

Program Tracing

�~� Introduction

Variable

LIBEW RSYS SERVER

LIBEW CORE

LIBEW TRACE

1

Description

Virtual process ID of the processor that will
run the system call server.

Enables core dump on exception. Values
may be 1 (enabled) or 0 (disabled). By
default core dumping is disabled.

Enables a trace dump on exception. Values
may be 1 (enabled) or 0 (disabled). By
default trace dumping is disabled.

Both ParaGraph and Alog/Upshot are supported for program tracing.

ParaGraph

Three functions in the low level Elan Widget library (libew) are applicable to
program tracing - these are ewytraceStart (), ew_ptraceStop (),
and ewytraceFlush () . None of these take arguments and none return
values to the caller.

Programs that are traced must be linked with 1 ibmp s c yt as described in an
earlier section. The resulting trace file may be analysed with ParaGraph.

ewytraceStart()

ew_ptraceFlush()

ew_ptraceStop()

Enables tracing and records a "start of tracing"
event.

Rushes the event buffer to the file system. It
records a "start of flushing" event when it
begins, and an "end of flushing" event on
completion. It generates an exception with code
EW Era if it fails to write to the trace file.

Disables tracing, records an "end of tracing"
event and calls ew_ptraceFlush (). Note
that ew _ptraceStop () and
ew _ptraceStart () may be called repeatedly
to record snapshots of a program's behaviour

9

1

10

Full documentation for the tracing functions is included in the Elan Widget Li
brary reference manual.

A log/Upshot

As an alternative to ParaGraph the event/state display tool upshot is also
supported. To use this you need to instrument your code with trace points. De
tails may be found in /opt/MEIKOcs2/upshot/README-MEIKO.

S lOO2-10MI08.06 meJ<a

meJ<o

Tagged Message Passing 2

The following message passing functions are defined within the lihmpsc li
brary (the global operation functions are listed in Chapter 3).

Initialisation

mpsc _ ini t () Initialisation function.

mpsc_fini () Finalisation function.

Information

myhost ()

mynode ()

mypid()

nodedim ()

numnodes ()

Obtain node ID of the calling process.

Obtain node ID of the process.

Obtain node operating system process ID.

Obtain cube dimensions.

Obtain node count for cube.

11

2

12

Message Passing

cprobe ()

cprobex ()

crecv ()

crecvx ()

csend ()

csendrecv ()

gsendx ()

infocount()

infonode()

infopid ()

infotype ()

iprobe ()

iprobex ()

irecv ()

irecvx ()

isend ()

isendrecv ()

msgdone ()

msgwait ()

Miscellaneous

led()

flick ()

Wait for a message.

Wait for a message (extended).

Receive a message.

Receive a message (extended).

Send a message and wait for it to depart.

Send a message and block until replied.

Send a message and wait for departure (extended).

Determine length of received message.

Determine node ID of sending process.

Determine process ID of sending process.

Determine type of received message.

Determine if message is pending.

Determine if message is pending (extended),

Receive a message.

Receive a message (extended).

Send a message.

Send message and setup for reply.

Determine if non-blocking transaction is complete.

Wait for completion of non-blocking transaction.

Set front panel LEDs.

No-Op - included for portability.

S l002-10MI08.06 meJ<D

rneko Tagged Message Passing

gray ()

rnclock ()

ginv ()

Gray code.

Elapsed time in ms since rnps c _ ini t () .

Inverse Gray code.

2

13

2

cprobeO

Synopsis

Synopsis

Arguments

Description

14

Wait for a message

SUBROUTINE CPROBE(type)
INTEGER type

void cprobe(int type);

type Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

cprobe () blocks the calling process until a message of the selected type is
available to be received. When cprobe () returns you can use crecv () or
irecv () to initiate the receipt of the message.

Notes:

• The message type is specified by the sender (either csend () or isend ()).

• Use the info functions to get more information about a received message (such
as its length or the ID of the sender).

• Use iprobe () and not cprobe () if you do not wish to block the process
while waiting for a message.

SIOO2-10MI08.06 meJ<a

cprobexO

Synopsis

Synopsis

Arguments

meko Tagged Message Passing

2

Wait for a message (extended)

SUBROUTINE CPROBEX(type, sender, ptype, info)
INTEGER type, sender, ptype, info(8)

void cprobex(int type,int sender,int ptype,int* info);

type Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

sender Specifies the source (sending node) of the message you are waiting
for. The following values are valid:

ptype

info

• If sender is a non-negative integer then the message must have
been sent by this node.

• If sender is -1 then the message may have been sent by any
node

• If sender is negative and not -1 then an exception is generated.

Specifies the process type of the sender. Values other than 0 or -1 will
cause an exception (there is only one per process per node in this
implementation).

Returns the values that are normally returned by the additional
infonode (), infocount (), and infotype () functions. The
first element of info contains the message type. The second
element of inf 0 contains the message length. The third element of
info contains the node number of the sender.

15

2

Description

16

cprobex () is the same as cprobe () but allows selection by source and re
turns additional information that cprobe () does not (and requires additional
use of the info functions to obtain).

Warning - The info functions should not be used after cprobex () as the
relevant data has already been returned to you.

S 1002-1 OM 108.06 me/<D

crecvO

Synopsis

Synopsis

Arguments

Description

mei<rJ Tagged Message Passing

2

Receive a message

SUBROUTINE CRECV(type, buf, len)
INTEGER type
INTEGER buf(*)
INTEGER len

void crecv(int type, void* buf, int len};

buf Identifies the buffer where the received message will be stored.

len Specifies the length of the message buffer in bytes.

type Specifies the type of message you are waiting for. The following
values for type have the meanings shown:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type ..

• If type is any negative number other than -1 then an exception
is generated.

This function is used to initiate the receipt of a message. The calling process is
blocked until a message of the appropriate type is received. The received mes
sage is stored in the buffer bu f.

Notes:

• Use the info functions to obtain more information about a received message
(such as its length or the ID of the sender).

• Use irecv () when you do not want the calling process to block.

17

2

crecvxO

Synopsis

Synopsis

Arguments

18

Receive a message (extended)

SUBROUTINE CRECVX(type, buf, len, sender, ptype, info)
INTEGER type, len, sender, ptype
INTEGER buf (*)
INTEGER info(8)

void crecvx(int type, void* buf, int len, int sender,
int ptype, int* info);

buf Identifies the buffer where the received message will be stored.

len Specifies the length of the message buffer in bytes.

type Specifies the type of message you are waiting for. The following
values for type have the meanings shown:

sender

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

Specifies the source (sending node) of the message you are waiting
for. The following values are valid:

• If sender is a non-negative integer then the message must have
been sent by this node.

• If sender is -1 then the message may have been sent by any
node

• If sender is negative and not -1 then an exception is generated.

S 1()()2-10MI08.06 meJ<a

Description

mei<D Tagged Message Passing

ptype

info

2

Specifies the process type of the sender. Values other than 0 or -1 will
cause an exception (only 1 process per node in this implementation).

Returns the values that are nonnally returned by the additional
infonode (), infocount (), and infotype () functions. The
first element of info contains the message type. The second
element of info contains the message length. The third element of
info contains the node number of the sender.

This function is the same as crecv () but allows selection by source and returns
additional infonnation that crecv () does not (and requires additional use of the
info functions to obtain).

Warning- The info functions should not be used after crecvx () as the rel
evant data has already been returned to you.

19

2

csendO

Synopsis

Synopsis

Arguments

Description

20

Send a message and wait for it to depart

SUBROUTINE CSEND(type, buf, len, node, pid)
INTEGER type
INTEGER buf(*)
INTEGER len, node, pid

void csend(int type, void* buf, int len,
int node, int pid);

type Specifies the type of message that is being sent. It is recommended
that you use values in the range 0 to 999,999,999. Unpredictable
results occur if types outside the specified range are used.

buf Identifies the buffer that contains the message.

len Specifies the size of the message (in bytes).

node Specifies the recipient's node ID. If this variable contains a positive
integer then the message is sent to that node. Nodes within a cube
domain are numbered from 0; use of a node number that is greater
than the highest node in the cube causes an error. if node ID is set to
-1 the message is broadcast to all nodes.

pid Specifies the recipient's process ID. If a global send specifies its own
ID then the sender does not receive the message. If an alternative ID
is specified the sending node always receives the message.

This function sends a message to a process and causes the sender to block until
it is sent. Completion of this function does not indicate that the message arrived
at its destination, although it does imply that the sender's message buffer is avail
able for reuse.

S lOO2-10Ml08.06 me/<D

csendrecvO

Synopsis

Synopsis

Arguments

meI<o Tagged Message Passing

2

Send a message and block until replied

INTEGER FUNCTION CSENDRECV(type, sbuf, slen, tonode,
topid, rtype, rbuf, rlen)

INTEGER type, rtype
INTEGER sbuf(*), rbuf(*)
INTEGER slen, tonode, topid, rlen

int csendrecv(int type, void* sbuf, int slen,
int tonode, int topid, int rtype,
void* rbuf, int rlen);

type This specifies the type of the message that is being sent. It is
recommended that you use values in the range 0 to 999,999,999.
Unpredictable results occur if types outside the specified range are
used.

sbuf Specifies the source buffer.

slen Specifies the size of message to be sent from sbuf, in bytes.

tonode Specifies the 10 of the recipient node.

topid Specifies the 10 of the recipient process. Negative IDs are reserved
for system programs and should not be used.

rtype Specifies the reply message type. The following values are
permitted:

rbuf

rlen

• If type is a non-negative integer then a specific type of
message will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

Specifies the buffer that will receive the reply message.

Specifies the size of the receive buffer in bytes.

21

2

Description

22

This function is used to send a message and to simultaneously post a receive; the
calling process is blocked until the reply is received. When a reply matching the
specified reply type (rtype) is received it is stored in rbuf and the calling proc
ess resumes execution.

Notes:

• This function is intended for use with remote procedure calls (a sender posts
a request for information and a server returns a result).

• Use isendrecv () if you do not want the calling process to block while
waiting for the reply.

• Use the info functions to obtain information about the received message (such
as its length or the ID of the sender).

S l002-10MI08.06 meJ<a

flickO

Synopsis

Synopsis

Description

meko Tagged Message Passing

No operation

SUNBROUTINE FLICK()

void flick(void);

This function is a no-op; it is included for portability.

2

23

2

grayO

Synopsis

Synopsis

Description

24

Gray code

INTEGER FUNCTION GRAY (val)
INTEGER val

int gray(int val);

Returns the Gray code of the integer argument val. It converts integers which
differ by 1 to integer which differ by a power of 2.

The table below enumerates the function for small binary integers.

n gray(n)

0 0

1 1

10 11

11 10

100 110

101 III

110 101

S 1 002-1 OM 108.06 meJ«)

ginvO

Synopsis

Inverse Gray code

INTEGER FUNCTION GINV(val)
INTEGER val

Synopsis int ginv (int val);

2

Description Returns the inverse Gray code; this function is the inverse of the gray () func
tion.

meJ<o Tagged Message Passing 25

2

gsendxO

Synopsis

Synopsis

Arguments

Description

26

Send a message to many nodes and wait for it to depart

SUBROUTINE GSENDX(type, buf, len, nodes, nnodes)
INTEGER type
INTEGER buf(*)
INTEGER len
INTEGER nnodes, nodes (nnodes)

void gsendx(int type, void* buf, int len, int* nodes,
int nnodes);

type

buf

len

nodes

nnodes

Specifies the type of message you are sending.

Identifies the buffer that contains the message.

Specifies the length of the message in bytes.

Contains a set of node numbers to which data is sent.

The number of node numbers in nodes.

gsendx () sends a message to each of the nodes specified by the nodes array.
The messages are sent by csend () ,so gsendx () is functionally equivalent to
the C program:

for (i=O; i<nnodes; i++)
csend(type, buf, len, nodes[i],O);

S lOO2-10Ml08.06 meJ<a

2

infocountO/nodeO/pidO/type()Get message information

Synopsis

Synopsis

Description

meI<o Tagged Message Passing

INTEGER FUNCTION INFOCOUNT()
INTEGER FUNCTION INFONODE()
INTEGER FUNCTION INFOPID()
INTEGER FUNCTION INFOTYPE()

int infocount(void);
int infonode(void);
int infopid(void);
int infotype(void);

These functions return infonnation about a received message. The returned value
is undefined unless it follows a recv () , sendrecv () , probe () , msg
done () , or msgwai t () .

infocount()

infonode ()

infopid ()

infotype ()

Returns the length of the message (in bytes).

Returns the node ID of the sending process.

Returns the ·PID of the sending process.

Returns the type of message.

Warning - These functions will not return the expected results if used after
an extended operation (cprobex (), iprobex (), crecvx (), or
irecvx ()). .

27

2

iprobeO

Synopsis

Synopsis

Arguments

Description

28

Determine if message is present

INTEGER FUNCTION IPROBE(type)
INTEGER type

int iprobe(int type);

type Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

This function detennines if a message of the specified type is ready for receipt.
If a suitable message is ready iprobe () returns a value of 1; if no suitable mes
sage is ready the function returns o. When a value of 1 is returned, the info func
tions can be used to obtain information about the message.

This function does not block the calling process; use cprobe () if the calling
process must be blocked until a suitable message arrives.

SlOO2-10MI08.06 meJ<a

iprobexO

Synopsis

Synopsis

Arguments

meko Tagged Message Passing

2

Determine if a message is present (extended)

INTEGER FUNCTION IPROBEX(type, sender, ptype, info)
INTEGER type, sender, ptype, info(8)

int iprobex(int type, int sender, int ptype, int* info);

type Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

sender Specifies the source (sending node) of the message you are waiting
for. The following values are valid:

ptype

info

• If sender is a non-negative integer then the message must have
been sent by this node.

• If sender is -1 then the message may have been sent by any
node

• If sender is negative and not -1 then an exception is generated.

Specifies the process type of the sender. Values other than 0 or -1 will
cause an exception (only 1 process per node in this implementation).

Returns the values that are normally returned by the additional
infonode () , infocount () , and infotype () functions. The
first element of in f 0 contains the message type. The second
element of info contains the message length. The third element of
info contains the node number of the sender. Note: the info array
is only modified if the iprobexO was successful (and returned 1).

29

2

Description

30

iprobex () is the same as iprobe () but allows selection by source and re
turns additional information that iprobe () does not (and requires additional
use of the info functions to obtain).

Warning - The info functions should not be used after iprobex () as the
relevant data has already been returned to you.

Warning - The info array is only modified if the iprobex () was success
ful (and returned 1).

SlOO2-10MI08.06 meJ<o

irecvO

Synopsis

Synopsis

Arguments

Description

meko Tagged Message Passing

2

Receive a message

INTEGER FUNCTION IRECV(type, buf, len)
INTEGER type
INTEGER buf (*)

INTEGER len

int irecv(int type, void* buf, int len);

buf

len

type

Specifies the buffer where the received message will be stored.

Specifies the length of the message buffer in bytes.

Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type,

• If type is any negative number other than -1 then an exception
is generated.

This function allows the caller to setup message buffers for an incoming mes
sage, but does not force the caller to wait for the message to arrive. irecv ()
returns a message ID immediately it is called. This message ID is used in subse
quent calls to msgwai t () or msgdone () to determine if the message has ac
tually arrived. The message ID is a positive integer greater than O.

Use the similar function crecv () if you want the calling process to block while
it waits for the message to arrive.

31

2

irecvxO

Synopsis

Synopsis

Arguments

32

Receive a message (extended)

INTEGER FUNCTION IRECVX(type, buf, len, sender,
ptype, info)

INTEGER type, len, sender, ptype
INTEGER buf(*)
INTEGER info(8)

int irecvx(int type, void* buf, int len, int sender, int
ptype, int* info);

buf Identifies the buffer where the received message will be stored.

len Specifies the length of the message buffer in bytes.

type Specifies the type of message you are waiting for. The following
values for type have the meanings shown:

sender

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

Specifies the source (sending node) of the message you are waiting
for. The following values are valid:

• If sender is a non-negative integer then the message must have
been sent by this node.

• If sender is -1 then the message may have been sent by any
node

• If sender is negative and not -1 then an exception is generated.

S lOO2-10MI08.06 me/<D

Description

meko Tagged Message Passing

ptype

info

2

Specifies the process type of the sender. Value other than 0 or -1 will
cause an exception (only 1 process per node in this implementation).

Returns the values that are normally returned by the additional
infonode (), infocount (), and infotype () functions. The
first element of info contains the message type. The second
element of info contains the message length. The third element of
info contains the node number of the sender.

This function is the same as irecv () but allows selection by source and returns
additional information that ire cv () does not (and requires additional use of the
info functions to obtain).

Warning - The info functions should not be used after irecvx () as the rel
evant data has already been returned to you.

Warning - The info argument only contains valid results after a successful
msgdone () or msgwai t () on the message id returned by irecvx () .

33

2

isendO

Synopsis

Synopsis

Arguments

Description

34

Send a message

INTEGER FUNCTION ISEND(type, buf, len, node, pid)
INTEGER type
INTEGER buf(*)
INTEGER len, node, pid

int isend(int type, void* buf, int len,
int node, int pid);

type

buf

len

node

pid

Specifies the type of message that is being sent. It is recommended
that you use values in the range 0 to 999,999,999. Unpredictable
results occur if types outside the specified range are used.

Specifies the buffer that contains the message. The data type of the
send and receive buffer should be the same.

Specifies the size of the message in bytes.

Specifies the recipient's node ID. Nodes within a partition are
numbered from O. Use of a node number that is greater than the
highest node in the partition (or is negative) causes an error.

Specifies the recipient's process ID. If a global send (broadcast)
specifies its own ID then the sender does not receive the message. If
an alternative ID is specified the sending node always receives the
message.

This function initiates a message transmission to a process but does not wait for
the transmission to complete before returning to the caller. isend () returns a
message IDthatmay be passed tomsgdone () ormsgwait () todeterminethe
status of the transmission. The message ID is a positive integer greater than O.

You should use the similar function, csend () , if you want the calling process
to block until the message has been sent.

SlOO2-10MI08.06 meJ<D

isendrecvO

Synopsis

Synopsis

Arguments

2

Send a message and setup for reply

INTEGER FUNCTION ISENDRECV(type, sbuf, slen, tonode,
topid, rtype, rbuf, rlen)

INTEGER type, rtype
INTEGER sbuf(*), rbuf(*)
INTEGER slen, tonode, topid, rlen

int isendrecv(int type, void* sbuf, int slen, int
tonode, int topid, int rtype,
void* rbuf, int rlen);

type Specifies the type of message that is being sent. It is recommended
that you use values in the range 0 to 999,999,999. Unpredictable
results occur if types outside the specified range are used.

sbuf Specifies the source buffer that contains the message.

slen Specifies the size of message, in bytes, to be sent from sbuf.

tonode Specifies the ID of the recipient node.

topid Specifies the ID of the recipient process. Negative IDs are reserved
for system programs and should not be used.

rt ype Specifies the types of reply message:

rbuf

rlen

If type is a non-negative integer then a specific message type will
be recognised.

If type is -1 then the next message will be recognised, regardless
of type.

If type is any negative number other than -1 then an exception
message is generated.

Specifies the buffer that will receive the reply message.

Specifies the size, in bytes, of the receive buffer.

Description This function is used to send a message and to simultaneously post a receive for
the reply. When a reply with the specified type (rtype) is received it is stored
in the buffer that is identified by rbuf.

meko Tagged Message Passing 35

2

36

The calling process is not blocked during this transaction. isendrecv () re
turns a message ID that may be passed to rnsgdone () or rnsgwai t () to deter
mine the status of the transfer.

Notes:

• This function is intended for use with remote procedure calls.

• If you want the calling process to block while waiting for the reply, use
csendrecv ().

• Use the info functions to get information about the received message (its size
and the sender ID, for example).

S l002-10MI08.06 me/<a

Ie dO

Synopsis

Synopsis

Description

meJ<o Tagged Message Passing

Set front panel LEDs

INTEGER FUNCTION LED (ipat)
INTEGER ipat

int led(int pattern);

2

Sets the LEDs on the node to the specified pattern. The bits that are used are hard
ware dependent.

The return value is the previous setting of the LEDs, which can be used to restore
the old pattern.

37

2

mclockO

Synopsis

Synopsis

Description

38

Elapsed time.

INTEGER FUNCTION MCLOCK()

int mclock(void);

This function returns the elapsed time, in milliseconds, since the execution of the
initialisation function mpsc _ ini t () .

SlOO2-10MI08.06 mei<a

mpsc _initO Initialisation function

Synopsis SUBROUTINE MPSCINIT ()

Synopsis void mpsc_init (void) ;

Description Initialisation function. Each process must call this function before any other
function in the libmpsc library.

2

me/<J:J Tagged Message Passing 39

2

mpsc_finiO

Synopsis

Synopsis

Description

40

Finalisation function

SUBROUTINE MPSCFINI()

void mpsc_fini(void);

Optional finalisation function.

S lOO2-10Ml08.06 mei<D

msgdoneO

Synopsis

Synopsis

Arguments

Description

meko Tagged Message Passing

Test for completion of non-blocking transaction

INTEGER FUNCTION MSGDONE(id)
INTEGER id

int msgdone(int id);

id The ID that is returned by isend () , irecv () , or irecvx () .

2

Use this function to detennine if an isend () , irecvx () , or irecv () trans
action has completed. msgdone () returns 1 when the isend () buffer is avail
able for reuse (the message has gone) or when the irecv () /irecvx () buffer
contains a message of the appropriate type.

Note that the message ID is cleared after msgdone () has returned a value of 1.
Subsequent uses of that ID are no longer valid.

A value of 0 is returned if the transaction is not complete. You may repeatedly
use msgdone () with the same ID until completion has been signalled.

41

2

msgwaitO

Synopsis

Synopsis

Arguments

Description

42

Wait for completion of non-blocking transaction

INTEGER FUNCTION MSGWAIT(id)
INTEGER id

int msgwait(int id);

id The ID that is returned by isend () , irecv (), irecvx () .

Use this function to wait until an isend () , irecvx () or irecv () transac
tion has completed. The calling process is blocked until the transfer is complete.
When msgwait () returns control to the process, thus signalling completion,
the message ID is cleared and no longer valid.

When the message transfer is complete the i send () buffer is available for reuse
(the message has gone), and the irecv () /irecvx () buffer contains a mes
sage of the appropriate type.

