
Micro-Code Class 
John Providenza 

1. Overview A micro-code instruction consists of four fields: 
• Data Bus 
• Alu Control 
• Sequencer Control 
• Hardware Control 

By convention, the fields are ordered: 
HWCTL Alu Seq Data-Bus 

The function of each is: 
• HW CTL Control miscellaneous hardware devices such as counters, regis-

ters, etc. This field changes the most among the graphics controllers 
(Omega 400, Lambda, Omega 500). These bits are used to control pixel 
writing, pixel address counters (px and py), scratch pad ram, etc. A typ-
ical hardware control field may look like: LPCNTEN MEMWR YDWN. 

• Alu This field controls the 2901 Alu's. There is a direct correlation 
between the opcodes for this field and the 2901 opcodes as described in 
the AMD data book, k typical ALU field is: Dec B, R5t R3 Ldb.A 

• Sequencer This field controls the 2909/2911 sequencer chips that imple-
ment our program counter (PC). This field specifies branches, subrou-
tine branch, return, four-way branch, etc. A sequencer instruction may 
be: Br R,NLPC 

• Data Bits This field controls the data bus by specifying the source and 
destination devices that are driving/receiving the data bus. If the pipe-
line register is used to specify immediate data, this field supplies the 
data. A data bus instruction is like: Dbus WDATLD,Alvy 

Incidently, the assemblers are: Omac for the Omega 400, Lmac for the Lambda, 
and Orrnac for the Omega 500. Do a man umac, for a rough synopsis of the flags, 
etc 



2. Data Bus This field controls the data bus (DB). If the field is missing from 
the instruction, the DB is idle with no source or destination. The DB data is 
always latched into the destination at the end of the current instruction, 
The valid Omega 400 destinations are: 
BOX,CENTER; CI S C C L L, Omega 400 Destinations Mnemonic Function _ 
cgenldLoad Ascii character to cgen cmapld Write color to color map 
crcrd Actually, a SOURCE. Read signature crtcld Load CRT controller register, 
crtcrd SOURCE. Read Crt controller register, ledld Load diagnostic LED's 
Ipcntld Load loop counter nodestNo dest, usually used for Alu input 
odhld Really, IORESET odlld Write data to 10 interface patrld Load pattern re-
gister. pxld Load PX counter (pixel X address) pyld Load PY counter (pixel Y 
address) rmskld Load read mask spadrld Load scratch pad ram ad-
dress spdatld Write scratch pad ram data at current address 
spwrup Set power up flip-flop uartld Write data to gin interface 
uartrdSOURCE, Read data from gin interface wdatldLoad drawing color 
wmskld Load write mask xstld Load X starting address (pan) ystld Load Y 

The Omega 400 data bus sources are: 
starting address (pan) zoomld Load zoom factor BOX,CENTER; CI S C C L L. 
Omega 400 Bus Sources Mnemonic Function _ aluy 2901 Alu drives the bus 
extsrcNop so that a "dest" can drive the bus imrdh Read the odd pixel from 
cache imrdl Read even pixel from cache inh Unused inl Read data from. 10 

The data bus field has 3 keywords associated with it: Plreg, Dbus, and Const. 
Some examples of these are: 
interface spramRead data from scratch pad ram CENTER; L L. Dbus 
Wdatld,Aluy Write alu data to the color reg. Dbus PXLD,Plreg,5 Write a 5 to 
the PX register. Dbus PYLD,5 Write a 5 to the PY register. Const 33h Put a 

The Flreg construct is a hang over from a previous assembler that was, if you 
can believe it, slower and less friendly than our current assembler, 



3. Sequencer Control The sequencer implements the program counter for our 
bit slice engines. We use AMD 2909 and 2911 slices to create a 12 bit sequencer. 
Thus, we can directly address 4096 words of control store (instructions), The 
Omega 400 and the Lambda use the same sequencer instructions. The Omega 
500 has been significantly enhanced to support looping and a few other bazzar 
features. 
The sequencer also implements the subroutine return stack, Unfortunately, the 
2909/2911 chips allow only 4- levels of subroutine call. Of course, there aren't 
any interrupts to worry about. 
The legimate Omega 400 sequencer commands are: 
Br D.CC1 

