
Quick Start for Microsoft® 
Macro Assembler 
5.0 and 5.1 Users 
Important Note on Backward Compatibility of MASM 6.0 





1. Getting Up and Running Quickly under MASM 6.0 
Microsoft Macro Assembler version 6.0 offers major advances over previous 
versions of MASM. It incorporates many features previously found only in high­
level languages, significantly increasing your programming productivity, while 
also offering substantial performance improvements. To provide these major 
enhancements while still offering backward compatibility with previous versions, 
MASM 6.0 has a special compatibility mode of assembly. You can access this 
mode in three ways: 

• By using the conversion driver, MASM.EXE. This approach converts your 
existing command-line options to the new syntax, adds a compatibility option 
(/Zm), and invokes the new ML.EXE assembler. It also lets you use your exist­
ing MAKE and batch files. 

• By using the new ML.EXE assembler with the /Zm option. This approach 
eliminates the need for the conversion driver but requires you to convert your 
command-line options to the new MASM 6.0 syntax. 

• By placing an OPTION M510 statement at the start of each file. This 
approach is equivalent to adding the IZm option to the command line. It lets 
you assemble old and new modules under ML.EXE using a single command 
line. 

Any of these three approaches will, in most cases, allow you to assemble your 
existing code under MASM 6.0, gaining full access to its new capabilities. Or, 
if you have existing MASM 5.0 or 5.1 object files and libraries that don't require 

changes, you can simply link them with new object files and libraries and run 
your code: no additional steps are required. 

If your code assembles under MASM 5.0 or 5.1 but won't assemble under the 
compatibility mode, see Section 2, "Additional Guidelines for Using the IZm 
Option." 

If you want to modify your existing code to assemble under MASM 6.0 without 
the /Zm option, see Section 3, "Modifying Existing Code to Assemble without the 
IZm Option." Additional information is provided in Appendix A (Section A.2, 
"Compatibility between MASM 5.1 and 6.0") of the Macro Assembler Program­
mer's Guide. 

If you need additional help, Microsoft Product Support Services has established a 
special number for assistance with MASM 6.0. 

Call: (206) 646-5109 

Technical assistance is available at this number Monday through Friday, 8 a.m. 
through 5 p.m. Pacific Time. If you are located outside the U.S., you must contact 
your local Microsoft Subsidiary. 

1 



2. Additional Guidelines for Using the am Option 
In certain situations, your code will not assemble with the /Zm option alone. The 
two most common cases are described below. 

2.1 New Reserved Word Used as a Label 
Many new reserved words have been added to MASM 6.0. If your existing code 
uses a reserved word as a symbol name, you will typically get a syntax error on 
assembly. For a list of all MASM 6.0 new reserved words, see Appendix A (Sec­
tion A.2.2.9, "OPTION NO KEYWORD") of the Programmer's Guide; for a com­
plete list of all reserved words, see Appendix D. 

To locate reserved words, run the assembler and look at any lines that generate 
syntax errors. If they contain reserved words, either change the symbol names or 
use the OPTION NOKEYWORD statement, as shown in the following example: 

OPTION NOKEYWORD:<INVOKE STRUCT> 

This statement would make the I NVOKE and STRUCT keywords unavailable as re­
served words. See Appendix A (Section A.2.2.9, "OPTION NOKEYWORD") for 
more information. 

2.2 Pass-Dependent Constructs Used 

2 

To optimize performance, MASM 6.0 uses an n-pass assembler rather than the 
two-pass assembler used by previous releases. This means it reads the source code 
only once: additional optimization passes are made on an intermediate file. Conse­
quently, if your code includes pass-dependent constructs, it will not assemble 
under MASM 6.0. 

Typically, problems with code requiring a two-pass assembler occur when you 
use: 
• An IF2 or ELSEIF2 directive. 

• An ELSE or ELSEIF block with an 1Ft directive. 

• IFDEF and IFNDEF with forward references. 

• The. TYPE operator with a forward reference in an IF, IFE, or IFNE directive. 

The first two cases will generate error A2061: 

[ELSE]IF2/.ERR2 not allowed: single-pass assembler 

The second two will generate warning A5006: 

IF condition may be pass-dependent 



See Appendix A ("Obsolete Two-Pass Directives" in Section A.2.1.3) for some 
examples of common pass-dependent constructs and ways to correct your code. 