S lOO2-10Ml08.06 meJ<a

myhostO

Synopsis

Synopsis

Description

mei<o Tagged Message Passing

2

Obtain node ID of calling process

INTEGER FUNCTION MYHOST()

int myhost(void);

Returns the node ID for the host process. The return value will be -2 if there is
no host process. (This will ensure that a program that executes code like:

I csend(?,?,?, myhost(), ?);

will abort when there is no host, rather than send a message to a valid node.)

43

2

mynodeO

Synopsis

Synopsis

Description

44

Obtain node ID of the process

INTEGER FUNCTION MYNODE()

int mynode(void);

This function returns the node ID for this process.

SlOO2-10MI08.06 meJ<o

2

mypidO Obtain OS process ID

Synop~s INTEGER FUNCTION MYPID()

Synopsis int mypid (void) ;

Description This function returns the process ID for this process (always 0).

meI<o Tagged Message Passing 45

2

nodedimO

Synopsis

Synopsis

Description

46

Obtain cube dimensions

INTEGER FUNCTION NODEDIM(}

int nodedirn(void};

Returns the dimension of the allocated cube. The dimension of a 64 node cube is
6 because 26 = 64. Use nurnnodes () to return the number of nodes.

Warning - This function will cause an exception if the number of nodes is
not a power of 2.

S lOO2-10Ml08.06 meJ<a

numnodesO

Synopsis

Synopsis

Description

rneI<o Tagged Message Passing

2

Obtain node count for cube

INTEGER FUNCTION NUMNODES()

int numnodes(void);

Returns the number of nodes in the allocated cube. Use nodedim () to obtain
the cube dimension.

In a host program prior to loadO, numnodesO will return:

1. the number of nodes allocated by the all 0 cat e command if an allocation is
in effect.

2. the number of nodes which were allocated by mpsc_getnodesO.

3. the value 0 (no pre-allocation, and no nodes yet loaded).

After loadO (and therefore at all times in the node programs) numnodesO re
turns the number of nodes which were loaded.

47

2

48 SlOO2-10MI08.06 mei<a

Overview

mei<a

Global Reduction Operations 3

Global reduction operations take an item of data from each processor in the ma
chine, combine them according to some function, and return the result to all proc
essors. Execution continues when all processors have called the global operation,
communicated their data, and returned.

49

3

Example - gdsum()

50

Global operations implement a series of communication and calculation actions
more efficiently than the equivalent use of explicit message passing and calcula
tion functions. The global operations are also synchronised so that none may be
gin its calculations until the others are ready.

Figure 3-1 Vectors Distributed Over 7 Processors

vector

o

1

2

3

4

5

~t---t---------t----------------------------------t--------r

Reduction of elements
over processors

gdsum () takes a vector of double precision numbers from each processor, and
returns to each processor a vector of sums. If gdsum () is called with a vector of
4 doubles then the result is also a vector of four doubles, each the sum over the
processors of successive elements. In the example below, the vector v is both the
source and destination operand; the parameter work is not used.

SlOO2-10MI08.06 meJ<o

Function List

The results vector v [] is the same after:

I qdsum(v[lJ. 4. work)

as it is after:

gdsum(v[l] , 1, work)
gdsum(v[2] , 1, work)
gdsum(v[3], 1, work)
gdsum(v[4] , 1, work)

3

The latter is slower because it requires four times the number of system calls and
message transfers. The message length for the first method will be longer, of
course, but the increased transmission time will be insignificant for small vec
tors.

The following functions are defined within the 1 ibmp s c library:

gdhigh ()

gdlow ()

gdprod ()

gdsum()

giand ()

gihigh ()

gilow ()

gior ()

giprod ()

gisum()

gixor ()

gland ()

Global vector double precision Maximum operation.

Global vector double precision Minimum operation.

Global vector double precision Multiply.

Global vector double precision Sum.

Global vector integer bitwise AND.

Global vector integer Maximum operation.

Global vector integer Minimum operation.

Global vector integer bitwise OR.

Global vector integer Multiply.

Global vector integer Sum.

Global vector integer bitwise XOR.

Global vector logical AND.

meI<o Global Reduction Operations 51

3

52

glor ()

glxor ()

gshigh ()

gslow ()

gsprod ()

gssum ()

gsync ()

Global vector logical OR.

Global vector logical XOR.

Global vector real Maximum operation.

Global vector real Minimum operation.

Global vector real Multiply.

Global vector real Sum.

Global synchronisation.

SlOO2-10MI08.06 meJ<a

3

gdhighO, gihighO, gshighO Global Maximum operation

Synopsis SUBROUTINE GDHIGH (x, n, work)
DOUBLE PRECISION x(n)

Synopsis

Arguments

INTEGER n
DOUBLE PRECISION work(n)

SUBROUTINE GIHIGH(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GSHIGH(x, n, work)
REAL x(n)
INTEGER n
REAL work(n)

void gdhigh(double* x, int n, double* work);

void gihigh(int* x, int n, int* work);

void gshigh(float* x, int n, float* work);

x

n

work

The input vector (or scalar). This vector will contain the result when
the function completes.

The number of elements in the input array.

Not used; included for compatibility.

Description These functions calculate the maximum of x across all nodes. The result is re
turned in x to every node.

mei<o Global Reduction Operations 53

3

gdlowO, gilowO, gslowO

Synopsis

Synopsis

Arguments

Description

54

Global Minimum operation

SUBROUTINE GDLOW(x, n, work)
DOUBLE PRECISION x(n)
INTEGER n
DOUBLE PRECISION work(n)

SUBROUTINE GILOW(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GSLOW(x, n, work)
REAL x(n)
INTEGER n
REAL work(n)

void gdlow(double* x, int n, double* work);

void gilow(int* x, int n, int* work);

void gslow(float* x, int n, float* work);

x The input vector (or scalar). This vector will contain the result when
the function completes.

n The number of elements in the input array.

work Not used; included for compatibility.

These functions calculate the minimum of x across all nodes. The result is re
turned in x to every node.

SIOO2-10MI08.06 mei<a

3

gdprodO, giprodO, gsprodO Global multiply operation

Synopsis

Synopsis

Arguments

Description

SUBROUTINE GDPROD(x, n, work)
DOUBLE PRECISION x(n)
INTEGER n
DOUBLE PRECISION work(n)

SUBROUTINE GIPROD(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GSPROD(x, n, work)
REAL x(n)
INTEGER n
REAL work(n)

void gdprod(double* x, int n, double* work);

void giprod(int* x, int n, int* work);

void gsprod(float* x, int n, float* work);

x

n

work

The input vector (or scalar). This vector will contain the result when
the function completes.

The number of elements in the input array.

Not used; included for compatibility.

These functions calculate the product of x across all nodes. The result is returned
in x to every node.

meI<o Global Reduction Operations 55

3

gdsumO, gisumO, gssumO

Synopsis

Synopsis

Arguments

Description

56

Global sum operation

SUBROUTINE GDSUM(x, n, work)
DOUBLE PRECISION x(n)
INTEGER n
DOUBLE PRECISION work(n)

SUBROUTINE GISUM(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GSSUM(x, n, work)
REAL x{n)
INTEGER n
REAL work(n)

void gdsum(double* x, int n, double* work);

void gisum(int* x, int n, int* work);

void gssum(float* x, int n, float* work);

x The input vector (or scalar). This vector will contain the result when
the function completes.

n The number of elements in the input array.

work Not used; included for compatibility.

These functions calculate the sum of x across all nodes. The result is returned in
x to every node.

S lOO2-10Ml08.06 mei<D

giandO, glandO

Synopsis

Synopsis

Arguments

Description

Global AND operation

SUBROUTINE GIAND(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GLAND(x, n, work)
LOGICAL x(n)
INTEGER n
LOGICAL work(n)

void giand(int* x, int n, int* work);

void gland(int* x, int n, int* work);

3

x The input vector (or scalar). This vector will contain the result when
the function completes.

n

work

The number of elements in the input array_

Not used; included for compatibility.

These functions calculate the bitwise (giand ()) or logical (gland ()) AND of
x across all nodes. The result is returned in x to every node.

mei<o Global Reduction Operations 57

3

giorO, glorO

Synopsis

Synopsis

Arguments

Description

58

Global OR operation"

SUBROUTINE GIOR(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GLOR(x, n, work)
LOGICAL x(n)
INTEGER n
LOGICAL work(n)

void gior(int* x, int n, int* work) ;

void glor(int* x, int n, int* work) ;

x The input vector (or scalar). This vector will contain the result when
the function completes.

n The number of elements in the input array.

work Not used; included for compatibility.

These functions calculate the bitwise (gior ()) or logical (glor () OR of x
across all nodes. The result is returned in x to every node.

S lOO2-10Ml08.06 mei<a

gixorO, glxorO

Synopsis

Synopsis

Arguments

Description

Global XOR (exclusive-OR) operation

SUBROUTINE GIXOR(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GLXOR(x, n, work)
LOGICAL x(n)
INTEGER n
LOGICAL work(n)

void gixor(int* x, int n, int*

void glxor(int* x, int n, int*

3

work) ;

work);

x The input vector (or scalar). This vector will contain the result when
the function completes.

n The number of elements in the input array.

work Not used; included for compatibility.

These functions calculate the bitwise (gixor ()) or logical (glxor ()) XOR of
x across all nodes. The result is returned in x to every node.

meko Global Reduction Operations 59

3

gsyncO

Synopsis

Synopsis

Description

60

Global synchronisation

SUBROUTINE GSYNC()

void gsync(void);

This function synchronises node processes. When a process executes gsync ()
it blocks until all other processes have executed it.

S I002-10MI08.06 meJ<a

Restrictions

meJ<a

Host Functions 4

The library provides support for a limited set of host functions, which interface
to the resource management system to load the node processes. The following
functions are only available in the host program.

Host specific functions

mpsc_getnodes () Pre-allocate nodes' processing resource.

killcube () Forcibly tenninate all node processes.

load () Start execution of a set of node processes.

setpid () Set the host pid.

waitall () Wait for all node processes to exit.

In addition the host can use any of the functions used on the node apart from the
collective communication functions.

The host functions provided are restricted to allowing a single node program to
be loaded on all nodes. Only a single pid is pennitted (which must be zero).

Note that getcubeO is not included in this implementation; see the similar
function mpsc_getnodesO.

61

4

mpsc _getnodesO

Synopsis

Synopsis

Arguments

Description

62

Pre-allocate nodes' processing resource

SUBROUTINE MPSC_GETNODES(request,istatus)
CHARACTER *(*) request
INTEGER istatus

int mpsc_getnodes(const char* request);

is tat us returns 1 on success and 0 on failure.

The request argument is a string in which one or more of the following options
are concatenated (note the similarity to the allocate(l) command):

-b number Set the base processor, relative to the start of the partition.

- i Allocate resource immediately; fail if the resource is in
use rather than suspending execution until the resource is
free.

-n number I a Ask for number processors, or all (-na) processors in
the partition.

-p partition The name of the partition.

This function is used by a host process to allocate resource for the node process
es; it is a functional equivalent of allocate(l).

Allocated resource is held by the host process until it terminates and is chargea
ble to that host for the whole period that it is held; it is also unavailable for use
by other user's during the period.

Node processes are spawned onto the allocated resource by the load(3x) func
tion. When resources have been pre-allocated load(3x) does not attempt to re
allocate the resource, but instead spawns the node processes over the whole of
the allocated resource.

The numnodes(3x) function can be used by the host process after calling mp
sc_getnodes (3x) to determine the number of processors that were allocated.

S lOO2-10MI08.06 meJ<a

Example

See Also

meko Host Functions

4

Allocate all the nodes in the parallel partition:

call mpsc_getnodes("-p parallel -na", istatus)
print *, "Allocated WI, numnodes()," from parallel"
call load ("example", -1, 0)

Orin C:

istatus = mpsc_getnodes("-p parallel -na");
printf("Allocated %d from parallel\n", numnodes());
load ("example", -1, 0);

allocate(1), load(3x), numnodes(3x).

63

4

killcubeO

Synopsis

Synopsis

Arguments

Description

64

Forcibly terminate node proceses

SUBROUTINE KILLCUBE(node, pid)
INTEGER node
INTEGER pid

void killcube(const int node, const int pid);

node Specifies the set of nodes to be killed. The only valid value is -1.

pid Specifies the pid of the nodes to be killed. The only valid values are
zero or-l

killcube () sends a SIGKILL.signal to all of the node processes in the pro
gram and awaits their termination.

Notes:

• killcube () can only be used to terminate all nodes simultaneously.

Sl002-10MI08.06 m8<D

loadO

Synopsis

Synopsis

Arguments

Description

See Also

mei<o Host Functions

4

Load an executable image onto the node processors

CALL LOAD(exe,node,pid)
CHARACTER*(*) exe
INTEGER node
INTEGER pid

void load(const char * exe, const int node,
const int pid);

exe Specifies the name of the image file to be loaded. This is searched
for through the directories in the PATH environment variable

node Specifies the set of nodes to be loaded. The only valid value is -1,
meaning all nodes

pid Specifies the pid for the processes to be created. The only valid value
is zero.

load () loads a set of nodes with the given executable and starts them running.
The number of nodes chosen and their placement are determined by examining
the resource management system environment variables at the time that loadO
is executed, or the resources which have already been allocated.

Relevant environment variables are:

RMS PARTITION

RMS NPROCS

Notes:

The name of the partition.

The number of processors to be loaded.

• The choice of nodes to load can be changed by the host program by using the
putenv () call to modify the environment variables consulted by the
resource management system prior to making the call to load.

• A host process can pre-allocate the nodes' resource by calling
mp s c _get node sO. When resources are pre-allocated the subsequent call to
loadO will not attempt to allocate its own resources.

mpsc getnodes(3x), allocate(l).

65

4

setpid()

Synopsis

Synopsis

Arguments

Description

66

Set the pid for the host node

CALL SETPID(pid)
INTEGER pid

void setpid(const int pid);

pid is the process id to be used by the host node. The only valid argument value
is zero.

This function is a no-op - it is provided solely for compatibility with other sys
tems which require it to be present.

SlOO2-10MI08.06 meJ<a

waitallO

Synopsis

Synopsis

Arguments

Description

mei<D Host Functions

Allows the host to await termination of the nodes

CALL WAITALL(node, pid)
INTEGER node
INTEGER pid

void waitall(const int node, const int pid);

node

pid

Specifies the set of nodes to wait for; the only valid value is -1,
meaning all nodes

Specifies the pid for the processes to be waited for. The only valid
values are zero or -1.

4

waitall() allows the host program to suspend itself until all of the node pro
grams loaded by load have finished execution.

67

4

68 SlOO2-10MI08.06 meJ<D

Compilation

mei<D

Example Programs 5

The programs in / opt/MEIKOcs2/ example/mpsc describe aC and Fortran
version of a simple libmpsc application.

The examples have been coded to illustrate both hosted and hostless program
ming models and methods of coding that allows the choice of model to be select
ed at either run-time or compile time. Also illustrated are examples of both
blocking and non-blocking communications, global reduction, and global syn
chronisation.

A makefile is included alongside the example programs. Before compiling or ed
iting the example programs you should copy them into your home directory so
that your work does not conflict with the work of others:

user@cs2 mkdir -/mpsc
user@cs2 cp /opt/MEIKOcs2/example/mpsc/* -/mpsc
user@cs2 cd -/mpsc

To compile the C version of the example type:

user@cs2: make host htaq taq

69

5

To compile the Fortran version type:

user@cs2: make fhost ftaq

Running the Programs

70

Hosted applications are started by executing the host directly from you command
shell, whereas hostless applications require a loader such as prun. This section
shows examples of both methods.

Running Hosted Programs

The host process in a libmpsc application liaises with the CS-2 resource manage
ment system for the node's processing resource. You specify your resource re
quirement by setting one or more of the following environment variables:

Variable Descri ption

RMS PARTITION The name of your preferred partition. If you fail to set -
this variable your node processes are executed on the
default partition specified by your System
Administrator.

RMS NPROCS The number of node processes. If you fail to set this -
variable your node processes are executed on all
nodes in the partition.

RMS BASEPROC Id of the first processor within the partition that will
host the node process; usually the first processor in
the partition (logical id 0) is used, or the first available
processor.

RMS VERBOSE Set level of status reporting. -
RMS MEMORY The minimum memory requirements for each -

process, suffixed by K or M (for kilobytes and
megabytes respectively).

RMS CORESIZE Enable core dumping if this variable is set. -

S lOO2-10Ml08.06 meJ<o

5

To specify, for example, that the host process spawns 4 node processes within the
parallel partition you must set the following two variables before you exe
cute the host process (the following example uses the C-shell):

user@cs2: setenv RMS PARTITION parallel
user@cs2: setenv RMS NPROCS 4

Having specified your resource requirements you start the application by execut
ing the host program from your command shell. The following command line
starts the C version of this example:

I user@cs2: host

If you prefer the Fortran example execute fhost in place of host.

Running Hostless Programs

Hostless applications require a loader program, such as prun(1), to load the
node processes into a partition. You can specify your resource requirements by
setting the environment variables described above, or you can specify them on
prun's command line. The following example uses prun to execute 4 processes
in the parallel partition:

I muser@cs2: prun -n4 -ppara11e1 taq

If you prefer the Fortran example execute ftag in place of tag.

Description of the Hosted Application

mei<o Example Programs

The following sections describe the how the processes are initialised, including
the host's interaction with the resource management system, and how they com
municate.

71

5

72

Process Initialisation

A hosted application initially consists of just one process - the host. This proc
ess begins by calling the initialisation function mpsc_ini to, which is used to
attach the process to the Elan network and to initialise the underlying communi
cation mechanisms (the Widget library TPORTs).

The host process spawns the node processes by calling loadO. In the Fortran
example, where a previous call to mpsc _getnodesO is used to pre-allocate the
resource, the loadO function spawns the node processes onto the allocated re
source - it does not allocate any resource itself. In the case of the C example,
where there is no previous call to mpsc_getnodesO, the loadO function both
allocates resource and spawns the node processes.

Note that the loadO function in this implementation is not passed the number
of node processes that are to be spawned; this is detennined by either spawning
the nodes over all the pre-allocated resource (where allocate(1) or mp
sc_getnodes(3x) have been used) or by the resource management system en
vironment variables.

After spawning the node processes the loadO function suspends execution of
the host until all of the nodes have successfully initialised. Embedded within
both loadO and the nodes' mpsc_initO is a barrier synchronisation that pre
vents the application from continuing until all processes are ready; this barrier
synchronisation is a safeguard to ensure that no communications may take place
before the underlying communication mechanisms are in place.

Process Communications

Two types of communication are used by the node processes; blocking and non
blocking.

The iterative loop within the node processes uses the non-blocking isendOI
irecvO pair to handle communication between the node processes; use of non
blocking communications allow the node process to continue with useful work
(in this case a simple summation) while waiting for the communication to com
plete. Completion of the communication is tested for by calls to msgwai to; this
function will delay iteration of the loop until the communications have complet-

S lOO2-10Ml08.06 meJ<a

5

ed and the send and receive buffers are available for reuse. Note that the message
type arguments are always set to 0; we have no interest in the source or the or
dering of message in this case.

Communication with the host process is handled by blocking communications.
Note that the node processes have been coded to allow their execution without a
host process (in the C example the programming model is selected at compile
time, in the fortran example the decision can be made at runtime - see later).
The communications that are sent to the host are tagged with the sender's node
id, which allows the host to receive the messages ordered by the sender's node id.

Global Operations

The node processes include an example of global reduction. Each process passes
to gisumO a single integer (a vector of 1 element). gisumO synchronises all
the processes (an implicit barrier synchronisation) and then calculates the sum of
the vectors across all nodes. On completion the source vector is overwritten by
the result.

Note that gisumO must be called by all the node processes; the implicit synchro
nisation within this function will suspend the calling process until all the node
processes have also synchronised.

The example also includes an example of global synchronisation - an example
of gsyncO. This is used to synchronise all the node processes and to prevent any
one node process from tenninating before its peers have also completed. You can
use gsyncO to synchronise entry to any critical section of code.

Description of the Hostless Application

meI<o Example Programs

The hostless example uses the same node processes as the hosted application de
scribed above, except that they are loaded into a partition by a loader program,
such as prun, and not by a libmpsc program.

All the node processes begin execution of mp s c _ i ni t 0 at the same time. This
function initialises the process's communication mechanisms and includes an
implicit barrier, which suspends the caller until all other node processes have also
successfully execution their initialisation function.

73

5

74

In the C version of this example the decision to execute the application as a host
less application is made at compile time. Communications with a master process
are removed from the source by preprocessor directives, and substituted by out
put to the console. To compile the program for execution as a hosted application
include the -DHOSTED option on your compiler driver's command line; remove
it for a hostless application. If you study the makefile that is supplied with the
examples you will note that the only difference between the tag and htag tar
gets is the inclusion of this compiler option.

The Fortran example uses a different approach; the model used for this example
is selected at runtime by a call to myhostO. Here the return value from my
hostO is compared with the return value from numnodes(); if the two values
are the same then the node has a host (because the node id of the host will always
be the highest node id in the application). A return value of -2 from myhostO
also signifies that there is no host.

SlOO2-10MI08.06 meJ<o

Message Format

Error Messages 6

The functions in the Tagged Message Passing and Global Reduction library
(libmpsc) are built upon the functions in the Elan Widget library. Errors within
libmpsc are reported via the Widget library exception handler; this writes di
agnostic messages to the standard error device and kills the application.

The fonnat of 1 ibmp s c messages is:

MPSC EXCEPTION @ process : error code (error_text)
error message string

The error message strings are described later in this chapter. The process is the
virtual process number of the process that detected the error; if the exception oc
curs before the process has attached to the network (Le. before mpsc _ ini to is
called) then this is shown as - - - -. The error code (and its textual equivalent the
error text) are one of:

Error Code Error Text
1000 Initialisation error

1001 No more message descriptors

1002 Bad pid

1003 Bad event

meJ<o 75

6

Error Code Error Text

1004 No more dIna descriptors

1005 Bad Node

1006 Invalid argument

1007 Bad tag

1008 Bad ptype (must be zero)

1009 Bad resource request

Widget Library Exceptions

Functions in libmpsc are implemented on functions in the Elan Widget library.
When an exception occurs within a Widget library function this is handled by the
Widget library's own exception handler. The Widget library handler is similar to
that used by libmpsc but produces errors in the fonn:

EW_EXCEPTION @ process : error code (error_text)
error message string

These exceptions are fully described in The Elan Widget Library, Meiko docu
ment number Sl002-10MI04.