Branch if CC1 is true. The branch address comes from the data bus, and is 
usually specified with a Const Label type of data bus control field. It is pos-
sible to branch to a location stored in scratch pad ram or the Alu. Some 
typical branch and data bus control instructions may look like: 

33h on the bus (maybe for a jump), CENTER; L L. Br D,Z Const POLYF ; Branch 

Br D 
This is a degenerate case of the above. It is a branch always. 

Br R,CC1 
This is a conditional branch to the location that the R register points to, 
The R reg is in the sequencer chips, and, for the Lambda and 400, is loaded 
via the hardware control bits, A typical instruction stream may be: 
to POLYF Br D,P1 Dbus Nodest,Aluy ; branch to address from the alu 
CENTER; L L LDR Const POLYO ; load R with address of POLYO Br R,Mi 

Note that by using the R register, the data bus is left open for use during the 
branch. 
Br R 

This is the uncondition branch with R. 
Bsr D.CC1 

Branch to subroutine whose address is on the data bus. The next 
instruction's address is pushed on the stack, and be branch to the subrou-
tine to resume execution. 

Bsr D 
This is the unconditional branch to subroutine via D, 

Bsr R,CC1 
Branch to subroutine whose address is in R. 

Bsr R 
This is the unconditional branch to subroutine via R, 

Rts CC1 Return from subroutine if CC1 is true, else continue. 
Rts 

Unconditional return from subroutine. 
Fwybr D,CC2,CC1 

The fourway branch instruction is the most unique instruction in the 
Omega/Lambda display conrollers. It allows the program to test 2 condi-
tion codes simultaneously and branch to one of 4 locations. One restriction 
is that the target code must be aligned on a four byte boundary. A typical 
sequence of commands is: 
Dbus Wdatld.Aluy ; Branch to POLYO while using data bus CENTER; L L L. 

Inc A,R0 Fwybr D,LPC2,Z Const XYZ ; fourway branch to XYZ 
Align 4; Force proper alignment XYZ: instO ; CC2 = false, CC1 

= false instl ; CC2 = false, CC1 = true inst2 ; CC2 = true, 

Fwybr R,CC2,CC1 
Another fourway branch. We use the R reg for the destination address. 



The legal CC1 condition codes on the Omega 400 are: 
CC1 = false inst3 ; CC2 = true, CC1 = true BOX,CENTER; CI S L C L L. 

Omega 400 CCl's Mnemonic Test _ bmi byte minus bpl byte plus 
ca alu carry (no borrow) dbO DBO = 1 idrdy input data ready iof 30/60 
hz flag lpc loop counter carry lrc left alu register carry mi minus 
nca no alu carry (ie, borrow) ndbO DBO = 0 nidrdyinput data not ready 
niof not 60/30 Hz nlpc no loop counter carry nlrc no alu register left carry 
nodac output data not accepted by host nov no overflow nqrc no Q register 
right carry nrrc no alu register right carry nvbl not vertical blank nz not 
zero odac output data accepted ov alu overflow pi alu plus qrc alu Q 
register right carry rrc alu register right carry vbl vertical blank 

The valid Omega 400 CC2 codes are: 
z alu zero BOX,CENTER; CI S L C L L. Omega 400 CC2's Mnemonic Test _ 
ca2 Alu carry lpc2 loop counter carry nca2 no alu carry nlpc2 no loop 
counter carry nrrc2 no alu register right carry nz2 alu not zero rrc2 alu re-

Note that some of the condition codes are misnomers. For example, we don't 
check loop counter carry, we actually use the loop counter minus. Thus the 12 
bit loop counter actually only can count 2047 events. 



