown

in figures 5ce. Two examples of the correlation function for the stereogram

corresponding to figure 5b are shown 'in figures 5dL

This discussion suggests that the algorithms discussed here, Prazdny's
matching algorithm and a patch-wise correlation maximization algorithm, should

be restricted to small regions of interaction with neighboring dots in order to

replicate human perception. In the next section, where these algorithms are

studied 'in detail, the size of the 'interaction neighborhood is one of the param-

eters studied.

Simulations

In the following smulations a simple implementation of Prazdny's stereo

matching algorithm and a patch-wise correlation maximization matching algo-

rithm were used, with an added postprocessing stage as discussed above. The

algorithms were tested on the following ten cases:

1 A doubly ambiguous RDS, with G = 4 GI = 2 The algorithm was

expected to report at least three layers at disparities 2 02,4.

2. A doubly ambiguous RDS, wth G = 2 GI 2. The algorithm was

expected to report a single layer at disparity 2.

3. A doubly ambiguous RDS, with G = 2 GI 0 (section 22). The

algorithm was expected to report two layers at disparities 2, 0.
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Figure 5: The correlation (as a function of disparity) between the left and
the rght images of doubly ambiguous RDS's. In the first row the correlation
window sze is 120x120, in the second and third rows the window size 'is 5x5.
The left column gives the correlation for one stereogram, the right column
gives the correlation for a different stereogram.
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4 A doubly ambiguous RDS wh G = 4 GI = 2 and with additional
points at disparity 2 The algorithm was expected to report at least
three layers at disparities 2,0,2,4.

5. A doubly ambiguous RDS, with G = 2 GI = 2 and wth additional
points at disparity 2. The algorithm was expected to report two layers
at disparities 2,2.

6. A doubly ambiguous RDS, wth G = 4 GI = 2 and wth additional
points at disparities 0 2 The algorithm was expected to report at least
three layers at dsparities 2,0,2,4.

7. An RDS as described 'in section 32, where the sparse layer includes 4%
of the 'image points. The algorithm was expected to report two layers at
disparities 2 4.

8. An RDS as described 'in section 32, where the sparse layer includes 6%
of the image points. The algorithm was expected to report two layers at
disparities 2 4.

9. An RDS as described in section 32, where the sparse layer includes %
of the image points. The algorithm was expected to report three layers
at disparities 02,4.

10. An RDS as described in section 32, where the sparse layer includes 10%
of the image points. The algorithm was expected to report three layers
at disparities 0 2 4.

These cases were chosen as a representative subset of the stereograms used
in the psychophysical experiments described in sections 23, including all the
stereograms that may pose dfficulty to a matching algorithm for one of the
reasons described above. In particular, the stereograms 'in cases 4 and have
the same correlation function, gven 'in figures 5ab.

The simulations were repeated for different data sets produced randomly,
and a few times for each data set to determine consistency'. The performance
of both algorithms was fairly consistent, though Prazdny's algorithm showed
slightly hgher variability. The parameters that were varied for both algorithms
were the window of interaction, from 5x5 pixels to 15x15, and the threshold
on the minimal density of points that elicit the impression of a distinct layer,

5When more than one disparity was given the maximal support at a point, one dispar-
ity was selected at random in the 'Implementation of the two algorithms, and therefore a
consistency check was necessary.
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Prazdny's algorithm patch-wise correlation
ist test 2nd test 3rd test 1st test 2nd test 3rd test

f f f (515%) (712%) (713%) (5�5%) 712%) (514%) (515%) (712%)
(5�4%) f (5�4%) f f f
(515%) f NA (514%) (514%) NA

f f NA f (752%) NA
f f NA f f NA

.."- � � � -I - I - I----,----- --------

from 2 to 10% A normalization parameter in Prazdny's matching algorithm
was also varied.

Results:

Case 9 seemed to be a limit case in which sub'ects could identify the sparse
layer less reliably. This case was therefore discarded from the initial perfor-
mance evaluation of the algorithms. It was considered in a subsequent analysis
of the patch-wise correlation algorithm as discussed below.