Note/or Fortran Programmers

All errors apply to both C and Fortran implementations unless the description
specifies a specific language. Often the error message repeats the parameters that
were passed to the failed call; these will be the parameters that were passed to the
underlying C implementation of the function, and may not be identical to those
passed to the Fortran binding.

Error Messages

In the following list italicised text represents context specific text or values.

76 S 1 002-1 OM 1 08 .06 meJ<D

meI<D Error Messages

6

'mpsc version' incompatible with 'elan version' ('elan version' expected)
Error type is 1000 (Initialisation error). Occurs in mpsc_initO; Elan library
version incompatibility. This library was linked with an out of date version of
libelan.

'mpsc version' incompatible with 'ew version' ('ew version' expected)
Error type is 1000 (Initialisation error). Occurs in mpsc_initC}; Elan Widget li
brary incompatibility. This library was linked with an out of date version of
libew.

Can't allocate count message descriptors
Error type is 1001 (No more message descriptors). Occurs in irecvO,
irecvxO, isendO, and isendrecvO; a call to callocO failed (insuffi
cient memory). A descriptor is required for each pending non-blocking com
munication; tried to allocate a batch of additional descriptors for non-blocking
communications but was unable. Maybe there are too many outstanding com
munications, are you clearing them with either msgdoneO or msgwaitC}?

Can't allocate message port
Error type is 1000 (Initialisation error). Occurs in loadO (in host processes)
and mpsc _ ini to (on node processes); a call to ew _ alloca te01 failed,
maybe because heap or swap space were exhausted.

cprobe (type)
Error type is 1007 (Bad tag). Occurs in cprobeO; the message type (type)
must be greater than -1 in this implementation.

cprobex (type, sender,ptype, info)
Error type is 1007 (Bad tag). Occurs in cprobexO; the message type (type)
must be greater than -1 in this implementation.

cprobex (type, sender, ptype, info)
Error type is 1008 (Bad ptype (must be zero». Occurs in cprobexO; the
process type (ptype) must be either 0 or -1 in this implementation.

crecv (type, buf, len)
Error type is 1007 (Bad tag). Occurs in crecvO; the message type (type)
must be greater than -1.

1. ew _allocateO is a Widget library function.

77

6

78

crecvx (type, buf, len, sender, ptype, info)
Error type is 1007 (Bad tag). Occurs in crecvxO; the message type (type)
must be greater than -1.

crecvx (type, buf, len, sender, ptype, injo)
Error type is 1008 (Bad ptype (must be zero». Occurs in crecvxO; the proc
ess type (ptype) must be 0 or -1 in this implementation.

csend (type, buf, len, node, pid)
Error type is 1002 (Bad PID). Occurs in csendO (with debugging enabled);
the pid argument must be 0 in this implementation.

csend (type, but, len, node, pid)
Error type is 1005 (Bad node). Occurs in csendO; the node argument is out
of range; must be either a node id or -1.

csendrecv (type, sbuj, slen, tonode, topid, rtype, rbuj, rlen)
Error type is 1002 (Bad PID). Occurs in csendrecvO (with debugging en
abled); the pid argument must be 0 in this implementation.

csendrecv (type, sbuj, slen, tonode, topid, rtype, rbuf, rlen)
Error type is 1005 (Bad node). Occurs in csendrecvO; the node argument
(tonode) is out of range - must be a positive integer node id.

csendrecv (type, sbuj, slen, tonode, topid, rtype, rbut, rlen)
Error type is 1007 (Bad tag). Occurs in csendrecv(); the reply message type
(rtype) must be greater than -1.

Hosted MPSC initialised with count procs in host segment
Error type is 1000 (Initialisation error). Occurs in loadO; a hosted MPSC ap
plication has been created but there is not 1 process in the host segment. This
indicates an internal error that should be reported to Meiko.

Hosted MPSC initialised with count segments
Error type is 1000 (Initialisation error). Occurs in loadO; a hosted MPSC ap
plication has been created but not within 2 segments. The host process should
be running in a different segment to the node processes. This indicates an in
ternal error that should be reported to Meiko.

S 1(>02-1 OM 108.06 meJ<a

mei<o Error Messages

6

iprobe (type)
Error type is 1007 (Bad tag). Occurs in iprobeO; the message type (type)
must be greater than -1.

iprobex (type, sender, ptype, info)
Error type is 1007 (Bad tag). Occurs in iprobexO; the message type (type)
must be greater than -1.

iprobex (type, sender, ptype, info)
Error type is 1008 (Bad ptype (must be zero)). Occurs in iprobexO; the
process type (ptype) must be either 0 or -1 in this implementation.

irecv (type, buf, len)
Error type is 1007 (Bad tag). Occurs in irecvO; the message type (type)
must be greater than -1.

irecvx (type, buf, len, sender, ptype, info)
Error type is 1007 (Bad tag). Occurs in irecvxO; the message type (type)
must be greater than -1.

irecvx (type, buf, len, sender, ptype, info)
Error type is 1008 (Bad ptype (must be zero)). Occurs in irecvxO; the proc
ess type (ptype) must be 0 or -1 in this implementation.

isend (type, buf, len, node, pid)
Error type is 1002 (Bad PID). Occurs in isendO (with debugging enabled);
the pid argument must be 0 in this implementation.

isend (type, but, len, node, pid)
Error type is 1005 (Bad node). Occurs in isendO; the node argument is out
of range.

isendrecv (type, sbut, slen, tonode, topid, rtype, rbuf, rlen)
Error type is 1002 (Bad PID). Occurs in isendrecvO (with debugging en
abled); the pid argument must be 0 in this implementation.

isendrecv (type, sbuf, slen, tonode, topid, rtype, rbuf, rlen)
Error type is 1005 (Bad node). Occurs in isendrecvO; the node argument
(to node) is out of range - must be a positive integer node id.

79

6

80

isendrecv (type, sbu/, sien, tonode, topid, rtype, rbut, rlen)
Error type is 1007 (Bad tag). Occurs in isendrecvO; the reply message type
(rtype) must be greater than -1.

kill cube (node, pit!) node must be -1
Error type is 1005 (Bad node). Occurs in killcubeO; the node argument
must be -1 in this implementation.

kill cube (node, pit!) only valid on host
Error type is 1005 (Bad node). Occurs in killcubeO; a node process called
killcubeO (only host processes may call this function).

kill cube (node, pit!) pid must be 0
Error type is 1002 (Bad PID). Occurs in killcubeO; the pid argument must
be set to 0 in this implementation.

load exe name too long
Error type is 1006 (Invalid argument). Occurs in fortran binding for loadO;
an internal limit of 256 exists for the length of the executable's name.

load: no elan capability
Error type is 1006 (Invalid argument). Occurs in loadO; a call to the Elan
Widget library function ew _getenvCapO failed which may happen because
of insufficient memory.

load ("prog", node, pit!) node must be -1
Error type is 1005 (Bad node). Occurs in loadO; the node argument must be
-1 in this implementation.

load ("prog", node, pit!) pid must be 0
Error type is 1002 (Bad PID). Occurs in loadO; the pid argument must be set
to 0 in this implementation.

mpsc _check Version(self)
Error type is 1000 (Initialisation error). Occurs in mpsc ini to; internal in
compatibility of library source files.

mpsc _getnodes argument string too long
Error type is 1009 (Bad resource request). Occurs in mpsc_getnodesO;
there is an internal limit of 256 characters on the resource request string.

S lOO2-10Ml08.06 meJ<a

meI<D Error Messages

6

mpsc _getnodes("resource")
Error type is 1009 (Bad resource request). Occurs inrnpsc_getnodesO; the
argument string is not a valid resource request.

nodedimO: invalid number of nodes count
Error type is 1006 (Invalid argument). Occurs in nodedimO; the number of
node processes is not a power of 2.

setpid (pid) pid must be 0
Error type is 1002 (Bad PID). Occurs in setpid(); the specified pid was not
O. (This function is provided for compatibility only and perfonns no useful
function).

waitall(node, pit!) node must be ·1
Error type is 1005 (Bad node). Occurs in wai tall(); the node argument must
be -1 in this implementation.

waitall (node, pit!) only valid on host
Error type is 1006 (Invalid argument). Occurs in wai tallO; a node process
called waitall(); only host processes may call this function.

waitall (node, pit!) pid must be 0 or ·1
Error type is 1002 (Bad PID). Occurs in wai tallO; the pid argument may
only be set to 0 or -1 in this implementation.

81

6

82 S lOO2-10Ml08.06 mei<a

mei<D

Message Types A

Message types in the range 0 to 999,999,999 are assigned to a message at
transmission time. Message types outside the above ranges are reserved for
system use and should be avoided.

Functions that receive messages are able to specify the types of message that
are to be received. The type variable is set according to the following conven
tions:

• If the type is a non-negative integer then a specific message type will be
recognised; all other message types will be ignored, unless they are force
types.

• If the type has a value of -1 then any message may be received.

• If the type is any negative number other than -1 then an exception is
generated.

83

A

84 S lOO2-10Ml08.06 meJ<a

Computing
Surface

PVM User's Guide and Reference Manual

•
S 1002-10M 133.0 1 meJ(O

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor
porated.

© copyright 1994 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARe trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft
Preliminary
Release
Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

01454 616171
Fax: 01454618188

Meiko's PVM product is based upon software and documentation that is subject to the following restrictions:

PVM 3.2: Parallel Virtual Machine System 3.2
University of Tennessee, Knoxville TN.

Oak Ridge National Laboratory, Oak Ridge TN.
Emory University, Atlanta GA.

Authors: A. L. Beguelin, J. J. Dongarra, G. A. Geist, W. C. Jiang,
R. J. Manchek, B. K. Moore, and V. S. Sunderam

© 1992 All Rights Reserved

NOTICE

Pennission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted provided that the above copyright notice appear in all copies and that both the copyright

notice and this permission notice appear in supporting documentation.

Neither the Institutions (Emory University, Oak Ridge National Laboratory, and University of Tennessee) nor the
Authors make any representations about the suitability of this software for any purpose. This software is provided

"as is" without express or implied warranty.

PVM 3.2 was funded in part by the U.S. Department of Energy, the National Science Foundation and the State of
Tennessee.

Contents

1. Introduction 1

Features of this Implementation . 1
Programming Model. 1
Resource Allocation. 2
Process Communication. 3
Supported Functions. 4

Process Control. 4
Information. 4
Signalling . 5
Error Handling . 5
Message Buffers . 5
Packing Message Buffers. 6
Unpacking Message Buffers. 6
Sending and Receiving Data. 6
Synchronisation. 7

Unsupported Functions. 7

Debugging . 8
PVM Console. 9
Performance Considerations. 9

Compilation ofPVM Programs. 10
Executing PVM Applications . 11

ii

2. Example Programs . 13

Master/Slave Example. 13
Compiling the Example. 14
Starting the Example . 14
Detailed Description of the Programs. 15

SPMD Example. 16
Hosted SPMD Application. 17
Hostless SPMD Application. 17
Program Compilation. 19

3. Reference Manual. 21

pvrn_intro 22

pvm_barrier () 25

pvrn_bufinfo () 26

pvrn_config () 28

pvm _ exi t () 30

pvm_freebuf ()

pvm_getrbuf ()

pvrn_getsbuf ()

pvm_initsend ()

pvm kill ()

pvm_rncast ()

pvm _ mkbuf ()

pvm_rnstat ()

pvrn_rnytid ()

pvm nrecv ()

pvrn_pack

pvmyarent ()

pvmyerror ()

pvrnyrobe ()

pvrnystat ()

pvm_recv ()

pvrn_send ()

31

33

34

35

37

38

40

43

44

45
47

51

52

53

55

56

58
pvrn_sendsig () 60

Contents

pvm serror ()•...•... 61

pvm_setrbuf () ...•..............•.••.•. 62

pvm_setsbuf ()

pvm_spawn ()

pvm _tasks ()

pvm_unpack ()

63

64

67

69

iii

iv

Introduction 1

This chapter describes the features of the CS-2 implementation of PVM, and
highlights the differences between standard PVM and Meiko's implementation
(CS2-PVM).

Features of this Implementation

CS2-PVM allows PVM (version 3.2) applications to run on the CS-2 taking ad
vantage of the high perfonnance communication capability of the CS-2. In stand
ard PVM most of the process control and message routing uses daemons, with
one daemon running on each host. In the CS-2 implementation there are no PVM
daemons. The process control functionality of the daemons is provided by the
CS-2 Resource Management System. Message passing takes place directly using
the tagged communication (tport) layer from the Elan Widget Library.

The Meiko resource manager cannot duplicate all of the functionality of the PVM
daemons, so some of the calls that talk to the daemons are not supported in this
implementation. In addition the absence of the daemons means that CS2-PVM
cannot currentl y run in a mixed host environment; your applications are limited
to the processing resource within the CS-2.

Programming Model

Meiko's implementation ofPVM supports both hosted (master/slave) and host
less (SPMD) applications.

1

1

2

Hosted applications consist of two processes; a host and a number of identical
node processes. The PVM application is initiated by executing the host process
which is then responsible for spawning the node processes. All processes, includ
ing the host itself, use PVMs communication functions to cooperate and com
plete the task.

Hostless applications have a number of identical node processes that are started
by using a loader program such as prune These applications are coded as SPMD
applications, in which one instance of the program acts as a master to a number
of other node instances.

SPMD applications are unusual because they can be used as hosted or hostless
programs. An instance of an SPMD application can be executed directly at your
command shell, in which case it will spawn a number of copies of itself and then
run as a host/node application. Alternatively a number of instances of an SPMD
application can be started with a loader program, such as prun, in which case
the spawning activity of the "host" instance is suppressed. This will be covered
in more detail later.

Resource Allocation

All PVM applications must liaise with the CS-2 Resource Manager for process
ing resource. This liaison takes place within either the host process (for hosted
applications) or the loader process (for hostless applications).

In either case the host/loader runs in your login partition as a sub-process of your
command shell. The host/loader process calls upon functions in the resource
management user interface library to liaise with the resource manager for the
nodes' processing resource. In the case of a loader, such as prun, the liaison is
via a direct calls to rms_forkexecvpO in librms. In the case ofaPVM host
process the liaison happens when the host process calls pvm _ spa wnO, which in
tum calls rms_forkexecvpO.

The resource management function uses the user's id and other criteria specified
by your System Administrator to identify a suitable partition for the node proc
esses. If you don't like the default resource you can specify your preferences by
setting environment variables - the most useful variable is RMS_PARTITION
which identifies your preferred partition, but there are others too (see the docu
mentation for rms_forkexecvpO).

SlOO2-10M133.01 meJ<a

1

Process Communication

~ Introduction

PVMs communication functions are built upon the tagged message port
(TPORn functions in the Elan Widget library. PVM applications are 2 segment
CS-2 applications in which the host or loader program and the nodes run in sep
arate segments. The two segments will usually run in separate partitions.

PVM processes have two numbering schemes associated with each process: there
are the task-ids which are visible within the PVM application, and there are in
ternal (virtual process) numbers that are used by the low level communication
routines. You will need to understand the mapping from PVM tid to Elan virtual
process numbers if you wish to include direct calls to the Elan Widget library
within your PVM application.

For the 6 processes in an example hosted PVM application the virtual process
numbers are assigned as shown, with the node processes numbered from 0:

Nodes Host

,::i::t
Segment 0 Segment 1

The PVM tids for the same example are allocated in a different order, with the
host process numbered 0 and the nodes numbered from 1:

Nodes Host

~I:r.
Segment 0 Segment 1

For a 6 process hostless applications the virtual process numbers and the tids are
allocated in the same order as follows:

SPMD-m SPMD-s prun

O·~··· :~.
::~: :."'.

Segment 0 Segment 1

3

1

4

In general the allocation of each segment's processes to processors in a partition
mirrors the allocation of the virtual process numbers; processes with low virtual
process numbers are usually allocated to processors with lower Elan id's than
those processes with high virtual process numbers.

Supported Functions

The following functions are defined in this library:

Process Control

The following functions are used to start and stop PVM processes.

pvm_mytid

pvm_exit

pvm_spawn

Information

Process initialisation.

Process leaving PVM.

Start new PVM processes.

These functions provide information about processes and the host environment.

pvmyarent Returns the tid of the process that spawned this process.

pvm y s tat Returns the status of the specified process.

pvm _ msta t Returns the status of a CS-2 partition.

pvm _ conf ig Returns information about the current machine
configuration.

Returns information about the tasks running on the CS-2.

SlOO2-10M133.01 mei<a

mei<o Introduction

1

Signalling

These functions enable a process to signal other processes in the application.

pvrn_sendsig

pvrn_kill

Error Handling

Send a signal to a PVM process.

Tenninate a PVM process by sending a SIGTERM
signal.

These functions enable error reporting.

pvrnyerror

pvrn_serror

Print message describing the last error returned by a PVM
function.

Sets automatic error message printing on or off.

Message Buffers

These functions allow you to define message buffers.

pvrn_mkbuf

pvm_initsend

pvrn_freebuf

pvrn_getsbuf

pvm_setsbuf

pvrn_setrbuf

Creates a new message buffer.

Clear default send buffer and specify message
encoding.

Disposes of a message buffer.

Returns the message buffer identifier for the active
send buffer.

Returns the message buffer identifier for the active
receive buffer.

Switches the active send buffer.

Switches the active receive buffer and saves the
previous buffer.

5

1

6

Packing Message Buffers

These functions pack messages into message buffers.

pvmJ>k*
pvmJ>ackf

Pack the active message buffer with arrays of prescribed
data type.

Unpacking Message Buffers

These functions unpack messages from message buffers.

pvm_unpk*
pvm_unpackf

Unpack the active message buffer into arrays of
prescribed data type.

Sending and Receiving Data

These functions send and receive messages. Note that some functions block the
calling process until the transaction is complete, whereas some allow the process
to continue immediately (and require the transaction to be tested later).

pvm_nrecv

pvrn_recv

pvrn_probe

pvrn_bufinfo

Immediately sends the data in the active message
buffer. This function is asynchronous; it does not
suspend the calling process until a matching receive
has been posted.

Multicasts the data in the active message buffer to a set
of tasks.

Non-blocking receive; fetches a message into a new
active receive buffer if a message is available, but
returns straight away even if the message has yet to
arrive.

Receive a message; this function will block the caller
until a message is available.

Check if a message has arrived.

Returns information about a message buffer.

SlOO2-10M133.01 meJ<a

1

Synchronisation

Synchronisation ensures that all processes enter critical sections of your code at
the same time. Barriers are included within the definition of the PVM initialisa
tion functions to ensure that the application does not begin until all processes
have successfully initialised their communication mechanisms.

Barrier synchronise all processes; suspend the calling
process until other processes in the application have
also called this function. group/count arguments
are ignored in this implementation.

Unsupported Functions

meI<o Introduction

The following functions are not supported in this implementation. Note that
some functions are not defined (causing errors at program link. time), some return
an error ('not implemented '), and some may be called with no effect.

Most of the unsupported functi~ns related to the group library and the interface
to the pvmd daemons, neither of which are supported in this implementation.

Function Behaviour

pvm_addhosts Returns error (not implemented).

pvm_advise May be called with no effect.

pvm_bcast Not defined.

pvm_delhosts Not defined.

pvm_getinst Not defined.

pvm_gettid Not defined.

pvm_gsize Not defined.

pvm joingroup Not defined.

pvm_lvgroup Not defined.

pvm_notify Returns error (not implemented).

pvm_recvf May be called with no effect.

7

1

Debugging

8

The following function has a different meaning in this implementation:

Function Behaviour

pvm barrier Barrier synchronisation of all processes.

When the host of a hosted PVM application spawns the node processes under the
control of a debugger (by specifying the PvmTaskDebug option to pvm_
spawnO) the node processes are not executed directly but indirectly via a shell
script.

By specifying the debug option pvm spawnO locates a shell script called de
bugger in the directory $HOME/p';m3/lib1 and passes it the name of the
node task (as specified in the call to pvm_spawnO).

For example, consider the following call to pvm _ spa wnO, which identifies a
node program in your current directory:

pvm_spawn{"node", (char**}O,PvmTaskDebug,"",nproc,tids)

This causes nproc instances of $HOME/pvm3/ lib/ debugger to be started
and passed as their first argument the name of the node process. If your preferred
debugger is TotalView, the debugger script might be defined as follows:

I *! /bin/ csh -f
totalview $1

If you prefer DBX (in an X environment) you could use:

#!/bin/csh -£
exec xterm -n $1 -T $1 -Is -sb -sl100 -e dbx $1

1. This is the only occasion when Meiko's implementation of PVM requires a PVM subdirectory
within your home directory.

S lOO2-10M133.01 meJ<a

1

PVMConsole

There is no PVM console in the Meiko implementation. Many of the functions
of the PVM console are available from resource management commands:

Console Meiko Alternatives
Commands

conf r info(l) and pandora(l) can both be used to view the
configuration of your machine (the partitions, their size,
and their availability).

add/delete Partition sizes can be changed by the System
Administrator using rcontrol(lm) or pandora(1).

mstat The status of processors is available from pandora(1).

ps -a Use ps(l) or gps(l).

spawn Use prun(l) to spawn hostless applications, or execute
the host of a hosted PVM application.

kill/halt Use gkill(l) to tenninate processes.

Performance Considerations

meI<o Introduction

The host process (in a hosted PVM application) will nonnally execute in your
login partition under the control of your command shell. In general the proces
sors in the login partitions are heavily loaded and running tasks for more than one
user. Applications in which the host process fonns a key role in your application
may therefore suffer significant and unpredictable perfonnance variations. There
are two solutions to this problem: either code the host process so that it does not
take an active part in the overall application (i.e. limit it to a program loader), or
code the application as a SPMD application so that all processes are executed to
gether in a single partition.

The implementation ofpvm_spawnO and pvm_mytidO include a barriersyn
chronisation. After spawning the node tasks, pvm spawnO will suspend the
host process until all the slave processes have executed pvm_mytidO. This im
plicit synchronisation is included to ensure that no process tries to communicate
before the target process has initialised its CS-2 communication environment. To
ensure that the application begins as quickly as possible all the node processes
must include at the beginning of the program a call to pvm_mytidO.

9

1

Compilation of PVM Programs

10

PVM programs must be linked with the low level Elan communications libraries
and the resource management library.