Micro-Code Class 2 
Aug 31, 1983 

John Providenza 

1. ALU Control The Arithmetic Logic Unit (ALU) is the "brains" of the bit slice 
processor. Our ALU is based on the AMD 2901 4 bit processor slice. We use three 
slices to create our 12 bit ALU With a 12 bit processor, we can represent 
numbers in the range of -2048 to +2047, or, as unsigned integers, 0 to 4095. The 
2901 contains 16 registers, an accumulator, and a logic unit. 
The ALU control field can be broken into four parts: 

• Opcode This field controls the action of the logic unit. The user specifies 
opcodes such as Add, Exor, or Subr, 

• Source Select This field selects the two input data sources for the ALU. 
• Register Select This field specifies the two addresses for the A and B 

registers. 
• Destination Control This field selects where the output data from the Alu 

is to be put. 
These fields are used to select what data the alu will operate on (via source 
select and register select), what the alu will do (via the opcode), and what is 
done with the data (via destination control and the register select). A typical 
instruction that uses ail the fields is: 

By convention, the result from of the Alu operation is called F and the chip out-
put (if enabled as a data bus source) is called Y. 

1.1. Source Select The Alu requires two sources of data, fondly known as the R 
and S busses. A two letter mnemonic is used to select the Alu sources for all of 
the native 2901 instructions (see derived instructions), The valid 2 letter source 
mnemonics are: 

AB 
Register data is used for the Alu inputs, the A reg data goes on the R 
inputs to the Alu, the B reg data to the S inputs. 

• AQ 
Register and Accumulator data is used for the Alu inputs, the A reg data 
goes on the R inputs to the Alu, the Q reg data to the S inputs. 
DA 
Data Bus and Register data is used for the Alu inputs, the Data Bus goes 
on the R inputs to the Alu, the A reg data to the S inputs. 
DQ 
Data Bus and Accumulator data is used for the Alu inputs, the Data Bus 
goes on the R inputs to the Alu, the Q reg data to the S inputs. 
DZ 
Data Bus and Zero data is used for the Alu inputs, the Data Bus goes on 
the R inputs to the Alu, the S inputs are set to 0. 
ZA 
Zero and Register data is used for the Alu inputs, 0's are placed on the R 
inputs to the Alu, the A reg data to the S inputs. 
ZB 
Zero and Register data is used for the Alu inputs, 0's are placed on the R 
inputs to the Alu, the B reg data to the S inputs. 



• ZQ 
Zero and Accumulator data is used for the Alu inputs, O's are placed on 
the R inputs to the Alu, the Q reg data to the S inputs. 

1.2. Alu Opcode The Alu Opcode specifies the operation that the Alu will per-
form. The R and S busses supply data to the Alu (see source select), and the Alu 
output may either be saved in a register, put on the data bus, or ignored (see 
destination control). 
CENTER; 1, L. Addi AB,R0,R1 Ldb.F; rO + r l + 1 -> r l BOX,CENTER; CI S L C L L. 
Alu Opcode Table Mnemonic Function __add R + S addi R + S + 1 and R 
& S exnor ~(R - S) exor R ^ S notrs (~R) & S or R | S sub R - S subd R -

There are several more opcodes that will be described under derived opcodes 
since they are derived from the standard 2901 commands. 

1.3. Register Select The 2901 contains 16 registers that are dual ported into 
the A and B ports. The register select field controls which of the A and B regis-
ters are used. Note that the A register is used only for read out, while the B 
register may be read, write, or both. Up to 2 registers may be specified. If two 
registers are specified, the 1st is the A reg, the 2nd is the JB reg. If 1 register is 
specified, it selects the same A and B registers. 
Register names are either RO thru R15, or defined symbol that evaluates to a 
number in the range of 0 thru 15. Thus, all of the following are identical: 
S - 1 subr S - R subrd S - R - 1 CENTER; L L L. P1X Equ 15; equate FIX to a 15 
Temp Equ 0 ; equate Temp to 0 Add AB,P1X,R0 ; add r l 5 and rO 

