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Abstract

Marroquin and Ramirez (1990) have recently discovered a class of

discrete stochastic cellular automata with Gibbsian invariant measure

that have a non-reversible dynamic behavior. Practical applications

include more powerful algorithms than the Metropolis algorithm to

compute MRF models. In this paper we describe a large class of

stochastic dynamical systems that has a Gibbs asymptotic distribu-

tion but does not satisfy reversibility. We characterize su�cient prop-

erties of a sub-class of stochastic di�erential equations in terms of the

associated Fokker-Planck equation for the existence of an asymptotic

probability distribution in the system of coordinates which is given.

Practical implications include VLSI analog circuits to compute cou-

pled MRF models.

c Massachusetts Institute of Technology, 1994

This paper describes research done within the Center for Biological Information

Processing, in the Department of Brain and Cognitive Sciences, and at the Arti�-

cial Intelligence Laboratory. This research is sponsored by a grant from the O�ce

of Naval Research (ONR), Cognitive and Neural Sciences Division; by the Arti�-

cial Intelligence Center of Hughes Aircraft Corporation (S1-801534-2). Support for

the A. I. Laboratory's arti�cial intelligence research is provided by the Advanced

Research Projects Agency of the Department of Defense under Army contract

DACA76{85{C{0010, and in part by ONR contract N00014-85-K-0124.



It is well known (see Stratonovitch, 1963, for instance) that one can as-

sociate, under some conditions, to a stochastic continuous automata (i.e., a

stochastic di�erential equation) a so-called Fokker-Planck (F-P) equation in

the probability distribution of the state variables. In this note, we wish to

characterize conditions under which the F-P equation admits a stationary

solution of the Gibbs type.

Let x a n-dimensional vector of state variables, and W (x; t) the proba-

bility distribution of the state variables described by x at time t. The F-P

equation is:
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where d�(x) is the drift vector andK��(x) is the di�usion matrix (see Stratonovitch,

1963, p. 76).

The stationary solution w(x) of the F-P satis�es the equation:
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where we have de�ned the probability current G�(x):

G�(x) = d�(x)w(x)�
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In order to �nd the stationary solution, we do not assume, as Stratonovitch

and everybody else does, that G�(x) = 0 and set w(x) = e
�U(x) in equation

(1), obtaining:
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Assuming that the di�usion matrix is constant, that is K��(x) = K��, we

obtain:
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Provided that the di�usion matrix K is invertible we can e�ectuate the co-

ordinate transformation

x� !
1

2
K��x�

and de�ning the vector (d)� = d�(x) we rewrite the previous equation as

�rU � d�rU � rU +r � d+r2
U =

= �rU(d+rU) +r(d+rU) = 0 :

We �nally obtain

(r�rU) � (rU + d) = 0; (3)

which is the condition for stationary distribution.

Thus, one solution is:

rU + d = 0( d = �rU; (4)

which is equivalent to the so called potential conditions, that amount to say

that d is the gradient of a potential. If the potential conditions are satis�ed

the probability current G�(x) is identically zero, and thus detailed balance

holds. Therefore we recover the well known result that detailed balance im-

plies the existence of a stationary Gibbs distribution w(x) = e
�U(x). However

condition (3) shows that the converse is not true. In fact equation (3) has

also the solution

(r�rU) � f = 0; (5)

with f = rU + d and this solution is not trivial only if f 6= 0, that is if d is

not the gradient of a function. Equation (3) has therefore a \larger" space of

solutions than the one represented by the potential conditions. Of course in
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both cases the solution U must be such that w(x) = e
�U(x) is a probability

distribution, and therefore the following additional condition must hold:

Z
dx e

�U(x)
<1

A simple and interesting example that proves the existence of non-trivial

solutions U such that w(x) = e
�U(x) is the following.

Example of existence

Consider the stochastic di�erential equation in R2

(
_x = �2x+ y + �x(t)

_y = �x� 2y + �y(t)
(6)

where �x(t) and �y(t) are Gaussian noise terms, that is

< �x(t)�x(t
0) > = < �y(t)�y(t

0) > = 2�(t� t
0) :

The F-P equation associated to (6) is

@

@t
W (x; t) = �r � (W (x; t)d(x)) + 2r2

W (x; t)

where the drift vector is d(x) = (�2x + y;�x � 2y). It is easy to verify

that d(x) is not a conservative �eld, so that detailed balance does not hold.

However a stationary solution of the F-P exists, with w(x) = e
�U(x) and

U(x) = x
2 + y

2
:

In fact, de�ning f = rU + d we have

f = (2x� (2x� y); 2y � (x+ 2y)) = (y;�x)

and therefore equation (5) is satis�ed, since

(r�rU) � f = r � f �rU � f = 2(x; y) � (y;�x) = 0 :

Notice that in absence of noise the di�erential equation (6) is linear, with

characteristic eigenvalues � = �2 � i, and the associated trajectories are

inward spirals. This makes perfectly plausible the fact that, in presence of
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noise, the probability distribution of the variables is a Gaussian centered in

the origin.

Remarks:

� In the linear case, that is when d(x) = Ax and A is a symmetricmatrix,

detailed balance always holds, because d = �rU with U(x) = �1

2
xAx.

However the stationary solution w(x) = e
�U(x) exists only if the matrix

A is negative de�nite, that is if w(x) is integrable.

� Stratonovitch (1963, p. 79) says that even when potential conditions

are not met but d is a linear function of x and K��(x) are independent

of x, the F-P equations can be solved. In fact it is easy to see that

if d(x) = Ax and A is not symmetric the potential conditions do not

hold but the function U(x) = �1

2
xAx is a solution of equation (5).

� If the forces d� in the Langevin equation are conservative, i.e., d =

�rU; then, if the uctuations are thermic-like, detailed balance is sat-

is�ed and a Gibbs stationary distribution exists (Equation 4 is satis-

�ed).

� It appears that our results may be derivable from the formulation of

Graham (1980) and the more general case considered by Jauslin (1984)

and Zeeman (1988). An in-depth analysis of many properties of the

Fokker-Planck equation relevant for this note can be found in Tan and

Wyatt (1985).
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