Use the following command line to compile C programs:

user@cs2: cc -0 program -I/opt/MEIKOcs2/include \
-L/opt/MEIKOcs2/lib -R/opt/MEIKOcs2/lib program.c \
-lpvm3 -lrms -lew -lelan -lsocket -lnsl

Use the following command line to compile Fortran programs:

user@cs2: f77 -0 program -I/opt/MEIKOcs2/include \
-L/opt/MEIKOcs2/lib -R/opt/MEIKOcs2/lib \
program.F -lfpvm3 -lpvm3 -~rms -~ew -~elan -lsocket -lns~

Note that the -R option specifies a search path to the run-time linker to locate
dynamic libraries. If you faii to inciude this option you will get the following er
ror:

ld.so.l:program:fatal:librms.so.2: can't open file: errno=2
Killed

To overcome this problem you must either recompile your application or include
in your LD_LIBRARY_PATH environment variable the pathname for the Meiko
library directory.

Notes for User of SunPro Fortran77

When using the SunPro F77 compiler you must specify both the Meiko library
directory and the SunPro library directory after your compiler driver's - R option,
or you can omit the - R option and set the LD _ RUN _PAT H environment variable
before compilation to include just the Meiko library directory.

S lOO2-10MI33.01 meJ<a

1

Header Files

Function prototypes and constants used by the PVM functions are defined in two
header files, pvm3. hand fpvm3. h, which are used by the C and Fortran librar
ies respectively. Both files are in the directory /opt/MEIKOcs2/in
clude/PVM.

You should include the appropriate file in your program by using the preproces
sor's #incl ude directive near the beginning of your program file.

Fortran programmers can use a filename suffix of .F for their program files which
will instruct most compiler drivers to automatically pass your program through
the pre-processor- see the example Fortran programs in /opt/MEIKOc
s2/example/PVM.

Executing PVM Applications

meI<D Introduction

You execute a hosted PVM application by executing the host process directly
from your command shell. The host will liaise with the Resource Manager and
spawn the node processes:

I user@cs2: master

You execute a SPMD application by executing the program from your command
shell. This program will then liaise with the Resource Manager and spawn addi
tional copies of itself:

I user@cs2: spmd

You execute a hostless application using prun or some other loader program.
Note that the number of instances loaded by prun must be compatible with the
number of processes specified to pvm _ spa wnO; the number of processes loaded
by prun must always be 1 larger than the argument to pvm spawnO. The fol
lowing example loads 5 instances of the SPMD application:-

user@cs2: prun -nS -ppara~~e~ node

11

1

12

In all cases you specify your resource requirements with environment variables
(prun will read these environment variables but also allows you to specify your
requirements on the command line, as shown in the previous example). The fol
lowing environment variables may be specified:

Variable Meaning

RMS PARTITION The name of the partition that will host the node
processes.

RMS BASEPROC The id of the first processor in the partition that you
want to use (usually this is the first available processor)

RMS NPROCS The number of processors required in the target
partition.

RMS MEMORY The minimum memory requirement for each processor,
suffixed by K or M (for kilobytes and megabytes
respectively).

RMS STDIOLOG Preserve 10 from each process (don't delete temporary
files) if this variable is set.

RMS VERBOSE I Set level of status reporting.

For example, to specify that all node processes are spawned in the parallel
partition you need to ensure that the RMS_PARTITION environment variable is
set before you execute your PVM application. A C-shell user would set the var
iable as follows:

I user@cs2: setenv RMS_PARTITION para11e1

You can check the availability of your system and identify its partitions with the
rinfo command.

SlOO2-10M133.01 meJ<a

Master/Slave Example

Example Programs 2

A number of example programs are distributed in /opt/MEIKOcs2/exam
ple/PVM. The following text describes how 2 of these programs are compiled
and executed on the CS-2, and explains their interaction with the resource man
agement system and the Elan Widget library.

This example consists of two programs, a master and a slave. The example is
started by executing the master program, which prompts for a number of slave
processes. The slaves are spawned within a CS-2 partition and are passed a data
vector from the master. Each slave returns a result to the master which is dis
played on screen.

Figure 2-1 ~asterlSlave Communications

13

2

14

Compiling the Example

Before compiling or editing the example programs you should copy them into
your home directory so that your work does not conflict with the work of others.

user@cs2 mkdir -/PVM
user@cs2 cp /Opt/MEIKOcs2/example/PVM/* -/PVM
user@cs2 cd -/PVM

Both programs can be compiled using the makefile that is distributed with the ex
ample programs. Type the following command to compile the C version of this
example:

I user@cs2 make master s1ave

The makefile executes the following compiler command lines (which you can
type yourself if you prefer not to use make):

user@cs2 cc -I/opt/MEIKOcs2/include/PVM -0 masterl\
masterl.c -L/opt/MEIKOcs2/lib -R/opt/MEIKOcs2/lib \
-lpvm3 -lr.ms -lew -lelan -lsocket -lnsl

user@cs2 cc -9 -I/opt/MEIKOcs2/include/PVM -0 slavel\
slavel.c -L/opt/MEIKOcs2/lib -R/opt/MEIKOcs2/lib \
-lpvm3 -lr.ms -lew -lelan -lsocket -lnsl

Starting the Example

You specify your resource requirements by setting environment variables. In the
following C-shell example the parallel partition is identified as the target for the
node processes:

user@cs2 setenv RMS_PARTITION parallel

SlOO2-10M133.01 mS<O

2

You execute the example by executing the master program:

user@cs2 masterl
How many slave programs (1-32)?

You can specify that up to 32 slave processes are spawned by the master, but note
that the program will fail if you ask for more processes than can be supported by
your nominated partition. If the partition is too small (or unavailable) you will
get an appropriate error message from the resource management system. Note
also that your program may be queued (and appear to hang) if the partition con
tains resource that is temporarily allocated to other tasks. Use r inf 0 to check
the availability and size of your partitions.

The example should complete soon after it is started and confirm that a result was
received from all the slaves.

Detailed Description of the Programs

mei<D Example Programs

This example defines a simple 2 segment application.

The master process performs the role of a program loader; it includes within it
embedded calls to the resource management system which are used to allocate
resource and execute the slave processes. The master process executes in your
login partition on the processor that is hosting your command shell. The slave
processes execute in some other partition (identified by the RMS_PARTITION
environment variable).

The master process begins by executing pvrn_rnytid() (which for the master
process actually does nothing but return the process tid).

After fetching a process count from the user a number of slave processes are
spawned with pvrn_spawnO. It is here that the master process interfaces with
the resource management system - the request for resource and the execution
of the slave processes is handled within pvrn spawnO by a call to rrns
forkexecvpOl (a function in librms theresource management user lnter
face library). pvrn_spawnO also defines the underlying communication chan
nels (implemented on Elan Widget Library TPORTs) and includes an implicit
barrier that will delay execution of the master until all the slave processes are

15

2

SPMD Example

16

running and ready to communicate. This barrier is a safeguard to ensure that no
inter-process communications may take place before the underlying communica
tion mechanisms (TPORTs) are in place on all processes.

Initialisation of the communication channels within the slave processes is han
dled during the call to pVffi_ffiytidO. This function attaches the slave process
to the Elan network and uses the Widget library functions to initialise the TPORT
communication channels. Only when all the slave processes have executed this
function will they and the master be released from their barrier synchronisation.

The remainder of the example programs demonstrates PVMs message passing
functions. The master builds a packet that is multicast to all the slaves. Each slave
then perfonns some simple calculation, some one-to-one inter-process commu
nications, and returns a result to the master (which is displayed on screen). All
processes execute pVffi_exitO before finishing.

This example is essentially the same as the master/slave example described ear
lier, except in this example the code for both is defined by a single file. Using this
method of coding allows the program to be executed as either a hosted or a host
less application.

1. Any of the environment variables supported by rms_forkexecvpO may be used to specify the
requirements of your parallel application. The most useful variable is RMS_PARTITION. which
identifies your preferred partition. See the documentation for rms_forkexecvpO for the full list of
environment variables.

SlOO2-10M133.01 mei<a

2

Hosted SPMD Application

To run as a hosted application you execute the program directly from your com·
mand shell. (As with the previous master/slave example you may prefer to spec·
ify your resource requirements for the node processes by setting the appropriate
environment variables.)

user@cs2 setenv RMS PARTITION para11e1
user@cs2 spmd
me 3 my tid = xu
me 2 my tid yyy
me 1 my tid = ZZZ

me 0 my tid = 0
token ring done

The program begins with a call to pvm _ myt idO which identifies this process as
the first in the application and causes it to execute the host-specific code. The
host's code includes a call to pvm_spawnO which spawns the node processes,
initialises the host's communication ports, and barrier synchronises until the
node processes are ready (Le. until they have all successfully executed pvm
mytidO). Following the initialisation all processes (host and nodes) execute the
same code and cooperate to complete the task.

Note that when using the hosted model the host process runs in your login parti
tion and the node processes run in some other partition (which you will usually
identify with the RMS _P ARTITION environment variable).

Hostless SPMD Application

meI<o Example Programs

To run as a hostless application you load all instances of the parallel application
by using a loader program, such as prun. When using prun all the processes
are loaded into the same partition, and all begin executing at the same time.

11

2

18

The following example will spawn 4 instances of the SPMD program onto the
parallel partition1:

user@cs2 prun -n4 -pparallel spmd
me 3 my tid = xu
me 2 my tid = YXY
me 1 my tid = zzz
me 0 my tid = 0
token ring done

The process with tid 0 assumes the role ofa master; a call to pvm mytidO iden
tifies the master process and causes it to branch into the master-specific part of
the program. As with the hosted application the master program executes pvm_
spa wnO, but in this case the function's behaviour changes - it does not attempt
to spawn the node processes (which have already been spawned by prun). When
used within a hostless application pvm _ spa wnO initialises the master's commu
nication mechanism, barrier synchronises with the remaining node processes,
and returns to the caller the array of tids for the application.

The node processes begin executing immediately prun completes, however
these processes will stop as soon as they reach the call to pvm mytidO - re
member that for node processes this function initialises the process's communi
cation ports and then barrier synchronises.

When the barrier synchronisation in the master (pvm_spawnO) and nodes
(pvm mytidO) completes all processes resume execution. The master com
pletes its initialisation and then continues by executing the same code as the
nodes. All processes then cooperate to complete the task.

Note that when using the hostless model all processes (host and node) execute in
the same partition, which is usually identified either as an argument to prun or
by setting the RMS_PARTITION environment variable.

1. The SPMD program is assumed to specify 3 node processes to pvm_spawnO.

S lOO2-10M133.01 meJ<o

2

Program Compilation

mei<D Example Programs

The program can be compiled with the supplied makefile (the same compilation
procedure is used for either hosted or hostless methods of execution):

user@cs2 make spmd

19

2

20 SlOO2-10M133.01 meJ<.o

Reference Manual 3

This chapter contains the reference manual pages for all the functions that are de
fined in this library. The manual pages are also available on-line for use with the
man command.

Each function (or function group) is described on a separate page; the pages are
ordered alphabetically.

21

3

pvm intro

Description

Organisation

Hosted vs Hostless

Compiling/running

22

Parallel Virtual Machine System Version 3.2

The CS-2 implementation of PVM makes the high performance communication
capabilities of the CS-2 available to PVM application programs.

• CS2-PVM does not run in a mixed host environment.

• User programs are written in C, C++ or Fortran and access PVM through
library routines (libpvm3.a and libfpvm3.a).

• The Meiko Resource Management System provides process control whereas
the communication routines use the Elan widget tport layer.

• Both hosted (master/slave) and hostless (SPMD) applications are supported in
this release.

The distinguishing features of this release (Meiko's l.3 release) are:

No PVM daemons (pvmd) need to be spawned. The functionality of pvmd is pro
vided by the Resource Management System. The resource manager must be
available before any PVM applications can be run. CS2-PVM currently cannot
run in a mixed host environment.

Both hosted (master/slave) and hostless (SPMD) applications are supported.
Hosted applications are initiated by executing the host directly from your com
mand shell; this then spawns (via pvm _ spawnO) a number of identical node
processes into a CS-2 partition. Hostless applications consist of a number of
identical SPMD programs that are spawned using a program loader such as
prun(1).

PVM applications should be linked with libpvm3.a and libfpvm3.a for C and For
tran programs respectively. Additionally applications need to be linked with the
resource management library (librms.a), the CS-2 communications libraries
(libew.a and libelan.a), and the libsocket.a and libnsl.a libraries. For example:

user@cs2: cc -0 master I/opt/MEIKOcs2/inc~ude \
-L/opt/MEIKOcs2/~ib -R/opt/MEIKOcs2/1ib master.c \
-~p~ -~r.ma -~ew -lelan -lsocket -lnsl

See also the examples in /opt/MEIKOcs2/exarnple/PVM.

S lOO2-10M133.01 meJ«)

Process control

Message passing

PVM console

Debugging

meI<o Reference Manual

3

Process control is provided by the Resource Management System, primarily to
spawn (and terminate) PVM tasks. Typically a master task calls pvrn_spawnO
specifying the (slave) task name and the number of copies to be spawned. For ex
ample:

pvm_spawn(lfslave", (char**)O, 0, Iflf, nproc, tids);

The master then negotiates with the resource manager to spawn the tasks and set
up the CS-2 environment. By default tasks are spawned on the partition identified
by your System Administrator. To spawn tasks on another partition use the envi
ronment variable RMS_PARTITION to specify the partition name. pvm_
spawnO is restricted in that it can only be called once in an application. Note
also that pvm_spawnO tries to synchronise with the slave/node tasks via pvm_
rnytidO; these tasks must therefore call pvm_rnytidO before any otherPVM
calls. Likewise before exiting all tasks must call pvrn _ exi to, which synchro
nises tasks before they exit.

pvm_sendO, pvm_recvO, pVffi_nrecvO, pvrn_rncastO & pvmyrobeO
are all implemented on Elan Widget Library tports.

PVM console is not supported, although the Resource Management System util
ity r inf 0 can provide similar functionality.

The Resource Management Library allows tasks to be spawned under a debug
ger. When debugging the resource manager does not run spawned tasks directly
but does instead executes a shell-script that spawns the task via a debugger. The
following example spawns nproc instances of the script $HOME/pvrn3/ lib/
debugger which can run the task under a debugger:

pvm_spawn(lfslave lf , (char**)O,PvrnTaskDebug,lflf,nproc,tids);

The debugger script can run a task under any available debugger. For instance to
debug this task with TotalView use the following script:

#!/bin/csh -f
totalview $1

23

3

Group library

Other calls not supported

See Also

24

or with DBX (in an X environment) use:

#!/bin/csh -f
exec xterrn -n $1 -T $1 -Is -sb -s1100 -e dbx $1

The PVM group library is not supported, although the pvrn_barrierO call is
provided to allow all tasks to synchronise.

A number of other PVM calls are not supported. These include: pvrn_ de 1-
hostsO, pvrn_haltO, and pvrn_notifyO.

PVM 3.2 User's Guide and Reference Manual

SIOO2-10MI33.01 meJ<a

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

meI<o Reference Manual

Synchronise processes

int info = pvm_barrier{ char *group, int count)

call pvmfbarrier(group, count, info

group Character string group name (ignored by this implementation).

count Integer specifying the number of group members that must call
pvm_barrierO before they are all released (ignored by this
implementation - all processes must call this function).

info Integer status code returned by the routine. Values less than zero
indicate an error.

3

pvrn_barrierO blocks the calling process until all members of the group have
called pvrn_barrier (). This implementation does not support PVMs group
mechanisms; pvrn_barrierO may therefore only be used to synchronise all
the processes in the application. Note that the group and count arguments are
ignored and can be NULL. pvrn_barrierO uses ew_gsyncO from the Elan
Widget library to synchronise tasks.

c:

I info pvrn_barrier(NULL, NULL);

Fortran:

I CALL PVMFBARRIER(0, 0, INFO)

Ifpvrn_barrierO is successful info will be O. If some error occurs then
info will be less than O.

The following error conditions can be returned by pvm_barrierO;

PvrnSysErr Resource management system (machine manager) was not
started or has crashed.

25

3

pvm bufinfoO

Synopsis

Synopsis

Arguments

Description

Example

26

Returns information about a message buffer

int info = pvm_bufinfo(int bufid, int *bytes,
int *msgtag, int *tid)

call pvmfbufinfo(bufid, bytes, msgtag, tid, info

bufid

bytes

Integer specifying a particular message buffer identifier.

Integer returning the length in bytes of the entire message.

msgtag Integer returning the message label. Useful when the message was
received with a wildcard msgtag.

tid Integer returning the source of the message. Useful when the
message was received with a wildcard tid.

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm _ buf inf 00 returns information about the requested message buffer. Typ
ically it is used to detennine facts about the last received message such as its size
or source. pvm_bufinfoO is especially useful when an application is able to
receive any incoming message, and the action taken depends on the source tid
and the msgtag associated with the message that comes in first.

Ifpvm_bufinfoO is successful info will be O. If some error occurs then
info will be less than O.

c:

bufid = pvm_recv(-1, -1);
info = pvm_bufinfo(bufid, &bytes, &type, &source);

Fortran:

CALL PVMFRECV(-1, -1, BUFID)
CALL PVMFBUFINFO(BUFID, BYTES, TYPE, SOURCE, INFO)

S lOO2-10M133.01 meJ<a

Errors

See Also

mei<o Reference Manual

The following error conditions can be returned by pvm_bufinfoO.

PvrnNoSuchBuf

PvmBadPararn

pvrn _ recv(3)

specified buffer does not exist.

invalid argument.

3

2")

3

pvm configO

Synopsis

Synopsis

Arguments

Description

28 pVffi_configO

Returns information about the present virtual machine configuration

int info = pvm_config(int *nprocs, int *narch,
struct host info **hostp)

struct hostinfo {
int hi tid;
char *hi name;
char *hi_arch;
int hi_spe,ed;

} ;

call pvmfconfig(nproc, narch, dtid, name, arch,
speed, info)

nprocs Integer returning the number of processors in the partition.

narch Integer returning the number of different data fonnats being used
(always -1 for the CS-2).

hostp Pointer to an array of structures which contain information about
each host including its name, architecture, and relative speed.

dtid Integer returning pvmd task ID (always -1 for the CS-2).

name Character string returning name of this node.

arch Character string returning name of host architecture; this is "cs2"

speed Integer returning relative speed of this host. Default value is 1000.

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm _ conf igO returns information about a CS-2 partition.

The C function returns information about the entire partition in one call. The For
tran function returns information about one host per call and cycles through all
the hosts; if pvmf conf igO is called nproc times the entire partition will be
represented.

Ifpvm_configO is successful info will beO. If some error occurs then info
will be < O.

SlOO2-10M133.01 meJ<a

Example

See Also

3

This function is useful for detennining the number of processors there are in a
partition.

c:

info = pvrn_config(&nproc, &narch, &hostp);

Fortran:

Do i=l, NPROC
CALL PVMFCONFIG(NPROC, NARCH, DTID(i), HOST(i), ARCH(i),

& SPEED(i),INFO)
Enddo

pvrn _ tasks(3)

meko Reference Manual

3

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

30 pvm_exitO

Tells the resource management system that this process is leaving PVM

int info = pvm_exit(void

call pvmfexit(info)

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm _ exi to tells the resource management system that this process is leaving
PVM. This routine does not kill the process, which can continue to perfonn tasks
just like any other serial process.

In hosted applications pvm _ exi to calls rms _ wai tpidO in the master task to
wait until all slave tasks have exited.

c:

I

/* Program done */
pvm_exit () ;
exit () ;

I

Fortran:

I CALL PVMFEXIT(INFO)
STOP

The following error condition can be returned by pvm _ exi to:

PvmSysErr Resource management error (machine manager unavailable)

rms _ wai tpid(3x)

S lOO2-10M133.01 mei<a

pvm freebuf()

Synopsis

Synopsis

Arguments

Description

Examples

mei<o Reference Manual

Disposes of a message buffer

int info = pvm_freebuf(int bufid

call pvmffreebuf(bufid, info

buf id Integer message buffer identifier.

info Integer status code returned by the routine. Values less than zero
indicate an error.

3

pvm freebufO frees the memory associated with the message buffer identi
fied by bufid. Message buffers are created by pvm_mkbufO, pvm_init
sendO, and pvrn_recvO.lfpvrn_freebufO is successful info will beO.1f
some error occurs then in f 0 will be < O.

pvm_freebufO can be called for a send buffer created by pvrn_mkbufO after
the message has been sent and is no longer needed.

Receive buffers typically do not have to be freed unless they have been saved in
the course of using multiple buffers, but note that Pvm _freebufO can be used
to destroy receive buffers as well. Messages that arrive but are no longer needed
can be destroyed so they will not consume buffer space.

Typically multiple send and receive buffers are not needed and the user can sim
ply use the pvm_initsendO routine to reset the default send buffer.

There are several cases where multiple buffers are useful. One example where
multiple message buffers are needed involves libraries or graphical interfaces
that use PVM and interact with a running PVM application but do not want to
interfere with the application's own communication.

When multiple buffers are used they generally are made and freed for each mes
sage that is packed. In fact, pvrn_initsendO simply does a pvrn_freebufO
followed by a pvm_rnkbufO for the default buffer.

c:

bufid = pvm_rnkbuf(PvmDataDefault);

info = pvm_freebuf(bufid);

pvrn_freebufO 3]

3

Errors

See Also

32

Fortran:

CALL PVMFMKBUF(PVMDEFAULT, BUFID

CALL PVMFFREEBUF(BUFID, INFO)

These error conditions can be returned by pvm_freebufO:

PvmBadParam giving an invalid argument value.

PvmNoSuchBuf giving an invalid bufid value.

pvm_rnkbuf(3), pvrn_initsend(3), pvm_recv(3).

S lOO2-10M133.01 meJ<o

pvm _getrbufO

Synopsis

Synopsis

Arguments

Description

Examples

See Also

meko Reference Manual

Returns the message buffer identifier for the active receive buffer

int bufid = pvrn_getrbuf(void

call pvrnfgetrbuf(bufid)

buf id Integer returning message buffer identifier for the active receive
buffer.