Add AB,R15,R0 ; add r l 5 and rO Add AB.R15.Temp ; add r l 5 

An equate or defl statement is frequently used to define a register name for clar-
ity. Some common register equates are; P1X, P1Y, P3Xand PSY. 
Some more examples: 
and rO CENTER; L L. Subr AB,R0,R1 ; r l - rO Exor AB,R1,R3 ; r l - r3 

1.4. Destination Control This is the hardest of the Alu fields to understand. It 
controls the storage of the Alu result (F), as well as the data source for the 2901 
output pins (Y). The valid destination keywords are: 
Subd AB,R2,rl5 ; r2 - r l 5 -1 CENTER,BOX; CI S C C L L. Destination Keywords 
Mnemonic Function __ldb.a F -> B, A -> Y ldb.f F -> B, Y ldq F -> Q, Y 
nold F -> Y ldb.dnF/2 -> B, F -> Y Idb.up 2F -> B, F -> Y ldbq.dn F/2 -> B, 

If an Up or Down shift was requested, an additional keyword is required to 
specify the type of shift: 

• arshft Arithmetic shift. For upshift, shift in a 0, for downshift, sign 
extend. 

• rotate End Around Rotate. We don't tolerate any thru the carry non-
sense. 

• shift0 Shift in a 0 for a up or down shift. 
• shift 1 Shift in a 1 for a up or down shift. 

Some typical Alu instructions may be: 
Q/2 -> Q, F -> Y Idbq.up 2F -> B, 2Q -> Q, F -> Y CENTER; LLL, P1X Equ 
OChPlY Equ 13 



Add AB,R0,P1X Ldb.F ; rO + r l 2 -> r l 2 Add DA,P1Y,R5 Ldb.F 
Const 9 ; r l 3 + 9 -> r5 Add AB,R0 Ldb.F : rO * 2 -> RO Add 
AB/RO Ldb.Up ShiftO ; rO * 4 -> RO Add ZA,R0,R1 Ldb.Up ShiftO ; rO 

1.5. Derived Instructions Some interesting combinations of Alu sources and 
opcodes exist that the assembler supports as separate instructions. These 
derived opcodes are frequently used. Because many of them use the Zero Alu 
source as an inherent source, only A, B, D, or Q need to be specified in the 
source specification field. The derived opcodes are: 

• Inc Add 1 to the source. 
• Dec Subtract 1. from the source. 
• Pass Pass the source thru unchanged. 
• Not Complement the data. 
• Neg A 2's complement. 

Some examples of the derived opcodes with a possible native instruction: 
* 2 -> R1 CENTER; L L. Inc A,R0,R1 Ldb.F ; RO + 1 -> R1 Addi ZA,R0,R1 Ldb,F 

Dec D,R3 Ldb.F Const 5 ; 5 - 1 -> R3 Subd DZ.R3 Ldb.F Const 5 

Dec B,R7,R4 Ldb.A ; R4 - 1 -> R4, R7 ~> Output Subrd ZA,R7,R4 Ldb.A 

Neg A,R0,R1 Ldb.F ; -RO -> R1 Sub ZA,R0,R1 Ldb.F 

Not B,R4 ; -R4 -> Output Exnor ZB,R4 

One additional derived instruction exists for forcing a 0 out of the Alu, It is 
appropriately called CLr and does not require an alu source. 
Pass D,R5 Ldb.F Const 123h ; 123h -> R5 Add DZ,R5 Ldb.F Const 123h 
CENTER; L L„ Clr R5 Ldb.F ; 0 -> R5 and Output And ZA,R5 Ldb.F 

1.6. Useful TVicks Some clever tricks allow useful constants to be loaded into a 
register without using the data bus. 
Clr R5,R6 Ldb.A ; 0 -> R6, R5-> Output And ZA,R5,R6 Ldb.A CENTER; L I, Clr 
RO Ldb.Dn Shift l ; BOOh -> RO Clr RO Ldb.Up Shift 1; 1 -> RO Subd AB.RO Ldb.F ; 