Table 4 summarizes the results for the two algorithms, five test cases, and
two to three repetitions of each case. The result 'in each case is the set of
pairs, the window size in pixels and thethreshold value in percents, for which
the algorithm succeeded. Prazdny's algorithm was considered successful for
a particular window sze and threshold value 'if there eisted a normalization
coefficient with which these two parameters produced a successful result.

Table 4 Summary of the results of the sin-i ulations discussed in the text. Each
row summarizes a different data set. Each algorithm 'is assigned three columns,
for three separate tests of the algorithm on the same data. When the algorithm
was tested only twice on a gven data set, NA appears 'in its third column. f
stands for a failure of the algorithm, otherwise the list of parameters for which
the algorithm succeeded is given.

When an algorithm was successful for a particular set of parameters, typ-
ically the density of dots assigned to each disparity matched human perfor-
mance in experiment I (section 3.1).

The correlation algorithm selects at each feature the disparity d that max-
imizes the correlation of a patch around the feature and a patch displaced
by d in the second image. However, the disparity selected in this way may
not correspond to a feasible match, there need not be a corresponding feature
displaced by d in the second 'image. An improved version of the correlation

18



improved patch-wise correlation
1st test 2nd test

(9�3%) 714%) 713%) (515%) (1113%) 1112%) 973%) 714%) (5;5%)
(914%) 913%) 774%) 713%) (515%) (913%) 714%) 517%) 575%)

(775%) 714%) (913%) 715%) 774%) (515%)
(973%) 714%) (515%) (914%) 913%) 714%) 1

algorithm was also simulated, where the disparity wth the highest correlation
value, among the disparities corresponding to feasible matches, was selected at
each feature. This algorithm was more successful, in particular when dealing
with low density transparent layers (cases 710). It was tested twice on each
of four data sets (corresponding to the last four rows in table 4.

The results of the improved patch-wise correlation algorithm are given in
table 5. The performance of this algorithm was robust enough to handle the
limit case 9 These results show one set of parameters, 7,4%), for which the
improved correlation algorithm succeeded 'in every trial, for a test cases. It
almost always succeeded for the sets of parameters 9,3%), 7,4%) and (5,5%).

Table 5: Summary of the results of the simulations for the 'improved patch-wise
correlation algorithm tested on four data sets, corresponding to the last four
rows in table 4.

Discussion

The results of these smulations show that neither algorithm performs consis-
tently with human perception all the time. This should not be considered as
a major problem since the results some subjects reported also varied in time.
Both algorithms agreed with humans for a rather small window of interaction,
5x5 pixels for Prazdny's algorithm and from x5 to x7 for the correlation
algorithm. The results of the patch-wise correlation algorithm seem to be con-
sistent with humans' more often, and for a wider range of parameters. More-
over, an improved version of the correlation algorithm proved to be consistent

'th human behavior all the tme for a wide range of parameters. It should
also be noted that this algorithm is much faster and simpler to implement.
However I it is not appropriate for the matching of sngle features, as discussed
in section 41.
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5 S unirnary

I have dcussed old and new experiments with doubly ambiguous random dot
stereograms. In these stereograms there is often no single "correct" matching
of the left and right images, a few different solutions to the matching problem
are conceivable. Humans select a particular solution. Their performance 'in
these tasks, which has been described in this paper, can be used to evaluate
stereo matching algorithms, identifying those that are more appropriate as
models of human stereo vision.

Three simple stereo matching algorithms, representing two different match-
ing approaches, were discussed in section 4 One algorithm, PMF, failed
to explain the difference in ambiguity resolution between the random dot
stereograms and the micropatterns of the stereograms presented in isolation.
Prazdny's stereo matching algorithm could explain this dfficulty, but its tun-
ing to explain the other experimental results proved to be hard. The patch-wise
correlation maximization algorithm could be easily tuned to agree with human
perception, requiring a small correlation wndow, though it is not suitable for
the matching of isolated features. These results, and the conclusions of exper-
iment (section 31), support the 'idea that the matching of 'Isolated features
may involve different processes than the matching of random dot stereograms
(cf. 3 -
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