3

pvrn _getrbufO returns the message buffer identifier buf id for the active re
ceive buffer or 0 if there is no current buffer.

c:

I bufid pvrn_getrbuf();

Fortran:

I CALL PVMFGETRBUF(BUFID)

pvrn_getsbuf(3)

pvrn....getrbufO 33

3

Synopsis

Synopsis

Arguments

Description

Examples

See Aiso

34 pvrn-&etsbufO

Returns the message butTer identifier for the active send butTer

int bufid = pvm_getsbuf(void

call pvmfgetsbuf(bufid)

buf id Integer returning message buffer identifier for the active send buffer.

pvm_getsbufO returns the message buffer identifier bufid for the active
send buffer or 0 if there is no current buffer.

c:

I bufid

Fortran:

I CALL PVMFGETSBUF(BUFID)

pvm _getrbuf(3)

SlOO2-10M133.01 mei<a

pvm initsendO

Synopsis

Synopsis

Arguments

Description

mekD Reference Manual

Clear default send buffer and specify message encoding

int bufid = pvm_initsend(int encoding

call pvmfinitsend{ encoding, bufid)

encoding

bufid

Integer specifying the next message's encoding scheme.

Options in Care:

Encoding value MEANING

PvmDataDefault 0 XDR

PvmDataRaw 1 no encoding

PvmDataInPlace 2 data left in place

Option names are shortened in Fortran to:

Encoding value

PVMDEFAULT 0

PVMRAW 1

PVMINPLACE 2

MEANING

XDR

no encoding

data left in place

Integer returned containing the message buffer identifier.
Values less than zero indicate an error.

3

pvm _ ini t sendO clears the send buffer and prepares it for packing a new mes
sage. The encoding scheme used for the packing is set by encoding, which for
CS2-PVM defaults to PvmDataRaw since all CS-2 nodes are homogeneous.

PvmDatalnPlace encoding specifies that data be left in place during packing.
The message buffer only contains the sizes and pointers to the items to be sent.
When pvm _ sendO is called the items are copied directly out of the user's mem
ory. This option decreases the number of times a message is copied at the expense

35

3

Examples

Errors

See Also

36

of requiring the user to not modify the items between the time they are packed
and the time they are sent. The PvrnDataInPlace is not implemented in the
version 3.2.

Ifpvm_initsendO is successful then bufid will contain the message buffer
identifier. If some error occurs then buf id will be < O.

c:

bufid = pvm_initsend(PvmDataDefault);
info = pvm_pkint(array, 10, 1);
msgtag = 3;
info = pvm_send(tid, msgtag);

Fortran:

CALL PVMFINITSEND(PVMRAW, BUFID
CALL PVMFPACK(REAL 4 , DATA, 100, 1, INFO)
CALL PVMFSEND(TID, 3, INFO)

These error conditions can be returned by pvm_initsendO:

PvmBadParam giving an invalid encoding value

P vmN oM em Malloc has failed. There is not enough memory to create the
buffer.

SlOO2-10M133.01 m£i<a

pvm killO

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

mei<o Reference Manual

Terminates a specified PVM process

int info = pvm_kill(int tid

call pvmfkill(tid, info

3

tid Integer task identifier of the PVM process to be killed (not yourselt).

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm_killO sends a terminate (SIGTERM) signal to the PVM process identi
fied by tid. If pvm _ kill 0 is successful in f 0 will be O. If some error occurs
then info will be < O.

pvm killO is not designed to kill the calling process. To kill yourself in C call
pvm_exitO followed by exitO. To kill yourself in Fortran call pvrnfexitO
followed by stop.

C:

I info pvm kill (tid);

Fortran:

I CALL PVMFKILL(TID, INFO)

These error conditions can be returned by pvm_killO:

PvmBadPararn giving an invalid tid value.

PvmSysErr internal error.

pvm _ exi t(3), Meiko Resource Management System document set.

31

3

Synopsis

Synopsis

Arguments

Examples

38

Multicasts the data in the active message buffer to a set of tasks

int info = pvm_rncast(int *tids, int ntask, int rnsgtag

call pvmfrncast(ntask, tids, rnsgtag, info)

ntask Integer specifying the number of tasks to be sent to.

tids Integer array of length ntask containing the task IDs of the tasks
to be sent to.

rnsgtag Integer message tag supplied by the user. rnsgtag should be ~O.
It allows the user's program to distinguish between different kinds
of messages.

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm_rncastO multicasts a message stored in the active send buffer to ntask
tasks specified in the tids array. The message is not sent to the caller even if
listed in the array of tids. The content of the message can be distinguished by
rnsgtag. If pvrn_rncastO is successful info will be O. If some error occurs
then info will be < O.

The receiving processes can call either pvm_recvO or pvm_nrecvO to re
ceive their copy of the multicast. pvm_rncastO is asynchronous and computa
tion on the sending processor resumes as soon as the message is safely on its way
to the receiving processors. This is in contrast to synchronous communication,
during which computation on the sending processor halts until the matching re
ceive is executed by the receiving processor.

On the CS-2 pvm_rncastO uses the high speed interconnect via the tport layer
in the Elan Widget library.

C:

info pvm_initsend(PvrnDataRaw);
info pvrn_pkint(array, la, 1);
rnsgtag = 5;
info = pvm_rncast(tids, ntask, rnsgtag);

S lOO2-10MI33.01 m8<a

Errors

See Also

meko Reference Manual

Fortran:

CALL PVMFINITSEND{ PVMDEFAULT)
CALL PVMFPACK(REAL4, DATA, 100, 1, INFO
CALL PVMFMCAST{ NPROC, TIDS, 5, INFO)

These error conditions can be returned by pvm_mcast():

PvmBadParam

PvmSysErr

PvmNoBuf

giving a msgtag < O.

Resource management system error.

no send buffer.

EW _ TPORT(3x), Meiko Elan Widget library documentation set.

3

39

3

pvm mkbufO

Synopsis

Synopsis

Arguments

Description

40

Creates a new message buffer.

int bufid = pvm_mkbuf(int encoding

call pvmfmkbuf(encoding, bufid)

encoding

bufid

Integer specifying the next message's encoding scheme.

Options in Care:

Encoding value MEANING

PvmDataDefault 0 XDR

PvmDataRaw 1 no encoding

PvmDataInPlace 2 data left in place

Option names are shortened in Fortran to:

Encoding value

PVMDEFAULT 0

PVMRAW 1

PVMINPLACE 2

MEANING

XDR

no encoding

data left in place

Integer returned containing the message buffer identifier.
Values less than zero indicate an error.

pvm mkbufO creates a new message buffer and sets its encoding status to en
coding. If pvm mkbufO is successful then bufid will be the identifier for the
new buffer, which can be used as a send buffer. If some error occurs then buf id
will be < O.

Encoding in CS2-PVM defaults to PvmDataRaw since all CS-2 nodes are ho
mogeneous.

PvmDatalnP lace encoding specifies that data be left in place during packing.
The message buffer only contains the sizes and pointers to the items to be sent.
When pvm _ sen dO is called the items are copied directly out of the user's mem-

S lOO2-10M133.01 meJ<a

Examples

meI<o Reference Manual

3

ory. This option decreases the number of times a message is copied at the expense
of requiring the user to not modify the items between the time they are packed
and the time they are sent. The PvrnDatalnP lace option is not implemented
in this version 3.2.

pvm _mkbufO is required if the user wishes to manage multiple message buffers
and should be used in conjunction with pvm_freebufO. pvm_freebufO
should be called for a send buffer after a message has been sent and is no longer
needed.

Receive buffers are created automatically by the pvm _ re evO and pvrn _
nreevO routines and do not have to be freed unless they have been explicitly
saved with pvm_setrbufO.

Typically multiple send and receive buffers are not needed and the user can sim
pI y use the pvm _in its e n dO routine to reset the default send buffer.

There are several cases where multiple buffers are useful. One example where
multiple message buffers are needed involves libraries or graphical interfaces
that use PVM and interact with a running PVM application but do not want to
interfere with the application's own communication.

When multiple buffers are used they generally are made and freed for each mes
sage that is packed.

c:

bufid = pvm_mkbuf(PvrnDataRaw);
/* send message */
info = pvm_freebuf(bufid);

Fortran:

CALL PVMFMKBUF(PVMDEFAULT, MBUF
* SEND MESSAGE HERE

CALL PVMFFREEBUF(MBUF, INFO)

41

3

Errors

See Also

42

These error conditions can be returned by pvrn_rnkbufO:

PvmBadPararn giving an invalid encoding value.

PvmNoMern Malloc has failed. There is not enough memory to create
the buffer.

pvm _ ini t send(3), pvrn_ freebuf(3)

SlOO2-10M133.01 meJ<a

pvm mstatO

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

mekD Reference Manual

3

Returns the status of a partition on the CS-2

int mstat = pvm_mstat(char *host

call pvmfmstat(host, mstat

host

mstat

Character string containing the host name. This is ignored on the
CS-2 and a NULL value can be passed.

Integer returning machine status:

Value Meaning

PvmOk

PvmHostFail

host is OK

partition is down

pvm _mstatO returns the status mstat of a partition on the CS-2; the partition
is specified by the RMS_PARTITION environment variable or (if the environ
ment variable is not set) it will be the default partition specified by your System
Administrator.

c:

I rnstat pvm_mstat(NULL };

Fortran:

I CALL PVMFMSTAT(0, MSTAT)

These error conditions can be returned by pvm _ms tat 0;

PvmSysErr

PvmHostFail

Internal error.

partition is down.

pvm _ conf ig(3), Meiko Resource Management System document set.

43

3

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

44

Returns the tid of the calling process

int tid = pvm_mytid(void

call pvmfrnytid(tid)

tid Integer returning the task identifier of the calling PVM process. Values
less than zero indicate an error.

pvm_rnytidO enrols this process into PVM on its first call. pvrn_rnytidO re
turns the tid of the calling process and can be called multiple times in an appli
cation.

Any PVM system call (not just pvrn_ rnyt idO) will enrol a task in PVM if the
task is not enrolled before the call.

When executed by node processes pvm rnytidO includes an implicit barrier (a
call to ew baselni to) that will block the calling process until all other proc
esses in the application have also executed the barrier. This means that a node
process is delayed until all the other nodes have initialised, and until the host
process has called pvm spa wnO. For host processes pvm myt idO simply re-- -
turns a tid (the barrier does not occur until the host executes pvm_spawn(»).

c:

I tid

Fortran:

I CALL PVMFMYTID(TID)

This error condition can be returned by pvrn_rnytidO:

P vmS y s Err Resource management system error.

pvmyarent(3), ew_baselnit(3x), ew_gsync(3x), MeikoElan Widgetli
brary documentation set.

SIOO2-10MI33.01 meJ<a

pvm nrecvO

Synopsis

Synopsis

Arguments

Description

meI<o Reference Manual

3

Non-blocking receive

int bufid = pvrn_nrecv(int tid, int rnsgtag

call pvrnfnrecv(tid, rnsgtag, bufid)

tid Integer task identifier of sending process supplied by the user.

rnsgtag Integer message tag supplied by the user. rnsgtag should be ~ o.
buf id Integer returning the value of the new active receive buffer

identifier. Values less than zero indicate an error

pvrn_nrecvO checks to see if a message with label msgtag has arrived from
tid and also clears the current receive buffer, if any. If a matching message has
arrived pvrn _ nrecvO immediately places the message in a new active receive
buffer, and returns the buffer identifier in bufid.

If the requested message has not arrived then pvrn_nrecvO immediatelyre
turns with a 0 in bufid. If some error occurs bufid will be < O.

A -1 in msgtag or tid matches anything. This allows the user the following
options. If tid = -I and msgtag is defined by the user, then pvrn _ nrecvO will
accept a message from any process which has a matching msgtag. If msgtag
= -1 and tid is defined by the user, then pvm nrecvO will accept any message
that is sent from process tid. Iftid=-I andmsgtag=-1, thenpvrn nrecvO
will accept any message from any process.

The PVM model guarantees the following about message order. If task 1 sends
message A to task 2, then task 1 sends message B to task 2, message A will arrive
at task 2 before message B. Moreover, if both messages arrive before task 2 does
a receive, then a wildcard receive will always return message A.

pvrn _nrecvO is non-blocking in the sense that the routine always returns im
mediately either with the message or with the information that the message has
not arrived yet.

pvrn_nrecvO can be called multiple times to check if a given message has ar
rived yet. In addition the blocking receive pvrn _ recvO can be called for the
same message if the application runs out of work it could do before the data ar
rives.

45

3

Example

Errors

See Also

46

Ifpvm_nrecvO returns with the message then the data in the message can be
unpacked into the user's memory using the unpack routines.

On the CS-2, pvm _ nrecvO uses the high-speed interconnect via the tport layer
in the Elan Widget library.

C:

tid = pv.m-parent();
msgtag = 4;
arrived = pv.m_nrecv(tid, msgtag);
if (arrived> 0)

info = pv.m_upkint(tid_array, 10, 1);
else

/* go do other computing */

Fortran:

CALL PVMFNRECV(-1, 4, ARRIVED)
IF (ARRIVED .gt. 0) THEN

CALL PVMFUNPACK(INTEGER4, TIDS, 25, 1, INFO)
CALL PVMFUNPACK(REAL8, MATRIX, 100, 100, INFO)

ELSE
* GO DO USEFUL WORK

ENDIF

These error conditions can be returned by pvm_nrecvO:

PvmBadParam giving an invalid tid value or msgtag.

PvmSysErr Resource management system error.

pvm _ recv(3), pvm _ unpack(3), pvm _ send(3), pvm _ mcast(3), EW_
TPORT(3x), Meiko Elan Widget library documentation set.

S lOO2-10M133.01 meJ<a

pvmJlack

Synopsis

Synopsis

Arguments

mei<D Reference Manual

3

Pack the active message buffer with arrays of prescribed data type

int info
int info
int info
int info

= pvm-packf(const char *fmt, ...)
pvm-pkbyte(char *xp,int nitem,int stride
pvm_pkcplx(float *cp,int nitern,int stride)
pvm-pkdcplx(double *zp, int nitern,

int info

int stride)

pvm-pkdouble(double *dp, int nitern,
int stride)

int info pvm-pkfloat(float *fp,int nitern,int stride)
int info pvm-pkint(int *ip,int nitern,int stride)
int info = pvm-pkuint(unsigned int *ip, int nitern,

int stride)

int info pvm-pkushort(unsigned short *ip,int nitern,
int stride)

int info pvm-pkulong(unsigned long *ip,int nitern,
int stride)

int info = pvm-pklong(long *ip,int nitern,int stride)
int info = pvm-pkshort(short *jp,int nitern,int stride)
int info = pvm-pkstr(char *sp)

call pvmfpack(what, xp, nitern, stride, info)

frnt Printf-like format expression specifying what to pack. (See
discussion).

ni tern The total number of items to be packed (not the number of bytes).

str ide The stride to be used when packing the items. For example, if
stride = 2 in pvrn-pkcplxO, then every other complex number
will be packed.

xp Pointer to the beginning of a block of bytes. Can be any data type, but
must match the corresponding unpack data type.

41

3

Description

48 pvrn_pack

cp Complex array at least ni tern* str ide items long.

zp Double precision complex array at least nitern*stride items.

dp Double precision real array at least nitern*stride items long.

fp Real array at least nitem*stride items long.

ip Integer array at least nitern*stride items long.

jp Integer*2 array at least ni tern* str ide items long.

sp Pointer to a null terminated character string.

wha t Integer specifying the type of data being packed.

what options:

STRING

BYTEl

INTEGER2

INTEGER4

o
1

2

3

REAL4

COMPLEX8

REAL8

4

5

6

COMPLEXl6 7

inf 0 Integer status code returned by the routine. Values less than zero
indicate an error.

Each of the pvm_pk*O routines packs an array of the given data type into the ac
tive send buffer. The arguments for each of the routines are a pointer to the first
item to be packed, ni tern which is the total number of items to pack from this
array, and stride which is the stride to use when packing.

An exception is pvm_pkstrO which by definition packs a NULL terminated
character string and thus does not need nit em or s t ride arguments. The For
tran routine pvmfpack(STRING, ...) expects nitern to be the number of char
acters in the string and s t ride to be 1.

If the packing is successful, inf 0 will be O. If some error occurs then info will
be<O.

A single variable (not an array) can be packed by setting ni tern = 1 and
stride = 1.

SlOO2-10M133.01 meJ<a

mei<o Reference Manual

3

The routine pvmyackfO uses a printf-like fonnat expression to specify what
and how to pack data into the send buffer. All variables are passed as addresses
if count and stride are specified otherwise. variables are assumed to be val
ues. A BNF-like description of the fonnat syntax is:

format : null I init I format fmt
init : null I '%' '+'
fmt : '%' count stride modifiers fchar
f char : 'c ' I'd' I 'f ' I ' x ' I 's'
count: null I [0-9]+ I '*'
stride: null I '.' ([0-9]+ I '*'
modifiers : null I modifiers rnchar
mchar

Fonnats:

'h' I 'l' I 'u'

+
c
d
f

means initsend - must match an int (how) in the param list.
pack/unpack bytes
integers
float

x complex float
s string

Modifiers: h short (int)
1
u

long (int. float. complex float)
unsigned (int)

Messages should be unpacked exactly like they were packed to ensure data in
tegrity. Packing integers and unpacking them as floats will often fail because a
type encoding will have occurred transferring the data between heterogeneous
hosts. Packing 10 integers and 100 floats then trying to unpack only 3 integers
and the 100 floats will also fail.

49

3

Example

Errors

See Also

50

c:

info = pvrn_initsend(PvrnDataDefault);
info pvrn_pkstr("initial data");
info ~ pvrn_pkint(&size, 1, 1);
info = pvrn_pkint(array, size, 1);
info - pvrn_pkdouble(matrix, size*size, 1);
msgtag >= 3 ;
info pvrn_send(tid, rnsgtag);
int count, *iarrYi
double darry[4];
pvmyackf("%+ %d %*d %4lf",PvrnDataRaw,count,count,iarry,darry);

Fortran:

CALL PVMFINITSEND (PVMRAW, INFO)
CALL PVMFPACK(INTEGER4, NSIZE, 1, 1, INFO)
CALL PVMFPACK(STRING, 'row 5 of NXN matrix', 19, 1, INFO)
CALL PVMFPACK(REALa, A(5,1), NSIZE, NSIZE , INFO
CALL PVMFSEND(TID, MSGTAG, INFO)

The following error conditions can be returned by these functions:

PvmNoMern

PvmNoBuf

Malloc has failed. Message buffer size has exceeded the
available memory on this host.

There is no active send buffer to pack into. Try calling pvm_
ini t sendO before packing message

pvm _ unpack(3), pvm _ ini t send(3)

SlOO2-10M133.01 meJ<o

pvm .JlarentO

Synopsis

Synopsis

Arguments

Description

Examples

Errors

rneko Reference Manual

3

Returns the tid of the process that spawned the calling process

int tid = pvm-parent(void

call pvmfparent(tid)

tid Integer returns the task identifier of the parent of the calling process. If
the calling process was not created with pvm _ spawn(), then tid =
PvmNoParent.

The routine pvrnyarent() returns the tid of the process that spawned the
calling process. If the calling process was not created with pvrn _ spawn(), then
tid is set to PvmNoParent.

For hosted PVM applications the host process has the tid set to PvrnNoPar
ent. For hostless applications, the process that assumes the role of the master
has the tid set to PvrnNoParent.

c:

I tid pvrn yarent () ;

Fortran:

I CALL PVMFPARENT(TID)

The following error conditions can be returned by pvm_parentO:

PvrnNoParent The calling process was not created with pVm spawnO.

PvmSysErr Resource management system error.

51

3

pvm yerrorO

Synopsis

Synopsis

Arguments

Description

Examples

52 pvrn--PeITorO

Prints message describing the last error returned by a PVM call

int info = pvm-perror(char *msg

call pvmfperror(msg, info)

msg Character string supplied by the user which will be prepended to the
error message of the last PVM call.

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm_perrorO returns the error message of the last PVM call. The user can use
msg to add additional infonnation to the error message, for example, its location.

C:

if (pvm_send(tid, msgtag)) pvm_perror();

Fortran:

CALL PVMFSEND(TID, MSGTAG)
IF(INFO .LT. 0) CALL PVMFPERROR('Step 6', INFO)

SIOO2-10MI33.01 meJ<a

pvm J)robe()

Synopsis

Synopsis

Arguments

Description

meI<o Reference Manual

Check if message has arrived

int bufid = pvm_probe(int tid, int msgtag

call pvmfprobe(tid, msgtag, bufid)

tid Integer task identifier of sending process supplied by the user.

3

msgtag Integer message tag supplied by the user. msgtag should be ~ O.

bufid Integer returning the value of the new active receive buffer
identifier. Values less than zero indicate an error.

pvm_probeO checks to see if a message with label msgtag has arrived from
tid. If a matching message has arrived pvm yrobeO returns a buffer identifier
in bufid. This bufid can be used in a pvm_bufinfoO call to detennine in
formation about the message such as its source and length.

If the requested message has not arrived, then pvm_probeO returns with a 0 in
buf id. If some error occurs buf id will be < O.

A -1 in msgtag or tid matches anything. This allows the user the following
options. If tid = -1 and msgtag is defined by the user, then pvm yrobeO will
accept a message from any process which has a matching msgtag. Ifmsgtag
= -1 and tid is defined by the user, then pvm _probeO will accept any message.
that is sent from process tid. Iftid= -1 andmsgtag= -1, thenpvmyrobeO
will accept any message from any process.

pvm yrobeO can be called multiple times to check if a given message has ar
rived yet. After the message has arrived, pvm _ recvO must be called before the
message can be unpacked into the user's memory using the unpack routines.

On the CS-2, pvm yrobeO uses the high-speed interconnect via the tport layer
in the Elan Widget library.

53

3

Examples

Errors

See Also

54 pvrn_probeO

c:

tid = pvrn-parent();
msgtag = 4 ;
-arrived = pvrn-probe (tid, msgtag);
if (arrived)

info = pvrn_bufinfo(arrived, &len, &tag, &tid);
else

/* go do other computing */

Fortran:

CALL PVMFPROBE(-1, 4, ARRIVED)
IF (ARRIVED .GT. 0) THEN

CALL PVMFBUFINFO(ARRIVED, LEN, TAG, TID, INFO)
ELSE

* GO DO USEFUL WORK
ENDIF

These error conditions can be returned by pvm _probeO:

PvmBadParam giving an invalid tid value ormsgtag.

PvmSysErr Resource Management System error.

pvm_ nrecv(3), pvm _ recv(3), pvrn_ unpack(3), EW _ TPORT(3x), Meiko
Elan Widget library documentation set.