OFFFh -> RO Subd AB,R0 Ldb.Dn ShiftO ; 7FFh -> RO 
Micro-Code Class 5 

Oct 5, 1983 
John Providenza 

2. Hardware Control Bits The Hardware Control Bits (HW Bits) are used to con-
trol various I/O devices/registers/counters... in the display controllers. 
bpt 

This bit is used for hardware debug. If the debug jumper on page 13 of the 
schematics is inserted, the Omega 400 will halt before each instruction. 
The single step switch may be used to step instruction by instruction Since 
this bit is only asserted at the begining of the opcode fetch, it can be viewed 
as a FETCH signal. 



cgencnt 
Step to the next row in the character rom. Used in drawing text, 

cgenshft 
Step the character generator to the next pixel in the current row, Used in 
drawing text, 

erestop 
Same functionality as bpt. 

crcstrt 
This asserts the currently spare bit in the hardware field. 

ldr 
Load the sequencer R register. See the section on the 2909/2911 
sequencer, 

lpcnten 
Count the loop-counter. 

memwr 
Write the pixel that is currently addresses by Px and Py. The color is in the 
write data register, and the write mask is used to protect bits in the pixel. 

rdbckld 
Load 16 pixels into the readback shift register. This is a 16 pixel cache that 
is very useful for many of our algorithms. 

rdbcksl 
Shift the data in the readback shift register one pixel left. This gets you 
ready to read the next pixel on the right. 

rdbcksr 
Shift the data in the readback shift register one pixel right. This gets you 
ready to read the next pixel on the left. 

•wall 
Write all 16 pixels in the current word addressed by Px and Py. The data 
comes from the write data register, and the write mask still works. The pix-
els written are at (Px k 03F0h, Py) thru (Px | OFh, Py). This instruction 
gives us our FLASH FILL capability. 

xdwn 
Count the Px address down by 1, 

xup Count the Px address up by 1. 
ydwn 

Count the Py address down by 1. 
yup 

Count the Py address up by 1, 
Note that some of these Opcodes interact with each other. The following 
interact: 

Thus a load or left shift of the readback shift register also causes the character 
generator to shift one. 



Micro-Code Class 5 
Oct 5, 1983 

John Providenza 

1- Hardware Control Bits The Hardware Control Bits (HW Bits) are used to con-
trol various I/O devices/registers/counters... in the display controllers. 
bpt 

This bit is used for hardware debug. If the debug jumper on page 13 of the 
schematics is inserted, the Omega 400 will halt before each instruction. 
The single step switch may be used to step instruction by instruction. Since 
this bit is only asserted at the begining of the opcode fetch, it can be viewed 
as a FETCH signal. 

cgencnt 
Step to the next row in the character rom. Used in drawing text, 

cgenshft 
Step the character generator to the next pixel in the current row. Used in 
drawing text. 

crcstop 
Same functionality as bpt. 

crcstrt 
This asserts the currently spare bit in the hardware field. 

Idr 
Load the sequencer R register. See the section on the 2909/2911 
sequencer, 

lpcnten 
Count the loop-counter. 

memwr 
Write the pixel that is currently addresses by Px and Py.. The color is in the 
write data register, and the write mask is used to protect bits in the pixel. 

rdbckld 
Load 16 pixels into the readback shift register. This is a 16 pixel cache that 
is very useful for many of our algorithms. 

rdbcksl 
Shift the data in the readback shift register one pixel left. This gets you 
ready to read the next pixel on the right. 

rdbcksr 
Shift the data in the readback shift register one pixel right. This gets you 
ready to read the next pixel on the left. 

wall 
Write all 16 pixels in the current word addressed by Px and Py. The data 
comes from the write data register, and the write mask still works. The pix-
els written are at (Px & 03F0h, Py) thru (Px | OFh, Py). This instruction 
gives us our FLASH FILL capability. 

xdwn 
Count the Px address down by 

xup Count the Px address up by 1, 
ydwn 

Count the Py address down by 



yup 
Count the Py address up by 1. 

Note that some of these Opcodes interact with each other. The following 
interact; 

Thus a load or left shift of the readback shift register also causes the character 
generator to shift one. 