2.3. Other Differences between MASM 6.0 and Previous Versions 
Several additional differences between the two assemblers may occasionally pre­
vent code from assembling under the compatibility mode. These differences, 
which are further explained in Appendix A Section (A.2.1, "Rewriting Code for 
Compatibility") of the Programmer's Guide, include: 

Bug Fixes from MASM 5.1 
• Invalid use of LOCK, REPNE, and REPNZ 

• No closing quotation marks in macro arguments 

• Making a scoped label public 

• Byte form of BT, BTS, BTC, and BTR instructions 

• Default value for record fields 

Design Change Issues 
• Conflicting structure definitions 

• Forward references to text macros outside of expressions 

• HIGH and LOW applied to relocatable operands 

• OFFSET applied to group names and indirect memory operands 

• LENGTH operator applied to record types 

• Signed comparison of hexadecimal values using GT, GE, LE, or L T 

• RET used with a constant in procedures with epilogues 

• Code labels at top of procedures with prologues 

• Use of % as an identifier character 

• ASSUME CS set to wrong value 

Code Requiring Two-Pass Assembly 
• Obsolete two-pass directives 
• IFDEF and IFNDEF with forward-referenced identifiers 

• Address spans as constants 

• .TYPE with forward references 

Obsolete Features No Longer Supported 
• The ESC instruction 

• The MSFLOAT binary format 

3 



3. Modifying Existing Code to Assemble without the a.m Option 

~, 

/ 

4 

In most cases, using the /Zm option to assemble your existing code will be the 
best solution. Your code will require a minimum of changes, and you'll still be 
able to take advantage of the new assembler features as you modify or add to it. 
If you prefer to modify your code to allow it to be assembled without /Zm, follow 
the steps listed below. For more information, see Appendix A, (Section A.2.2, 
"Using the OPTION Directive") of the Programmer's Guide. 

1. Convert the command line to the equivalent Ml.EXE form 
and assemble your code. 

First, you need to make sure your code assembles with the /Zm option. However, 
since you'll need to remove the /Zm option later-and since the conversion driv­
er, MASM.EXE, automatically inserts the (Zm option when invoking ML.EXE­
you won't be able to use this method of assembly. Instead, convert your command 
line to the new form, add the /Zm option, and assemble directly under ML.EXE. 

If you need help in converting the command line, key in ML/HELP. This gener­
ates an on-screen listing of the new options, together with brief definitions. 
If your code won't assemble with the /Zm option, refer to Section 2, above. 

2. Add the appropriate OPTION directives. 
• Begin by adding the following OPTION directives to your code: 

OPTION OLDSTRUCTS Allows use of old-style structures 

OPTION OLDMACROS Allows use of old-style macros 

OPTION DOTNAME Allows identifiers to begin with a dot [.J 

• If there is no .386 or .386P directive in your module, also add: 

OPTION EXPR 16 ; Uses 16-bit precision in expressions 

• If there is no .MODEL directive in your module, also add: 

OPTION OFFSET:SEGMENT : Causes OFFSET operator default to be 
: segment-relative rather than group-relative 

• If there is no .MODEL directive with a language specifier in your module, also 
add: 

OPTION NOSCOPED 

OPTION PROC:PRIVATE 

Makes code labels not local to the procedure 
in whict{they appear 

Treats code labels defined with PROC as local 
unless otherwise specified 



3. Remove am from the command line and try assembling your code. 
Since most of the effects of the /Zm option are replicated by the OPTION direc­
tives listed above, your code should now assemble. However, there are certain 
effects of the /Zm option that can only be enabled with this option. These effects 
occasionally prevent code using OPTION directives from assembling. Refer to 
Appendix A (Section A.2.2.1, "OPTION M51 0") of the Programmer's Guide for 
explanations of these effects and suggestions for work-around solutions. 

4. Remove the OPTION directives, one at a time, 
reassembling after each removal. 

Once your code assembles with the OPTION directives, remove these directives 
one at a time, reassembling your code after each removal. Refer to Appendix A 
(Sections A.2.2.2 through A.2.2.9) of the Programmer's Guide for suggestions on 
resolving any problems that appear. When you have removed the last OPTION 
directive, your code will be completely converted to MASM 6.0. 

5 



MicIOsott® 
Making it all make sense ™ 

Microsoft Corporation 
One Microsoft Way 
Redmond, WA 98052-6399 

0391 Part No. 21595 