SlOO2-10M133.01 mei<a

pvmystatO

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

meI<o Reference Manual

Returns the status of the specified PVM process

int status = pvrn-pstat(tid

call pvmfpstat(tid, status

tid Integer task identifier of the PVM process in question.

status Integer returns the status of the PVM process identified by tid.
Status is PvrnOk if the task is running, PvmNoTask if not, and
PvrnBadPararn if the tid is bad.

pvrn _pstatO returns the status of the process identified by tid.

c:

tid = pvm-parent();
status = pvm~stat(tid);

Fortran:

CALL PVMFPARENT(TID
CALL PVMFPSTAT(TID, STATUS

The following error conditions can be returned by pvrn_pstatO:

PvmBadPararn Bad Parameter most likely an invalid tid value.

PvmSysErr Internal error.

PvmNoTask Task not running.

Meiko Resource Management System document set.

3

55

3

pvm recvO

Synopsis

Synopsis

Arguments

Description

56

Receive a message

int bufid = pvm_recv(int tid, int msgtag

call pvmfrecv(tid, msgtag, bufid)

tid Integer task identifier of sending process supplied by the user.

rnsgtag Integer message tag supplied by the user. rnsgtag should be ~o.

bufid Integer returns the value of the new active receive buffer identifier.
Values less than zero indicate an error.

pvrn_ recvO blocks the process until a message with label rnsgtag has arrived
from tid. pvm _ recvO then places the message in a new active receive buffer,
which also clears the current receive buffer.

A -1 in msgtag or tid matches anything. This allows the user the following
options. If tid = -1 and msgtag is defined by the user, then pvm recvO will
accept a message from any process which has a matching msgtag. Ifmsgtag
= -1 and tid is defined by the user, then pvrn_recvO will accept any message
that is sent from process tid. If tid = -1 and rns gt ag = -1. then pvrn_ r e cvO
will accept any message from any process.

The PVM model guarantees the following about message order. If task 1 sends
message A to task 2, then task 1 sends message B to task 2, message A will arrive
at task 2 before message B. Moreover, if both messages arrive before task 2 does
a receive, then a wildcard receive will always return message A.

Ifpvrn_recvO is successful, bufid will be the value of the new active receive
buffer identifier. If some error occurs then bufid will be < O.

pvrn_recvO is blocking which means the routine waits until a message match
ing the user specified tid and rnsgtag values arrives. If the message has al
ready arrived then pvm_recvO returns immediately with the message.

Once pvrn_recvO returns, the data in the message can be unpacked into the us
er's memory using the unpack routines.

On the CS-2, pvrn _ recvO uses the high-speed interconnect via the tport layer
in the Elan Widget library.

SlOO2-10MI33.01 meJ<o

Examples

Errors

See Also

me1<o Reference Manual

c:

tid = pvm-parent();
rnsgtag = 4 ;
bufid = pvm_recv(tid, rnsgtag);
info pvm_upkint(tid_array, 10, 1);
info pvm_upkint(problem_size, 1, 1);
info pvm_upkfloat(input_array, 100, 1);

Fortran:

CALL PVMFRECV(-1, 4, BUFIO)
CALL PVMFUNPACK(INTEGER4, TIOS, 25, 1, INFO)
CALL PVMFUNPACK(REAL8, MATRIX, 100, 100, INFO

These error conditions can be returned by pvm_recvO:

PvmBadPararn giving an invalid tid value, ormsgtag <-1.

PvmSysErr Resource management system error.

pvm_nrecv(3), pvm_unpack(3), pvm_probe(3), pvm_send(3), pvm_
rncast(3), EW _ TPORT(3x).

3

57

3

Synopsis

Synopsis

Arguments

Examples

58

Immediately sends the data in the active message buffer

int info = pvm_send(int tid, int msgtag

call pvmfsend(tid, rnsgtag, info)

tid

msgtag

info

Integer task identifier of destination process.

Integer message tag supplied by the user. rnsgtag should be ~ O.

Integer status code returned by the routine.

pvm _ sendO sends a message stored in the active send buffer to the PVM proc
ess identified by tid. rnsgtag is used to label the content of the message. If
pvm _ s e ndO is successful, in f 0 will be O. If some error occurs then in f 0 will
be<O.

The pvm_send() routine is asynchronous. Computation on the sending proces
sor resumes as soon as the message is safely on its way to the receiving processor.
This is in contrast to synchronous communication, during which computation on
the sending processor halts until the matching receive is executed by the receiv
ing processor.

The PVM model guarantees the following about message order. If task 1 sends
message A to task 2, then task 1 sends message B to task 2, message A will arrive
at task 2 before message B. Moreover, if both messages arrive before task 2 does
a receive, then a wildcard receive will always return message A.

On the CS-2, pvm_send() uses the high-speed interconnect via the tport layer
in the Elan Widget library.

C:

info p~initsend(PvrnDataDefault);
info pvm_pkint(array, 10, 1);
msgtag = 3 ;
info = pvm_send(tid, rnsgtag);

SIOO2-10MI33.01 meJ«)

Errors

See Also

meko Reference Manual

Fortran:

CALL PVMFINITSEND(PVMRAW, INFO)
CALL PVMFPACK(REAL8, DATA, 100, 1, INFO)
CALL PVMFSEND(TID, 3, INFO)

These error conditions can be retumed by pvrn_send():

PvmBadPararn giving an invalid tid or a rnsgtag.

Resource management system error

3

PvmSysErr

PvmNoBuf no active send buffer. Try pvrn _ ini t sendO before send.

pvm_ini t send(3), pvrn _pack(3), pvrn _recv(3), EW _ TPORT(3x), Meiko
Elan Widget library documentation set.

59

3

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

60

Sends a signal to another PVM process

int info = pvm_sendsig(int tid, int signum

call pvmfsendsig(tid, signum, info)

tid Integer task identifier of PVM process to receive the signal.

signum Integer signal number.

info Integer status code returned by the routine.

pvm _ sendsigO sends the signal number signum to the PVM process identi
fied by tid. Ifpvm _ sendsigO is successful, info will be O. If some error oc
curs then info will be < O.

pvm sendsigO should only be used by programmers with Unix signal han
dling experience. Many library functions (and in fact the PVM library functions)
cannot be called in a signal handler context because they do not mask signals or
lock internal data structures.

On the CS-2 signals are sent using the rms_sigsendO routine from the re
source management user interface iibrary.

c:

tid = pvm-parent();
info = pvm_sendsig(tid, SIGKILL);

Fortran:

CALL PVMFBUFINFO(BUFID, BYTES, TYPE, TID, INFO);
CALL PVMFSENDSIG(TID, SIGNUM, INFO)

These error conditions can be returned by pvm_sendsigO:

PvmSysErr Internal error.

PvmBadP ar am giving an invalid tid value.

Meiko Resource Management System document set.

SIOO2-10M133.01 meJ<a

Synopsis

Synopsis

Arguments

Description

Examples

Errors

meko Reference Manual

Sets automatic error message printing on or ofT

int oldset = pvm_serror(int set

call pvmfserror(set, oldset

3

set Integer defining whether detection is to be turned on (1) or off (0).

oldset Integer defining the previous setting of pvrn _ serror().

pvrn serrorO sets automatic error message printing for all subsequent PVM
calls by this process. Any PVM routines that return an error condition will auto
matically print the associated error message. The argument set defines whether
this detection is to be turned on (1) or turned off (0) for subsequent calls. In the
future a value of (2) will cause the program to exit after printing the error mes
sage. pvrn _ serrorO returns the previous value of set in oldset.

c:

I info pvrn_serror(1);

Fortran:

I CALL PVMFSERROR(0, INFO)

This error condition can be returned by pVID_serror():

PvmBadParam giving an invalid set value.

61

3

pvm setrbufO

Synopsis

Synopsis

Arguments

Examples

Errors

See Also

62

Switches the active receive buffer and saves the previous butTer

int oldbuf = pvm_setrbuf(int bufid

call pvmfsetrbuf(bufid, oldbuf)

bufid Integer specifying the message buffer identifier for the new active
receive buffer.

oldbuf Integer returning the message buffer identifier for the previous
active receive buffer.

pvrn_setrbufO switches the active receive buffer to bufid and saves the pre
vious active receive buffer oldbuf. Ifbufid is set to 0 then the present active
receive buffer is saved and no active receive buffer exists.

A successful receive automatically creates a new active receive buffer. If a pre
vious receive has not been unpacked and needs to be saved for later, then the pre
vious buf id can be saved and reset later to the active buffer for unpacking.

The routine is required when managing multiple message buffers. For example
switching back and forth between two buffers. One buffer could be used to send
infonnation to a graphical interface while a second buffer could be used to send
data to other tasks in the application.

c:

I rbufl pvm_setrbuf(rbuf2);

Fortran:

I CALL PVMFSETRBUF(NEWBUF, OLDBUF)

These error conditions can be returned by pvrn _ setrbuf();

PvmBadParam giving an invalid bufid.

PvrnNoSuchBuf switching to a non-existent message buffer.

pvrn_ set sbuf(3)

SlOO2-10M133.01 meJ<a

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

meI<o Reference Manual

3

Switches the active send butTer

int oldbuf = pvrn_setsbuf(int bufid

call pvrnfsetsbuf(bufid, oldbuf)

bufid

oldbuf

Integer message buffer identifier for the new active send buffer.
A value of 0 indicates the default receive buffer.

Integer returning the message buffer identifier for the previous
active send buffer.

pvrn_setsbufO switches the active send buffer to bufid and saves the previ
ous active send buffer oldbuf. Ifbufid is set to 0 then the present active send
buffer is saved and no active send buffer exists.

The routine is required when managing multiple message buffers. For example
switching back and forth between two buffers. One buffer could be used to send
infonnation to a graphical interface while a second buffer could be used send
data to other tasks in the application.

c:

I sbufl pvrn_setsbuf(sbuf2);

Fortran:

I CALL PVMFSETSBUF(NEWBUF, OLDBUF)

These error conditions can be returned by pvm setsbuf () :

PvmBadPararn giving an invalid bufid.

PvrnNoSuchBuf switching to a non-existent message buffer.

pvm _ setrbuf(3)

63

3

Synopsis

Synopsis

Arguments

64

Starts new PVM processes

int numt = pvm_spawn{char *task, char **argv,
int flag, char *where,
int ntask, int *tids)

call pvmfspawn(task, flag, where, ntask, tids, numt)

task

argv

flag

Character string containing the executable file name of the PVM
process to be started. The executable must already reside on the host on
which it is to be started. The default location PVM looks in is the
current directory.

Pointer to an array of arguments to the executable with the end of the
array specified by NULL. If the executable takes no arguments, then the
second argument to pvm_spawnO is NULL.

Integer specifying spawn options. In C, f lag should be the sum of:

Option Value Meaning

PvmTaskHost i where specifies a particular host (Not
applicable to CS-2)

PvmTaskArch 2 where specifies a type of architecture
(Not applicable to CS-2)

PvmTaskDebug 4 Start up processes under debugger

PvmTaskTrace 8 Processes will generate PVM trace data. *

In Fortran, flag should be the sum of:

Option

PVMHOST

PVMARCH

PVMDEBUG

PVMTRACE

Value Meaning

2

4

8

where specifies a particular host (Not
applicable to CS-2)

where specifies a type of architecture
(Not applicable to CS-2)

Start up processes under debugger

Processes will generate PVM trace data. *

S lOO2-10MI33.01 meJ<D

Description

meko Reference Manual

where

ntask

tids

numt

3

Character string specifying where to start the PVM process. On the CS-
2 this parameter is currently ignored.

Integer specifying the number of copies of the executable to start up.

Integer array of length ntask returning the tids of the PVM processes
started by this pvm_spawnO call.

Integer returning the actual number of tasks started. Values less than
zero indicate a system error. A positive value less than ntask indicates
a partial failure. In this case the user should check the t ids array for
the error code(s).

* future extension

pvm_spawnO starts up ntask copies of the executable named task. pvm_
spawnO passes selected variables in the parents environment to children tasks.
If set, the envarPVM_EXPORTis passed. IfPVM_EXPORT contains othervar
iable names (separated by':') then they will be passed too. For example:

setenv DISPLAY myworkstation:O.O
setenv MYSTERYVAR 13
setenv PVM EXPORT DISPLAY:MYSTERYVAR

On return the array t ids contains the PVM task identifiers for each process
started. numt will be the actual number of tasks started. If a system error occurs
then numt will be < O. pvm_spawnO may be called only once.

CS2-PVM negotiates with the Meiko Resource Management System to provide
process control. For hosted applications pvm_spawnO calls rms_forkexecO
to spawn numt copies of the task on a partition. The partition is identified by the
environment variable RMS_PARTITION, or defaults to the partition specified by
the System Administrator. For hostless SPMD applications that are loaded onto
a partition with prun(1) or some other loader, the pvm spawnO executed by
the master process does not attempt to create additional processes, as they will
already be up and running having been loaded by prune

pvm _ spa wnO tries to synchronise with the slave/node tasks via pvm _myt id().
pvm_spawnO (on the master/host process) and pvm_mytidO (running on the
slaves/nodes) both include a barrier synchronisation that prevents any process

65

3

Example

Errors

See Also

66

from continuing until all the others are ready. This ensures that no communcia
tions can be initiated until the underlying communication mechanisms of all
processes are in place.

If PvmTaskDebug is set then the resource management system will start the
task(s) in a debugger. In this case, instead of executing task args it executes
$HOME/pvm3/1ib/debugger task args. The debugger is a shell script
that can run the task under a debugger such as dbx or TotalView. Note that host
less applications cannot spawn a debugger in this way.

c:

numt p~spawn("node", (char**) 0,0, "", numt, tids);
numt pvm_spawn(nnode", (char**)O,PvmTaskDebug,"",numt,tids);

Fortran:

CALL PVMFSPAWN('node',PVMDEFAULT,'0',3,TID(1),NUMT)
FLAG = PVMDEBUG
CALL PVMFSPAWN('node', FLAG, '0', 3, TID(l), NUMT)

These error conditions can be returned by pvm _ spa wnO either in n umt or in
the tids array:

PvmBadP ar am giving an invalid argument value.

P vmN 0 F i 1 e speci tied executable cannot be found. The default location
PVM looks in is the current working directory.

PvmNoMem malloc failed. Not enough memory on host.

PvmSysErr Resource management system error.

PvmOutOfRes out of resources.

Meiko Resource Management System document set, rms_forkexec(3x).

SlOO2-10M133.01 meJ<a

pvm task sO

Synopsis

Synopsis

Arguments

meI<o Reference Manual

3

Returns information about the tasks running on the CS-2

int info = pvm_tasks(int where, int *ntask, struct
taskinfo **taskp)

struct taskinfo
int ti tid;
int tiytid;
int ti host;
int ti_flag;
char *ti_a_out;

} taskp;

call pvmftasks(where, ntask, tid, ptid, dtid, flag,
aout, info)

where Integer specifying what tasks to return infonnation about. The
options are:

o for all the tasks on the virtual machine

pvmd tid for all tasks on a given host (not applicable to CS-2)

tid for a specific task

ntask Integer returning the number of tasks being reported on.

t a s kp Pointer to an array of structures which contain infonnation about
each task including its task 10, parent tid, status flag, and the name
of this task's executable file. The status flag values are: waiting for
a message, and running.

tid Integer returning task 10 of one task

ptid Integer returning parent task 10

dtid Integer returning pvrnd task 10 of host task is on.

f lag Integer returning status of task

aout Character string returning the name of spawned task. Manually
started tasks return blank.

info Integer status code returned by the routine. Values less than zero
indicate an error.

67

3

Description

Examples

Errors

See Also

68 pVffi_tasksO

pvm _ tasksO returns infonnation about tasks presently running on a partition
on the CS-2. The C function returns infonnation about the entire machine in one
call. The Fortran function returns infonnation about one task per call and cycles
through all the tasks. Thus, if where = 0, and pvmftasks is called ntask
times, all tasks will be represented. Ifpvrn_tasksO is successful, info will be
O. If some error occurs then inf 0 will be < O.

c:

I info pvrn_tasks(0, &ntask, &taskp);

Fortran:

Do i=l, NTASK
CALL PVMFTASKS(DTID, NTASK, TID(i), PTID(i), DTID(i),

, FLAG (i) , AOUT(i), INFO)
EndDo

The following error conditions can be returned by pVffi_tasksO:

PvmBadPararn invalid value for where argument.

PvmSysErr Resource management system error.

pvm _ conf ig(3), Meiko Resource Management System document set.

SlOO2-10M133.01 mei<a

Synopsis

Synopsis

Arguments

meI<o Reference Manual

3

Unpack the active message buffer into arrays of prescribed data type

int info = pvm_unpackf(canst char *frnt, 000)

int info pvm_upkbyte(char *xp,int nitem,int stride)
int info pvm_upkcplx(float *cp,int nitem,int stride)
int info pvm_upkdcplx(double *zp,int nitem,int stride)
int info pvm_upkdouble(double *dp,int nitem,int stride)
int info pvm_upkfloat(float *fp,int nitem,int stride)
int info pvm_upkint(int *ip, int nitem, int stride)
int info pvm_upkuint(unsigned int *ip, int nitem,

int info

int info

int info
int info
int info

int stride)

pvm_upkushort(unsigned short *ip, int nitem,
int stride)

pvm_upkulong(unsigned long *ip, int nitem,
int stride)

pvm_upklong(long *ip,int nitem,int stride)
pvm_upkshort(short *jp,int nitem,int stride)
pvm_upkstr(char *sp)

call pvmfunpack(what, xp, nitern, stride, info)

frnt Printf-like format expression specifying what to pack. (See
discussion).

ni tern The total number of items to be packed (not the number of bytes).

stride The stride to be used when packing the items. For example, if
str ide = 2 in pvrn _ upkcplxO, then every other complex number
will be unpacked.

xp Pointer to the beginning of a block of bytes. Can be any data type, but
must match the corresponding pack data type.

cp Complex array at least ni tern* str ide items long.

zp Double precision complex array at least ni tern* str ide items.

dp Double precision real array at least ni tern* str ide items long.

fp Real array at least nitern*stride items long.

69

3

Description

70

ip Integer array at least ni tern*stride items long.

jp Integer*2 array at least nitern*stride items long.

sp Pointer to a null terminated character string.

what Integer specifying the type of data being packed.

what options:

STRING

BYTEl

INTEGER2

INTEGER4

o
1

2

3

REAL4

COMPLEX8

REAL8

4

5

6

COMPLEX16 7

info Integer status code returned by the routine. Values less than zero
indicate an error.

Each of the pvm _ upk*O routines unpacks an array of the given data type from
the active receive buffer. The arguments for each of the routines are a pointer to
the array to be unpacked into, nitern which is the total number of items to un
pack, and stride which is the stride to use when unpacking.

An exception is pvm_upkstrO which by definition unpacks a NULL tenninat
ed character string and thus does not need ni tern or str ide arguments. The
Fortran routine pvmfunpack(STRING, ...) expects ni tern to be the number
of characters in the string and stride to be l.

If the unpacking is successful, in f 0 will be O. If some error occurs then in f 0

will be < O.

A single variable (not an array) can be unpacked by setting ni tern = 1 and
stride = l.

SlOO2-10M133.01 mS<O

meI<o Reference Manual

3

The routine pvrn _ unpackfO uses a printf-like fonnat expression to specify
what and how to unpack data from the receive buffer. All variables are passed as
addresses. A BNF-like description of the fonnat syntax is:

format : null I init I format fmt
init : null I '%' '+'
fmt : '%' count stride modifiers fchar
fchar : 'c' I'd' I 'f' I 'x' I 's'
count: null I [0-9]+ I '*'
stride: null I '.' ([0-9]+ I '*'
modifiers : null I modifiers mchar
mchar : ' h' I 'l' I ' u '

Fonnats: +
c
d
f

means initsend - must match an int (how) in the param list.
pack/unpack bytes
integers
float

x complex float
s string

Modifiers: h short (int)
1
u

long (int, float, complex float)
unsigned (int)

Messages should be unpacked exactly like they were packed to ensure data in
tegrity. Packing integers and unpacking them as floats will often fail because a
type encoding will have occurred transferring the data between heterogeneous
hosts. Packing 10 integers and 100 floats then trying to unpack only 3 integers
and the 100 floats will also fail.

71

3

Example

Errors

See Also

72

c:

info pvm_recv(tid, msgtag);
info pvm_upkstr(string);
info pvm_upkint(&size, 1, 1);
info pvm_upkint(array, size, 1);
info pvm_upkdouble(matrix, size*size, 1);

int count, *iarry;
double darry[4];
pvm_unpackf("%d", &count);
pvm_unpackf("%*d %41f", count, iarry, darry);

Fortran:

CALL PVMFRECV(TID, MSGTAG);
CALL PVMFUNPACK(INTEGER4, NSIZE, 1, 1, INFO)
CALL PVMFUNPACK(STRING, STEPNAME, 8, 1, INFO)
CALL PVMFUNPACK(REAL4, A(5,1), NSIZE, NSIZE , INFO)

The following error conditions maybe produced by these functions:

PvmNoData Reading beyond the end of the receive buffer. Most likely
cause is trying to unpack more items than were originally
packed into the buffer.

PvrnBadMsg The received message can not be decoded. Try setting the
encoding to PvrnDataDefault (see pvrn_ mkbufO).

PvmNoBuf There is no active receive buffer to unpack.

S lOO2-10M133.01 mei<a

Computing
Surface

The Elan Library

SlOO2-10M131.01 mei<G

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor
porated.

© copyright 1994 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft
Preliminary
Release
Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454618188

Contents

1. Elan Library . 1

Compilation. 1
libelan. 2

elan_init (), elan_fini (), _elan_fini () 5

elan_version (), elan_checkVersion () 6

elan_create(), elan_destroy(), elan_nullcap() 7

elan_attach (), elan_detach () 9

elan_addvp (), elan_removevp () 10

elan_addrt () 11
elan_dma() 12

elan_setevent(), elan_waitevevent() 15

elan_waiteventevent(), elan_waitdmaevent() 17

elan_runthread () .. 18

elan_clock () 19

2. Examples . 21

Introduction. 21
U sing with the Elan Widget Library 21

Program Description. 22
Process Initialisation. 22
Elan DMAlEvent Functionality. 22

Finalisation . 23
Compilation and Execution. 23
The Program. 24

Using with the CSN Library. 27
Program Description. 27
Compilation and Execution. 28
The Program. 28

ii

Compilation

mei<D

Elan Library 1

This chapter describes the Elan Library; the lowest level functional interface to
the Elan communications processor and foundation for the Elan Widget library
and other higher level communications libraries.

Applications using the functions in this library must be linked with libelan. a
which is installed in the directory / opt /MEIKOcs2 / lib. In addition Elan li
brary programs reference header files from the standard header file directory (/
usr/include) and /opt/MEIKOcs2/include. A suitable compile com
mand line for Elan programs is:

user@cs2: cc -0 proq -7/opt/MEIKOcs2/include \
-L/opt/MEIKOcs2/1ib proq.c -lelan

1

1

Iibelan

Synopsis

2 libelan

Elan library

#include <elan/elan.h>

libelan provides the lowest level of access to the Elan Communications Proc
essor.

Parallel Programming

Parallel programs executing under the resource management system will usually
use the functions provided by the Elan Widget library or higher level communi
cation libraries (CSN, PVM etc.) to initialise each process. This is because the
processes must execute on the resources provided by the partition managers, and
support for this is not included in libelan.

Parallel programs may however use the low level communication primitives pro
vided by libelan to implement high performance or application specific com
munication protocols. The DMA and event handling routines will therefore be of
principle interest to parallel application programmers.

Capabilities

Access to the Elan is controlled via capabilities. A capability describes a physical
section of the machine, as a range of processors, and an Elan context number
across that range. Capabilities can be created both by the resource management
code, and by user applications. When a program tries to communicate the capa
bility is validated to ensure that it is only communicating with other processes
holding the same capabilities. This provides the protection mechanism between
programs and users.

A capability is defined by the following data structures, defined in the header file
<elan/elanvp.h>:

typedef struct elan_userkey
{

int key_vals[4];
ELAN_US ERKE y ;

SlOO2-10M131.01 meJ<a

meko Elan Library

typedef struct elan_capability
{

ELAN_USERKEY cap_userkey;
int cap_context;
int capyrocess;
int cap_entries;
int cap_lowElanId;
int cap_highElanId;
int cap_routeTable;

ELAN_CAPABILITY;

1

A process can attach to the Elan using a particular capability. Other processes on
potentially different processors can then access this process's memory using the
Elan so long as they also hold the same capability.

The 128-bit random key cap_userkey ensures that capabilities cannot be
forged, cap_entries specifies the number of processes, cap_lowElanId
and cap_highElanId specify the range over which the capability is valid and
cap_routeTable specifies which route table is to be used.

Elan DMA's

The Elan supports a number of different ways of accessing a remote nodes mem
ory, the most common is the DMA processor. The DMA processor is responsible
for performing bulk data transfers; it transfers data from the source to the desti
nation by writing into the remote process's address space. At the completion of
the data transfer events can be set at the source and destination; these are the syn
chronisation mechanism used by the Elan.

Each DMA is specified by a descriptor. The Elan maintains a queue of descrip
tors which have been submitted, and successively takes descriptors of the queue
and generates the network transactions to transfer the data. If the DMA is for a
large amount of data then the Elan will break the transfer into a number of pack
ets and may reschedule to progress other DMA descriptors on the queue.

libelan 3

1

4 tibelan

Events

Events fonn the synchronisation mechanism for the Elan. Nonnally an event will
be set when a data transfer completes. Elan events comprise of two words and
must be aligned on a double word boundary. Events are of two types, simple
events and queued events (queued events are not considered in this document).
Simple events can be in one of three states

State Description

CLEAR The event has not been set, and has nothing waiting on it.
This is the state that events must be initialised to.

SET The event has been set. Should anything try to wait or
de schedule on the event then it will continue without
descheduling and the event will be cleared.

WAITING Something is descheduled on the event. There are a number
of different things which can wait on a event; these are: local!
remote events, threads, DMA's, signals. When the event is
set the waiting item will be started and the event will be
cleared.

The libelan library provides functions for polling for an event to be set, sus
pending the process on an event, delivering a signal to the process when the event
is set, and suspending local events or DMA's on the event. The most common use
of events is as a way of indicating that a DMA has completed.

SIOO2-10MI31.01 m£i<a

1

elan _initO, elan _ finiO, _elan _ finiO Elan library initialisation/tinalisation

Synopsis

Description

Example

rnei<o Elan Library

#include <sys/types.h>
#include <elan/elan.h>
void *elan_init (void);
void elan_fini (void *ctx);
void _elan_fini (void *ctx);

elan _ ini t () provides a handle to access the Elan device driver. This func
tion is not intended for direct use by parallel applications; the initialisation
functions in the Elan Widget library perform this task (see ew _init(3x) and
ew _attach(3x».

elan_initO returns an opaque pointer which can be used in all subsequent
calls to libelan. The function also checks the revision number of the Elan sil
icon and reports the following error if it is incompatible.

elan: elan is incorrect version 91f != 92f

elan_initO will return NULL when there are too many processes currently
using the Elan, or if there is no virtual address space available to map-in the Elan
device.

elan _ f iniO and _elan _ f iniO are used when the process no longer needs
to access the Elan. _ e 1 a n _ fin i 0 is solely used for a child of a process that has
vfork'ed, in that it does not free the opaque structure pointed at by ctx. Both
functions will implicitly detach the process from the Elan and destroy any capa
bilities created on this context.

void *ctxi

if (! (ctx = elan_init())) {
fprintf(stderr, "Failed to initialise Elan context");
exit (1);

5

1

elan version(), elan check Version() libelan version checking

Synopsis

Description

Example

#include <sys/types.h>
#include <elan/elan.h>
#define ELAN VERSION
char *elan_version (void);
int elan_checkVersion (char *version);

ELAN_VERSION is a macro which gives the version string of the libelan
with which the application was compiled.

elan_ ver sion () returns the version string of the libelan with which an
application was linked.

elan_checkVersion () provides a check that the version of libelan
against which an application was compiled is compatible with the version with
which it was linked. It returns a non-zero value if ver sion is a compatible ver
sion of the library.

if (!elan_checkVersion (ELAN_VERSION»
{

fprintf (stderr, "libelan version error\n"):
fprintf (stderr, " Compiled with '%5' \n", ELAN_VERSION);
fprintf (stderr, " Linked with '%s'\n", elan version (»;
exit (1);

6 elan_versionO, elan_checkVersionO S 1002-1 OM 131.0 1 meJ<.o

1

elan_createO, elan_destroy(), elan_nulicapO Create/modify/destroy an Elan capability

Synopsis

Description

Example

mei<D Elan Library

finclude <sys/types.h>
finclude <elan/elan.h>
int elan_create (void *ctx, ELAN_CAPABILITY *cap);
void elan_destroy (void *ctx, ELAN_CAPABILITY *cap);
void elan_nullcap(ELAN_CAPABILITY* cap);

elan_create () creates or modifies a capability in the Elan device driver; any
process which holds the same capability may then subsequently attach to the
Elan or communicate with the attached process via the Elan. This function is not
intended for direct use by parallel applications; the initialisation functions
in the Elan Widget library perform this task (see ew_init(3x) and ew_at
tach(3x».

The capability argument cap is usually an un-initialised instanced of an ELAN_
CAPABILITY, as returned by elan _ nullcap(3x). The following fields will
be initialised by this function if they were previously unassigned:

cap~lowElanId

cap_highElanld
cap_context

node-id
node-id
free-context-number

The fields of a capability can be modified by subsequent calls to elan_cre
ateO if the ctx parameter is the one used to create the capability in the first
place. elan_create(3x) returns a value of 0 on failure.

elan_destroyO destroys capabilities previously created by elan_cre
ateO. Any process trying to attach with that capability will be refused. If a
process is already attached the context will become free when that process de
taches. If the capability argument to elan _ destroyO is NULL then all capa
bilities created using this ctx will be destroyed. This is done implicitly when the
process exits or calls elan _ f iniO.

void *ctx;
ELAN CAPBILITY *cap;

cap = (ELAN CAPABILITY*) malloc(sizeof(ELAN CAPABILITY»;

elan_create(), elan_destroy(), elan_nullcap() 7

1

8

ctx - elan_init();
elan_nullcap(cap);

if (elan_create (ctx, cap) < 0)
fprintf(stderr, "Failed to create capability\n");
exit(l);

S 1002-1 OM 131.0 1 meJ<a

1

elan attachO,' elan _ detachO Attach to, or detach from, the Elan

Synopsis

Description

meI<o Elan Library

#include <sys/types.h>
#include <elan/elan.h>
int elan_attach (void *ctx, ELAN_CAPABILITY *cap);
void elan_detach (void *ctx);

e 1 a nat t a c hO is used to attach the process with c t x into the Elan. This
function is not intended for direct use by parallel applications; the initiali
sation functions in the Elan Widget library perform this task (see ew _in
it(3x) and ew _attach(3x».

elan_attachO will map the whole of the process's address space into the
Elan and allows any process that also holds the capability cap to access the proc
ess's memory through the Elan.

The fields of the capability are checked against the capabilities that have been
previously created with elan_createO. Should the capability not be found or
not match then elan_attachO will fail. On failure a value of -1 is returned
and set errno as follows

EBUSY elan_attachO has already been called by this process, or
another process has already attached with this capability.

EACCES cap->cap _ userkey did not match the one specified by
elan _ crea teO.

EINVAL Thecap->cap_context,cap->cap_lowElanIdor
cap->cap _ highElanId did not match the ones specified
byelan_createO.

ENOMEM cap->cap _ userkey did not match the one specified by
elan_ createO.

elan_detachO is used to detach the process from the Elan group that it had
previously attached to. After calling elan detachO the process will not be
able to communicate with other processes using the Elan. The Elan state will be
preserved, and may be reinstated by calling elan_attachO.

1

elan_addvpO, elan_removevpO Add/remove virtual process segments

Synopsis

Description

10

finclude <sys/types.h>
finclude <elan/elan.h>
int elan_addvp (void *ctx, ELAN_CAPABILITY *cap);
int elan_removevp (void *ctx, int process);

elan_addvpO adds a section of virtual process numbers to the context. This
function is not intended for direct use by parallel applications; the initiali
sation functions in the Elan Widget library perform this task (see ew _in
it(3x) and ew _ attach(3x».

The virtual process numbers that are used to communicate are in the range cap_
process to capyrocess+cap_entries-l, and these map to the physi
cal location of the processes as defined by cap_lowElanId, cap_highEl
anId, and cap_context.

The capability is validated against that held by the destination process when the
first packet is opened. Should it not match then the program will take an invalid
process exception.

If cap yroces s is specified as ELA.J.~_CAP _U~1:TITALISED then a value
will be chosen such that the range does not overlap with previously added seg
ments.

SlOO2-10M131.01 1118<0

elan _ addrt()

Synopsis

Description

meko Elan Library

1

Add a broadcast virtual process

#include <elan/elan.h>
int elan_addrt (void *ctx, int process, int entries);

elan _ addrtO adds a virtual process that can be used to broadcast across the
processes [process, process+entries-l]. This function is not intended
for direct use by parallel applications; the ew _ createBcast Vp(3x) function in
the Elan Widget library performs this task.

Packets opened to this virtual process will use the hardware broadcast supported
by the Elan/Elite network. The range of processes to broadcast over must have
been previously specified by a single call to elan _ addvp(3x) - which for par
allel programs is performed by the ew attach(3x) Elan Widget function.

It is not permissible to broadcast across multiple segments of an application.

The function returns the virtual process number to use for the broadcast. On error
the function returns ELAN_INVALID_PROCESS, and will set errno appropri
ately.

EINVAL The process has not called elan attachO, the range of
processes does not match a previous segment defined by
elan_addvp(3x), or entries is less than O.

ENOMEM There is insufficient space in the Elan route tables to create
this route.

11

1

elan_dmaO

Synopsis

Description

12

Queue a DMA descriptor on the Elan

#include <elan/elan.h>
void elan_dma (void *ctx, ELAN_DMA *dma);

elan dmaO queues a DMA on the Elan.

The DMA is defined by the following descriptor, defined in <elan/ dIna. h>.
Note that descriptors must be 32-bit aligned, and so must be created either by
memalignO, or with the Elan Widget ew_allocateO function. The DMA
descriptor must not be altered until the DMA has completed.

typedef struct elan dma
{

union elan_dma_type dma_u;
unsigned int dma_size;
void *dma_source;
void *dma_dest;
volatile struct elan event *dma_destEvent;
unsigned int dma_destProc;
volatile struct elan event *dma_sourceEvent;

dInayad; unsigned int
ELAN_DMA;

#define dma_type

Field

dmau -

dma size -
dma source

dma dest

dma destEvent

dma_u.type

Description

The transaction type. The DMA TYPEO macro,
defined in <elan/ dma . h>, simplifies the setting
of this field. This is described below.

Size of the transfer.

A pointer to the source data in the sending process's
address space.

A pointer to the receivers data buffer in the
receiver's address space.

The event to set at the receiving processor when the
DMA has completed.

SlOO2-10M131.01 mei<a

meI<o Elan Library

1

Field Description

dma destProc The process number of the receiving process. -
dma sourceEvent - The event to set at the sending process when the

DMA has completed.

dma_pad Unused.

The DMA type can be set with the DMA TYPEO macro. This takes three argu
ments: one of the transaction types defined in <elan/transaction. h>, a
mode of operation, and an integer retry-on-error count. The mode of operation is
either DMA_NORMAL or DMA_SECURE; in secure mode DMA transfers are not
acknowledged all DMA network packets have arrived, whereas nonnally they
are acknowledged as the first arrives. The transaction type is used to describe the
alignment of the data and with the dma _ s i z e field to detennine the size of the
transfer; it is one of:

• TR_TYPE_BYTE - 8 bit data object (C type char).

• TR_TYPE_SHORT - 16 bit data object (C type short).

• TR_TYPE_WORD - 32 bit data object (C type int).

• TR_TYPE_DWORD - 64 bit data object (C type long long).

The Elan will perfonn the data transfer and set the completion events. The de
scriptor should not be changed until either of the completion events have been
set. Note that you can use a DMA of size 0 to set remote events without transfer
ring data.

The virtual process that the DMA will transfer data to is defined by previous calls
to elan_addvp (3x), or elan_addrt(3x) for this context. Typically, for
parallel applications, these will be called indirectly by Elan Widget library func
tions.

13

1

Example

Example

14

Send 1024 bytes to process 1, transferring the data from mybuffer (sender's
address space) to destbuffer (recipient's address space). Set events to awake
both the sender and the recipient when the transfer completes.

/* Build the DMA descriptor */
dmaDesc->dma_type = DMA_TYPE(TR_TYPE_BYTE, DMA_NORMAL, 8);
dmaDesc->dma_size = 1024;
dmaDesc->dma_source = &mybuffer;
dmaDesc->dma_dest = &destbuffer;
dmaDesc->dma destEvent = &destevent;
dmaDesc->dma destProc = 1;
dmaDesc->dma sourceEvent = &myevent;

/* Initiate DMA; the event signifies completion. */
elan_dma(ew_ctx, dmaDesc);
elan_waitevent(ew_ctx, myevent, ELAN_POLL_EVENT);

Set the remote event at address destevent in the address space of process 1:

dmaDesc->dma_type = DMA_TYPE(TR_TYPE_BYTE, DMA_NORMAL, 1);
dmaDesc->dma_size = 0;
dmaDesc->dma_source = NULL;
dmaDesc->dma_dest = NULL;
dmaDesc->dma_destEvent = &destevent;
dmaDesc->dma_destProc = 1;

/* Set the remote event. */
elan_dma(ew_ctx, dmaDesc);

S lOO2-10MI31.01 meJ<a

1

elan seteventO, elan waiteveventO Set or wait for an event

Synopsis

Description

meI<o Elan Library

#include <elan/elan.h>

ELAN_CLEAREVENT(ELAN_EVENT *event);

void elan waitevent (void *ctx, ELAN EVENT *event,
int how);

void elan setevent (void *ctx, ELAN_EVENT *event);

ELAN CLEAREVENTO is a macro which initialises an event. It is nonnally only
required for initialising events which have been dynamically allocated or de
clared on the stack.

elan_seteventO sets an event. If something was waiting on the event then
the Elan will schedule it. If nothing is waiting then the event will be left in the
set state.

elan _ wai teventO waits for the event to be set; when the event is set elan_
waitevent returns after clearing the event. If the event is set before the call to
elan_wai teventO the function returns immediately (after clearing the
event).

The parameter how detennines whether the event is polled until it is ready or
whether the process deschedules and voluntarily relinquishes the processor.
There are two macros defined <elan/ event. h> for use with the how field:
ELAN_POLL_EVENT and ELAN_WAlT_EVENT. If the process deschedules it
will take some time from the event being set until the process returns from the
call to elan_setevent () call; this is because the kernel needs to reschedule
the process. If a communication is expected to complete quickly then the event
is best polled.

elan_seteventO, elan_ waitevevent() I!

1

Example

An environment variable ELAN WAITEVENT MODE allows the elan wait-- - -
event () function to provide infonnation if the event is not set. It is a bit mask
defined as follows:

Bit 0 Flash mode. The front-panel LEDs display a cycling pattern if the
event is not set.

Bit 1 Abort mode. The program prints a message and executes the
abortO system call if the event is not set.

The following call to elan _ wai teventO will deschedule the calling process
until the event myevent is set. The context ew _ ctx is initialised by start-up
functions in the Elan Widget library.

ELAN EVENT myevent;

ELAN_CLEAREVENT(&myevent);
elan_waitevent(ew_ctx, &myevent; EL~~_WAIT_EVENT);

16 elan_seteventO, elan_ waiteveventO SIOO2-10M131.01 meJ<o

1

elan_waiteventeventO, elan_waitdmaeventO Wait a DMA on an event

Synopsis

Description

meI<o Elan Library

#include <elan/elan.h>
void elan waitdrnaevent (void *ctx, ELAN_DMA *dma,

ELAN_EVENT *event);
void elan waiteventevent (void *ctx,

ELAN_EVENT *chained,
ELAN_EVENT *event);

elan _ wai tdrnaeventO suspends a DMA pending the event. When the event
is set then the DMA descriptor pointed at by dma will be queued on the Elan. The
event will then be left clear. If the event was set when elan_wai tdmaeventO
was called then the DMA descriptor is queued immediately and the event is left
cleared.

This mechanism allows you to chain DMA's together and to suspend on a single
event to wait for them all to complete. The DMA's would execute sequentially
and chain through each other, setting a single event when they have all complet
ed.

elan_waiteventeventO allows an event to wait on another event; when the
event is set the event pointed to by chained is set. The event pointed to by
event will be left clear. This function allows you to implement alting for one
of many different communications to complete.

elan_ waiteventeventO, elan_ waitdmaeventO 11

1

elan _ runthreadO

Synopsis

Description

18

Schedule a thread to run on the Elan

#include <elan/elan.h>
void elan runthread (void *ctx, void (*fn) (),

caddr_t stack, int stacksize,
int nargs ...);

elan_runthreadO schedules a thread to run on the Elan's thread processor.
The thread executes the function fn passing it nargs parameters. The thread
executes using the stack specified by stack and stacksize.

The function fn should be compiled using the Elan threads processor compiler,
and it can call any of the inline intrinsic functions to execute the Elan instructions
for scheduling and preparing packets. A description of programming styles for
the Elan threads processor is beyond the scope of this document.

SlOO2-10M131.01 meJ«)

elan _ c1ockO

Synopsis

Description

meI<o Elan Library

1

Read the elan nano-second clock

#include <elan/elan.h>
void elan_clock (void *ctx, ELAN_TIMEVAL *tv);

elan _ clockO reads the nano-second realtime (wallclock) clock on the Elan.
It returns the current time in the structure pointed to by tv. The structure has the
following members

typede£ struct elan timeval
{

lond tv_nsec;
long tv_sec;

ELAN_TIMEVAL;

19

1

20 SIOO2-10M131.01 meJ<a

Introduction

Examples 2

Two examples are included in this chapter showing how the Elan Library's DMA
and event functionality can be embedded within an Elan Widget Library applica
tion and a CSN message passing application.

Using with the Elan Widget Library

meJ<o

In this example the Elan library functions are sandwiched between Elan Widget
Library initialisation and clean-up functions.

The Elan Widget library is a layer above the Elan Library; it provides a set of
higher level parallel programming constructs that augment the basic capabilities
of the Elan/Elite hardware. For many applications the Widget Library's perform
ance and generality will be sufficient. Where gains in performance are vital time
critical components of the Widget Library application may be implemented with
Elan Library functions.

In the following example the Elan Widget library is used to handle the process
initialisation and the creation of the Global Data Objects l . The Elan library's
DMA and Event functionality is used to handle the inter-process communication.

1. Global Objects are data structures that exist at the same virtual address on all processes.

2]

2

22

For a description of the Widget library see The Elan Widget Library, Meiko doc
ument number SlOO2-10MI04.

Program Description

Process Initialisation

The program is initialised with the Widget library function ew _base Ini to.
This function perfonns process initialisation, attachment to the Elan network,
and definition of virtual process addresses. It also defines some useful parallel
programming objects which are packaged within an ew_ base structure; in this
example we will use the segGroup (group of processes in this application) and
alloe (area of global memory) definitions.

The DMA descriptor, data buffer, and the event structure are allocated as global
objects from within the alloc region defined by the Widget library. The use of glo
bal objects is fundamental to the simplicity of this example; by defining the buff
er and event as global objects they will exist at the same virtual address on all
processes, allowing the sending process to address the receiver's data buffer and
event without explicit handshaking.

Having defined the global objects the processes barrier synchronise using the
Widget function ew_gsyneO. This ensures that none of the processes proceed
until the global objects have been defined (and prevents, in this example, the
sender from initiating a transfer into unallocated memory).

Elan DMAIEvent Functionality

The process with virtual process number 0 will be the sending process, so this
initialises the DMA descriptor to describe the transfer. A block of memory will
be transferred from the buffer in the sender's address space to the buffer in the
recipients address space (the buffer is initialised with a pattern so the integrity of
the received data can be verified).

The type of DMA transfer is described by the macro DMA _ TYPEO. In this exam
ple the transfer size of the DMA refers to a number of bytes (TR_TYPE_BYTE),
the op-code is DMA_ NORMAL, and the fail-retry count is set to 8. The op-code is
used to specify when the DMA is flagged as complete; with DMA_ NORMAL the

SlOO2-10M131.01 meJ<a

2

recipient acknowledges receipt as soon as the first DMA network packet is re
ceived (with DMA _SECURE the acknowledge is sent after the last packet is re
ceived).

Both a source and destination event are specified so that both processes are noti
fied when the DMA has completed. The source and destination event structures
exist at the same virtual address space in both processes, so the same address is
specified in both fields of the DMA descriptor.

Process 0 initiates the DMA with elan_dInaO, using the context that is initial
ised with the Widget library. The process is delayed until the event is set - be
cause the DMA will complete quickly it is more efficient to poll the event
(ELAN_POLL_EVENT) than to suspend the process and wait for it (ELAN_
WAIT_EVENT).

Process 1 simply waits until its own event is set signifying completion of the
DMA. Checking the receiver's data buffer will confinn the same data pattern as
the sender.

Finalisation

Both processes synchronise and then free their global objects.

Compilation and Execution

meI<o Examples

To compile the program use the following command line:

user@cs2: cc -0 elandma -I/opt/MEIKOcs2/inc1ude \
-L/opt/MEIKOcs2/lib elandma.c -lew -le1an

You can run the program with prun (in this case in the parallel partition):

user@cs2: prun -n2 -p para1le1 e1andma
Process 0 now transferring 1024 bytes by DMA
Data received and verified by process 1

23

2

The Program

'include <sys/types.h>
'include <elan/elan.h>
'include <ew/ew.h>
'include <stdio.h>

fdefine DMASIZE 1024

static unsigned char pattern[] - {OxOO, OxOO, OxOO, Ox55, Ox55, Ox55,
Oxaa, Oxaa, Oxaa, Oxff, Oxff, Oxff};

main ()
{

int me, nproc, i;
ELAN_DMA *dmaDesc:
ELAN_EVENT* event;
EW_ALLOC* alloc:
unsigned char* buffer;

/*********** Widget library initialisation functions ****************/

24

ew_baselnit ();

nproc = ew_base.segGroup->g_size;
me = ew_base.segGroup->g_self;
alloc = ew_base.alloc;

if(nproc !- 2) {
fprintf(stderr, "error: need 2 processors\n");
exit(1);

if(! (dmaDesc - (ELAN_DMA*) ew_allocate(alloc, EW_ALIGN, sizeof(ELAN_DMA») I I
! (buffer = (unsigned char*) ew_allocate(alloc, EW_ALIGN, DMASIZE» I I
! (event - (ELAN_EVENT*) ew_allocate(alloc, EW_ALIGN, sizeof(ELAN_EVENT»»

fprintf(stderr, "Failed to allocate\n"):
exit(1);

ew_gsync(ew_base.segGroup);

/******************** End of Initialisation **********************/

SIOO2-10M131.01 meJ<a

/************** Elan library DMA/Event functionality ************/

if (!elan_checkVersion(ELAN_VERSION» {
fprintf(stderr, ~error: libelan version error\n");
exit(l):

ELAN_CLEAREVENT(event):

if (me == 0) {
/* Processor 0 is the sender */

/* Initialise sender with data pattern */
for(i-O: i<DMASIZE: i++)

buffer[i] -= pattern[i % sizeof (pattern)];.

/* Build the DMA descriptor */
dmaDesc->dma_type - DMA_TYFE(TR_TYFE BYTE, DMA_NORMAL, 8):
dmaDesc->dma_size - DMASIZE:
dmaDesc->dma_source - buffer:
dmaDesc->dma_dest -= buffer:
dmaDesc->dma_destEvent - event:
dmaDesc->dma_destProc - 1:
dmaDesc->dma_sourceEvent - event:

/* Initiate DMA: the event signifies completion. */
printf(~Process %d now transferring %d bytes by DMA\n", me, DMASIZE):
elan_dma(ew_ctx, dmaDesc):
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

else {
/* Process 1 is the recipient */

/* Wait for DMA to trigger dest. event */
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

/* Check received data pattern */
for(i-O; i<DMASIZE; i++)

if (buffer[i] !- pattern[i%sizeof(pattern)])
fprintf(stderr, ~Received data differs\n");
exit(l);

printf(~Data received and verified by process %d\n", me):

/***************** End of Elan Library Functions ****************/

meI<o Examples

2

25

2

26

/************** Widget library clean-up *******************/

ew_gsync(ew_base.segGroup);

ew_free{{void*) event);
eW_free{{void*) dmaDesc);
eW_free{{void*) buffer);
exit (O) ;

SIOO2-10M131.01 meJ<D

2

Using with the CSN Library

In this example the Elan library's DMA and event functions are sandwiched be
tween CSN initialisation and clean-up functions. The CSN library is an example
of a message passing library - the concepts illustrated here will be equally ap
plicable to other messages passing systems.

The CSN library is a layer above the Elan Widget library (which in tum is built
upon the Elan library). It provides a high level message passing interface to the
Elan/Elite hardware. For perfonnance critical sections of an application it may
be desirable to make direct reference to either Widget library functions or the
Elan library.

In the following example the CSN library is used to handle the process initiali
sation and synchronisation. The addresses of remote data structures are explicitly
communicated to the sending process by using the CSN message passing func
tions. These addresses are then used as the target for a remote DMA transfer.

For a description of the CSN interface see the CSN Communications Library,
Meiko document number Sl002-10MI06.

Program Description

mekD Examples

The processes initialise with c s n in itO and get their virtual process id and the
number of processes in the application from cs getinfoO.

The DMA descriptor, event data structure, and the data buffer are created in each
process's local heap. There are two points to note here. Firstly the DMA descrip
tor must be 32 bit aligned. The second point is that the sender of the DMA trans
fer must explicitly obtain the address of the remote data buffer and event;
compare this with the previous Elan Widget example in which each process allo
cates space with ew_allocateO and can assume that each process's data
structure will exist at the same address 1.

1. A CSN program could use the Elan Widget allocation functions to create global objects ane
thus avoid the need for explicit communication of buffer addresses.

2'

2

28

Both processes in this example open a transport; process 1 uses it's transport to
communicate to process 0 the address of it's event structure and data buffer. Hav
ing obtained the remote addresses process 0 can use the Elan library DMA/event
functionality to transfer a block of initialised data directly into the receiver's ad
dress space - using the same code as the previous Widget library example.

Compilation and Execution

To compile the program use the following command line:

user@cs2: ec -0 esndma -I/opt/MEIKOcs2/ine~ude \
-L/opt/MEIKOcs2/lib csndma.c -lesn -lew -lelan

You can run the program with prun (in this case in the parallel partition):

The Program

user@cs2: prun -n2 -p parallel esndma
Process 0 now transferring 1024 bytes by DMA
Data received and verified by process 1

The use of Elan functions in this program is identical to the Widget library ex
ample described earlier, except the address of the remote data buffer and event is
that obtained by the CSN communications.

SlOO2-10M131.01 me<a

'include <stdio.h>
'include <sys/types.h>
'include <elan/elan.h>
'include <ew/ew.h>
finclude <csn/csn.h>
linclude <csn/names.h>

.define DMASIZE 1024

static unsigned char pattern[] - {OxOO, OxOO, OxOO, Ox55, Ox55, Ox55,
Oxaa, Oxaa, Oxaa, Oxff, Oxff, Oxff};

main ()
{

Transport t:
netid_t next:
char* name;

int me, nproc, i:

ELAN_DMA *dmaDesc:
ELAN_EVENT* event:
unsigned char* buffer:

/* Package pointers to remote data objects in one structure so we */
/* can transfer both in one CSN message passing operation. */
struct {

unsigned char* bufferp:
ELAN EVENT* eventp:

rxbuffers;

/************* CSN library initialisation functions ****************/

cs_getinfo(&nproc, &me, &i); /* i variable not used */

if(nproc != 2) {
fprintf(stderr, "error: need 2 processors\n H

);

exit(l);

2

meI<o Examples 29

2

30

1* Build structures in processes heap space */
1* DMA descriptor MUST BE 32 bit aligned. */
dmaDesc - (ELAN_DMA*) memalign (EW_ALIGN, sizeof (ELAN_DMA)) ;
buffer - (unsigned char*) malloc(DMASIZE);
event - (ELAN_EVENT*) malloc(sizeof(ELAN_EVENT»;

if (csn_open(CSN_NULL_ID, &t) !- CSN_OK) {
fprintf(stderr, "Cannot open transport\n");
exit(-1);

if (me == 0)
/* Process 0 is DMA sender; receiver of addresses from CSN transport */

/* Register my transport */
if(csn_registername(t, "toProcO") !- CSN_OK) {

fprintf(stderr, "Cannot register transport name\n");
exit(-1);

/* Get pointer to remote event and data buffer for process 1 */
if(csn_rx(t, 0, (char*)&rxbuffers, sizeof(rxbuffers» <0) {

fprintf(stderr, "Error on receive of remote addresses\n");
exit(-1);

else
/* Process 1 is DMA receiver; sender of addresses via CSN transport */

/* Lookup sender's transport */
if (csn_lookupname (&next, "toProcO", 1) != CSN_OK) {

fprintf(stderr, "Cannot lookup transport name\n");
exit(-1):

/* Send address of my event and data buffers */
rxbuffers.bufferp - buffer;
rxbuffers.eventp = event;
csn_tx(t, 0, next, (char*)&rxbuffers, sizeof(rxbuffers»;

/***************** End of CSN Initialisation **************/

SlOO2-10M131.01 meJ<a

/********** Elan library DMA/Event functionality *********/

if(!elan_checkVersion(ELAN_VERSION» {
fprintf(stderr, uerror: libelan version error\nH);
exit(l);

ELAN_CLEAREVENT(event);

if(me .- 0) {
/* Processor 0 is the DMA sender */

/* Initialise sender with data pattern */
for(i-Oi i<DMASIZE; i++)

buffer[i] - pattern[i % sizeof(pattern»):

/* Build the DMA descriptor */
dmaDesc->dma_type -
dmaDesc->dma size -
dmaDesc->dma source
dmaDesc->dma dest -

DMA_TYPE(TR_TYPE B~TE, DMA_NORMAL, 8):
DMASIZE;
- buffer;
rxbuffers.bufferp;

dmaDesc->dma_destEvent - rxbuffers.eventp:
dmaDesc->dma_destProc - 1;
dmaDesc->dma sourceEvent = event;

1* Address received from proc 1 */
1* Address received from proc 1 */

/* Initiate DMA; the event signifies completion. */
printf(~Process %d now transfering %d bytes by DMA\nH, me, DMASIZE);
elan_dma(ew_ctx, dmaDesc);
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

else {
/* Process 1 is the DMA recipient */

/* Wait for DMA to trigger dest. event */
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

/* Check received data pattern */
for(i-O; i<DMASIZE; i++)

if (buffer[i] !- pattern[i%sizeof(pattern»))
fprintf(stderr, ~Received data differs\nH):
exit (1);

printf(~Data received and verified by process %d\nH, me);

/****************** End of Elan functions ****************/

mfi<D Examples

2

31

2

32

1***************** CSN library clean-up ************************1

free(buffer);
free(dmaDesc);
free(event);
csn_exit(O);

SlOO2-10M131.01 1118<0

Computing
Surface

Group Routing

SlOO2-10M124.01 mei<G

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor
porated.

© copyright 1994 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade
mark of the Massachusetts Institute of Technology. AVS is a trademark. of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft

Preliminary

Release

Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454 618188

Contents

1. «=;Jr()lJJl ~()lJtin~ •••..••••••••••••••••••••••• 1

Introduction. 1
Implementation. 2

Packets Originating from the Local Node. 3
External Packets Requiring Forwarding. 3
Broadcast Packets Originating Locally. 4
External Broadcast Packets Requiring Forwarding 5
Local and External Multicast Packets. 5

2. «=;Jr()lJJl ~()lJtin~ AdministJrati()D •..••...•••... 7

Start of day configuration . 7
Commands.................................... 8

ifconfig(1m) . 8
route(1m) . 8
netstat(1m) . 10
ndd(lm) . 10

ii

Introduction

rneJ<a

Group Routing 1

This document briefly outlines the implementation of Group Routing on the
Meiko CS-2 (Solaris 2.X) operating system. The design of group routing present
ed here is a logical extension of the scheme devised by Lawrence Livermore Na
tional Laboratories (LLNL).

The Solaris kernel maintains a routing table that is built at runtime via the actions
of daemons and explicit route commands. This table holds all the TCP/IP routing
infonnation. Conceptually this table is a list of ordered pairs:

<address template 1 > <gateway address>
<address template 2> <gateway address>
<address template 3> <gateway address>

... ...
<any address> <default gateway>

The address templates can represent several different types of route; broadcasts,
loopback, networks, subnets, and hosts.

When a user issues a system call that causes a packet to be sent out on the net
work, the system looks at the destination address of the packet. This address is
compared sequentially against all the address templates in the routing table. If a
match is found then the packet will be sent to the corresponding gateway address.

1

1

Implementation

2

If no match is found then the packet will be sent to the default gateway, if such a
route has been configured. Otherwise the packet is dropped and an error is report
ed to the system call.

With Group Routing the route table is augmented:

<address template 1> <gateway address> <gid list>
<address template 1> <gateway address> <gid list>

<address template 1 > <gateway address> <gid list>

...
<any address> <default gateway> <gid list>

gid list is a list of group ids. This list may be either "positive", which allows
all listed groups to access that route, or "negative", which denies access to the
listed groups. The kernel lookup algorithm is extended so that a route is only
found if the destination address matches the address template and the sender is
allowed to use that route (as specified by the gid list). A user is pennitted access
to a route if any of their gid's match (Le. their real gid or any oftheirsupplemen
tal gids). Senders with a root uid are always pennitted access.

Three Solaris commands have also been extended to support the group routing;
the route (1m) command is used to add the group lists into the route table, the
netstat (1m) command is used to display the route table and associated gid
lists, and the ifconfig (1m) command is used to assign a gid to network in
terfaces - the latter command is used when data must be forwarded from an ex
ternal network where the sender's gid cannot otherwise be detennined.

There are six types of IP traffic that need to be considered:

1. IP packets originating from the local node.

2. IP packets originating externally and requiring forwarding.

3. IP broadcast packets originating locally.

4. IP broadcast packets originating externally and requiring forwarding.

5. IP multicast packets originating from the local node.

6. IP multicast packets originating externally and requiring forwarding.

SlOO2-10M124.01 meJ<a

1

Warning - group routing is only relevant to out-going packets, all in-coming
packets destined for the local node are not validated.

Packets Originating from the Local Node

Packets from the local node are the most obvious in tenns of implementing the
group routing strategy. By amending the kernel routing tables to include a list of
group ids (gids), the standard IP routing algorithm can be amended to match the
sender's group id as well as the target IP address. This allows the Administrator
to define exactly which routes a particular group of users can use. The kernel's
routing tables contain several different types of entry: broadcasts, networks, sub
nets, gateways, and hosts. All these types of route entry will be subject to group
routing, allowing the Administrator to control access to individual hosts as well
as complete networks.

Warning - the sender's gid is stored when the stream is opened and is not
updated during the lifetime of the communication. The group routing is not
updated if the sender's process changes group.

External Packets Requiring Forwarding

meI<o Group Routing

The control of packets that originate externally to a node is more difficult but is
fundamental to the operation of the CS-2.

CS-2 machines are built from many processing elements each running a separate
instance of the Solaris kernel. All processing elements within the CS-2 are inter
connected by the Elan/Elite network; some of the processing elements, called
gateway nodes, will also be connected to local networks.

IP forwarding must be functional at the gateway nodes, however a forwarding
gateway node has no way of detennining the original sender's group id. For
packets originating within the CS-2 (that is, those arriving via the Elan/Elite net
work) it is guaranteed that group routing was perfonned at the source node; it is
therefore safe to forward these packets without further checking. For external
networks this assumption cannot be made. Rather than inhibit the forwarding of
these packets, which would be too restrictive for most applications, group ids are
assigned to each network interface and are inherited by incoming packets. This

3

1

4

strategy allows the same routing checks to be used as for the local packets, and
also allows the System Administrator to effectively partition network segments
- packets arriving from a network interface can be prevented from being for
warded to other networks.

For example, a CS-2 may be connected to 4 external networks: NET_A, NET_B,
NET_C, and NET_D. By creating new group ids to represent these networks a
matrix of routing permissions can be implemented:

NET A NET B NET C NET D

NET A Y Y N N

NET B y y N N

NET C N N Y Y

NET D N N Y Y

The above table shows that users can use the CS-2 to route between networks A
and B (and B to A), and between C and D; users on networks A or B cannot route
into networks Cor D. By default through routing will not be allowed. The default
gid assigned to network interfaces is nobody - only by adding nobody to an
outgoing route, or +everyone, will packets be forwarded through the CS-2
from these interfaces.

Warning - security can be compromised by routing external networks
through non-gateway CS-2 nodes. All through-routing should pass direct
from the incoming gateway node to the outgoing gateway node.

Broadcast Packets Originating Locally

Broadcast packets originating locally to the node should ideally be treated in the
same way as non-broadcast packets, however the broadcast routes are created dy
namically by the kernel and cannot be changed or deleted by the route com
mand.

To give the System Administrator control over broadcast routes a default group
list is used. The default group list is the access list associated with any routes that
have not been explicitly given group routing information. For security reasons

SlOO2-10M124.01 meJ«J

1

the default group list is defined to allow access to no-one. The kernel has been
modified to allow this default list to be amended via the route command (see
the reference to default routes in Section router 1 m) on page 8).

External Broadcast Packets Requiring Forwarding

This type of packet is treated in the same way as External Packets Requiring F or
warding, described above.

Local and External Multicast Packets

rnei<D Group Routing

To simplify the initial group routing implementation multicast packets, either
originating locally or externally, are disallowed. The CS-2 will not perform any
multicast forwarding. and will only allow the superuser to send multicast pack
ets.

5

1

6 SlOO2-10M124.01 m8<D

Group Routing Administration 2

Start of day configuration

mei<D

By default the kernel will boot with group routing enabled. In order to configure
group routing a new file called / etc/ groutes is executed when the system is
rebooted. If this file is not present and executable then group routing will be dis
abled and the machine will resort to the normal TCP/IP routing scheme. If
present this file should contain all the route and ifconfig commands neces
sary to enable normal user access to the machine. As a minimum it must config
ure the Elan network adaptor (elanipO) to have a group id of root, and also
allow +everyone access to the Elan network.

Defaults Summary

• To allow system maintenance and normal daemon operation the root gid will
bypass all group routing checks.

• All routes have a default gidlist that will apply unless explicitly specified by
the route command. For security reasons the default gidlist is -everyone,
which excludes everyone but root.

• All network interfaces have a default gid that will apply unless explicitly
specified by the if conf ig command. For security reasons the default gid is
nobody.

7

2

Commands

8

Two commands are used to administer the group routing strategy. They are
Meiko extended versions of the standard Solaris commands if conf ig (1m)
and route (1m) . A third command, ndd (1m) , allows group routing to be en
abled or disabled.

ifconfig(lm)

route(lm)

The synopsis for the extended if conf ig (1m) command is:

ifconfig interface [addressJamily] [address [dest_address]]
[netmask mask] [broadcast address] [up] [down]
[trailers] [-trailers] [arp] [-arp] [private]
[-private] [metric n] [mtu n] [auto-revarp] [plumb
[group groupname]

Where groupname is a valid group name in the / etc/ groups file orNIS map.
By default all adaptors are initialised with a gid of nobody. The gid root is a
special group which bypasses all group routing checks.

The following example usage of ifconfig applies a gid of root to the Elan
network interface:

cs2-0i ifconfig elanipO group root

The synopsis for the extended route (1m) command is:

route [-fn] [-g +I-gidlist] add I delete [host I net]
destination [gateway [metric]]

Where gidlist is a comma separated list of one or more group names (from
/ etc/ groups or NIS map). There must be no whites pace in this list, either af
ter the initial +/- or between each group name. The initial +/- defines whether the

S lOO2-10M124.01 meJ<a

2

list is an access or deny list. If + then only the groups listed will be allowed ac
cess to that route; if - then only the groups listed will be denied access to that
route. Only one group list per command is valid. There is a special group name
called everyone that can be used to define lists that include or exclude all
groups - for example, +everyone will allow all groups access, and -eve
ryone will deny all groups access (except root).

Warning - the group list flag must appear before the add/delete part of the
command. This is better suited to the original command syntax and com
mand line validation. This is not compatible with the LLNL specification.

All route entries with an undefined group list use the default group list, which is
-everyone. The System Administrator can change this default by specifying
defaul t as both the destination and gateway addresses; note that the metric
shown in the following command line is ignored:

cs2-0* route -9 +everyone add defau~t defau~t 0

This is not the same as setting the group list for a default route (where only the
destination is specified as default).

The route command may also be used to change the group list for routes that al
ready exist. The following example changes the group list for the local network.
meiko-net on the machine spin.

cs2-0* route -9 +meiko,staff add meiko-net spin 0

This causes the old group list to be deleted and be replaced by the new list. Only
the group list is changed, all the other route parameters are left untouched.

meI<o Group Routing Administration 9

2

netstat(l m)

The netstat (1m) command has been extended to display the gid lists associ
ated with each route. To display this information the following command line
should be used. This will dump out the kernel IP route table and the correspond
ing group lists in symbolic format, as shown below. Note that only the first 16
groups of each route's gid list will be displayed.

root@cs2-0# netstat -rv

IRE Table:

Destination

localhost

godiva-net

cs2-net

meiko-net

224.0.0.0

default

10

Mask Gateway Device MxFrg Rtt Ref FIg Out In/Fwd Groups

255.255.255.255 localhost 100 8232* 512 0 UH 3107 0 -everyone

255.255.255.0

255.255.255.0

255.255.255.0

240.0.0.0

255.0.0.0

ndd(lm)

god:i,.vaO-leO 1500* 512 0 UG 0 0 -everyone

cs2-0 elanipO 69554* 512 3 U 0 o -everyone

cs2-0-leO leO 1500* 512 2 U 29 o -everyone

cs2-0 elanipO 69554* 512 3 U 0 o -everyone

tel star 1500* 512 0 UG 0 o -everyone

Group routing can be enabled and disabled using the ndd command on the IP
module. If the parameter ip_group_routing is non-zero then group routing
is enabled.

ndd -set /dev/ip ip_group_routing 1

ndd -set /dev/ip ip_group_routing 0

* enable group routing

* disable group routing

The ip _ire_stat us function has also been modified to display the group lists
associated with each route entry.

SlOO2-10M124.01 mei<a

